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Abstract: Electric vehicles (EVs) are one of a prominent solution for the sustainability issues needing
dire attention like global warming, depleting fossil fuel reserves, and greenhouse gas (GHG) emissions.
Conversely, EVs are shown to emit higher emissions (measured from source to tailpipe) for the fossil
fuel-based countries, which necessitates renewable energy sources (RES) for maximizing EV benefits.
EVs can also act as a storage system, to mitigate the challenges associated with RES and to provide the
grid with ancillary services, such as voltage regulation, frequency regulation, spinning reserve, etc.
For extracting maximum benefits from EVs and minimizing the associated impact on the distribution
network, modelling optimal integration of EVs in the network is required. This paper focuses on
reviewing the state-of-the-art literature on the modelling of grid-connected EV-PV (photovoltaics)
system. Further, the paper evaluates the uncertainty modelling methods associated with various
parameters related to the grid-connected EV-PV system. Finally, the review is concluded with a
summary of potential research directions in this area. The paper presents an evaluation of different
modelling components of grid-connected EV-PV system to facilitate readers in modelling such system
for researching EV-PV integration in the distribution network.
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1. Introduction

The issues like global warming, depleting fossil fuel reserves, and greenhouse gas (GHG) emissions
need dire attention for ensuring a sustainable future. Because the transportation sector is one of the
largest contributors to the rising harmful emissions, the electrification of transportation is seen as
a promising solution for this problem. Electric vehicle (EV) technology has existed for more than
a century peaking commercially around 1900. However, due to the easy availability of fossil fuels,
advancements in internal combustion (IC) technology, and simplicity in the use of IC engines, EVs
were put on hold and limited to golf carts and delivery vehicles. Figure 1 shows the progression
timeline of the EVs. The dependency on petroleum imports for transportation purposes is also reduced
by electrification of transportation, thereby increasing energy security. However, the adoption rate
of EVs remains slow owing to factors, such as high initial cost, battery degradation, inadequate
charging infrastructure, range anxiety, etc. [1]. Various policies and incentives are made available
by governments around the world to promote the uptake of EV and to prevent these barriers from
realizing a complete shift to electrified transportation. As per the report “Global EV outlook” of the
International Energy Agency, the total number of EVs are projected to reach 130 million by 2030 [2].
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are a mobile single-phase load so they can be randomly plugged in at any one of three phases within 
distribution networks, leading to a scenario that electrical components in one particular phase, such 
as power supply cable, overhead line or transformer may be heavily loaded while the rest of two 
phases are not. The unbalanced three-phase loading may lead to a series of negative impact on power 
quality issue: Transformer failures, equipment loss-of-life, relay misfunction, etc. Moreover, as EVs 
are highly spatial and temporally uncertain, handling EVs as additional loads while maintaining the 
reliability and security of the grid is difficult. The coincidence of timing between EV home charging 
and residential load peaks leads to additional system peaks. Moreover, multiple EV chargers in a 
neighbourhood can introduce significant harmonics, thereby reducing power quality [3]. Therefore, 
the integration of substantial EV penetration in the distribution networks is a significant area of 
interest in the research and engineering community, especially optimally controlling EV charging to 
minimise the impact of the above-described issues. 

 
Figure 1. The evolution of electric vehicles (EVs). 

Another significant contributor to harmful emissions is the power industry, particularly fossil 
fuel-based power generation. Renewable energy sources (RES), such as wind and solar are 
increasingly adopted to mitigate the power industry emissions. The variable nature of RES which 
depends on the weather, time, location, etc. creates voltage stability and reliability issues for the 
power grid requiring integration of Energy Storage System (ESS). Also, there may not be sufficient 
demand requirement during the period of high RES generation, which leads to the under-utilisation 
of average generated capacity. Using ESS with RES can result in its effective utilisation as ESS can 
store energy when demand is low and supply back when demand is high. Apart from using ESS, 
application of demand-side management techniques like load shifting, time of use pricing, and 
demand bidding can also solve the aforementioned problems associated with RES although the 
impact of these techniques is limited compared to ESS [4,5]. 

Large-scale integration of RES requires an increased size (or capacity) of ESS. Hence, it leads to 
a significant capital requirement, especially due to the high per-unit cost of ESS. As we are already 
moving towards electric vehicles to combat GHG emissions and these EVs essentially run on the 
batteries, the EVs can also act as a dynamic natured ESS, due to the vehicle-to-grid (V2G) feature, in 
which EVs deliver energy stored in their batteries back to the grid [6]. Additionally, EVs spend a 
considerable amount of time (22 h) in parked conditions [7], so they can be suitably used as ESS 
without creating inconvenience (e.g., range anxiety issues) for users. However, battery degradation 
is still an issue which can be offset by giving incentives to users/aggregators to participate in V2G. As 
the battery capacity of each EV is minuscule compared to grid load requirements, an aggregation of 
EVs is generally required to provide the grid with the backup power. Apart from storing surplus 
energy generated by RES, EVs can also provide the grid with additional ancillary services, such as 
voltage regulation, frequency regulation, spinning reserve, etc. EVs can also participate in energy 
trading, to be a source of revenue for the aggregator/users to compensate for the battery degradation, 
due to participation in V2G. However, most of the energy markets around the world require a 
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However, high penetration of EVs also poses distribution network quality issues, particularly
network congestion, three-phase voltage imbalance and off-nominal frequency problems. The EVs
are a mobile single-phase load so they can be randomly plugged in at any one of three phases within
distribution networks, leading to a scenario that electrical components in one particular phase, such
as power supply cable, overhead line or transformer may be heavily loaded while the rest of two
phases are not. The unbalanced three-phase loading may lead to a series of negative impact on power
quality issue: Transformer failures, equipment loss-of-life, relay misfunction, etc. Moreover, as EVs
are highly spatial and temporally uncertain, handling EVs as additional loads while maintaining the
reliability and security of the grid is difficult. The coincidence of timing between EV home charging
and residential load peaks leads to additional system peaks. Moreover, multiple EV chargers in a
neighbourhood can introduce significant harmonics, thereby reducing power quality [3]. Therefore,
the integration of substantial EV penetration in the distribution networks is a significant area of interest
in the research and engineering community, especially optimally controlling EV charging to minimise
the impact of the above-described issues.

