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Abstract 
Consistency modeling for gene selection is a new topic emerging from recent cancer 

bioinformatics research. The result of classification or clustering on a training set was 

often found very different from the same operations on a testing set. Here, the issue is 

addressed as a consistency problem. In practice, the inconsistency of microarray 

datasets prevents many typical gene selection methods working properly for cancer 

diagnosis and prognosis. In an attempt to deal with this problem, a new concept of 

performance-based consistency is proposed in this thesis.  

 

An interesting finding in our previous experiments is that by using a proper set of 

informative genes, we significantly improved the consistency characteristic of 

microarray data. Therefore, how to select genes in terms of consistency modelling 

becomes an interesting topic. Many previously published gene selection methods 

perform well in the cancer diagnosis domain, but questions are raised because of the 

irreproducibility of experimental results. Motivated by this, two new gene selection 

methods based on the proposed performance-based consistency concept, GAGSc 

(Genetic Algorithm Gene Selection method in terms of consistency) and LOOLSc 

(Leave-one-out Least-Square bound method with consistency measurement) were 

developed in this study with the purpose of identifying a set of informative genes for 

achieving replicable results of microarray data analysis. 

 

The proposed consistency concept was investigated on eight benchmark microarray  and 

proteomic datasets. The experimental results show that the different microarray datasets 

have different consistency characteristics, and that better consistency can lead to an 

unbiased and reproducible outcome with good disease prediction accuracy. 

As an implementation of the proposed performance-based consistency, GAGSc and 

LOOLSc are capable of providing a small set of informative genes. Comparing with 

those traditional gene selection methods without using consistency measurement, 

GAGSc and LOOLSc can provide more accurate classification results. More 

importantly, GAGSc and LOOLSc have demonstrated that gene selection, with the 

proposed consistency measurement, is able to enhance the reproducibility in microarray 

diagnosis experiments. 
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Chapter 1 

Introduction 
 

1.1 Background 
1.1.1 Recent research in microarray area 

The advent of microarray technology has made it possible to monitor the expression 

levels for thousands of genes simultaneously, which can help clinical decision making 

in complex disease diagnosis and prognosis, especially for cancer classification, and for 

predicting the clinical outcomes in response to cancer treatment. It has been reported 

that the results of microarray experiments can be nearly 100% accurate (Petricoin, 

Ardekani et al., 2002; Zhu, Wang et al., 2003). Microarray technology is thus 

considered as a revolution for studying all human diseases, and is very important for 

developing complex diseases therapy schemes (Schena, 2002). 

 

Microarray technology is capable of profiling differential gene expressions of tissue 

samples. Dozens of microarray research papers have shown that this technology is 

highly sensitive and specific to detect cancer and predict prognosis. The proponents of 

microarray technology even claim that “all human illness can be studied by microarray 

analysis, and the ultimate goal of this work is to develop effective treatments of cures 

for every human disease by 2050” (Schena, 2002).  

 

The majority of current medical microarray research is conducted in the realm of cancer 

(or tumour) classification. Cancer diagnosis primarily relies on the histological 

appearances of the tumours, which has been proved not reliable and accurate. Moreover, 

during the treatment period of morphologically similar tumours, there are often different 

disease progressions and responses. Ideally, a systematic and unbiased method is able to 

successfully classify cancers. Hence, microarray technology has been put forward as a 

new aid in treating various cancers and related complex diseases. 

 

The applications of microarray technology are able to utilize information and 

knowledge from human genome project to benefit human health. In the last few years, 

the remarkable progress achieved in microarray technology domain has helped 

researchers to develop the optimized treatment of cancer and other complex diseases, as 

well as the evaluation of prognosis based on genetic knowledge. For example, cDNA 
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microarray is used to assess Parkinson’s disease samples and examine the drug 

intervention (Mandel, Weinreb et al., 2003). Array technology has been employed in 

several studies of Alzheimer disease to predict different stages, including preclinical and 

prognosis stages (Galvin & Ginsberg 2004; Galvin, Powlishta et al., 2005).  

 

1.1.2 Reproducibility and reliability problems due to Bias 

However, whether microarray data analysis can accurately predict the cancer patients 

has been disputed in recent scientific literature, because many impressive results of 

microarray experiments could not be reproduced. For example, previous works on a 

well-known benchmark microarray dataset, ovarian data have been found to be 

irreproducible. In 2002 and 2003, two studies (Petricoin et al., 2002; Zhu et al., 2003) 

reported that the prognosis of ovarian cancer through microarray data technology was 

highly accurate (nearly 100% accurate). The outcomes were questioned when these 

testing approaches were intended to be commercialized, because the previous results 

were unrepeatable in practice (Wagner, 2004). Baggerly et al. (2005) refuted the results 

of these two major ovarian cancer studies, as their analysis showed that the 

classification of these microarray datasets was variable and the high prediction 

accuracies were unreachable due to overfitting caused by the unique structure of 

microarray data. 

 

Reproducibility has been often criticized as one of the most important bias problems in 

microarray research. Recently, bias has attracted a lot of attention. Ransohoff (2005) 

pointed out that bias was a big threat to the validity of microarray data analysis, because 

most impressive results of microarray studies could not be reproduced in later 

simulating experiments. Ntzani and Ioannidis (2003) reviewed all microarray studies of 

cancer diagnosis that were accessible from MEDLINE (1995 ~ April, 2003), and they 

found that only 16% studies could be “subsequently replicated with formal statistical 

significance, without heterogeneity or bias” (Ioannidis, Trikalinos et al., 2003).  

 

More of such concerns have been raised in recent years, and microarray technology is 

even argued as a “noise discovery”. Marshall (2004) disputes the reliability of the 

outcomes of microarray experiments: “Thousands of papers have reported results 

obtained using gene arrays, … But are these results reproducible?”. Furthermore, it is 

claimed that microarray technology applied in five out of seven studies performs no 

better than flipping a coin (Ioannidis, 2005; Michiels, Koscielny et al., 2005).  
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Thus, bias becomes a big concern in microarray data analysis, and can be a threat to the 

advent of microarray technology. It is critically important to find a scheme to determine 

whether the result is reliable and accurate. Otherwise, hundreds of microarray 

experiments will lead to waste of time and resources, without getting expected results. 

Recently, the academic community has recognized that it is crucial to establish a set of 

evaluation criteria that enables researchers to choose proper methodologies leading to 

more efficient and reliable outcomes. Consequently, plenty of literature has been 

published focusing on various techniques, such as estimating bias error, validation 

schemes and resampling methods (Allison, Cui et al., 2006; Braga-Neto, Hashimoto et 

al., 2004; Liotta, Lowenthal et al., 2005; Varma & Simon, 2006). Allison and his 

colleagues (2006) summarized several issues in microarray experiments, and suggested 

a verification system as well. 

 

1.1.3 Microarray dataset structure: High dimensionality problem 

Why microarray experiments are difficult to replicate? Empirical research has revealed 

that the main reason is the extremely unbalanced structure of microarray datasets 

(Chuang, Liu et al., 2004; Li & Yang, 2002; Pawitan, Murthy et al., 2005). In a typical 

microarray dataset, each row represents a tissue sample, and each column represents one 

gene. Because using the microarray chip is still expensive, the number of samples 

analysed is too small comparing to the number of the genes on the chip. In most real 

microarray datasets, the number of genes (usually thousands or tens of thousands) far 

exceeds the number of samples (usually tens or hundreds). For example, there are 78 

samples vs. 24,482 genes in the breast cancer dataset of (van't Veer, Dai et al., 2002).   

 

In machine learning research, in order to get a satisfactory classifying accuracy, the 

sample size of the dataset should be sufficiently large comparing to the number of 

features (Ambroise & McLachlan, 2002; Glymour, Madigan et al., 1996; Hosking, 

Pednault et al., 1997; Varma et al., 2006). Raudys (1976) indicates that a good classifier 

comes from a dataset with balanced structure, i.e. the sample size should be appropriate 

to the number of features. Generally speaking, the generalization error in machine 

learning area decreases when the sample size increases (Hamamoto, Uchimura et al., 

1996).  

 

However, it is not feasible to get a microarray dataset with a larger sample size, 

compared to the features (genes). This leads microarray analysis to become a 
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formidable challenge. A huge number of genes usually include many redundant genes 

(noise genes) that can confuse a classifying algorithm. Moreover, the huge 

dimensionality problem makes microarray data analysis very costly in terms of time and 

computation. 

 

Therefore, a major challenge with microarray research is how to find informative genes 

that can be used for effective discriminating variables in relation to different conditions, 

such as classifying healthy and diseased tissue samples. The amount of relevant genes is 

typically small, as “the majority of the active cellular mRNA is not affected by the 

biological differences”(Wolf, Shashua et al., 2004). Previous classification work on 

microarray datasets have shown that using a small number of informative genes can 

successfully discriminate the tissue sample types, e.g. diseased or healthy (Dudoit, 

Fridlyand et al., 2000; Eisen, Spellman et al., 1998; Golub, Slonim et al., 1999).  

 

1.1.4 Gene selection 

Gene selection is not a brand-new technology, in terms of the technological aspect. In 

the viewpoint of data mining, gene selection can be seen the feature selection which is 

widely used in data pre-processing stage. However, gene selection, unlike feature 

selection in the area of machine learning, is characterised by the great difference 

between a huge number of genes (usually thousands or tens of thousands) and a very 

small number of samples (typically tens).  

 

There are plenty of reasons for employing gene selection, especially in cancer diagnosis 

and treatment area. The main benefits of employing gene selection methods in 

microarray data analysis can be summarised as follows: 

a). The cost of cancer diagnosis in terms of time and computation can be greatly 

reduced. It is much cheaper to focus on a small number of informative genes that 

can differentially express the patterns of disease from the whole gene set (Tang, 

2006).  

b). Most noise genes can be removed. As mentioned above, the presence of many noise 

genes is the main reason causing high generalization error. Therefore, the 

performance of microarray experiment will be improved if these noise genes are 

eliminated. 
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Therefore, using effective gene selection methods, a small list of highly informative 

genes can be discovered from whole gene set. Then, these genes can be utilized to 

construct the classifier for discriminating disease patterns.  

 

1.1.5 Gene selection methods in literature 

During the last few years, gene selection has become a hot topic that has attracted great 

attention in bioinformatics area, and a number of methods and algorithms have been 

published. Simple gene selection methods come from statistical methods, such as 

t-statistics, Fisher’s linear discriminate criterion and Principal Component Analysis 

(PCA) (Ding & Peng, 2003; Furey, Cristianini et al., 2000; Jaeger, Sengupta et al., 

2003). They are usually effective and run very quickly. To improve the efficiency of 

selected genes in terms of disease prediction accuracy, more sophisticated algorithms 

have been proposed, e.g. Noise sampling method (Draghici, Kulaeva et al., 2003), 

Bayesian model (Efron, Tibshirani et al., 2001; Lee, Sha et al., 2003), and Significance 

Analysis of Microarrays (SAM) (Tibshirani, 2006). In addition, artificial neural 

networks are also being used for gene selection, a representative work in this category is 

evolving connectionist system (ECS) (Kasabov, Middlemiss et al., 2003). Most of above 

methods are claimed to be capable of extracting out a set of highly informative genes 

(Wolf et al., 2004).  

 

Gene selection methods can be generally classified into two major groups: filter and 

wrapper methods, depending on whether the learning algorithm is used as a part of the 

selection criteria (Ambroise et al., 2002; Devijver & Kittler, 1982; Inza, Larranaga et al., 

2004). Filter method examines the intrinsic characteristics of genes as the measuring 

criterion. The gene selection procedure is independent of the classification process, as 

the classifier is not constructed before informative genes are selected out. In contrast, 

wrapper method evaluates genes based on the performance of an induction algorithm 

usually involving a classifier. The selection algorithm is learnt and optimized during the 

gene selection process, and implemented to the gene evaluation criterion as well. In 

wrapper methods, it can be said that gene selection process is wrapped around a specific 

machine learning algorithm. 

 

Filter method is more popular than wrapper method in gene selection area, because it 

can generally achieve satisfactory performance with much less computational cost. 

Filter gene selection methods can be found in many published works: A Noise sampling 
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method based on an ANOVA approach (Draghici et al., 2003), minimum redundancy – 

maximum relevance (MRMR) gene selection method (Ding et al., 2003), Self 

Organizing Maps (SOM) based method (Tamayo & et al., 1999), Singular Value 

Decomposition (SVD) (Atler & et al., 2000), a.k.a gene shaving method (Hastie & et al., 

2000), max-surprise method (Ben-Dor, Friedman et al., 2001), and so on.  

 

In most pattern recognition applications, wrapper method outperforms filter method. 

However, the better performance obtained from wrapper method is coupled with high 

cost in terms of time and computational complexity, which is reported by the authors in 

several papers (Guyon & Elisseeff, 2003; Kohavi & John, 1997). In wrapper method, 

the gene selection process is heavily dependent on a search engine, a search area (data), 

and an evaluation criterion to optimize the gene selection approach. A simple flow 

structure of wrapper method is shown in Fig. 1.1.  

Feature Selection Search

Feature Evaluation 

Induction Algorithm

Performance 
estimationFeature set 

Feature set Hypothesis

Feature set

Induction 
Algorithm 

Training set
Training set 

Final Evaluation Estimated 

Fig.1.1  A simple flow structure of wrapper method (adapted from Kohavi et al., 1997) 

 

Wrapper method has been widely accepted in gene selection since it was proposed by 

Kohavi (1995) in his feature selection work, in which wrapper method was shown more 

efficient than filter method with respect to the classification accuracy. However, unlike 

the high popularity of filter gene selection methods employed in microarray research, 

there are relatively few works based on wrapper methods because of its 

cost-ineffectiveness. Guyon et al. (2002) used the wrapper method consisting of a 

Support Vector Machine (SVM) algorithm based on Recursive Feature Elimination 

(RFE) to select informative genes for leukaemia and colon cancer data. Li and Xiong 

(2002) used the wrapper approach for a Fisher’s linear discriminate algorithm, and 

showed it very sensitive for gene selection (with only 6 genes, the classification 

accuracy on colon cancer data can be over 90%).  Lee et al. (2003) developed wrapper 
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gene selection approach in the context of a hierarchical Bayesian model with Markov 

Chain Monte Carlo (MCMC) search algorithm for finding informative genes.  

 

1.2 Motivation 
1.2.1 Consistency issue in gene selection 

In our previous experiments, the results obtained from the operation, such as 

classification and clustering on the training dataset were found very different from that 

of the same operations on the testing dataset. For example, the training set from CNS 

cancer data (Pomeroy, Tamayo et al., 2002) can get a performance of above 90% true 

positive (TP) accuracy for tumour classification, whereas the testing data only gets 70% 

of TP accuracy. This occurs because those typical methods for gene selection use only a 

single criterion of distance measurement between patients and non-patients, but 

regardless of the consistency between the subsets of data with the genes selected under 

the criterion. 

 

In this thesis, this issue is discussed, which is here referred to as the consistency 

problem. Moreover, it is also noticed that selecting a set of proper genes can 

significantly reduce the inconsistency of microarray data experiment. Obviously, it will 

be more interesting to find out a set of genes that enable a consistently good 

classification performance over different subsets of patients in the complete microarray 

data. 

 

1.2.2 Related work on consistency issue in gene selection 

The concept of consistency is proposed for the purpose of improving the reproducibility 

of gene selection in microarray experiments. Since the importance of consistency for 

microarray data analysis has not been sufficiently recognised by bioinformatics 

researchers so far, there are very few published works related to this new topic. In 

addition, there is no official definition of the concept of consistency used in microarray 

research, and it is defined in different ways which will be described in later sections.  

Probabilistic consistency analysis for gene selection method (Mukherjee & Roberts, 

2004) is a recent novel approach that focuses on analyzing the common genes selected 

from two datasets (Mukherjee, Roberts et al., 2005). The consistency is defined as the 

number of genes in common between two gene sets. This probabilistic consistency 

concept is applied to their gene selection method for selecting truly differentially 

expressed genes under various conditions. In the process of gene selection, the result of 
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consistency computed from top-ranked genes is used for optimizing a test statistics 

function. After hundreds of iterations, an optimized statistic function can be achieved 

based on the consistency improvement. Then, a small list of most informative genes can 

be discovered with the final optimized statistic function.  

 

In short, the concept of consistency proposed in their paper is based on the number of 

genes in common between two subsets. The value of consistency is dependent on 

several factors, including ranking function, number of selected genes, and iteration 

times. The authors indicate that the more informative the genes selected, the better 

consistency the experimental results. Their experiment shows the gene selection 

methods with consistency concept is effective for improving the reproducibility of 

microarray analysis (Mukherjee et al., 2005). Their method is described in detail with a 

simulation experiment in chapter 2. 

 

1.2.3 Gene selection method in terms of consistency 

The concept of consistency proposed by Mukherjee et al. (2005) focuses on the 

common genes selected from two sampled datasets. However, it is not clear to what 

extent the selected “highly differentially expressed genes” in terms of consistency are 

related to the performance of the classification or clustering on microarray data. In other 

words, the performance of classification or clustering over a dataset may not be 

improved significantly, though the method based on their consistency concept is 

employed. Motivated by this issue, a new consistency concept in terms of performance 

is proposed in this thesis. 

