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Abstract

Cardiovascular disease (CVD) is the number one cause of mortality around the world. A

fair proportion of health care resource is consumed for managing CVD, which imposes a

heavy health burden on the community. To prevent the prevalence of CVD, an effective

approach is to create prediction models to assess the CVD risk and then enable early

lifestyle adjustments or clinical treatments. A great amount of research has been done

but challenges and issues still exist. The aim of this research is to create an effective

risk prediction model for early assessment and detection of CVD.

The Framingham Original Cohort Study data set of 5079 subjects aged from 30 to

74 years old who had not previous symptoms of CVD at the baseline was enclosed. The

Cox regression method was used for the data analysis. A complete process of creating

risk models was conducted according to statistical regression strategies. Lastly, a risk

prediction model for general CVDs was generated based on risk predictors, including

age, sex, body mass index, hypertension, pulse rate, systolic blood pressure, cigarettes

per day, and diabetes. We obtained a good predictive ability of discrimination and

calibration with ROC of 0.71 indicating a good accuracy for the risk estimate of CVD.

In our new Cox-based risk model, a novel predictor heart rate was incorporated to

predict CVD risk, which expands the predictive ability of existing CVD risk models.

Moreover, this risk prediction model was developed based on office risk factors, i.e. the

measure of risk factors does not require clinical tests, which would be beneficial to both

health care providers and patients to assess CVD event rates at any time and any place.
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Chapter 1

Introduction

1.1 Research Background

Cardiovascular disease (CVD) describes a variety of types of conditions relevant to the

heart and blood system. It includes stroke, rheumatic heart disease, Coronary Artery

Diseases (CAD), heart attack, Heart Failure (HF), Coronary Heart Disease (CHD), etc

(Mendis, Puska, Norrving et al., 2011). The prevalence of CVD has increased in recent

decades. The 2015 statistics on heart disease in America indicate that the percentage of

people aged 20 to 40 years old who have CVD was 11%, 37% for people aged 40 to

60 years, 71% for people aged 60 to 80 years, and 85% for people over 80 years old

(Mozaffarian et al., 2015). In New Zealand, a high proportion of the population who

have not developed CVD has an over 5% CVD risk in the next few years. The Ministry

of Health of New Zealand says that the percentage of population who have a risk of

CVD higher than 5% is 26% (Ministry of Health, 2018).

Because of the high incidence of disease, CVD has become the leading cause of

mortality around the world. In 2003, CVD was the number one cause of death in New

Zealand (Chan et al., 2008). Statistics on CVD mortality in 2008 suggest that the

percentage of deaths caused by CVD is 45% for females and 43% for males (Statistics

11
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New Zealand, 2012). Thanks to effective prevention and treatment efforts, the mortality

rates caused by CVD have decreased in recent years. The percentage of deaths due to

CVD has declined to 33% in 2017 but there were still 172,000 people living with heart

disease (Heart Foundation, 2017). CVD remains the second most common cause of

death in New Zealand (Statistics New Zealand and Ministry of Pacific Island Affairs,

2011). Because of the high rate of disease incidence and death caused by CVD, a

high proportion of resource has been consumed by health care for CVD, which is

imposing a heavy health burden on the community. For example, in the United States,

17% of overall national health care expenditure is consumed by the treatment of CVD

(Heidenreich et al., 2011).

Many cardiovascular-related deaths are premature and preventable. McGill, McMa-

han and Gidding (2008) think that the health condition and disease symptoms can be

improved by effective health management such as the effective dietary and lifestyle

interventions, and drug intervention. In fact, 90% of CVD is preventable (McGill et al.,

2008). In order to achieve the prevention of CVD, an effective approach is to assess

and record the risk of CVD before it happens and then enable early clinical treatments

or lifestyle adjustments.

A significant number of studies have been done on the risk estimation of CVD in

the past decades (Damen et al., 2016). CVD risk prediction models have proved to be

effective in the health and disease management for clinicians and patients. The new

PREDICT CVD risk assessment equation developed for primary health care among

the population in New Zealand has been integrated into the general practice electronic

health records (EHRs) and a web-based software called ‘PREDICT’ (Wells et al., 2017).

This ‘PREDICT’ web platform has got 400,728 patients assessed for CVD risk and is

becoming an effective tool for decision support and a management system for general

practitioners. Another risk estimation tool, the old Framingham CVD risk prediction

equation developed by Wilson et al. (1998), has been incorporated into the New Zealand
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Primary Care Handbook (Cardiovascular Disease Risk Assessment Steering Group and

others, 2017). This handbook guideline is a convenient ready-reference for primary

care practitioners and has helped countless New Zealanders to assess their CVD health

conditions.

Consequently, articles of relevant prediction models increase with years. There

was an obvious peak in the last ten years (Damen et al., 2016). A series of CVD risk

assessment equations have been developed, such as the Framingham scores from the

Framingham Heart Study (FHS) (D’Agostino et al., 2008; Lloyd-Jones et al., 2004), the

QRISK equations (Hippisley-Cox et al., 2007), the Europe SCORE risk models (Conroy

et al., 2003), the ASSIGN scores from the Scottish Heart Health Extended Cohort

(SHHEC) (Woodward, Brindle & Tunstall-Pedoe, 2006), the Prospective Cardiovascular

Münster(PROCAM) equations (Assmann, Cullen & Schulte, 2002), and the CUORE

Cohort Study formulas (Ferrario et al., 2005).

1.2 Research Motivation

Risk prediction for CVD requires a two-stage procedure. The first stage involves the

measurement of observations and complete prospective biological information. The

collection of longitudinal data is a process of long-time follow up, normally taking

years to finish the full project, which is difficult in large cohorts. Some long-term

prospective studies (D’Agostino et al., 2008; Woodward et al., 2006; Ferrario et al.,

2005; Hippisley-Cox et al., 2007) not only derived risk prediction equations but also

provided valuable designs, work-flow guidance of data collection, as well as data

resources for later researchers.

The performance of most of the CVD prediction models reviewed above has been

internally or externally validated to make sure they have an accurate ability of predicting

the probability of developing CVD (D’Agostino Sr et al., 2001; D’Agostino et al., 2008;
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Hippisley-Cox et al., 2007; Hippisley-Cox, Coupland, Vinogradova, Robson & Brindle,

2008). Some have been applied to the general practice (D’Agostino et al., 2008;

Assmann et al., 2002). However, challenges and issues in the development of CVD risk

estimation models still exist:

• Risk models using a single factor for the risk estimation of CVD cannot see the

influence of multiple factors simultaneously. The Kailuan model devised by Yu et

al. (2017) on the basis of analysing the cumulative exposure to Resting Heart Rate

(cumRHR), the 10-year Atherosclerotic Cardiovascular Disease (ASCVD) model

developed by Han, Park, Kim, Kim and Chun (2017), and the Sudden Cardiac

Arrest (SCA) model developed by Murukesan, Murugappan, Iqbal and Sara-

vanan (2014) are all single-factor-based risk models for one specific individual

component of CVDs.

• Existing CVD risk prediction models using statistical regression analysis (such

as the Weibull (Cannon, 2012), the Kaplan-Meier (Kaplan & Meier, 1958), or

the Cox regression analysis (Cox, 1992)) prefer to use classic predictors such as

sex, age, smoking, diabetes, high blood pressure, and total cholesterol, etc., to

estimate the risk score. The new version of the Framingham laboratory-based

risk model was generated based on seven conventional risk factors: age, Systolic

Blood Pressure (SBP), anti-hypertensive medication treatment for hypertension,

total cholesterol, High Density Lipoprotein (HDL) cholesterol, current smoking,

and diabetes status (D’Agostino et al., 2008). Other similar risk models like the

one devised by Unnikrishnan et al. (2016) and the QRISK (Hippisley-Cox et

al., 2007) all use the same conventional predictors as the Framingham equation

(D’Agostino et al., 2008).

• Several CVD risk assessment tools based on data mining or machine learning

methods have novel predictors incorporated in the risk models but either a result
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of classification and clustering (Hachesu, Ahmadi, Alizadeh & Sadoughi, 2013;

J. Kim, Lee & Lee, 2015; Kumari & Godara, 2011; Melillo et al., 2015), a risk

level of developing CVD (Vaanathi, 2017), or an ultimate risk value (Unnikrishnan

et al., 2016; Murukesan et al., 2014), was given. An absolute risk estimation for

how many years in the following time cannot be obtained, which is a limitation

to supporting health management for decision making.

• A CVD risk prediction equation cannot demonstrate its value unless it is applied

to general practice. These risk estimation formulas have been widely applied

to clinical guidelines and web-based software tools. The New Zealand Primary

Care Handbook incorporated the old version of the Framingham CVD prediction

algorithms (Wilson et al., 1998) for New Zealanders’ primary health care manage-

ment. The web-based platform ‘PREDICT’ integrated the CVD risk assessment

equation developed by Wells et al. (2017) for estimating the patient’s CVD and

diabetes profile. However, CVD risk prediction models have not been applied to

wearable monitoring systems for health care management. The lack of valid risk

prediction algorithms for implementing smart wearable systems in real life is a

great challenge for medical decision making (Lymberis, 2003).

1.3 Research Objectives

Motivated by the challenges and issues that current researchers are facing, we were

encouraged to devise an effective prognosis platform for early detection of CVD. The

aim of this research is to create a risk prediction model for early detection of CVD.

The scope of this research is defined as follows:

• Identifying risk factors that have effects on the development of CVD.
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• Incorporating identified novel risk factors as well as conventional risk predictors

into the CVD risk prediction model.

• Developing a multiple-variable-based risk prediction model targeting general

CVD events. This model should have the ability to compute absolute risk scores

in the next 10 years.

• Validating the fitted CVD risk prediction model to see its predictive performance.

A full process of conducting this research is summarised in Figure 1.1.

Figure 1.1: The Full Process of Conducting this Research
Notes: m = The number of candidate risk factors; n = The number of identified risk

factors

1.4 Research Contributions

This thesis will make several contributions:

• We explore a novel risk factor (pulse rate) as a significant predictor affecting on

the development of CVD.
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• We generate a risk prediction model aimed at general CVDs. It is an office-based

tool, i.e. practitioners can use it during an office visit without requiring a clinical

laboratory test.

• An absolute CVD risk probability in 10 years can be obtained for an individual

using three forms of risk estimation: risk equations, nomograms, and survival

curves.

1.5 Research Benefits

The findings of this research will be beneficial to both health care providers and potential

CVD patients.

• For primary health organisations: they could incorporate the CVD risk prediction

models into clinical guidelines such as the health care hand book for CVD risk

assessment and management.

• For medical physicians: they could use this risk prediction to calculate risk scores

during a patient visit directly, so they can give recommendations of treatments

based on adequate evidence, which will be particularly beneficial for persons

with high CVD risk.

• For general individuals: this office-based general risk estimation model enables

them to monitor their CVD risk trend at home, which increases the autonomy and

involvement of patients regarding to their health care. Moreover, it is also a way to

augment the relationships between physicians and patients, which revolutionises

health care management.
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1.6 Thesis Structure

This thesis is organised as follows:

Chapter 1 - Introduction: introduces the background of this research, including the

challenges and issues of CVD risk prediction, research objectives, research contributions,

and research benefits.

Chapter 2 - Literature review: elaborates on previous works on CVD detection in

terms of current CVD risk prediction models, modelling methods, risk factors, research

data sets, and eHealth Solutions for CVD Prediction.

Chapter 3 - Research method: discusses the design of the research method and

procedures of implementing this research.

Chapter 4 - Implementation of the risk estimation model: states the whole process

of developing a CVD risk prediction model using Cox regression analysis guided by

the regression modelling strategies.

Chapter 5 - Validation: validates the accuracy of the fitted CVD risk prediction

model in terms of statistical perspectives (discrimination and calibration), as well as

empirical perspectives.

Chapter 6 - Findings and discussion: presents the findings of this research and

discusses the contributions and implications with respect to the findings.

Chapter 7 - Conclusion: summarises the main work and the findings of this research

and illustrates limitations and potential future works.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we provide a review of current literature on CVD risk prediction as well

as CVD prediction applications. Articles and journals will be researched section by

section.

Section 2.2 presents an overview of the CVD outcomes that current researchers are

targeting.

Section 2.3 introduces the popular modelling methods applied to develop a risk

prediction model, and risk factors that current CVD prediction models have included.

Section 2.4 reviews the available data sets for CVD research in terms of the data

features, study populations, risk factors and sample size.

Section 2.5 gives the existing literature on eHealth solutions for CVD prediction,

including clinical guidelines, web-based tools, and mHealth applications.

19
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2.2 CVD Overview

CVD outcomes are events or groups of events that a prediction model focuses on

(Damen et al., 2016). It can be one specific component of CVD events such as CHD,

CAD, stroke, etc., or a combination of these diseases, or the complete set of CVDs. In

other words, CVD outcomes are the target diseases predicted from a risk model. The

definition of the predicted outcome decides the inclusion of risk factors, the strategy

of data collection, the selection of modelling algorithms, and consequently leads to

different predicted models and different strategies of treatment (Damen et al., 2016).

Thus, clearly defining the CVD outcome at the beginning of any research is critical.

Many kinds of CVD outcomes have been identified in the primary studies. Some

prediction models target specific components of CVD. The 10-year risk prediction

model developed by Wilson et al. (1998) defined CHD as the research target. Another

risk equation developed by Lloyd-Jones et al. (2004) also targeted CHD but expanded

the predictive time length to the lifetime. The 5-year risk estimation model (Butler et

al., 2008) has the ability to predict Incident Heart Failure (IHF) among elders. These

reviewed models have been fully validated and incorporated into guidelines of primary

care (Expert Panel on Detection et al., 2001), which can be requested conveniently

either online or in hard copy. However, they lack multiplicity. Only an individual CVD

can be predicted, which limits their use in primary care.

In some cases, the risk assessment for a specific event is useful when physicians

would like to assess and treat a particular component of CVDs (Jackson, 2000). How-

ever, in primary care, physicians are mainly concerned with the prevention and health

maintenance for general CVDs (Goff et al., 2014). They would like to know the prob-

ability of getting a specific CVD event using a general risk prediction tool. Because

of this, some studies have started to focus on the risk prediction of general CVD

(Hippisley-Cox et al., 2007; D’Agostino et al., 2008; Pencina, D’agostino, Larson,
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Massaro & Vasan, 2009). Researchers from the Framingham Heart Study (FHS) not

only developed risk models for individual components of CVD events (Kannel, Feinleib,

McNamara, Garrison & Castelli, 1979; Lloyd-Jones et al., 2004) but also published

two risk functions for general CVD based on traditional risk factors and non-laboratory

predictors (D’Agostino et al., 2008; Pencina et al., 2009). CVD risk scores can be

estimated as the guidance of preventive care.

2.3 CVD Prediction

2.3.1 CVD Prediction Models

Along with the increase of CVD occurrence (Mozaffarian et al., 2015; Statistics New

Zealand, 2012; Heart Foundation, 2017) and correspondingly increased medical cost

(Heidenreich et al., 2011), the research on CVD prediction models is becoming popular.

Risk prediction models have proven to be playing an important role in decision making

in the clinical domain. It complements clinical reasoning for physicians to make

treatment decisions (Moons et al., 2012). In personal health management, prediction

models can assist individuals in the self-management of their health condition (Moons

et al., 2012).

Research articles reporting CVD detection models have been annually increasing in

recent decades. A systematic review of Clinical Prediction Models (CPMs) for CVD by

Wessler et al. (2015) suggests that there were only three articles relevant to CVD risk

prediction models in 1990 but the number had increased to approximately 500 by 2012.

Figure 2.1 shows the increasing trend of published articles from 1990 to 2012.

There are two types of CVD prediction models: prognostic models and diagnostic

models (Cui, 2009). Diagnostic models are used where a specific disease needs to be

diagnosed. The physicians may not know the disease outcome of an individual. They
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Figure 2.1: Articles Related to CVD Prediction Models from 1990 to 2012
(Wessler et al., 2015)

use a diagnostic model to assess the diagnostic factors for an individual and then a

diagnosed result will be obtained. This examination result is only used for the treatment

of this individual. The model developed by Mostafa et al. (2010) is a typical diagnostic

model to diagnose Type 2 Diabetes Mellitus (T2DM).

Contrary to the diagnostic model, the nature of prognostic prediction models is

that disease outcomes will not be determined after assessing the markers but a risk

of developing these outcomes will be given For example, the FHS CHD risk model

(Lloyd-Jones et al., 2004) introduced above can estimate the risk of having CHD in the

next ten years. Prognostic models based on risk factors can be applied to new patients

or individuals. New populations may be from different countries or different ethics

(Moons, Altman, Vergouwe & Royston, 2009).

Based on the discussion on the nature of diagnostic models and prognostic models,

we can see that they should be used in different settings and not be interchangeable.

Diagnostic prediction models are commonly applied in clinical practice such as the

hospital. Doctors could make a diagnosis based on a diagnostic prediction model.

The prognostic models have a wider range of application areas like clinical guidelines,
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self-management tools, and so on. Table 2.1 summarises the input, output, nature, and

work environment of the prognostic model and the diagnostic model.

Table 2.1: Types of CVD Prediction Models

2.3.2 Modelling Methods

Numerous techniques can be utilised for generating CVD risk prediction models such as

expert system (Bhatla & Jyoti, 2012), regression analysis (Kleinbaum, Kupper, Nizam

& Rosenberg, 2013), fuzzy logic and rough set (J. Kim et al., 2015), data mining (Koh,

Tan et al., 2011), etc. Regression analysis is the traditional method to be used, yet, along

with the development of computer and information sciences, techniques like expert

systems, classification and clustering have been applied to CVD detection in recent

years.

