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Abstract 

Assessing the quality of industrial control loops is an important auditing task for 
the control engineer. However there are complications when considering the 
ubiquitous nonlinearities present in many industrial control loops.  If one simply 
ignores these nonlinearities, there is the danger of over-estimating the performance of 
the control loop in rejecting disturbances, and thereby possibly overlooking loops that 
need attention. To address this problem several techniques have been recently 
developed to extend the control performance assessment (CPA) of single input/single 
output linear systems to nonlinear systems. This paper surveys these nonlinear CPA 
techniques and compares them using three case studies. These results can be used to 
guide control engineers to select the most suitable CPA techniques for their particular 
applications.  

1 INTRODUCTION 

Control performance assessment, or CPA, is the name given to a broad range of 
strategies intended to maintain operational efficiency of industrial control systems. 
Tasks included under the CPA umbrella include the automated diagnosis of under-
performing control loops, the establishment of control benchmarks and on occasion 
recommending solutions. Much of the established practice in this area assumes linear 
plant models disturbed by Gaussian noise and has enjoyed success in the refining, 
petrochemicals, pulp and paper and the mineral processing industries as noted in the 
papers (Harris 1999; Huang and Shah 1999; Jelali 2006). 

There are limits though to how far a strictly linear analysis can go when faced 
with the inevitable nonlinearities found in many industrial control loops. These 
nonlinearities could be due to the installed nature of the control valve (equal 
percentage, quick opening etc), the measurement transducer, or even the plant itself. 
Estimates of the minimum variance performance lower bound (MVPLB), which is a 
key component when establishing a benchmark on which to quantify the controlled 
performance, and the subsequent performance index using the linear CPA techniques 
will be distorted by these nonlinearities (Harris and Yu 2007; Prabhu 2008; Yu et al. 
2010b; 2010c). For example, Yu et al. (2010c) show that one tends to overestimate 
the performance index for linear systems with an additive linear disturbance affected 
by valve stiction when using linear CPA techniques which can lead to a false sense of 
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security. To deal with this situation, recent research has proposed several methods to 
extend CPA into nonlinear systems. This paper gives an overview of these methods.  

CPA techniques can be generally defined into four steps (Harris 1999; Jelali 
2006): i) determining the performance benchmark; ii) detecting the poor performance 
loops; iii) diagnosing the reasons; vi) and finally providing the solutions. The first 
step, establishing the benchmark, is the key step for CPA techniques for linear 
systems if the process variables (PV) do not show the abnormal behavior such as 
oscillation and is the focus of this paper. In this paper, the nonlinear CPA techniques 
are used specific for the method to estimate the performance index.    

Recent activity concerned with the application of  CPA to nonlinear systems falls 
into one of two groups. The first group focused on the diagnosis of a common specific 
nonlinearity, such as valve stiction.  Since the PV of the control loop with valve 
stiction problems will exhibit oscillation, the first two steps included in CPA 
techniques are often superfluous so control engineers can directly jump to the third 
step. The methods will firstly identify one of three causes of the oscillation: poor 
tuning, oscillatory disturbances and valve stiction. If the problem is valve stiction, the 
quantity measures of the valve stiction can be directly estimated from the outputs of 
the control loop. Further details can be found in the papers and references within them 
(Horch 1999; Choudhury et al. 2006; Thornhill and Horch 2007; Jelali and Huang 
2009). 

The second group of researchers tried to determine the performance benchmark 
for general nonlinear systems. Due to the complexity of the nonlinear systems, the 
minimum variance performance lower bound (MVPLB), or equivalently a 
corresponding general performance benchmark, is shown to not exist for some  
nonlinear systems (Yu et al. 2010b). However for a restricted class of nonlinear 
systems, the minimum variance performance lower bound was proved to exist (Harris 
and Yu 2007). The minimum variance perfomance lower bound can be estimated 
using the nonlinear auto-regressive with exogenous inputs (NARX) method (Harris 
and Yu 2007), the neural network method (Zhou and Wan 2008) or a normalized 
performance index was proposed for run-to-run exponentially weighted moving 
average (EWMA) controller for nonlinear systems (Prabhu 2008). If the nonlinearity 
is non-differentiable (as in the case of valve stiction), the nonlinearity removal 
method using a some sort of semi-parametric curve such as a B-spline is proposed to 
estimate the MVPLB (Yu et al. 2010c) and is extended to more general block-oriented 
nonlinear systems (Yu et al. 2010a). Important industrial nonlinearities that may 
affect CPA calculations are not just due to nonlinear plant dynamics, they could also 
arise from issues such as how the control loop is sampled and subsequently processed. 
The estimate of the performance index for the linear system with a sampling jitter 
problem was studied in the paper (Yu et al. 2011). For general nonlinear systems, a 
new performance index based on an ANOVA-like variance decomposition method 
was recently proposed (Yu et al. 2010b). 

