
Full citation: MacDonell, S.G., Kirk, D., & McLeod, L. (2008) Raising healthy software 
systems, in Proceedings of the Fourth International ERCIM Workshop on Software Evolution 
and Evolvability at the 23rd IEEE/ACM International Conference on Automated Software 
Engineering. L'Aquila, Italy, IEEE Computer Society Press, pp.21-24. 
http://dx.doi.org/10.1109/ASEW.2008.4686317 
 

Raising Healthy Software Systems 
 

Stephen G. MacDonell, Diana Kirk and Laurie McLeod 
SERL, Auckland University of Technology  

Private Bag 92006, Auckland 1142, New Zealand 
{smacdone, dkirk, laumcl88}@aut.ac.nz 

 
 

Abstract 
 

We elaborate on the analogy between humans and 
bespoke software systems and we use this analogy to 
inform an alternative perspective on the development 
and management of such systems. 
 
1. INTRODUCTION AND MOTIVATION 

The treatment of software development as an 
engineering endeavour has encouraged us to view and 
treat software as something we can manufacture. This 
has led naturally to the notion of software factories and 
ongoing efforts in component-based software 
engineering (SE). There is no doubt that such thinking 
has been useful and has enabled significant progress; it 
is our contention, however, that maintaining such a 
view exclusive of others will limit further progress. 
Current and future contexts for software development 
exhibit such scale and complexity that complementary 
views are needed. This is due to a variety of factors: the 
growing diversity of deployment environments; the 
increasingly always-on nature of software; the expected 
interoperability of systems. And the fact is that bespoke 
software does not generally exist in isolation – it almost 
always exists as part of a system and as part of a 
process or product solution. 

In short, there is growing acknowledgement that: 
• ‘simple’ commodity systems become packages; so 

those we build will be increasingly complex [1] 
• complexity is already well beyond any individual’s 

ability to understand [2] 

• complexity comes from ‘the edges’ – interfaces, 
interactions, interoperability [3,4] 

• some of today’s software engineering methods are 
increasingly inadequate in this context [5] 

• current approaches for managing complex projects 
are misdirected and outdated [6,7]. 
In light of this, the limited scope of SE to the 

software rather than the solution/service means that the 
future usefulness of this dominant paradigm alone 
could be questioned. Similarly, the effectiveness of 
contemporary project management methods to guide 
the development and ongoing management of complex 
software systems is no longer assured. So: are there 
metaphors from or analogies to other domains that 
could provide better insights and improved methods? 
In computing generally a growing body of research is 
being directed towards the metaphor du jour – nature- 
or biologically-inspired computing (e.g. [8]). While 
this certainly deserves attention, restricting ourselves to 
just this metaphor could also be severely limiting 
[9,10]. In our research then, we consider an alternative 
analogy – between software systems and people. 
 
2. SOFTWARE SYSTEMS AND PEOPLE 

We propose that each bespoke software system 
should be viewed as an evolving individual in a 
population, and that useful parallels can be drawn 
between our own development and management and 
that of software systems. Both individuals and systems 
evolve over time through life stages. As with people, 
the timing for these stages is uncertain and varies from 
system to system. Broadly speaking, however, the 
stages are:  

http://dx.doi.org/10.1109/ASEW.2008.4686317�


Creation. An individual has general characteristics 
that adhere to evolutionary norms, for example, has 
two eyes (structural), arms attached at shoulders 
(organizational), empathy for others (societal). An 
individual’s specific form and function (blue eyes) are 
heavily influenced by their parents via inheritance.  

Bespoke software systems have general 
characteristics, for example, modules with interfaces, 
with specific form and function defined by the 
development team responsible for software creation. 

Incubation. Ante-natal care in the form of advice to 
parents and preventative support are generally given to 
expectant parents. Advice relates to behaviors that will 
help ensure a good outcome (healthy baby), for 
example, ‘no smoking’, ‘take folic acid’. Support 
involves monitoring the values of some key system 
indicators (for example, heartbeat) with a view to 
highlighting potential problems.  

For software systems ‘in embryo’ i.e. under 
development, the development team is advised to 
behave according to industry best practice to ensure a 
good outcome. Key system indicators, for example, 
numbers of defects and effort, are monitored with a 
view to highlighting potential problems. 

Childhood. During childhood, system behavior is 
characterized by adherence to rules, compliance, and 
generally predictable behavior, once taught. Children 
begin to interact with the rest of the world under the 
watchful eye of parents. Parents facilitate this 
interaction by providing information about, for 
example, likes and dislikes or sleeping habits. If the 
child is ill, a doctor is called to isolate the source of the 
problem and advise parents on treatment.  