2.3.2.1 Regression Analysis

Regression analysis is a traditional method for event prediction. A great number of

methods are available such as the linear regression model, the binary logistic regression

model, and the polynomial regression method (Kleinbaum et al., 2013). In the clinical

field, the popular statistical method used for CVD prediction is survival analysis.

Survival analysis (Despa, 2010) investigates the relation between the emergence of an

event of interest and the expected duration of time it takes, such as cancer studies in

biological organisms (Ma et al., 2008). Typical research questions in survival analysis

are:
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• What are significant characteristics that impact on the patient’s survival?

• What is the risk for a person to have a defined event (disease)?

• What is the probability that an individual survives a certain duration of time?

Three types of statistical approaches can be used in survival analysis: non-parametric

approaches, semi-parametric approaches, and parametric approaches (E. T. Lee & Wang,

2003).

Non-parametric methods are typically used to estimate the survival function from

lifetime data. Popular techniques are the Kaplan-Meier estimator (Kaplan & Meier,

1958) and the log-rank test (Mantel, 1966; Cox, 1992). These two methods are univariate

analysis. Survival curves can be plotted by comparing the survival distributions of two

samples but only show the effect under one factor. The impact of any other factor is

ignored. In addition, non-parametric methods only work well when the input variable is

categorical but not useful for the quantitative variables such as age, weight, or waist.

Weiner et al. (2004) developed a CVD risk estimation using the Kaplan-Meier and the

log-rank analysis, in which Kaplan-Meier was used to obtain the survival times among

people without Chronic Kidney Disease (CKD) against those having CKD, and the

log-rank test was used for differentiating the differences among different groups.

Weibull and gamma regression models are popular parametric approaches in survival

analysis (F. Harrell, 2013). Weibull model and gamma are both generalised from the

exponential model (Miller Jr, 2011). These models can do both univariate analysis and

multivariate analysis but they assume that the failure rate for two subjects over time is

constant, i.e. the distribution of the hazard for two people does not change. The Weibull

model is particularly useful when the samples are very small but if the assumption does

not hold, the fitted model would be invalid (Cannon, 2012). The well-known Europe

SCORE project (Conroy et al., 2003) used the Weibull method to develop a risk score
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system for clinical management. The risk estimation equation developed by Anderson,

Odell, Wilson and Kannel (1991) is also based on the Weibull model.

Cox proportional hazards regression analysis (Cox, 1992) is a semi-parametric

method. It aims at investigating the importance of various risk factors simultaneously

on the survival time of individuals through hazard function and works well for both

quantitative and categorical variables. The QRISK model in the United Kingdom

(Hippisley-Cox et al., 2007), the ASSIGN model from the SHHEC study (Woodward et

al., 2006), the Framingham CVD risk model (D’Agostino et al., 2008), the Prospective

Cardiovascular Münster (PROCAM) model (Assmann et al., 2002), and the prediction

equation for coronary events in the CUORE cohort study (Ferrario et al., 2005), were

all developed based on the Cox proportional hazards model.

It was reviewed that approximately half of the CVD risk models using regression

analysis was Cox proportional hazards regression analysis (constituting nearly 44% of

all the studies included), the proportion of other models (Weibull, logistic regression,

etc.) used is 41%, and the remaining articles were not clear (Damen et al., 2016). This

review indicates that the Cox proportional hazard regression analysis was the most

popular method in survival analysis.

2.3.2.2 Data Mining Methods

The objective of data mining is to discover the unrevealed patterns and useful informa-

tion from a data set (Jilani, Yasin, Yasin & Ardil, 2009). Data mining algorithms have

been applied to a wide range of big data analytics areas such as business prediction for

marketing, sales, or customer support (Berry & Linoff, 1997) for a long time. Over the

past two decades, these techniques have been used in clinical data analytic and health

care for decision making of policy-makers or clinical physicians (Koh et al., 2011).

Thus, apart from the traditional statistical methods reviewed above, some researchers

have recently proposed risk assessment models using classification algorithms such
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as Support Vector Machines (SVM), Artificial Neural Network (ANN), fuzzy logic,

decision tree, Bayesian classifier, etc.

Hachesu et al. (2013) applied techniques such as SVM, decision tree and ANN to

predict the duration of stay of patients. J. Kim et al. (2015) used a Classification and

Regression Tree [ART] (an algorithm of the fuzzy logic and decision tree) to design

a CHD detection model using data sets derived from the Korean National Health and

Nutrition Examination Survey VI (KNHANES-VI). H. Kim, Ishag, Piao, Kwon and Ryu

(2016) proposed a prediction system for CVD using ANN and the Bayesian classifier

based on Heart Rate Variability (HRV) and carotid images. These systems (Hachesu et

al., 2013; J. Kim et al., 2015; Kumari & Godara, 2011; Melillo et al., 2015) based on

data mining techniques were developed for classification and clustering purpose. They

can give a classification result if an individual would develop a CVD event or not but an

absolute risk score of potential CVD disease cannot be estimated.

Some CVD models can either provide a predicted risk level (Vaanathi, 2017) or a

definite risk score (Unnikrishnan et al., 2016; Murukesan et al., 2014) to patients. A

CVD diagnosis model based on neuro-fuzzy expert system (Vaanathi, 2017) combined

the neural networks and adaptive neuro-fuzzy for CVD risk estimation. After demanded

fields are inputted, the risk level (very low, low, high) will be given. Murukesan et al.

(2014) used Probabilistic Neural Network (PNN) to predict the risk of Sudden Cardiac

Arrest (SCA). The risk model proposed by Unnikrishnan et al. (2016) has the ability

to compute risk scores for patients and be a supportive tool for diagnosis of CVD and

the decisions of cardiologists. However, only a definite risk score can be estimated, the

duration of time for the estimated risk is unknown.

In summary, modelling methods used to analyse the risk in CVD prediction are

traditional regression analysis, data mining techniques (classification and clustering,

and Artificial Intelligence (AI)). Table 2.2 summarises the modelling methods reviewed

as well the merits and drawbacks for a specific method.
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Table 2.2: Modelling Methods in CVD Risk Prediction

2.3.3 CVD Risk Factors

2.3.3.1 Overview of CVD Risk Factors

Apart from the modelling methods, the inclusion of risk factors also decides the per-

formance of a prediction model. A review paper conducted by Damen et al. (2016)

suggests that the number of predictors that have been included in CVD models is greater

than 100. The top 20 are listed in Table 2.3.

Conventional risk predictors include sex, smoking, age, SBP, total cholesterol,

diabetes, hypertension, HDL cholesterol and Body Mass Index (BMI), etc. (Cupples,

1987). According to Table 2.3, most items in the list are traditional factors, which

indicates that the majority of studies on CVD prediction relied on traditional predictors

for risk estimation.

Some researchers have tried to explore novel risk factors such as kidney function,

heart rate, family history, C-reactive Protein (CRP). Odden et al. (2014) combined

traditional risk factors (including SBP, HDL cholesterol, Low Density Lipoprotein

(LDL) cholesterol, obesity, and diabetes) and novel risk factors (including N-terminal
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Table 2.3: Top 20 Predictors in CVD Models

(Damen et al., 2016)

pro-B-type natriuretic peptide, C-reactive protein, and kidney function) to predict CVD

risk. A neuro-fuzzy system recently designed by Vaanathi (2017) included four novel

risk factors (heart rate, chest pain type, blood sugar, and exercise) and four traditional

predictors (sex, age, cholesterol, and blood pressure).
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2.3.3.2 Number of Risk Factors in CVD Model

CVD models can be developed based on a single risk predictor or multiple risk predictors.

The majority of studies (Lloyd-Jones et al., 2004; Assmann et al., 2002; Conroy et al.,

2003; Assmann et al., 2002; Hippisley-Cox et al., 2007; Vaanathi, 2017; Y.-M. Liu,

Chen, Yen & Chen, 2013) developed models based on multivariate analysis. In multiple-

predictor models, seven or eight is the median number of factors included.

D’Agostino et al. (2008) developed two sex-specific risk algorithms for the predic-

tion of CVDs. One is based on traditional risk factors including age, anti-hypertensive

medication treatment for hypertension, total cholesterol, HDL cholesterol, current status

of smoking, SBP, and diabetes. The other one is based on non-laboratory test risk factors

and replaced the total cholesterol and HDL cholesterol with BMI. A health parameter

model using SVM for CVD prediction by Unnikrishnan et al. (2016) included same pre-

dictors as the FHS laboratory-test-based model (D’Agostino et al., 2008). The QRISK

study researchers included eight risk factors in their model, the first seven of them were

the same as the FHS model and the last one is family history (Hippisley-Cox et al.,

2007). A neuro-fuzzy system designed by Vaanathi (2017) has eight input parameters

including sex, age, cholesterol, blood pressure, heart rate, chest pain type, blood sugar,

and exercise.

Researchers have been working on exploring novel predictors and extending the

number of predictors for estimation of CVD risk. The cohort study conducted by

De Ruijter et al. (2009) incorporated predictors included as the Framingham risk

equation and four new bio-markers (interleukin 6, CRP, folic acid, and homocysteine)

to detect CVD risk in the elderly people. The risk factors has been increased to 11. This

model obtained an improvement of accuracy for identification of high risk of CVD over

the FHS model. A Bayesian clinical reasoning model for CVD prediction (Y.-M. Liu

et al., 2013) was developed by incorporating 12 risk factors including demographic
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features (gender, age and family history), metabolic syndrome components (betel

quid (male only), fasting glucose, HDL-cholesterol, triglyceride, waist circumference

and metabolic score) and conventional predictors (alcohol, SBP and diastolic blood

pressure).

The multiple variables CVD prediction models that have been reviewed are sum-

marised in Table 2.4

Table 2.4: Summary of CVD Prediction Models Using Multiple Risk Factors

Apart from models based on multiple risk factors, there are some models targeting

the investigation of CVD risk prediction based on the analysis of a single risk parameter.

The Kailuan study researchers (Yu et al., 2017) generated a risk prediction model

based on the cumulative exposure to Resting Heart Rate (cumRHR). Murukesan et

al. (2014) employed a machine learning approach to detect Sudden Cardiac Arrest

(SCA) by analysing HRV. In a study for estimating the risk of 10-year Atherosclerotic

Cardiovascular Disease (ASCVD), the same risk factor HRV in the SCA detection
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model (Murukesan et al., 2014) was inputted to the model (Han et al., 2017).

2.4 Data Availability and Utilisation for CVD Research

2.4.1 Data Features and Study Population

A great number of CVD data sets have been created by investigators all over the world.

It is reviewed that data sets used for the development of CVD prediction models are

mostly from a longitudinal cohort study (Damen et al., 2016). A longitudinal cohort

study is a long-term population research. Normally, the length of data collections of

these studies will be across many years.

Starting times of longitudinal cohort studies that have been done are quite different.

The famous FHS in the United States began than the others, the data collection starting

in 1948. The collected data were firstly used for the identification of risk predictors for

heart disease (Kannel, Dawber, Kagan, Revotskie & Stokes, 1961). The Framingham

researchers still kept focusing on heart-related research (Kannel et al., 1979; Splansky

et al., 2007). The earliest cohort study on CVD detection in Asia was started in Japan

(Collaboration et al., 2004). In 1961, the Japan Hisayama cohort study (Hasuo et al.,

1989) was started with the diagnosis on death certificates referring to CVD in Hisayama,

Japan.

The study population has diversity as well. Figure 2.2 summarises the distribution

of cohort study populations in different continents (Damen et al., 2016). According

to this figure, approximately half of the CVD longitudinal cohort studies occurred

in Europe (46%). 36% of the study population were from the United States and

Canada. Those from Asia and Australia were 12% and 4% respectively. The remaining

2% is cross-continental. Table 2.5 lists the well-known studies from different study

populations.
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Figure 2.2: Distribution of the Population in Longitudinal Cohort Studies
(Damen et al., 2016)

Table 2.5: Well-known Studies from Different Populations

2.4.2 Content of Data Sets

Apart from the study populations and the starting times, there are noticeable differences

in the data contents between different CVD longitudinal cohort studies. The content of

a data set refers to two aspects: risk factors and sample size (Damen et al., 2016).

Differences of risk factors among different cohort studies might be caused by the

characteristics of populations including differences of age, sex, race, etc. For example,
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the data of the FHS (Mahmood, Levy, Vasan & Wang, 2014) was collected from the

population in the United States but the Keelung Community-based Integrated Screening

(KCIS) study (Chen et al., n.d.) was started in Asia, so the data features regarding risk

factors are different because of the differences of the population features. Apart from

this, the data of clinical markers might be different as well because each study has its

individual research objectives and corresponding design.

The number of participants involved in a cohort study data collection is called

"sample size" and that needs to be considered in a data analysis. A systematic review in

2016 indicates that the sample size in CVD cohort studies ranges from 51 to 1189845

and the median number is 3969 (Damen et al., 2016). Around 14,000 people attended

the FHS. The number of attendants in the KCIS study was 61,869 (Chen et al., n.d.).

These two aspects should be considered when researchers look for research data

sets. Researchers need to firstly figure out the risk factors included in a data set and

choose the right one. A larger sample size is beneficial for mining effective data patterns

and useful information (F. Harrell, 2013).

2.4.3 The FHS Data Set

This data set originated from the FHS in 1948. It is a world-class, long-time, ongoing

cardiovascular cohort study directed by the National Heart, Lung and Blood Institute

(NHLBI) (Grundy et al., 2005). 5209 adult subjects aged between 30 and 62 who had

not been diagnosed as CVD with related overt symptoms previously, were recruited at

the beginning of this study (Mahmood et al., 2014).

The origin of the Framingham Research is related to the death of President Franklin

D. Roosevelt who suffered from hypertensive heart failure but without being diagnosed

and treated timely (Mahmood et al., 2014). Thus, the FHS scientists started this project

to investigate the risk factors that contribute to heart disease. Today, the Framingham
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study has become the epicenter for CVD, bone, and sleep research (Mendis, 2010).

Over 60 years, the FHS has gone through several "cohorts", the Original Cohort in

1948, the Offspring Cohort in 1971, the Omni Cohort in 1994, the Third Generation

Cohort in 2002, the New Offspring Spouse Cohort in 2003, and the Second Generation

Omni Cohort in 2003. A summary of each cohort is listed in Table 2.6.

Table 2.6: Summary of The FHS Data Set

The FHS data set has provided valuable data resources for researchers to investigate

the identification and prevention of CVD all over the world (Mendis, 2010). It was

started with identifying key risk predictors of CHD such as obesity, diabetes, levels of

blood cholesterol, smoking, exercise habit, blood pressure, etc. (Kannel et al., 1961).

Based on that, researchers started to explore CVD risk factors, as well as how these

factors had affected the development of CVD since the 1960s (Kannel, Abbott, Savage

& McNamara, 1982). The newly generated Third Generation Cohort and New Offspring

Spouse Cohort will keep providing contributions to the research on CVD (Parikh et al.,

2007).
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2.4.4 The KCIS Programme Data Set

This data set was generated along with the KCIS programme (Chen et al., n.d.). It is

a screening programme targeting multiple diseases. Five types of neoplastic disease

(colorectal cancer, breast cancer, oral cancer, cervical cancer, and liver cancer) and three

types of chronic conditions (type 2 diabetes, hyperlipidemia, and hypertension) were

screened. One objective of this study was to create a health information system for

screening cancers and chronic diseases.

The KCIS programme was started from 1999 and ended in 2003. The Health Bureau

of Keelung City was responsible for the execution of this programme. In the beginning,

the target population was 217,895 residents living in Keelung. In total, 61,869 attendants

aged 30 to 79 years from different areas (Joshang, Jongjeng, Shinnyi, Renay, Noannoun,

Anleh and Chiduu) in Keelung participated in this programme until the end of 2003

(Chiu et al., 2006). A summary of the participants in the KCIS study is listed in Table

2.7.

Table 2.7: Summary of the KCIS Data Set

(Chiu et al., 2006)

2.5 eHealth Solutions for CVD Prediction

eHealth mainly refers to the digital health which uses information technology to provide

convenient health care management. It was first defined by the International Telecom-

munication Union (Eng, 2001). With the rapid development of telecommunications
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and computer technologies, a lot of eHealth solutions have been developed for CVD

prediction, including clinical guidelines and standards (Cardiovascular Disease Risk

Assessment Steering Group and others, 2017; CG181, NICE, 2014; Expert Panel on

Detection et al., 2001), online tools (Framingham Heart Study, 2017; Wells et al., 2017;

Wells, Kerr, Eadie, Wiltshire & Jackson, 2010), and mobile health care tools (Patrick et

al., 2009; Carter, Burley, Nykjaer & Cade, 2013). It is expected that these solutions can

not only provide suitable health care but also help people with optimal cardiovascular

health management.

2.5.1 Clinical Guidelines

Clinical guidelines are important tools for health care practitioners for cardiovascular

risk assessment and cardiovascular risk factor management. A CVD guideline can be

introduced on the basis of a systematic evidence review or promoted prediction models

or a combination of both. Heath care practitioners can effectively use these guidelines

to identify potential CVD patients and give corresponding treatments.

A guideline by the National Institute for Health and Clinical Excellence (NICE) in

July 2014 was developed based on a systematic evidence review (CG181, NICE, 2014).

