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Abstract. In this paper, we show that if the Tychonoff power Xω of
a quasi-regular space X is Baire then its Vietoris hyperspace 2X is also
Baire. We provide two examples to show that the converse of this result
does not hold in general, and the Baireness of finite powers of a space
is insufficient to guarantee the Baireness of its hyperspace.
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1. Introduction

All topological spaces considered in this paper are assumed to be Haus-
dorff, although it is not always necessary to do so. Let X be a topological
space. In this paper, 2X denotes the hyperspace of X consisting of all
nonempty closed subsets of X endowed with the Vietoris topology [7]. A
canonical base for this topology is given by all subsets of 2X of the form

〈U 〉 :=
{
F ∈ 2X : F ⊆

⋃
U , F ∩ V 6= ∅ for any V ∈ U

}
,

where U runs over the finite families of nonempty open subsets of X. In
the sequel, 2X will always carry this topology. In addition, all powers of X
are endowed with the Tychonoff product topology.

Recall that a space X is Baire if the intersection of every sequence of
dense open subsets in X is dense. The well-known Baire category theorem
claims that every complete metric or locally compact Hausdorff space is
Baire. Due to the importance of the Baire category theorem in analysis and
topology, it is interesting to know when the hyperspace 2X of a Baire space
X is still Baire. In 1975, McCoy [6] first considered this problem, and proved
that if X is a quasi-regular Baire space with a countable pseudo-base, then
2X is Baire. Here, a pseudo-base (also called a π-base) for X is a family
of nonempty open sets P such that for every nonempty open set U of X
there is P ∈ P with P ⊆ U . In the same paper, McCoy also indicated
the interest in determing whether 2X must be Baire for every metric Baire
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space X. Recently, this question of McCoy has been solved by Cao, Garćıa-
Ferreira and Gutev in [1]. It is proved in [1] that if 2X is Baire, then Xn is
Baire for all n < ω. By combining this result with a classical example in [3],
it is concluded that there exists a metric Baire space X whose hyperspace
2X is not Baire. Motivated by all these known facts, we shall consider the
following question in this paper.

Question 1.1. Given a space X, is there any relation between the Baireness
of the countable power Xω and that of 2X?

In Section 2, we first prove that if X is quasi-regular and Xω is Baire,
then 2X is also Baire. As a corollary of this theorem, the main result of
McCoy in [6] is deduced. Also, an affirmative solution of an oral question
due to W. B. Moors is deduced from this theorem. In Section 3, we shall give
two examples. The first one is a metric Baire space space X such that 2X

is Baire but Xω is not Baire, and the second one is a metric Baire space all
of whose finite powers are Baire but whose Vietoris hyperspace is not Baire.
Our major tool in achieving these results is the following characterization of
Baire spaces in terms of the Choquet game.

Theorem 1.2 ([4], [8], [10]). A space X is Baire if, and only if the first
player does not have a winning strategy in the Choquet game played in X.

Recall that the Choquet game (or the Banach-Mazur game) Ch(X) played
in a space X is the following two-player infinite game. Players, called β (the
first player) and α (the second player), alternatively choose nonempty open
subsets of X with β starting first such that

U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ · · · .

In this way, a run ((Un, Vn) : n < ω) will be produced. Then α is said to
win this run if

⋂
n<ω Un(=

⋂
n<ω Vn) 6= ∅. Otherwise, we say that β has

won. By a strategy σ for player β, we mean a function defined for all legal
finite sequences of moves of α. If σ is a strategy for β in Ch(X), σ(∅)
denotes the first move of β. A finite sequence (V0, ..., Vn) of nonempty open
sets of X is called a partial play of α subject to σ in Ch(X) if V0 ⊆ σ(∅)
and Vi+1 ⊆ σ(V0, ..., Vi) ⊆ Vi for all i < n. Similarly, an infinite sequence
(Vn : n < ω) of nonempty open sets of X is called a (full) play of α subject
to σ if V0 ⊆ σ(∅) and Vn+1 ⊆ σ(V0, ..., Vn) ⊆ Vn for all n < ω. Strategies for
player α, partial plays and (full) plays for β subject to a strategy of α can be
defined similarly. In addition, a winning strategy for a player is a strategy
such that this player wins each play of its opponent subject to this strategy
no matter how the opponent moves in the game. If α has a winning strategy
in Ch(X), then X is called weakly α-favorable. Evidently, it follows from
Theorem 1.2 that every weakly α-favorable space is Baire. However, Baire
spaces which are not weakly α-favorable do exist, for example, any barely
Baire space in [3] or any Bernstein set.