This paper summarises and compares three techniques to quantify a controller 
performance index intended for cases where nonlinearities are anticipated to 
dominate. The first method, (primarily included as a benchmark), is the standard 
linear approach where one simply ignores the nonlinearity. The second approach is a 
parametric method which was originally proposed to deal with nonlinear systems with 
an additive disturbances (Harris and Yu 2007; Prabhu 2008; Zhou and Wan 2008), 
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and the third method is based on the technique of an ANOVA-like variance 
decomposition (Yu et al. 2010b). In the first two methods, the performance index is 
calculated from the minimum variance performance lower bound (MVPLB) which in 
turn is estimated from a regressing linear ARMA and a nonlinear ARMA models 
respectively. We assume that the minimum variance performance lower bound 
(MVPLB) exists in these first two cases although as we shall see that assumption is 
not necessary for the third alternative.  

The layout of the paper is as follows. In Section 2, the general nonlinear system 
for this paper is introduced, after which the three CPA methods developed for 
nonlinear systems are discussed in Section 3. In Section 4, simulation examples are 
used to quantify the comparison. This is followed by a discussion and conclusions 
highlighting both the limitations and potential of the alternative methods. 

2 PROCESS DESCRIPTION 

A general nonlinear dynamic system with stochastic disturbances shown in Figure 
1 is often difficult and time consuming to identify and estimate directly. Furthermore, 
when faced with the task of monitoring hundreds to thousands of loops in a  industrial 
plant , we would rather empirical identification methods that in principle we could 
automate.  

 
Figure 1: A general industrial nonlinear control loop 

The two main reasons that the estimation is difficult in industrial circumstances is 
that an accurate mechanistic model of the plant dynamics and noise processes are 
often difficult to obtain, and that the internal state variables are usually unmeasured 
leaving only input-output data accessible. Consequently the only practical approach to 
devising and the subsequently regressing nonlinear models are those methods that are 
restricted to using only external data (Leontaritis and Billings 1985a; 1985b; Diaz and 
Desrochers 1988; Pearson and Ogunnaike 1997). The nonlinear autoregressive 
moving average with exogenous inputs (NARMAX) models proposed by Leontaritis 
and Billings (1985a; 1985b) provide a unified representation for a wide class of 
discrete time nonlinear dynamic / stochastic systems and hence are used for the 
performance assessment in this paper. In summary this paper assumes the general 
SISO discrete nonlinear system will be represented by a NARMAX model as, 

 * * *
1( , , )k k k b ky f y u a   (1) 

where yk is the deterministic output of the system in response to the inputs, uk, at 
sample time k, and ak denotes a disturbance entering the nonlinear system. This noise 
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term is assumed to be an independent identically distributed (i.i.d.) random variable 
with a mean and constant variance 2

a .  The integer b represents the number of whole 
periods of delay in the system and is the number of sample intervals that elapse 
between making a change in the process input and first observing its effect. The 
superscript * is used to represent the vector collecting the immediate past values i.e. 

*
1 1[ ,..., ]

yk k k ny y y    where ny is the length of the memory. 

Given that the relation f() is often complex, one is forced to  approximate the 
nonlinearity with a simpler generic function, typically polynomials consisting of 
summations of terms involving yk-i, yk-iyk-j, …, uk-b-i, uk-b-iuk-b-j, …, ak-i, ak-iak-j and cross 
terms i.e. yk-iuk-b-j, yk-iak-j and uk-b-iak-j. The flexible and popular Hammerstein and 
Weiner systems are included in this framework (Pearson 1999). 