Another significant contributor to harmful emissions is the power industry, particularly fossil
fuel-based power generation. Renewable energy sources (RES), such as wind and solar are increasingly
adopted to mitigate the power industry emissions. The variable nature of RES which depends on the
weather, time, location, etc. creates voltage stability and reliability issues for the power grid requiring
integration of Energy Storage System (ESS). Also, there may not be sufficient demand requirement
during the period of high RES generation, which leads to the under-utilisation of average generated
capacity. Using ESS with RES can result in its effective utilisation as ESS can store energy when demand
is low and supply back when demand is high. Apart from using ESS, application of demand-side
management techniques like load shifting, time of use pricing, and demand bidding can also solve
the aforementioned problems associated with RES although the impact of these techniques is limited
compared to ESS [4,5].

Large-scale integration of RES requires an increased size (or capacity) of ESS. Hence, it leads to
a significant capital requirement, especially due to the high per-unit cost of ESS. As we are already
moving towards electric vehicles to combat GHG emissions and these EVs essentially run on the
batteries, the EVs can also act as a dynamic natured ESS, due to the vehicle-to-grid (V2G) feature,
in which EVs deliver energy stored in their batteries back to the grid [6]. Additionally, EVs spend
a considerable amount of time (22 h) in parked conditions [7], so they can be suitably used as ESS
without creating inconvenience (e.g., range anxiety issues) for users. However, battery degradation is
still an issue which can be offset by giving incentives to users/aggregators to participate in V2G. As the
battery capacity of each EV is minuscule compared to grid load requirements, an aggregation of EVs
is generally required to provide the grid with the backup power. Apart from storing surplus energy
generated by RES, EVs can also provide the grid with additional ancillary services, such as voltage
regulation, frequency regulation, spinning reserve, etc. EVs can also participate in energy trading,
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to be a source of revenue for the aggregator/users to compensate for the battery degradation, due to
participation in V2G. However, most of the energy markets around the world require a minimum
capacity to participate, which would require an aggregator of a large number of EVs. To counteract
this, more research is being done on transactive or peer-to-peer (P2P) trading mechanisms [8].

Moreover, the emission benefits of electrified transportation cannot be maximised if the source
of EV charging is based on non-renewable sources. In fact, EVs are shown to emit higher emissions,
measured from well to wheel, i.e., source to the tailpipe for the countries whose primary source of
power generation is based on fossil fuels [9]. However, using RES to charge the EVs could result in
reducing GHG emissions, as shown in Reference [10], where 50,000 EVs charged from a mix of wind
and PV energy sources resulted in 400 Mtons less emissions per year.

Based on these factors, this paper presents a general framework for designing a grid-connected
EV-PV system. Several papers have also reviewed the different aspects of the interaction of EV-PV
system and distribution network in the literature. References [11–14] discuss charging EVs using PV
generation with a focus on control architectures and algorithms, and economic framework. The impact
of the charging infrastructure of EV on the grid in terms of power quality is reviewed in Reference [15].
An overview of EV modelling techniques is presented in References [16–18] with an emphasis on
modelling methods for EV loads and charging stations.

These review papers study the limited aspects of the interaction of grid-connected EV with RES,
particularly PV, focusing on the modelling of control methods or EV loads. Also, a detailed review of
modelling the uncertainties present in the grid-connected EV-PV system is not present in the literature
to the knowledge of the authors. Therefore, this paper presents a comprehensive review of all aspects
of modelling a grid-connected EV-PV system viz., control architectures, charging algorithms, and
uncertainty analysis. This paper aims to provide an evaluation of these aspects to enable the researchers
to model a grid-connected EV-PV system for carrying out impact or implementation studies of EV
integration into the distribution system. The grid is represented by a distribution network as EV and
PV both are on the distribution side. Throughout the paper, EV-PV system is considered as a single
entity (limited to the times when connected to the grid for charging or vehicle-to-grid), and the PV is
considered as a complementary energy source to charge EVs other than the grid. Figure 2 shows the
analytical framework of the modelling aspects of grid-connected EV-PV system.
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The organisation of the paper is as follows: Section 2 provides an overview of the modes of EV
integration with the grid. Section 3 discusses the control architectures of connecting EVs to the grid.
Section 4 describes the state-of-the-art literature of smart charging algorithms of grid-connected EV-PV
system. Section 5 reviews the uncertainty analysis methods for EV demand, PV generation, and load
distribution. The suggestions for future research with concluding remarks are presented in Section 6.

