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Abstract

Background: The current literature recognises that left ventricular hypertrophy makes a key contribution to the
high rate of premature cardiovascular mortality in dialysis patients. Determining how we might intervene to
ameliorate left ventricular hypertrophy in dialysis populations has become a research priority. Reducing sodium
exposure through lower dialysate sodium may be a promising intervention in this regard. However there is clinical
equipoise around this intervention because the benefit has not yet been demonstrated in a robust prospective
clinical trial, and several observational studies have suggested sodium lowering interventions may be deleterious in
some dialysis patients.

Methods/design: The Sodium Lowering in Dialysate (SoLID) study is funded by the Health Research Council of
New Zealand. It is a multi-centre, prospective, randomised, single-blind (outcomes assessor), controlled parallel
assignment 3-year clinical trial. The SoLID study is designed to study what impact low dialysate sodium has upon
cardiovascular risk in dialysis patients. The study intends to enrol 118 home hemodialysis patients from 6 sites in
New Zealand over 24 months and follow up each participant over 12 months. Key exclusion criteria are: patients
who dialyse more frequently than 3.5 times per week, pre-dialysis serum sodium of <135 mM, and maintenance
hemodiafiltration. In addition, some medical conditions, treatments or participation in other dialysis trials, which
contraindicate the SoLID study intervention or confound its effects, will be exclusion criteria. The intervention and
control groups will be dialysed using dialysate sodium 135 mM and 140 mM respectively, for 12 months. The primary
outcome measure is left ventricular mass index, as measured by cardiac magnetic resonance imaging, after 12
months of intervention. Eleven or more secondary outcomes will be studied in an attempt to better understand
the physiologic and clinical mechanisms by which lower dialysate sodium alters the primary end point.
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Discussion: The SoLID study is designed to clarify the effect of low dialysate sodium upon the cardiovascular
outcomes of dialysis patients. The study results will provide much needed information about the efficacy of a cost
effective, economically sustainable solution to a condition which is curtailing the lives of so many dialysis patients.

Trial registration: Australian and New Zealand Clinical Trials Registry number: ACTRN12611000975998
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Background
Dialysis is the world’s most utilized modality of renal re-
placement therapy [1], and enables patients with end
stage kidney disease (ESKD) to avoid imminently fatal
complications such as hyperkalemia, acidosis, and pul-
monary edema and thereby live longer. However, it is
apparent that those on dialysis continue to have a
uremic toxicity as manifested by a high rate of prema-
ture mortality. As is the case in other countries, the me-
dian survival of dialysis patients in New Zealand is
approximately 4 years, with an overall mortality rate
several-fold higher than that of the general population
(Figure 1) [2]. This situation is largely attributable to
premature cardiovascular (CV) death, with infection
playing the next most important role. Although not com-
monly appreciated, the patients with the highest propor-
tion of CV deaths are those on home hemodialysis (HD),
probably as a result of a lower competing risk of infectious
death due to patient selection and reduced exposure to
nosocomial pathogens. In Australia and New Zealand,
67% of patients on home HD die from CV disease [3].
The mechanism of CV death in dialysis patients ap-

pears to be different from that in the general population.
Sudden cardiac death (SCD) due to lethal arrhythmia
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Figure 1 Mortality in New Zealand patients treated by dialysis and tr
general population.
accounts for approximately half of CV deaths in the gen-
eral population, and is most often a manifestation of cor-
onary heart disease [4]. In contrast, SCD accounts for the
majority of CV deaths in dialysis patients and is probably
less likely due to sudden coronary ischemia [5,6]. More
likely, arrhythmogenesis is triggered by re-entry path-
ways that are superimposed upon the usual ventricu-
lar conducting system by inter-myocardial cell fibrosis
[7-9]. This fibrosis results from a synergy between left
ventricular (LV) hypertrophy and uremia per se [10,11],
and also contributes to a stiff and impaired myocardium
and ultimately congestive heart failure [12-16].
There is a range of clinical evidence that supports the

crucial role of for LV hypertrophy in SCD among dialysis
patients. In a multitude of studies, the presence of LV
hypertrophy is a strong independent mortality risk. In a
landmark study, LV hypertrophy was associated with a
relative risk for death of 2.9, even when adjusted for age,
known coronary artery disease, diabetes, and blood pres-
sure (BP) [17]. Of equal importance, recent studies have
demonstrated that that the effect of lipid lowering the-
rapy is attenuated in patients with kidney disease, re-
inforcing the lesser role of sudden rupture of lipid rich
plaques as a mechanism of SCD in this group [18-21].
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On balance, LV hypertrophy is regarded as a prime and
causal risk factor for SCD, and the regression of LV
hypertrophy accepted as a validated surrogate primary
end point for interventions aiming to reduce CV mortal-
ity in dialysis patients [12,22,23].
Persistently elevated blood pressure (BP) and extra-

cellular fluid (ECF) overload due to positive salt and
water balance are significant contributors to on-going
LV hypertrophy with conventional (non-extended-hours)
dialysis [24-33]. Current methods to control these
factors with either drug therapy or ultra-filtration in
patients on conventional dialysis can be effective but are
often inadequate in routine clinical practice [27,34-38].
The most effective intervention to improve LV hyper-
trophy is extended-hours or frequent HD. A randomised
controlled trial of extended-hours HD demonstrated a
7.7% reduction in LV mass over a 6month period for
patients dialysed in this manner, as opposed to a stable
LV mass in those dialysed conventionally [35]. Similar
findings were published in the Frequent Haemodialysis
Network trial [34]. In both studies, regression of LV
mass was associated with improved measures of BP and
ECF volume control. Several observational studies have
reported similar findings [39,40].
Not all patients, however, are able to manage