3 TECHNIQUES OF ESTIMATING THE PERFORMANCE INDEX FOR 
NONLINEAR PROCESSES 

Before we describe methods for nonlinear systems, we will revise the CPA for 
linear systems. A linear system disturbed by noise is 

 
1

1

( )

( )k k b k

B q
y u d

A q



   (2) 

where A(q-1) and B(q-1) are polynomials in the backshift operator q-1, defined such that 
q-1yk = yk-1.  The disturbance dk is modeled as the output of a linear filter driven by 
white noise. This type of disturbance is conveniently represented by an 
Autoregressive-Moving-Average (ARMA) time series model of the form: 

 
1

1

( )

( )k k

C q
d a

D q



  (3) 

where C(q-1) and D(q-1) are monic and stable polynomials, and ak denotes a 
disturbance entering the nonlinear system with properties as previously mentioned. 
This disturbance model will be used for all the disturbances studied in this paper 

The performance index proposed for SISO linear systems proposed by Harris 
(1989) was based on the concept of minimum variance control (Astrom 1970). This 
performance index, often termed the Harris Index, , was defined as the ratio of the 
best achievable variance to the actual variance of the controlled variable under 
assessment, 

 
2

2
MV

y




  (4) 

where 2
MV  denotes the minimum variance performance lower bound and 2

y denotes 

the actual output variance of the control loop under consideration.  

What made this concept useful was the insight that  can be estimated directly 
from routine operating data by fitting the controlled variable to an ARIMA time series 
model (Harris 1989).  In the following three sections, three different techniques based 
on this performance index will be discussed in detail. 
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3.1 Applying a linear CPA technique for nonlinear systems 

For nonlinear systems described in Equation (1), we can simply use a linear 
ARMA model to approximate these nonlinear systems as, 

 

* * *
1

1 1
1 1

1 1
1 1

( , , )

( ) ( )

( ) ( )

k k k b k

k b k

y f y u a

B q C q
u a

A q D q

 

 

 



 
 (5) 

The approximate performance index can be calculated as, 

 
2

2

ˆ
ˆ MV

y




  (6) 

where 2ˆMV  denotes the minimum variance performance lower bound which is 

estimated from the approximate linear ARMA model in Equation (5).  

 
1

2 2 2 2
1ˆ ˆ(1 ... )

bMV a   


     (7) 

and 1 11, ,..., b   are the first b impulse response weights of the disturbance model 
1 1

1 1( ) / ( )C q D q   in Equation (5). However due to the fact that we have simply 

ignored the nonlinearity, it is shown that this estimate will be biased and will 
overestimate the true MVPLB for a class of nonlinear systems (Yu et al. 2010c). It is 
interesting to note that had a linearised analysis under-estimated the performance 
benchmark, we could have safely used this procedure while acknowledging that we 
may be doing extra work investigating loops that are reported as poor performing 
when in fact they are not. However that is not the case. Since the linearised analysis 
over-estimates the performance, then we have now a false sense of security and 
potentially ignore control loops that should be further investigated.  

3.2 A parametric CPA method for the nonlinear process 

A better approximation of the nonlinear process in Equation (1) than the linear 
approximation in Equation (5) would naturally be a combination of a nonlinear 
dynamic plant model plus an additive linear disturbance model (such as the 
disturbance model in Equation (3)). Such a model can be expressed as, 

 

* * *
1

1
* * 2

1 1
2

( , , )

( )
( , )

( )

k k k b k

k k b k

y f y u a

C q
N y u a

D q

 



  



 
 (8) 

where N() is a generic nonlinear function.  

If a nonlinear dynamic/stochastic system can be adequately modeled by Equation 
(8), Harris and Yu (2007) proved that a minimum variance feedback invariant exists 
and that the minimum variance performance lower bound can still be estimated from 
routine operating data.  The minimum variance performance lower bound, 2ˆMV , can 

also be written the similar form to Equation (7), but the coefficients, 1 11, ,..., b   , are 

now the first b impulse response weights of the disturbance model 1 1
2 2( ) / ( )C q D q   
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in Equation (8). The 2ˆa is the variance estimate of noise sequence ak and can be 

directly estimated by fitting a nonlinear ARMA model corresponding to the b-step 
ahead prediction of outputs. This derivation can be found in the paper (Harris and Yu 
2007). 