It covers the risk assessment of CVD for potential patients and provides care guidance

for adults who have CVD. Rules for the identification of CVD risk, recommendations

on the lifestyle intervention and treatments for lipid modification are listed. The Third

Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cho-

lesterol in Adults (Adult Treatment Panel III) (Expert Panel on Detection et al., 2001)

is a CVD guideline book incorporating the Framingham CHD prediction algorithms

(Wilson et al., 1998). The New Zealand Primary Care Handbook (Cardiovascular Dis-

ease Risk Assessment Steering Group and others, 2017) is a guideline promoted for New

Zealanders based on evidence reviews and promoted algorithms. The cardiovascular
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Figure 2.3: New Zealand Cardiovascular Risk Charts for 5-year Risk of CVD Prediction
(Cardiovascular Disease Risk Assessment Steering Group and others, 2017)

risk charts for risk prediction were introduced referring to the old Framingham CVD

prediction algorithms (Wilson et al., 1998). To lower the risk of developing CVD in

five years, general, specific, or intensive lifestyle interventions were introduced. In

addition, other treatments such as smoking interventions, complementary therapies,

lipid modification, and blood pressure lowering were also listed thoroughly. Figure

2.3 is a graph of New Zealand Cardiovascular risk charts for the 5-year risk of CVD

prediction.

2.5.2 Web-based Tools

FHS investigators have done a lot of research on cardiovascular and heart-related disease.

Risk prediction calculators for specific CVDs and the general CVD were developed

based on the achievement of these studies (D’Agostino et al., 2008). They can be

applied to congestive heart failure, CHD, diabetes, intermittent claudication, stroke, and

general CVD. These calculators are easy to operate. After values of risk factors are

inputted a specific risk score (probability of occurrence of the disease) for an individual
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Figure 2.4: The Framingham 10-year General CVD Risk Prediction Tool
(D’Agostino et al., 2008)

will be given. Additionally, they can be conveniently accessed online, so they have

become very popular risk estimation tools among physicians and individuals. Figure

2.4 is a screen-shot of the Framingham web-based risk prediction tool for general CVD

using non-laboratory predictors.

Cardiovascular Risk Charts and Calculator is a web-based tool developed by the

University of Edinburgh (Wells et al., 2017). Cardiovascular risk calculators provided

for health care professionals are based on formulas from the FHS (D’Agostino et
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al., 2008), the Joint British Societies (JBS) study (Board, 2014), the British National

Formulary (BNF) (Mehta, 2005), and the ASSIGN study (Woodward et al., 2006).

Similarly, the risk of developing CVD, CHD, stroke, etc. will be calculated and

displayed in different graphic styles, BNF Charts, smiley faces, comparison bars, or

thermometers.

Your Heart Forecast is an on-line platform jointly developed by the Heart Found-

ation, University of Auckland and Enigma (Wells et al., 2010). The algorithm was

derived from the New Zealand Primary Care Handbook (Cardiovascular Disease Risk

Assessment Steering Group and others, 2017). This tool has two versions. One is for

New Zealanders only. The other one is for international use. Heart age and stroke risk in

the next five years will be calculated after answering related questions. Other available

online tools for CVD risk assessment are PREDICT (Wells et al., 2017), Best Practice

(Gill & Mangin, 2011), and so on.

2.5.3 mHealth Applications

mHealth application is a subset of eHealth solutions for decision makers in the assess-

ment of CVD. It was originally promoted by the Global Observatory for eHealth (GOe)

of the World Health Organisation (WHO) and was defined as the “medical and public

health practice supported by mobile devices, such as mobile phones, patient monitoring

devices, Personal Digital Assistants (PDAs), and other wireless devices” (World Health

Organisation and others, n.d.). In recent decades, health care applications based on

mobile phone and wearable sensors have become popular.

2.5.3.1 Mobile Phone Health Care Applications for CVD

With the rapid development of mobile phone technologies, a great number of mobile-

based applications have emerged for the prevention and prediction of CVD. Mainly,
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two types of mobile-based applications are common in the literature and the consumer

app stores. The major mobile applications focus on lifestyle intervention and self-

management for the prevention of CVD. The others are decision support systems for

the risk prediction of CVD.

Obesity is a factor directly leading to CVD (Wilson, D’agostino, Sullivan, Parise &

Kannel, 2002). Taking the weight management interventions as an example, a message-

based interventions programme relying upon mobile communication techniques was

proposed for weight loss (Patrick et al., 2009). Advice on lifestyle behaviours was sent

to the overweight groups via mobile messages. Another smart-phone application, called

My Meal Mate (MMM), can provide self-monitoring management for daily activities

(Carter et al., 2013). Users can set their goals of diet and activities in this app and

then feedback of the daily lifestyle changes will be recorded. Similar applications are

used to increase physical activities (Hurling et al., 2007), to improve hypertension care

(Green et al., 2008), to quit smoking (Whittaker et al., 2012), and to control elevated

blood pressure (Burke et al., 2015). Compared with web-based tools and paper diaries,

smartphone-based apps are much more convenient for lifestyle interventions, but they

cannot accomplish the risk prediction of CVD.

Compared to applications introduced above, the Stroke RiskometerTM app (Parmar

et al., 2015) is an effective tool for the risk estimation of stroke. Pre-designed questions

regarding stroke risk predictors are firstly asked sequentially, and then a risk score is

given. One drawback of the Stroke RiskometerTM is the lack of real-time monitoring of

risk factors. Another mobile application incorporating the SCORE algorithms (Conroy

et al., 2003) can calculate CVD risk from monitoring of blood pressure in combination

with other clinical factors. Measures of blood pressure are obtained by a pressure

monitor and then are transmitted to an Android application installed in a smartphone

via Bluetooth. The system presented by Hervás et al. (2013) has achieved the real-

time monitoring risk of developing CVD for an individual but only a risk level can be
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obtained from this system, as shown in Table 2.8.

Table 2.8: Risk Levels in Real-time Monitoring System

(Hervás et al., 2013)

2.5.3.2 Wearable Sensor Monitoring System for CVD

Wearable sensors are mobile devices that can be worn for a period of time (Pantelopoulos

& Bourbakis, 2010). They can monitor many dimensions of real-time data such as exer-

cise, electrocardiography (ECG), heart rate, breathing rate, pulse pressure, temperature

etc. These real-time data can be reviewed and processed remotely later for health care

or decision making. Patel, Park, Bonato, Chan and Rodgers (2012) developed a remote

monitoring system based on a wearable sensor for primary health care. In this system,

motion and physiological information are collected via a body-worn sensor, and then is

processed and synchronised to caregivers via a communication gateway such as a cell

phone. Caregivers can implement health care interventions according to the information

transferred.

With the recent progress of technologies in body-worn devices, smart textiles, wire-

less communications and micro-electronics, the development of monitoring systems

(Jin, Oresko, Huang & Cheng, 2009; Oresko et al., 2010; Lin, Yang, Wang & Yang,

2012) based on wearable sensors has made great advances for health care and clinical
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decision making. The continuous advance of these systems will possibly revolution-

ise the future of health care by encouraging the involvement of both physicians and

individuals with personal and ubiquitous monitoring devices.

Research on the wearable monitoring system for CVD mostly focuses on sensors and

data collection (Etemadi et al., 2016; Milenković, Otto & Jovanov, 2006), connectivity

between devices and visualisation platforms (W. Lee, Yoon & Park, 2016; Michard,

2017), textiles (Centers for Disease Control and Prevention and others, 2009; Choi &

Jiang, 2006), and applications for self-management and treatment (Milani & Franklin,

2017). The medical practice of health care monitoring systems based on wearable

sensors for CVD risk predictions is still under-utilised due to the limited capacity of

data processing. Barriers encountered are the low efficiency of data processing such as

algorithms with unsatisfactory accuracy for clinical decision making or increased data

processing time.

Some researchers have tried to process and utilise the data collected for CVD

detection. Wearable sensor-based platforms developed by Oresko et al. (2010) can

provide diagnostic solutions for CVD estimation. Electrocardiography (ECG) real-time

data acquired via portable Holter monitors is firstly extracted and then processed using

classification algorithms. Another wearable sensor monitoring system used for CVD

health care (Lin et al., 2012) integrated two neural network classification algorithms

(radial basis function network (RBFN) and generalised regression neural network

(GRNN)) into the estimation of everyday energy expenditure. Systems reviewed above

can give a risk level to develop CVD and show an assistance for CVD detection.

However, classification algorithms used in the prediction models cannot provide accurate

scores. Data processing algorithms that can give accurate risk estimation of CVD are

barely used. Widespread integration of this technology into CVD detection continues to

be limited. Articles reviewed on eHealth applications are summarised in Table 2.9.
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Table 2.9: Lists of eHealth Solutions

2.6 Summary

In summary, this section reviewed the previous work towards to CVD prediction, CVD

prediction models, data availability and utilisation, and CVD eHealth applications. By

having an overview of CVD predictions, we have a general understanding about the

CVD outcomes that previous works targeted. Most of the research focused on specific

CVD components like stroke and heart attack. Guided by the CHecklist for critical

Appraisal and data extraction for systematic Reviews of prediction Modelling Studies

(CHARMS) developed by Moons et al. (2014), we also reviewed CVD studies in terms

of CVD prediction models and modelling methods. After that, we researched risk

factors and CVD research data sets related to CVD risk predictions. We had a deep

review into two available CVD research data sets: the Framingham Heart Study data set
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(Mahmood et al., 2014) and the KCIS data set (Chiu et al., 2006). Lastly, we reviewed

guidelines and applications for CVD predictions.



Chapter 3

Research Methodology

3.1 Introduction

The design of research method is to choose suitable research approaches to conduct a

research. Defining the plans and procedures of doing a research previously helps the

researchers to obtain the detailed methods of collecting data, doing data analysis, and

interpreting results of analysis from primitive assumptions (Leavy, 2017). It is critical

to a rigorous research.

To decide what research approaches were suitable for our research, we needed to

consider three components involved in a research: the philosophical worldview, research

approaches and specific research methods (Creswell, 2014).

In this chapter, we will first have a look at the research design, including philosoph-

ical worldviews and research methods. Then, we will select a research method that

is consistent with the expectations of our research and its fundamental characteristics.

After determining the appropriate research method, we will introduce the procedures

for implementing the research method. Specific steps regarding the data collection and

data analysis will be stated.

45



Chapter 3. Research Methodology 46

3.2 Research Design

Research designs are defined as "strategies of inquiry" (Denzin & Lincoln, 2011). In

other words, they are specific directions to do a research. Each research approach has

its own research designs which lead the researcher to select a specific research method.

Philosophical worldview decides the latter so we will start with it.

3.2.1 Philosophical Worldview

Philosophical worldview (Guba, 1990), also called "broadly conceived research meth-

odologies" (Neuman, 2002), is defined as "a basic set of beliefs that guide actions". It is

regarded as a hidden factor that influences the practice of a research and helps us find

out which research approaches should be chosen (Creswell, 2014). Four worldview pos-

itions are promoted by Creswell (2014): postpositivism, constructivism, transformative,

and pragmatism. Each worldview has its own elements and characteristics.

Postpositivism worldview is the traditional form of doing research (Smith, 1983).

Major elements are determination, reductionism, empirical observation and measure-

ment, and theory verification (Creswell, 2014). A research holding a postpositivism

worldview is more likely to be quantitative research than qualitative research. This kind

of research typically begins with a theory, collecting data, and then doing data analysis

to approve or refute the theory (Phillips & Burbules, 2000). If necessary, revision and

an additional test will also be conducted.

Constructivism worldview typically leads to be a qualitative approach held by social

constructivists. Rather than testing a theory as in postpositivism, it intends to interpret

the meanings that individuals put on the world (Mertens, 2014).

Transformative worldview arose because some researchers felt that postpositivism

and constructivism worldviews could not fulfil the needs of marginalised people or

address issues of politics such as power, social justice, and discrimination (Fay, 1987).
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The philosophical worldview cares about the needs of people in our society that may

have been treated unequally or disenfranchised (Mertens, 2014).

Pragmatic worldview doesn’t focus on one specific research approach but emphas-

ises the research questions and tries all potential research methods to understand the

research questions (Rorty, 1990). Thus, it is a typical worldview of mixed methods

studies.

According to definitions of the four philosophical worldviews, the postpositivism

worldview fits this research. A characteristic of our research is figuring out the theory

of cause and effect on the development of CVD. Guided by this worldview, a proper

research approach will be selected.

3.2.2 Research Approach

Creswell (2014) classified research approaches into three categories, i.e. qualitative,

quantitative, and mixed methods as described in Figure 3.1.

Figure 3.1: Overview of Research Design within Research Approaches
(Creswell, 2014)

Quantitative research is an approach to systematically investigate objective theories

via statistical or mathematical techniques, and then to test the theories and hypotheses
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pertaining to the phenomena (Given, 2008). It is an empirical exploration of observable

phenomena by examining the relationships between variables deductively (Creswell,

2014). The objective of this approach is to determine causes and effects or to describe

some attributes among a population. The data of quantitative research is normally in

numeric form because this research mainly focuses on "how much" or "how many"

(Merriam & Tisdell, 2016).

Qualitative research is the opposite of quantitative research. It is an approach to

uncover and understand the meanings of a phenomenon or situation or event for some

individuals (groups) involved (Creswell, 2014). Qualitative research uses words as

data form. Data can be collected in many ways. For example, when collecting data

using interviews, potential methods could be unstructured, semi-structured, structured,

observations, reflective notes, focus groups, photographs, videos, texts, and so on

(Savin-Baden & Major, 2013).

Mixed methods research, also called integrated methods research, is an approach

that collects both quantitative and qualitative data. It integrates these two types of

data for the data analysis by employing either quantitative approaches, or qualitative

approaches, or both in a single study (Tashakkori & Teddlie, 2010). It is commonly

used in some complex situations where researchers cannot answer research questions or

assumptions using a single method. Or they may want to investigate different aspects of

the same phenomenon. Thus, more than one research approach needs to be demanded,

both quantitative and qualitative (Morse & Niehaus, 2009), and data regarding these

two approaches will be collected (Morse & Niehaus, 2009).

In this research, the theory we are trying to determine is whether early detection of

CVD could help physicians and individuals improve the health condition effectively

using a wearable device, and further reduce the probability of the occurrence of CVD

in the next certain years. The causes will be predictors that might contribute to the

occurrence of CVD. Data will be in numerical form, such as the age, sex, heart rate,
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and so on.

We want to research the relationship between risk factors and the development of

CVD deductively. By matching philosophical worldviews and research approaches

introduced above to the characteristic of this research, quantitative approach is suitable

for this study.

The final step of doing a research within a research framework is to define a process

for executing the research approach chosen previously, including data collection, data

analysis, results interpretation and validation. It is useful to consider all these procedures

thoroughly before conducting a research. Identified as a quantitative approach research,

we will focus on the design of quantitative research.

3.3 Data Collection

3.3.1 Choice of Data Set

As reviewed in Chapter 2, many CVD related data sets are available (M. Liu et al.,

2007; Jee, Suh, Kim & Appel, 1999; Harriss et al., 2007; Lloyd-Jones et al., 2004).

Regarding three aspects reviewed in Section 2.4, the feature of a data set, the starting

time, and the data set content, the FHS data set (Mahmood et al., 2014; Dawber, Kannel

& Lyell, 1963; Kannel et al., 1979) was selected for developing the prediction model.

The first reason we chose the FHS data set is that it is a longitudinal and etiological

study, which is extremely suitable for survival analysis. A long term prospective data

collection was conducted. CVD prediction can be categorised as one type of survival

analysis. This feature of the FHS data set was extremely conducive for us doing this

research.

Considering the starting time of a data set, the FHS started in 1948, so more than 60

years follow-up data were collected. The FHS is the first prospective study on CVD and
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has become a landmark in the epidemiology field. Over the past decades, approximately

3000 articles using this data set have been published in leading medical journals.

Last but not least, the contents and the sample size of the FHS data set is sufficient

for us to develop an effective prediction model. Data regarding demographics, family

history, lifestyle, disease history, physical examination, lab test, etc. have been gathered

and recorded in numeric form. In addition, over 14,000 people covering three gener-

ations (the original participants, the offspring of the original participants, as well as

their grandchildren) have participated this study. To fit a reliable prediction model, the

desirable sample size must be larger than 10 or 20 times the number of candidate risk

factors (J. F. Harrell, Lee, Matchar & Reichert, 1985). This hypothesis is far more

supported.

The Original Cohort study data set is enclosed for this research as it has the largest

number of samples. This data set comprises 5209 subjects aged 30 to 62 years who had

not symptoms of CVD as the baseline. The distributions of age and sex are summarised

in Table 3.1. Data were collected at the town of Framingham in Massachusetts, by

which the data set was named. Totally 32 exams data were collected, as listed in Table

3.2.

Table 3.1: Age and Sex Distributions of the Framingham Original Cohort Study

However, data from 130 subjects were removed from the data set we requested

because they didn’t agree to publishing of their data. Finally, we had 5079 observations

for our model fitting, and 3189 events (CVD) occurred.
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Table 3.2: Exams in the Framingham Original Cohort Study

3.3.2 Process of Data Collection

A subset of the FHS data set used for teaching and research purposes is available on the

website of NHLBI (National Heart, Lung, and Blood Institute, 2018). We requested it

with the approval of the Auckland University of Technology Ethics Committees and

an agreement with NHLBI, as shown in Appendix B. Ethical approval was received



Chapter 3. Research Methodology 52

covering the individual populations involved. This teaching data set consists of three

clinical examinations: the Original Cohort, the Offspring Cohort, and the Third Genera-

tion Cohort. They are very suitable for an undergraduate or postgraduate bio-statistics

research.

The design of data collection is central to any research. For a quantitative research,

the process of measurement directly decides the outcome of the investigation as it

accomplishes the connection between empirical evidence and quantitative expression

(Merriam & Tisdell, 2016). The design of the FHS was conducted under the direction

of the NHLBI and carefully monitored over three generations, which is trustworthy for

us to do the CVD prediction research.