2. EV Interaction with the Distribution Network

Figure 3 shows a general representation of an EV connected to the electrical grid. The technology
which allows the bidirectional flow of energy between EV and grid is known as vehicle-to-grid (V2G).
It is achieved by the integration of Information and Communication Technologies (ICT) with the
EV charging system. The modelling research of EV interaction with the distribution network has
transitioned from unidirectional mode in the initial stage to bidirectional mode in the current stage [6,7].
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With the increasing level of EV penetration, the associated technical issues, e.g., system imbalance,
decreased stability, and power quality, as well as increased system cost, are becoming more prominent,
due to additional energy and power demand. The unidirectional approach, i.e., G2V mode, has been
extensively studied in the literature in the form of topics like smart charging [19], safety [20], and
control features [21]. The focus of these studies is on minimizing the charging cost [22] or minimizing
the impact on the distribution system [23,24].

However, in the bidirectional mode, EV is not only the load for the grid, but also a distributed
generation and storage. The initial idea was to use EV battery to store energy and send it back to the
grid in peak period, known as peak load shaving [6]. Reference [25] presents a review of peak shaving
strategies using demand-side management, energy storage systems, and electric vehicles. Table 1
illustrates the characteristical differences between the unidirectional and bidirectional modes. As an
individual EV has a small battery capacity, a major challenge is the synchronisation of a large number
of EVs charging/discharging operation required for them to be an effective storage system. Also, the
limited uptake of EV did not quite make this idea of using EV in the bidirectional mode mainstream.
Research later indicated that the application of bidirectional V2G in the ancillary market: Spinning
reserve and voltage control is much more important than peak load reduction. Spinning reserve is
the extra generation that can be made readily available, and it is paid for the availability along with
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the time it is called for deployment (compared to peak load shaving), which makes deployment of
EV in ancillary service provision very economically favourable. Moreover, in terms of frequency of
deployment, the voltage regulation is needed more than 300 times per day compared to the need for
peak load shaving, which is only a few hundred hours per year [26].

Table 1. Modes of Interaction between EV and grid.

Features Unidirectional Bidirectional

Power flow Grid-to-vehicle (G2V) G2V and vehicle-to-grid (V2G)

Infrastructure Communication Communication, bidirectional charger

Cost Low High

Complexity Low High

Services Load profile management,
Frequency regulation [27]

Backup power support, frequency regulation,
voltage regulation, active power support [28]

Advantages
Overloading prevention, load
levelling, profit maximisation,

emission minimisation [29]

Overloading prevention, profit maximisation,
emission minimisation, renewable energy
sources (RES) integration, voltage profile

improvement, harmonic filtering [30], load
levelling, power loss reduction [31]

Disadvantages Limited services Battery degradation, high complexity, and
cost, social barriers

Initially, V2G involved only energy transfer from EVs to the distribution system. However, with
the advancement in technology, two new energy transfer modes (V2H and V2V) are added. Therefore,
the bi-directional energy transfer from EV can now be classified into:

• Vehicle-to-grid (V2G): Energy transfer from EV to the distribution network.
• Vehicle-to-home/building (V2H/V2B): Energy transfer from EV to home/building.
• Vehicle-to-vehicle (V2V): Energy transfer from one EV to another EV.

3. Modelling of Grid-Connected EV-PV System

The sustainability of EV depends on the source of charging. All forms of EVs, i.e., plug-in
electric vehicle (PEV), hybrid electric vehicle (HEV), or plug-in hybrid electric vehicle (PHEV), have
lower emissions if the energy supplied for charging is based on clean fuel, such as renewable sources.
However, contrary to popular belief if the EVs are charged from fossil fuel or gas-based generation,
the emissions are significant and not zero. The RES, i.e., PV, wind, tidal, geothermal, or hydro, are
excellent options to power electric vehicles. Moreover, the following reasons make PV an admirable
source to charge the EVs:

• The cost of PV has been dropping continuously and is currently less than $1/Wp [32].
• PV is highly accessible, i.e., PV modules are generally installed on the building rooftops and

carparks, close to EV locations.
• PV modules do not require maintenance and are also noise-free.
• EVs can store the surplus generated solar energy, thereby eliminating the need for battery

systems [33,34].
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Figure 4 shows a general framework for designing a smart charging system for integrating EV-PV
system into the grid. As the focus of this review paper is on modelling aspect of the grid-connected
EV-PV system, this section will provide an overview of the modelling of control approaches with
subsequent sections reviewing about charging models/algorithms and uncertainty.
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The control architectures for grid-connected EVs (with or without PVs) can be categorised into the
following three methodologies:

• Centralised scheduling;
• Decentralised scheduling;
• Price-varying scheduling.

In centralised scheduling method, EV aggregator plays a crucial role in integrating EV with the
grid. Initially, each EV sends the necessary charging related information to the aggregator. After which
aggregator computes the optimal charging strategy and participates in the energy trading through
bidding, which is verified by grid system operators. The general objective functions in centralised type
scheduling are charging cost minimisation [35], line power loss minimisation [36], aggregator profit
maximisation [37,38], voltage regulation [39] and frequency regulation [40]. Due to the aggregation of
many EVs, this method is very good for providing backup power and ancillary services. However,
in the centralised method, EV users have to relinquish the charging process control to centralised
authority. Other drawbacks of this approach are high dependency on the control centre and large
communication bandwidth.