When the nonlinear function N() is non-differentiable as in the case of valve 
stiction or sample jitter, a semi-parametric CPA method for nonlinear systems was 
proposed to find the MVPLB for linear systems by Yu et al. (2008; 2009). The 
approach was first to remove the nonlinearity in the observable time series y using 
smoothing B-splines where the degree of smoothing, (tolerance, ), is adjusted 
iteratively. The procedure consists of two parts: i) A non-parametric B-spline is used 
to fit the nonlinearity from the output and ii) a linear ARMA model is used to fit the 
residuals between the output and B-spline. Consequently the minimum variance 
performance lower bound can be estimated given the regressed ARMA model to the 
now linear data series.  The extent of smoothing to just remove the nonlinearity is 
established by checking the Gaussianity and linearity of the residuals using the 
nonparametric Hinich test (Hinich 1982). The application of this linearity test on the 
diagnosis and detection of valve stiction was reported in (Choudhury et al. 2006). 

3.3 ANOVA-based CPA method for nonlinear processes 

The MVLPB-based performance indices described in Sections 3.1 and 3.2 exhibit 
significant theoretical difficulties when applied to general nonlinearities such as 
NARMAX models. Quite apart from the fact that the MVPLB may be difficult to 
estimate, or even may not exist, the idea of variance decomposition using the impulse 
response function and the concept of feedback invariance is not necessarily valid for 
nonlinear systems. 

To address these more general nonlinear cases, we take a more fundamental 
statistical approach by looking at variance components of the data. The ANOVA-like 
variance decomposition method was used to provide the variance analysis for 
nonlinear systems with multi-disturbance sources (Harris and Yu 2010; 2011). Some 
previous work using a variance decomposition for linear systems in a 
feedback/feedfoward SISO configuration, in a MIMO linear system, and in a SISO 
cascaded systems is given in (??). However instead of the different disturbance 
sources, the ANOVA-like variance decomposition will be used with differing time 
horizons for the SISO nonlinear system with one disturbance source as developed in 
(Yu et al. 2010b). 

We can take an analogous approach where we separate the disturbances entering 
the system described in Equation (1) after some nominal start time 0, say [ak+b,ak+b-

1,… ,a0], into two groups shown in Figure 2.  The first group includes all the 
disturbances entering the system after the current time k, namely A1=[ ak+b,ak+b-1,… 
,ak+1] and the remaining group which is all the disturbances entering the system from 
the start time, 0, to the current time k, namely A2=[ ak,ak-1,… ,a0]. 
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k+b

 
Figure 2: Dividing the disturbance sequences into two groups, A1 and A2, 

separated in time 

We are interested in determining the sensitivity of output yk+b in Equation (1) to 
variations of the two vector series A1 and A2. Since the future behavior of yk+b is 
dependent on initial conditions due to the nonlinearity, we can use the well-known 
variance decomposition theorem (Parzen 1962) to deal with the effect of the unknown 
initial conditions. The variance of yk+b can be decomposed into two terms: 

 
0 00 0[ ] [ [ | ]] [ [ | ]]k b I A k b I A k bV y E V y I V E Y I     (9) 

where A= [A1,A2] denotes all disturbances entering the system from time 0 to time k, 
EI0[] denotes the expectation of [] with respect to I0 and VI0[] denotes the variance of 
[] with respect to I0. Given that Equation (9) is the sum of positive numbers, it 
follows that 

0 0[ ] [ [ | ]]k b I A k bV y E V y I  . 

The first term on the right hand side of Equation (9) is the fractional contribution 
to the variance of y from the disturbance signal and the interaction between the 
disturbance and the initial condition. The second term is the fractional contribution to 
the output solely due to the uncertainties in the initial condition. 

The conditional variance given the initial condition I0, VA[yk+b| I0], can be 
decomposed directly using the ANOVA-like decomposition method as: 

 0 0

1 0 2 0 12 0

| [ | ]

| | |
A A k bV I V y I

V I V I V I


  
 (10) 

where the terms V1, V2 and V12 are  

 

 

1 2

2 1

1 0 1 0

2 0 2 0

12 0 0 1 0 2 0

0 1 0 2 0

| [ | ( , )]

| [ | ( , )]

| [ | ( , )] | |

 | | |

A A k b

A A k b

A A k b

A

V I V E y A I

V I V E y A I

V I V E y A I V I V I

V I V I V I







   
   

  

  

 (11) 