The data has been collected by lab assays, questionnaires and clinical tests approx-

imately every two years since the start of the FHS. All participants were continuously

followed through surveillance for outcomes of CVD regularly. Data of risk factors

such as ECG, smoking history, blood pressure, medication etc. was gathered in each

examination. All records must be checked and reviewed by professional physicians.

Apart from these markers, validated events about cardiovascular related diseases (such

as heart failure, stroke, cerebrovascular disease) were also recorded.

3.3.3 Data Extraction

According to Table 3.2, data collected in the first exam ("Exam 1") from the Fram-

ingham original cohort study include the maximum number of samples, 5209 subjects

aging from 28 to 74. Considering the sample size, the data frame from "Exam 1" was

chosen to develop the CVD prediction model, the one marked with the blue background

in Table 3.2. The other five exams ranging from 8 to 12 (marked with the green

background) will be used for the validation of the fitted model.

For "Exam 1", characteristics of 76 risk factors were gathered for each participant.
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Data descriptions of complete columns are listed in Appendix C. According to the

literature review on the risk factors in the CVD prediction models (see Section 2.3.3),

some variables in the complete list will be removed. Finally, 20 candidate predictors

will be included in the process of data analysis, listed in Table 3.3. Data frames used

in the model validation (Exam 8, Exam 9, Exam 10, Exam 11, and Exam 12) will be

extracted after the model has been developed and will be introduced in Chapter 5.

Table 3.3: Description of Candidate Predictors

Data of the candidate predictors are distributed in different files. If we manually

extract data frames from these different files, it is inefficient, especially when we want

to find candidate data for a specific subject, it needs to repeatedly query in multiple files.

So we will write a piece of python code that helps us extract data automatically. The

code flow chart is described in Figure 3.2.
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Figure 3.2: Flow Chart of Data Extraction Code

3.4 Data Analysis

3.4.1 Choice of the Modelling Method

The aim of this research is to develop a risk prediction model where multiple parameters

are included. We want to estimate how various predictors simultaneously affect the

probability of developing CVD for an individual. As was reviewed in Section 2,

mainly three types of statistical methods can be used for survival analysis: parametric

approaches, semi-parametric approaches, and non-parametric approaches (E. T. Lee &

Wang, 2003).

The non-parametric approaches such as the Kaplan-Meier model (Kaplan & Meier,

1958) and the Log-rank test (Mantel, 1966; Cox, 1992) can only do univariate analysis

with a single predictor, and they are not suitable for the analysis of continuous variables.

Both parametric approaches and semi-parametric approaches can do multiple para-

meter analysis. They all assume that the predictors and the log hazard rate should have a

linear relationship between them (Efron, 1977); however, the Cox Proportional Hazard
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model (the most popular method belonging to the semi-parametric statistical method)

has the advantage that only the rank orderings of the failure and censoring times are

used to estimate and test the regression coefficients (Cox, 1992). The Cox model is

more efficient even though the assumption of the parametric models is met.

In addition, when the assumptions are not met, the Cox regression analysis can

be still used efficiently with a extended Cox regression form (F. Harrell, 2013), but a

parametric model such as Weibull survival distribution would be proved as a null model.

Furthermore, methods for diagnosing the assumption of the Cox regression model are

well developed. Thus, the Cox regression model was chosen as our statistical method

for developing the CVD prediction model.

Figure 3.3: Procedures of the Cox Regression Analysis

3.4.2 Procedures of the Cox Regression Analysis

F. Harrell (2013) pointed out that several aspects should be considered when fitting

multivariate prediction models. These aspects include processing of incomplete data

(missing values), variable selections, model training and coefficient estimation, evalu-

ation and validation of the fitted model, and presentation of the fitted model. This rule

is suitable for any regression analysis. We applied this principle to the Cox regression

analysis and did it in a step-wise manner referring to the characteristics of the Cox

model (Cox & Oakes, 1984):
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• Imputation of data with missing values

• Selection of variables

• Multiple Cox analysis

• Estimation of the baseline hazard rate

• Evaluation of the Cox model assumption

• Validation of the accuracy of the prediction

• Presentation of the fitted model

For a more intuitive expression, steps to conduct the Cox analysis are expressed

using a flow chart, see Figure 3.3.

3.4.3 Tools and Packages Used

The R language (Team et al., 2013) was employed to compute and fit the model.

Packages and functions that were used are listed in Table 3.4. More specific descriptions

and uses of these packages and functions will be introduced in the corresponding

sections.

Table 3.4: Summary of Tools and Packages
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3.5 Summary

In summary, the core of this chapter was to establish a research method suitable for

this research. We designed our research methodology referring approaches of research

design by Creswell (2014), from the philosophical worldview to the specific research

method. According to the features of this research, we decided to use the quantitative

research method to analyse the data we collect. After that, more specific steps of

conducting the research were stated, including the process of data collection, data

extraction, data analysis, and the tools that will be employed.



Chapter 4

Cox Regression Prediction Model with

Framingham Data Set

4.1 Introduction

In this chapter, we will demonstrate a full process of developing CVD risk prediction

models using the Cox regression method. Sections will be organised as follows:

• Section 4.2 presents the theory of the Cox proportional hazard regression analysis,

including the definition of the formula, as well as optional methods to estimate

the regression coefficients.

• Section 4.3 introduces the process of imputing missing values in our data set,

including identifying the type of missing value, choosing a proper imputation

method, and the implementing the process of data the imputation.

• Section 4.4 tells the process of variable selection from candidates risk factors

according to the statistical outputs derived.

• Section 4.5 states the process of multiple variable analysis using the Cox regres-

sion model. Statistics will be generated and interpreted and a CVD risk estimation

58
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model will be developed.

• Section 4.6 illustrates how we derived the baseline hazard rate in the Cox formula.

• Section 4.7 presents the theory of the proportional hazard assumption of the Cox

model, as well as the process of checking this assumption.

4.2 Theory of Cox Regression Model

4.2.1 Definition of the Cox Regression Model

The Cox regression Model is a Proportional Hazards (PH) technique commonly used

for investigating the association between a few explanatory variables and the survival

time of a subject (Cox, 1992). The feature of the Cox regression model is that it can

investigate how several factors simultaneously affect the occurrence of the event. In

survival analysis, the Cox model allows us to examine the rate of a specific event

happening, e.g., the development of CVD.

The predictor variables are generally described as covariates in the Cox formula.

The Cox model is expressed by a hazard function and a set of predictor variables

according to time t. The t in the Cox model indicates that the hazard will probably

change over time. The Cox regression formula has the form:

λ(t;x) = λ(t)exp(β1x1 + β2x2 + ... + βpxm) (4.1)

where,

• t represents the time that the event occurs.

• λ(t;x) is the hazard function for a subject at time t. It is determined by a set of

m covariates (x1, x2, ..., xm).

• x1,x2,...,xm are the values of covariates for a subject.
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• β1,β2,...,βm are the regression coefficients that measure the effect size of covari-

ates.

• exp is the exponential function (exp(x)= ex).

• λ(t) is the baseline hazard rate, an arbitrary (unknown) function, corresponds to

the hazard value when all xi equal to zero, which means that the value exp(0)

equals 1.

The Cox regression formula can be presented as a multi-linear regression by taking

the logarithm of the hazard λ(t;x) on covariates xi. The baseline hazard rate is an

‘intercept’ that changes over time, see the equation 4.2.

log(λ(t;x)) = log(λ(t)) + β1x1 + β2x2 + ... + βpxm (4.2)

Another form of the Cox regression model is equation 4.3. The exp(βixi) is called

hazard ratios (HR). A HR above one suggests that the hazard of developing an event

will increase, i.e. the length of survival will decrease, along with the value of the ith

covariate increases. In the other words, it means that a predictor variable positively has

effect on the probability of developing the event, i.e. negatively associates with the

length of survival.

HR = λ(t;x)
λ(t) = exp(β1x1 + β2x2 + ... + βkxk) (4.3)

When,

• HR = 1: indicates that there is no effect on the hazard

• HR < 1: indicates a reduction in the hazard

• HR > 1: indicates an increase in the hazard
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4.2.2 Estimation of Regression Coefficients

Let t1 < t2 < ... < tm be the failure times. The index m is unique and does not include

censored observations in the sample of n subjects. The set of failures (deaths) in an

instant before failure time ti is referred to Ri, which is called the risk set at time ti. Ri

includes the set of subjects in which the subjects j had not been censored or failed by

time ti. In other words, subjects with censoring or failing time Yj ≥ ti are included in

this set of Ri. The regression coefficients of the cox model can be computed based on

the partial likelihood method (Cox, 1992).

4.2.2.1 The Log Likelihood Estimation

For now, when no ties among the failure times, the m = n. Given that the individuals

in the risk set Ri are failing and one failure exactly occurs at time ti, then by applying

rules of conditional probability, the conditional probability that this subject i who failed

at ti is

Prob{subject i fails at ti∣Ri and one failure at ti} =
Prob{subject i fails at ti∣Ri}

Prob{one failure at ti∣Ri}

(4.4)

The conditional probability in formula 4.4 can be expressed as independent of λ(t),

as shown in formula 4.5 (F. Harrell, 2013).

λ(ti)exp(xiβ)
∑j∈Ri

λ(ti)exp(xiβ)
= exp(xiβ)
∑j∈Ri

exp(xiβ)

= exp(xiβ)
∑Yj≥ti exp(xjβ)

(4.5)

When predictors have no effect on the likelihood, i.e. β= 0, then exp(xiβ) = 1 and

exp(xjβ) = 1. This likelihood described in formula 4.5 equals to 1/ni, and ni represents

the number of risk individuals at time ti.
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Cox (1992) argued that the conditional probabilities that fail across different failure

times are not conditionally dependent, then by multiplying the likelihood for each

individual over all failure times, a total likelihood (also called the partial likelihood for

β) can be estimated, as shown in formula 4.6 .

L(β) = ∏
Yi uncensored

exp(xiβ)
∑Yj≥Yi exp(xjβ)

(4.6)

Correspondingly, the log partial likelihood can be obtained as:

logL(β) = ∑
Yi uncensored

{xiβ − log[ ∑
Yj≥Yi

exp(xjβ)]} (4.7)

It is proven that Maximum Likelihood Estimations (MLEs) of β deprived from this

partial log-likelihood are valid (Cox, 1992). This log-likelihood will not be affected

when adding a constant to any or all of the covariates.

4.2.2.2 Breslow’s Estimation

When having tied survival times in the set of subjects, the true partial likelihood becomes

very cumbersome. Computation of this exact likelihood involves permutations and

consumes time. Breslow (Breslow, 1974) promoted an approximate log-likelihood

function which satisfies this situation as there are tied failure times among the samples

so that m < n. The m still indexes the unique order of failure times and the risk set is

denoted as t1 < t2 < ... < tm. Let di represent the number of subjects failing at time ti.

Using Breslow’s estimation, the log likelihood deprived above is written as

logL(β) =
k

∑
i=1

{∑
j∈Di

xjβ − dilog[∑
Yj≥ti

exp(xjβ)]} (4.8)

Let Si = sumj∈Di
xj , where Di represents the set of subjects indexed by j at time ti,

then the Breslow’s estimation of log likelihood can be simplified as
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logL(β) =
k

∑
i=1

{Siβ − dilog[∑
Yj≥ti

exp(xjβ)]} (4.9)

4.2.2.3 Efron’s Estimation

Apart from the exact log likelihood and Breslow’s approximation to the log likelihood,

Efron (Efron, 1977) did another deprivation on the approximation to the true likelihood

for censored data. This estimation is very close to the cumbersome permutation like-

lihood so Efron’s estimation is regarded as more accurate than the Breslow’s (He &

Zaslavsky, 2012). Efron’s estimation is written as

logL(β) =
k

∑
i=1

{Siβ −
di

∑
j=1

dilog[∑
Yj≥ti

exp(xjβ)]

− j − 1

di
∑
l∈Di

exp(xlβ)}
(4.10)

4.3 Imputation for Missing Data

4.3.1 What is Missing Data

Missing data is a widespread problem that an analyst likely encounters in data analysis,

particularly in health or clinical research where complete data sets are rare. There are

various reasons of missing data. In some cases, data is missing randomly but sometimes

the participants intentionally conceal some of their information. Incomplete data might

cause bias in predictions and influence the validity of research results (Rubin, 1996).

Considering the issue of missing data prior to modelling is important.

Three types of missing data can be defined according to reasons that the missing

values occurred, namely Missing Completely At Random (MCAR), Missing At Random

(MAR) and Informative Missing (IM) (Enders, 2010). MCAR occurs when data are

randomly missing unrelated to any reason. Compared with MCAR, MAR and IM are the
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situations where data are not missing at random. MAR relates to some characteristics

or the response of the subjects where some information is intentionally concealed. IM

is the situation where data are missing with true values very informative, which means

that the missing data are important and cannot be ignored.

4.3.2 Missing Data in the FHS Data Set

Table 4.1 lists the missing values for each variable in the data frame selected in

section 3.3.3, see the column "NAs" (Not Available). According to this table, variables

that do not have missing data include "AGE", "SEX", "HISTORY OF ATRIOVENT

RISCULAR BLOCK", "HISTORY OF ALLERGY OR ASTHMA", "PREMATURE

BEATS" and "PULSE RATE". However, the remaining variables all have missing

values.

Table 4.1: Missing Values of Candidate Predictors
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Provided that the types of missing values can be known or estimated, appropriate

methods can be applied to deal with the missing data but unfortunately most of them

cannot be guaranteed. Most imputation methods assume the type of missing data is

MAR. In this research, let’s assume the type of missing values in our data set is MAR.

The simulation data are approximate to the true values as long as enough variables are

added into the imputation algorithms (F. Harrell, 2013).

4.3.3 Methods of Imputation

As discussed above, missing data occurs frequently, and the prelude to developing a

model is to handle these missing data. There are many imputation approaches available.

The simple method to deal with the missing data is just deleting the incomplete cases,

which is the so-called "complete case method" (Enders, 2010). However, this method

is only unbiased when the type of incomplete data is missing as MCAR, which is rare

in actuality (Kenward, 2013). In addition, if there are many missing values in the data

set, a large proportion of sample cases will be dropped off. The size of the remaining

samples may not be large enough to result in a model with good performance when this

"complete case method" is applied (F. Harrell, 2013).

As shown in Table 4.1, 14 of 20 variables have missing values. For example, the

number of missing values for "CIGARETTES PER DAY" is 2154, and as the number

of complete cases is 5079, approximately half of the cases are incomplete. Provided the

"complete case method" is applied, i.e. directly removing the cases with missing values,

there will be a large number of cases deleted, which will seriously decrease the size of

the sample. Thus, in this research, we need to choose a suitable imputation method for

mocking the missing data.

The alternative approach to handling the incomplete data is to replace the missing
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data with substituted values (Rubin, 1996). Available approaches for generating substi-

tuted values are: single imputation and multiple imputation (Sterne et al., 2009). Single

imputation uses techniques such as the maximum likelihood, mean substitution, weight-

ing methods, Bayesian inference, or others to estimate the substituted values just once

(Horton & Kleinman, 2007). Compared with single imputation, in multiple imputation

missing values are imputed using similar techniques applied in single imputation but is

more complicated. Multiple imputation involves a much more sophisticated process of

creating the imputation model using statistical techniques, simulating the best guess

data, result analysis, and then pooling (Van Buuren, 2012).

Multiple imputation has proven a much more valuable method to approach missing

data due to its valid inference process mentioned above. Another good feature of

multiple imputation over single imputation is that it is more flexible. It can be used

in different scenarios no matter what type of data is missing (Royston et al., 2004;

White, Royston & Wood, 2011). That is why multiple imputation has become one of

the leading methods for data simulation.

As reviewed above, the multiple imputation method is one popular technique to

generate substituted values. We will use multiple imputation to manage the missing

data in our data set.

4.3.4 Implementation of the Imputation

The R function transcan in Hmisc package was used. Transcan can do data trans-

formation and multiple imputation. This function transforms and imputes continuous

and categorical variables using algorithms simply modified from Maximum General-

ised Variance (MGV) in the SAS PRINQUAL procedure (Kuhfeld, 1990). This SAS

procedure makes sure that imputed values have a maximum correlation with the best

linear combination of other variables. Expected “best guess” values are simulated for
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replacing the missing values in the data set.

Before we start imputing the missing data, we assign each candidate predictor a

variable name listed in Table 4.1, the column "variables". R code of the imputation is

described in Code Snippet 4.1. Variables with missing values (bmi, bps, hyp, honh,

hop, hooc, hose, bpd, ppd, cgpd, cprpd, and dia) in Table 4.1 are parameters passed

into the transcan function. pr was set to "FALSE" for not printing R2 and shrinkage

factors. pl was set to "FALSE" for not plotting the distribution of imputed values.

1 w.transcan <- transcan(~ bmi + bps + hyp + honh + hop

2 + hooc + hose + bpd+ ppd + cgpd

3 + cgrpd + dia, imputed=TRUE, trantab=TRUE,

4 data=FOCExam1Data, pl=FALSE, pr=FALSE)

5 # summarise the imputation result

6 summary(w.transcan, long=T)

Code Snippet 4.1: R Code for Imputation

The result of the imputation is presented in Table 4.2. The imputed values of

missing data for each variable are shown in column "Num. of NAs Imputed". The

numbers should be consistent with "NAs" in Table 4.1. The column "Missing" for each

variable in Table 4.2 is zero, which indicates all missing data are imputed. "Mean of

Imputed Values" is also calculated. For example, the number of missing values imputed

for the predictor "BMI" is 10, which is consistent with the number presented in column

"NAs" of Table 4.1. No missing values are left out (the value of "Missing" is 0), and

the mean of imputed missing values is 23.04.