Readers should refer to [11] for more information on topological games.
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2. The Baireness of Xω implies that of 2X

The main purpose of this section is to prove the following theorem which
is stated in the title of the section.

Theorem 2.1. Let X be a quasi-regular topological space. If Xω is Baire,
then 2X is Baire.

Recall that a space X is said to be quasi-regular if for every nonempty
open set U of X there exists a nonempty open set V in X such that V ⊆ U ,
where V is the closure of V in X. Theorem 2.1 has the following immediate
consequences.

Corollary 2.2 ([6]). If X is a quasi-regular Baire space having a countable
pseudo-base, then 2X is Baire.

Proof. By Theorem 3 in [9], Xω is Baire. Then the conclusion follows from
Theorem 2.1. ¤
Corollary 2.3. If X is a quasi-regular weakly α-favorable, then 2X is Baire.

Proof. It is known that the countable product of any family of weakly α-
favorable spaces is weakly α-favorable. Thus, if X is weakly α-favorable,
then Xω is weakly α-favorable. Since every weakly α-favorable spaces is
Baire, the conclusion follows from Theorem 2.1. ¤

The next corollary gives an affirmative answer to a recent oral question
due to W. B. Moors.

Corollary 2.4. If X is a metric hereditarily Baire space, then 2X is Baire.

Proof. It is shown in [2] that the product of any family of metric hereditarily
Baire spaces is Baire. Thus, Xω is Baire if X is a metric hereditarily Baire
space. Now, the conclusion follows from Theorem 2.1. ¤

To prove Theorem 2.1, we need some preparation. Let τ0(X) be the family
of all nonempty open sets of a space X, and let [τ0(X)]<ω be the family of
all finite sets in τ0(X). For each U = {U0, ..., Un−1} ∈ [τ0(X)]<ω, let

[U ] = [U0, ..., Un−1] :=
(∏n−1

i=0 Ui

)
×Xωrn

be the basic open set in Xω defined by U in this particular order. Let
V = {V0, ..., Vm−1} be another member of [τ0(X)]<ω. Then, [U0, ..., Un−1,V ]
is defined by letting

[U0, ..., Un−1, V ] :=
(∏n−1

i=0 Ui

)
×

(∏m−1
i=0 Vi

)
×Xωr(n∪m).

If [V ] ⊆ [U ], then we shall always assume n ≤ m and Vi ⊆ Ui for all i < n.
Furthermore, if X is dense-in-itself, then it is easy to see that

<(Xω) := {[U ] : U is pairwise disjoint and U ∈ [τ0(X)]<ω}
is a pseudo-base for Xω. On the other hand, it can be verified that

=(2X) := {〈U 〉 : U is pairwise disjoint and U ∈ [τ0(X)]<ω}
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is always a pseudo-base for 2X for any space X. If 〈V 〉 and 〈U 〉 are members
of =(2X), it can be verified that 〈V 〉 ⊆ 〈U 〉 if, and only if for i ≤ n−1 there
is j ≤ m−1 such that Vj ⊆ Ui and

⋃
V ⊆ ⋃

U , see [7]. Thus, if 〈V 〉 ⊆ 〈U 〉,
then we can conclude m ≥ n, and we shall always assume Vi ⊆ Ui for all
i ≤ n− 1 (after re-arranging terms).

Proof of Theorem 2.1. Suppose that σ is a strategy for player β in Ch(2X).
We shall show that σ is not a winning strategy for β. To this end, we
shall first apply σ to define inductively a strategy θ for β in Ch(Xω), and
then apply the Baireness of Xω. Without loss of generality, we shall restrict
moves of β and α in Ch(2X) on =(2X), since =(2X) is a pseudo-base for
2X . First of all, we shall consider the case when X is dense-in-itself. In this
case, <(Xω) is a pseudo-base forXω. Thus, we shall restrict moves of β and
α in Ch(Xω) on <(Xω).