After development, a software system is used by 
others and instructions for use are generally provided. 
It also interacts with other software systems. If 
stakeholders have problems, the maintenance team is 
alerted and it is expected that they will isolate the 
source of the problem and provide a resolution. 

Adolescence. During this phase, external influences 
can lead to significant change, erratic behavior and lack 
of predictability. The strength of symptoms depends on 
many factors and includes both factors inherent in the 
adolescent and those in the interaction between 
adolescent and environment. 

Software systems often experience a period of rapid 
change as features are added or the environment in 
which the system exists changes in unexpected ways.  

Adulthood. Both individuals and software systems 
may reach a level of expected maturity, a stage 
characterized by behavioral stability and predictability. 

Mid-life crisis/second childhood. For humans, this 
stage often occurs as a result of a changing 

environment. As children leave home or financial 
pressures change, ‘business as usual’ for the adult is no 
longer appropriate and this forces a struggle to ‘fit in’ 
to new situations and changed expectations.  

For software systems, the stage may be initiated by a 
step-change in technology creating new expectations 
and a situation where a system no longer behaves as 
required. Some efforts are made to adapt the system to 
new demands, but this is generally problematic. 

The third age. This stage is characterized by efforts 
to keep systems, and ourselves, employed, sometimes 
as backup for newer ‘replacements’. However, the cost 
of care tends to increase as problems become more 
severe and the need for support more frequent.  

The analogy allows us to make the following 
observations. We discuss implications in Section 3. 

Outcomes are determined by both nature – expertise 
and capabilities of developers and the environment 
during development – and nurture – how the system 
behaves and is managed during the early stages of life. 
System performance, considered broadly, is influenced 
by both sets of factors. However, just as people 
continue to grow and change during a life-time, 
software systems are never fully formed or entirely 
stable. This maps to the idea of emergent organisations 
[11] that face an ongoing need to change and adapt to 
their environments – which could otherwise be called 
evolving. Furthermore, the lifetime of a given software 
system may be short or long – in some cases, a product 
family might evolve and ‘live’ for generations.  

If environmental factors do change then the health 
and well-being of the system can also change. A person 
with low body fat and high metabolism may function 
well in a hot climate, but less well in a cold climate. In 
a similar way, a software system that functions well in a 
particular business environment may function less well 
if the context changes. Change can of course be 
designed and deliberate or can be unanticipated. A 
person may choose to learn a new language or embark 
on a physical fitness program. Or a family member may 
become sick, forcing an unplanned change in duties 
and behaviors. Systems development may also be 
intentional, for example, a project is set up to add new 
features to a product, or initiated by environmental 
change, for example, the stakeholder market adopts a 
new technology. 

What is important with respect to health status and 
well-being depends on life stage and on the specific 
characteristics of the system. For example, babies 
undergo a ‘10 point test’ at birth - the higher the score, 
the healthier the baby. Also there could be specialized 
attributes or attribute thresholds that are sought in 
certain types of individual, for example, high 



performance athletes. In a similar way, software 
systems are monitored against key indicators, for 
example, defect levels, and ‘healthy’ values depend 
upon life stage – some defects may be acceptable 
during early childhood, but not during adulthood. 

Processes that move you away from core values and 
objectives cause malaise. For many humans, a poor diet 
and lack of exercise may cause high blood pressure and 
cholesterol levels. For bespoke software systems, poor 
change control may lead to cost over-runs. In both 
cases, a strategy of changing root cause is more 
effective than addressing symptoms only. That said, 
where cause and effect is not known, treatment of 
symptoms may provide short-term relief. 

Once a set of behaviors is established, change is 
difficult. This characteristic is almost non-existent in 
children but becomes more pronounced with age. It can 
be difficult to change from processes that reduce health 
status to alternatives that prevent or reduce the 
likelihood of sickness. Software systems show a similar 
characteristic. A product could be difficult to change, 
with unanticipated consequences, and system 
stakeholders may also be resistant to change. 

As noted, people sometimes become ill and require 
treatment from an external professional. But a person 
may also proactively self-manage health, for example, 
by monitoring body weight and cholesterol levels and 
changing eating habits if these fall from desired levels. 
If we consider a software system as comprising a 
product (‘body’) and stakeholders (‘consciousness’), 
we may observe that a system ‘gets sick’ and requires 
treatment (maintenance); or it may proactively choose 
to monitor performance and implement process change 
if this falls below desired levels. Taking this notion a 
step further leads easily to the principles of software 
system autonomy, reflecting systems’ abilities to self-
protect, self-diagnose, self-heal and so on.  