In decentralised scheduling method, individual EVs are controlled directly instead of through a
central control unit. Firstly, EV aggregator formulates a bidding strategy based on EV load demand
data collected or forecasted in a given period. Then, the bids are submitted to the central grid operator
and cleared in the energy market the same as in centralised scheduling. After the bids are approved,
and an agreement is done with the grid operator, the aggregator broadcasts the charging prices to
individual EV users. Based on the price and convenience, users decide whether to charge/discharge
their EVs in a given period. The advantage of this type of scheduling is that the infrastructure is simple
and of low cost. However, due to a random number of EVs guaranteed to be available at a given time,
this method’s capability of the provision of backup power and ancillary services is low. Also, privacy
and security issues are there. The general objective function in decentralised type scheduling is mainly
charging cost minimisation [41–43]. Other objectives are RES integration [44], load profile levelling [45],
voltage regulation [46] and frequency regulation [47].
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The price-varying scheduling has the same structure as decentralised scheduling, however, the
charging behaviours of EVs are directly affected by varying electricity pricing. Instead of two-way
communication, i.e., price and power schedule information exchanged in decentralised scheduling,
here the only price is communicated to EVs. Reference [48] discusses the feasibility of using time-of-use
(TOU) based pricing for EV energy management. Reference [49] presents a socially optimal pricing
system between EV aggregators and utility. Reference [50] introduces a smart EV energy management
algorithm that takes dynamic factors, such as user participation and load variation into account.

Figure 5 presents an overview of the comparison between the scheduling strategies discussed
above [51]. Even though the price-varying scheduling is overall less complex, it is less attractive for
commercial entities to participate in V2G, due to the high cost of computation on their side. Hence, the
focus of research is generally more on centralised and decentralised scheduling strategies.
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The grid-connected EV-PV systems are designed based on spatial configuration requirements,
i.e., for homes or office use etc. Generally, in the literature, four space-based levels are used:
Residential (individual house), non-residential (commercial/workplaces), public charging stations and
inter-territory region. Due to the large size of EV loads, which almost doubles the electricity consumption
of a household, it is reasonable to provide another energy source (like PV) [52]. Nevertheless, it appears
through the literature that while coupling EV with PV inside households can be beneficial, the benefits
are bounded by the EV utilisation for mobility. Most of the EVs are usually away from home during the
day, and therefore, cannot benefit from maximal PV generation. It is reasonable to assume that usually,
EVs will be at non-residential places (commercial/workplaces) during this day period when peak PV
generation happens. So, EVs will be either at residential or non-residential areas. Therefore, the focus
of this paper is only on the modelling of residential and non-residential (commercial/workplace) EV-PV
system. The PV based EV charging stations are not yet economically feasible, due to the marginal
cost associated with PV generation and the cost of energy storage systems [53]. Reference [54] is one
example of the limited literature available on standalone PV based EV charging stations.
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4. EV Smart Charging Using PV and Grid

Multiple studies have explored the advantages of a PV based EV charging system. Reference [55]
demonstrates the advantage of using PV to charge the EV and show that it allows for greater penetration
of both PV and EV. EVs can also mitigate the negative effects of excess PV generation [56]. Reference [57]
presents a case study of Columbus, USA, in which it is demonstrated that charging EV from the
PV is more economical and produces less CO2 footprint than charging EV from the grid. A case
study presented in Reference [58] compares charging of EVs through the modes: Only grid, only PV
with battery storage and grid integrated PV and finds that the grid integrated PV performs better
economically compared to the other two systems. In Reference [59], the authors discuss the application
of PV energy and EV as an energy storage system to mitigate the peak loading in the grid. These
studies demonstrate the advantages of PV based EV charging over grid EV charging. There is a vast
amount of literature on different charging algorithms or achieving different economic, technical, or
social objectives related to PV based EV charging. Table 2 provides a summary of key smart charging
related works for the grid-connected EV-PV system. The optimisation model type depends on the
problem formulation. Generally, the convex type problems (linear, mixed-integer, quadratic) can
achieve optimal solutions with a low computational cost. For non-convex problems, meta-heuristic
type optimisation methods (Genetic Algorithm, Particle Swarm Optimisation) are useful to achieve
a near-optimal solution with a low computational burden. The rule-based algorithm or heuristic
type optimisation methods can produce good enough solutions for random instantaneous events
(e.g., plugging/unplugging of EVs, PV power variation) with little data and computational power
requirements. The focus of the literature is generally on residential or office PV based EV charging
system, not on commercial applications, due to less complexity in analysis and modular integration in
the distribution system. Moreover, almost all the smart charging research focuses on the specific aspects
of optimizing the EV integration into grid, e.g., slow/fast charging, market participation, ancillary
services. For emulating the real-life implementation, a comprehensive system with multiple aspects is
required. Reference [60,61] are some early stages work on a comprehensive system combining multiple
aspects which are usually studied in isolation.

Table 2. Summary of literature related to smart charging of grid-connected EV-PV system.

References Objectives Optimisation Model Software/Implementation Key Findings

[62] Peak shaving and
valley filling Linear programming MATLAB

The effectiveness of the proposed
algorithm is dependent on a high number
of available parking spots.

[35] Maximizing profit
and PV utilisation

Mixed Integer Linear
programming GAMS

Due to battery degradation cost, V2G is
not economically feasible unless high PV
production is present

[63] Minimizing system
cost

Mixed Integer Linear
programming CPLEX

Smart charging can result in saving of
operational cost for charging and PV
usage for the parking lot owner

[64] Minimizing
charging cost Fuzzy logic MATLAB

The algorithm is not optimisation based
so targets several objectives: Reduction in
charging cost and system losses,
improvement in voltage profile.
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Table 2. Cont.