 

The idea of the new gene selection methods proposed in this thesis is to use the result of 

consistency obtained from an operation (e.g. classification or clustering) to find 

informative genes for a microarray dataset. For most microarray datasets, there tends to 

be no agreement on which genes are highly differentially expressed, and consequently it 

is difficult to measure the reliability of any gene selection method. In practice, the 

performance of an operation over microarray data is a straightforward criterion for 

measuring the outcomes of microarray experiments. The proposed solution is based on 

the optimizing computation that takes consistency measurement into account. 
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1.3 Organization of the thesis 
This study is organized into the following chapters: 

Chapter 2 provides a literature review of several widely-used gene selection methods, 

including t-test, SNR, SAM, and the Data-Adaptive (DA) method with the consistency 

of common genes (Mukherjee et al, 2005).   

 

Chapter 3 presents a definition of the proposed performance-based consistency concept, 

and describes two proposed consistency-based gene selection methods, GAGSc 

(Genetic algorithm gene selection method in terms of consistency), LOOLSc 

(Leave-One-Out Least-Square bound method with consistency measurement) and 

relevant algorithms. 

 

Chapter 4 presents the experimental results obtained by two proposed gene selection 

methods (GAGSc and LOOLSc) on seven benchmark microarray datasets and one 

proteomics dataset. The classification results from GAGSc method is compared with the 

reported classification performance from the literature of microarray data analysis. The 

efficiency of the proposed performance-based consistency concept is examined by the 

comparison of LOOLSc and LOOLS (with consistency measurement vs. without 

consistency measurement). This chapter also discusses a totally unbiased validation 

scheme used in this study. 

 

Finally, chapter 5 contains the discussion and conclusions of this study as well as 

suggestions of future work. 
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Chapter 2 

Literature review: Gene selection methods 
 

This chapter examines several commonly used approaches for gene selection in 

microarray studies. Numerous gene selection methods have been proposed in the 

literature, as gene selection is considered one of the main tasks for microarray research. 

To find informative genes, a diversity of techniques and approaches derived from 

different areas, such as statistical theory, neural network and genetic algorithms have 

been introduced to microarray studies. Three popular algorithms used in gene selection 

methods are reviewed in this chapter, including T-test and its varieties, Significance 

Analysis of Microarrays (SAM) and Signal-to-Noise-Ratio (SNR). Additionally, one 

recently published gene selection method (Mukherjee et al., 2005) based on a 

consistency concept is discussed in detail. 

 

Gene selection has been found useful for improving the consistency in terms of the 

performance for the classification on microarray data. Here, the concept of consistency 

is defined as the absolute difference between the performance on a training set and on a 

testing set. Consider a microarray dataset having two predictor classes, e.g. healthy or 

diseased. Using cross validation, the result obtained from a training set has been often 

reported to be very different from that from a testing set (Jain, Duin et al., 2000).  This 

means the consistency of this microarray dataset is fairly low, so that the experimental 

results may vary quite significantly. 

 

The aim of gene selection is to find a small group of informative genes that can 

successfully classify any samples from randomly resampled dataset into correct classes, 

and give consistently good results. For example, if the 5-fold cross validation technique 

is used in the experiment, the accuracy of classification on the 1 fold testing set should 

be very similar to that on the 4 folds training set. These selected genes thus can be 

regarded as the informative genes in terms of good consistency. 

 

2.1 T-test based gene selection methods 
2.1.1 Overview of T-test algorithm 

T-test, since first published by Gosset (1908), has been extensively studied in the realm 

of machine learning and bioinformatics. T-test, as a classical statistical theory, is 
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commonly applied to the judgements for measuring the differences in means between 

two distributions of a dataset. Theoretically, the T-test can perform well even if the 

number of samples is very small (Triola, 1998). This characteristic has made T-test 

widely used for gene selection in microarray research (Arfin, Long et al., 2000; Ding et 

al., 2003; Tanaka, Jaradat et al., 2000; Thomas, Olson et al., 2001). In practice, many 

previous microarray studies have shown that T-test or its varieties, e.g. Wilcoxon rank 

(Wilcoxon, 1945), and Westfall-Young (Westfall & Young, 1993) algorithms are 

effective for identifying differentially expressed genes for microarray studies (Ding, 

2002; Dudoit et al., 2000; Model, Adorján et al., 2001). Using T-test algorithm, a small 

number of informative genes can be identified based on their intrinsic characteristics in 

relation with the target class labels. 

 

Generally, the main idea of using T-test algorithm in gene selection is to evaluate to 

what extent each gene in a sample is related with a particular gene in other samples. The 

expression level of each gene is evaluated by t-test statistic. Suppose a two-class 

microarray dataset D pertaining to a gene selection task, and the t-test statistic value of 

each gene in D can be computed by: 

                   
1( )

i i
i

i
x y

X Y
T

n n

−
=

1 +  σ

 (2.1) 

where Ti is the T-test statistic value of ith gene in D, iX  and iY  represent the mean 

value of ith gene corresponding to different classes (e.g. class 0 and class 1) respectively. 

nx and ny are the number of samples of two classes (class 0 and class 1). iσ is the 

pooled standard deviation for the ith gene: 
2( 1) ( 1)x y

2
x y

i
df

n n− σ + − σ
σ =  (2.2) 

where 2
xσ and  are the variance of two subsets corresponding to different classes

y
2σ  

respectively.  
2

12
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=
∑ −

σ =
−

  (2.3) 

2

12
(

1

y

j
j

y
y

n
Y Y

n
=
∑ −

σ =
−

)  (2.4) 

df is the degrees of freedom of the t-distribution under the null hypothesis and calculated 

by: 
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                    df = (nx + ny – 2) (2.5) 

Thus, all genes can be ranked according to the scores of their T-test statistic during the 

gene selection process, so that a small number of high-ranked genes can be selected 

consequently.  

 

One should bear in mind is that T-test distribution can be used only when the data is 

normally distributed and the population variances are equal in two classes. If variances 

are unequal in terms of two classes, the degrees of freedom (df) is computed by a 

different version of T-test, Welch's T-test (Welch, 1938) . The value of degrees of 

freedom obtained by Welch’s T-test is normally smaller than that obtained in Equation 

(2.5). Other different versions of t-test are also used depending on special conditions, for 

example, Levene's test (Levene, 1960) and Bartlett's test (Snedecor & Cochran, 1989) 

are two sensitive methods when the samples have equal variances (homogeneity of 

variances)  (Snedecor et al., 1989). Note that parametric tests may perform poorly due 

to violation of their underlying assumptions, such as normality and equal variance in 

different groups (Hwang, 2002). 

 

2.1.2 Applications of T-test and variants in gene selection 

The classical T-test algorithm is probably one of the most popular techniques used for 

identifying significant difference between two sets of normalized data. For example, the 

two-sample T-test is a simple approach, and often applied to gene selection problems. 

Two-sample t-test takes the assumption that samples are randomly selected from 

normally distributed samples with equal variances. This algorithm was used in the gene 

selection method proposed by Dudoit et al. (2002), in which the differentially expressed 

genes were evaluated by the T-statistic value of Equation (2.1). The absolute expression 

level of the ith gene is further measured by il : 

  

n
2

j=1
i

RGlog
l =

n

∑
 (2.7) 

where R and G represent the intensity measurements for each gene spotted in a 

single-slide cDNA microarray chip, n is the number of hybridizations performed.  

 

The more precise expression levels of genes can be measured by calculating p-values 

for each gene. However, as a typical microarray dataset consists of thousands of genes, 

the multiple testing becomes a big concern (Holm, 1979; Shaffler, 1986; Westfall et al., 
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1993). When the tests are performed many times, the probability of at least one Type I 

Error would be significantly increased. To deal with issue, several approaches are 

suggested to control this type of error, e.g. adjusted p-values (Shaffer., 1995), 

Bonferroni method (Bonferroni, 1936) and Westfall-Young step-down method (Westfall 

et al., 1993). Suppose ip  and ip  represent the unadjusted and adjusted p-values of 

the ith gene reprehensively. The Bonferroni single-step adjusted p-values are defined by: 

,(min 1i ip np= )  (2.8) 

where, n is the number of genes in the dataset.  

 

In terms of unique characteristics of microarray dataset (i.e. the great difference 

between numbers of genes and samples), Westfall-Young step-down adjusted p-values 

are considered to be more general and accurate (Dudoit, Yang et al., 2002) in the 

measurement of the statistic value of the ith gene. The Westfall-Young p-value of the ith 

gene is calculated as follows (Dudoit et al., 2002): 

1 1 0 {1, ... }pr(min | ) |i H np p p i ∈≤=  

11 0max( , (min | ) | {1,... }ii ip p pr p p H i−= ≤ n∈  (2.9) 

where H0 is the intersection of all null hypotheses, and pi represents the unadjusted 

p-value of the ith gene. Let Ti denotes the t-test statistic value of the ith gene. Then, the 

permutation p-values for the T-test of ith gene in Dudoit’s experiments are given by: 

  
( )

1 (| | | |)* Im j
i ij T T

i mp =
=

≥∑
 (2.10) 

where m is the number of iterations, and I is an indicator function for indicating the 

condition in parentheses, i.e. if the condition is true, then I returns 1, otherwise 0. In 

their two experiments, by using T-test methods with adjusted p-value approach, a small 

group of genes are selected out according to their statistic ranking scores. The genes 

found by this method seemed efficient in explaining the different patterns of two groups 

of mice models (Dudoit et al., 2002). 

 

Other sophisticated gene selection methods based on classical T-test theory have been 

put forward to explore the genes whose expression patterns are highly correlated with 

the predictor classes. The statistic score of each gene can be obtained from a variation of 

classical T-test statistics algorithm proposed by Golub and his colleagues (Golub et al., 

1999). Their method is called Neighbourhood analysis in which each gene is denoted by 

an expression vector:  
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v(i) = (l1, l2, … ln)  (2.11) 

where li represents the expression levels of the ith gene in n samples, and n is the number 

of samples in the given dataset D. According to the sample belonging to each class 

(class 1 or class 0), c is assigned to denote the expression patterns of class distinction. 

Then, they give the following formula to measure the correlation between a gene and a 

class distinction:  

( )
i i

i xi y
T

X Y
+ i

−
= σ σ   (2.12) 

where xiσ  and  are the standard deviation the iyiσ th gene corresponding to two 

different classes. The large value of T(i) reflects a strong correlation between the 

expression level of the ith gene and the class distinction.  

 

Using neighbourhood analysis method, 50 genes were selected to do clustering over 

ALL-AML leukaemia dataset and the result obtained from the SOM (self-organizing 

maps)  clustering reached very high accuracy, nearly 100% (Golub et al., 1999). 

Another contribution of their work is that they indicated with effective gene selection 

methods, it is feasible to predict cancer classes for other types of cancer without 

previous biological knowledge (Golub et al., 1999). However, recently these results 

have been criticized as unreplicable (see introduction). 

 

The Wilcoxon rank test (Wilcoxon, 1945) is a non-parametric alternative to classical 

T-test statistics algorithm and has been reported powerful in the applications of gene 

selection (Guan & Zhao, 2005; Jaeger et al., 2003). The advantage of Wilcoxon rank 

test arises when the T-test statistic value calculated by Equation (2.1) is greater than the 

threshold specified for statistical significance, so that two observed samples cannot be 

discriminated according to standard T-test statistic criteria.  

 

The Wilcoxon rank test for gene selection can be briefly described as follows: 

Suppose a microarray dataset D consisting of n samples belonging to two different 

classes. Xi and Yi represent the ith gene corresponding to two different classes. The 

Wilcoxon ranked statistic value for a gene is given by: 

(| |)I
n

i i ii
W X Y∑= − iR  (2.13) 

where Ri is a ranking function, and I is an indicator function that indicates the 

conditions of parentheses.  
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2.1.3 Discussion of T-test gene selection method 

T-test based algorithms are often used for comparing with other new developed gene 

selection methods, as they have been extensively studied and discussed in various 

research areas for decades. One of their major advantages is the simplicity and 

robustness, which leads to a fast computation process for gene selection. However, one 

must bear in mind that the high false-positive rate should be considered, when multiple 

tests are applied in the microarray data analysis. Otherwise, the differentially expressed 

genes cannot be discovered according to a typical P-value (0.05) that is commonly 

adopted for signifying differential expression levels for the genes responding to two 

groups (Ding, 2002).  

 

In addition, T-test based gene selection algorithms usually make the assumptions that 

two samples have equal variances and the genes are independent. These assumptions 

can have a big negative impact on real microarray datasets. Empirical studies have 

indicated that the selected genes by simple T-test based algorithms are not reliable in 

terms of expressing disease patterns, and are easy to be generated by chance. For 

example, even if the P-value is significantly small (0.01) in a microarray experiment 

with 10,000 genes, 100 genes might be identified by chance. This issue has led 

scientists to develop more specific gene selection methods for microarray data analysis. 

SAM (Tusher, Tibshirani et al., 2001) is one of these methods and described in the 

following section . 

 

2.2 SAM method 
2.2.1 Overview of SAM algorithm 

SAM is a recently proposed method specifically designed for gene selection in 

microarray data analysis. It is a statistical technique derived from T-test statistic for 

identifying informative genes in a set of microarray experiments. The method was first 

proposed by Tusher et al. (2001) and the software package was developed by 

Narasimhan at Stanford University. Empirical studies have shown that SAM method can 

get a good performance for gene selection, especially in small sample microarray 

dataset (Wu, 2005).  

 

SAM method assigns a statistical score to each gene based on the change in gene 

expression in relation with the standard deviation computed from plenty of iterated 

measurements. Those genes whose scores greater than a pre-specified threshold are seen 
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as potentially informative genes. To describe the SAM algorithm, certain basic concepts 

and definitions are needed to be explained. 

 

FDR (false discovery rate), since first introduced by Benjamini and Hochberg (1995), 

has been extensively studied and used for controlling complicated errors in 

multiple-hypothesis testing. This quantity is the expected percentage of false positive 

findings among all the rejected hypotheses. In microarray studies, FDR is evaluated by 

a set of iterated measurements in which useless gene are identified. Then it is used for 

estimating the percentage of those genes identified by chance. During the process, the 

threshold for evaluation is adjustable to identify different size sets of genes, and a 

serious of FDR can be calculated regarding to each set.  

 

FDR is defined as follows: with a set of m multiple tested null hypotheses, m0 are true 

while m1 are false. For each hypothesis Hi, a test statistic Ti is calculated for each gene 

along with the p-value. R is the number of hypotheses rejected by a procedure. V is the 

number of null true hypotheses rejected, which means the true positives among the 

selected genes. S denotes the number of false hypotheses rejected, i.e. the genes that are 

erroneously selected as informative. Thus, FDR is given by: 

  | 0VFDR E R
R

⎛ ⎞= >⎜ ⎟
⎝ ⎠

 (2.14) 

For simplicity, Table 2.1 summarizes the possible outcomes occurring when multiple 

hypothesis (m) tests are performed on a set of genes. 

 
Accept 

(not significant) 

Reject 

(significant) 
Total 

Null True U V m0

Alternative True T S m1

Total m - R R m 

Table 2.1 Possible outcomes from m hypothesis tests of genes (adapted from Tibshirani, 2006) 
 

SAM uses iterated permutation of the data to find the genes whether they can 

differentially expressed the pattern of samples. The procedure of SAM gene selection 

method starts with the evaluation of the standard deviation of each gene. The statistic 

value of each gene computed by SAM is derived from T-test statistic using Equation 

(2.1). Then, the correlation between different genes can be accounted for. According to a 

given hypothesized criterion, the false discovery rate (FDR) of a set of genes is 
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evaluated. After a number of iterations, each gene has a statistic value that is capable of 

measuring the strength of the relationship between gene expression and the target 

variables (class labels) (Tusher et al., 2001). 

 

Then SAM uses the following procedure to reduce the FDR occurring in the above 

statistic computation (Tibshirani, 2006): 

1. Sort the statistic value in ascending order: 
(1) (2) ( ) | 1,2,iT T T i n≤ ≤ =  

2. Take permutations to a randomly chosen set of the statistic scores T(i) belonging to 

class 2 (here is ). 1,2i mY =

3. Adjust the small value of T(i) and intend to find a fixed threshold C. 

4. Evaluate the FDR through the following criterion:  

( )iT T C− > . (2.15) 

The procedure runs m repetitions, and a small group of genes is finally selected into the 

informative gene list. The statistic value of each gene obtained from SAM algorithm is 

therefore defined as: 

  

2 2( 1) ( 1)1 1
i i

x x y y

Ti
X Y

n n
 C

n n df
σ σ

=
−

⎛ ⎞− + −
+ +⎜ ⎟⎜ ⎟

x y ⎝ ⎠

 (2.16) 

where nx and ny are the number of samples responding to two classes, respectively. 

 

2.2.2 Applications of SAM and its variants in microarray studies 

SAM is a relatively new method for gene selection that makes gene selection more 

efficient and reduces the error rate simultaneously. Several recently published papers 

have applied SAM algorithm to the gene selection methods (Reiner, Yekutieli et al., 

2003; Wu, 2005).  

 

As already mentioned, T-test statistic is used in SAM method for calculating the statistic 

value of each gene. It is possible to use other techniques to make SAM method more 

robust. Motivated by this factor, other statistic algorithms have been accepted to take the 

place of T-test in SAM. Wu (2005) improved standard SAM with F-statistic and a 

penalized regression algorithm to evaluate gene expression levels. In addition, a linear 

regression models are used to do comparison for ith gene. Thus, the statistic value of the 

ith gene is calculated by: 
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where Xij, Yij denote the value of the ith gene corresponding to the jth sample of class 1 

and class 2, respectively, and n is the number of samples of whole dataset. Using 

F-statistic, the expression levels of genes are evaluated based on two groups of samples, 

one is for nx samples from one class and ny samples from another class. 