extended-hours or frequent HD and not all health sys-
tems are able to deliver such programs. A more access-
ible alternative may be available in reducing sodium
exposure through lower dialysate [Na+]. Sodium loading
by either excessive dietary intake or excessive diffusion via
dialysate has been shown to increase both BP and intra-
dialytic weight gain (IDWG) [41]. Moreover, elevation in
plasma [Na+] can induce hypertension independently of
EC fluid volume, through mechanisms that probably in-
clude stiffening of vascular endothelium [42-46]. A num-
ber of observational studies as well as small and often
uncontrolled clinical studies have shown that lower dialys-
ate [Na+] associates with less thirst [47-55], lower IDWG
[48,49,51-53,56-78], lower ECF volume [66,76,79,80], and
lower BP [48,51,54,56,61-69,75,81-83], with only a mino-
rity of studies being completely negative [47,77,84-88]. A
typical example can be found in preliminary research
by the SoLID trial research team, who previously
showed that a decrease in dialysate [Na+] by 3 mM in
52 facility based patients was well tolerated and reduced
systolic and diastolic BP by 4–5 and 2–3 mmHg, respect-
ively [89]. Improvement in intermediary outcomes such
as BP suggest that lower dialysate [Na+] could be
beneficial for improving LV hypertrophy as well. There
have been only two studies examining the effect of lower
dialysate [Na+] on LV structure and function [90,91]. One
study reported an associated decrease in LV volumes,
although both were too brief to assess for changes in LV
mass.
However, the potential benefits of lower dialysate [Na+]
should be weighed against a potential “dark side”. Several
large and well performed observational analyses have
shown an association between lower dialysate [Na+] and
higher mortality risk, notably in those patients with a
“frail” phenotype characterized by low serum [Na+], dia-
betes mellitus, coronary artery disease, CV disease, con-
gestive heart failure, cerebrovascular disease, lung disease,
and cancer [72,92,93]. The most plausible explanation for
these observations relates to decreased hemodynamic
stability with lower dialysate [Na+], and the vulnerability
of “frail” patients to intra-dialytic hypotension, an un-
questionably threatening condition associated with myo-
cardial stunning and all-cause patient mortality [94-99].
Intra-dialytic hypotension is ameliorated by higher dialys-
ate [Na+], and is likely to be at least as deleterious (if not
more so) as inter-dialytic hypertension.
Another concern with lower dialysate [Na+] is that it

might influence serum [Na+]. Humans are considered to
have an individual natremic set point, and most observa-
tional studies have not shown any cross-sectional correl-
ation between dialysate and serum [Na+] [67,73,100-105].
However, pre-dialysis serum [Na+] did change in several
small prospective clinical trials after changes to dialysate
[Na+] [54,58,62,64,89,106,107], albeit often after a lag of
several months possibly due to the large reservoirs of
non-osmotic sodium in skin and bone [108-111]. There is
a clear association between low serum [Na+] and patient
mortality in patients with kidney disease, and an interven-
tion that might potentially lower serum [Na+] warrants
careful scrutiny [112-114].
A final concern is raised by clinical trials of dietary salt

reduction in non-ESKD populations. Overall, there is
higher mortality and morbidity in those participants
who had the lowest salt intake, especially in the setting
of generally low salt consumption [115-117]. A number
of plausible biological mechanisms might be contribu-
ting to the poorer outcomes among those with low salt
intake, involving several key metabolic and neurohor-
monal pathways (e.g. activation of sympathetic nervous
and renin–angiotensin systems, increased in total and
low-density lipoprotein cholesterol, reduction in periph-
eral insulin sensitivity etc.) [118-121].
Overall, there is clinical equipoise around lower dialys-

ate [Na+] due to the multiple physiological consequences
of reducing salt exposure in this population, and the
uncertain net effect on CV outcomes as a result of
these often competing and often conflicting physio-
logical responses (Figure 2) [41]. The SOdium Lowering
In Dialysate (SoLID) trial has been designed to answer the
following clinical question: Does lower dialysate [Na+]
improve CV mortality risk compared to conventional
dialysate [Na+], in prevalent home HD patients who
are exposed over a duration of a year? The research
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Figure 2 Causal diagram relating low salt exposure during hemodialysis to cardiovascular mortality risk (reproduced with permission
from Marshall and Dunlop [41]).
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aims to address the clinical question through a randomised
controlled trial of low versus standard dialysate [Na+],
while observing the effect of allocation and exposure
upon participant’s LV mass, an accepted surrogate
outcome for CV mortality in end-stage kidney disease
populations [12,22,23,36,122].

