
 

 
Epidemiological cellular automata: A 

case study involving AIDS 

 

 

 
A thesis submitted to the Auckland University of Technology, 

in fulfilment of the requirements for the degree of  

Master of Philosophy (MPhil) 

 

 

 

Ofosuhene Okofrobour Apenteng 
 

School of Computing and Mathematical Sciences 

 

 

June 2013 
 

 

Supervisor: Prof. Ajit Narayanan 

  



2 | P a g e  

 

                                    Table of Contents 

 

Table of Figures ........................................................................................................................ 5 

List of Tables ............................................................................................................................ 7 

Attestation of Authorship ........................................................................................................ 8 

Acknowledgements ................................................................................................................... 9 

Abstract ................................................................................................................................... 10 

Chapter 1 Introduction .......................................................................................................... 11 

1.1 Scientific Background ................................................................................................. 12 

1.2 Motivation ................................................................................................................... 14 

1.3 Objectives ................................................................................................................... 15 

1.4 Detail of the Thesis ..................................................................................................... 15 

Chapter 2 Literature Review ................................................................................................ 17 

2.1 Mathematical Modelling of Epidemics ....................................................................... 21 

2.2 The Basic SIR Model .................................................................................................. 22 

2.3 Some modifications of SIR model .............................................................................. 24 

2.4 Cellular Automata Models .......................................................................................... 29 

Chapter 3 Design of the Study .............................................................................................. 33 

3.1 Methodology ............................................................................................................... 33 

3.1.1 Mathematical modelling ............................................................................ 34 

3.1.2 Description of Cellular Automata Models ................................................. 38 

3.2 Why cellular automata? .............................................................................................. 40 

3.3 Why Wavelet Analysis? .............................................................................................. 41 

Chapter 4 Experimental and Results ................................................................................... 43 

4.1 SIR Model: CA ........................................................................................................... 43 

4.1.1 An SIR Model ............................................................................................ 43 

4.1.2 Design of the Cellular Automata ............................................................... 44 

4.2 Simulation setup .......................................................................................................... 44 



3 | P a g e  

 

4.3 Simulation scenario ..................................................................................................... 44 

4.3.1 Experiment and Results ............................................................................. 45 

4.3.2 Description of (SIR)
n
 Model ...................................................................... 45 

4.3.3 Rules for Disease Spread ........................................................................... 46 

4.3.4 Simulation Setup ........................................................................................ 47 

4.4 Summary of Simulations ............................................................................................. 52 

Chapter 5 Extended SIR Model to SEIR Model ................................................................. 53 

5.1 Rules for Disease Spread ............................................................................................ 54 

5.2 Stability Analysis of SEIR Model ............................................................................... 56 

5.3 Experiment and results ................................................................................................ 57 

5.4 Summary of Simulations ............................................................................................. 77 

Chapter 6 Discussion ............................................................................................................. 78 

Chapter 7 Further Theoretical Work .................................................................................. 83 

7.1 SEIR Model Enhancement of Co-infection ................................................................ 84 

7.2 The Future Model ....................................................................................................... 85 

7.2.1 Invariant Region ........................................................................................ 87 

Lemma1 .............................................................................................................. 87 

7.2.2 Positivity of solutions ................................................................................ 88 

Lemma 2 ............................................................................................................. 88 

Chapter 8 Conclusion ............................................................................................................ 91 

Chapter 9 Summary ............................................................................................................... 93 

References ............................................................................................................................... 95 

Appendix A ........................................................................................................................... 100 

Threshold Theorem of Epidemiology ............................................................... 101 

Theorem 1 ......................................................................................................... 102 

Appendix B ........................................................................................................................... 108 

Theorem 2 ......................................................................................................... 108 

Theorem 3 ......................................................................................................... 109 



4 | P a g e  

 

Theorem 4 ......................................................................................................... 109 

Appendix C ........................................................................................................................... 110 

Appendix D ........................................................................................................................... 112 

Algorithm for Wavelet ...................................................................................... 112 

 

 

  



5 | P a g e  

 

Table of Figures 

 

Figure 1: Basic picture of the natural progression of the AIDS disease (Keeling and 

Rohani 2008) .............................................................................................................. 14 

Figure 2: Numbers of HIV/AIDS cases in the world 1990-2009 (AvertingHIV/AIDS 

2013) .......................................................................................................................... 17 

Figure 3: The SIR model ............................................................................................ 22 

Figure 4: General nature of a model (Giordano, Fox et al. 2009) .............................. 35 

Figure 5: Generic Methodology ................................................................................. 36 

Figure 6: Von Neumann Neighbourhood ................................................................... 39 

Figure 7: Moore Neighbourhood ............................................................................... 39 

Figure 9: (SIR)
n 

 model .............................................................................................. 47 

Figure 11: A dynamic spread process without migration .......................................... 49 

Figure 12: A dynamic spread process with migration ............................................... 50 

Figure 13: Size of the four populations (y-axis) without migration over time (x-axis)

 .................................................................................................................................... 51 

Figure 14: Size of the four populations (y-axis) with migration over time (x-axis) .. 51 

Figure 15: SEIR Model .............................................................................................. 55 

Figure 16: A dynamic spread process ........................................................................ 59 

Figure 17: A dynamic spread process ........................................................................ 60 

Figure 18: A dynamic spread process ........................................................................ 61 

Figure 19: Snapshot of Susceptible ............................................................................ 62 

Figure 20: Snapshot of Exposed ................................................................................ 63 

Figure 21: Snapshot of Infected ................................................................................. 64 

Figure 22: Snapshot of Recovery ............................................................................... 65 

Figure 23: Snapshot of Natural Death ........................................................................ 66 

Figure 24: Sinusoidal of Susceptible ......................................................................... 67 

Figure 25: Sinusoidal of Susceptible ......................................................................... 68 

Figure 26: Sinusoidal of Exposed .............................................................................. 69 

Figure 27: Sinusoidal of Exposed .............................................................................. 70 

Figure 28: Sinusoidal of Infectious ............................................................................ 71 

Figure 29: Sinusoidal of Infected ............................................................................... 72 

Figure 30: Sinusoidal of Recovery ............................................................................. 73 

Figure 31: Sinusoidal of Recovery ............................................................................. 74 



6 | P a g e  

 

Figure 32: Sinusoidal of Natural Death ..................................................................... 75 

Figure 33: Sinusoidal of Natural death ...................................................................... 76 

Figure 34: The proposed model for co-infection of HIV/HCV ................................. 86 

Figure 35: Epidemic curve ....................................................................................... 106 

 

  



7 | P a g e  

 

 

List of Tables 

 

Table 1: Numbers of HIV/AIDS cases in the world 2009 and 2010 (Avert 2011) .... 18 

Table 2: Summary of World HIV/AIDS .................................................................... 19 

Table 3: Parameters of simulation ............................................................................. 45 

Table 4: The meaning of the parameters .................................................................... 56 

Table 5: Simulation Protocol ..................................................................................... 58 

  



8 | P a g e  

 

Attestation of Authorship 

 

I hereby declare that this submission is my own work and that, to the best of my 

knowledge and belief, it contains no material previously published or written by 

another person (except where explicitly defined in the acknowledgements), nor 

material which to a substantial extent has been submitted to the award of any other 

degree or diploma of a university or other institution of higher learning. 