References Objectives Optimisation Model Software/Implementation Key Findings

[65] Maximizing PV
utilisation Metaheuristic MATLAB

The proposed heuristic algorithm
achieves desired objectives with low
computational cost and without
forecasting of uncertain variables.

[66] Maximizing EV
aggregator benefits Hybrid MPC -

The proposed algorithm achieves
near-optimal solution of EV charge
scheduling problem with better efficiency
than standard MPC

[67]

Maximizing PV
utilisation and
reducing EV

charging impact

Linear programming Case study: New South Wales
distribution system

The proposed strategy controls the
charging/discharging profile of EVs to
match with the shape of the PV output to
achieve desired objectives.

[68] Minimizing
charging cost

Mixed Integer Linear
programming Case study: Korea

The proposed algorithm does not
consider selling excess power and
demonstrates charging cost savings
compared to uncoordinated charging

[61] Minimizing system
cost

Mixed Integer Linear
programming Microsoft Solver Foundation

A comprehensive system to achieve one
optimal charging profile will result in a
larger net benefit compared to
individual applications.

[69] Minimizing
charging cost Convex programming MATLAB

ESS can significantly reduce charging cost
and bi-directional V2H is cheaper
than H2V

[70] Maximizing profit
and ESS life

Non-linear
programming GAMS

Considering only revenue maximisation
will result in an adverse effect on ESS life

[71] Maximizing PV
utilisation Linear programming Case study: LomboXnet

Proposed algorithm increases PV
self-consumption and reduces peak
demand by half

[72] Minimizing
charging cost Rule-based algorithm MATLAB

Rule-based charging is superior to
conventional charging for less charging
cost and reduced grid loading

[73] Maximizing PV
utilisation Rule-based algorithm MATLAB

V2B can be an effective strategy if initial
capital costs and electricity price
are fitting

[74] Minimizing peak
demand MPC MATLAB

EV scheduling can reduce both the
magnitude and frequency of peak loading

[75] Peak shaving and
valley filling

Quadratic
programming MATLAB

Net load variation was lower in case of
low PV power-sharing and vice-versa

V2H, vehicle-to-home; H2V, home-to-vehicle; V2B, vehicle-to-building; MPC, model predictive control.

The stochastic behaviour of the PV generation is a major disadvantage for EV charging.
The approach of a smart charging algorithm is to provide flexibility in EV charging to account
for the uncertainty in PV generation. Reference [71] has shown that smart charging, along with the
V2G technology, increases PV self-consumption and reduces peak demand. Reference [76] varies the
EV charging power with time to match with the generated PV power and achieves the condition of
maximum PV utilisation. Another way to counteract uncertainty is the sequential charging in which
the total number of EVs charging at constant power is varied dynamically so that the net charging
power follows the PV generation, as seen in Reference [77]. Reference [78] considers multiple cases
to show the superiority of sequential charging over concurrent charging in terms of PV utilisation
under stochastic conditions. However, due to no associated time constraints, it is not feasible for
workplace charging.

5. Uncertainty Modelling

This section reviews the methods for modelling the uncertainties present with the various input
parameters for the EV-PV grid integrated system. Three input factors are of main interest: EV charging
demand, PV generation, and Electrical load distribution. The tables in respective sections summarise
the techniques used to model the uncertainties present. The remarks show the comparative analyses of
these techniques in terms of system size, computational cost, and accuracy.
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5.1. EV Charging Demand

The uncertainties in EV charging demand are due to multiple factors, e.g., user behaviour,
charging infrastructure, and operational parameters. Table 3 presents an overview of various
uncertainty methods for modelling EV load demand in terms of application and associated drawbacks.
Generally, Monte Carlo and Probability distribution based modelling method is common practice
in the literature. However, due to computational cost and accuracy issues associated with them,
respectively, more advanced methods like Markov chain and Information gap decision theory are
used for specific applications. A hybrid approach of combining methods is also used to minimise the
associated drawbacks.

Table 3. Overview of uncertainty modelling methods for EV load demand.

Method Remarks References

Scenario reduction
• Simple and less computationally intensive
• Approximate uncertainty modelling, accuracy

depends on the amount of historical data available
[79,80]

Monte Carlo simulation
• High accuracy, but also computationally intensive
• Accuracy depends on the amount of historical

data available
[19,81]

Fuzzy logic
• Historical data not required
• Accuracy depends on rule settings which are based

on researcher experience
[82,83]

Hybrid Monte Carlo-fuzzy • High accuracy, but also computationally intensive
• Can model both temporal and spatial uncertainty

[84]

Artificial Neural Network
• Accuracy depends on input dataset quality
• Considers the correlation between forecasted and

observed data
[37,85]

Markov chain
• Very high accuracy with moderate

computational cost
• Performance depends on input data dimension

[86]

Probability distribution
fitting • Very simple, but also less accurate [87,88]

Robust optimisation

• Low computationally intensive however difficult to
employ with non-linear problems

• Not flexible, i.e., give a single solution which might
be infeasible

[89,90]

Information gap decision
theory

• Useful for dealing with severe uncertainties
• Complex implementation

[91,92]