The variance decomposition with consideration to the initial condition can be 
obtained by simply calculating the expectation of the conditional variance 
decomposition in Equation (11) with respect to the initial condition I0. This procedure 
can be omitted if the initial condition has, (or can be approximately assumed to have), 
a linear relationship with the output yk+b. The variance decomposition can be 
calculated with the results of the conditional variance decomposition in Equation (11) 
based on the mean values of initial condition. Further information about this topic can 
be found in the paper (Yu and Harris 2009). 
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EI0[V1|I0] denotes the main effect of A1 on the V[yk+b] and EI0[V12|I0] is the 
interaction contributing to the V[yk+b] that is not accounted for in the main effects of 
A1 and A2. Consequently we propose a suitable performance index as, 

 0 1 0

2

[ | ]I

y b

E V I


 

  (12) 

While this index is applicable for any nonlinearity, the index has little worth for 
those processes that are strongly non-ergodic where the second term in Equation (9)
dominates. However such cases are more pathological than common in industry. 

This performance index shares many of the key properties of the Harris index. . The 
performance index is strictly bounded between zero and one. If  reaches 1, it means 
that the variance of the outputs is contributed mostly by A1, so the controller 
approaches minimum variance control. Furthermore the partial variance EI0[V1|I0] is 
equal to the minimum variance performance lower bound for some nonlinear systems 
such as those discussed in the paper (Harris and Yu 2007) and the partial variance 
EI0[V1|I0] is equal to the minimum variance performance lower bound if the closed 
loop system is linear and stationary. Consequently the performance index in Equation 
(12), , plays a very similar role to that of the Harris index, . However unlike   
may depend on the controller, the initial condition and the length of time k+b. 

The practical computation of the performance index in Equation (12) requires two 
steps. First one must estimate the closed loop model defined in Equation (1), and then 
use a Monte-Carlo strategy to estimate the performance index in Equation (12). 

For the first identification step several strategies have been proposed such as 
Orthogonal Least Squares (OLS) methods (Chen et al. 1989), Fast Orthogonal Search 
(FOS) methods (Korenberg 1988), and approximations based on Artificial Neural 
Network (ANN) models (Chen and Billings 1992). In this paper, we will use the OLS 
method to estimate the parameters of the nonlinear systems in Equation (1). 

Since the disturbance term in Equation (1) is generally unmeasured, the 
identification be  recursive. The identification procedures  first  sets the initial 
sequence ak by fitting a linear model or setting the ak to zero then identifies the 
NARMA model, and finally replaces the initial sequence ak by the prediction errors or 
residuals. The identification and replacement steps are repeateduntil a certain 
identification quality is achieved as quantified by Akaike's Information Criterion 
(AIC). The detailed iteration procedures can be found in the paper (Chen et al. 1989). 

For the second step, performance index calculation, since it is impossible to obtain 
the analytical solution of the variance decomposition in Equation (10), a Monte Carlo 
(MC) method is used  to estimate the results. However MC procedures are 
computationally demanding especially for the high dimensional cases (Rabitz et al. 
1999). The Fourier amplitude sensitivity test (FAST) method (Cukier et al. 1978; 
Saltelli 2002) and Sobol’s method (Sobol' 1993) have been developed to reduce the 
intensive computation by selecting the samples more efficiently. 

3.4 Comparison of the three CPA methods intended for nonlinear systems 
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For brevity, we will use method 1 to represent linear CPA technique in Section 
Error! Reference source not found., method 2 to denote parametric nonlinear CPA 
technique in Section 3.2 and method 3 to denote the ANOVA-like nonlinear CPA 
technique in 3.3. 

General speaking, the method 1 will provide overestimates for most nonlinear 
systems. On the plus side, the implementation of this linear method is simple, cheap 
and the results and underlying algorithm intuitive to operators and control engineers. 
However the reliability of the performance index estimate derived from method one 
will significantly depend on the nonlinearity of the nonlinear systems. Before using 
this CPA method blindly, it is necessary to check the extent of the nonlinearity. If the 
nonlinearity is significant, then this CPA method should not be used as a reliable tool. 

Method 2 will provide a better estimate of the performance index than the method 
1, since the closer approximation of the nonlinear model structure is used for this 
method. However a key assumption of this method is that the disturbance is added  
after the dynamic process will limit the applicability of this approach. This is similar 
to the output-error (OE) versus ARX model alternatives.  