4.4 Variable Selection

We have a list of candidate predictors shown in Table 4.1 but probably not all of them are

significant to the development of CVD. Appropriate variables should be pre-specified

before we start to do the multiple regression analysis. The goal of variable selection is
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Table 4.2: Results of Imputation

to identify prognostic factors that are independently significant for developing CVD.

There are multiple options for variable selection (see Figure 4.1). The following

sections demonstrate why we chose "Forward Selection".

4.4.1 Methods for Variable Selection

Two methods are available for the variable selection: univariable screening (Hammermeister,

DeRouen & Dodge, 1979) and stepwise variable selection (Kano & Harada, 2000).

Compared with univariable screening, stepwise variable selection is much more popular

as prognostic factors will be identified step by step (Kano & Harada, 2000). We decided

to use stepwise variable selection as our method for factor analysis.

When employing stepwise variable selection, three methods within it can be applied:
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Partial Least Squares (PLS) regression, Least absolute shrinkage and selection operator

(Lasso), and Stepwise Regression (Chong & Jun, 2005). Among these methods, Step-

wise Regression is regarded as a standard procedure for selecting factors. Objective

statistics are generated to help us to do the variable selection and then predictors will be

introduced into the model sequentially.

There are three options in Stepwise Regression: forward selection, backward elim-

ination and stepwise method (Chong & Jun, 2005). In forward selection, one predictor

is added into the regression model at a time, while the backward elimination adds all

predictors at first and then eliminates the insignificant ones successively. The stepwise

method starts with forward selection but considers the backward elimination when

deleting a predictor at each stage. These three methods are expected to have similar

performance (Chong & Jun, 2005). The hierarchy of variable selection methods is

demonstrated in Figure 4.1. This graph also shows the route of selecting "Forward

Selection" as our method for filtering redundant variables.

Figure 4.1: Summary of Optional Variable Selection Methods



Chapter 4. Cox Regression Prediction Model with Framingham Data Set 70

Figure 4.2: Interpretation of the R Code for Forward Variable Selection

4.4.2 Implementation of Variable Selection

According to the rules in the Forward Selection method, we will implement the process

of variable selection following two steps:

• Step 1: applying the univariate Cox analysis for each candidate variable

• Step 2: filtering variables that are not significant to the development of CVD

according to a criterion we defined

In step 1, candidate predictors in Table 4.1 are independently inputted to the Cox

regression model one by one (also called univariate Cox analysis). R code listed in

Code Snippet D.1 of Appendix D accomplishes applying the univariate Cox analysis

to multiple variables at once. Figure 4.2 presents a graphical explanation of the R code

for univariate Cox analysis.

Table 4.3 reports the statistical form values of the forward variable selection for

assessing the significance of each factor. The outputs for each of the variables include

the regression beta coefficients (given as "beta"), the effect sizes with lower .95 and

upper .95 confidence interval (given as HR) and the statistical significance (given as

p.value) in relation to overall survival. More specific interpretations are listed below:
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Table 4.3: Statistical Outputs of Forward Variable Selection

• The column Beta lists the regression coefficients. A positive sign of a variable

indicates that the risk (hazard) of developing CVDs is higher for subjects with

higher values, and thus worse prognosis. For example, the predictor variable

"sex" has two values: 1: male, 2: female. The regression coefficient (see the

column "Beta") for sex is -0.49, which means that women have a lower risk of

developing CVD than men.

• The column HR is the hazard ratio, which is the exponential coefficient. It gives

the impact of covariates. For example, the HR for sex is exp(coef) = exp(-0.49) =

0.62. This means that being a woman reduces the risk of developing CVD by a

factor of 0.62, which is associated with a good prognosis compared to men.

• The 95% CI for HR is the confidence intervals (CI) for hazard ratios. This gives

us the upper 95% CI and lower 95% CI for HR. For the variable sex, the lower

95% bound is 0.57, the upper 95% bound is 0.66.

• The last feature in the output is the p-value that represents the global statistical
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significance of the fitted model.

In step 2, insignificant variables need to be removed. The criteria of adding or

removing a variable from a regression model is the significance level p-value. This

p-value can range from 0.05, 0.1, 0.15, and 0.2 based on multiple sequential hypothesis

testing of individual variables (Allen, 1974; Tartakovsky, Nikiforov & Basseville, 2014).

A p-value less than 0.05 is defined as a strict inclusion criteria for variable selection

(Altman & Royston, 2000). In our work, we accept "p-value" < 0.5 as our inclusion

criterion. According to the inclusion criteria defined above, covariates regarded as

having significance to the final risk model should have p-value <0.05. Figure 4.3

graphically demonstrates the variable inclusion criterion as well as the whole process of

filtering insignificant variables in step 2. Variables with p-value <0.5 were included but

these variables with p-value higher than 0.05 were removed.

Figure 4.3: Procedures for Variable Selection Using Forward Selection

Lastly, candidate prognostic variables that mostly determine predictive of survival
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are screened, as shown in Table 4.4.

Table 4.4: Results of Variable Selection

4.5 Multivariable Analysis

Multivariable analysis is a way using statistical techniques to determine how different

causes relatively contribute to a single outcome (Katz, 2011). The goal of the multivari-

able analysis in this paper is to see how the candidate factors (see Table 4.4) jointly

impact on the incidence of CVD in the Cox model. Variables identified as independently

predictive of risk of the development of CVD are entered into the multivariate analysis.

R code for the multivariable analysis is listed below.

1 res.cox.one <- coxph(Surv(cvddate, cvd) ~ age + sex + bmi

2 + hyp + hop + hooc + pb + bps + bpd

3 + cgrpd + cgpd + pr + dia,

4 data = FOCExam1Data)

5

6 summary(res.cox.one)

Code Snippet 4.2: R Code of Multivariable Analysis
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Table 4.5: Statistical Outputs of Multivariable Analysis

Table 4.5 lists the statistical output of the multivariate Cox regression analysis.

Interpretations of the output are:

• coef: regression coefficient,

• exp(coef): exponentiated coefficients: HR,

• se(coef): standard error of coefficient,

• z: equals to coef/se(coef), which is the statistical significance and displays the

wald statistic value as default,

• lower .95 & upper .95: the upper and lower confidence intervals

• Pr(>|z|): the statistical significance of each variable to the model

Observing the statistics in Table 4.5, there are still large p-values for some variables.

Insignificant predictors need to be filtered again for the final model. Applying the same

inclusion criteria as in the process of the forward variable selection, predictors with a

p-value greater than 0.05 fail to be significant and will be removed. Table 4.6 lists the

predictors that are finally selected to develop the CVD prediction model.

A special case is the predictor "PULSE RATE". A great many of articles have been

researching the relationship between heart rate and CVD. A strong association between

heart rate variability and cardiovascular-related disease has been proven (Han et al.,

2017; Yu et al., 2017; Böhm et al., 2010). Even though "PULSE RATE" has a statistical
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Table 4.6: Final Variables Entering the Risk Model

Table 4.7: Statistical Outputs of Multivariable Cox Analysis Using Final Variables

p-value of 0.228749 (higher than 0.05), we still include it in our final model analysis.

For estimating the maximum likelihood, three methods (the log-likelihood (the

exact), Breslow’s approximation to the log-likelihood and the Efron’s approximation to

the log-likelihood) stated in section 4.2.2 are available. Considering the ties handling

and the computation consumed, Efron’s log likelihood is chosen as the derivation of an

estimator of β.

Now, all variables in Table 4.6 are added to the Cox regression model from which

a predictive model is developed. As the Cox model is an exponential function with a

vector of multiple predictors, all continuous variables will be taken as natural logarithms

for making them an approximate linear distribution. The final outputs of the multiple

variable Cox regression analysis are presented in Table 4.7.
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Except for the statistics (the coef, exp(coef), se(coef), z, 95% CI, Pr(>|z|)) illustrated

above, the final outputs in Table 4.7 also give the global statistical significance of the

fitted model and the concordance. A high statistically significant relation of risk factors

and the occurrence of CVD are observed according to the Pr(>|z|)(p-value).

The bottom row in Table 4.7 is the global statistical significance p-value using three

tests: likelihood test, wald test and score (log-rank) test. The three tests soundly reject

the omnibus null hypothesis, all coefficient betas (β) are 0. That means that the fitted

model is significant (all global p-values are approximately equal to zero). The meaning

of the concordance of the model will be explained in the next chapter.

The HRs of covariates are interpreted as having effects on the risk of getting CVD.

For example, being a woman (sex = 2) reduces the hazard by a factor of 0.62 when

holding the other covariates constant. Similarly, a person with diabetes has a hazard

ratio HR(exp(coef)) = 4.71 that increases the risk of developing CVD. We can use

the regression coefficients estimated from the Cox regression analysis and values of

covariates for a specific individual to compute his probability of developing CVD.

4.6 Estimation of the Baseline Hazard Function

So far, the model has been developed and the vector of regression coefficients (β1, β2, ..., βm)

has been derived. The left-hand side of the formula Cox (see Equation 4.1 ), i.e. λ(t),

should be estimated for further computation of an individual’s probability of developing

CVD. Cox (1992) assumed that the baseline hazard can take any shape, but it cannot be

negative. It is estimated nonparametrically.

An R function basehaz was used to estimate the baseline hazard rate. This function

can compute the baseline hazard based on all covariates equal to zero or at mean values.

R code for computing the baseline hazard is listed in Code Snippet 4.3.
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1 # get baseline hazard with mean values of all covariates

2 b.mean <- basehaz(res.cph.final, centered = TRUE)

3 plot(b.mean$hazard)

4 b.mean$time

5 index = which(b.mean$time == 3655)

6 b.mean$hazard[index]

7

8 # get baseline hazard when all covariates equal to zero

9 b.zero <- basehaz(res.cph.final, centered = FALSE)

10 index = which(b.zero$time == 3655)

11 b.zero$hazard[index]

12 plot(b.zero$hazard)

Code Snippet 4.3: R Code of Computing the Baseline Hazard Rate

Table 4.8 lists values of the baseline hazard where the time point is 10 years.

The 10-year baseline hazard rate equals to 0.1023354 at mean values of all covariates,

0.001863652 at all covariates equal to zero. Corresponding, the survival probabilit-

ies (exp(−basehaz)) were also calculated, which are 0.9027267 at mean values and

0.9981381 at all covariates equal to zero.

Table 4.8: Baseline Hazard and Survival Rate at 10 Years

Covariates at mean value Covariates equal to zero

Baseline hazard estimate 0.1023354 0.001863652
Baseline survival estimate 0.9027267 0.9981381

We will use the baseline hazard values as a building block for further calculations

of the risk of developing CVD (or the survival probability) for an individual.

4.7 Evaluation of the Cox Model Assumption

4.7.1 The Assumption of the Cox Model

According to the Cox formula (Equation 4.1), two quantities produce the hazard at time

t. The left part is the baseline hazard and the right part is the exponential expression e
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to the sum of the m predictor variables X . An important characteristic of this formula

is that the PH assumption should hold.

The Cox regression model assumes that the ratio of the hazards λ(t;x) com-

paring any two collections of predictor variables xi = (xi1, xi2, ..., xik) and xj =

(xj1, xj2, ..., xjk) is constant over time t, λ(t;xi)/λ(t;xj) (shown in Equation 4.11),

does not depend on time t. The effect of a given predictor variable does not change over

time.

HR = λ(t;xi)
λ(t;xj)

= λ(t)exp(β1xi1 + ... + βkxik)
λ(t)exp(β1xj1 + ... + βkxjk)

= expβ1(xi1 − xj1) + ... + βp(xik − xjk)
(4.11)

For example, when considering ’sex’ as a predictor to estimate CVD risk, if the

risk of developing CVD for an individual (male,x = 0) is twice compared with another

individual (female,x = 1) at age 45, the hazard ratio is eβ . This ratio is not depending on

time t, then the risk will not change when they are at age 55 or any other age, as shown

in the inferential process of Formula. 4.12.

HR = λ(t;x = 1)
λ(t;x = 0) = λ(t)e

β ∗ 1

λ(t)eβ ∗ 0
= e

β

e0
= eβ (4.12)

As the Cox regression model assumes that the effect of a time-independent variable

is constant over time, which is also a restriction to use this model, it is important to

verify whether variables included in a model satisfy the PH assumption.

4.7.2 Checking the PH Assumption

Generally, there are three approaches available to assess whether the hazards between

two values of variables are proportional or not, as listed below. Each method has its

advantages and disadvantages. Neither is regarded as the superior one.
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• Graphical approaches: two types of graphical techniques are commonly used.

One popular approach is to plot the "log-log" survival curves. The other is to

compare the observed survival curves with the predicted curves.

• Goodness-of-fit (GOF) approaches: by employing statistical techniques, the chi-

square and p-value for each predictive variable in the fitted model is computed to

evaluate the PH assumption.

• Time-dependent variable approach: using this approach, the Cox model is exten-

ded to contain time-independent variables for assessing the PH assumption.

1 # check the PH assumption

2 test.coxph.final <- cox.zph(res.coxph.final)

3 test.coxph.final

4

5 ggcoxzph(test.coxph.final,

6 ggtheme = theme_light(), point.col = "black",

7 point.size = 1,point.alpha = 0.5)

Code Snippet 4.4: R Code of Checking PH Assumption

The GOF approach was used for checking the PH assumption. The biggest appealing

advantage of the GOF approach compared with the other two techniques is that a

statistical test value (p-value) for a given variable will be provided, so the researcher

can make a clear-cut decision according to the test statistics. Schoenfeld residuals are

used (Schoenfeld, 1982) to diagnose the PH assumption. Correlations between ranked

failure times and Schoenfeld’s residuals for each predictor will be obtained using a

chi-square statistic with 1 df.

Two R functions, cox.zph() and ggcoxzph(), were used for the computation of

GOF. The function cox.zph() in the R survival package can test the relationship between

the corresponding set of scaled Schoenfeld residuals and the failure time for each

variable. The function ggcoxzph() in the survminer package can produce graphs of the

Schoenfeld residuals for each covariate against the time. R code for the check of Cox
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PH assumption is listed in Code Snippet 4.4. The outputs regarding covariates in the

fitted Cox model are obtained, see Figure 4.4 and Figure 4.5.

Figure 4.4 is the graphical output for risk factors: age (age), sex (sex), body mass

index (bmi), and hypertension (hyp).

Figure 4.5 plots the graphical output for risk factors: systolic blood pressure (bps),

cigarettes per day (cgrpd), pulse rate (pr), and the status of diabetes (dia).

Figure 4.4: The Output of the PH Assumption Test: 1

For the graph of Schoenfeld test belonging to each covariate:

• The solid line in middle of the plot is a smoothing spline fit to the residuals.

• Two dotted lines separately displaying above and below the solid line represent a

plus/minus error band for the fit.

• Values of y axes are estimated Schoenfeld residuals Beta over time.

According to Figure 4.4 and Figure 4.5, the PH assumption is supported by the
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Figure 4.5: The Output of the PH Assumption Test: 2

non-obvious pattern between the Schoenfeld residuals and time. That means that if the

estimated Beta coefficients systematically depart from a horizontal line, the assumption

of PH will be violated. By inspecting the graphs depicted above, the assumption appears

to be supported for all covariates, as there is not an obvious relationship between

residuals. Time and the estimated ’Betas’ for each covariate do not vary much over

time. Taking factor "sex" as an example, it is a two-level factor, the two bands Betas do

not obviously change over time.

The statistical test "p" value and "chisq" value are printed in Table 4.9. The "chisq"

denotes the chi-square for each variable, i.e. the χ2 scale computed. A smaller "p" value

has a larger "chisq" value. When using p-value to check the PH assumption for each

variable, a large p-value, let’s say > 0.1, indicates that the PH assumption is supported,

whereas a very small p-value, say <0.05, suggests that the PH assumption is violated
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Table 4.9: Statistical Output of the PH Assumption Test

(Kleinbaum & Klein, 2010).

According to results shown in Table 4.9, p-values of all variables are quite high,

suggesting that all variables in the Cox-based risk model satisfy the PH assumption.

The p-value for "sex" 0.06 is approximate to 0.05 but here we can assume that the PH

assumption is reasonable for "sex". The result of GOF test referring p-values for all

variables is consistent with the result of graphical check for the Cox PH assumption.

4.8 Summary

In this chapter, we developed a prognostic CVD prediction model using Cox regression

analysis. Specifically, we first introduced the basic theory of the Cox regression model

and then conducted a whole process of model development referring to the regression

strategies, including the simulation of missing values using the multiple imputation

method, variable selection using forward variable selection method, mutivariable Cox

analysis and the development of the final model. After that, the baseline hazards at all

covariates of mean values and zero were computed. Lastly, we did an evaluation of the

Cox PH assumption test. Results of the assumption test held the PH assumption.



Chapter 5

Validation of the Cox-based Risk

Prediction Model

5.1 Introduction

A prognostic fitted model cannot be applied to the practice unless it has been validated

performing accurate prediction, i.e the GOF of the model, even though a data reduction

(variable selection) method is used (Moons et al., 2009). Conducting a model validation

is a method to make sure that a fitted diagnosis risk model was not over-fitted or

otherwise was accurate. In other words, it is necessary to do a model validation to find

out if predicted values from a fitted model can accurately predict future subjects that

are not used to develop this model. Obtaining a high degree of certainty is particularly

important when a model is developed for diagnosis or prognostic purpose.