Step 1. Suppose σ(∅) = 〈U0
0 , ..., U0

n0−1〉. Then, we define θ(∅) by letting
θ(∅) := [U0

0 , ..., U0
n0−1]. Put n−1 = m−1 = 0.

If α responds to θ(∅) by selecting a finite family of nonempty open sets
Π0 such that [Π0] ∈ <(Xω) and [Π0] ⊆ θ(∅). Then, |Π0| ≥ n0. For
simplicity, we write Π0 = Σ0

0 ∪ Γ0
0, where Σ0

0 = {V 0
0 , ..., V 0

n0−1} and Γ0
0 =

{W 0
0 , ..., W 0

m0−1}. If m0 = 0, Γ0
0 = ∅. Further, since V 0

i ⊆ U0
i for all

i < n0, then 〈Σ0
0〉 ⊆ σ(∅). Suppose that σ(〈Σ0

0〉) = 〈U1
0 , ..., U1

n1−1〉, where
n1 ≥ n0 + m0. Since X is quasi-regular, we may require

σ(〈Σ0
0〉) = 〈U1

0 , ..., U1
n1−1〉 ⊆ 〈Σ0

0〉.
Evidently, we have U1

h ⊆ U0
h for each h < n0. Define θ([Π0]) by letting

θ([Π0]) := [U1
0 , ..., U1

n0−1, Γ
0
0, U

1
n0

, ..., U1
n1−1].

Suppose that we have defined θ for all finite sequences ([Πi] : i < k − 1) of
length k − 1 (k ≥ 2) in =(Xω) satisfying

(i) Πi =
⋃

j≤i(Σ
i
j ∪ Γi

j) for all i < k − 1;

(ii) Σi
j = {V i

h : nj−1 ≤ h < nj} and Γi
j = {W i

h : mj−1 ≤ h < mj} for all
j ≤ i and i < k − 1;

(iii) n0 ≤ ... ≤ nk−2 and m0 ≤ ... ≤ mk−2;

(iv) ni + mi ≤ ni+1 for all i < k − 2;

(v) [Πi+1] ⊆ θ([Π0], ..., [Πi]) ⊆ [Πi] for all i < k − 2;

(vi) σ(〈Σ0
0〉, ..., 〈

⋃
j≤i Σ

i
j〉) = 〈U i+1

0 , ..., U i+1
ni+1−1〉 for all i < k − 1;

(vii) 〈U i+1
0 , ..., U i+1

ni+1−1〉 ⊆ 〈⋃j≤i Σ
i
j〉 for all i < k − 1.

It follows from (vi) and (vii) that U i+1
h ⊆ U i

h for all h < ni and i < k − 1.

Step k + 1. Let ([Πi] : i < k) be a finite sequence of length k in =(2X) such
that ([Πi] : i < k) satisfies (i)–(vii) and [Πk−1] =

⋃
j<k(Σ

k−1
j ∪ Γk−1

j ), where



5

Σk−1
j = {V k−1

h : nj−1 ≤ h < nj} and Γk−1
j = {W k−1

h : mj−1 ≤ h < mj} for
all j < k. Suppose that

σ(〈Σ0
0〉, ..., 〈

⋃
i<k Σk−1

i 〉) = 〈Uk
0 , ..., Uk

nk−1〉
such that 〈Uk

0 , ..., Uk
nk−1〉 ⊆ 〈⋃i<k Σk−1

i 〉, where nk ≥ nk−1 + mk−1. Then,

it is clear from the hypotheses that Uk+1
h ⊆ Uk

h for all h < nk. Finally, we
define θ([Π0], ..., [Πk−1]) by letting

θ([Π0], ..., [Πk−1]) := [Uk
0 , ..., Uk

n0−1, Γ
k
0, ..., U

k
nk−2

, ..., Uk
nk−1−1, Γ

k−1
k−1,

Uk
nk−1

, ..., Uk
nk−1].

This completes the definition of the strategy θ.