Since methods 1 and 2 are both based on the minimum variance performance 
lower bound, it follows that the existence of the control invariant is automatically 
assumed which may not be always applicable for general nonlinear systems. Method 
3, the ANOVA-like CPA technique, can be used to assess the control loop 
performance in the cases where the control invariant does not exist, but the method 
does demand intensive computation.  

4 SIMULATIONS 

Many industrial plants can be adequately modeled by nonlinear block-oriented 
models which consist of the interconnection of a linear time invariant (LTI) systems 
with static, or memoryless, nonlinearities. This class includes Hammerstein models, 
Wiener models and combinations of the two (Pearson 1999). Such block-oriented 
nonlinear descriptions are very useful for modeling input nonlinearities such as equal 
percentage valve characteristics, quantization due to pulse-width modulated 
controllers, or output nonlinearities such as thermocouple or thyristor transducer 
calibration curves, and/or the digital quantization due to a crude A/D converter. 

In this paper, we will use the Hammerstein-Wiener (HW) model shown in Figure 
3 to demonstrate the three CPA methods: linear CPA (method 1), parametric CPA 
(method 2) and an ANOVA-like CPA (method 3) methods discussed in Section 3.  

A typical HW model can be expressed as, 

 

2

1

1

1

( )

(1 )             (0,1)  

( )

( )

( )

k k k

k k k

b
k k

k k

y N x j d

x w j d j

B q
w q v

A q

v N u






  
    





 (13) 

where A(q-1) and B(q-1) are backward shift polynomials as previously defined, b is the 
time delay of the system, uk and yk are the process input and output respectively, and 
the internal signals vk, wk and xk are assumed unmeasured. The functions N1 and N2 
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represent static nonlinearities. The position where the disturbance enters the system is 
controlled by the switch j. It is important to note that only the signals uk and yk are 
observable under normal operational conditions. 

Static
Nonlinearity

Static
Nonlinearity

Linear 
Dynamic

Hammerstein Model

Wiener Model

bB
q

A


uk vk xk yk

dk

N1() N2()
wk

C

D
ak

j=0 j=1

  
Figure 3: A diagram of Hammerstein-Wiener model used for these simulations.  

As indicated in Figure 3, we consider two different locations where the 
disturbance can enter the system. The first location (j=1) is immediately downstream 
of the static nonlinearity N2, and the second location (j=0) is upstream of the static 
nonlinearity N2. These two different locations will be studied in cases 2 and 3 
respectively. 

4.1 Case study one 
The first simulation model is a Hammerstein model following Equation (13) with a 
static nonlinearity depicted in the left position in  
Figure 4, as 

 2
1( ) 1.2 0.1ku

k k kN u u e u   (14) 

And with the linear plant model and a PI controller, 

 

1 1
3

1 1 2

1

1

( ) 1 0.5

( ) 1 1.5 0.7

0.2 0.15

1

bB q q
q q

A q q q

q
Gc

q

 
 

  








 






 (15) 

and an additive ARMA disturbance 

 2
1

1
,    0.1

1 0.8k k ad a
q

 


 (16). 

The right side subplot in  
Figure 4 compares the results of the estimates of the performance index obtained via 
the linear, nonlinear ARMA method, and the NOVA-like method in Section 3 for this 
Hammerstein model structure. To obtain statistically reliable results, 1000 closed loop 
data points were used to assess the controlled performance, and this procedure was 
then repeated 500 times. Testing the algorithm over a range of cases indicated that 
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500 times was a reasonable balance between accuracy and computation load.  The 
true value of performance index, η, is given by the dashed horizontal line in the right 
sub-plot in  
Figure 4. 

   
Figure 4: The nonlinearity of interest N1(u), (left plot), and the estimates of the 

performance index for Case study one, (right plot).  

From  
Figure 4, one can see that the estimates from methods 2 and 3 provide a 

reasonably reliable estimate of η although the mean values are around 10% above the 
true performance index. There is no significant difference between these two 
nonlinear CPA methods since the nonlinear model structure is, perhaps unreasonably, 
correctly chosen in the case for method 2. However the largest bias can be observed 
for the performance index estimate from CPA method 1, (the linear CPA technique), 
where the deviation to the true performance index is over 50%. This is a direct 
consequence of neglecting the nonlinearity.  

As mentioned in the previous section, CPA method 2 will overestimate the 
performance index given a mismatch between the model structure assumed for CPA 
method 2 and the true dynamic/stochastic process. This phenomenon will be 
demonstrated in the following simulations.  