Figure 6 shows the various input parameters for the uncertainty modelling of EV load demand.
The parameters related to time (e.g., arrival, departure, travel, service) and charging power demand
required are common in all the three modes of charging: Individual, residential, and commercial, while
others are specific to the application. The uncertainties in the parameters involving human factors, i.e.,
travel/arrival/departure time and pattern are difficult to describe accurately, and also the literature is
quite scarce on the effect of human learning capability on EV charging demand. Reference [44] is an
example of paucity of research on the practical effect of human factors on EV charging.
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5.2. PV Generation

A PV module converts energy from the sun into electrical form depending upon the incident
radiation on the module surface. This incident solar radiation is highly variable and depends on
various geographical and metrological factors. The common variables used in uncertainty modelling of
PV generation are solar irradiance, sky type index (clear, cloudy, sunny), module and air temperature,
wind speed, and humidity. Table 4 shows a summary of commonly used uncertainty modelling
methods for PV generation. The commonly practiced methods are Point estimation, Monte Carlo,
Scenario based analysis, and statistical methods (Autoregressive Moving Average). These methods are
less complex and work well with small system size. However, for bigger PV systems, Rolling Horizon
approach and Kernal Density are more suitable. Generative Adversarial Network (GAN) is the latest
uncertainty modelling method based on a machine learning approach.



Energies 2020, 13, 4541 12 of 20

Table 4. Overview of common uncertainty modelling methods for PV.

Method Remarks References

Point estimation • Computationally intensive with more input variables [93]

Bootstrap • Simple and low computational cost
• High accuracy

[94]

Monte Carlo simulation • High accuracy, but also computationally intensive [95]

Mean-Variance estimation
• Based on the assumption that uncertainty is

normally distributed
• Simple, but less accurate for practical cases

[96]

Two stage scheduling
• Upper level deals with global adjustment and lower

with local adjustment
• Simple, flexible and accurate

[97]

Scenario based analysis

• Very commonly used method with a high degree
of accuracy

• Accuracy depends upon the scenario
generation technique

[98]

Kernel Density estimation • Needs to analyse a large amount of historical data [99]

Autoregressive Moving Average • Accuracy depends on historical time-series dataset
• Needs a lot of historical data and analysis

[35]

Probability distribution fitting • Very simple, but also less accurate [100]

Rolling Horizon approach • Effective for large scale system with moderate
computational cost

[101]

Generative Adversarial network • Very new and highly accurate scenario based method [102]

References [103,104] describes the implementation details of various forecasting techniques for
PV power generation. More details about uncertainty modelling for the RES systems can be found in
References [105–108]. The literature of PV based uncertainty modelling is scarce as the cumulative
effect of PV power on the system is small compared to other uncertain variables (load, EV demand).

The most common method to mitigate the PV uncertainty is using an external battery storage
system, i.e., different from the EV batteries [109]. The excess PV generation, usually in the afternoon, is
stored in the battery pack and used to charge the EVs when PV generation is inadequate. Reference [110]
compares three different algorithms for finding the best operation characteristics for the battery storage
and finds that using a sigmoid function-based discharging algorithm, while charging EVs during
the night and storing PV excess is the best approach. However, these studies do not consider the
optimal sizing of the external battery storage system as it is a quite expensive component. Apart from
mitigating PV uncertainty, the external battery storage system also minimises the impact of EV demand
uncertainty parameters constrained by time.

5.3. Electrical Load Demand

The consumption of electricity is highly spatially and temporally uncertain, varying between
different load sources, seasons, and the time of day. The main factors for introducing uncertainty in
load sources are user behaviours, climatic conditions, and electrical equipment variation [111]. Table 5
shows an overview of various common methods used for modelling uncertainty in electrical loads.
Readers can refer to [105,108,111–113] for implementation details of these and other methods used to
model uncertainties present in electrical load. The convolution and cumulant based techniques are
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traditional methods popular in the late nineties’ era. However, with the scaling of computational cost
with system size, the point estimation became a more popular method. Monte Carlo and Scenario
based analysis are also fairly common in the literature.

Table 5. Overview of common uncertainty modelling methods for electrical load demand.

Method Remarks References

Point estimation
• Does not require complete knowledge about the system,

but computationally intensive with more input variables
• Two-point is the simplest and three-point is most efficient

[114,115]

Monte Carlo simulation
• High accuracy, but also computationally intensive
• Different sampling techniques reduce the

computational burden
[116,117]

Fuzzy logic
• Less computationally intensive and robust in nature
• Vital parameters are decided by the researcher based

on experience
[118]

Scenario based analysis
• Very commonly used method with a high degree

of accuracy
• Accuracy depends upon the scenario generation technique

[119]

Autoregressive Moving Average • Accuracy depends on historical time-series dataset
• Needs a lot of historical data and analysis

[85,120]

Convolution based
• Traditional analytical method with low

computation efficiency
• Applicable to linear systems with independent inputs

[121,122]

Probability distribution fitting • Very simple, but also less accurate [88,123]

Cumulant based
• Traditional analytical method with high

computation efficiency
• Accuracy decreases with higher order systems

[124]

6. Conclusions and Future Research Suggestions

Electric vehicles and renewable energy-based generation are a promising solution to rising GHG
emissions. Further, EVs can act as a dynamic energy storage system through the technology of V2G,
thereby, facilitating RES integration in the smart grid. Also, well to wheel emissions from EVs depend
upon the charging source. Therefore, RES based EV charging is desired for the overall reduction
in emissions and getting the best of both technologies. Thus, this research area is quite popular
and needs further exploration for worldwide implementation. This paper presents a state-of-the-art
comprehensive review of the modelling of grid-connected EV-PV charging systems. A general
framework of designing the grid-connected EV-PV system is described along with a focus on smart
charging algorithms. The modelling techniques for associated uncertainties with the grid-connected
EV-PV system, i.e., EV demand, electrical load, and PV generation are also intensely reviewed.
The study reveals that although the research in this area is plentiful, few gaps need to be investigated.
Some future research directions are suggested as following:

• Smart charging algorithms

The EV charging models need to be more comprehensive in nature, i.e., multiple charging powers,
charging station and battery-swapping station, and wholesale market trading and ancillary services
provisions, in order to more accurately and realistically model the practical implementation. More
studies with respect to finding the optimal trade-offs between computational burden and performance
should be made.
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• P2P V2G power transfer

There is a need for more research on peer-to-peer or transactive type charging systems as this
encourages all types (big, small, etc.) EV aggregators to trade energy with one another instead of only
sizeable aggregator participating in central energy trading. Another advantage is that transactive
trading can operate independently of direct influence from the grid so that the price signal from the
central power station may not affect the performance of the transactive trading the way it influences
the scheduling and trading of energy in existing systems.

• Uncertainty analysis

The focus of future research should be on finding more realistic forecasting and uncertainty
analysis techniques that optimally balance simplicity and performance. Also, more advancement is
needed in the modelling of challenging variables like human behaviour, etc. Further, almost all the
current research focuses on improving PV forecasting accuracy rather than addressing uncertainties
associated with PV generation.

• PV based EV charging stations

With PV based EV charging being a viable solution for emission issues, more research is needed
on the commercial aspects, e.g., solar charging stations as current research focus more on residential
EV-PV systems. The impact analysis and interaction with the distribution system needs to be studied
in detail.

• Price-varying scheduling

Because of easy implementation and effectiveness for managing charging load in peak/valley
times, price-varying scheduling is very attractive to aggregators. Therefore, more research is required
for charging models based on price response and price elasticity.
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59. Kempton, W.; Tomić, J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting
large-scale renewable energy. J. Power Sources 2005, 144, 280–294. [CrossRef]

60. Moghaddam, Z.; Ahmad, I.; Habibi, D.; Phung, Q.V.; Habibi, D. Smart charging strategy for electric vehicle
charging stations. IEEE Trans. Transp. Electrif. 2018, 4, 76–88. [CrossRef]

61. Mouli, G.R.C.; Kefayati, M.; Baldick, R.; Bauer, P. Integrated PV charging of EV fleet based on energy prices,
V2G, and offer of reserves. IEEE Trans. Smart Grid 2017, 10, 1313–1325. [CrossRef]

62. Ioakimidis, C.S.; Thomas, D.; Rycerski, P.; Genikomsakis, K.N. Peak shaving and valley filling of power
consumption profile in non-residential buildings using an electric vehicle parking lot. Energy 2018, 148,
148–158. [CrossRef]

63. Ivanova, A.; Fernandez, J.A.; Crawford, C.; Sui, P.-C. Coordinated charging of electric vehicles connected to
a net-metered PV parking lot. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), Torino, Italy, 26–29 September 2017; pp. 1–6.

64. Mohamed, A.A.; Salehi, V.; Ma, T.; Mohammed, O.A. Real-time energy management algorithm for plug-in
hybrid electric vehicle charging parks involving sustainable energy. IEEE Trans. Sustain. Energy 2014, 5,
577–586. [CrossRef]

65. Liu, N.; Chen, Q.; Liu, J.; Lu, X.; Li, P.; Lei, J.; Zhang, J. A heuristic operation strategy for commercial building
microgrids containing EVs and PV system. IEEE Trans. Ind. Electron. 2014, 62, 2560–2570. [CrossRef]

66. Zhang, Y.; Cai, L. Dynamic charging scheduling for EV parking lots with photovoltaic power system.
IEEE Access 2018, 6, 56995–57005. [CrossRef]

67. Alam, M.J.E.; Muttaqi, K.M.; Sutanto, D. Effective utilization of available PEV battery capacity for mitigation
of solar PV impact and grid support with integrated V2G functionality. IEEE Trans. Smart Grid 2015, 7,
1562–1571. [CrossRef]

68. Wi, Y.-M.; Lee, J.-U.; Joo, S.-K. Electric vehicle charging method for smart homes/buildings with a photovoltaic
system. IEEE Trans. Consum. Electron. 2013, 59, 323–328. [CrossRef]

69. Wu, X.; Hu, X.; Teng, Y.; Qian, S.; Cheng, R. Optimal integration of a hybrid solar-battery power source into
smart home nanogrid with plug-in electric vehicle. J. Power Sources 2017, 363, 277–283. [CrossRef]

70. Eldeeb, H.H.; Faddel, S.; Mohammed, O.A. Multi-objective optimization technique for the operation of grid
tied PV powered EV charging station. Electr. Power Syst. Res. 2018, 164, 201–211. [CrossRef]

71. Van Der Kam, M.; Van Sark, W. Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid
technology in a microgrid; a case study. Appl. Energy 2015, 152, 20–30. [CrossRef]

72. Bhatti, A.R.; Salam, Z. A rule-based energy management scheme for uninterrupted electric vehicles charging
at constant price using photovoltaic-grid system. Renew. Energy 2018, 125, 384–400. [CrossRef]

73. Barone, G.; Buonomano, A.; Calise, F.; Forzano, C.; Palombo, A. Building to vehicle to building concept
toward a novel zero energy paradigm: Modelling and case studies. Renew. Sustain. Energy Rev. 2019, 101,
625–648. [CrossRef]