Since Xω is a Baire space, then θ is not a winning strategy for player β
in Ch(Xω). Hence, there exists a play ([Πk] : k < ω) of player α subject to
θ in Ch(Xω) such that

⋂
k<ω[Πk] 6= ∅, where each [Πk] has the form as that

in (i)–(vii). Note that (〈⋃j≤k Σk
j 〉 : k < ω) is a play for player α subject to

σ in Ch(2X). Fix any arbitrary point (zi) ∈
⋂

k<ω[Πk]. For each k < ω, let
Ak = {zi : nk−1 +mk−1 ≤ i < nk}. Then, put A =

⋃
k<ω Ak. It follows from

the construction of θ that for each i < ω,
⋃

k≤i Ak ∈ σ(〈Σ0
0〉, ..., 〈

⋃
j≤i−1 Σi−1

j 〉).
Consequently, A ∈ ⋂

k<ω〈
⋃

j≤k Σk
j 〉. Therefore, σ is not a winning strategy

for player β in Ch(2X). By Theorem 1.2, 2X is a Baire space.

If X is not dense-in-itself, then some of open sets appeared in (i)–(vii)
could be singletons. In this case, the previous argument still works with just
a slight modification. ¤

3. Two examples

In this section, we shall present two examples as promised in the abstract.
These examples are variations of the example given in Remark 9 of [3].

Let ST be the collection of all functions from a set S to a set T . Given a
cardinal κ, let FSκ be the set of all finite sequences in κ, i.e., FSk =

⋃{κn :
n < ω}. For each σ ∈ FSκ, let dom σ be the domain of σ. Then σ_γ is
σ ∪ {(dom σ, γ)}, that is, σ with γ stuck on the end. Let Jκ be the space of
κω equipped with the metric d defined such that for any f, g ∈ κω,

d(f, g) :=
{

0, if f(n) = g(n) for all n ∈ ω;
2−n, if f 6= g and n is the least with f(n) 6= g(n).

For any f ∈ Jκ, if cfκ > ω, then we put f∗ := sup{f(n) + 1 : n < ω}. A
subset C of an infinite cardinal κ is called cub if it is closed unbounded, and
a subset A of κ is called stationary in κ if A intersects every cub set C in κ.
For basic properties of cub and stationary sets, readers should refer to [5].
Let c be the continuum. The next cardinal after c is c+, and Cωc+ is the
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subset of c+ consisting of all ordinals of cofinality ω. It is known that Cωc+

is stationary, and Cωc+ can be split into c+ disjoint stationary subsets of
c+. Let {Ax : x ∈ Jω} be a family of disjoint stationary subsets of Cωc+.

Example 3.1. There exists a metric Baire space X such that 2X is Baire,
but Xω is not Baire. For each y ∈ Jω, define

Cy :=
⋃
{Ay′ : y′ ∈ Jω and y(0) 6= y′(0)},

and then our desired space X is defined by

X := {〈y, f〉 ∈ Jω × Jc+ : f∗ ∈ Cy}
and is equipped with the metric inherited from the product space Jω × Jc+ .
For each σ ∈ FSω and τ ∈ FSc+ , we shall define

B(σ,τ) := {〈y, f〉 ∈ Jω × Jc+ : y ¹dom σ = σ and f ¹dom τ = τ}.

• Xω is not Baire.

To see this, for any i, j, k < ω, let us define

Dijk := {〈〈y0, f0〉, · · · 〉 ∈ Xω : min(f∗i , f∗j ) > max(fi(k), fj(k))}.
In addition, for each ` < ω, we define

E` := {〈〈y0, f0〉, · · · 〉 ∈ Xω : ` ⊆ {y0(0), ..., yn(0)} for some n < ω}.
It can be checked all Dijk’s and E`’s are dense open in Xω. We claim

⋂
i,j,k,`<ω(Dijk ∩ E`) = ∅.

If not, there exists a point 〈〈y0, f0〉, · · · 〉 in Xω such that

〈〈y0, f0〉, · · · 〉 ∈
⋂

i,j,k,`<ω (Dijk ∩ E`).

Then, it is clear that f∗0 = f∗1 = · · · = γ for some γ ∈ Cωc+. By definition,
γ ∈ Cyn for all n < ω. Thus, if we pick some z ∈ Jω such that γ ∈ Az, then
Az ⊆ Cyn for all n < ω. This implies that z(0) 6= yn(0) for all n < ω, and
thus z(0) 6∈ {yn(0) : n < ω}. On the other hand, by definition of E`’s, we
have ω = {yn(0) : n < ω}. This is a contradiction.

• 2X is Baire.