Methods/design
Study aim and hypothesis
The aim of this research is to examine the impact of low
dialysate [Na+] on cardiovascular risk in patients on dialy-
sis. Our primary hypothesis is that low dialysate [Na+] for
one year among patients undergoing home HD will result
in reduced LV mass. Our secondary hypothesis is that low
dialysate [Na+] will also result in the following outcomes
compared to conventional dialysate [Na+]: improved
markers of thirst; better control of BP and markers of ECF
volume; improved LV volumes and hemodynamics; de-
creased arterial stiffness; improved markers on long term
CV mortality risk; non-inferior tolerance to dialysis; non-
inferior plasma Na+ ionic activity and osmolarity; and
non-inferior health-related quality of life.
Study design and setting
The SoLID trial is a multi-centre prospective, randomised,
single-blind (outcomes assessor), controlled, parallel
assignment 3-year clinical trial (Figure 3). There will be
accrual of participants over 24 months, and a follow up
duration of 12 months. Participants will be randomly allo-
cated to either low dialysate [Na+] of 135 mM or conven-
tional dialysate [Na+] of 140 mM for 12 months duration,
interventions that represent poles of customary practice
with respect to dialysate [Na+] prescription in New
Zealand. The trial will be conducted within 6 of the
country’s 20 District Health Boards (DHBs), which are
entities responsible for the provision of government-
funded health and disability services in their geographical
district. All of the DHBs in the SoLID trial provide renal
services and have comprehensive home HD programmes:
Counties Manukau, Waitemata, Auckland, Capital &
Coast, and Canterbury. Participants will be either pre-
dominantly from urban settings (Counties Manukau,
Waitemata and Auckland DHBs) or from a mixture of
urban and rural ones (Capital & Coast, Canterbury,
Waikato). For logistical reasons, no participant will be
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Figure 3 The SoLID trial participant flowchart.
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enrolled who lives more than 90–120 minutes from the
hospital providing tertiary renal services.

Ethical considerations
Ethical approval has been obtained through the National
(New Zealand) Multi-region Ethics Committee and each
institutional review board within participating DHBs.

Target population and eligibility criteria
The target population will be patients with ESKD on
home HD. The particular sampling frame for the SoLID
trial is chosen because home HD patients have the large
attributable risk of death from CV as opposed to other
causes [3], and a less “frail” phenotype compared to
those dialysing in facilities with less tendency to intra-
dialytic hypotension [123,124]. They are also the least
likely dialysis patients to suffer from other inter-current
illnesses that might result in their death or drop out
from the trial (Figure 4), and are probably more likely to
be compliant with the study procedures.
Eligibility criteria will include incident or prevalent

patients treated with maintenance home HD under the
care of the 6 participating DHBs who are; aged 18 years
or older; suitable for both low and standard dialysate
[Na+] in the view of their treating physician; have pre-
dialysis plasma [Na+] ≥ 135 mM; and are willing to par-
ticipate and able to provide consent.
Exclusion criteria will include HD treatments at a fre-

quency greater than 3.5 times per week; treatment with
maintenance hemodiafiltration; life expectancy of less
than 12 months; scheduled for live donor kidney trans-
plantation within 12 months of entry to the study; con-
sidered by the treating nephrologist to have concomitant
illnesses or conditions that limit or contraindicate study
procedures and follow-up (e.g. frequent intra-dialytic
hypotension requiring fluid resuscitation); considered by
the treating nephrologist to have a high chance of non-
adherence to study treatments and non-attendance for
procedures and follow up; current enrolment in clinical
studies involving anti-hypertensive medications, changes
in HD operating parameters, or any other intervention
that is likely to confound the outcome of the trial;
currently using sodium profiling during haemodialysis
treatments; documented infiltrative cardiomyopathies
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Figure 4 Kaplan-Meier estimates of non-death non-transplant censored home hemodialysis technique survival for the modern New
Zealand population (2000–2010), from ANZDATA Registry; drop-out from home hemodialysis is 9.8% per year (15.3%, 53.6%, and
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(amyloid, glycogen storage disease), hereditary cardiomy-
opathies (hypertrophic cardiomyopathy) or moderate to
severe aortic valve disease (aortic stenosis, regurgitation);
inability to provide consent or follow study instructions
due to mental health illnesses or conditions.

Recruitment of participants
The research team at each site will utilise a purpose built
pre-screening database in order to identify potential par-
ticipants eligible for inclusion in the trial. Potential par-
ticipants will then be approached by either their dialysis
nurse, doctor or the trial research co-ordinator and for-
mally invited to consider participation. After an initial
explanation, we will provide further written information
and schedule a follow-up meeting. At that meeting,
potential participants will be able to meet the site inves-
tigator with a language interpreter as necessary, and ask
any questions that arise from information that has pro-
vided. If the potential participant is willing to participate,
they will provide written consent. Whenever a signed
consent form is received from a patient they will be
formally screened to confirm their eligibility and then
enrolled in the trial. Patients who are approached but
decline to participate or consent but are not eligible
when screened will be recorded in a screening log and
their care will continue in the usual fashion.

Randomisation
Once baseline assessments have been completed and
28 days have elapsed since enrolment onto the trial, ran-
domisation will be performed using a phone based inter-
active voice response system (IVRS) from the National
(Australia) Health Medical Research Council (NHMRC),
Clinical Trials Centre (CTC) Sydney, Australia. Partici-
pants will be randomised in computer generated blocks
of random size (undisclosed), blinded to investigators,
and stratified by a) treating centre, and b) whether they
receive conventional (≤18 hours/week) or extended-hour
(>18 hours/week) HD.

Blinding
Baseline data will be collected prior to randomisation so
that trial investigators, research co-ordinators and trial
participants will be blinded to allocation while the base-
line data is being collected. However, blinding will be
not be maintained once randomisation has occurred. As-
sessors for the primary outcome of the study will be
blinded for the duration of the trial. Assessors for the
secondary outcomes of the study will not be blinded.