 

The main strength of SAM method is the efficient control of FDR. In SAM method, 

FDR is a key factor used for improving the effectiveness for gene selection approach. 

Some varieties of SAM method with adjusted FDR definitions have been proposed 

(Hero, 2003; Reiner et al., 2003). For example, a variant of SAM method consists of 

evaluating the statistic ranking score of each gene by an enhanced FDR formula is 

proposed by Reiner et al (2003). In their method, for the p-values corresponding to the 

true null hypotheses, if the number of resampling-based p-values less than a specified 

threshold, they are denoted by V(p) that is an estimated upper bound. Then, FDR is 

calculated by: 

( )

( )( )

p

pp

V
FDR E

V S

⎛
′ = ⎜ ⎟⎜ ⎟+⎝ ⎠

⎞  (2.18) 

where  is denoted by the estimated number of false null hypotheses smaller than p. ( )pS

 

SAM method is regarded as a very practical tool for finding informative genes with a 

satisfactory FDR level in gene selection. The multi-parametric assumptions about the 

distribution of individual genes can be avoided, because the statistic correlation between 

each gene and others in the dataset is accounted for numbers of distributing permutation. 

One disadvantage of SAM method is: in the permutation stage, all genes are put into 

one group for evaluation, which requires an expensive computation and probably 

confuses the analysis because of the noise genes. 

 

2.3 SNR gene selection method 
2.3.1 Overview of SNR algorithm 

Another popular algorithm implemented in gene selection is signal-noise-to-ratio (SNR).  

SNR is often adopted for evaluating the expression level of each gene to conduct the 

search for an informative gene set. This approach starts with the evaluation of a single 

gene and iteratively searches the informative genes in the rest of dataset in terms of a 

18 



statistic criterion. SNR, as a simple algorithm, is usually found generally effective to 

identify the difference between two normal distributed samples (Lai, Reinders et al., 

2004; Veer, Dai et al., 2002).  

 

Let iX  and iY  denote the mean values of the ith gene for the samples in class 1 and 

class 2 respectively, xiσ and yiσ  are the corresponding standard deviations. Therefore, 

the SNR score of each gene can be calculated by: 

1, 2
| | |i i

i
xi yi

n
X YSNR i

σ σ
−

= =
+

 (2.19) 

where n is the number of genes in the objective dataset D. With Equation (2.19), the 

greater the SNR value, the more informative related to the gene (Tibshirani, 2006). 

 

2.3.2 Applications of SNR in gene selection 

The implementation of SNR in gene selection can be found in the novel approaches in 

which other techniques and algorithms are combined. Such examples are the univariate 

ranking method (Lai et al., 2004) and a novel hybrid method (Goh, Song et al., 2004). 

For gene selection, SNR is usually employed to rank the correlated genes in the dataset 

based on their discriminative levels towards the classes. The genes with high SNR 

scores are chosen as the informative ones of each class.  

 

One example of the application of SNR in gene selection is provided by Goh et al 

(2004), who proposed a hybrid method of Pearson correlation coefficient (PCC) and 

signal-to-noise ratio (SNR). The main idea of their method is using the hybrid method 

to measure the strength of correlation between two objectives: genes and classes. The 

linear correlation coefficient is measured by: 

( )( )
( |i i i i

i
gi yi

g g y y
r

σ σ
− −

=
+∑ 1, 2i n=  (2.20) 

where: 

ig : the value of the ith gene in a test sample) 

ig : the mean of the ith gene corresponding to all samples 

iy : the class of the ith gene in a test sample) 

iy : the mean of the ith gene corresponding to all samples 

giσ : the standard deviation of the ith gene 

: the standard deviation of the class corresponding to the ith gene  yiσ
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Th s a mathematical 

o reduce the computational complexity, SNR is introduced into the hybrid method for 

he selected genes are further measured by the result obtained from an evolving 

 real clinical area, SNR is often used in the establishment of a diagnostic system to 

 their method, the importance of each gene (vote value) of breast cancer data is 

e linear correlation coefficient ri is calculated by PCC and provide

linear dependency between gi and yi. However, it is found that PCC computation is very 

time-consuming, when the dataset becomes large.  

 

T

measuring the importance of genes. All genes are calculated by Equation (2.20) and 

then each gene has its correlation coefficient (ri) corresponding to other genes. The 

genes are selected if their ri is greater than a given threshold. Then SNR is used to select 

a set of high-ranked genes to represent the corresponding groups of correlated genes. 

This operation can remove many noise genes, which significantly reduces the size of 

dataset for the next PCC calculation. The gene selection runs a number of iterations, and 

a group of genes with high SNR scores can be found for classification.  

 

T

classification function (ECF). The importance of selected genes is evaluated according 

to the result of classifications. Finally, with this novel gene selection method, a list of 

genes regarded as the representatives carrying most important information of expression 

levels can be selected out. A limitation of this method is many genes with very low 

coefficient will be removed by the ranking criterion, because the correlation coefficient 

of genes is only measured by one gene to others. However, it is very likely that some of 

these abandoned genes are very useful for pattern express, when they are combined 

together for measuring the correlation. 

 

In

improve the therapeutic decision making and to reduce the unnecessary side effects of 

anticancer drugs. For example, docetaxel is one of the most effective anticancer drugs 

for breast cancer treatment. However, empirical studies have reported that nearly 50% 

of treated breast cancer patients do not have good response to it, but instead suffer many 

side effects (Iwao-Koizumi, Matoba et al., 2005). Here, these patients are addressed 

non-responders. Motivated by this issue, a weighted-voting (WV) algorithm combined 

with SNR method was proposed by Iwao-Koizumi et al. (2005) to evaluate the response 

of docetaxel. 

 

In

evaluated by WV algorithm and denoted as Vi as follows: 
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2
ri ni

i i i
X XV W X −

= × −  (2.21) 

where, Xi is the expression level of the ith gene in a testing sample. Xri, X na, are the 

mean expression level of the ith gene in responders and the mean expression level in 

nonresponders respectively. Wi is the weight of the ith gene and calculated by SNR using 

Equation (2.19). Then, the prediction strength (PS) is denoted as the prediction of 

responders and nonresponders: 

rV
PS

−
= n

r n

V
V V+

 (2.22) 

where Vr represents the sum of positive votes of all diagnostic genes in responders, 

while Vn represents the sum of negative votes in nonresponders. The experiment showed 

that WV algorithm combined with SNR outperformed other algorithms in terms of 

classification accuracy. Fig. 2.1 shows the comparison of the result obtained by three 

methods based on classification on breast cancer data. 

 
Fig. 2.1  Comparison of different algorithms in terms of classification accuracy (copied from 

owever, as it is mentioned in their discussion part, very few genes (only 3) selected 

.4 Consistency gene selection method 

 most gene selection methods in previous microarray 

Iwao-Koizumi et al., 2005) 
 

H

through their method is in common with the reported informative in previous studies. 

Although the authors stated that one main reason is that the criteria for discriminating 

two classes are different, their superior results should be verified. 

 

2
2.4.1 The concept of consistency 

As already mentioned in chapter 1,

studies were claimed very efficient, since the outcomes obtained from their experiments 
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could achieve high accuracy. However, many of their experiments results can not be 

reproduced in practice, which has led them to be debated as spurious results. Recently, 

this issue has caught a lot of attention from researchers and is widely discussed in 

scientific journals (Ransohoff, 2005a, , 2005b). Consequently, in this thesis the concept 

of consistency is proposed, which is expected to solve this problem.  

 

There is only one existing paper addressing the inconsistency problem in gene selection, 

ts Da and Db targeting the same bioinformatics task, each 

(2.23) 

Consistency C is the nu

ukherjee et al. have applied this concept of probabilistic consistency to their gene 

. Selecting genes in terms of consistency: 

Db by using bootstrap algorithm, each 

b.  Da and Db for selecting two lists of 

since the concept is a new topic in microarray studies. Probabilistic consistency analysis 

for gene selection method (Mukherjee et al., 2004) is a recent novel approach that 

focuses on analyzing the common genes selected from two datasets. Consistency in this 

method is defined as follows: 

Suppose two microarray datase

having same number of genes. r is a ranking function generating two lists of sorted 

genes from the two datasets. Let s top-ranked genes in each case be selected and 

denoted by Sa and Sb. Then, the consistency C of this dataset is given by: 

C(r, s, Da, Db) = | Sa ∩ Sb |  

mber of genes in common between two datasets, and depends on 

ranking function, data and number of selected genes (Mukherjee et al., 2004). Hence, 

the greater the value of C, the higher the consistent of dataset.  

 

M

selection method for selecting truly differentially expressed genes under various 

conditions. Their algorithm is called data-adaptive method (DA), as the gene selection 

function is optimized by the consistency based on selected genes in each run. DA gene 

selection algorithm is summarized in the two following stages: 

 

1

a. D is resampled into a pair of Da and 

having as many samples and genes as D. 

Testing statistical function Ft is applied to

top-ranked genes denoted by Sa and Sb respectively. f *  is defined as: 

  arg max ( , , )t
f

f C F S D∗ =  
∈F

(2.24) 

where F is a family of test function f and optimized by the data-adaptive 

algorithm that is described in stage 2. 
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c. T tion (2.23). 

cified number, normally 

Hence, a group of top-ranked genes are selected out based on the largest value of 

2. Da e selected genes to optimize the testing 

he consistency C is calculated by Equa

d. Repeat steps from a to c for n times (n is a pre-spe

several hundreds). 

consistency C after n iterations. 

ta adaptive optimized algorithm: using th

statistical function f. Thus, the Equation (2.24) can be rewritten as: 

{ }1 2
1 2

, {0,1}, 0,5
i i

t t
i

X Y
f F F θ θ

θ β θ

⎧ ⎫−⎪ ⎪= = ∈ ∈⎨ ⎬
× +⎪ ⎪⎩ ⎭

 (2.25) 

where:  

iX  : the mean value of ith gene corresponding to classes 0. 

iY  : the mean value of ith gene corresponding to classes 1.  

βi 

e selection function. 

Mukherjee’s experiments have shown that the best consistency with the parameters (θ1 

he limitation of Mukherjee’s work is that DA method was only performed on a 

 : the pooled standard deviation of the ith gene. 

θ1, θ2 : the constant parameters for Data-adaptive gen

 

and θ2) occurs after 500 iterations (Mukherjee et al., 2005). Consequently, an optimized 

gene selection function can be constructed with the optimized parameters θ1 and θ2. 

Performed on their simulating dataset from Affymetrix arrays (Santa Clara, CA), DA 

gene selection method outperforms SAM and T-test statistic in their experiment.  

 

T

simulating dataset. Theoretically, the algorithm of DA method is robust and can be used 

for gene selection on various microarray datasets. However, practically the method 

needs more benchmark datasets for evaluation. A simulating experiment of gene 

selection using T-test, SNR and DA algorithms is presented in chapter 4. 

23 
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Chapter 3 

Methodology 
 

3. 1 Background 
As discussed in Chapters 1 and 2, DA gene selection method (Mukherjee, Roberts, & 

Lann, 2005) is a recent novel approach that focuses on analyzing the common genes 

selected from two non-overlapped patient subsets of a microarray dataset. The concept 

of “consistency” proposed by Mukherjee and his colleagues is defined as the number of 

common genes selected from two sampled datasets. However, it is not clear to what 

extent the selected “highly differentially expressed genes” are positively correlated to 

the consistency of final classification performance, i.e. the performance of classification 

over individual sampling subsets of a complete dataset may still have a very 

inconsistent result, even though the common-gene method is employed.  

 

In practice, the classification performance is a commonly accepted criterion for 

evaluating gene selection, while a valid performance is estimated in a k-fold cross 

validation policy. For example, a gene selection has a good performance over one 

2-split of the whole dataset, where one subset is for training, the other subset is for 

testing. An important condition is that gene selection method is allowed only to run on 

the training set, and then applied the obtained genes to the classification of the testing 

set. A gene selection method can perform rather successfully on one 2-split trial, but for 

a method with low consistency, in many cases it may fail to achieve satisfactory results 

on another 2-split trial of the fold cross-validation. Therefore, except for the 

performance (i.e. classification accuracy of microarray diagnosis based on microarray 

classification), the consistency of gene selection in terms of performance is an important 

measurement for gene selection.    

 

3.2 Motivation 
With validation techniques (e.g. k-fold, leave-one-out cross validation), the result 

obtained over a training subset (self testing result) are often found very different from 

that over a testing subset (applying the trained model to the testing set).  This means 

the consistency capacity of gene selection is fairly low, which results in the 

experimental results varying significantly. The ideal classification should be like this: 

provided with a k-fold cross validation technique, the accuracy of classification on one  
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fold testing set is expected to be close to that on the remaining k-1 folds training set. 

These selected genes thus can be regarded as the informative or differentially expressed 

genes in terms of such high consistency and the achieved good classification accuracy. 

Otherwise, even if the accuracy of classification on the training set is 100%, the result 

on the testing set is not convincing, because the experiment is not repeatable on an 

independent testing dataset. 

 

Therefore, for an optimal gene selection, whatever sampling of a microarray data, the 

performance of classification over the sampled datasets can reach a reasonably good 

performance consistently. In other words, for a microarray dataset, there exists a subset 

of genes such that the classification in the space spanned by this subset of genes enables 

a good classification performance on every possible train-and-test trial. 

 

Consider a microarray dataset D having two predictor classes, class 1 and class 2 

representing healthy and diseased patients, respectively. Dsub is a resampled subset from 

D. For every Dsub, if all samples in Dsub can be classified with the same accuracy, thus D 

can be seen as an ideal microarray dataset for classification task. In short, whatever D is 

resampled, the performance obtained from classification over D is consistently good. 

Fig. 3.1 shows an example of a 2-class distribution with the best consistency regarding 

to classification. Class 1 and class 2 are scattered in two distinct clusters with no class 

mixture and overlap between each other. Such type of data distribution is easy to handle 

by a simple classification modeling in that: 

1) It can give the good classification accuracy for most typical classifiers, because the 

data with high correlations is separated into two clusters, which is easy for classifiers to 

distinguish.  

2) Classification over one partition of data is consistent to that over the whole dataset. 

 

However, very few real microarray datasets have such good consistency characteristics. 

The huge dimensionality of microarray data with many noise genes can confuse the 

classifiers, and the distribution of resampled data is normally scattered randomly. As a 

result, in most real microarray experiments, the classification performance varies 

significantly if the dataset is resampled several times. Motivated by this, a new gene 

selection method is aimed to developed, which is able to satisfy the above two criteria. 
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Fig. 3.1  The microarray dataset with “perfect consistency” 

 

3.3 Definition of Consistency 
Consider a dataset pertaining to a bioinformatics task (two classes) and denoted by D. 

The dataset D consists of n samples with m genes, and all samples belong to two classes 

(e.g. class 1 or class 2). Da and Db are two subsets of D obtained by random 

subsampling, and serve as training and testing data, respectively. 

  a b a bD = D   D  &  D   D  = ∅∪ ∩      (3.1) 

Given a base function F over D, and a gene selection function fs over Da, The 

consistency of dataset D can be calculated as  

 C(F, fs, D) = | Pa - Pb | (3.2) 

where Pa and Pb are the outcome of the function F on Da and Db, 

 Pi = F( fs(Di), Di) | i = a, b. (3.3) 

Base function F can be any of various data processing models, such as clustering 

function, partitioning function, feature extraction function, classification function, etc., 

it determines the feature space on which the consistency is based on. In the concept of 

consistency based on performance, F is set as one type of classification function. 
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3.4 Consistency in terms of classification performance 
As F is assigned as a classification function, the above fundamental consistency 

definition Eq. (3.3) can be extended as, 

 Pa = F( fs(D), Da, Db) , and Pb = F( fs(D), Db, Da)  (3.4) 

 

Substitute Eq. (3.4) into Eq. (3.2), Eq.(3.2) can be extended as a definition of 

consistency in terms of classification performance, 

 C(F, fs, D) = | F( fs(D), Da, Db)  - F( fs(D), Db, Da) |  (3.5) 

where fs(D) specifies D as the dataset for gene selection. Da in the first term of Eq.(3.5) 

is assigned for classifier training, and Db is for testing. The second term of Eq. (3.5) 

specifies a reversed training and testing position for Da and Db , respectively. Fig. 3.2 

illustrates the procedure of computing Eq. (3.5). First, the performance Pa is computed 

by one classification on subset Da. Then, Pb is obtained by another classification on   

subset Db. Hence, a smaller C value represents a more consistency gene selection. 

 

Fig. 3.2  Procedure of computing consistency (Form1) 

 

Alternatively, Eq. (3.6) is another form of the performance-based consistency definition, 

which is obtained by replacing training and testing set in Eq. (3.5). 

 C(F, fs, D) = | F( fs(D), Da, Da)  - F( fs(D), Da, Db) | (3.6) 

 

Fig. 3.3 shows the procedure of computing Eq. (3.6). Here, the classifier is trained on 

Db, and then the performance is computed by the classifier on the other subset Da. 