 

During the course of this research, the following papers have appeared: 

In December 2012 I presented a paper (Apenteng, Narayanan et al. 2012) in 

migratory reinfection using cellular automata as a modelling and simulation tool 

(Chapter 4). I am also drafting a paper on the application of SEIR models to 

infectious disease with delay and have prepared some results using simulated data 

(Chapter 5). This paper will appear in Journal of Computer Science, Technology and 

Application (ISSN 2155-7969), USA. 

 

 

Signed:                      

 

Date:  21 May 2014 

  



9 | P a g e  

 

Acknowledgements 

 

I would like to sincerely thank my supervisors and Professor Ajit Narayanan for their 

regular discussions which contributed to the production of this thesis. Their 

insightful comments and rigorous analysis of my arguments, as well as their 

willingness to offer practical advice, were very helpful. 

 

I am indebted to my family who offered encouragement and bore with me the 

inevitable sacrifices at all stages of the production of this project. I am also grateful 

to all colleagues and friends, especially Dr. Waseem Ahmad who in no small way 

was truly supportive. You are the best.  

 

I dedicate this:  

To Jennifer, 

my lovely wife, who makes me happy 

when skies are gray for her massive support. 

 

  



10 | P a g e  

 

 Abstract 

The spread of disease is a major health concern in many parts of the world. In the 

absence of vaccines and treatments, the only method to stop the spread of disease is 

to control population movements.  Human mobility is one of the causes of the 

geographical spread of emergent human infectious diseases and plays a key role in 

human-mediated bio-invasion, the dominant factor in the global biodiversity crisis. 

One of the most serious emergent infectious diseases in the last 30 years or so is 

AIDS (acquired immunodeficiency syndrome), where multiple pathogen species 

infect a human body. HIV/AIDS is now considered much more commonplace than 

previously thought. AIDS leads to interaction effects between the pathogens that 

may alter previously understood patterns of disease spread. There has been 

longstanding interest in how to model population movements in order to find optimal 

control strategies for a particular disease. The simulation models proposed here use 

cellular automata based on sound mathematical principles and epidemiological 

theory to model HIV/AIDS to provide a suitable framework to study the spatial 

spread of disease in different scenarios. This work investigates how probabilistic 

parameters affect the model in terms of time, location, gender, age and subgroups of 

the population. The cellular automaton modelling approach is used to forecast 

numbers of cases in different subgroups. An approach using wavelet transforms 

analysis is illustrated to understand the impact of delay on the spread of infectious 

disease. The results confirm that the higher the frequency, then the slower the spread 

of disease and vice versa.  The thesis concludes with showing how co-infection can 

be modelled in future work on a theoretical base. 

 

Keywords: SIR, SEIA Models, Reinfection Rates, Migration Scheme, Delay, 

Wavelets, Latent Period, Epidemics Models, Cellular Automata 
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Chapter 1  

Introduction 

 

The continuum of infectious disease is changing rapidly in conjunction with 

dramatic social and environmental changes. Worldwide, there is a fast increase in 

population growth with consequent increases in urban and international migration, 

leading to increased risk of exposure to infectious agents. The human 

immunodeficiency virus (HIV) infection, which leads to acquired immunodeficiency 

syndrome (AIDS), has become an important infectious disease in both the developed 

and developing countries. AIDS is one of the most serious, deadly diseases in human 

history and is caused by the human immunodeficiency virus (HIV) (Hogan, 

Zaslavsky et al. 2010). In many African countries, AIDS is already a major cause of 

death and it is predicted by experts that it will soon become so in Asian countries 

having larger scale populations. It is well known that the HIV virus has a long 

incubation and infectious period. In the absence of antiretroviral therapy, the median 

time of progression from HIV infection to AIDS is 10 years and the median survival 

time after developing AIDS is only 9 months. Moreover, the rate of clinical disease 

progression varies widely between individuals, from two weeks up to 20 years. The 

amount of time it takes for symptoms of AIDS to appear varies from person to 

person.  

 

In Ghana, AIDS has a constant measurable incidence, both of cases and of potential 

transmission over a number of years. In 2004, in sub-Saharan Africa, 2 million 

people died of AIDS, 33.4 million were infected and 2.7 million people were newly 

infected with an estimated 440,000 in Ghana (see report on AIDS Epidemic Updates 

in (UNAIDS 2010)). Sub-Saharan Africa is more heavily affected by AIDS than any 
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other region of the world. In 2008 around 1.4 million people died from AIDS in sub-

Saharan Africa. There is a growing need to model the effects of environmental 

factors, including migration patterns, on the spread of AIDS to gain an increased 

understanding of how AIDS spreads.   Therefore, possible ways to combat that 

spread, not just through drugs but also through enhanced environmental control can 

be proposed.  Such models can lead to novel hypotheses and predictions that can be 

grounded in the data available to health organisations responsible for modelling or 

controlling the spread of AIDS.  

1.1 Scientific Background  

AIDS causes mortality, morbidity of millions of people and expenditure of enormous 

amounts of money in public health care and disease control. AIDS was first reported 

in the USA on June 5, 1981, by the Center for Disease Control (CDC)  which 

recorded a cluster of Pneumocystis carinii  (a form of rare pneumonia) in five 

homosexual men in Los Angeles (Gottlieb, Schanker et al. 1981). In the initial stage, 

the CDC did not have an official name for the disease, often referring to it by way of 

the diseases that were associated with it, for example, lymphadenopathy - disease of 

the lymph nodes, and the disease after which the discoverers of HIV originally 

named the virus (Control 1982; Barre-Sinoussi 2004). The CDC later used the name 

‘Kaposi’s Sarcoma’ (a form of skin cancer) and ‘Opportunistic Infections’. By 1986 

there was sufficient understanding of the retrovirus to lead to a new name, ‘HIV’, or 

human immunodeficiency virus. It is now accepted that AIDS is a disease of the 

human immune system caused by the human immunodeficiency virus (HIV) (Weiss 

1993; Sepkowitz 2001). The HIV condition progressively reduces the effectiveness 

of the immune system and leaves individuals susceptible to opportunistic infections 

and tumours. 
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Lack of access to health care and the existence of coexisting infections such as 

tuberculosis and hepatitis C may also accelerate disease progression. A person with 