Interventions
It has been previously estimated that high sodium
exposure during HD for most populations would be
characterized by dialysate [Na+] of ~141 mM, and low
sodium exposure by dialysate [Na+] of ~135 mM [101].
Increasingly, there are calls by opinion leaders for
individualised dialysate [Na+] prescriptions as being the
most physiological approach to manage sodium balance.
Individualised prescriptions can be achieved through the
automated application of sodium kinetic (or conductivity)
models, or the manual application of simplified algorithms
based on patient pre-dialysis [Na+] [102,125-131]. How-
ever, preliminary research by the SoLID research team has
suggested that natremic adaptation may in fact occur over
time in response to altered dialysate [Na+] [89]. Moreover,
there is no evidence that the results achieved using
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individualised dialysate [Na+] prescriptions are better than
those achieved with the simpler and less expensive inter-
vention of a fixed lower dialysate [Na+] applied to every-
one. Consequently, dialysate [Na+] in our study arms will
be fixed rather than individualised for all participants. A
2010 poll of dialysate [Na+] by the SoLID research team
has shown that the median setting for the New Zealand
centres was 139 mM.
Low Dialysate [Na+]: This group will undergo home

HD with dialysate [Na+] of 135 mM for a duration of one
year, introduced gradually by decrements of 1 mM/week
over a 4–8 week run-in period as necessary. BP will be op-
timized by changes to target weight and antihypertensive
medications according to a standardized protocol.
Standard Dialysate [Na+]: This group will undergo

home HD with dialysate [Na+] of 140 mM for a duration
of one year, similarly introduced by changes of 1 mM/week
over an appropriate run-in period. BP will be optimised in
an identical manner as above.
In the event of titration failure, the dialysate [Na+]

level reached while aiming for the target level will be
retained for the remainder of the follow-up, although
such cases will be classified as being protocol violations.
Apart from dialysate [Na+], HD operating parameters

for all participants will be managed in usual fashion
according to local treatment goals. Dietary salt intake
will be managed in all participants according local cli-
nical practice guidelines [132], and monitored at base-
line, 6months and 12 months using 3-day food diaries
and analyses with Foodworks Pro® 9.0 (Xyris Software,
Brisbane, Australia). Urinary Na+excretion will be moni-
tored in all participants at baseline, 6 months and one
year follow-up using inter-dialytic urine collection.

Research outcomes and endpoints
The schedule of SoLID trial investigations and visits are
summarised in Table 1, and outcomes are described
below.

Primary outcome – LV mass index
The primary outcome measure of the SoLID trial is LV
mass index (LVMI), and the primary endpoint is LVMI
at 12months. LVMI is also measured at baseline. LVMI
will be measured using cardiac magnetic resonance
imaging (MRI) imaging performed prior to HD treat-
ments after a “long break” (the longest HD-free interval
in any rolling schedule) or mid-week for participants
who have fixed inter-dialytic intervals. All cardiac MRI
scans will be performed at the local sites using a
standardised protocol. Assessment of LV function will be
performed using trueFISP cine imaging (6–7 short axis
and 3 LV long axis with 20–30 cardiac phases depending
on heart rate). Analysis of the images will be performed
at a core laboratory at the Auckland MRI Research
Group, University of Auckland, New Zealand. Each pa-
tient will have a four-dimensional mathematical model
of the left ventricle created using guidepoint fitting. In
all cases, volume, mass and wall thickness will be mea-
sured directly from the moving 3D curved surfaces
which track the motion of the endo- and epicardium.
This method has been validated for global parameters
such as LV mass, end-diastolic volume, end-systolic vol-
ume, stroke volume and ejection fraction using global
gold standard models [133]. All data will be analysed in
duplicate by two independent and blinded analysts and
the results reconciled in accordance with standard oper-
ating procedures of the group. Analysts will be moni-
tored weekly for drift.

Secondary outcomes
LV volumes LV volumes will be measured by cardiac
MRI at baseline, and the endpoint will consist of follow-
up measurements at 12 months. Measurements will be
made used the same methodology used for LV mass
index.

LV hemodynamics LV hemodynamics will be as
assessed by NT-pro-BNP (N-terminal pro brain natri-
uretic peptide) [134-140] and Urotensin II levels
[141-145]. Measurements will be made at baseline, and
the endpoints will consist of measurements at 3, 6, 9 and
12 months. All blood samples will be taken immediately
prior to HD treatment following a “long break” or mid-
week for participants who have fixed inter-dialytic inter-
vals. All measurements will be made by the Christ church
Cardiac Endocrine group in Christ church, New Zealand
using the Elecsys® ProBNP assay (Roche Diagnostics
Corporation, Indianapolis, IN, USA) and an in-house
radioimmune assay for Urotensin II [146].

Extracellular fluid volume ECF volume will be assessed
by bioimpedance spectroscopy [147-149]. Measurements
will be made at baseline, and the endpoints will consist
of measurements at 3, 6, 9 and 12 months. All assess-
ments will be performed immediately prior to HD treat-
ments after a “long break” or mid-week for participants
who have fixed inter-dialytic intervals. All measurements
will be made using the Fresenius BCM monitor®
(Fresenius Medical Care Australia Pty Ltd (New Zealand
Branch), Auckland, New Zealand).