 

Fig. 3.3  Procedure of computing consistency (Form2) 

 

Da Db D

Pa

Pb 

Da Db D

Pb

Pa
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3.5 The proposed GAGSc gene selection method  
In this study, a new method called GAGSc is proposed for gene selection, in which two 

different algorithms are used for searching and evaluating the informative genes, such 

as Genetic Algorithm (GA) and K-Nearest Neighbor (KNN). GAGSc method is an 

optimizing computation taking classification consistency as an additional measurement 

for gene selection.  

 

3.5.1 Introduction of GA  

GA has been widely applied in the areas of science and engineering as the 

learning-adaptive algorithms for solving complex optimization problems. Unlike 

traditional statistical algorithms, GA does not require extensive knowledge of the 

learning area. Generally, with sufficient generations, GA can converge towards an 

optimized outcome that is often superior to the performance of traditional statistical 

algorithms. The principle of GA is based on the simulation of the process in natural 

evolution, following the procedure of survival of the fittest proposed by Charles Darwin. 

In GA, an intelligent search engine randomly explores a defined space to find an 

optimized solution.  

  

Generally GA has five components, namely chromosome, fitness function, selection, 

operation (mutation, crossover, etc.) and stopping criterion. In the context of gene 

selection, an initial set of individuals (genes) are randomly generated from the whole 

population and is called 'chromosome' within the process of GA. The fitness of 

individuals in this chromosome is measured by a fitness function, and a subset of genes 

from the chromosome is selected out based on their fitness scores. Then, the GA 

operations (such as mutation and crossover) give a new generation that replaces the 

parent chromosome.  The process will be iterated until the stopping criterion is reached. 

In practice, certain sophisticated evaluation criteria can take into account the 

combination of individual genes. Here, GA algorithm is simply summarized into the 

following steps:  

  1. Randomly select an initial set of genes to create a chromosome. 

   2. Compute the usefulness of each individual through an evaluating function (in GA, 

it is known as "fitness function"). 

   3. Select the candidates for new generations by using genetic operators, such as 

mutation and crossover.  

   4. Create a new generation consisting of the candidates that satisfy the selection 
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criteria. 

   5. Repeat from step 2 until a satisfactory solution is reached.  

The process usually iterates hundreds of times, each of which is called a generation. The 

final results will often highly fit the selection criteria (Mitchell, & Forrest, 1994).  

 

Mutation and crossover are two well-known inductive operators in GA for individual 

selection. In real GA applications, there are many approaches to perform mutation and 

crossover. In this chapter, a simple example is given as follows for briefly describing 

these operations:  

Given a sequence (from 1 to 9), the mutation operator changes the order several items in 

this sequence to create a new sequence: 

(1 2 3 4 5 6 8 9 7) => (1 2 9 4 5 6 8 3 7)  

where the sequence (1 2 9 4 5 6 8 3 7) is a child generation created by mutation. 

 

In crossover operation, two parents sequence and a crossover point are required. The 

child sequence is copied from the first parent till the crossover point. Then, the items in 

other parent will be added into the child sequence, if they are not in the offspring.   

(1 2 3 4 5 6 7 8 9) + (5 4 3 6 9 8 7 1 2) = (1 2 3 4 5 6 9 8 7) 

where 5 is a crossover point. Note that there are different ways to present crossover 

operation in real GA applications. 

 

3.5.2 Related work of GA for gene selection 

Since GA has been regarded as an effective approach for searching complex 

multi-dimensional space (Goldberg, 1989; Holland, 1975),  it has been applied to 

different pattern recognition problems, including gene selection. Huerta et al. (2006) 

proposed a GA/SVM gene selection method that reportedly achieved very high 

classification accuracy (99.41%) on colon data (Alon, Barkai, Notterman, Gish et al., 

1999). However, their good result was not obtained from an independent validating 

dataset, but on the same dataset that was used for classifier training, which means the 

reproducibility of their experiments should be questioned. Fig. 3.4 shows the process of 

the GA/SVM gene selection method (Li, Weinberg, Darden, & Pedersen, 2001). Li et al 

(2001) introduced a GA/KNN gene selection method for sample classification. Their 

method was performed on colon and leukemia datasets, and the experiment results were 

based on k-fold cross validation. They claimed that the GA/KNN method was capable 

of finding a set of informative genes from the original data, and the selected genes were 
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highly repeatable. The main idea of their method is to use a classifier to estimate the 

importance of subsets of genes, and then select those genes that most frequently appear 

in the nearly optimized subsets. The limitation of this study is that as the bias error 

estimation and the classification result on the independent validating test are not 

mentioned in their paper, it is hard to evaluate the effectiveness of the GA/KNN method. 

The flowchart of GA/KNN method for gene selection is illustrated in Fig. 3.5. 

 

Fig. 3.4  A brief flowchart of gene selection process in GA/SVM method (adapted from Huerta 
et al. 2006) 
 

GA is a robust approach for those difficult multi-dimensional problems, and used in a 

wide variety of optimization tasks (Hopfield, & Tank, 1985; Louis, 1993). It is 

particularly effective and suggested to use when the research task has the following 

characteristics: 

1) The search space is huge, complex or lacking sufficient information.  

2) Poorly-understood knowledge in the target research domain.  

3) Traditional search methods are failed to perform the task. 

 

The main drawbacks of GA are in the difficulties of developing a fitness function and 

determining a stopping criterion. The performance of GA application is heavily 

dependent on the suitability of the fitness function. The final result cannot be guaranteed 

towards a global optimization without an effective fitness function. As GA usually 

involves a revolutionary process, whether the result can achieve a satisfactory level is 

highly correlated with a good stopping criterion. However, these two above issues are 

not easy to handle, because they are sensitive to the conditions of the target 

bioinformatics problems. 
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GA/KNN gene selection: 

 

 
 

Fig 3.5 A flowchart of GA/KNN gene selection (Adapted from Li, et al., 2001). Note that the 
number of candidate subsets is supposed as 5. 

Selected nearly-optimized gene subsets 

12 30 32 145 278 

 
5 21 29 200 259 

 

5 21 29 200 259 

· 
· 
· 

23 78 200 259 320 

GA/KNN procedure 

Compute the frequency of selected 
genes appearing in subsets 

Sort all genes according to the frequency 
  

 

 
       Gene       Frequency 

 top 1 - gene 200 0.38 

 top 2 - gene 25 0.35 

• 
• 
•
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3.5.3 The proposed GAGSc algorithm 

The key idea of GAGSc algorithm proposed in this work is using the result of 

consistency in terms of performance obtained from an operation (e.g. classification or 

clustering) on a microarray dataset. So far, there is no agreement on which genes are 

highly differentially expressed, and consequently it is difficult to measure the reliability 

of any gene selection method. In practice, the performance of an operation over 

microarray data is a straightforward criterion for measuring the outcomes of microarray 

experiments. The new solution is based on an optimizing computation that takes 

consistency into account. 

 

In the proposed GA method, an evolutionary function is employed for selecting 

candidate genes. Mutation and crossover operators are applied to this evolutionary 

function for optimizing gene selection function. Mutation and crossover are adaptive 

heuristic search algorithms based on an evolutionary idea. The main strength of these 

operators is that they help solution converge towards the global optimum over sufficient 

successive generations. Meanwhile, they also can provide a fast, effective and robust 

search. The results obtained via GA often consist of new combinations of genes that 

contain more important implicit information than using simple top-ranked individuals. 

This new solution for gene selection does not require any prior knowledge about the 

microarray dataset. Given a dataset D, a list of genes S, and an operation function Fsc, 

the optimized function performing GA method is expected to achieve for selecting gene: 

 arg min ( , , )
s

s sc
f

f C F S D∗

∈
=

F
 (3.7) 

where F refers to a family of evolutionary gene selection functions, Fsc and fs refer to 

the function of computing consistency under the condition of gene selection and gene 

selection function, respectively. 

 

Now, the algorithm can be simply summarized into the following steps: 

1.  Split all genes of dataset D into ρ segments based on their mean value.  

2.  Randomly select one gene from each of ρ segments, respectively. The initial 

candidate gene set contains ρ genes and is denoted by S. 

3.  Apply the operation function Fsc (e.g. classification) to the data containing those 

genes listed in S, and compute the consistency C by Eq. (3.5) or Eq. (3.6).  

4.  Perform gene selection function fs on S to get a new generation of genes S', and 

compute the consistency C'. 
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5.  If C' < C, then C = C' and S = S'. 

6.  Repeat Steps 3-5 for N generations. N is a given number for determining how many 

generations are used in this case. 

7.  Output the finally selected genes. 

 

The optimized gene selection method is obtained after N generations based on the best 

consistency performance. In each generation, Da and Db are resampled B times 

depending on the size of samples, for example, if the sample size of dataset is larger 

then 30, B is set to 50, otherwise 30. Consequently, C′ is the mean value of the 

consistency scores for B rounds computation. 

 

In practice, the evaluation of consistency is a multiple-objective optimizing problem, 

because there is a possibility that the improvement of consistency might be coupled 

with the deterioration of performance. This means that even if the consistency C of new 

generation of genes is better than its ancestor, the performance of classification P on 

microarray data might be worse. Therefore, in practice, a ratio to consistency and 

performance is accepted to balance them in the purpose of optimizing these two 

variables simultaneously. The ratio R is defined by: 

  = CR
w P×

  (3.15) 

where w is a pre-defined weight for adjusting the ratio in experiment, and P is the 

classification performance on dataset D, and can be computed by Eq.(3.3). 

 

In this sense, Eq.(3.7) can be rewritten as: 

 arg max ( , , )
s

s sc
f

f R F S D∗

∈
=

F
 (3.16) 

For simplicity, a basic flowchart of GAGSc method is given in Fig. 3.6. 
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Split all genes of dataset D into ρ segments 

Randomly select k genes (S0) from ρ segments 

Dataset D is partitioned into train and testing set 

KNN classifier gets the performance Pa and Pb 
on train and testing set respectively. 

Obtain the consistency C0 and the criterion r0 for 
evaluating the ratio C0 and P0. 

GA algorithm 

(a) 

GA algorithm 

Mutation  Crossover 

Get a new set of genes (S′) 

Obtain the new consistency C′  by using KNN classifier 
with S′, and the new criterion value of R′. 

R′ > R0 

R0 = R′, 
and store the result for next round optimization. 

> N generations

Output a set of genes that are optimized in 
terms of consistency and performance 

No 

Yes 

No

Yes 

(b) 

Fig. 3.6  The flow chart of GAGSc method:  
(a) The algorithm for initial gene selection. 
(b) Evolution function for gene selection in GAGSc.  
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For clarity, a schematic example of the above GAGSc method with ratio R is also given 

as follows: 

 

GAGSc gene selection algorithm (Pseudo code) 
Function (1): Initial gene selection  

 /* Create initial generation of genes: S */ 

 Separate all genes into ρ segments based on their mean value ; 

 for  i = 1 to  ρ  

 Randomly select one gene g from segment i ;  

end 

S ←  ρ genes ; 

 

Function (2): KNN consistency computation 

 for  j = 1 to B  /* B is the predefined times of resampling */  

  Partition data D into Da, Db ; 

 Calculate accuracy of classification Pa, Pb with S ; 

 Compute consistency C ;  

end 

Calculate mean of consistency C, and compute classification accuracy P on D ; 

Compute ratio R ; 

 

Function (3): Evolutionary gene selection:  

 for  i = 1 to N     /* N refers how many generations the algorithm creates */ 

 Create new generation of candidate genes (S') by mutation or crossover ; 

 Compute consistency C' by using S' ;  

 /* C' is the mean value of consistency vector computed by Function 2 */ 

 Compute ratio R' ; 

 If  R' > R 

 S ← S';   R ← R' ; 

 end 

 end 
Output S  /* the selected informative genes */ 
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3.6 The proposed LOOLSc gene selection method 
LOOLSc gene selection method is derived from the Leave-one-out SVM (LOOSVM) 

algorithm that has been successfully implemented in gene selection for microarray data  

(Tang, Suganthan, & Yao, 2006; Zhao, & Kwoh, 2006; Zhou, & Mao, 2005). With this 

solution, the informative gene set starts from an empty set and a sequential forward 

selection (SFS) search engine adds genes iteratively (see section 3.7.3). The candidate 

genes are evaluated in terms of their performance computed by K-Nearest Neighbour 

(KNN) or support-vector-machine (SVM) classifier on the whole dataset.  

 

In order to evaluate the effectiveness of using consistency concept in the proposed 

LOOLSc method, the published LOOLS method (without consistency measurement) is 

applied to the experiment for comparison. In LOOLS, a variation of SVM algorithm, 

Least-square SVM (LS-SVM) is adopted for evaluating genes without consistency 

criterion. In LOOLSc method, consistency is computed by LOOSVM algorithm, and 

candidate genes are measured by LOOE (Leave-one-out Error) algorithm. 

 

3.6.1 Introduction of LOOE algorithm 

In the proposed LOOLSc gene selection method, a criterion called LOOE is employed 

to measure candidate genes. LOOE is computed by LS-SVM classifier that is an 

enhanced version of standard SVM algorithm (Suykens, & Vandewalle, 1999). Without 

consistency criterion, the simple SVM evaluation criterion for gene selection might 

have generalization error and cannot be performed efficiently, i.e. although all samples 

can be correctly classified in training stage, they might be misclassified during the 

leave-one-out test stage if they are close to optimal hyperplane (see SVM classification 

algorithm section). Motivated by this issue, the LS-SVM classifier with a LOOE 

criterion is applied to LOOLSc gene selection algorithm. 

 

The LOOE criterion based on LS-SVM (Tang et al., 2006; Zhou et al., 2005) can be 

formulated as follows: 

Consider again Equation (3.14): 

 ( ) xTf x w b= ⋅ +  

After one sample xi is removed in the LS-SVM training stage, the result of a test sample 

x in the Leave-one-out validation stage is denoted as:  

 
1(x) 1

(H )
i i

i
i

y f α
−

= −  (3.17) 
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where yi is the class label of the sample xi, αi is a scalar in the Lagrange multiplier 

vector, and H-1 is defined by: 

 
-1

T

K+ I  1
H = 

  1       0
γ⎡ ⎤

⎢ ⎥
⎣ ⎦

G
G  (3.18) 

where:  

K is a kernel matrix;  

γ  is a given positive constant that is for adjusting generalization and training errors; 

I is an identify matrix.  

[ ]TT1 1,1,...,1=
G

 ; 

(H-1)i is the ith diagonal element of the matrix H-1;  

 

Thus, the LS-B criterion of measure genes can be defined as: 

 1sign 1
(H )

LOOE
2

n
i

i
i

n

n

α
−∑

⎛ ⎞
− −⎜ ⎟

⎝ ⎠=  (3.19) 

 

In short, with LOOE criterion, if the test sample x is misclassified, yif i (x)returns a 

negative value (-1), otherwise positive value (1). Therefore, in terms of LOOE criterion, 

the small absolute value of LOOE is preferable, which means the sample x is close to 

the optimal hyperplane and can be correctly classified.  

 

3.6.2 Proposed LOOLSc algorithm  

So far, the LOOE criterion derived form LS-SVM algorithm has been obtained and can 

be used in the proposed LOOLSc method. The LOOLSc algorithm for gene selection 

can be simply summarized as:  

Suppose a dataset D with n genes, LOOLSc algorithm starts with the initialization of 

two gene sets, one is an empty set of aggregating informative genes and denotes it as S, 

the other is a candidate gene set with all genes from D and is denoted by CS. Next, SFS 

algorithm searches the space of candidate set CS, and sequentially selects one gene gi 

and puts it and the genes in S into a temporary set TS. For each gene, the consistency is 

computed by a SVM classifier using the genes of TS, so that a matrix with n consistency 

value can be generated after one round. Then, the gene with the best consistency is 

selected from CS and put into set S. At the same time, this gene is removed from the 

candidate set CS. After the first round is finished, there should be one gene in S and it is 

granted as an informative one in terms of consistency.  
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Now, SFS sequentially selects the next gene from set D and puts it and the existing 

genes in S into TS to do classification through SVM. One gene with best consistency 

can be found and becomes the next informative gene is set S. The second gene is then 

removed from CS. The selection procedure will repeated until m (a pre-defined number) 

genes are selected out as the informative genes. For clarity, a flowchart of LOOLSc 

method is presented in Fig. 3.7. 

 
Fig. 3.7  The flowchart of LOOLSc gene selection method, where,  m is a pre-defined number 
of genes to be selected. 

 

For clarity, the LOOLSc algorithm for gene selection is modelled as following pseudo 

code: 
Function (1): Initial gene sets:  

 /* Initialization */ 

 S ← an empty set ;  /* S is for storing the informative genes to be selected */ 

S ← an empty set (storing genes to be selected); 

CS ← all genes in D; 

No 

Output S 

Yes

m genes in CS are selected? 

Select the gene with the best consistency (gb) 

S ← S + gb 

remove the selected gene from CS; 

Yes

All genes in CS are evaluated?