Suppose that θ is a strategy for player β in Ch(2X). We shall show that
θ is not a winning strategy for β. To this end, we need some preparation.
Define K such that Σ ∈ K if and only if there are m,n ∈ ω such that
Σ = {(σ0, τ0), ..., (σn−1, τn−1)}, where σi ∈ FSω and τi ∈ FSc+ for all i < n,
and dom σ = dom τ = m for all (σ, τ) ∈ Σ. Then,

B := {〈{B(σ,τ) ∩X : (σ, τ) ∈ Σ}〉 : Σ ∈ K }
is a pseudo-base for 2X . Assume that θ(∅) ∈ B, and (A0, ..., An−1) is a
partial play for player α satisfying

A0 ⊆ θ(∅), Ak+1 ⊆ θ(A0, ..., Ak) ⊆ Ak
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for all k < n− 1 and Ak ∈ B for all k < n. For brevity, given Σ ∈ K , put

〈Σ〉 := 〈{B(σ,τ) ∩X : (σ, τ) ∈ Σ}〉.
We shall define a function (associated with θ) Fθ as follows:

(i) ∅ ∈ dom Fθ, and Fθ(∅) = Σ, where 〈Σ〉 = θ(∅);

(ii) for any (Σ0, ...,Σn−1) ∈ K n, n > 0, if (〈Σ0〉, ..., 〈Σn−1〉) is a partial
play of player α subject to θ, then (Σ0, ...,Σn−1) ∈ dom Fθ and, in
this case, let Fθ(Σ0, ...,Σn−1) = Σ, where 〈Σ〉 = θ(〈Σ0〉, ..., 〈Σn−1〉).

For any γ < c+, define

K ¹γ := {Σ ∈ K : τ(i) ∈ γ for all (σ, τ) ∈ Σ and all i ∈ dom τ}.
We shall call γ a fixed point of Fθ if Fθ[(K ¹γ) ∩ dom Fθ] ⊆ K ¹γ . Let
C be the set of all fixed points of Fθ. We claim that C is a cub set in c+.
First, we check that C is closed in c+. To this end, let {γξ : ξ < µ} ⊆ C and
γ = sup{γξ : ξ < µ}. Then

Fθ[(K ¹γ) ∩ dom Fθ] =
⋃

ξ<µ Fθ[(K ¹γξ
) ∩ dom Fθ]

⊆ ⋃
ξ<µ K ¹γξ

= K ¹γ .

To see that C is unbounded in c+, let α < c+ be arbitrary. Define γ0 = α.
Then we define γi (i > 0) by induction such that

Fθ[(K ¹γi) ∩ dom Fθ] ⊆ K ¹γi+1 .

This is possible, since the size of the set

{τ(i) : Σ ∈ K ¹γi , (σ, τ) ∈ Σ and i ∈ dom τ}
is at most of c. Let γ = sup{γi : i < ω}. Then, it is easy to see that γ ∈ C.

Let Σ0 6= ∅ be such that 〈Σ0〉 ⊆ θ(∅). Then, there is an m > 0 such
that dom σ = dom τ = m for all (σ, τ) ∈ Σ0. Fix some y′ ∈ Jω such that
y′(0) 6∈ {σ(0) : (σ, τ) ∈ Σ0}, and pick δ ∈ Ay′∩C and an increasing sequence
{δi : i < ω} such that δ = sup{δi : i < ω} and Σ0 ∈ K ¹δ. By induction, let
Σ0, ...,Σn be defined such that (〈Σ0〉, ..., 〈Σn〉) is a partial play of α subject
to θ and Σi ∈ K ¹δ for all i ≤ n. Put Σ = Fθ(Σ0, ...,Σn), and then define

Σn+1 := {(σ_0, τ_δn) : (σ, τ) ∈ Σ} ∈ K .

Then (〈Σ0〉, ..., 〈Σn+1〉) is a partial play of α subject to θ, and

(Σ0, ...,Σn+1) ∈ K ¹δ .