Blood pressure BP will be assessed in the following
ways;

a. Intra-dialytic BP (including pre- and post-dialysis
BP). Measurements will be made at baseline, and the
endpoints will consist of measurements at 3, 6, 9
and 12 months [150,151]. An additional endpoint


Table 1 Schedule of participant investigations and visits

Visit window (Days) 0 to28 28 28 to 42 42 up to 70 108 to 128 198 to 218 288 to 308 378 to 398 +7 up to +21

Visit name BA/BR T0 T1-T8 F3 F6 F9 F12/F12R E1-E4

Study phase Baseline assessment and results Randomization Titration (weekly) Follow-up (3 monthly) End (weekly)

Randomization X

History X X X

Physical examination X X

Non-interventional Titration X

Dialysate [Na+] Titration X

3day food diary X X X

Inter-dialytic urine for Na+ excretion X X X

Cardiac MRI X X

ECF volume X X X X X

BP (intra-dialytic) X X X X X X X

Ambulatory BP (inter-dialytic) X X

Home BP (inter-dialytic) X X X

IDWG X X X X X X

Antihypertensive medication history X X X X X

Dialysis Thirst Inventory X X X

Short Xerostomia Inventory X X X

Laboratory studies (NT-pro-BNP, hsCRP,
urotensin II, plasma γNa / osmolality)

X X X X X

Assessment of tolerance to HD X X X X X X X

Arterial compliance (PWV) X X X

Arterial compliance (PWA) X X X X X

Quality of life (KDQOL) X X

Quality of life (EQ-5D) X X
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will consist in the intra-dialytic blood pressure time-
averaged over the individual follow-up period, using
all available measurements accepting that there may
be differing numbers of measurements per
participant and time point.

b. Inter-dialytic BP assessed by the gold standard of
ambulatory monitoring [150,152-155]. Measurement
will be made at baseline, and the endpoint will
consist of measurement at 12 months. All
assessments will be performed according to the
‘Practice Guidelines of the European Society of
Hypertension’ for clinic, ambulatory and self BP
measurement [156]. Systolic and diastolic BP
measurements will be made at 30 minute
measurement intervals for 44 hours during a “long
break” or mid-week for participants who have fixed
inter-dialytic intervals. All measurements will be
made using Oscar 2 ambulatory BP monitors
(Suntech Medical Instruments, Raleigh, NC, USA).
Measurements will be made on the non-access arm,
and the measurement arm will be kept consistent
during the study. Ambulatory BP monitoring will be
considered adequate if at least two-thirds of the
measurements taken over the 44-hour period are
satisfactory [156].

c. Inter-dialytic BP determined as the weekly average
of home blood pressure readings, an independently
validated approach [150,157,158]. Measurements
will be made at baseline, and the endpoints will
consist of measurements at 6 and 12 months.
Measurements will made using the Omron HEM-
791IT Blood Pressure Monitor (Omron Healthcare
Inc, Lake Forest, IL, USA). Readings will be made 3
times per day (on waking up, between noon and
1900, and before bed) during the 7days immediately
prior to 3, 6, 9 and 12 months [150,157,158].

d. The number and dose of anti-hypertensive
medications (expressed as the aggregated% of
maximum recommended daily dose) [159].
Measurements will be made at baseline, and the
endpoints will consist of measurements at 3, 6, 9
and 12 months.

Inter-dialytic weight gain (IDWG) IDWG will be cal-
culated by the difference between pre- and- post dialysis
weight. Measurements will be made at baseline, and
the endpoints will consist of measurements at 3, 6, 9
and 12 months. An additional endpoint will consist in
the inter-dialytic weight gain time-averaged over the
individual follow-up.

Thirst and xerostomia Thirst and xerostomia will be
assessed by visual analogue scale using standardised vali-
dated inventories [160-163]. Measurements will be made
at baseline, and the endpoints will consist of measure-
ments at 3, 6, 9 and 12 months.

High sensitivity C-reactive protein (hsCRP) Long
term CV mortality risk will be assessed by hsCRP [164].
Measurements will be made at baseline, and the endpoints
will consist of measurements at 3, 6, 9 and 12 months.
All blood samples will be taken immediately prior to
HD treatment following a “long break” or mid-week
for participants who have fixed inter-dialytic intervals.
All measurements will be made using the Abbott
Architect® Analyser and CRP Vario® latex immuno-
assay (Abbott Park, IL, U.S.A).

Arterial compliance Arterial stiffness will be assessed
by carotid-femoral Pulse Wave Velocity (PWV) and by
radial Pulse Wave Analysis (PWA, deriving both central
pulse pressure and the augmentation of the central pulse
waveform at the radial artery). The methodology repre-
sents the current gold standard for non-invasive meas-
urement of aortic arterial stiffness [165]. Pulse Wave
Velocity measurements will be made at baseline, and
the endpoints will consist of measurements at 3, 6, 9
and 12 months. Pulse Wave Analysis measurements
will be made at baseline, and the endpoints will con-
sist of measurements at 6 and 12 months. Assessments
will be performed immediately prior to HD treatments
after a “long break” or mid-week for participants who have
fixed inter-dialytic intervals. Measurements will be made
using the SphygmoCor® device (AtCor Medical, West
Ryde, Australia) which employs applanation tonometry to
measure the shape and velocity of the pulse wave, with
good repeatability and reproducibility. Both PWV and
PWA measurements will be measured in duplicate. If the
difference between the two PWV measurements is > 10%,
a third measurement will be performed and the average
the two most similar measurements used. For quality
control, the Sphygmocor calculates the standard deviation
(SD) of the pulse transit time (PTT) over the 10 second
waveform capture period. A carotid-femoral PTT SD
of < 20% in dialysis patients is considered by the man-
ufacturers to indicate a good quality measurement for
PWV and will be the accepted maximum carotid-
femoral PTT SD for measurements in this trial.

Pre-dialysis plasma sodium ionic activity (γNa) Pre-
dialysis plasma γNa and osmolality will be assessed at
baseline, and the endpoints will consist of measurements
at 3, 6, 9 and 12 months. All blood samples will be taken
immediately prior to HD treatment following a “long
break” or mid-week for participants who have fixed
inter-dialytic intervals. Plasma γNa measurements will
be made by direct inometry using an ABL800 or ABL83
blood gas analyser (Radiometer, Copenhagen, Denmark)
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and corrected by a factor of 0.967 to account for the
Donan Effect from negatively charged plasma proteins
[166]. Plasma osmolality will be analysed by freezing
point depression using the Advanced® Model 3320
Micro-Osmometer (Advanced Instruments, Norwood,
MA, USA).