Call SVM classifier to compute consistency

Select a gene g from CS;  

Create a temporary candidate gene subset: TS 

TS ←  S + g   

No
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 CS ← all genes in D ;  
 
Function (2): Select candidate genes 

 for  i = 1 to m       /* m  is a pre-defined number of genes to be selected */  

 for j = 1 to q    /* q is the number of genes in CS */ 

  Sequentially select one gene g  from CS ; 

  Create a temporary gene set TS ;  

  TS ← S + g ; 

  Call SVM consistency computation function     /* function (3) */ 

 end  

 S ← the gene with the best consistency (gb) + S ; 

 remove the selected gene from CS ; 

 end  

 output S /* S contains the final selected informative genes */ 

 

Function (3):  SVM consistency computation 

 for  j = 1 to B  /* B is the predefined times of resampling */  

  Partition data D into Da, Db ; 

 Using SVM classifier to calculate performance Pa, Pb with all genes in TS; 

 Compute consistency C ;  

end 

 Calculate the mean of consistency C . 

 

3.6.3 LOOLS gene selection algorithm  

In order to evaluate the validity of using consistency concept in LOOLSc gene selection 

method, a gene selection method (LOOLS) proposed by Tang et al. (2006) is adopted 

for comparison. This method is based on the same criterion LOOE for measuring the 

importance of genes, but without using consistency concept. The LOOLS gene selection 

algorithm is shown in a flow chart in Fig. 3.8. 
 

For clarity, a schematic model of LOOLS gene selection method is given as follows: 
Function (1): Initial gene sets:  

 /* Initialise selected informative gene set */ 

 S ← an empty set ; 

 CS ← all genes in D ;  

 

Function (2): Select candidate genes 

 for  i = 1 to m       /* m  is a pre-defined number of genes to be selected */  
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 for j = 1 to q    /* q is the number of genes in CS */ 

  Sequentially select one gene g  from CS ; 

  Create a temporary gene set TS ;  

  TS ← S + g ; 

  Call LOO-SVM classifier to compute LOOE    /* function (3) */ 

 end  

 S ←S + the gene with the minimal LOOE (gb) ; 

 remove the selected gene from CS ; 

 end  

 output S ; /* S contains the final selected informative genes */ 

 

 

 

Fig. 3.8  The flowchart of LOOLS gene selection method. Note, m is a pre-defined number of 
genes to be selected. 

 

S ← an empty set (storing genes to be selected); 

CS ← all genes in D; 

No 

Output S 

Yes 

m genes in CS are selected? 

Select the gene with the minimal LOOE (gb) 
S ← S + gb 

remove the selected gene from CS; 

Yes 

All genes in CS are evaluated?

Call LOO-SVM classifier to compute LOOE 

Select a gene g from CS;  

Create a temporary candidate gene subset: TS 

TS ←  S + g   

No 
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3.7 Base functions and relevant algorithms 
In the proposed GAGSc and LOOLSc, K-Nearest Neighbor (KNN) and Support Vector 

Machine (SVM) are two base functions used to compute the consistency in terms of 

performance. KNN and SVM are two popular algorithms for solving pattern recognition 

problems in the domain of machine learning. Recently, they have been successfully used 

in different methods for gene selection.  

 

In the present work, only KNN and SVM are used in the computation of consistency. 

However, according to the fundamental consistency definition Eq. (3.3), consistency 

can be computed through any other classification function, such as C4.5 trees, MLP, and 

traditional statistical classification methods, etc. 

 

3.7.1 K-Nearest Neighbor (KNN) 

KNN, since first introduced by Fix and Hodges (1951), has been extensively studied 

and discussed in respect to classification and clustering in the areas of pattern 

recognition, including microarray data analysis. Different types of KNN and its 

extensions have been proposed, Weinberger et al. (2005) presented large margin nearest 

neighbor (LMNN) for distance metric learning, Cui et al. (2003) introduced a tree-based 

KNN search algorithm for high-dimensional data analysis, and Xia et al. (2005) 

proposed a Reverse K-Nearest neighbors (RKNN) algorithm in profile-based system. In 

recent years, KNN, one of the simplest and best-known classifiers has been adopted in 

bioinformatics research, including microarray data analysis, such as Crimins et al. (2002) 

used KNN algorithm to do classification on lung cancer data, Binder et al. (2005) 

applied KNN algorithm to a novel method for their immunoassay-based anti-nuclear 

antibody test, and Kim et al. (2004) applied a sequential K-nearest neighbor (SKNN) 

method for dealing to their microarray experiments.  All these experiments have 

shown KNN algorithm can yield competitive results in different applications.  

 

The principle of KNN classifier is that similar objectives belong to similar class. Most 

KNN classifiers use standard Euclidean distance to measure the similarity between 

objectives: 

 2

1
( , ) ( )

n

i i
i

d x y x y
=
∑= −  (3.7) 

where x, y are the objectives. 
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In KNN classification, the given dataset is first split into the training set and testing set 

that are denoted by { }1 2 n , ,  x x x x= … , and  { }1 2 ny , y ,  yy = … , respectively. 

The samples of the training and testing sets are identified by the class labels 

{ } = 1 2C C , C  (Note that the samples in most microarray datasets belong to two 

classes). Suppose yi is a sample whose class label is unknown. The K nearest neighbor 

samples in x according the distance calculated by Eq. (3.7) can be found and denoted by 

Nset(k) ∈ x. Then the most common class label Ci appearing in Nset(k)  is assigned to yi. 

Fig. 3.9 shows a simple sample for computing K nearest neighbors. 

 

In the case that more than one class label occurs with equal frequency in k nearest 

neighbor set Nset(k), the KNN test run on K-1 classifiers. This is a recursive process 

until there is only one class represented in the result.  

Fig. 3.9  A simple schematic sample for computing K nearest neighbors. In this case, K = 5. 
The unknown-class data yi is classified into class 1 (C1), because 4 out 5 nearest neighbors 
belong to class 1. 
 

KNN algorithm in GAGSc is used to do classification on microarray data for computing 

consistency in terms of performance. In KNN classification, K nearest neighbor genes 

in the training set responding to each gene in the testing set can be found and aggregated. 

According to the criterion of choosing class, each gene in the testing set is assigned to 

different classes. Then, the performance of classification can be reached and used for 

final consistency computation. 

 

Although KNN classifier has been widely used in pattern recognition, it does have 

certain disadvantages that are criticized by researchers. For example: (a) it takes long 

computation time to train data; (b) it is difficult to choose the optimized K value; (c) it 

can be confused by irrelevant data.  

 

 

   : yi  (Unknown-class data) 

 : xi | i ∈{ 1, 2,..n}; class label is C1  

 : xj | j ∈ { 1, 2,..n}; class label is C2 (Note: i ≠ j )
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3.7.2 Support Vector Machine (SVM) 

SVM, introduced by Vapnik (1998), has been widely used as an efficient tool for 

classification and regression problems in pattern recognition research. Different types of 

SVM algorithms have been presented, such as Least Square Support Vector Machine 

(LSSVM) (Suykens et al., 1999), implicit Lagrangian Square Support Vector Machine 

(LSVM) (Mangasarian, & Musicant, 2001), Newton Support Vector Machine (NSVM) 

(Fung, & Mangasarian, 2004) and SVM Classification Tree (Pang, Kim, & Bang, 2005).  

The key idea of SVM algorithm is using linear classification techniques to solve 

non-linear classification problems. 

 

SVM classifiers are generally binary-based. If the data is linearly distributed, SVM 

computes the hyperplane that maximizes the margin between the training samples and 

the class boundary. In contrast, if the data is not linearly distributed, the samples are 

mapped to a multi-dimensional space in which such a separating hyperplane can be 

constructed. A simple example of linear separate hyperplane of SVM classifiers is given 

in Fig. 3.10.  This mapping process is usually called the kernel function (Huerta, Duval, 

& Hao, 2006). Such mechanism of SVM makes it a powerful classifier with good 

performance in microarray data analysis for reducing redundant genes (Guyon, Weston, 

Barnhill, & Vapnik, 2002; Mukherjee, 2003).  

Fig 3.10  A simple example of linear separate hyperplane of SVM classifiers (Adapted from 
Gunn , 1997). In this space, there are many potential linear classifiers that can successfully 
separate points (samples), but only one can maximize the margin (distance) between two nearest 
points belonging to different classes. The best linear classifier is commonly called optimal linear 
hyperplane. 

 

  : sample of Class1 

 : sample of Class2 

The best linear classifier 

(optimal linear hyperplane). 
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Mathematically, a typical SVM can be formulated as the following model (Gunn, 1997): 

Consider a dataset D pertaining to a 2-classes classification task and modelled as: 

 
1 1 2 2(( , ),  ( , ),...,  ( , )) | ,  I  {-1, 1}n nD x x x x DΙ Ι Ι ∈ ∈  (3.8) 

where xi is a vector (contains a number of genes in microarray data analysis), and I is a 

class indicator that denotes the class label of xi. In this case, the given dataset D consists 

of samples xi with associated "real" class labels Ii can be seen as a training set.  The 

linear hyperplane rule of SVM is defined as: 

 x 0Tw b⋅ + =  (3.9) 

where w = [w1, w2, …, wn]T, and b is a scalar. Both of them are constrained by the 

optimizing function as follows: 

 W(α) = min L(w, b, α) (3.10) 

where L is a Lagrange function, and α is a Lagrange multiplier.   

 

Since in the optimal hyperplane that separates those closest vectors belonging to 

different classes, linear hyperplane in Eq. 3.9 can be re-written as  

 x 1Tw b⋅ + =  (3.11) 

 x 1Tw b⋅ + = −  (3.12) 

The vectors are optimally split by the hyperplane (in Eq. 3.11, Eq. 3.12),  if the 

distance between closest vectors belonging to two different classes is maximal.  With 

Eq. 3.10, the w, α and optimal hyperplane is given by: 

 
1

n

i i i
i

w x yα
=
∑=  (3.13) 

The classifier is thus defined as: 

 ( ) xTf x w b= ⋅ +  (3.14) 

The result of f(x) (either 1 or -1) is assigned to the test sample x as the class label.  

 

Comparing with traditional algorithms, such as statistical methods and neural networks, 

SVM classifier can usually converge to a global optimization. Another main advantage 

is it usually outperforms other simple classification algorithms, for example, KNN 

classifiers. Hence, SVM algorithms are suggested to be used in the area of high 

dimensional data analysis, such as microarray data (Furey et al. 2000). However, it is 

not a perfect algorithm and inevitably has certain issues. The main limitations include 

the difficulty in choosing kernel functions (Burgess, 1998), and fairly slow computation 

speed both in training and test data.  

Leave-One-Out SVM classifier is used in LOOE method to calculate the performance of 
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classification on a subset with candidate genes. A polynomial kernel in SVM classifier 

is chosen in this work, and a Leave-One-Out (LOOCV) SVM method is applied to 

calculate the average accuracy on training data. The test data only have one sample and 

the SVM classifier is trained on all other samples. 

 
3.7.3 Searching mechanism in gene selection 

A basic component in gene selection is the searching mechanism that generates 

candidate gene subsets for evaluation. Generally, there are three types of searching 

schemes, random searching, sequential searching and evolutionary searching. In the 

proposed GAGSc method, the searching engine is embedded in an evolutionary 

algorithm and selects candidate genes by mutation and crossover. The proposed 

LOOLSc method employs a sequential searching algorithm to check every gene for 

candidate subsets generation.  

 

Sequential forward selection (SFS) and sequential backward elimination (SBE) are two 

well-known sequential search algorithms. In the context of gene selection, SFS starts 

with an empty set and sequentially adds a new gene into the set, while SBE starts from a 

full gene set and sequentially removes one gene. Hence, at each step of search 

procedure, the gene subset obtained after addition or deletion can lead to the largest 

improvement in terms classification performance. In this way, the search process can 

converge toward an optimal gene set. Sequential forward floating selection (SFFS) is an 

enhanced sequential search algorithm that works similar to SFS, but allows the removal 

of worst genes during the process of evolving candidate gene set when the classification 

performance is improved. SFFS initializes the best subset of genes as an empty set and 

add a new gene at each step. After the best candidate subset is generated, the algorithm 

searches the genes that can be removed from the best subset until the classification 

performance can be improved. In this search process, the number of removed genes is 

not fixed, and depends on the evaluation criterion. 

 

Sequential search algorithms are based on exhaustive search, which result in a high cost 

in terms of computation time. Comparing with SFS and SBE algorithms, SFFS is more 

time consuming and is not recommend for analyzing microarray data with a huge 

number of genes in practice (Sun, Bebis, Yuan, & Louis, 2002). Unlike sequential 

search, random search does not explore the space of all genes, but randomly selects 

certain candidate genes. Thus, many useful candidate gene subsets are not taken into 
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account, which leads to the final result being unstable and not highly optimized. Such 

issues make random search computation costs prohibitive for gene selection in practice. 

GA search is capable of covering more potential combinations of candidate genes, so 

that the finally selected informative genes are more reliable, because ideally all potential 

combinations of genes can be evaluated. In other words, unless the stopping criterion is 

reached, GA search algorithm will explore the whole space of genes to find better 

solutions. Such a mechanism assures that GA search usually outperforms sequential and 

random search. However, GA search is often criticized in literature, because of its huge 

cost of computational complexity. It generally takes much more time to achieve the final 

optimized solution than sequential search. 
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Chapter 4 

Experiments 
 

4.1 Datasets 
The proposed concept for gene selection is applied to seven well-known benchmark 

cancer microarray data and one proteomics data. Table 4.1 summarizes the eight 

datasets used for gene selection in the experiment.  

Data name Class 1 vs. Class 2 Number 
of Genes 

Training 
Samples 

(class 1/2) 

Validation 
Samples Ref. 

Lymphoma Diffused large B cell 
lymphoma vs. other types 4026 (42/54) 96 - 1 

Leukaemia ALL vs. AML 7129 (27/11) 38 34 2 

CNS Tumour Survivor vs. Failure 7129 (21/39) 60 - 3 

Colon Cancer Normal vs. Tumour 2000 (22/40) 62 - 4 

Ovarian Cancer vs. Normal 15154 (91/162) 253 - 5 

Breast Cancer Relapse vs. Nor-Relapse 24482 (34/44) 78 19 6 

Lung Cancer MPM vs. ADCA 12533 (16/16) 32 149 7 

Esophageal Cancer None responder vs. Responder 859 (15/12)27 15 8 

Table 4.1  Summary of microarray and proteomics datasets used for experiments 

1. Lymphoma data (Alizadeh, Eisen, Davis, Ma et al., 2000) 

(available at http://llmpp.nih.gov/lymphoma/) 

This data contains the expression levels of 4026 genes across 96 samples in 

lymphoma patients. Among them, 42 samples are from “Diffused large B cell 

lymphoma” group while 54 are from others types. 

2. Leukaemia data (Golub, Slonim, Tamayo, Huard et al., 1999)  

(available at http://www.genome.wi.mit.edu/MPR/) 

The biology problem on this data is to distinguish two types of leukaemia, Acute 

Lymphoblastic Leukaemia (ALL) and Acute Myeloid Leukaemia (AML). The 

training data contains 38 bone marrow samples (27 ALL and 11 AML).   The 

dimensionality of this microarray data is 7,129 probes from 6817 human genes. The 

validation testing set consists of 34 samples (20 ALL and 14 AML).  

3. CNS cancer data (Pomeroy, Tamayo, Gaasenbeek, Sturla et al., 2002) 

(available at http://www-genome.wi.mit.eud/mpr/CNS/) 

CNS cancer data contains 60 samples, 21 are survivors (class 1) and 39 are failures 

(class 0). Survivors represent the patients who are alive after the treatment while 
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failures are those who succumb to the central nervous system cancer. 

4. Colon cancer data (Alon, Barkai, Notterman, Gish et al., 1999) 

(available at http://microarray. princeton.edu/oncology/) 

Colon cancer data consists of 62 samples collected from colon-cancer patients; 40 

samples are labelled as cancer and 22 are labelled as normal. Only 2,000 genes out of 

total 6,500 genes are selected into the dataset based on the confidence in the 

measured expression levels. 

5. Ovarian data (Petricoin, Ardekani, Ben A Hitt, Fusaro et al., 2002) 

(available at http://clinicalproteomics.steem.com/) 

This dataset contains 253 samples in which 91 samples are healthy while 162 are 

ovarian cancer. There are total 15,154 proteins for identifying tumor patterns. The 

raw spectral data of each sample contains the relative amplitude of the intensity at 

each molecular mass / charge (M/Z) identity.  

6. Breast cancer data (van't Veer, Dai, MJ, YD et al., 2002)  

(available at http://www.rii.com/publications/2002/vantveer.htm 

The training data has 78 patient samples: 34 were from the patients who had 

developed distant metastases within 5 years (labeled as relapse), and the rest 44 

samples were from those patients who remained healthy from the disease after their 

initial diagnosis more than 5 years (labelled as non-relapse). In the testing dataset, 

there are 12 relapse and 7 non-relapse samples. The dimensionality of this dataset is 

huge, 24,481 genes that used for discriminating cancer patterns.  

7. Lung cancer data (Gordon, Jensen, Hsiao, Hsiaox et al., 2002) 

(available at http://www.chestsurg.org/microarray.htm) 

MPM = malignant pleural mesothelioma, ADCA = adenocarcinoma.  

This data is originally used for classification between malignant pleural 

mesothelioma (MPM) and adenocarcinoma (ADCA) of the lung cancer diagnosis. 

The complete dataset has 181 tissue samples (31 MPM vs. 150 ADCA). 32 samples 

are referred as the training set (16 MPM vs. 16 ADCA), and the rest 149 samples are 

used for testing. Each sample is described by 12,533 genes. 