Continue this process inductively, we produce a play {〈Σn〉 : n < ω} of
player α subject to θ. We claim

⋂
n<ω〈Σn〉 6= ∅. To see this, let

F :=
⋂

n<ω

⋃{B(σ,τ) : (σ, τ) ∈ Σn} (∗)
It is clear that F is a closed set in Jω×Jc+ . In the sequel, we shall verify that
F ∈ ⋂

n<ω〈Σn〉. First, we show that F ⊆ X. Take any 〈y, f〉 ∈ F . There is
a sequence {mn : n < ω} such that for every (σ, τ) ∈ Σn, dom σ = dom τ =
mn. It follows that (y ¹mn , f ¹mn) ∈ Σn for all n < ω. Thus, f∗ = δ ∈ Ay′ .
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Since y′(0) 6= y(0), then Ay′ ⊆ Cy. This implies that 〈y, f〉 ∈ X. Second,
we show B(σ,τ) ∩ F 6= ∅ for any n ∈ ω and for any (σ, τ) ∈ Σn. Since
〈Σn+k+1〉 ⊆ 〈Σn+k〉 for every k < ω, by induction over k < ω, there are
(σn, τn) = (σ, τ) and (σn+k, τn+k) ∈ Σn+k such that (σn+k, τn+k) extends
(σn+k′ , τn+k′) whenever k > k′. Then, it follows that

(
⋃

k<ω σn+k,
⋃

k<ω τn+k) ∈
⋂

k<ω B(σn+k,τn+k) ⊆ F .

This implies F ∩B(σ,τ) 6= ∅. Thus, we have verified F ∈ ⋂
n<ω〈Σn〉.

The argument in the previous paragraph shows that {〈Σn〉 : n < ω} is a
play which witnesses θ not to be a winning strategy for player β in Ch(2X),
and thus by Theorem 1.2, 2X is Baire. ¤

The proof of the next lemma is similar to that of Lemma 1 in [3].

Lemma 3.2. Let κ > ω be a regular cardinal. If K ⊆ (Jκ)m is closed and

{α : f∗0 = · · · = f∗m−1 = α and 〈f0, ..., fm−1〉 ∈ K}
is stationary, then there is a cub set C in κ such that C ∩ Cωκ ⊆ W .

Example 3.3. There exists a metric space X such that Xn is Baire for all
n < ω, but 2X is not Baire. For each y ∈ Jω, define a subset Iy ⊆ Jω such
that y′ ∈ Iy if, and only if

max{n ∈ ω : y(n) = y′(n)} ≤ max{n ∈ ω : y′(n) ≥ n} < ω.

Then, let Cy :=
⋃{Ay′ : y′ ∈ Iy}, and our desired space X is defined by

X := {〈y, f〉 ∈ Jω × Jc+ : f∗ ∈ Cy},
and is equipped with the metric inherited from the product space Jω × Jc+ .

• Xm is Baire for all m < ω.

To do this, fix an m < ω, and let D = {Di : i < ω} be a family of dense
open sets in (Jω × Jc+)m, V a nonempty open subset in (Jω × Jc+)m. Put

W := {α < c+ : f∗0 = · · · = f∗m−1 = α and
〈〈y0, f0〉, ..., 〈ym−1, fm−1〉〉 ∈ V ∩ (

⋂
i<ω Di)}.

We claim that W is stationary. Let C be a cub set in c+. Define inductively
a decreasing family of clopen subsets {Hn : n < ω} in (Jω × Jc+)m whose
diameter converges to 0 such that H0 ⊆ V , H2`+2 ⊆ D`, and H2`+1 insures
f∗0 = · · · = f∗m−1 ∈ C, where

{〈〈y0, f0〉, ..., 〈ym−1, fm−1〉〉} =
⋂

i<ω Hi.

This verifies the claim.

For a point p = 〈〈y0, f0〉, ..., 〈ym−1, fm−1〉〉 in (Jω × Jc+)m, an h ∈ ωω

and i ∈ ω, let B(p, 2−h(i)) be the ball centered at p with radius 2−h(i), i.e.,
〈〈y0, f0〉, ..., 〈ym−1, fm−1〉〉 ∈ B(p, 2−h(i)) if, and only if yj ¹h(i)= yj ¹h(i) and
f j ¹h(i)= fj ¹h(i) for all j < m. For each ~y = 〈y0, ..., ym−1〉 ∈ (Jω)ω, define
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W~yh := {α : f∗0 = · · · = f∗m−1 = α and

B(p, 2−h(i)) ⊆ Di ∩ V for all i ∈ ω}.
Since W ⊆ ⋃{W~yh : ~y ∈ Jω, h ∈ ωω} and W is not the union of c non-
stationary sets, it follows that there are h ∈ ωω and

~y = 〈y0, ..., ym−1〉 ∈ (Jω)m

such that W~yh is stationary. By Lemma 3.2, there is a cub set C in c+ with
C ∩Cωc+ ⊆ W~yh. Choose ŷ ∈ (m + 1)ω with ŷ(n) 6∈ {y0(n), · · · ym−1(n)} for
all n ∈ ω. By definition, Aŷ ⊆ Cyi for all i < ω. Let

β ∈ Aŷ ∩ C ⊆ Aŷ ∩W~yh.