Health related quality of life Consistent with previous
recommendations [167-169], health related quality of life
(HRQoL) will be assessed using a spectrum of validated
instruments. Measurement will be made at baseline, and
the endpoint will consist of measurement at 12 months.
Measurements will be made using the Kidney Disease
Quality of Life (KDQOL) [170-172] and the preference
based EuroQol EQ-5D questionnaires [167,173].

Tolerability outcome
Tolerance to dialysis Tolerance to dialysis will be
assessed by the frequency of intra-dialytic hypotension
episodes in the two weeks prior to the assessment time
point. Hypotension episodes will be identified according
to the NKF-K/DOQI definition (a decrease in systolic
BP by ≥20 mMHg or a decrease in mean arterial pres-
sure by ≥10 mMHg associated with one or more of
the following symptoms: abdominal discomfort, nau-
sea, vomiting, muscle cramps, restlessness, dizziness,
fainting, anxiety and the requirement for fluid bo-
luses) [164]. Measurements will be made at baseline,
and the endpoints will consist of measurements at 3,
6, 9 and 12 months. An additional tolerance endpoint
will consist in the time-averaged frequency of hypotension
episodes over the individual follow-up period.

Monitoring for adverse events
A formal Data Monitoring Committee (DMC) consti-
tuted by the New Zealand Health Research Council Data
Monitoring Core Committee will monitor safety and
trial conduct according to the terms of its charter. An
independent study statistician and data manager will
generate both the open and closed Reports for the
DMC, and have no connection to the clinical aspects of
the trial. Because of power considerations and the fact
that safety of low dialysate [Na+] was demonstrated in
the pilot study, no interim analyses are planned and no
stopping rule based on statistical significance of efficacy
data, frequentist or Bayesian, has been set. However,
safety reports will be made and reviewed by the DMC
on a 6 monthly basis.

Power calculation
Power calculations are based on the primary outcome
measure of LVMI. The SoLID trial assumes a baseline
mean (standard deviation, SD) LVMI of 110 (40) g/m2,
based on published data in HD populations using
cardiac MRI [33,174,175]. The trial assumes a 12 month
follow-up LVMI of 95 (35) g/m2 in the low dialysate [Na+]
group based on the change in LVMI observed over 6
months in clinical trials of frequent or nocturnal HD
[27,34,35]. Correlation between baseline and 12-moth
follow-up measurements of LVMI in the SoLID trial is
assumed to be 0.75 based on private communication
from the Jardine group (private communication P Mark
8/2/2011): in a cohort of 59 patients of their patients
with repeated measures of LVMI at least 6 months apart
(using cardiac MRI), correlation was 0.87 (p < 0.001) with
normally distributed data [33,174,175]. Modelling these
data using repeated-measures analysis of covariance
(ANCOVA), and allowing for 25% for drop outs, 59 par-
ticipants will be enrolled in each arm (power 0.8, alpha
0.05). The SoLID trial will therefore enrol 118 trial partici-
pants over the 6 participating sites in NZ.

Analysis populations
For analysis of data, we define Intention to Treat (ITT)
and Per Protocol (PP) populations. The ITT population
consists of all randomised participants who have at least
one baseline measurement, and is the primary popula-
tion of interest. All randomised participants will be
analysed in the group they were allocated to, even if they
do not receive the allocated treatment, do not com-
mence treatment, change dialysis modality, are lost to
follow-up, or die thereby preserving the intention-to-
treat framework. In particular, titration failures will re-
main within the ITT population as participants.
The PP population consists of participants that fulfil

criteria for the ITT population, have complete primary
endpoint measurements and do not present any major
protocol violations during the study. The following de-
scribes the major protocol deviations that will exclude pa-
tients from the PP population (minor deviations will not
do so): eligibility violation; absence of any efficacy data,
titration failure; other major violations will be identified
by the DMC of the trial during the study and/or during
the data review process. The list of all protocol deviations
will be reviewed by the DMC who will determine the de-
gree of the violation (i.e. major versus minor). All protocol
deviations considered as minor will not lead to excluding
patients from the PP population for analysis.

Statistical analysis
Primary and secondary subgroup and non-subgroup
analyses are provided in Table 2. For statistical analyses,
we define predictors, related to outcome and unrelated
to the allocation; potential confounders, related to out-
come and imbalanced by chance across the treatment
arms; and potential effect modifiers, that may moderate
the treatment arm effect. The former two are hereafter
identified as potential covariates.