The term "validation" has been constantly used in bio-statistics, machine learning,

and artificial intelligence, etc. but seldom clarified (Feinstein, 1996). Altman and

Royston (2000) thought that validating a prognostic model is the process of evaluating

the performance of the model, while Katz (2011) pointed out that "validation" is the

idea of proving that the inferences of establishing the model are true.

83
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Further, we need to know the accepted standard to what extent the validation should

be done. When fitting a model, it is to obtain the maximum probability of the occurrence

of an outcome or event by analysing the values of the original data. However, the model

might not perform as well with future new incoming data as with the original data.

Successful validation is to verify the decrement in performance within a reasonable

scale (Katz, 2011).

We applied two approaches to do the validation of our fitted model. We firstly used

a classical statistical approach to get quantities of the model performance in internal

data set (Exam 1), and then did an empirical validation by comparing the risk estimation

using our model and the famous Framingham CVD prediction model (D’Agostino et

al., 2008) for a series of selected individuals in the external data set (from Exam 8 to

Exam 12 as shown in Table 3.2).

5.2 Statistical Validation

5.2.1 Methods of Statistical Validation

Within statistical validation, mainly two major modes of validation are commonly

employed: internal and external (F. Harrell, 2013). Internal validation is considered the

simplest validation method and therefore is widely used for assessing the performance

of a fitted model on further samples. This method splits the original sample into two

parts (Altman & Royston, 2000). The first proportion of the data is used to train the

model (often called the training set) and the second proportion of the data is used for

evaluating the model’s ability to predict an event or outcome (called the test set).

The data-splitting can be done in various ways. It can be done randomly or in a

non-random way. We could consider the distributions of the response and predictors

in two sets of samples or not. Cross-validation, bootstrapping or other resampling
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methods can be used in the procedures of data-splitting. Cross-validation has the

ability to obtain an unbiased estimation of the predictive accuracy but tends to be

imprecise, as what proportion of samples will be in the training and the test sets is

randomly decided (Cox, 1975; Efron & Tibshirani, 1994). A tougher way to do the data

splitting is in a non-random way. Compared with the cross-validation, bootstrapping

is a better and more powerful approach to do this. Using bootstrapping, not only

shrinkage factors can be estimated but also can be applied to the regression coefficients

to avoid overoptimism (F. Harrell, 2013). In some cases, leave-one-out cross-validation

(Schumacher, Holländer & Sauerbrei, 1997) or a chronological split (F. Harrell, 2013)

can be used to get a prospective validation.

Compared with internal validation, external validation is more stringent. It evaluates

a model on a future data set, sometimes collected from a population in a different place

(Royston & Altman, 2013). Similar research design issues in the modelling process

will be done, including sample selection, data measurements, etc. and need long time

follow-up as well but external validation is a desirable and essential step before applying

a model in clinical practice (Altman & Royston, 2000).

At this stage, limited to the time, we chose an internal validation method to validate

our model. Bootstrapping will be used. A comparison of outcomes with these two

methods will be described below.

5.2.2 Sample Size Considerations

Similar to the process of fitting models, the sample size and number of events should be

considered for precise validation no matter which method will be used to validate our

fitted model (Royston & Altman, 2013). The guiding principles in the model derivation

data set also apply to the validation data. This means that substantial validation test

samples are required.



Chapter 5. Validation of the Cox-based Risk Prediction Model 86

For survival studies, only a few tens of patients is not large enough to validate a

model. F. Harrell (2013) says that the outcome events in the validation sample set

should not be less than 100. The research on the necessary sample size for validation is

still ongoing (Jinks, 2012). It has been proven that bootstrap is an effective method for

resampling the data set (Dunkler, Michiels & Schemper, 2007).

The sample size and number of events are summarised in section 3.3.1 indicating

that we have 5079 samples and 3189 events in our data set. When applying the cross-

validation and bootstrap methods into the validation process, the data size is large

enough for us have a reasonable validation for our model.

5.2.3 Standards of Statistical Validation

When using statistical approaches for validation, two aspects should be verified: dis-

crimination and calibration. A valid model should achieve satisfactory results of these

two aspects in the validation sample set.

5.2.4 Discrimination of the Model

Discrimination, also called "separation", is the model’s capability to discriminate

outcomes of subjects. Predicting the incidence of high-risk patients should be higher

than low-risk patients (Royston & Altman, 2013). The discrimination ability can be

quantified in various statistical indexes such as Somers’ Dxy (Somers, 1962), model χ2

(Grambsch & O’Brien, 1991), receiver operating characteristic (ROC) area (Hanley &

McNeil, 1982) or Spearman’s ρ (Kendall, 1955), etc.

Among these statistics, the ROC area is the most commonly accepted measure

of diagnostic discrimination (Hanley & McNeil, 1982). It is proven that the ROC
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area is identical to the concordance index (c-index or c-statistics) (Austin & Stey-

erberg, 2017; Hanley & McNeil, 1982). The c-index computed based on the Wil-

coxon–Mann–Whitney two-sample rank test (Whitehead, 1993) is the probability of

a randomly selected patient who experienced an event, i.e. the concordance between

predicted probability rate and response. The value of c-index can range from 0.5 to 1. A

c-index of 0.5 indicates the result of the prediction is randomly obtained and a value of

1 suggests perfect prediction. Details of indication with different levels of this c-index

value are explained in Table 5.1.

Table 5.1: Indications of the c-index with Different Values (Hanley & McNeil, 1982)

Value of c-index Indications

= 0.5 A model with a random prediction
>0.7 A good model
>0.8 A strong model
= 1 A model with perfect prediction

Another statistical index used for assessing the model discrimination is Somers’Dxy,

which measures the strength of the rank correlation between the actual observations

and predicted probabilities (Somers, 1962). Dxy is also related to the c-index described

above. Relations between Dxy and c-index are shown in Equation 5.1. When Dxy

equals to 1, the c-index equals to 1, the model does perfect discrimination.

Dxy = 2 ∗ (c − 0.5) (5.1)

We use the R function validate in rms package to assess the model’s discrimination,

the corresponding R code is listed below:

1 set.seed(1)

2 val <- validate(res.cph, method = "crossvalidation", u=10*365, B=150)

3 latex(val, file=’’) # print validation result into latex code

Code Snippet 5.1: R Code of Discrimination Assessment
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Table 5.2: Output of Discrimination: Bootstrap

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.4171 0.4167 0.4149 0.0017 0.4154 150
Slope 1.0000 1.0000 0.9824 0.0176 0.9824 150
D 0.0344 0.0345 0.0339 0.0006 0.0338 150
U −0.0001 −0.0001 0.0003 −0.0004 0.0003 150
Q 0.0346 0.0346 0.0336 0.0010 0.0336 150

The output of the discrimination code is shown in Table 5.2. According to the

discrimination output, we have a value of Somers’ Dxy 0.4149 for our model including

these factors, equivalent to a ROC area of 0.70745 suggesting good discrimination.

Statistical indexes of predictive accuracy and the interpretations of these indexes are

listed below:

• Dxy represents the Somers’ rank correlation. It equals to 2(C − 0.5); C denotes

c-index ("ROC Area" or the concordance).

• Slope is the calibration slope (predicted log odds versus true log odds). The slope

is from (0, 1).

• D indicates the discrimination index. It equals to the likelihood ratio χ2 divided

by the sample size.

• U is the index of unreliability indicating the extent that the logit calibration curve

intercepts.

• Q is the accuracy score of logarithm. It is a scaled version of the log-likelihood.

5.2.5 Calibration of the Model

Calibration is the model’s ability to estimate outcome without bias, which is another

aspect for assessing the accuracy of a prognostic model. It indicates the reliability
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of the model and reflects the predictive performance (Royston & Altman, 2013). A

model under-predicting or over-predicting the event probability is miscalibrated but if

well-calibrated, the event probability can be correctly assigned no matter what level of

the predicted risk (F. Harrell, 2013).

A couple of approaches are available to assess the prediction accuracy of a model.

One method is to compare the predicted and observed rates for individuals. This

measure assesses the absolute prediction accuracy (Royston & Altman, 2013). A R

function calibrate is used to assess calibration of the model. Bootstrap was used as

the internal resampling method. Graphical curves of calibration are shown in Figure

5.1. In the curve, errors are summarised by quantities mean absolute calibration error

(0.009) and 0.9 quantiles calibration error (0.012).

Figure 5.1: The Output of Calibration: Bootstrap

Figure 5.1 plots the calibration graph using bootstrap. The graph shows the evidence

of overfitting the model where the model underestimates the low probabilities with

a mean error 0.009 in the range of 0.2 to 0.6. Mean error is small and the c-statistic
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derived in the section 5.2.4 is good (0.71). Combining the discrimination and the

calibration results, the model is valid overall. The test results prove a goodness of the

model fitting.

To further prove the effectiveness of the model, an empirical validation was done as

follows.

5.3 Empirical Validation

We will compare the predictive ability of our risk model with one well-known CVD

prediction tool, the Framingham prognostic model for general CVD (D’Agostino et

al., 2008). We chose this model for comparison because it has been used for a long

time, and has been validated several times in different populations (Hua et al., 2017;

Hermansson & Kahan, 2018; Le, Marchant, Subtil, Boissel & Gueyffier, 2017). Its

ability for estimating general CVDs as well as specific CVDs like stroke, heart attack,

etc. has been widely recognised.

There are some differences on predictors used in our Cox-based model and the

Framingham model. Specific predictors and their differences are listed in Table 5.3.

Data regarding the predictors belonging to each model used for the empirical validation

will be extracted and pre-processed using Python. The Python script can be accessed in

Appendix D.

Next, we will implement the empirical validation in two perspectives:

• Horizontal comparison: comparing with the Framingham prognostic model using

data collected from multiple samples at the same time-point.

• Longitudinal comparison: comparing with the Framingham prognostic model

using data collected from specific samples at different time-points (fixed time

intervals follow-up) and see the risk trend for an individual over time.
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Table 5.3: Predictors in the Cox-based Model and the FHS Model

5.3.1 Horizontal Comparison

Samples used for the horizontal empirical validation are selected from the eighth exam

data frame (Exam 8) from the Framingham Original Cohort Study. There are 2786

samples in this data frame where 1693 of them finally developed a CVD event. The

event number is greater than the minimum number of effective validation (100 samples)

so the sample size is large enough for a valid validation. Characteristics of samples

used in the empirical validation are presented in Table 5.4.

Table 5.4: Samples and Events of the Horizontal Empirical Validation Data Set

Gender Numbers Events Age Range

Male 1196 776 43-72
Female 1590 917 42-73
Total 2786 1693 42-73

As presented in section 3.3, 32 exam data frames were gathered in the Framingham

heart study. The first exam (Exam 1) data has been used for model fitting. We chose

Exam 8 data for an empirical validation because since then the data of a predictor

(treatment of hypertension) in the Framingham model was collected. The Exam 8 data

were collected from the same population in Exam 1 but at different time points. The
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data in Exam 8 and Exam 1 are different. We think this horizontal comparison is an

external validation within the same population.

Risks of developing CVD in 10 years for each sample using the Cox-based model

and the Framingham model are estimated. For example, a subject with ID number

15018644, has a risk 12.57% using the Cox-based model and a risk 11.86% using the

Framingham model. Values of predictors and risks for the subject 15018644 are shown

in Table 5.5.

Table 5.5: Data Summary for Subject 15018644

Statistics of min (lower whisker), 1st quartile (the lower hinge), median, 3rd quartile

(the upper hinge), and max (the extreme of the upper whisker) of estimated risks for all

samples are depicted in Figure 5.2. This box-whisker graph shows that risks estimated

by our Cox-based model are higher than the risk calculated by the Framingham model

but the error for five statistics (min, 1st Qu, median, mean, 3rd Qu., max) is within

0.02. For example, the median values of the FHS model and Cox-based model are

correspondingly 0.1429475 and 0.1661985, and 0.1661985 is 0.023251 larger than

0.1429475.

To measure the accuracy of a risk model, we define a deviation z between the risk
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Figure 5.2: Horizontal Comparison between Cox-based Model and FHS Model

rate and the CVD occurrence, as shown below:

z = ∣CVD event − risk rate∣ (5.2)

where CVDevent is a boolean indicator to represent a CVD event. It could be

1 (with CVD) or 0 (without CVD); riskrate is the risk estimate from a risk predic-

tion model; the value z is the abs of riskrate (the estimated risk score) minus the

CVDevent (0 or 1). When applying the FHS model and the Cox-based model to a

subject, it is expected that a lower "z" value indicates a more accurate predictive ability.

The mean of z values for risk estimates from the FHS model and the Cox-based

model are computed, as shown in Table 5.6. According to this table, the mean of z

value for subjects who developed CVD using the Cox-based model (0.792) is lower than

the FHS model (0.806), which indicates a much more accurate estimation. However,

the mean of z value for subjects without CVD using the FHS model (0.162) is lower
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Table 5.6: "z" Value Comparison between the FHS model and Cox-based Model

than the Cox model (0.172), which indicates an overestimate of the Cox-based model.

Overall, the predictive ability of these two models is consistent, as the total mean of

z values for these two models are correspondingly 0.484 and 0.482. The risk scale of

the Cox-based model is consistent with the Framingham model, which proves that our

model is valid from another perspective.

5.3.2 Longitudinal Comparison

The longitudinal comparison focuses on the risk estimation for specific subjects but

with different CVD scenarios. We selected four sex-specific subjects with or without

CVD at the end of the Framingham Study. Characteristics of these four subjects are

summarised in Table 5.7.

Table 5.7: Data Summary for Samples in the Longitudinal Validation

For each sample, data with fixed time intervals (approximately two years) from

longitudinal time follow-up was extracted. Totally, five exams data (Exam 8, Exam 9,
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Table 5.8: Exam Data for Sample 1: Male without CVD

Table 5.9: Exam Data for Sample 2: Male with CVD and Diabetes

Table 5.10: Exam Data for Sample 3: Female without CVD

Table 5.11: Exam Data for Sample 4: Female with CVD and Diabetes

Exam 10, Exam 11, and Exam 12) were extracted for the longitudinal comparison. Data

summaries for sample 1, sample 2, sample 3 and sample 4 are correspondingly listed in

Table 5.8, Table 5.9, Table 5.10 and Table 5.11.

For each sample, risks of developing CVD in 10 years regarding five exams data

were separately computed using our Cox-based model and the Framingham model. The
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trend of risks over years is depicted with 5% error, as shown in Figure 5.3. From this

graph, we can see that the trends of risks of these two models are consistent and risks

for a specific sample increase over time, see the dotted trend lines in each graph. In

addition, samples (both male and female) with diabetes that finally developed CVD

have a higher risk rate than the ones who didn’t develop the disease.

Figure 5.3: Longitudinal Validation

Overall, after conducting a horizontal and longitudinal empirical validation, the

estimation ability of the Cox model is proved valid using external data sets. There is

an error between the Cox-based model and the Framingham prognostic model but it is

within the scale of 0.02.

5.4 Summary

In summary, we first implemented a statistical test for the GOF of our fitted model. The

test results show that this model can complete a good discrimination and calibration

achieving an area under cover for ROC equal to 0.71. We conducted an empirical

validation by comparing the estimation ability of this model with the Framingham

CVD model. The Framingham model has been clinically validated, so the empirical
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validation can be regarded as a transformed clinical validation to some degree. A model

validated statistically may not work well clinically but a model validated clinically may

fail the statistical GOF test (Royston & Altman, 2013). Our model was both statistically

validated and clinically validated and the results of these two kinds of validation indicate

the goodness of our model.



Chapter 6

Findings and Discussion

6.1 Introduction

In this chapter, results and findings of this research are presented. After that, we

discuss the Cox-based CVD risk prediction model we developed, and summarise the

contribution of the research. Sections will be organised as follows:

• Section 6.2 has two parts. The first part is the presentation of our risk prediction

model for general CVD, including key risk factors and the work-flow of comput-

ing the risk score. The second part is the survival estimation using nomograms

and survival curves.

• Section 6.3 is a discussion of this research, including the indication of findings,

comparison with other CVD risk prediction tools, and the main contributions.

• Section 6.4 is a short statement of this chapter.

98
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6.2 Findings

6.2.1 Risk Factors in the Risk Model

Using the Cox regression analysis modelling method, a risk model including risk factors

(as shown in Table 6.1) was developed. Statistics of "Min.", "1st Qu.", "Median",

"Mean", "3rd Qu.", and "Max." are summarised. Variables included in this risk model

are age, sex, BMI, hypertension, SBP, cigarettes per day, pulse rate, diabetes.

Table 6.1: Characteristics of Risk Factors Used in the Cox-based Risk Model

6.2.2 General CVD Risk Prediction Model

The regression coefficients, HRs (Hazard Ratios), lower .95, and upper .95 confidence

interval for each predictor in our general CVD risk model are presented in Table 6.2.

For continuous variables, the regression coefficients and hazard ratios are for their

natural logarithms.

As the Cox model survival function has the form:

S(t) = [S0(t)]exp(∑
k
i=1 βiXi) (6.1)

the Cox hazard model can be written as a general formula:

ˆH(t) = 1 − S0(t)exp(∑
k
i=1 βiXi − ∑

k
i=1 βiX̄i) (6.2)
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Table 6.2: Regression Coefficients and Hazard Ratios in the Cox-based Risk Model

where ˆH(t) is the CVD risk estimated for an individual; S0(t) is baseline survival

rate at time t, here t = 10 (years), see Table 4.8; βi is the regression coefficient, see the

column "coef*" in Table 6.2; Xi is the value of the ith variable, if continuous it is the

log-transformed value); X̄i is the mean value of the set of the subject i, and k denotes

the number of predictive variables.