HIV becomes sick with AIDS when his or her immune system is seriously 

compromised. HIV is transmitted through direct contact of a mucous membrane or 

the bloodstream with a bodily fluid containing HIV, such as blood, semen, vaginal 

fluid, pre-seminal fluid, and breast milk (AvertingHIV/AIDS 2013). The 

transmission can involve anal, vaginal or oral sex, blood transfusion, contaminated 

hypodermic needles, exchange between mother and baby during pregnancy, 

childbirth, breastfeeding or other exposure to one of the above bodily fluids. When 

HIV enters the body, it  infects  white blood cells known as T-cells, commonly 

termed as CD4+ cells, but also infects other cells such as dendrite cells (Srivastava, 

Banerjee et al. 2009). The HIV virus attacks CD4+ cells causing them to die while at 

the same time releasing billions of HIV back into the blood stream (Guide4Living 

2013). The HIV virus then infects new cells and so the lethal cycle continues, as 

shown in Figure 1.  There are several stages that come before one can progress from 

HIV to AIDS.  The ‘incubation’ or induction period’ is the ‘latency period’, which is 

the time between the onset of infection and seroconversion (May 1987; Donnelly and 

Cox 2001; Kaddar, Abta et al. 2011). The end of the disease process is death, since 

death from the disease is unfortunately the current prognosis for the overwhelming 

majority of AIDS cases (Keeling and Rohani 2008). 
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Figure 1: Basic picture of the natural progression of the AIDS disease (Keeling and 

Rohani 2008) 

 

1.2 Motivation 

Research on epidemic models that incorporate time dependent biological and 

environmental parameters, disease related death, varying total population and time 

delay is becoming one of the important areas in the mathematical theory of 

epidemiology. Cellular automata (CA) have been used to model the spread of a 

disease, with the aim of testing mathematical models of how a disease spreads by 

generating predictions of infection and/or identifying parameter values of the model 

that lead to actual real world data being fitted by the outputs of the CA model. There 

is little understanding of how movement of individuals from one population level to 

another plays a significant role in modelling the spread of AIDS using CA and 

mathematical models, as seen in (Sections 2.2.1, 2.3 and 3.1.1). Many models 

assume a homogeneous spatial geometry, with no distinctions being made between 

rates of spread in, for example, urban areas and rural areas, or their interaction. The 

aim of this research is to extend our understanding of how cellular automata can be 

used to model AIDS to help us understand, in the long term, the spread of disease in 

heterogeneous, spatially variable areas where population movements (e.g. from rural 

to urban) can play a critical role. The beneficiaries of this research will not just be 

AIDS healthcare professionals but other medical areas where there is a high degree 

of co-infection. 
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1.3 Objectives 

Statistical and mathematical models have important roles in the study of the AIDS 

epidemic. Statistical models can be used for short-term forecasting of AIDS cases 

and mathematical models contribute to the identification of those epidemiological 

factors that affect the spread of the HIV virus. There is very little understanding of 

how the major diseases are related in mathematical terms. Without such models, we 

cannot make effective predictions of spread. So, we cannot currently identify the best 

preventive strategies. The key objectives of the study are: 

1. To explain the natural course of HIV/AIDS – the relationship between the 

susceptible exposed infected and either immune or (removal) populations.  

2. To improve the methodological basis for modelling the HIV/AIDS epidemics 

in terms of spatial geometry to represent the effects of population migration 

on HIV transmission. 

3. To understand through simulation how population control strategies may 

have an effect on policy makers.  

4. To introduce and explore principles of co-infection that may be useful for 

future extensions of the work reported here. 

The outcome will provide some guidelines for understanding and interpreting the 

potential implication of current prospective changes in behaviour of population due 

to the spread of AIDS.  The use of artificial intelligence and mathematical theories 

will be adopted to model the spread of AIDS. In addition, novel mathematical 

models will be constructed for future research in co-infection. 

1.4 Detail of the Thesis 

The thesis consists of the following sections. In the first, we look at past literature to 

help us to identify research gaps and frame research questions. This literature survey 
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will focus on mathematical models of susceptible, infected, recovery (SIR) and 

susceptible, exposed, infected, recovery (SEIR), respectively. The second section 

will focus on the methodological approach needed to design and construct cellular 

automata that can be used for the mathematical modelling of the HIV/AIDS disease. 

The third section will deal with experimental simulations and results that 

demonstrate the applicability of cellular automata for modelling. Finally, the fourth 

section of this thesis consists of an analysis of the results, followed by summary and 

concluding remarks concerning possible future research directions.   
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Chapter 2  

Literature Review 

 

 

In order to rationalise the research design, some existing research will be outlined 

and existing knowledge will be explained to justify how the research benefits this 

field. 

It has now been established that the main cause of the AIDS disease  is HIV 

infection, although in some very few cases it is known that not all HIV lead to AIDS 

(AvertingHIV/AIDS 2013). It is not clear where or how HIV/AIDS originated and 

there are many hypotheses (AvertingHIV/AIDS 2013).  

 Figure 2 shows that the total number of people living with HIV and AIDS increased 

from around 8 million in 1990 to 33.3 million at the end of 2009. This growth trend 

of the epidemic has  stabilised in recent years and this is due to the significant 

increase in people receiving antiretroviral therapy; AIDS-related death cases have 

also declined (AvertingHIV/AIDS 2013). 

 

Figure 2: Numbers of HIV/AIDS cases in the world 1990-2009 (AvertingHIV/AIDS 

2013) 
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However, global statistical data have shown that the number of AIDS cases had 

increased tremendously from 2009 to 2010, especially the number of children 

infected from 2.5 to 3.4 million (Table 1). 

Table 1: Numbers of HIV/AIDS cases in the world 2009 and 2010 (Avert 2011) 

 

2009 2010 % increase 

People newly infected with HIV 33.3 million 34.0 million 2.1 

Children infected with HIV/AIDS 2.5 million 3.4 million 36.0 

People newly infected with HIV 2.6 million 2.7 million 3.9 

 

Table 2 shows that about 67.6 percent of all people living with HIV are from sub-

Saharan Africa, which indicates that the region carries the greatest burden of the 

epidemic in the world. Epidemics in Asia have remained relatively stable and are 

still largely concentrated among high-risk groups. Likewise in Eastern Europe and 

Central Asia the number of people living with HIV has almost tripled since 2000 

(AvertingHIV/AIDS 2013). 
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Table 2: Summary of World HIV/AIDS 

 
* Proportion of adults aged 15-49 who are living with HIV/AIDS 

 

For instance, the first AIDS case diagnosed in Ghana was in March 1986 (Aboagye-

Sarfo, Cross et al. 2010), five years after HIV was first found globally by the United 

States Centre for Disease Control and Prevention. By the end of 2004 a total of 

440,000 people were found to be infected with the virus in Ghana. The majority of 

these cases were in the eastern region, which has the highest prevalence when 

compared to the northern region, which has the lowest rate of incidence (Aboagye-

Sarfo, Cross et al. 2010).  