Table 2 Primary and secondary analyses

Analyses Population Subgroup Endpoints Framework

Primary ITT None Primary Univariate

Secondary PP None Primary Univariate

ITT None Secondary Univariate

ITT None Secondary Multivariate

ITT Baseline LVMI subgroups (observed
median LVMI as the level boundary)

Primary Univariate

ITT Baseline LVMI subgroups (observed
median LVMI as the level boundary)

Time-averaged blood pressure over
months 3, 6, 9 and 12 (intra-dialytic,
inter-dialytic), % maximum recommended
daily dose of antihypertensives

Multivariate, accounting for subgroup
effect and treatment-subgroup
interaction, FDR control to account
for multiplicity

ITT Baseline intra-dialytic and inter-
dialytic blood pressure subgroups
(observed mean blood pressure as
the level boundary)

Primary Univariate, accounting for subgroup
effect and treatment-subgroup
interaction, and three-way interaction

ITT Baseline intra-dialytic and inter-
dialytic blood pressure subgroups
(observed mean blood pressure as
the level boundary)

Time-averaged blood pressure over
months 3, 6, 9 and 12 (intra-dialytic,
inter-dialytic), % max recommended
daily dose of antihypertensives

Univariate, accounting for subgroup
effect and treatment-subgroup
interaction, and three-way interaction,
FDR control to account for multiplicity

ITT Baseline pre-dialysis plasma Na+ ionic
activity subgroups (observed median
plasma Na+ ionic activity as the level
boundary)

Primary Univariate, accounting for subgroup
effect and treatment-subgroup
interaction

ITT Baseline pre-dialysis plasma Na+
iIonic activity subgroups (observed
median plasma Na+ ionic activity as
the level boundary)

Time-averaged blood pressure over
months 3, 6, 9 and 12 (intra-dialytic, inter-
dialytic), % maximum recommended daily
dose of antihypertensives

Univariate, accounting for subgroup
effect and treatment-subgroup
interaction, and three-way interaction,
FDR control to account for multiplicity

Tolerability ITT None Hypotension event counts Multivariate, mixed effects, allowing
for treatment time interaction

Abbreviations: PP per protocol, ITT intention to treat, LVMI left ventricular mass index, FDR False Discovery Rate.
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All tests of significance of hypotheses concerning
treatment effect parameters will be carried out using a
level of significance of 5% and two-sided alternatives.
The significance threshold of potential covariates will be
set at 10%, to promote unbiased and conservative infer-
ence. All estimates will be produced as point estimates
and as 95% confidence intervals. Unless otherwise noted,
model selection when required will be performed using
backward selection from the largest model dictated by
the situation. Per comparison error rate (PCER) control
will be used in all analyses, with the exception of some
subgroup analyses where False Discovery Rate (FDR)
control will be implemented.

Primary outcome
For LVMI, we will undertake univariate (single outcome)
endpoint analysis. Score residuals will be checked for ap-
proximate normality and an appropriate normalising
transformation applied to the endpoint data if appropriate
and possible. We will use analysis of covariance (ANCOVA)
to estimate the treatment effect, adjusting for baseline
and potentially adjusting for covariates, if applicable.
The resulting treatment contrast will be reported as a
point estimate and as a 95% confidence interval.
Secondary outcomes
For all secondary outcomes other than health-related
quality of life, we will undertake multivariate (repeated
outcomes) endpoint analysis. For health-related quality
of life, we will use univariate analyses in a manner simi-
lar to that presented for the primary outcome. Other-
wise, analyses will fit all outcomes as repeated measures
over the 2–4 assessment time points to an appropriate
regression model using generalised estimating equations
(GEEs). Changes from baseline will be associated with
the assessment time (from baseline), the treatment arm,
and the interaction of the two, adjusting for baseline and
potentially for other confounding covariates, if applic-
able, similarly to the procedure outlined above for the
primary outcome. The procedure will account for
clustering on subjects; independent, exchangeable and
autoregressive working correlation structures will be
used and the best option in terms of Quasilikelihood
Information Criterion retained for the final analyses
[176]. Time-averaged analyses will be implemented by
appropriately weighting each observation, accounting
for any missing time point, so as to produce inference
on the estimated average value over the available indi-
vidual follow-up period. All results will be estimates
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of treatment effect and treatment-time interaction con-
trasts. Results will be reported as the point estimates and
95% confidence intervals for these quantities.

Contingency for non-normality
Equivalent analyses after a normalising data transform-
ation will be carried out if non-normality of outcomes is
evinced. The choice of transformation will be guided by
the stabilisation of variance. Notable departures from
normality of residuals after regression of the transformed
data, as evinced by visual assessments and formal tests
of normality of residuals, will result in an alternative ap-
proach. When a transformation is applied, location esti-
mates and confidence intervals will be transformed back
to the original scale, with first-degree bias correction.

Missing data
Every effort will be made to minimise missing data. Miss-
ing outcome data will cause the patient/time point
instance to be removed from the analysis. In the case of
time-averaged endpoints, non-missing data will be appro-
priately reweighted. Joint modelling of missingness and
the primary outcome will be carried out, for sensitivity
assessment, if missingness exceeds 10% or is significantly
different between the intervention arms at the 5% level.

Subgroup analyses
Subgroup analyses will be performed for the primary
outcome and time-averaged BP (intra-dialytic, inter-dialytic,
percentage maximum recommended daily dose of antihy-
pertensives) according to the baseline severity of LV hyper-
trophy, baseline severity of hypertension, and baseline pre-
dialysis plasma γNa. Subgroup analyses will be carried on
using interaction of the groups thus defined and the treat-
ment arms.