74. Ghotge, R.; Snow, Y.; Farahani, S.; Lukszo, Z.; Van Wijk, A.J. Optimized scheduling of EV charging in solar
parking lots for local peak reduction under eV demand uncertainty. Energies 2020, 13, 1275. [CrossRef]

75. Fachrizal, R.; Munkhammar, J. Improved photovoltaic self-consumption in residential buildings with
distributed and centralized smart charging of electric vehicles. Energies 2020, 13, 1153. [CrossRef]

76. Nunes, P.; Farias, T.L.; Brito, M.C. Enabling solar electricity with electric vehicles smart charging. Energy
2015, 87, 10–20. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2016.08.015
http://dx.doi.org/10.3390/en12183579
http://dx.doi.org/10.1016/j.jpowsour.2012.10.007
http://dx.doi.org/10.1016/j.energy.2014.11.069
http://dx.doi.org/10.1016/j.apenergy.2013.02.068
http://dx.doi.org/10.2478/v10173-012-0026-8
http://dx.doi.org/10.1016/j.jpowsour.2004.12.022
http://dx.doi.org/10.1109/TTE.2017.2753403
http://dx.doi.org/10.1109/TSG.2017.2763683
http://dx.doi.org/10.1016/j.energy.2018.01.128
http://dx.doi.org/10.1109/TSTE.2013.2278544
http://dx.doi.org/10.1109/TIE.2014.2364553
http://dx.doi.org/10.1109/ACCESS.2018.2873286
http://dx.doi.org/10.1109/TSG.2015.2487514
http://dx.doi.org/10.1109/TCE.2013.6531113
http://dx.doi.org/10.1016/j.jpowsour.2017.07.086
http://dx.doi.org/10.1016/j.epsr.2018.08.004
http://dx.doi.org/10.1016/j.apenergy.2015.04.092
http://dx.doi.org/10.1016/j.renene.2018.02.126
http://dx.doi.org/10.1016/j.rser.2018.11.003
http://dx.doi.org/10.3390/en13051275
http://dx.doi.org/10.3390/en13051153
http://dx.doi.org/10.1016/j.energy.2015.04.044


Energies 2020, 13, 4541 18 of 20

77. Kadar, P.; Varga, A. PhotoVoltaic EV charge station. In Proceedings of the 2013 IEEE 11th
International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovenia,
31 January–2 February 2013; pp. 57–60.

78. Brenna, M.; Dolara, A.; Foiadelli, F.; Leva, S.; Longo, M. Urban scale photovoltaic charging stations for
electric vehicles. IEEE Trans. Sustain. Energy 2014, 5, 1234–1241. [CrossRef]

79. Leou, R.-C.; Su, C.-L.; Lu, C.-N. Stochastic analyses of electric vehicle charging impacts on distribution
network. IEEE Trans. Power Syst. 2013, 29, 1055–1063. [CrossRef]

80. Khodayar, M.E.; Wu, L.; Shahidehpour, M. Hourly Coordination of electric vehicle operation and volatile
wind power generation in SCUC. IEEE Trans. Smart Grid 2012, 3, 1271–1279. [CrossRef]

81. Liu, Z.; Wen, F.; Ledwich, G. Optimal siting and sizing of distributed generators in distribution systems
considering uncertainties. IEEE Trans. Power Deliv. 2011, 26, 2541–2551. [CrossRef]

82. Soares, J.; Borges, N.; Ghazvini, M.A.F.; Vale, Z.; Oliveira, P.M. Scenario generation for electric vehicles’
uncertain behavior in a smart city environment. Energy 2016, 111, 664–675. [CrossRef]

83. Chen, Z.; Xiong, R.; Cao, J. Particle swarm optimization-based optimal power management of plug-in hybrid
electric vehicles considering uncertain driving conditions. Energy 2016, 96, 197–208. [CrossRef]

84. Soroudi, A.; Ehsan, M. A possibilistic–probabilistic tool for evaluating the impact of stochastic renewable
and controllable power generation on energy losses in distribution networks—A case study. Renew. Sustain.
Energy Rev. 2011, 15, 794–800. [CrossRef]

85. Ahmad, F.; Alam, M.S.; Shariff, S.M.; Krishnamurthy, M. A Cost-efficient approach to ev charging station
integrated community microgrid: A case study of Indian power market. IEEE Trans. Transp. Electrif. 2019, 5,
200–214. [CrossRef]

86. Shepero, M.; Munkhammar, J. Spatial Markov chain model for electric vehicle charging in cities using
geographical information system (GIS) data. Appl. Energy 2018, 231, 1089–1099. [CrossRef]

87. Gupta, N. Gauss-quadrature-based probabilistic load flow method with voltage-dependent loads including
WTGS, PV, and EV charging uncertainties. IEEE Trans. Ind. Appl. 2018, 54, 6485–6497. [CrossRef]

88. Zhou, B.; Yang, X.; Yang, D.; Yang, Z.; Littler, T.; Li, H. Probabilistic load flow algorithm of distribution
networks with distributed generators and electric vehicles integration. Energies 2019, 12, 4234. [CrossRef]

89. Baringo, L.; Amaro, R.S. A stochastic robust optimization approach for the bidding strategy of an electric
vehicle aggregator. Electr. Power Syst. Res. 2017, 146, 362–370. [CrossRef]
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