 

Since there is no vaccine currently available for AIDS, it is essential to prevent 

AIDS from spreading (Kibona, Mahera et al. 2011). Many immunologists, 

epidemiologists, mathematicians and statisticians have been able to model the 
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progression of AIDS and how it affects different populations (Wang, Heather et al. 

2010). Isham (1988) reviewed the context of the transmission of HIV and AIDS and 

Naresh et al. (2011) studied the different stages during which an HIV positive patient 

is not aware of the disease prior to developing AIDS. The period at which a person is 

declared to have AIDS varies from one country to another (Guide4Living 2013). The 

HIV/AIDS epidemic has continued to increase and cause havoc in sub-Sahara Africa 

for the past three decades. It has eroded the continent’s health care system (Joshi, 

Lenhart et al. 2008) and is poorly controlled in Africa (Bhunu, Mushayabasa et al. 

2011).  

 

Migration is usually defined as the movement of people from one place to another 

temporarily, seasonally or permanently, for a host of voluntary or involuntary 

reasons. This includes refugees and internally displaced persons. To distinguish 

among categories of migrants, the word migrant is usually restricted to those who 

move for voluntary reasons (internally or internationally), while refugees and 

internally displaced persons are those who move involuntarily (Allen and Burgin 

2000).  Migration may impact HIV progression by connecting geographically 

separate epidemics and by changing sexual behaviour (Coffee, Lurie et al. 2007).  

Migrants are at higher risk for HIV than non-migrants. Migrant labour has played a 

significant role in the initial spread of HIV in the southern part of the African region 

(Brummer 2002). Migration may be an important driver of HIV in southern and 

western India. Also in south east Asia due to high numbers of migrant workers who 

periodically return home. See for example Overseas Filipino Workers. A study 

conducted  by Deering, Vickerman et al. (2008) suggests that migration could play a 

significant role in the HIV epidemic spread in southern and western India.   
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2.1Mathematical Modelling of Epidemics 

The first mathematical epidemiological model was formulated in 1760 by Daniel 

Bernoulli (Choisy, Guégan et al. 2006) with the aim of evaluating the impact of 

variation of human life expectancy. In the early 1920s, Kermack and McKendrick 

made crucial suggestions concerning a compartment model to study the spread of 

infectious diseases. Their suggestions formed the foundations of mathematical 

epidemic modelling. The epidemic of any population at any time consists of different 

proportions (compartments) of susceptible, infective and recovered individuals 

(Kermack and McKendrick 1927). This model is discussed in more detail in section 

2.2. Greenwood (1931) also formulated a different chain binomial model 

independently in which the number of incidences was proportional to the number of 

susceptibles alone. In the chain model, infections are categorized by generations and, 

due to this, time is considered as discrete. Subsequently,  the chain-binomial models 

were applied to diseases such as measles and the common cold (Brimblecombe, 

Cruickshank et al. 1958; Heasman 1961). Anderson, May and McLean (1988) 

introduced the first mathematical models of the transmission dynamics of HIV to 

assess the potential impact of HIV and AIDS on demographic and epidemiological 

processes. AIDS is capable of changing the population growth rate structure in some 

developing countries from positive to negative values during a set timescale. En'ko 

formulated the progression of an epidemic: the incidence is proportional to the 

number of susceptibles as well as the number of infected (En'ko 1989). Normally, 

models identify behaviours that are unclear in experimental data, because the data 

are non-reproducible and the number of data points is limited and subject to errors in 

measurement. For instance, the fundamental result in mathematical epidemiology is 

that most mathematical epidemic models, including those that have high degree of 

heterogeneity, usually show threshold behaviours which in epidemiological terms 
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can be stated as: If the average number of secondary infections caused by an average 

infective is less than one, then a disease will die out, while if it exceeds one there 

will be an epidemic (Hethcote 2000). This principle, consistent with observations 

and quantified via epidemiological models, has been used to estimate the 

effectiveness of vaccination policies and the likelihood that a disease may be 

eradicated or removed. Thus, even if is not possible to check hypotheses accurately, 

agreement with hypotheses of a qualitative nature is always available (Brauer and 

Castillo-Chávez 2001). Mathematical modelling in epidemiology provides an 

understanding of the underlying mechanisms that influence the spread of disease 

and, in the process, it suggests control strategies (Culshaw 2006; Pietro G 2007).  

2.2 The Basic SIR Model 

Kermack and McKendrick (1927) formulated a classical epidemic model in which 

they considered a closed population with only three compartments, susceptible S(t), 

infected )(tI , and removed )(tR , as seen in Figure 3. The susceptible )(tS  represents 

the individuals who have not yet been infected with the disease at time t . The )(tI

denotes the individuals who have been infected with the disease and are able to 

spread the disease. Finally, the removed )(tR  represents the individuals who have 

been infected and then recovered with immunity or isolated or died from the disease.  

 

  
 Figure 3: The SIR model 
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Mathematically, the changes can be described as follows: 

                 

(3)                                                                             

(2)                                                                    

(1)                                                                         

I
dt

dR

ISI
dt

dI

SI
dt

dS













                                         
 

where   is the transmission rate and  is the removal rate. 

 

Model (1-3) is based on the following three basic assumptions: 

1.  Migration, birth and death rates are not included in the model. So,  

         ,)()()( NtRtItS  where N is a constant (the closed population size).  

2. An average infective makes contact (sufficient) to transmit infection with N  

others per unit time. The law of mass action is applied to epidemics, which states 

that: the rate of new infection of the disease is proportional to both the number of 

susceptible and the number of infectives: S II
N

SN  **  

3. Individuals are removed from the infected class at a rate  . They either recover 

with immunity, become isolated or die.   

 

The proof of Survival and Total Size, and Second Threshold Theorem of the SIR 

model is found in Appendix A. These proofs were meant to determine:  

 If 1 , then the solution to (1-3) is to approach the disease-free equilibrium  

NtStI
tt




)(lim  ,0)(lim  

 If 1 , then the solution to (1) is to approach a unique positive endemic 

equilibrium  0)(lim  ,0)(lim 
 tt

tStI  

where   is the basic reproduction number. 
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Changing the assumptions, several modifications of the SIR model were developed 

over the years including those with two (SIS), four (SEIS, SEIR, MSIR), five 

(MSEIR) and six (MSRIRS) compartments (Li, Graef et al. 1999; d'Onofrio 2002; 

Roberts, Baker et al. 2007; Vynnycky and White 2010; Griffiths 2011), where  

represents  passively immune infants and  represents the exposed class in the 

latent period.  