6.2.3 10-year Risk Score Computation

Using the CVD risk function (see Equation 6.5) and regression coefficients (see Table

6.2), we can easily compute the probability of developing any type of CVD for an

individual.

Here, we take the sample with the ID number 15018644 (once used as an example

in horizontal validation in Section 5.3.1) as a specific case to illustrate the process of

risk score calculation. As shown in Table 5.5, this sample is a 44-year-old man not

having diabetes and hypertension. He has a systolic blood pressure of 120 mmHg, pulse

rate of 82 per minute, BMI of 26.38689413 kg/m2, and is a current smoker smoking 40

lapses per day.

The CVD risk using the Cox-based risk model is calculated as follows:
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k

∑
i=1

βiXi = 2.083643 ∗ log(44) − 0.469719 ∗ 1 + 0.608864 ∗ log(26.38689413)

+0.241461 ∗ 0 + 1.682571 ∗ log(120) − 0.302090 ∗ log(82)

+0.009669 ∗ 40 + 1.087501 ∗ 0

= 16.518741

(6.3)

k

∑
i=1

βiX̄i = 2.083643 ∗ 3.768 − 0.469719 ∗ 1.548 + 0.608864 ∗ 3.230

+0.241461 ∗ 0.1469 + 1.682571 ∗ 4.913 − 0.302090 ∗ 4.311

+0.009669 ∗ 13.96 + 1.087501 ∗ 0.02001

= 16.247045

(6.4)

ˆH(10) = 1 − S0(10)exp(∑
k
i=1 βiXi − ∑

k
i=1 βiX̄i)

= 1 − 0.9027267exp(16.518741−16.247045)

= 0.125658 ≈ 12.57%

(6.5)

The Cox-based risk model gives a 10-year estimate of 12.57% for the sample with

the ID number 15018644.

6.2.4 Survival Estimation

Apart from estimating the CVD hazard rate using the general formula as shown in

Equation 6.5, graphs for the survival estimation can be plotted. Below we will introduce

two forms of survival estimation, namely, the nomogram and survival curves.
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6.2.4.1 Nomogram

A nomogram is a two-dimensional diagram to represent a mathematical function in-

volving several predictors (Kattan, 2003b). It is a simple graphical computing device

to approximately estimate the probability of a particular event based on statistical

regression methods such as the Cox regression model for survival analysis (Kattan,

2003a).

Nomograms have become very popular among clinicians, primarily because they

are designed to provide individualised estimates of the probability of a specific event

such as the occurrence of CVD. They can help clinicians or individuals have a prognosis

of the event based on the characteristics of the individual patients.

According to the step-by-step guidance for building a nomogram from a regression

fit (Iasonos, Schrag, Raj & Panageas, 2008), a nomogram from the risk prediction

model we fitted in Chapter 4 was created. This nomogram implements the estimation

of individual survivals in 10 years.

Key steps to create the nomogram are described as follow:

• Step 1: store the predicted survival from the fitted model

• Step 2: calculate the survival in 10 years

• Step 3: scale the survival probability

• Step 4: create the nomogram

The corresponding R code for building the nomogram is listed below:

1 # Step 1

2 surv <- Survival(res.cph.exam1)

3

4 # Step 2

5 surv10 <- function(x) surv(10*365,lp=x)

6
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7 #Step 3

8 scale <- c(.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,.95)

9

10 #Step 4

11 nomogram <- nomogram(res.cph.exam1,

12 fun=list(surv10),

13 funlabel=c(’10-year Survival’),

14 fun.at=list(scale, scale, c(.5,1:6)))

15

16 plot(nomogram, xfrac=.65, lmgp=.35)

Code Snippet 6.1: R Code for Building the Nomogram

Figure 6.1 is the nomogram after running the R code listed in Code Snippet

6.1. Briefly, this diagram creates a simple graphical representation of our CVD risk

prediction model. Each predictor has a set of n scales and there is a mapping between

each scale and the "Points" scale. The bottom is the 10-year survival estimates. By

accumulating the total points corresponding to the specific configuration of covariates

for a patient, a clinician can then manually obtain the predicted value of the event for

that patient.

Figure 6.1: Nomogram for Predicting Overall Survival in 10 Years

Steps to read the nomogram shown in Figure 6.1,

• First, draw a vertical line across a predictor line to the top axis labelled "Points";

each tick marker on the line indicates the point value of a predictor.
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• Second, sum points belonging to all predictors and find the corresponding value

on the bottom axis labelled "Total Points".

• Third, draw a vertical line from the tick marker points on the "Total Points" down

to the axis showing "10-year survival" and read the 10-year survival rate.

We still take the sample with ID number 15018644 as an example to calculate his

10-year survival using the nomogram in Figure 6.1. Following the steps of reading

a nomogram, the corresponding points to each value of each predictor are mapped as

shown in Table 5.5. For example, a systolic blood pressure of 120 mmHg has 30 points.

After obtaining the points for each predictor the total points is summed as 155 points,

as shown in Table 6.3. By mapping this total to the survival estimation scales, this man

has a 87.5% probability of surviving without CVD in 10 years. Correspondingly, the

hazard rate in 10 years is 12.5% (approximately equivalent to estimate rate calculated

by the general Formula 6.5, which is 12.57%).

Table 6.3: Case: Results of Reading the Nomogram

A nomogram’s performance is usually evaluated in terms of the discrimination and

calibration (Kattan, 2003a), which we have done in Chapter 5. From the example we

computed the survival probability using the nomogram we have built, the performance
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of this diagram shows that it has high accuracy for predicting the survival probability

or hazard rate for CVDs. This ensures that the nomogram would perform well when it

is used in future subjects. These user-friendly nomograms facilitate the clinicians and

patients to generate risk estimates for decision making.

6.2.4.2 Individual Survival Curves

A survival curve is a diagram statistically depicting the survival estimate of an individual

or a group of patients in a given length of time. A percentage of surviving versus time is

shown in the survival graph. The survival rate change over time can be seen intuitively

and helps us to understand how the trend differs among different individuals. The

characteristics of survival curves are important for clinicians to think about prognosis

of some disease as well as treatment choices.

Here is an example to plot individualised survival probabilities using R function

survfit in survival package. Sample data is still from the sample with the ID number

15018644 (Table 5.5). R code for extracting the survival curve for this person is listed

below:

1 # data frame for the sample 15018644

2 new.data <- data.frame(Age=44,Hypertension=0,Sex=1,BMI=26.38689413,Bpsys=120,CigarettesPerDay=40,

3 PulseRate=82,Diabetes=0)

4 # plot the survival curve

5 plot(survfit(res.cph.exam1, newdata=new.data),

6 xscale=365.25, xlab = "Years", ylab="Survival")

Code Snippet 6.2: R Code for Extracting the Survival Curve

Figure 6.2 is the survival curve for the individual shown in Table 5.5. This plot

shows the survival curves of specific values of the risk factors (age, sex, hypertension,

BMI, SBP, cigarettes per day, pulse rate, and the status of diabetes) belonging to that

individual. In Figure 6.2, the Y axis shows the actual percentage of surviving. The

value runs from 1 at the top to 0 at the bottom, indicating approximately 100% survival
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to 0% survival at the bottom. The X axis gives the time (years) from the start of the

observation to the end of the experiment. The two dotted lines upper and lower the solid

line are the mean error curves.

Figure 6.2: Individual Survival Curve for the Sample ID 15018644

It is easy to read the survival percentage by mapping the X axis value to the vertical

point proportion of surviving. For example, if a clinician would like to know the

survival probability at particular time of 10 years, he can easily obtain the percentage,

approximately 0.875 (87.5%). This curve starts out with approximate 100% and

descends over time but of course it can never increase.

6.3 Discussion

It is widely known that CVD has become one of the major public health problems

globally (Lopez, Mathers, Ezzati, Jamison & Murray, 2006) and in New Zealand (Hay,
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2004), and continues producing immense burdens for the health care and economic

system in the community. Prior researchers have noted the importance of identifying

associated risk predictors and the early detection and intervention of CVDs (Hubert,

Feinleib, McNamara & Castelli, 1983; Cupples, 1987; Weiner et al., 2004; Böhm et al.,

2010; Odden et al., 2014), and then reducing the risk of developing the diseases prior

to the occurrence of the disease. Consequently, CVD risk prediction tools based on a

single variable or multiple variables have been devised to yield estimates of the CVD

risk (Wilson et al., 1998; Conroy et al., 2003; Hippisley-Cox et al., 2007; D’Agostino et

al., 2008; De Ruijter et al., 2009; Pencina et al., 2009; Bannink, Wells, Broad, Riddell

& Jackson, 2006).

Motivated by the objective of early detection and CVD risk estimation, the present

research was designed to identify novel CVD risk factors, determine the effect of

these factors, and then develop a risk prediction model based on the identified factors.

Although risk factors could vary from one specific CVD component to another, there

is sufficient evidence that different types of CVD have commonalities of risk factors.

With respect to the aim of this research, we derived and validated a new 10-year risk

model for general CVDs based on time follow-up data rigorously measured by the

Framingham Heart Study researchers. It is expected this model can help clinicians and

individuals to prevent the occurrence of CVD.

This investigation extends the number of risk factors on the basis of the previous

general CVD risk formulations, incorporating heart rate to estimate absolute CVD risk.

The approach used in this research is based on advanced statistical techniques that

allow reducing the bias in the assessment of true CVD risk. The whole process of data

analysis strictly follows the guideline of regression modelling strategies and survival

analysis (Kleinbaum & Klein, 2010; F. Harrell, 2013). Our general CVD risk model

shows a good discrimination and calibration (obtaining a c-statistic as 0.71).

We use continuous variables (age, BMI, SBP, pulse rate) to generate the model
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that performs better than models developed using categorical variables. Compared

with simpler approaches that try to make inferences of 10-year risk models such as the

logistic-regression-based model developed by Kannel, McGee and Gordon (1976), and

the CKD risk model using Kaplan-Meier and the log-rank test (Weiner et al., 2004),

our risk model is more adequate and will not cause serious errors of underestimation

or overestimation. Moreover, this model was developed based on a larger number of

samples and events, suggesting a valid estimation of the true risk.

6.3.1 Comparison with Other CVD Risk Prediction Tools

The old version Framingham general CVD risk function formulated by Kannel et al.

(1976) is effective for identifying persons at high risk of CVD but it was based on a

limited number of risk factors (serum cholesterol, SBP, smoking history, electrocar-

diogram, and glucose intolerance). The Framingham investigators devised two new

sex-specified general CVD risk functions recently (D’Agostino et al., 2008). One

laboratory-test-based formula included HDL cholesterol and the other office-based

one include BMI in the risk function. The QRISK study investigators incorporated

family history as a novel risk factor on the basis of the Framingham general formulas

(Hippisley-Cox et al., 2007). Although researchers have published risk scores (Kannel

et al., 1976; D’Agostino et al., 2008; Hippisley-Cox et al., 2007) for predicting general

CVDs, these functions did not include heart rate in the risk model.

Several risk models formulated by using machine learning or data mining techniques

have incorporated heart rate as a risk factor but tools that can predict CVD absolute risk

are fewer. For example, the prediction tool proposed by H. Kim et al. (2016) focuses

on the classification of CVD event by employing ANN and the Bayesian classifier

based on heart rate variability. The diagnosis CVD model developed by Vaanathi (2017)

categorises the CVD risk as different levels but an absolute risk score cannot be obtained.
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Even though the supportive tool developed by Unnikrishnan et al. (2016) will give an

estimate of a risk score but the user can not know how many years the score is targeting.

In addition, there are some equations focusing on specific CVD outcomes. The

Europe SCORE project offers equations to estimate a fatal cardiovascular event. There

are risk estimation tools for coronary heart disease (Kannel et al., 1979; Wilson et

al., 1998; Lloyd-Jones et al., 2004), for general heart disease (McGill et al., 2008),

for stroke (Yu et al., 2017; Parmar et al., 2015), etc.. Compared with disease-specific

models to estimate the risk of developing specific CVD outcomes, the present study

generated a general CVD risk model that can predict a global CVD risk as well as the

risk of developing individual components.

Moreover, compared with the laboratory-based algorithms, the present research pro-

posed a simple way to estimate 10-year CVD risk based on office-measured risk factors,

there being no need to do clinical or laboratory tests such as the HDL measurement or

blood test. An individual can assess his or her CVD risk during an office visit or his

own monitoring of the combination of risk factors in the risk model, either manually or

using some device like a wearable sensor.

6.3.2 Contributions

The main contribution of this study is the risk prediction model for early detection of

CVD, which is very encouraging. Findings of this research are significant in at least

four major respects.

• Novel risk factor heart rate and conventional risk factors were identified as

significant for the development of CVD.

• A simple office-based CVD risk prediction model aiming at general CVD was

developed. This risk model does not require a laboratory test. Practitioners can

use it during an office visit.
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• Absolute risk scores in 10 years of CVD can be estimated.

• Multiple forms of the CVD risk estimation, namely the risk equation, nomogram,

and survival curves, were provided.

Those findings may have significant impacts on different stakeholders in the follow-

ing ways.

• To clinicians: this risk model would be an effective prognosis tool for the primary

prevention of CVD. It helps them estimate an accurate probability of developing

CVD in the next few years and provides a corresponding recommendation of life

style intervention or clinical treatments.

• To individuals: this risk model would be a convenient home care tool. They can

use this tool to self-monitor their risk changes at home when they are doing their

improvements or treatment.

• To industries: this risk model can be applied to industries such as health care

applications or wearable monitoring devices for office-based CVD prevention

practice.

6.3.3 Implications

This finding has important implications for developing a wearable monitoring system

for integrating the CVD risk prediction model into the primary health care practice.

This would be a revolution in health care management and spending. However, with the

small event size of diabetes, caution must be applied to the practice of this risk model.

Even though we have used the multiple imputation method to impute the missing values

for diabetes, the original feature of data imbalance, which decides that the imputed data

frame for the "diabetes" might still have a data in-balance there. Advanced imputation
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methods need to considered in the future for avoiding unexpected outcomes caused by

the diabetes data imbalance.

As this risk profile aims to provide an office-based prediction tool for convenience,

we did not include risk factors based on a clinical test such as total cholesterol and

HDL cholesterol but they have a strong effect on CVD event. We have provided a valid

framework for creating a risk model using the Cox regression model, but future work

should take into account risk factors not included in our model at this moment. Thus,

expanding more predictors into the risk model is an important issue for future research.

6.4 Summary

In summary, this section demonstrated the proposed general CVD risk prediction model

in different ways. Both mathematical and graphical presentations of this proposed

model were provided. For an individual sample, the estimated risks are consistent by

using the risk equation, the nomogram, and the survival curves. Moreover, a discussion

about the findings of this research indicates that the general CVD risk model can be an

effective tool for the prevention of CVDs but the implications of the limitations of this

research should be considered in future studies.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this research, we developed a risk prediction model based on office-based mul-

tivariable predictors. This risk model can be used for assessing the probability rate of

developing general CVDs and specific CVD components such as the stroke, heart failure,

and diabetes. A full process of developing a risk prediction model was demonstrated

using the Cox regression method. Both statistical validation and empirical validation

were conducted, and a satisfying discrimination and calibration ability (ROC being

0.71) were obtained. The risk score estimated from the prediction model we derived

is considered to be a valid tool for practitioners to quantify CVD risk and help them

identify high risk individuals for further preventive primary health care.

The findings of this research suggest that heart rate is a novel independent risk

factor affecting the occurrence of CVD. Incorporating this predictor into the risk

estimation model on the basis of traditional risk factors expands the predictive ability

of past existing CVD risk equations. To our knowledge, this is the first algorithm that

incorporates heart rate and traditional risk factors using a statistical method. Moreover,

this office-based risk factor model (as shown in Chapter 6) does not require a clinical
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test, so is more easily operated during an office visit. Both clinicians and patients can

use it simply and easily to assess CVD event rates at any time and any place.

7.2 Limitations

Limitations of our study need to be acknowledged.

• Only a subset of the Framingham Heart Study data was selected for our model

fitting. Among the data set, the size of diabetes events is small. This data imbal-

ance of diabetes events might cause bias (unexpected outcome) when applying

the proposed risk model to special diabetes populations.

• We obtained a result of discrimination and calibration as 0.71, which proves

a good model but not a perfect model. Further research should focus on the

improvement of the model’s ability of discrimination and calibration.

• The validity of the proposed Cox-based risk model for general CVDs should be

evaluated in different ethnic populations. We did an internal validation and an

external empirical validation but within the same population. Stringent external

validations should be conducted in future studies to make sure this model can be

transported to different ethnicities.

7.3 Future Work

To avoid the bias caused by the limited size of diabetes events, future research should

expand the size of data for data analysis. More data frames need to be included and

pre-processed. Possible methods are listed below:

• We have three cohorts study data downloaded from the Framingham Heart Study
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organisation. We can extract all data to expand the sample size for an adequate

event size of diabetes.

• Access and request other available longitudinal data sets, such as the KCIS

programme data set (Chiu et al., 2006), the PREDICT cohort study data set

(Wells et al., 2017), or the QRISK cohort study data set (Hippisley-Cox et al.,

2007).

Furthermore, future work should combine these presented risk prediction equations

with real-time health care platforms. Real-time data frames are collected from a

wearable sensor. Users can monitor their real-time CVD risk trend as well as survival

curve changes. For achieving this objective, three components need to be set up: a

wearable sensor that can accurately collect risk factors included in this risk model, a

secure off-site server for storing and processing the real-time data, and a platform that

can be run in a wearable device such as a smart phone, tablet, or smart watch.