8. Esophageal Cancer data (Hayashida, Honda, Osaka, Hara et al., 2005) 

(available at http://clincancerres.aacrjournals.org/cgi/content/full/11/22/8042/DC1)  

This data contains the expression levels of 859 genes across a training set (27 

samples) and a testing set (15 samples). All samples belong to two classes: class 1 – 

responders (pathologically diagnosed responders to preoperative chemoradiotherapy), 

and class 0 – nonresponders.  
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4.2 Unbiased method verification  
When analysing microarray data, selection of a data sampling method is important for 

the verification of final experimental results (Allison, Cui, Page, & Sabripour, 2006; 

Braga-Neto, Hashimoto, Dougherty, Nguyen et al., 2004), because an improper 

sampling method often leads to some biased and unreplicapable results (Zhu, Wang, Ma, 

Rao et al., 2003). For example, Ramaswamy (2003) for breast cancer, and Zhu et al. 

(2003) for ovarian cancer all claimed that their classification analysis has achieved a 

very high accuracy (close to 100%). However the experiments are reported unreplicable 

in the experiments done by other laboratories. Ransohoff (2004) said that these tests are 

failed to be reproduced due to the process of validation, i.e. sampling method was not 

well developed. 

 

An unbiased verification scheme has been employed in the experiment to decrease the 

generalization error in both gene selection and classification stages. This section starts 

to give a brief review of several popular sampling techniques, then explains the setup of 

a totally unbiased verification process for all the experiments described in this thesis. 

 

4.2.1 Review of sampling methods 

In the machine learning literature, several sampling methods are recognized as an 

unbiased verification method, such as resubstitution, cross-validation, and bootstrap 

(Efron, 1979). In this thesis, two major sampling methods, K-fold cross-validation and 

bootstrap, are discussed here in terms of disadvantages and advantages.  

 

4.2.1.1 Cross-validation 

Cross-validation is a sampling technique extensively used in micorarray data analysis 

(Ambroise, & McLachlan, 2002; Qiu, Xiao, Gordon, & Yakovlev, 2006). According to 

Ransohoff (2004), cross-validation is "a technique used in multivariable analysis that is 

intended to reduce the possibility of overfitting and of non-reproducible results. The 

method involves sequentially leaving out parts of the original sample (‘split-sample’) 

and conducting a multivariable analysis; the process is repeated until the entire sample 

has been assessed. The results are combined into a final model that is the product of the 

training step" (p. 312). 

 

The advantage of cross-validation is that all the data can be used for cross training and 

testing, and the validation is totally independent to the training process. In the context of 
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microarray data analysis, using cross-validation, the dataset is randomly partitioned into 

two subsets, training and testing set. Indeed, the goal of implementing cross-validation 

is to evaluate whether the result is replicable or just caused by chance. 

Cross-validation can be generally performed in two ways: K-fold cross-validation and 

leave-one-out cross-validation (LOOCV). In K-fold cross-validation, samples are 

randomly divided into K mutually exclusive subsets of approximately equal size. The 

validation process will be repeated for K rounds, where for each round, K-1 subsets are 

used for training (e.g. classifier training), and the rest one subset for testing. For 

microarray analysis, 5 or 10 fold is suggested in a typical method cross-validation. 

(Breiman, & Spector, 1992; Kohavi, 1995).  

LOOCV eventually is a K-fold cross-validation, whose number of fold K equals the 

number of samples (N) in given dataset. In LOOCV, all the samples are separated N 

rounds, where for each round, all samples are used for training except one is left for 

testing. The final result is made by the average performance over N testing sets. 

For many years, LOOCV has been suggested for evaluating classification performance 

over the data with a very small number of samples, as it is a nearly unbiased method 

and works well for estimating bias error, such as the mean squared error. However, 

Breiman and Spector (1992) have demonstrated that the high variance of leave-one-out 

cross-validation arises when the prediction rule of the method under verification is 

unstable. This is mainly because leave-one-out sampling makes the training set very 

similar to the whole dataset.  

 

4.2.1.2 Bootstrap 

Bootstrap, first introduced by Efron (1979), is a new sampling method for small sample 

size dataset.  Empirical studies have showed bootstrap is particularly effective for 

estimating bias error for very small sample size data, such as microarray data 

(Braga-Neto et al., 2004; Efron, 1983).  Recently, many bootstrap estimators are 

proposed, in which e0 and the .632 bootstrap are two popular methods and can yield the 

good results for sampling in classification problems.  

 

The principle of bootstrap method is data sampling with replacement. Suppose a dataset 

contains only 5 samples labelled as A, B, C, D and E. A sampling with replacement can 

be described as follows: 
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1. Randomly draw out one of 5 samples and record its label. 

2. Put the sample back to the dataset. 

3. Repeat step 1-2 for B times (B is a constant integrator) to have a B labels in a  

    sequence. 

4. Randomly select a subsequence of 5 labels from the sequence obtained in Step 3, and  

    extract the corresponding samples as the training set (the first round). 

5. Repeat Step 1-4, to construct the testing set. 

 

4.2.1.3 Comparison of cross-validation and bootstrap methods 

Cross-validation has a disadvantage that the training of model lacks sufficient 

information due to insufficient observations when the dataset size is too small. 

Therefore, in the case of partitioning a microarray dataset, cross-validation technique 

probably increases the risk of overfitting. Critical scientific issues are raised in gene 

selection literature by using cross-validation for generalization error estimation 

(Braga-Neto et al., 2004). Nevertheless, cross-validation is still considered a robust and 

unbiased technique in microarray data analysis, if it is well designed and organized in 

experiments (Asyali, Colak, Demirkaya, & Inan, 2006). 

 

Bootstrap uses a replacement resampling approach, and constructs training and testing 

sets with the exact same size as the whole dataset, while for cross-validation, both 

training and testing sets use only a subset of the whole dataset. Thus, bootstrap method 

has an advantage of modelling the impacts of the actual sample size (Fan & Wang, 

1996). The disadvantage is, bootstrap method yields a good result only after hundreds of 

iterations, which makes it more expensive than cross-validation in terms of 

computational complexity. 

 

4.2.2 The totally unbiased verification scheme 

A typical microarray data analysis usually includes two procedures, gene selection and 

disease diagnosis (microarray classification). In the first stage, the main goal is to 

identify the biomarker genes that can efficiently represent the unique characteristics of 

the given microarray data. In the second stage, the target is to construct an efficient 

classifier for disease diagnosis using the microarray data with the selected biomarker 

genes. Proper data sampling methods are fundamental to avoid the generalization error 

in both gene selection and classification stages.  
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In most previous microarray data analysis work, sampling method is employed mainly 

for classification procedure, but not for gene selection procedure (Huerta, Duval, & Hao, 

2006; Li, & Xiong, 2002). Such mechanism makes the classification results eventually 

with bias, because the informative genes are selected from the whole dataset and not 

well estimated in terms of the generalization error. In practice, testing data is blind in 

real biology experiments thus is not allowed to be included in either gene selection or 

classification modelling. Therefore, the bias occurring in gene selection procedure may 

finally result in an unreplicable disease diagnosis performance.  

 

A totally unbiased verification policy for microarray analysis should guarantee that no 

generalization error occurs in either gene selection or classification procedures. To this 

end, efficient data sampling method should be used in the two procedures to maximally 

decrease the generalization error. In other words, the reliability and generalizability of 

the informative genes selected in gene selection stage should be evaluated on certain 

independent testing subsets, and then these genes can be used for classification. The 

classification also needs to employ the verification methods to estimate the bias error. 

Such procedure can be summarized as a totally unbiased verification scheme in case b 

of Fig. 4.1.  

 

Fig. 4.1  The comparison between a biased and a totally unbiased verification scheme, where 
Dtrn and Dtst are the training and testing set, Dtrns and Dtsts are the training and testing set with 
selected genes, respectively. In case A (biased verification scheme), the testing set is used twice 
in gene selection and classifier procedures, which creates a bias error in the final classification 
results. Whereas in case B (the totally unbiased scheme), the testing set is only used in 
classification stage, so that it is independent in gene selection and classifier training procedures. 

B. Totally unbiased Verification schemeA. Biased Verification scheme 
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4.3 Experiment Setup 
4.3.1 Software and hardware 

The experiments are implemented into the Matlab environment on two computers with 

3.2 GHz Pentium 4 and 2048 MB RAM. Relevant software used for comparison and 

gene selection modelling in the experiments is described in Table 4.2: 

Software/Algorithm Note Availability 

NeuCom A Neuro-computing decision support system www.theneucom.com 

T-test algorithm For gene selection and classifier training (Section 4.4) Matlab toolbox 

SNR algorithm For gene selection and classifier training (Section4.4) www.theneucom.com 

KNN algorithm For microarray dataset classification (Section 4.4 ~ 4.5) Matlab V7.0 toolbox 

SVM algorithm For microarray dataset classification ( (Section 4.5)  www.theneucom.com 

Table 4.2  Relevant software used for gene selection comparison and modelling 
 

4.3.2 Microarray diagnosis setup 

As suggested in literature for estimating generalization error (Breiman et al., 1992; 

Kohavi, 1995), a 5-fold cross-validation schema is applied to all datasets except on 

those datasets with the training and testing set originally separated. For each cross 

validation, a totally unbiased verification scheme as in Fig. 4.1 is used, where both gene 

selection and classification are working only on the training set, so that no testing 

information is included in any part of the cancer diagnosis modeling. 

 

4.3.3 Parameters setup in the proposed consistency methods 

For consistency evaluation, the dataset is randomly partitioned into two subsets. One 

subset contains 2/3 of all samples, and the other subset has the rest 1/3 samples. Using a 

classifier such as KNN or SVM, two classification accuracies can be computed on two 

subsets, respectively, the absolute difference between these two accuracies is defined as 

the consistency (C) in terms of classification performance (refer to Eq. 3.5). After 

several hundred iterations, the mean value of computed consistency is taken as the final 

result.  

 

4.3.4 Parameters setup for relevant algorithms  

The parameters setting for the published two gene selection algorithms and two 

traditional classifiers are summarized as follows: 

1. T-test gene selection algorithm: 
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 α: 0.05  (α is the level for calculating the confidence interval). 

 Test type: 1-tail. 

2. SNR gene selection algorithm: 

 Test type: test and difference in genes between classes. 

3. KNN classifier: 

 K: 1  (K – the number of nearest neighbours considered). 

4. SVM classifier: 

 Type of kernel: Linear kernel. 

 

For comparison of T-test, SNR and DA on gene selection, the number of top-ranked 

genes to be selected by statistical function in Eq. (2.25) is set as 50. Fewer genes to be 

selected may make the operation unreliable, whereas too many genes might introduce 

noise to the experiment and make the optimization become very time costly. Previous 

studies indicate that a few dozen to a few hundred top-ranked genes can efficiently 

classify the different disease patterns in most microarray experiments (Li, & Yang, 

2002).  

 

4.3.5 Parameters setup for proposed GAGSc method 

In GAGSc method, all genes of a given microarray dataset (the search space) are first 

segmented into ρ segments (refer to Fig. 3.6), and ρ is set as 20. Detailed discussion of 

this parameter is in chapter 5. For each fold dataset obtained from cross-validation data 

sampling, GA will run N generations (refer to section 3.5.3) in the training process to 

find the informative genes, and N is set as 100. 

 

There are two options for choosing resampling times B (refer Section 3.5.3) in every 

computing consistency procedure depending on how many samples are in the dataset, 

one is 50 for those datasets with more than 30 samples, and the other is 30 for the 

datasets with less than 30 samples. 

 

Additionally, as the number of genes is huge, so that for each mutation or crossover 

operation, the permutation of candidate genes (new generation of chromosome) tends to 

be massive and GA evaluation becomes extremely time costly. Hence, a parameter 

denoted as T is introduced to the stopping criterion (refer to section 3.5.3) for GA 

program, which makes the operation of mutation or crossover must be completed within 

T seconds. In the experiment, T is set as 240 seconds.  
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For clarity, all the parameters for GAGSc method are summarized in Table 4.3. 

Parameters Value 

ρ - number of initial selected genes 20 

N - number of generations 100 

B - number of resampling times if sample size >= 30     B = 50; 
else                  B = 30. 

T – Time limitation for GA operation (mutation or crossover) 240s 

Table 4.3  Parameters setup in GAGSc 

 

4.3.6 Parameters setup for proposed LOOLSc and LOOLS methods 

There are only two inputting parameters in LOOLSc and LOOLS methods, one is a 

pre-defined number of genes to be selected that is denoted as m, and the other is the 

number of resampling times that has been discussed in above section.  

 

Because there is no agreement on how many genes are best for the classification on 

different dataset, and LOOLSc method is very costly in terms of computation 

complexity, m is set to 30 in the experiments. During the LOOLSc gene selection 

process, all classification accuracies obtained using different number of selected genes 

(from 1 to 30) can be recorded for comparison. 

 

For clarity, the two parameters for LOOLSc and LOOLS methods are listed in Table 

4.4. 

Parameters Value 
m – a pre-defined number of genes to be selected 50 

B - number of resampling times if sample size >= 30     B = 50; 
else                  B = 30. 

Table 4.4  Parameters setup in LOOLSc and LOOLS 

 

4.4 Consistency concept verification 
There are two objectives for the experiments of consistency concept verification. The 

first objective is to estimate the consistency of eight microarray datasets. To reduce the 

computational complexity, a simple classical t-test algorithm is used for finding 

informative genes. Then, KNN classifier is employed to evaluate the consistency in 

terms of Eq. (3.2).  
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The second objective is to investigate the consistency concept on three different gene 

selection methods (t-test, SNR and DA). For a given dataset, a set of informative genes 

are first selected using the above three algorithms. Then, the selected genes are used for 

classification on the dataset in NeuCom (KEDRI, 2002) environment. In this 

experiment, four datasets: leukaemia, lymphoma, CNS cancer, and colon data, are used 

for comparison.  

 

4.4.1 Estimating consistency on datasets 

Table 4.5 summarizes the consistency of eight microarray datasets. As seen in the table, 

there is significant difference in the consistency among these eight datasets. The 

consistency value ranges from 0 to 1, in which a smaller value reflects a better 

consistent characteristic of dataset. Lung cancer dataset has the best consistency (0), 

which means there is no difference between the classification of training set and that of 

testing set in terms of performance. In contrast, esophageal cancer data has the worst 

consistency value (0.3928) on training set, and 0.4670 on testing set.  

Data Consistency value 

Lymphoma 0.0450 

Leukaemia 0.0988/0.1238 

CNS Tumour 0.3482 

Colon Cancer 0.2640 

Ovarian 0.1589 

Breast Cancer 0.2219/0.3400 

Lung Cancer 0 

Esophageal Cancer  0.3928/0.4670 

Table 4.5 Consistency comparison on eight datasets. Note that for those microarray datasets 
with training and testing set originally separated, such as Leukemia, Breast cancer and 
Esophageal cancer datasets, consistency is calculated on the training and testing sets 
respectively, e.g. the consistency of leukemia on training set is 0.0988, and the consistency on 
testing set is 0.1238. Here, t-test is used for identifying informative genes, and KNN is used for 
evaluating the consistency through Eq. (3.2). 
 

4.4.2 Investigating consistency on gene selection 

This experiment focuses on evaluating the consistency capability of previous gene 

section methods, t-test, SNR and DA, where DA is a method with a consistency concept 

(see section 2.4). The DA gene selection method is used to compare the other two 

methods in terms of classification accuracy, with the purpose of investigating the 

effectiveness of consistency utilized in gene selection. 
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Table 4.6 summarizes the evaluated consistency results from DA method together with 

two gene selection methods based on T-test and SNR algorithms on leukaemia, colon, 

lymphoma and CNS cancer datasets. The consistency here is evaluated by Eq. (2.23), 

and the results are represented by the mean value of the consistencies calculated for 200 

iterations. 

 

 
Leukaemia Colon Lymphoma CNS 

t-test 0.0529± 0.0400 0.1227± 0.0916 0.0411± 0.0314 0.0863± 0.0710 

SNR 0.0455± 0.0383 0.1123± 0.0853 0.0421± 0.0299 0.0985± 0.0744 

DA 0.0674± 0.0581 0.1232± 0.0943 0.0379± 0.0249 0.1275± 0.0942 

Table 4.6 Consistencies evaluated by three gene selection methods, where each consistency is 
represented as an average value ±  standard deviation. The number of iteration times is 200. 

 

As shown in Table 4.6, different datasets have very different inherent consistency values. 

The consistency of Lymphoma and Leukaemia is significantly better than that of Colon 

and CNS data. In contrast, Colon data has the highest inconsistency that is nearly three 

times higher than the most consistent dataset (Lymphoma). In addition, the consistency 

is seen also varying over different gene selection methods. SNR method outperforms 

the other methods on three of the four datasets, while Data-adaptive method wins in the 

fourth dataset. Among these datasets, the best consistency occurs when Data-adaptive 

method is used for gene selection on Lymphoma dataset.  

 

Fig. 4.2 shows that for all three gene selection methods, the consistency of Lymphoma 

dataset in terms of performance is good and varies slightly, which ranges between 0.1 

and 0. Correspondingly, it displays better average classification performance (Pa and Pb) 

of Lymphoma data. In contrast, in Fig. 4.3 (a)–(c), CNS data shows more variance in 

both consistency and performance. Interestingly, it is clear that better consistency is 

related to the high performance. In Fig. 4.3, high variance is shown in the value of 

consistency, Pa and Pb using DA method, while T-test and SNR methods show less 

variance. 