2.3Some modifications of SIR model 

A deterministic model is one whose behaviour is entirely no randomness. The 

system is perfectly understood, and then it is possible to predict precisely what will 

happen. A stochastic model is one whose behaviour cannot be entirely predicted 

(Allen and Burgin 2000). 

Isham (1988) formulated a simple stochastic epidemic model that  gives a good 

understanding of the spread of HIV infection at the initial stage of the AIDS 

epidemic. The merit of using the simple stochastic epidemic model is that its 

properties are much easier to obtain by an algebraic approach. The SIR model was 

appropriately based on the assumption that those who have been infected with HIV 

cease to transmit the infection after they have been diagnosed as being in the AIDS 

class. While the model was a simple stochastic epidemic, in the context of AIDS 

models it is well known that the number of death cases related to AIDS is important 

and was not included in the model. In the model, there were no opportunities for the 

susceptible class of the individuals to become infected by infected partners. The 

individuals in the population were not stratified by their age since it is well-known 

that the length of the incubation period tends to decrease with increasing age in 

adults as compared to young children who have short incubation periods. 

Mukandavire and Das et al. (2011) pointed out that deterministic models have 

)(tM

)(tE
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difficulty in predicting  future system states accurately while stochastic models are 

used to find the volatility in variables to forecast the models accurately in the future. 

The introduction of the random volatility was as an additive white noise fluctuation 

to model a system with a discrete time delay. Their results showed that a change in 

delay and the introduction of white noise do not have an effect on the dynamic 

behaviour of the system. There was no comparison between the additive and 

multiplicative noise to show that the additive noise was beneficial. 

Bhunu and Mushayabasa et al. (2011) present deterministic models to investigate 

how counselling and testing could modify sexual activity that will result in a 

decrease in the HIV epidemic in resource-limited communities. The assumption was 

that the HIV epidemic in Africa can be partially reduced through education efforts 

based on different risk activities. Their models showed that effective counselling and 

testing could have a positive impact in reducing the HIV epidemic. The disadvantage 

of this model is that there is no incubation period parameter in the model and hence 

no ability to represent the duration of time (in years) for the individual to develop 

AIDS.  

A continuous model is one where the state variables change in a continuous way, and 

not abruptly from one state to another.  Kim (2009) formulated a simple continuous 

model for HIV infection by using the well-known SIR model. Although exact 

solutions for the model cannot be found, numerical simulations assist in 

understanding the model. The following assumptions were made:  

 A particular population, which is reasonably restricted, is at high-risk to HIV 

by sexual contact only. There is no vertical infection (also known as mother-

to-child transmission), no infection by blood transfusion or injection-drug 

use. 
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 The population is uniformly mixed, so the probability of acquiring HIV is the 

same for every single individual within the community. 

 Once infectious individuals are classified as AIDS patients, they are no 

longer engaged in the infection. 

 There are no subtractions of the population except for disease-induced death. 

 

The removed class was replaced by AIDS patients class  (Kim (2009)), to 

give Model (4-6) as follows.  

(6)                                                                                       

(5)                                                                                      

(4)                                                                                      

AI
dt

dA

ISI
dt

dI

SIK
dt

dS













                        
                             

where: 

: Recruitment rate to population
 

: Infection rate 

: Conversion rate (from infection to AIDS) 

: Susceptible 

: Infectious (infected) class 

: AIDS patients’ class. 

From the simulations results, it was observed that the infection obeys exponential 

growth i.e. . This implies that , where and .  

The disadvantage of this model was that there were unknown constant migration 

rates to the susceptible class. Additionally, there was no incubation period in the 

model. Hence, the time required for HIV infection to develop into AIDS was not 

included in the model.   
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27 | P a g e  

 

A differential equation is linear if the unknown function and its derivatives appear to 

the power 1 (products are not allowed) and nonlinear otherwise. Naresh and Tripathi 

et al. (2011) introduced a nonlinear mathematical model to analyse the effect of 

contact tracing on reducing the spread of HIV/AIDS in homogeneous populations 

with constant migration to the susceptible class. Their results show that contact 

tracing might be of immense help in reducing the spread of AIDS epidemic in a 

population. Also, infection was reduced when infective class members know their 

status of infection and modify their sexual activities. Furthermore, it was observed 

that the individuals who know their status of HIV infection, detected by screening 

and contact tracing, do not contribute to the spread of the disease. In the absence of 

screening and contact tracing, the infected individuals continue to spread the disease 

without any precaution due to lack of awareness of their status.  

 

Colijn and Cohen et al. (2009) demonstrated why SEIR models can be used to model 

latent co-infection of tuberculosis (TB) with different strains. The model showed that 

tuberculosis in people may experience latent co-infection with drug sensitive and 

drug resistant strains. Roeger and Feng et al.(2009) formulated simplified 

deterministic models of co-infection between TB and HIV. Different independent 

reproduction numbers were used to represent TB and HIV, respectively. The overall 

reproduction number for the model was the maximum reproduction number between 

TB and HIV. They observed that an increase in HIV prevalence also increased the 

level of infection for TB.  The presence of TB may have a significant impact on HIV 

dynamics. The drawback of this model was that it did not take into account sexual-

transmission, which is the cause of HIV and TB co-infection.   
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As can be seen from the above, a number of epidemiological models have been 

proposed that make assumptions about the domain that simplify epidemiological 

aspects. All models need to make simplifying assumptions, including our own (to be 

described later). Simplifying assumptions allow us to make incremental steps 

towards ever better and more complete models, or to model subset-problems that are 

analytically or numerically tractable. The question being tackled in this thesis is 

whether it is possible, with the use of cellular automata as the modelling tool, to 

incorporate more accurate assumptions that still produce realistic simulations but 

have increased expressive power because of the inclusion of more information.  