In Table 1, we illustrate some of the ideas presented 
in this section. In the left column, we show four 
scenarios of system health: sickness, prevention, 
growth and environmental change. For each, we state 
some characteristics. In columns two and three, we 
provide some examples of these characteristics for 
human and software systems. 

 
3. IMPLICATIONS AND INSIGHTS 

Our discussion of life stages raises many points for 
discussion, only some of which we consider here. 
Research indicates that the reality for many 
organizations is constant change [11]. In such a 
context, software systems are never fully formed, and 
must also continually adapt. We may view these 
systems as being in a prolonged state of adolescence or 

mid-life crisis. It is no longer appropriate to undertake 
development with the assumption that ‘adulthood’ is 
the only end-goal. 

Table 1: Examples of system characteristics 

Scenario People Software 

Sickness 
- Symptoms 
- Indicators unhealthy 
- Find cause and treat  

 
Headache 
Temperature 
Take medicine 

 
Stakeholders unhappy 
Defect numbers 
Fix defects 

Prevention 
- Monitor indicators 
- Preventative action 

 
Cholesterol 
Lifestyle 
change 

 
Product quality 
Process/product 
change 

Growth 
- Identify objectives 
- Confounding 

factors 
- Make changes 

 
Run marathon 
Motivation 
Training, diet 

 
Globalise 
Short term focus 
Gap analysis & 
change 

Environment change 
- New environment 
- Indicator gaps 
- Confounding 

factors 
- Close gaps 

 
Redundancy 
Computer skills 
Confidence 
Take course 

 
Business environment 
All web-based 
No web developers 
Hire web developers 

 
The idea that systems are characterised by different 

values of key indicators at different times and that 
systems with different objectives require different 
indicators leads us to question the applicability of the 
current focus on process definition. Processes cause 
change to indicator values. Before knowing which 
processes to apply, we must first understand what we 
are aiming to change. A different approach to defining 
‘best practice’ may therefore be needed. This also 
relates to software process improvement. This tends to 
involve a gap analysis against ‘best practice processes’ 
and implementing missing processes. However, from 
Table 1 it is clear that appropriate process change is 
dependent upon first understanding what is the scenario 
for change and then identifying what indicators are 
relevant. An individual may not want to have the heart 
rate of a top athlete if it involves spending time they do 
not have and no plans to run a marathon. We must first 
understand whether the system is sick, needs a 
preventative approach, must exist in changed 
circumstances or is reacting to unplanned change in the 
environment. We may then investigate indicators and 
appropriate processes that will close gaps. When 
viewed from this perspective, we may also consider 
that improvement systems, for example, CMMI and 
SPICE, are based on the assumptions that health is the 
same for all systems and that ‘sickness’ is the only 
reason for change.  

Human parents are given guidelines for a healthy 
outcome, but are not all expected to, for example, eat 



the same foods, take the same amounts of rest or 
exercise in the same way. If we apply the idea of 
guidelines rather than prescription to software projects 
along with the understanding that there are multiple 
‘parents’ contributing to decisions and outcomes, this 
suggests the need for a project management paradigm 
that acknowledges context, perspectives and other 
‘soft’ factors as key. This viewpoint is consistent with 
ideas emerging from the project management literature 
that advocate a move away from historical prescriptive 
project management practices towards an approach that 
focuses more on social process and context-dependent 
judgment [6]. In our analogy there is scope for both 
approaches – ‘sickness’ and ‘prevention’ may be 
viewed as ongoing aspects of life, whereas ‘growth’ 
and ‘environment change’ are generally out of the 
ordinary and require the setting up of projects i.e. 
defining of goals and desired outcomes. 

One final observation relates to the ‘doctoring’ 
aspect of software systems. For humans, the roles of 
parent, person and doctor are clearly separated. People 
have General Practitioners (GPs) who monitor aspects 
of health and make initial diagnoses across a broad 
range of ailments. Where problems are more complex 
specialist professionals may need to be consulted. 
Specific treatments can be administered by yet other 
specialists. Well-person clinicians can recommend 
proactive steps in order to prolong well-being. Parents, 
although responsible for the characteristics of a small 
number of related offspring, are not expected to be 
experts in, for example, the digestive systems of their 
offspring, or how the various human systems interact.  