Then there exists 〈f0, ..., fm−1〉 ∈ (Jc+)m such that

〈〈y0, f0〉, ..., 〈ym−1, fm−1〉〉 ⊆ V ∩ (
⋂

i∈ω Di)

and f∗0 = · · · = f∗m−1 = β. Thus, f∗k ∈ Aŷ ⊆ Cyk
for all k ∈ ω. Therefore,

V ∩ (
⋂

i<ω Di) ∩Xm 6= ∅,

which implies that (
⋂

i<ω Di) ∩Xm is dense in Xm, and thus Xm is Baire.

• 2X is not Baire.

We shall define inductively a winning strategy θ for player β in Ch(2X).
To this purpose, let K and B be defined as in Example 3.1. Given Σ ∈ K ,
let m ∈ ω be such that dom σ = dom τ = m for all (σ, τ) ∈ Σ. Define

δΣ := max{τ(k) : (σ, τ) ∈ Σ, k ≤ m}+ 1,

F (Σ) := {(σ_k, τ_δΣ) : (σ, τ) ∈ Σ, k < m}.
Let θ(∅) ∈ B be arbitrary. Suppose that (〈Σ0〉, ..., 〈Σn−1〉) is a partial
play of α subject to θ in Ch(2X). Then, we define θ(〈Σ0〉, ..., 〈Σn−1〉) :=
〈F (Σn−1)〉. Continuing this process inductively, we shall define the strategy
θ. To see that θ is winning strategy for β, we will verify

⋂
n<ω〈Σn〉 = ∅ for

any play {〈Σn〉 : n ∈ ω} of α subject to θ. In case that

Y := X ∩⋂
n<ω(

⋃{B(σ,τ) : (σ, τ) ∈ Σn}) = ∅,

we are done. Otherwise, one can pick 〈y, f〉 ∈ Y . Since 〈y, f〉 ∈ X, there
exists y′ ∈ Jω such that f∗ ∈ Ay′ and {n ∈ ω : y′(n) ≥ n} is finite. Let

M := max{n ∈ ω : y′(n) ≥ n}.
Let N ∈ ω be such that mN > M and (y ¹mN , f ¹mN ) ∈ ΣN . By hypothesis,

((y ¹mN )_k, (f ¹mN )_δΣN
) ∈ F (ΣN )

for each k < mN . Since mN > M , it follows that y′(mN ) < mN . Therefore,

((y ¹mN )_y′(mN ), (f ¹mN )_δΣN
) ∈ F (ΣN ).

Since 〈ΣN+1〉 ⊆ 〈F (ΣN )〉, ((y ¹mN )_y′(mN ), (f ¹mN )_δΣN
) has an exten-

sion (σ, τ) ∈ ΣN+1.
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Suppose that F is a nonempty subset of X such that F ∈ ⋂
n∈ω〈Σn〉. In

particular, F ∈ 〈ΣN+1〉 and F ∩B(σ,τ) 6= ∅. So, there is 〈x, g〉 ∈ F ∩B(σ,τ).
Let {mn : n ∈ ω} be such that dom σ = dom τ = mn for all (σ, τ) ∈ Σn.
Then (x ¹mn , g ¹mn) ∈ Σn and (y ¹mn , f ¹mn) ∈ Σn for all n < ω. Thus,

g(mn) = f(mn) = δΣn = max{g(k) : k < mn}
= max{f(k) : k < mn}.

Therefore, g∗ = f∗ ∈ Ay′ ⊆ Cx. This implies that y′ ∈ Ix, and thus

M ≥ max{n ∈ ω : x(n) = y′(n)}.
However, mN > M and x(mN ) = σ(mN ) = y′(mN ). This is a contradiction.
Therefore, θ is a winning strategy for player β. ¤
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