 

In mathematical modelling, a deterministic model is viewed as a useful 

approximation of reality that is easier to build and interpret than a stochastic model, 

and a stochastic model only determined random process. In a continuous model, a 

variable changes continuously over a period of time, while in a discrete model the 

state of the variable changes at a discrete set of points in time intervals.  Another 

important concept in modelling is linearity. A linear model uses parameters that are 

constant and do not vary throughout a simulation. For example, solutions to linear 

equations can be expressed in terms of a general solution and also linear models 

equations have explicitly defined solutions. A non-linear model introduces 

dependent parameters that are allowed to vary throughout the course of a simulation 

run, and its use becomes necessary where interdependencies between parameters 

cannot be considered insignificant. For example, nonlinear model typically do not 

have general solutions, and also nonlinear models may or may not have implicitly 

defined solutions. The choice between using a linear and a non-linear model is 

dependent upon how significantly the values of any of the parameters involved vary 

in relation to any of the other parameters. 
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2.4 Cellular Automata Models 

Mathematical modelling is the only way to analyse the effectiveness of different 

disease control strategies, as stated by (Ferguson, Keeling et al. 2003). Simulation is 

the obvious way, since real life experimentation is impossible. Cellular automata 

have become a powerful tool to model the spread of disease. A cellular automaton 

(CA) is a mathematical ‘machine’ or ‘organism’ that lends itself to some very 

remarkable and elegant ideas. One of the most exciting aspects of this area of 

mathematics is that cellular automata arise from very basic mathematical principles 

which, when applied repeatedly, produce complex outcomes. More details on 

cellular automata are presented in the next Chapter.   

 

Situngkir (2004) presented the use of cellular automata simulations in spatial 

epidemiology, with a focus on analysing avian influenza disease in Indonesia. The 

result of the simulation shows the spreading-rate of influenza in a simple way that 

describes possible preventive action through isolation of the infected as a major step 

of preventing a pandemic. Lichtenegger (2005) investigated the spread of epidemic 

disease with cellular automata models. Some of the models used were complicated 

due to the high dimensional configuration space. The introduction of re-growth and 

evolution provided new ways to interpret the host and the disease existing in 

dynamic equilibrium points. White (2007) also used CA for modelling epidemics.  

The main purpose was to understand the time course of the disease with the aim of 

controlling the spread of epidemic diseases. White suggested that most of the 

existing mathematical models failed to explain the following: 1) the individual 

contact processes, 2) the effects of individual behaviour, 3) the spatial aspects of the 

epidemic spreading, and 4) the effects of mixing patterns of the individuals. The 

mathematical deterministic model was used to simulate the epidemic spread of the 
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disease. The model was realised in a two-dimensional cellular automata, where the 

population was divided into three compartments: susceptible, infected and recovered 

(SIR). 

 

Fresnadillo (2010) introduced a new mathematical epidemiological model based on 

cellular automata of graphs. The model was SEIR (susceptible-exposed-infected-

recovered), where each node of the cellular automaton was assigned for only one 

individual. Mikler (2005) concentrated on modelling infectious disease using global 

stochastic cellular automata (GSCA) and also used the basic SIR model  for the 

study of infectious disease.  One of the disadvantages of using just SIR models is, as 

pointed out earlier, that the models do not take into account the geographical or the 

spatial dimensions of the region. Zorzenon dos Santos and Coutinho (2001) 

investigated the dynamics of HIV infection at the beginning of AIDS by using the 

CA approach. The model was based on three features: the global immune response to 

the pathogen, mutation rate of the HIV, and amount of the geographical localization 

of the disease. The drawback of the model was that the parameter for generating 

special geographical structures which play an important role in HIV spread was not 

fully specified. Liu and Wang et al. (2008) formulated a classic SEIR model based 

on ordinary differential equations. They explored the spatial behaviour of epidemic 

diseases that were showing seasonal trend. They implemented a model called 

‘dependent on the neighbourhood’ to simulate the spatial-temporal movement related 

with the different waves of an epidemic. Alimadad (2011) modelled the spread of 

HIV between individuals by taking into consideration numerous features, such as 

type of sexual behaviour, impact of HIV testing, explicit sexual contact with 

different kinds of frequencies depending on their sexual behaviour, infectivity 

depending on the stage of the disease, sexual activity period of the disease and social 
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influences. Dascalus and Stafen et al. (2011) presented  a multilevel simulator using  

hierarchical cellular automata to demonstrate how the spread of infectious disease 

could be modelled. The disadvantage of this model was that no quarantine and 

vaccination strategies were included in the model.  Shih and Milne (2004) outlined 

how to capture the behaviour of disease spread  in a tractable model with cellular 

automata. There were basically two scenarios: 1) where they presented an epidemic 

model which was used to explain the realistic pattern of disease spread with no 

defence or barriers to prevent the spread of the disease in a landscape distribution, 

and 2) where they introduced barriers to prevent the spread of disease, and showed 

the differences.  

 

More detailed models using the CA approach have been proposed. The discretized 

quality of CA models allows individual cells and their life history to be examined 

and is thus ideal for small, heterogeneous populations that cannot be described 

accurately with ordinary or partial differential equations. However, traditional CA 

models have the disadvantage of not including continuous time-dependency in some 

of the models described in previous sections. For this reason, CA models and 

mathematical models will be modified and developed in which the AIDS model is 

described by an nn  CA lattice in which each cell corresponds to an individual cell.  

The reasons for using CA in this research are:  

 the CA have significant role in epidemic modelling because each individual, 

or cell, or small region of space 'updates' itself independently  in parallel 

 This allows for the concurrent development of several epidemic spatial 

clusters, defining its new state based on the current state of its surrounding 

cells (locating) and on some shared rules of change. 
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The major drawback of CA modelling is the lack of “analytical” methods, similar to 

those that are useful in dealing with differential equations.  

 

The key research problems and issues investigated in this research are:  

 Previous work does not always deal with population migration – one of the 

key factors in the spread of HIV – although individual-to-individual 

transmission and population to population transmission (or compartment to 

compartment) is modelled. The question arises as to whether adding 

population migrations explicitly to a model provide any benefit over 

individual-to-individual transmission and compartment to compartment 

transfer. 

 Previous research has, by and large, focused on modelling an individual 

disease spread. The question arises as to whether modelling two strongly-

associated diseases, where the occurrence of one can lead to the subsequent 

occurrence of the other, adds to our understanding of HIV spread. 
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Chapter 3  

Design of the Study 

 

The mathematical modelling of an epidemic in this work is concerned with the 

infection processes mainly from person-to-person contact within populations (Isham 

1988; Rao 2003; Roberts, Baker et al. 2007). As seen in  the previous chapter, 

epidemic models have been used  to study  patterns of health, illness and associated 

factors at the population level in epidemiology (Roberts and Heesterbeek 1993). 

Epidemiological modelling  is a base method in public health research and, in 

addition to modelling disease spread,  helps inform evidence-based medicine for 

identifying risk factors for disease and determining optimal treatment approaches to 

clinical practice and for preventative medicine (Hove-Musekwa, Nyabadza et al. 

2011; Nyabadza and Mukandavire 2011). 

This research aims to develop cellular automata to model the spread of the AIDS 

disease taking into account geographical (spatial) distributions and mathematical 

models based on the literature discussed in more detail in sections 2.2.1 and 2.3. 

Several considerations need to be taken to achieve the objectives of this study.  