Tolerability analysis
Tolerability of dialysis will be compared between the
two arms by assessing the frequency of intra-dialytic
hypotension episodes using negative binomial regression
of the number of events as dependent variable and the
logarithm of the duration of the period covered (nor-
mally two weeks, prior to assessment). To identify
any effect of prolonged exposure to the treatment,
the dependent variable will be similarly modelled as a
repeated measure on the time of assessment, the treat-
ment arm and their interaction. To maintain interpretabil-
ity at the patient level, conditional (mixed effects) rather
than marginal (GEE) methodology will be used to estimate
tolerability trends. Normally distributed random effects
will account for the baseline dialysis tolerance in each
participant. The treatment and treatment interaction con-
trasts from the tolerability analyses will be reported as
point estimates and 95% confidence intervals.
Discussion
The SoLID trial will be the first randomised controlled trial
to investigate the effect lower dialysate [Na+] upon LV
structure and function. The outcomes of this research will
provide compelling evidence about the efficacy of lower di-
alysate [Na+] to improve CV outcomes in hemodialysis
populations. As importantly, the SoLID trial will provide
novel data with respect to important patient centred out-
comes, and evaluate the effect of lower dialysate [Na+] on
thirst, xerostomia, HRQoL and intra-dialytic hypotension.
If the benefit of lower dialysate [Na+] is confirmed, other
benefits might also flow on from reduced CV morbidity
and mortality, including improvements in general health
status, and conceivably fewer hospitalisations and improve-
ments in social/employment rehabilitation. Logistically,
lower dialysate [Na+] is a simple and cost-free interven-
tion, and widespread implementation would be easy for
home HD patients and selected facility HD patients.
The comprehensive range of secondary outcomes and

the use of gold standard measurements further strengthen
the trial. These data allows for their simultaneous evalu-
ation as intermediary variables on the causall pathway to
LV hypertrophy. Such data have not been previously
reported in the setting of clinical trial, where fundamental
changes are made to conditions with simultaneous meas-
urement of downstream physiological parameters. Such
data will improve understanding of the patho-biology and
causall mechanisms of LV hypertrophy, and in particular
the contributions of uncontrolled hypertension and ECF
overload. Data from the SoLID trial will allow the develop-
ment of a hierarchy of importance for the various factors
that increase LV mass. There is a strong likelihood of
novel relationships and hypotheses emerging, in turn lead-
ing to further research in both bench and clinical settings.
In terms of internal validity, the strengths of the SoLID

trial are that it is prospective and randomised, with
robust allocation concealment and analysis of cardiac
MRI data in duplicate by two blinded independent ana-
lysts who will remain unaware of the allocation of
participants for the duration of the trial. A limitation
of the trial pertains to secondary outcomes. All base-
line measurements of secondary outcomes will be
made prior to randomisation. However, once random-
isation has occurred, participants and assessors for
the follow-up measurements will not be blinded to
treatment. For instance, bioimpedance and pulse wave
procedures and measurements will be performed by
research associates who will be potentially aware of
the allocation of participants. This may bias partici-
pants’ and research associates’ perception of tolerance
to the intervention, and their reporting of subjective
scoring surveys such as thirst and xerostomia inventories
and HRQoL questionnaires. The impact of any actual bias
is likely to be mitigated through completion is baseline
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measurements prior to randomisation, but certainly not
abrogated.
Of note, the SoLID Trial excludes those who are on dia-

lysis more than 3.5 times per week to avoid confounding
the effect of dialysate [Na+] on LV mass by frequent or
nocturnal dialysis. The study will not exclude those whose
HD treatments are unconventionally long (~8 hours per
treatment) so long as they are undergoing HD no more
than 3.5 times per week. This is based on the high
reported prevalence of LV hypertrophy in populations
treated with this manner (notwithstanding the overesti-
mation of LV mass by echocardiography that biases these
studies [175]): 87% of patients in Christchurch NZ [124],
76% of those in Manchester UK [177], and in more than
80% of those in Tassin France [178]. LV hypertrophy is
still present in these populations on long-hour dialysis as
a result of BP variability, neurohormonal factors and
residual positive sodium balance, all of which are poten-
tially modifiable with lower dialysate [Na+].
In terms of external validity, the major limitation of

the SoLID trial is the research setting of home HD. Par-
ticipants are likely to have less medical co-morbidity
than facility HD patients, a factor that was a prime con-
sideration in the development of the sampling frame for
the SoLID trial. Such patients are less prone to intra-
dialytic hypotension, which minimizes the chances of
participant dropout from intolerance to the lower dialys-
ate [Na+] in the trial. As a result, the SoLID trial may
not be immediately applicable to dialysis patients with a
high burden on medical co-morbidity who are more
prone to intra-dialytic hypotension. Notwithstanding,
the SoLID trial may provide valuable proof-of-concept
data for future research in this patient population,
depending on the clinical characteristics of patients
eventually recruited to the trial.
As with any clinical trial, recruitment will be a key

element. Feasibility analysis of the participating 6 centres
has indicated a sufficiently large pool of potential partici-
pants assuming a 33% conversion rate. A pilot study pre-
viously undertaken by the SoLID research group showed
good tolerance to lower dialysate with minimal adverse
events, and we do not anticipate excess loss of partici-
pants due to intolerance of the trial intervention [89].
The 25% dropout rate we modelled in power calcula-
tions accounts for technique failure in the modern NZ
home HD population. A potential risk to recruitment
lies with the collection of so many secondary endpoints
and their need to occur at specific times on the partici-
pants’ dialysis schedules, which may make the trial un-
attractive to some patients. Slow recruitment will be
managed by the expansion of the SoLID trial to include
a 7th site in NZ or Australia, as required.
In conclusion, the SoLID trial will provide compelling

evidence about the use of lower dialysate [Na+] to
improve CV outcomes, and potentially improve under-
standing of the biological mechanisms underlying the
development and persistence of LV hypertrophy. If the
benefit of lower dialysate [Na+] is confirmed, the SoLID
Trial will contribute a cost-free economically sustainable
improvement to dialysis practice. This, and the immedi-
ately availability of the intervention to HD patients, will
allow for optimal and maximal translation into clinical
effectiveness and benefit.
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