4.2 Case study two 

For this case study, we have chosen a HW model employing both N1 and N2. The 
linear process is same as the Case study one with a feedback PI controller, 
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
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
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and with a non-differentiable coulombic and viscous friction nonlinearity N1, ,  
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where 0.07 is the offset, and a smooth downstream nonlinear element N2 as a 
third-order polynomial, 

 2 3
2 ( ) 0.25 0.125N x x x x    (19) 

The additive disturbance model used in Case study one is also used for this 
simulation (but the location where the disturbance enters the system is now after static 
nonlinearity N2).  The ak is a sequence of i.i.d. Gaussian random variable with zero 
mean and constant variance 2

a=0.1. The same procedures of estimating the 
performance index using the three considered methods are repeated here, and the 
estimates are plotted in Figure 5.  For convenience, the   static nonlinearities N1 and 
N2 are also shown on the left side column in Figure 5.  

  
Figure 5: The two static nonlinear elements (left-hand plots) and estimates of the 

performance for Case study two. 

The estimates from the nonlinear CPA methods 2 and 3 still provide good results 
with the mean values around 12% above the true performance index. Again the largest 
bias occurs when using the linear approximation where the deviation to the true 
performance index is over 86%.  The deviations of estimates are slightly larger than 
the results in the case study one due to the fact that the first nonlinear element is non-
differentiable. 
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In this simulation, the only difference to Case study 2 is the position where the 
disturbance enters the control loop. Now the disturbance, dk, is placed before the 
output static nonlinearity block, N2, as opposed to the usual assumption where the 
disturbance is assumed additive to the output after the nonlinearity as in the Case 
studies one and two. In some instances this early entrance of the disturbance signal is 
more realistic from a process operation point of view given that it is the transducer 
that often provides the nonlinear behaviour as discussed in the paper (Hagenblad et al. 
2008). The estimates of the performance indices are plotted in Figure 6. Notice that 
the true value in Figure 6 is not the minimum variance performance lower bound, it is 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3
Nonlinear CPA Methods

E
st

im
at

ed
 P

er
fo

rm
an

ce
 I

nd
ex

, 

 

 

True valve

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

N
1(u

)

u

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

N
2(x

)

x



13 
 

a relative minimum variance performance bound and readers can find the detailed 
information in the paper (Yu et al. 2010b).  

  
Figure 6: Estimates of the performance index for Case study three 

For this case study, both the linear CPA method 1 and the non-parametric method 
2 deliver large biases since the wrong model structure is used to estimate the MVPLB. 
However the estimate from method three provides a reliable result which, in this case, 
indicates that the control loop needs immediate treatment.  This example highlights 
the danger of simply relying on a linear CPA analysis since method 1 indicates that 
the loop performance is satisfactory, while in reality, and as highlighted by method 3, 
that is in fact not the case, and that the loop does not do an adequate job in 
disturbance rejection. Also notice that the location where the disturbance enters the 
dynamic system will dramatically affect the controller performance, since the true 
values of the performance indices are much smaller than the case study one.  

Although the results from the ANOVA-based method (method 3) are preferred in 
cases, the drawback of this method is that it requires substantially more computation 
compared to the linear case as indicated by the computation time figures given in 
Table 1. Under industrial conditions it may well be that the faster computation of the 
nonlinear ARMAX method may more than compensate for the small bias in the 
estimates of the performance indices. 

Table 1: Summarizing the abilities of the three methods  
Case Study Alternative CPA methods 

Linear Nonlinear ANOVA-like 
One    
Two    
Three    
Computational Time  
(Relative to the linear case) 

1 2 15 

Average bias (%) 45 23 11 
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5 CONCLUSIONS 

This paper compared three techniques for estimating the performance index for 
nonlinear systems: a linear technique, a parametric method and an ANOVA-based 
method. Not unexpectedly the linear CPA strategy delivered results with a significant 
bias leading to an overoptimistic assessment of the controller’s performance and this 
conclusion is also reflected by simulations in all three cases. The parametric method 
gave satisfactory results for the case when the disturbance was added directly to the 
output, but failed in the case where the disturbance entered the system upstream of the 
trailing nonlinearity. For this latter case, only the ANOVA-based strategy could 
deliver reliable results in all cases, but that came at a cost of substantial computation 
compared to the alternatives. 
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