3.1 Methodology 

Formulation, validation, verification, forecasting and prediction have a pivotal role 

in quantitative modelling of AIDS. In quantitative models, the inputs, assumptions 

and the logical structure are set out clearly and therefore adaptable over time.  In 

recent years, quantitative methods to predict future AIDS epidemics have become 

more sophisticated and widely used (Chen 2011; Nyabadza and Mukandavire 2011). 

However, an epidemiological model is only useful if it either fits existing data or is 

derived from existing data.   
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3.1.1 Mathematical modelling 

As defined by Eykhoff (1974), a mathematical model is a representation of the 

essential aspects of an existing system (or a system to be constructed) which presents 

knowledge of that system in usable form. We often describe a particular 

phenomenon mathematically by means of a function or an equation. Such a 

mathematical model is an idealization of the real world phenomenon and never a 

completely accurate representation. The process of developing a mathematical model 

is termed mathematical modelling. The process involves a four-stage process: 

formulation, solution, interpretation and underpinning decision support. 

Mathematical models can take many forms, including but not limited to: dynamical 

systems, statistical models, differential equations, or game theoretic models. These 

and other types of models can overlap, with a given model involving a variety of 

abstract structures. Even though any model has its limitations, a good one can 

provide valuable results. In many cases, the quality of a scientific field depends on 

how well the mathematical models developed on the theoretical side agree with 

results of repeatable experiments. Lack of agreement between theoretical 

mathematical models and experimental measurements often leads to important 

advances as better theories are developed. For example, in this thesis, an infectious 

disease such as AIDS will be used.  For infectious diseases, mathematical modelling 

uses mathematical language to describe the disease’s progress to show the likely 

outcome of an epidemic and help inform public health interventions. There are now a 

number of such models in the literature. For example, as seen in South Africa 

(Brummer 2002; Coffee, Lurie et al. 2007) and South-West India (Deering, 

Vickerman et al. 2008) migration modelling of HIV have played a significant role in 

the spread of AIDS. Modelling the spread of AIDS has being formulated in various 

ways, for example, as seen in (Merli, Hertog et al. 2006; Kim 2009; Naresh, Tripathi 
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et al. 2011; Nyabadza, Mukandavire et al. 2011). CA has also been used to model the 

spread of AIDS as was seen in (Zorzenon dos Santos and Coutinho 2001; Alimadad, 

Dabbaghian et al. 2011). The ideas from these research programmes of migration 

movement of an individual from one population to the other will be used to 

demonstrate the significant role of the spread of AIDS. Models use some basic 

assumptions and mathematics to find parameters for various infectious diseases and 

use those parameters to calculate the effects of possible interventions, like mass 

vaccination programmes.  

 

In general, model complexity can occur, for instance, when attempting to use a 

model given by a system of nonlinear algebraic equations. The problem maybe so 

large in terms of the number of factors involved that it might be impossible to 

account for all the necessary information in a single mathematical model. In some 

cases we may attempt to replicate the behaviour directly by experimental trials.  

As shown in Figure 4, the present model would take into account model construction 

(formulation of the models) and simulation. 

 

 

Figure 4: General nature of a model (Giordano, Fox et al. 2009) 
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The attempt to simulate the spread of disease within spatial is based on a simple, 

two-dimensional CA model. The simulation procedure has been divided into two 

stages, namely the construction and the implementation stages, which are discussed 

in the following sub-sections.  

As shown in Figure 5, our methodology includes a model is intended to be an 

experimental and predictive model, with the aim of providing possibly new insight 

into how population migration may affect disease spread and co-infection. 

 

Figure 5: Generic Methodology 

Our model is not meant to fit existing, real-world data, since the data is unlikely to 

contain the geospatial and co-infection information being modelled. It will therefore 

not be possible to demonstrate validity in terms of comparison of model outcomes 

against real-world observations/data.  Instead, the approach adopted in this thesis is 

to generate artificial HIV datasets according to a set of geospatial parameters that are 
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gross simplifications of how a disease has spread, both in terms of population 

migration and in terms of co-infection. These rules, and hence the artificial data 

produced by them, are representations of a fictional HIV world.  The task of the 

model is to generate artificial data. Parameter settings used for generating the best-fit 

models will then be analysed in the final part of the thesis for real-world plausibility 

and implications. If the model is initially shown to be mathematically sound through 

proof, trust can be placed in the analysis of real-world plausibility. That is, any 

interesting aspects found during analysis can be identified as model implications 

rather than the result of unsound mathematics. 

 

 First, a mathematical model will be formulated by extending the SIR model to an 

SEIR model. The introduction of E is meant to include the latency or delay aspects 

of HIV. This SEIR will be analysed for mathematical soundness. Artificial HIV data 

will be generated using CA with parameters derived from the literature concerning 

what is known about the effects of population migration on HIV disease spread. 

Where there is not sufficient information, intuition will be used to derive the rules.  

However, a number of simplifying assumptions will be made to demonstrate the 

feasibility of incorporating population migration into disease spread models. The 

formulated model will be used to fit the simulated data by using CA to show the 

geographical distribution of the spread of the HIV/AIDS disease. By adjusting and 

modifying the formulated model we will try to produce outcomes that can be 

analysed with respect to what we can learn about future SEIR models involving a 

geospatial dimension as well as co-infection.  Based on the analysis, a number of 

conclusions will be drawn on what we can expect if and when real-world data 

involving geospatial location and co-infection becomes available.   
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3.1.2 Description of Cellular Automata Models     

The basic element of a CA is the cell. A cell is a kind of a memory element and 

stores ‘states’.   The model demonstrate CA, each cell can have a value of 1 or 0. 

That is, each cell represents an occupied cell (1) or a non-occupied cell (0). 

‘Occupied’ here means by an individual member of the population being modelled. 

In a two-dimensional (2D) approach such as the one adopted here, the cells represent 

a topological map in which individuals are located in a geospatial relationship to 

each other, with the default interpretation of ‘north’ being located at the top of the 

2D topology.  In more complex simulations, the cells can have more states.  

 

The cells arranged in this spatial map form a lattice. These cells arranged in a lattice 

represent a static state of the system as a whole. To introduce dynamics into the 

system, we add rules. The "job" of these rules is to define the state of the cells for the 

next time step. In CA, a rule defines the state of a cell in dependence of the 

neighbourhood of the cell.  

 

Different definitions of neighbourhoods are possible. Considering a two dimensional 

lattice, the following definitions are common. 

 

1. Von Neumann Neighbourhood: four cells. The cell above and below, right 

and left from each cell are called the Von Neumann neighbourhood of this 

cell. The total number of neighbour cells including itself is 5 cells (Figure 6). 
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                                      Figure 6: Von Neumann Neighbourhood 

2. Moore Neighbourhood: eight cells. The Moore neighbourhood is an 

enlargement of the von Neumann neighbourhood containing the diagonal 

cells too. The total number of neighbour cells including itself is 9 cells 

(Figure 7). 