 

 

 

Method 

Data 
Consistency 
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(a) T-test on lymphoma data 

(b) SNR on lymphoma data 

 

(c) DA on lymphoma data 

Fig. 4.2 Comparison of three gene selection methods (T-test, SNR and DA) on Lymphoma data. 
Horizontal axis represents the iterations of classification tests using selected informative genes. 
Vertical axis represents the value of consistency via Eq. (3.2), classification accuracy of Da and 
Db (Pa and Pb) (calculated by Eq. (3.3)),  respectively. 
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(a)  T-test on CNS data 

(b) SNR on CNS data 

 
(c) DA on CNS data 

Fig. 4.3 Comparison of three gene selection methods (t-test, SNR and DA) on CNS cancer data. 
Horizontal axis represents the iterations of classification tests using selected informative genes. 
Vertical axis represents the value of consistency obtained by Eq. (3.2), classification accuracy Pa 
and Pb (see Eq. (3.3)), respectively. 
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The above experimental results show that the consistency issue exists obviously in most 

microarray data analysis. Different datasets may have different inherent consistency 

characteristics, and different gene selection methods are embedded with different 

consistency capability on microarray data analysis. Additionally, another remarkable 

finding is that a better classification accuracy can be easier to achieve on a dataset with 

high consistent characteristic, or by a method with high consistency capability. 

 

4.5 Verification of proposed consistency methods 
Two experiments are presented in this section to verify the proposed consistency based 

gene selection methods: GAGSc and LOOLSc. The first experiment presents GAGSc 

experimented with eight cancer microarray datasets (see section 4.1), and compared 

with the well-known reported experimental results of these datasets in terms of the 

cancer diagnosis prediction accuracy. Note that these reported results can be found in 

the original papers of eight cancer microarray datasets (refer to the cited papers in 

section 4.1). 

 

In the second experiment, LOOLSc method is compared with LOOLS method (the 

similar method as LOOLSc based on the same LOOE criterion, but without consistency 

measurement) to evaluate the effectiveness of using consistency concept in gene 

selection procedure.  

 

4.5.1 GAGSc method 

Table 4.7 ~ 4.14 show the classification results of GAGSc on the independent validation 

set of seven benchmark microarray datasets and one proteomics set (refer to section 4.1). 

In these tables, TP, TN, FP and FN  represents true positive, true negative, false 

positive and false negative of the confusion matrix, respectively, which are commonly 

used for describing the dispositions of the dataset of instances (Fawcett, 2003).  

 

Fig. 4.4 ~ 4.11 present the optimizing results obtained by GAGSc method on eight 

microarray datasets. In these figures, the horizontal axis represents the number of 

GAGSc optimizing iterations, and the vertical axis represents the resulted consistency C 

from Eq. (3.2), classification accuracy P on the testing set and ratio R of Eq. (3.15), 

respectively. Note that accuracy P is not the final calculated accuracy on the 

independent validation set, but the accuracy on one subset for calculating consistency in 

the gene selection procedure.(refer to Fig. 3.2 ~ 3.3) 
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4.5.1.1 Lymphoma data 

Table 4.7 shows the classification results of GAGSc on Lymphoma data, and Fig. 4.4 

illustrates the GA optimizing procedure of GAGSc in 5-fold cross-validation, where 

consistency and classification accuracies are recorded at every optimizing step. 

 

As shown in table 4.7, the overall classification accuracy on the testing set of 

Lymphoma dataset is fairly high (greater than 95%). The number of selected 

informative genes is around 30, and the final calculated classification accuracy is stable 

(94.74% ~ 100%). Moreover, the results of confusion matrix (TP, TN, FP and FN) have 

shown that the proposed GAGSc method is very effective on Lymphoma dataset in 

terms of both classification accuracy (TP and TN) and misclassification rate (FP and 

FN). 

 

Lymphoma data Number of 
selected genes TP TN FP FN Classification 

accuracy 

Fold1 36 8 10 0 1 94.74% 

Fold2 25 12 6 0 1 94.74% 

Fold3 34 11 7 1 0 94.74% 

Fold4 36 10 9 0 0 100% 

Fold5 32 10 9 0 1 95.00% 

Overall classification accuracy: 95.84% 

Table 4.7  The classification validation results of GAGSc method on Lymphoma data. Note 
that 5-fold cross-validation is used for calculating classification accuracy. TP – True positive, 
TN – True negative, FP – False positive, and FN – False negative. 

 

Fig. 4.4 gives the optimizing procedure of the proposed GAGSc gene selection. The 

optimized consistency is seen being decreased to below 0.1, meanwhile the training 

classification accuracy is increased to above 90%. It shows that the proposed GAGSc 

algorithm is capable of improving consistency in a GA optimizing process. (A smaller 

the consistency value indicates a better consistent characteristic of data).  
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Fig 4.4  The optimizing results of GAGSc on Lymphoma data, where horizontal axis 
represents the optimizing rounds, and vertical axis shows the results of consistency (C), 
classification performance (P) and the ratio (R) (Eq. 3.15) to consistency and performance 
calculated in the optimizing process. Note that accuracy P is the training classification accuracy 
obtained in the classifier optimizing process. 
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4.5.1.2 Leukaemia data 

Table 4.8 and Fig. 4.5 present the classification and consistency results of GSGAc and 

optimizing process on Leukaemia data, respectively. Table 4.8 shows that the achieved 

classification accuracy on the testing set is about 95%, when 35 GSGAc genes are used 

for constructing the final optimized classifier. In Fig. 4.5, after 15 rounds optimization 

based on the improvement of ratio R to consistency and classification performance 

(refer to Eq. 3.15), the classification accuracy on the training set is improved to 1 and 

the consistency value is reduced to 0, indicating that the maximum consistency is 

obtained. 

 

Microarray dataset Number of 
selected genes TP TN FP FN Classification 

accuracy 

Leukaemia data 35 12 20 0 2 94.12% 

Table 4.8   The classification validation result of GAGSc method on Leukaemia data 

 

 

Fig 4.5  The results of GAGSc optimization on Leukaemia data 
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4.5.1.3 CNS cancer data 

Table 4.9 and Fig. 4.6 present the experimental results obtained by GAGSc method on 

CNS cancer data. Table 4.9 shows that the classification results on 5 folds of CNS 

cancer dataset have high variance, which the highest accuracy is 83.33% while the 

lowest is only 41.67%. The overall accuracy is only 65%, which is not acceptable for 

the real clinical problem of disease diagnosis. The confusion matrix clearly shows that 

one misclassification rate (FN) is high, e.g. FN obtained on fold2 and fold3 are 5 that is 

larger than the accuracy rate (TN), so that the classification accuracies on fold2 and 

fold3 are very low. 

 

CNS cancer data Number of 
selected genes TP TN FP FN Classification 

accuracy 

Fold1 44 9 1 2 0 83.33% 

Fold2 56 4 3 0 5 58.33% 

Fold3 43 3 2 2 5 41.67% 

Fold4 44 7 2 3 0 75.00% 

Fold5 44 6 2 4 0 66.67% 

Overall accuracy: 65.00% 

Table 4.9  The classification validation results of GAGSc method on CNS cancer data.  

 

Fig. 4.6 shows that the consistency value of CNS cancer dataset is quite high (around 

0.4) and cannot be successfully decreased in the optimizing process. The classification 

accuracy on training sets on four folds data rises approximately from 60% to 80%, 

meanwhile the consistency is decreased from 0.4 to 0.2. Although the accuracy on the 

rest one fold data is significantly improved, from 40% to 80%, the best consistency is 

still greater than 0.2, which means the consistency is not satisfying and the effectiveness 

of utilization GAGSc method on this dataset is limited. Such a situation results in the 

bad overall classification accuracy (65.00%) on an independent testing set.  
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Fig. 4.6  The results of GAGSc optimization on CNS cancer data.  
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4.5.1.4 Colon data 

Table 4.10 and Fig. 4.7 show the experimental results obtained by GAGSc method on 

Colon cancer data. As presented in Table 4.10, the highest classification accuracy 

(91.67%) is obtained on fold 1 and fold 4 data in the classifier optimizing process, while 

the lowest one (66.67%) appears on fold 3. The diffidence between these computed 

classification accuracies is large, which shows Colon dataset has a relatively high 

variance of consistency characteristic. The final selected informative genes are more 

than 22, and the overall classification accuracy is lower than 85%. 

 

Colon data Number of 
selected genes TP TN FP FN Classification 

accuracy 

Fold1 22 4 7 0 1 91.67% 

Fold2 17 4 6 2 0 83.33% 

Fold3 21 2 6 1 3 66.67% 

Fold4 29 5 6 1 0 91.67% 

Fold5 28 1 11 0 2 85.71% 

Overall accuracy: 83.81% 

Table 4.10  The classification validation results of GAGSc method on Colon data.  

 

Fig. 4.7 shows that the consistency and performance are improved significantly. For 

example, in fold 1, the classification accuracy rises approximately 10% (from 80% to 

90%) coupled with the improvement of consistency (from 0.2 to 0.1). The improvement 

of classification performance obtained on 5 folds data is different, which the 

performance on fold 3 - 5 is improved more significantly than that on fold 1- 2. 

Meanwhile, the optimizing rounds are also different, which the classifier optimized over 

25 times in the cases of fold 3 - 5. On the contrary, in fold 1-2, the classifier is 

optimized less than 20 rounds. 
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Fig. 4.7  The results of GAGSc optimization on Colon data 
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4.5.1.5 Ovarian data 

Table 4.11 and Fig. 4.8 give the experimental results obtained by GAGSc method on 

ovarian cancer dataset. Table 4.11 shows the classification results based on the 

informative genes selected by GAGSc method. The proposed GAGSc method produces 

an overall accuracy is of 98.80%. The difference between the highest accuracy (100% ) 

and the lowest accuracy (98%) is only 2%. Moreover, the confusion matrix shows both 

the classification accuracy rate and misclassification rate are very good, e.g. there is no 

samples are misclassified in the cases of fold4 and fold5.  

 

Ovarian data Number of 
selected genes TP TN FP FN Classification 

accuracy 

Fold1 18 25 24 0 1 98.00% 

Fold2 28 31 18 1 0 98.00% 

Fold3 24 33 16 1 0 98.00% 

Fold4 24 34 16 0 0 100% 

Fold5 34 38 15 0 0 100% 

Overall accuracy 98.80% 
 
Table 4.11  The classification validation results of GAGSc method on Ovarian data. 

 

Fig. 4.8 shows that both the classification performance and consistency is stable during 

the process of classifier optimization. It turns out that the ovarian dataset has a good and 

low-variant consistency characteristic, which results in the successful classification 

results on the independent testing set of each fold data. Consequently, the improvement 

of consistency is less than 0.05 in the cases of 5 folds. 
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Fig. 4.8  The results of GAGSc optimization on Ovarian data.  
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4.5.1.6 Breast cancer data 

Table 4.12 and Fig. 4.9 present the experimental results of breast cancer dataset. Table 

4.12 shows that the low classification accuracy on the testing set is in relation to the 

high inconsistency characteristic of breast cancer dataset. The classification accuracy 

obtained by GAGSc method with 50 selected informative genes is only 63.16%, which 

is not practically useful for identifying disease patterns in real clinical area.  

 

Microarray dataset Number of 
selected genes TP TN FP FN Classification 

accuracy 

Breast cancer data 50 5 7 5 2 63.16% 

Table 4.12 The classification validation results of GAGSc method on Breast cancer data. 
 

Fig. 4.9 presents the bad consistency and classification accuracy obtained by GAGSc 

method in the optimizing process. The best classification accuracy on the training data 

in gene selection procedure is 80%, when the final optimized consistency 

(approximately 0.2) is achieved after 9 iterations. Additionally, there are only 9 

optimizing rounds in the classifier training process, which indicates the classifier is 

difficult to be optimized for breast cancer dataset respect using the proposed consistency 

concept. 

 

 

 

 

 

 

 

 

 

Fig. 4.9  The optimizing results of GAGSc method on Breast cancer data.  
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4.5.1.7 Lung cancer data 

Table 4.13 and Fig. 4.10 present the results obtained by GAGSc method on lung cancer 

data. As shown in Table 4.13, the experiment result of Lung cancer data reaches a 

satisfactory level in which the classification accuracy on testing set is 91.28% with 34 

selected genes identified by GAGSc method. 

 

Microarray dataset Number of 
selected genes TP TN FP FN Classification 

accuracy 

Lung cancer data 34 121 15 0 13 91.28% 

Table 4.13   The classification results of GAGSc method on Lung cancer data. 

 

As shown in Fig.4.10, the classifier is only optimized 9 times. Unlike the bad 

consistency and classification performance in the Breast cancer dataset, the difficulty in 

the optimizing process here is due to the inherent consistency characteristic of lung 

cancer dataset. It can be seen that the initial classification accuracy is greater than 90%, 

and the consistency calculated in the first round is about 0.1, so that it only takes 9 

optimizing rounds to achieve a high classification accuracy coupled with a good 

consistency in the training process. 

Fig. 4.10   The results of GAGSc optimization on Lung cancer data.  
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4.5.1.8 Esophageal cancer data 

Table 4.14 and Fig. 4.11 show the experimental results obtained by GAGSc method on 

Esophageal cancer data. As presented in Table 4.14, the final classification performance 

of Esophageal dataset is unsuccessful, because the accuracy on validation set only 

achieves 46.67%. Therefore, in this case, the GAGSc method is not effective to identify 

informative genes for Esophageal cancer data analysis.  

 

Microarray dataset Number of 
selected genes TP TN FP FN Classification 

accuracy 

Esophageal cancer data 45 7 0 5 3  46.67% 

Table 4.14  The classification validation results of GAGSc method on Esophageal cancer data. 

 

Fig. 4.11 shows that the classification performance obtained from 1 round optimization 

is very low (approximately 50% accurate), while the consistency is too high (nearly 0.5). 

It seems that these two values are difficult to be improved, because they are only 

optimized 12 rounds and cannot be effectively improved by GAGSc method.  

Fig. 4.11  The optimizing results of GAGSc method on Esophageal cancer data. 
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4.5.1. 9 Classification accuracy summary: GAGSc method vs. publication 

For clarity, the classification accuracies obtained by GAGSc method is summarized in 

Table 4.15, and the reported accuracies in the papers (listed in Table 4.1) is added as 

well. Our proposed GAGSc method outperforms the published methods on four datasets, 

and the classification result on colon data is very close to the reported accuracy. 

However, the classification accuracies of three datasets (CNS, Breast and Esophageal) 

are significantly lower than the published. As discussed in chapter 1, many published 

classification results are not based on efficient validation schemes, which results in the 

experiments are unreplicable and too optimistic. However, the experimental results 

obtained by the proposed GAGSc method can be easily reproduced, because the totally 

unbiased validation scheme is applied in this study. These results suggest that 

reproducible prognosis is possible for only 4 or 5 of the 8 used benchmark datasets. 

Classification accuracy Data 
GAGSc Publication 

Lymphoma 95.84% 72.5% 
Leukaemia 94.12% 85% 
CNS Tumour 65.00% 83% 
Colon Cancer 83.81% 87% 
Ovarian 98.80% 97% 
Breast Cancer 63.16% 94% 
Lung Cancer 91.28% 90% 
Esophageal Cancer  46.67% 93.3% 

Table 4.15  Classification accuracy comparison: GAGSc results vs. known results from 
literature 
 

The proposed GAGSc method described in this chapter have demonstrated that the 

consistency concept can be used for gene selection to solve the reproducibility problem 

in microarray data analysis. The main contribution of proposed GAGSc gene selection 

method is that it ensures the reliability and generalizability of microarray data analysis 

experiment, and improves the disease classification performance as well. In addition, 

because GAGSc method does not need previous knowledge about the given microarray 

data, it can be used as an effective tool in unknown disease diagnosis area. 

 

Here, from the perspective of generalization error, it should be pointed out that the 

experiments results can be seen as totally unbiased, because the data for validation is 

independent and never touched in the training process, i.e. before the final informative 

genes selected, the test data is isolated and has no correlation with these genes. 
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Therefore, the selected informative genes are entirely fair to any given data for 

validation. Such a mechanism of gene selection might result in the bad performance in 

certain microarray datasets, which is due to the characteristic of data. The reported good 

results in published papers of these datasets are suspect.  

 

4.5.2 LOOLSc method 

In this section, to further examine the ability of the proposed consistency concept in 

gene selection, LOOLSc and LOOLS methods are applied to identify informative genes 

for classification on Esophageal cancer and lung cancer data.  

 

4.5.2.1 Esophageal cancer data 

Table 4.16 ~ 4.17 and Fig. 4.12 show the experimental results obtained by LOOLSc 

method. Table 4.16 presents the best classification accuracy obtained from the classifier 

using the informative genes selected by LOOLSc and LOOLS methods. For each gene 

selection method, the classification accuracies on the independent testing set and 

training set are presented. The genes selected by LOOLSc method tends to be more 

effective to express the disease patterns of the Esophageal data than that by LOOLS 

method, as the classification accuracy on the testing set using the former genes is 

significantly better than the latter (73.33% vs. 60%). Table 4.17 lists the index number 

of 15 selected genes used for achieving the best classification accuracy described in 

table 4.16. 