With software systems, however, we suggest that 
there is a less clear separation of concerns. Developers 
are generally expected to understand many aspects of 
the products they create. Such aspects relate not only to 
‘simple’ structural concerns, for example, module 
structure, but to complex interactions between system 
components under many different environmental 
situations [4]. Developers may be supported by Quality 
Assurance personnel, but although the QA role is to 
monitor and suggest process change, the advice may be 
general and unlikely to provide support specific to the 
nature of the problem. It is rather like always telling an 
expectant mother to ‘eat well’ when there is a problem 
of gestational diabetes and some stronger intervention 
is indicated. After ‘birth’, maintenance personnel deal 
with problems, but again, there is no expectation of 
specialist expertise - indeed, novices may be assigned 
maintenance roles, and developers are generally seen as 
the ‘experts’ when a tricky problem is encountered.  

So perhaps a rethink of the roles is indicated. We 
certainly need to continue to educate and train parents 

and GPs, but we may also need to direct more effort to 
training specialist practitioners in diagnosis, treatment 
and intervention, mapping to surgical, medical and 
other disciplines. Functional area specialists may hold 
domain expertise: pediatrics ≈ business systems. 
Technical area specialists may be infrastructural 
experts: vascular surgeon ≈ network specialist. Under 
such an approach there may be greater acceptance that 
there are levels of judgement involved in the work of 
these individuals. However, we would also expect from 
them informed, evidence-based practice, and that their 
professional competence would be monitored in an 
ongoing manner through peer assessment. 

 
4. FINAL REMARKS 

Metaphors “are inherently partial” and serve to 
“illuminate certain features of a phenomenon whilst 
obscuring others” [7]. There are certainly aspects of the 
analogy that fail to map effectively – a simple example 
is the lack of a fixed incubation length for software 
systems. There are also sensitive aspects of both the 
analogy and its link to medicine that need scrutiny. 
However we believe that at present the insights gained 
outweigh such limitations. Given space constraints we 
have also not addressed related work here, although it 
most certainly exists. In particular, software system 
health has been considered in [12], and in [13] under 
an aspect oriented approach, and the notion of software 
aging has been  considered by many authors, including 
[14] and [15]. A very relevant staged model of software 
was described in [16] and life-stage models exist for 
other technological innovations [17]. We believe that 
our work is complementary to these studies and extends 
the analogy to enable further insights to be gained. 
 
5. REFERENCES 
[1] Broy, M. (2006) “The ‘Grand Challenge’ in 
informatics: engineering software-intensive systems”, 
Computer October: 72-80. 
[2] Lawson, H.W. (2002) “Rebirth of the computer 
industry”, Commun. of the ACM 45(6): 25-29. 
[3] Brooks, F.P. (1987) “No silver bullet – essence and 
accident in software engineering”, Computer (April): 
10-19. 
[4] Fiadeiro, J.L. (2007) “Designing for software’s 
social complexity”, Computer January: 34-39. 
[5] Müller-Schloer, C. (2004) “Organic computing – on 
the feasibility of controlled emergence”, in Proc. 
CODES+ISSS’04, ACM. 
[6] Cicmil, S., T. Williams, J. Thomas, and D. 
Hodgson (2006) “Rethinking Project Management: 



Researching the actuality of projects”, Intl Jnl of Proj 
Mgmnt 24: 675-686. 
[7] Drummond, H., and J. Hodgson (2003) “The 
chimpanzees’ tea party: a new metaphor for project 
managers”, Jnl of Information Technology 18: 151-
158. 
[8] Liu, J., and K.C. Tsui (2006) “Toward nature-
inspired computing”, Commun. of the ACM 49(10): 59-
64. 
[9] Teuscher, C. (2006) “Biologically uninspired 
computer science”, Commun. of the ACM 49(11): 27-
29. 
[10] Wang, W.-L. (2002) “Beware the engineering 
metaphor”, Commun. of the ACM 45(5): 27-29. 
[11] Truex, D.P, R. Baskerville and H. Klein (1999) 
“Growing systems in emergent organizations”, 
Commun. of the ACM 42(8): 117-123. 
[12] Iverson, D.L. (2004) “Inductive system health 
monitoring”, in Proc. IC-AI, CSREA Press. 
[13] Lau, A., and R.E. Seviora (2005) “Design patterns 
for software health monitoring”, Proc. ICECCS, IEEE. 
[14] Madhavji, N. (2002) “Beyond the next release”, in 
Proc. CASCON, IBM. 
[15] Miller, R.L., and J. Morley (1996) “Geriatric 
systems: the need for reverse engineering”, in Proc. 
NAECON, IEEE. 
[16] Rajlich, V.T., and K.H. Bennett (2000) “A staged 
model for the software life cycle”, Computer (July): 
66-71. 
[17] Nolan, R.L. (1979) “Managing the crisis in data 
processing”, Harvard Business Review 57 (2): 115-
126.  


	1. Introduction and motivation
	2. Software systems and people
	3. Implications and insights
	4. Final remarks
	5. References