To improve the validity of the model, efforts can be made in the data process stage

if we continue to use statistical regression methods to fit the risk estimation model. In

parametric or semi-parametric models, restricted cubic spline function (Devlin, Weeks

et al., 1986) can be applied to continuous variables. Data will be normalised for reducing

the degree of non-linearity of the predictor. Or else, advanced data mining and machine

learning techniques can be applied to data analysis. Although these techniques have the

disadvantages discussed in Section 1.2, they have the ability to increase the validity of

discrimination and calibration of a risk model (Unnikrishnan et al., 2016).

In addition, there are marked differences between different ethnic groups. Risk

models developed in one population might underestimate or overestimate the risk in

another population. For instance, the Framingham score will overestimate the risk of

CHD for the population in people of China (Zhang, Attia, D’Este, Yu & Wu, 2005).

The accuracy and transportability of the generated CVD risk model should be externally
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validated in different ethnic populations. For applying this CVD risk prediction model

on New Zealanders, our next step could be requesting a cohort study data set (called

‘PREDICT’) from the New Zealand population (Wells et al., 2017), and then conducting

an external validation on the basis of the PREDICT data set.
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Milenković, A., Otto, C. & Jovanov, E. (2006). Wireless sensor networks for personal
health monitoring: Issues and an implementation. Computer communications,
29(13), 2521–2533.

Miller Jr, R. G. (2011). Survival analysis (Vol. 66). John Wiley & Sons.
Ministry of Health. (2018). Cardiovascular disease risk assessment and management

for primary care. Wellington: Ministry of Health.



References 124

Moons, K. G., Altman, D. G., Vergouwe, Y. & Royston, P. (2009). Prognosis and
prognostic research: application and impact of prognostic models in clinical
practice. Bmj, 338, b606.

Moons, K. G., de Groot, J. A., Bouwmeester, W., Vergouwe, Y., Mallett, S., Altman,
D. G., . . . Collins, G. S. (2014). Critical appraisal and data extraction for
systematic reviews of prediction modelling studies: the charms checklist. PLoS
medicine, 11(10), e1001744.

Moons, K. G., Kengne, A. P., Woodward, M., Royston, P., Vergouwe, Y., Altman, D. G.
& Grobbee, D. E. (2012). Risk prediction models: I. development, internal
validation, and assessing the incremental value of a new (bio) marker. Heart,
98(9), 683–690.

Morse, J. M. & Niehaus, L. (2009). Walnut Creek, Calif. : Left Coast Press, [2009].
Mostafa, S., Davies, M., Webb, D., Gray, L., Srinivasan, B., Jarvis, J. & Khunti, K.

(2010). The potential impact of using glycated haemoglobin as the preferred
diagnostic tool for detecting type 2 diabetes mellitus. Diabetic Medicine, 27(7),
762–769.

Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M.,
. . . others (2015). Heart disease and stroke statistics—2015 update: a report from
the american heart association. Circulation, 131(4), e29–e322.

Murukesan, L., Murugappan, M., Iqbal, M. & Saravanan, K. (2014). Machine learn-
ing approach for sudden cardiac arrest prediction based on optimal heart rate
variability features. Journal of Medical Imaging and Health Informatics, 4(4),
521–532.

National Heart, Lung, and Blood Institute. (2018, Januray). National heart, lung, and
blood institute. National Heart, Lung, and Blood Institute. Retrieved 2018, from
https://www.nhlbi.nih.gov/

Neuman, L. W. (2002). Social research methods: Qualitative and quantitative ap-
proaches.

Odden, M. C., Shlipak, M. G., Whitson, H. E., Katz, R., Kearney, P. M., defilippi, C.,
. . . Newman, A. B. (2014). Risk factors for cardiovascular disease across the
spectrum of older age: The cardiovascular health study. Atherosclerosis, 237, 336
- 342.

Oresko, J. J., Jin, Z., Cheng, J., Huang, S., Sun, Y., Duschl, H. & Cheng, A. C. (2010).
A wearable smartphone-based platform for real-time cardiovascular disease de-
tection via electrocardiogram processing. IEEE Transactions on Information
Technology in Biomedicine, 14(3), 734–740.

Pantelopoulos, A. & Bourbakis, N. G. (2010). A survey on wearable sensor-based
systems for health monitoring and prognosis. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 40(1), 1–12.

Parikh, N. I., Hwang, S.-J., Larson, M. G., Cupples, L. A., Fox, C. S., Manders, E. S.,
. . . O’Donnell, C. J. (2007). Parental occurrence of premature cardiovascular
disease predicts increased coronary artery and abdominal aortic calcification in
the Framingham offspring and third generation cohorts. Circulation, 116(13),
1473–1481.

https://www.nhlbi.nih.gov/


References 125

Parmar, P., Krishnamurthi, R., Ikram, M. A., Hofman, A., Mirza, S. S., Varakin, Y., . . .
others (2015). The stroke riskometertm app: Validation of a data collection tool
and stroke risk predictor. International Journal of Stroke, 10(2), 231–244.

Patel, S., Park, H., Bonato, P., Chan, L. & Rodgers, M. (2012). A review of wearable
sensors and systems with application in rehabilitation. Journal of neuroengineer-
ing and rehabilitation, 9(1), 21.

Patrick, K., Raab, F., Adams, M. A., Dillon, L., Zabinski, M., Rock, C. L., . . . Norman,
G. J. (2009). A text message–based intervention for weight loss: randomized
controlled trial. Journal of medical Internet research, 11(1).

Pencina, M. J., D’agostino, R. B., Larson, M. G., Massaro, J. M. & Vasan, R. S. (2009).
Predicting the 30-year risk of cardiovascular disease: the Framingham heart study.
Circulation, 119(24), 3078–3084.

Phillips, D. C. & Burbules, N. C. (2000). Postpositivism and educational research.
Rowman & Littlefield.

Rorty, R. (1990). Pragmatism as anti-representationalism. JP Murphy, Pragmatism:
From Peirce to Davison, 1–6.

Royston, P. & Altman, D. G. (2013). External validation of a cox prognostic model:
principles and methods. BMC medical research methodology, 13(1), 33.

Royston, P. et al. (2004). Multiple imputation of missing values. Stata journal, 4(3),
227–41.

Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American
statistical Association, 91(434), 473–489.

Savin-Baden, M. & Major, C. H. (2013). Qualitative research : the essential guide to
theory and practice. London : Routledge, Taylor Francis Group, 2013.

Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model.
Biometrika, 69(1), 239–241.

Schumacher, M., Holländer, N. & Sauerbrei, W. (1997). Resampling and cross-
validation techniques: a tool to reduce bias caused by model building? Statistics
in medicine, 16(24), 2813–2827.

Smith, J. K. (1983). Quantitative versus qualitative research: An attempt to clarify the
issue. Educational researcher, 12(3), 6–13.

Somers, R. H. (1962). A new asymmetric measure of association for ordinal variables.
American sociological review, 799–811.

Splansky, G. L., Corey, D., Yang, Q., Atwood, L. D., Cupples, L. A., Benjamin, E. J., . . .
others (2007). The third generation cohort of the national heart, lung, and blood
institute’s Framingham heart study: design, recruitment, and initial examination.
American journal of epidemiology, 165(11), 1328–1335.

Statistics New Zealand. (2012). Demographic trends 2010. Wellington: Statistics New
Zealand ISSN.

Statistics New Zealand and Ministry of Pacific Island Affairs. (2011). Health and
pacific peoples in New Zealand. Wellington: Statistics New Zealand and Ministry
of Pacific Island Affairs.

Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., . . .
Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological



References 126

and clinical research: potential and pitfalls. Bmj, 338, b2393.
Tartakovsky, A., Nikiforov, I. & Basseville, M. (2014). Sequential analysis: Hypothesis

testing and changepoint detection. Chapman and Hall/CRC.
Tashakkori, A. & Teddlie, C. (2010). Sage handbook of mixed methods in social

behavioral research. Los Angeles : SAGE Publications, [2010].
Team, R. C. et al. (2013). R: A language and environment for statistical computing.
Unnikrishnan, P., Kumar, D. K., Poosapadi Arjunan, S., Kumar, H., Mitchell, P. &

Kawasaki, R. (2016). Development of health parameter model for risk prediction
of cvd using svm. Computational and mathematical methods in medicine, 2016.

Vaanathi, S. (2017). Cardiovascular disease prediction using fuzzy logic expert system.
IUP Journal of Computer Sciences, 11(3).

Van Buuren, S. (2012). Flexible imputation of missing data. CRC press.
Weiner, D. E., Tighiouart, H., Amin, M. G., Stark, P. C., MacLeod, B., Griffith, J. L., . . .

Sarnak, M. J. (2004). Chronic kidney disease as a risk factor for cardiovascular
disease and all-cause mortality: a pooled analysis of community-based studies.
Journal of the American Society of Nephrology, 15(5), 1307–1315.

Wells, S., Kerr, A., Eadie, S., Wiltshire, C. & Jackson, R. (2010). ‘your heart forecast’:
a new approach for describing and communicating cardiovascular risk? Heart,
96(9), 708–713.

Wells, S., Riddell, T., Kerr, A., Pylypchuk, R., Chelimo, C., Marshall, R., . . . others
(2017). Cohort profile: the predict cardiovascular disease cohort in New Zealand
primary care (predict-cvd 19). International journal of epidemiology, 46(1),
22–22.

Wessler, B. S., Kramer, W., Cangelosi, M., Raman, G., Lutz, J. S. & Kent, D. M. (2015).
Clinical prediction models for cardiovascular disease: tufts predictive analytics
and comparative effectiveness clinical prediction model database. Circulation:
Cardiovascular Quality and Outcomes, 8(4), 368–375.

White, I. R., Royston, P. & Wood, A. M. (2011). Multiple imputation using chained
equations: issues and guidance for practice. Statistics in medicine, 30(4), 377–
399.

Whitehead, J. (1993). Sample size calculations for ordered categorical data. Statistics
in medicine, 12(24), 2257–2271.

Whittaker, R., McRobbie, H., Bullen, C., Borland, R., Rodgers, A. & Gu, Y. (2012).
Mobile phone-based interventions for smoking cessation. The Cochrane Library.

Wilson, P. W., D’agostino, R. B., Sullivan, L., Parise, H. & Kannel, W. B. (2002).
Overweight and obesity as determinants of cardiovascular risk: the Framingham
experience. Archives of internal medicine, 162(16), 1867–1872.

Wilson, P. W., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H. & Kannel,
W. B. (1998). Prediction of coronary heart disease using risk factor categories.
Circulation, 97(18), 1837–1847.

Woodward, M., Brindle, P. & Tunstall-Pedoe, H. (2006). Adding social deprivation
and family history to cardiovascular risk assessment-the ASSIGN score from the
Scottish Heart Health Extended Cohort (SHHEC). Heart.



References 127

World Health Organisation and others. (n.d.). mhealth: new horizons for health through
mobile technologies: based on the findings of the second survey on ehealth.
geneva: Who; 2011.

Yu, J., Dai, L., Zhao, Q., Liu, X., Chen, S., Wang, A., . . . Wu, S. (2017). Association of
cumulative exposure to resting heart rate with risk of stroke in general population:
The Kailuan cohort study. Journal of Stroke and Cerebrovascular Diseases,
26(11), 2501–2509.

Zhang, X.-F., Attia, J., D’Este, C., Yu, X.-H. & Wu, X.-G. (2005). A risk score
predicted coronary heart disease and stroke in a Chinese cohort. Journal of
clinical epidemiology, 58(9), 951–958.



Appendix A

Abbreviations

CVD Cardiovascular Disease

CHD Coronary Heart Disease

CAD Coronary Artery Diseases

EHRs Electronic Health Records

SHHEC Scottish Heart Health Extended Cohort

PROCAM Prospective Cardiovascular Münster

cumRHR cumulative exposure to Resting Heart Rate

ASCVD Atherosclerotic Cardiovascular Disease

SCA Sudden Cardiac Arrest

HDL High Density Lipoprotein

LDL Low Density Lipoprotein

SBP Systolic Blood Pressure

HF Heart Failure

IHF Incident Heart Failure

CPMs Clinical Prediction Models

T2DM Type 2 Diabetes Mellitus

CKD Chronic Kidney Disease
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SVM Support Vector Machines

ANN Artificial Neural Network

CART Classification and Regression Tree

KNHANES-VI Korean National Health and Nutrition Examination Survey VI

PNN Probabilistic Neural Net-work

AI Artificial Intelligence

BMI Body Mass Index

CRP C-reactive Protein

HRV Heart Rate Variability

KCIS Keelung Community-based Integrated Screening

NHLBI National Heart, Lung and Blood Institute

JBS Joint British Societies

BNF British National Formulary

WHO World Health Organisation

GOe Global Observatory for eHealth

PDAs Personal Digital Assistants

MMM My Meal Mate

ECG Electrocardiography

RBFN Radial Basis Function Network

GRNN Generalised Regression Neural Network

CHARMS CHecklist for critical Appraisal and data extraction for systematic Reviews

of prediction Modelling Studies

FHS Framingham Heart Study

HR Hazard Ratios

MCAR Missing Completely At Random

MAR Missing At Random

IM Informative Missing
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MGV Maximum Generalized Variance

PLS Partial Least Squares

Lasso Least absolute shrinkage and selection operator

PH Proportional Hazards

GOF Goodness-of-fit

ROC Receiver Operating Characteristic
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Appendix D

Code

1 covariates <- c("age", "sex", "bmi", "hyp", "honh", "hop", "hooc",

2 "pb", "hoarb", "horf", "hoaoa", "hotd", "hose", "bps",

3 "bpd", "cgrpd", "cgpd", "ppd", "pr", "dia")

4

5 forward_formulas <- sapply(covariates,

6 function(x) as.formula(paste(’Surv(cvddate, cvd)~’, x)))

7

8 forward_models <- lapply( forward_formulas,

9 function(x){coxph(x, data = FOCExam1NoMissingData)})

10

11 results <- lapply(forward_models,

12 function(x){

13 x <- summary(x)

14 p.value<-signif(x$wald["pvalue"], digits=2)

15 wald.test<-signif(x$wald["test"], digits=2)

16 beta<-signif(x$coef[1], digits=2);#coeficient beta

17 HR <-signif(x$coef[2], digits=2);#exp(beta)

18 HR.confint.lower <- signif(x$conf.int[,"lower .95"], 2)

19 HR.confint.upper <- signif(x$conf.int[,"upper .95"],2)

20 HR <- paste0(HR, " (", HR.confint.lower, "-", HR.confint.upper,")")

21 res<-c(beta, HR, wald.test, p.value)

22 names(res)<-c("beta", "HR (95% CI for HR)", "wald.test", "p.value")

23 return(res) })

24

25 res <- t(as.data.frame(results, check.names = TRUE))

26 as.data.frame(res)

Code Snippet D.1: R Code of Selecting Variables using Forward Selection
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1 #processCsv.py

2 import os

3 import logging

4 import hashlib

5 import csv

6

7 def file_name(file_dir):

8 for root, dirs, files in os.walk(file_dir):

9 print(root) # current directory

10 print(dirs) # sub directory in current directory

11 print(files) # files in current directory

12

13 path_out = ’result.txt’

14 file_out = open(path_out,’w’)

15

16 target = getPIDArray()

17 columns = getColumns()

18 col_names = []

19 for index, column in enumerate(columns):

20 print(index, column)

21 col_names.append(column)

22

23 print("\n csv files number is ",len(files))

24 for i in range (len(files)):

25 print("\n ",i ,files[i])

26 file_out.write(" -------------\n ")

27 file_out.write(files[i]+" :\n ")

28 searchInCsvFile(files[i],target,columns,col_names)

29 file_out.close()

30 def getPIDArray():

31 fileName = "PID.csv"

32 csvFile = open(fileName, "r")

33 reader = csv.reader(csvFile)

34 pid=[]

35 for item in reader:

36 patientID = item[0]

37 pid.append(patientID)

38 return pid

39 def getColumns():

40 fileName = "Columns.csv"

41 csvFile = open(fileName, "r")

42 reader = csv.reader(csvFile)

43 columns={}

44 for item in reader:

45 filename = item[0]

46 columns[item[0]]=[]

47 for i in range (1,len(item)):

48 columns[item[0]].append(item[i])

49 print("columns name is: ",columns)

50 return columns

51 def searchInCsvFile(file, targetPID, columns ,col_names):

52 print("\n enter searchInCsvFile ")

53 if not file in col_names:

54 print("\n file is not concerned ")
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55 return

56 path_out = "res/"+file+’_res.csv’

57 outputFile = open(path_out,’w’)

58 for col in columns[file]:

59 outputFile.write(col+",")

60 outputFile.write("\n")

61

62 fileName = "csv/"+file

63 csvFile = open(fileName, "r")

64 reader = csv.reader(csvFile)

65 count = 0

66 pid_col = -1

67 for item in reader:

68 count += 1

69 if count == 1:

70 title = item

71 col_num = len(item)

72 for i in range (col_num):

73 if item[i] == "PID":

74 print("\n PID column is: ",i)

75 pid_col = i

76 elif count>1:

77 if pid_col>0:

78 if item[pid_col] in targetPID:

79 value = {}

80 for index in range (col_num):

81 value[title[index]] = item[index]

82 concern_col_num = len(columns[file])

83 for j in range (concern_col_num): outputFile.write(value[columns[file][j]]+",")

84 outputFile.write("\n")

85 outputFile.close()

86 file_name("csv")

Code Snippet D.2: Python Code for Data Extraction
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Research Outputs from Thesis

• The general CVD risk prediction model present in Chapter 6.
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