Gene selection method LOOLSc 
(Testing set / Training set) 

LOOLS 
(Testing set / Training set) Publication

Best classification 
accuracy  73.33% / 88.89% 60% / 100% 93.3% 

Table 4.16  Summary of the classification results of Esophageal cancer data obtained by 
LOOLSc and LOOLS. For each gene selection method, the accuracies on independent testing 
set and on training set are given, e.g. the best accuracy on testing set calculated based on 15 
genes selected by LOOLSc method is 73.33%, while the accuracy on training set using the same 
15 genes is 88.89%. 
 

Methods Index of 15 selected genes 

LOOLSc 157 851 189 384 624 194 94 815 518 445 707 566 291 723 601

LOOLS 432 593 636 442 411 667 40 418 597 144 37 673 427 155 91 

Table 4.17  15 informative genes obtained by LOOLSc and LOOLS methods 
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Fig. 4.12 shows the relationship between the number of genes and the value of 

consistency and classification performance. The best classification accuracy (73.33%) 

occurs when 15 genes are selected by LOOLSc method. With LOOLS method, the best 

accuracy (approximately 65%) and consistency are obtained when 2 genes are selected. 

An interesting finding is that by using less than 5 genes selected by either LOOLSc or 

LOOLS, the obtained performance and consistency are very close to the final optimized 

results, e.g. LOOLSc achieves approximately 65% accuracy by using 4 informative 

genes. The number of informative genes to be selected will be discussed in chapter 5. 

Fig. 4.12  Comparison of the classification results obtained by LOOLSc and LOOLS on 
Esophageal cancer data. Horizontal axis represents the value of consistency C, classification 
accuracies P1 (LOOLSc), P2 (LOOLS). Vertical axis represents the number of selected genes. 
Note that C is the consistency calculated in the training process, P1 and P2 are the classification 
accuracies on validating testing set using the informative genes selected by LOOLSc and 
LOOLS methods, respectively. 

 

4.5.2.2 Lung cancer data 

Table 4.18~4.19 and Fig. 4.13 present the experimental results obtained by LOOLSc 

method on Lung dataset. Table 4.18 shows the best classification accuracy computed 

using the informative genes selected by LOOLSc and LOOLS gene selection methods. 

It is clear that LOOLSc method outperforms LOOLS method in terms of classification 

accuracy (98.66% vs. 89.26%) when 25 informative genes are selected. Table 4.19 lists 

the index number of 25 selected genes by LOOLSc and LOOLS method. 
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Gene selection method LOOLSc 
(Testing set / Training set) 

LOOLS 
(Test set / Training set) Publication

Best classification 98.66% / 100% 89.26% / 100% 90% 

Table 4.18  Summary of the classification results on Lung cancer data obtained by LOOLSc 
and LOOLS. For each gene selection method, the accuracies on independent testing set and on 
training set are given, e.g. the best accuracy on testing set calculated based on 25 genes selected 
by LOOLSc method is 98.66%, while the accuracy on training set using the same 25 genes is 
100%. 
 

Methods Index of 25 selected genes 

LOOLSc 3844, 128, 3, 1, 20, 237, 7, 6, 33, 56, 15, 4, 18, 12, 22, 26, 14, 13, 27, 21, 50, 49, 
24, 32, 29 

LOOLS 
7249, 8213, 6441, 1654, 5540, 7577,  1792, 7570, 11653, 8427, 6537, 9359, 
5778, 8381, 8353, 5652, 8592, 11945, 5532, 1429, 11371, 10060, 6991, 4343, 

Table 4.19  25 informative genes obtained by LOOLSc and LOOLS methods 
 

Fig. 4.13 shows that the classification accuracies using the informative genes selected 

by LOOLSc method are higher than that by LOOLS method. The best classification 

accuracy is produced by the classifier with 25 informative genes selected by LOOLSc 

method (98.66%). Additionally, Lund cancer data has a stable and good consistency 

characteristic, which ensures the high classification accuracies obtained on the 

independent testing sets with different number of selected genes.  

Fig. 4.13  Comparison of the classification results obtained by LOOLSc and LOOLS on Lung 
cancer data. 
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4.5.2.3 Summary of LOOLSc and LOOLS methods 

This experiment shows that the LOOLSc method outperforms LOOLS method in terms 

of classification accuracy on both Esophageal cancer and Lung cancer data. It turns out 

that the utilization of consistency concept in gene selection benefits the unbiased 

microarray data analysis. With LOOLSc method, the better classification accuracy 

occurs when the consistency value is close to zero (the best consistency). Unlike many 

disputed good experiment results reported in microarray analysis literature, all the 

experimental results of LOOLSc method described in this thesis are reproducible.   

 

Most importantly, the results demonstrates that a good classification performance on the 

training set does not give the same performance on the testing set, which follows that 

the consistency is very essential on achieving an unbiased and reproducible microarray 

data analysis result.  



 78

Chapter 5 

Discussion and Conclusions 
 

5.1 Discussion 
5.1.1 The number of biomarker genes 

The number of biomarker genes to be selected in GAGSc is a big concern, because it 

determines the GA searching procedure and the final reliability and effectiveness of 

gene selection. The issue raises a question: How many genes should be selected in the 

microarray data analysis?  As there is no agreement on how many informative genes 

are able to differentially express disease patterns (Mukherjee, Roberts, & Lann, 2005) 

so far,  it is assumed that the best number of selected genes in GAGSc should satisfy 

the following criterion based on the results of previous experiments: 

For a given dataset D pertaining to a classification task, the number of genes is best fit 

to D, when the consistency and performance are balanced at one point. Fig. 5.1 

schematically illustrates the condition of best number of selected genes, where β is the 

balanced point between consistency and diagnosis prediction accuracy. 

 

Theoretically, the balanced point β can be reached by a gene selection function fs(Fsc , 

Fsp), when the following criteria are satisfied: 

 ( ) 1 1lim ( , ( , 1))sc t sc tt n
F s t F s t δ+→

− + →  (5.1) 

 ( ) 1 2lim ( , ( , 1))sp t sp tt n
F s t F s t δ+→

− + →  (5.2)  

where: 

1. Fsc, Fsp are the functions for computing consistency and diagnosis accuracy, 

under the condition of gene selection, respectively. 

2. δ1 and δ2 are two pre-specified thresholds for evaluating the improvement of 

consistency and diagnosis accuracy.  

3. t is the number of candidate genes to be selected. 

4. n is the number of genes in the given microarray dataset. 

5. st, st+1 are the sets of t and t+1 selected candidate genes, respectively. 

 
As shown in Fig. 5.1, it is a multi-optimization problem to determine the number of 

biomarker genes. In this study, prediction accuracy and consistency are equally 

important, and a ratio is introduced for optimizing them simultaneously. However, 
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prediction accuracy and consistency may have different priorities in the optimization 

process for gene selection, in terms of different end users. For example, clinical 

end-users are probably more concentrated on prediction accuracy, while bioinformatics 

researchers are more interested in consistent gene selection modeling. 

 

Fig. 5.1 The expected relationship among consistency, diagnosis accuracy, and the number of 
selected genes. The value of diagnosis accuracy and consistency are shown vs. the number of 
selected genes. Point β represents the condition of the best number of genes occurs when the 
curves of performance and consistency are intersected. The number q is the best number of 
genes to be selected for classification on this given microarray dataset. 

 

A reliable set of informative genes can contribute to a better understanding of a 

microarray dataset pertaining to a biological task. In practice, the robustness and 

reliability of selected informative genes are often limited by the microarray datasets 

with the very small number of samples. For example, there are only 27 samples in 

Esophageal cancer data, which is very little information to identify informative genes 

for constructing classifier. Ein-Dor et al. (2006) argued that thousands of samples are 

required to find a reliable and robust gene set for microarray data analysis in cancer 

diagnosis using conventional analysis methods. However, most real microarray datasets 

have only tens of samples, which is far from that required. Thousands of samples are 

unrealistic for real microarray experiments. Instead, more efficient resampling methods 

should be applied to generate more sets for training. 

 

5.1.2 Initial gene set in GAGSc method 

One of the major challenges of GAGSc is how many genes should be selected as an 
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initial gene set of GA optimization. As discussed in section 5.1, the efficiency of 

GAGSc method is in relation to a proper number of initial candidate genes, and these 

initial genes can reduce the GA searching time in gene selection.  

 

In GAGSc method, all genes of a given dataset are initially divided into several 

segments (see Fig. 3.6), and for each segment, one gene is set as the candidate gene of 

GAGSc. Thus, a proper number of segments determine the efficiency of gene selection 

process. If there are too many initially divided segments, GAGSc will spend longer time 

searching candidate gene and evaluating the importance of each candidate gene. In 

contrast, if the number of initial segments is too small, gene space cannot be searched 

by GAGSc due to less genes are able to be reached by the evolutionary gene selection 

procedure. 

 

According to the guidelines introduced by Jain et al. (2000) that when researchers aims 

to build an exact relationship between the probability of misclassification, the number 

of training samples and the number of genes, a ratio regarding to the sample size to 

dimensionality should be considered. Generally, the following ratio is recommended for 

microarray data analysis: 

 ( ) 5n k m >  (4.1) 

where n is the number of samples, k is the number of classes and m is the number of 

genes. For example, if there is a two-class microarray dataset with 100 samples for 

classification problem, not more than 10 important genes should be found to construct 

the classifier with acceptable generalizability performance. However, this ratio is often 

practically violated in reported research, because the number of samples in many 

microarray datasets is less than 100, and the best classification is thought generally to 

occur when 15 to 40 genes are selected (Li, & Yang, 2002).  

 

As GAGSc is a self-optimizing process, the number of finally selected genes will be 

adjusted in the evolution procedure. The initial number of genes in this thesis is set to 

20, because 15 to 30 genes are usually used in gene selection in literature (Li et al., 2002; 

Tang, Suganthan, & Yao, 2006).  

 

5.1.3 Common genes experiment 

The experiment of common genes is proposed to determine the number of initial gene 

set. The experiment is motivated by the concept of common genes appearing in two 
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gene selection tests.  

The common genes experiment is applied on three datasets, esophageal, colon, and 

leukaemia. m is assigned as the initial number of genes to be selected by GAGSc 

method. The final selected informative genes are denoted as S. The common genes 

experiment can be summarized into the following steps: 

(a) GAGSc method starts to select m genes for further GA optimization. The final 

selected informative genes by GAGSc method are grouped into S1. 

(b) GAGSc repeat step(a) gene selection, and obtain another set of selected informative 

genes, S2. 

(c) The common genes are the genes in common between S1 and S2, which are defined 

as CmSet.  

(d) Increase the initial number of genes for evaluating by GAGSc (m = m + j ), where  

j is set to 20. 

(e) Repeat steps (a) – (d) i times, and return i groups of common genes in terms of 

different number of selected informative genes.  

 

For clarity, a flowchart is given in Fig. 5.2. 

Fig. 5.2.  The simple flowchart of common genes experiment 

 

Output: i groups of common genes 

Repeat i times ?
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The tests on Esophageal cancer, colon cancer and leukaemia datasets are recorded in 

Table 5.1. Generally, the more genes selected, the more genes in common are found in 

two selected gene sets. However, as compared with the number of finally selected genes, 

the amount of common genes is obviously small. For example, for Leukaemia data, 

when nearly 300 genes are selected from two tests, only 59 genes (approximately 20% 

of final selected genes) are found in common between sets. Even in the most optimistic 

case, 183 out of approximately 300 genes are found in common in the two tests on 

Esophageal data. This approach of evaluating common genes doesn’t perform well in 

this test. A more efficient method for determining the initial gene set is thus necessary, 

and is expected to be developed in future work. 

 

Selected informative genes Data Common genes
Set1 Set2 

The initial number of 
genes to be selected (m)

7 50 41 10 
28 94 86 30 
44 133 128 50 
89 222 225 70 

Esophageal 

cancer data 

183 327 314 90 
6 24 14 10 
7 33 49 30 
12 61 69 50 
24 100 103 70 

Colon data 

40 149 143 90 
2 15 30 10 
11 55 64 30 
19 106 117 50 
37 191 200 70 

Leukaemia 

data 

 
59 301 292 90 

Table 5.1  The results summary of common genes experiment 

 

5.1.4 Limitation 

The main two limitations of proposed gene selection methods are from two perspectives: 

computational complexity and generalizability. The extremely computational 

complexity makes of LOOLSc method is difficult to be applied on huge dimensionality 

microarray data (more than 10,000 genes) in practice. 

 

5.1.4.1 Computational complexity 

The experimental results have shown that the informative genes selected by GAGSc and 

LOOLSc methods can significantly improve the classification accuracy and 

reproducibility for microarray data analysis. Nevertheless, GAGSc and LOOLSc 
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methods are found very costly in terms of computational complexity in the experiments. 

For GAGSc method, it usually takes 12~16 hours to get the final selected genes on a 

computer with 3.2 GHz P4 CPU and 2048 MB RAM, when the microarray dataset 

contains more than 7,000 genes. This is mainly due to the evolutionary function, 

including mutation and crossover operation in candidate genes selection procedure.  

 

The experiment of LOOLSc was much more expensive with respect to the time cost. 

Two datasets were used in the evaluation experiments of LOOLSc, because it took 

about several hours to measure the effectiveness of one candidate gene in SVM 

classification stage depending on the number of genes in the given dataset. For example, 

it takes LOOLSc method approximately 1 week to select 20 informative genes out of 

12,533 genes in Lung cancer data analysis. However, for relatively small dimensional 

microarray data, such as Esophageal cancer data (with 859 genes), the computation 

complexity is decreased sharply (only 10 hours to get 30 selected genes).  

 

5.1.4.2 Generalizability 

The totally unbiased verification scheme has been used for all experiments in this thesis 

to avoid the bias error. Therefore, all experimental results obtained through the proposed 

GAGSc and LOOLSc methods are repeatable. However, it is found that GAGSc method 

is not robust as expected on some microarray datasets, such as Esophageal cancer, CNS 

tumour and Breast cancer datasets. LOOLSc method has been only examined over two 

cancer data analysis, so that its generalizability needs further study. 

 

Note that this issue is mainly caused by the lack of sufficient information from the 

microarray data during the classifier training procedure. To achieve an accurate 

prediction outcome with good reproducibility, using a small number of samples cannot 

identify a reliable and effective gene list (Ein-Dor, Zuk, & Domany, 2006; Michiels, 

Koscielny, & Hill, 2005). 

 

5.1.4.3 Gene selection performance measuring method 

Another limitation is that only classification accuracy is used as the measurement for 

evaluating gene selection performance. This measuring method is capable of estimating 

the misclassification costs of diagnosis, but cannot efficiently evaluate the bias error 

occurring in the experiments. In this thesis, the classification accuracy is used to 

measure the capability of gene selection because of the following two reasons: 
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1). There have been no mature and effective performance metrics applicable for gene 

selection methods so far (Statnikov, Aliferis, Tsamardinos, Hardin et al., 2005),  

and accuracy has been widely used in the published studies. 

2). Using accuracy can simplify the statistical comparison results and is easy to 

interpret. 

 

However, more effective measurement scheme for gene selection method should be 

considered, which can measure the classification performance as well as the bias error. 

 

5.2 Conclusions 
In conclusion, the overall objectives of this study are to (1) investigate the proposed 

performance-based consistency concept, (2) develop new gene selection methods 

(GAGSc and LOOLSc) in the proposed performance-based consistency theory. The 

findings of experiments have demonstrated that the utilization of proposed consistency 

concept substantially improves the classification accuracy of microarray data analysis 

for cancer diagnosis. 

 

One contribution of the proposed consistency concept is that it can be easily 

incorporated into more sophisticated gene selection systems to enhance the overall 

performance of microarray data analysis. For example, the consistency concept can be 

implemented to the gene selection methods based on either Neuro-computing or 

traditional statistical algorithms to identify more reliable and robust informative genes. 

 

The second contribution is using the proposed gene selection methods (GAGSc and 

LOOLSc), the final selected informative genes are capable of constructing better 

classifier for disease diagnosis in terms of prediction accuracies. The unbiased 

prediction accuracies on eight benchmark datasets obtained by GAGSc method in this 

study are very competitive to the reported results in literature. Note that some of the 

published prediction results are not validated on independent datasets, and thus remain 

suspect. 

 

Finally, the utilization of proposed consistency concept can benefit the good 

reproducibility of microarray experiments. In this thesis, the proposed GAGSc method 

and LOOLSc methods are developed on the basis of totally unbiased validation schemes, 

which ensure the achieved good experimental results are reproducible.  
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5.3 Future work 
The findings of this study indicate that the proposed consistency concept in gene 

selection is a useful innovation in several areas. Considerations for further improving 

the gene selection methods based on the proposed consistency concept are: 

(1) Incorporate clustering in the pre-process stage of gene selection 

In this study, the huge computational complexity is one of the main limitations of the 

proposed GAGSc method. The problem is manly due to the massive number of 

genes, which makes the GA search is extremely time costly. The cluster algorithms 

can be used before the GA search to find a certain number of clusters. Then these 

clusters can be used for determining either the initial number of genes to be selected 

or the number of finally selected informative genes. This is expected to improve the 

efficiency of GA search engine, so that the computational complexity can be 

significantly reduced. 

(2) Employ different data sampling methods 

In this study, K-fold cross-validation is used for estimating generalization error for 

gene selection. As discussed in chapter 3, bootstrap is another popular sampling 

method for small sample size dataset. In the future work, bootstrap sampling 

techniques are expected to improve the reproducibility of microarray data analysis. 
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