 

                                      

                                     Figure 7: Moore Neighbourhood        

3. Extended Moore Neighbourhood, equivalent to the description of the Moore 

Neighbourhood above. However, the neighbourhood reaches over the 

distance of the next adjacent cells. The total number of neighbour cells 

including itself is 25 cells (Figure 8). 
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Figure 8: Extend Moore Neighbourhood 

 

The Moore Neighbourhood Model will be used in this research to represent possible 

infection by neighbouring individuals of an individual at the centre of the cell. The 

red cell is the centre cell, the blue cells are the neighbourhood cells. The states of 

these cells are used to calculate the next state of the (red) centre cell according to the 

defined rule. 

3.2 Why cellular automata? 

Many existing epidemic models use differential equations which do not take into 

consideration spatial factors such as variable population density and population 

dynamics. They tend to assume that populations are closed and well-mixed – that is, 

host numbers are constant and individuals are free to move wherever they wish. CA 

capture the probabilistic nature of disease transmission and are characterized by their 

discretization of space and time. As the CA evolves, the update function, which takes 

into account a cell’s current state and those of its neighbours, determines how 

microscopic interactions can influence the macroscopic behaviour of the system. 
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Also, CA models of disease spread all share one property: that the virtual world in 

which they run is an idealized and approximate one. There is therefore a trade-off 

between a model’s degree of abstraction and its usefulness.  

3.3 Why Wavelet Analysis? 

The wavelet transform is a function which is an improved technique of the Fourier 

transform. In time-frequency analysis in a set of data, the classical Fourier transform 

analysis is inadequate due to a lack of any local information contained in the data.  

Let a  be a certain class of functions and nffff ,...,,, 210  be a frequency of simple 

functions such that each 





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nn xfaxf  for some coefficients na . We will 

consider a function in Laplace transform )(2 RL  in order to demonstrate the wavelet 
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since )(ts  is  discrete, we will use a piecewise constant interpolation of the )(ks  

values, 1k  to length(s).  The algorithms for this wavelet and wavelet transform are 

in Appendix D. 

The reasons why wavelet analysis is used are: 

a) to analyse the frequency of the spread of the disease; and 

b) to understand the impact of delay in the spread of AIDS disease. 

These will be achieved by analysing the frequency and interpreting exposed as delay. 

 

The following research questions will be addressed: 

1. How can the spread of HIV/AIDS disease be modelled to reflect 

geographical (spatial) distributions of AIDS by using CA and mathematical 

models?  

2. What are the implications of our model for future co-infection models?  

 

The following statement will be investigated:  

 The higher the frequency, then the slower the spread of disease and vice 

versa. 
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Chapter 4  

Experimental and Results 

 

As noted in the preceding chapters, this chapter will cover the experimental work of 

the research.  We will formulate a model based on Figure 5, sections 5.2, 5.3.2 and 

5.3.3. The experiments were done based on the methodological approach discussed 

in section 3.1.  The following sections first provide an overview of the experiments. 

4.1 SIR Model: CA 

A CA model for epidemic spreading was defined by White, del Rey et al. (2007) as a 

set of ),,,( fVQL . 

Where: 

 

 L  is the space where the automata operates. It is represented as a lattice of 

cells (or elements). 

 Q  is the space of states of cells. Each cell assumes a state and the space of 

states represent the diverse, finite and integer possible states. 

 V  is the set of neighbour cells of a given cell - the neighbourhood – the 

environment where the automata time-space evolution takes place. 

 f  is the local transition rule. When applied to a cell it determines the state 

assumed at the next time step. 

4.1.1An SIR Model 

The model was with non-lethal disease with permanent immunity due to lack of 

vaccine. The natural birth and natural death rate of these two parameters control the 

birth and death rate in the population. These two parameter rates are discarded. The 
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infection procedure takes place when susceptible individuals are infected through 

contact to infected individuals.  

4.1.2 Design of the Cellular Automata 

A 2D lattice is used in order to define the dimensionality of the CA model. Each of 

the cells in the automaton has a unique index, and is stored using a one dimensional 

array. However, the coordinates are easier to handle by defining them as x and y 

coordinates. Moore and Von Neumann neighbourhood are used during runtime. 

4.2 Simulation setup 

There are many  implementations of CA  using the MATLAB programming 

environment (Athanassopoulos, Kaklamanis et al. 2012). We will offer simple 

processes coupled with power.  CA codes were written to deal with the simulations 

below.  There are two models; the first model is a three state model: susceptible, 

infected and recovery. The second model is an extension of the first model by adding 

an exposed state and making it a four state model.  

4.3 Simulation scenario 

In this research,  is the radius used for the spatial neighbourhood of an individual. 

The 1st order Moore neighbourhood is defined as the 8 nearest neighbours using a 

3x3 neighbourhood, with the individual at the centre, i.e. . The degree of 

infectiousness in this spatial dimension, the value of the infected parameter is used to 

calculate the probability  that the current cell is infected in the next time step 

depending on the values of neighbours:                 
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where the denominator    is the cardinality of the neighbouring cell and 

SUM_DIS is infected parameter.  

The original SIR model formulated by Kermack and McKendrick (1927) was used 

without any modification to provide  a benchmark for the basis of the research work. 

However, one addition to their SIR model is the use of a small number of initial, 

geographically dispersed populations. No migration patterns were specified for this 

initial SIR model. Hence, population spread was based purely on infection spread.   

4.3.1 Experiment and Results          

Experiments are performed on populations with domain size of 50x50, 60by60, 

70x70 & 90x90 representing the four geographically dispersed populations P1-P4, 

respectively. Ten infected individuals were introduced into the four different 

populations. Table 3 summarises the parameter values used.  

Table 3: Parameters of simulation 

 

4.3.2 Description of (SIR)
n
 Model 

In this section, the CA model for (SIR)
n
 using multiple populations and a predefined 

migration pattern (which can vary) are introduced with the aim of generating within-

population and between-population patterns and trends, where n represents different 

number of population sizes. This is to distinguish between individuals who were 

infected and recovered but who subsequently (at suitably identified time lags) 

become susceptible to the same or other disease. There is growing interest in how 

population movements affect infection and re-infection (Aagaard-Hansen, Nombela 

et al. 2010). The approach proposed here, as described in section 3.1, uses CA to 

1)12( 2 r
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model re-infection under one possible migration scheme and demonstrates how 

population movements from one population to another population (i.e. towns, 

districts, cities and regions) can lead to different patterns of re-infection among four 

populations of different sizes. 

4.3.3 Rules for Disease Spread 

The rules described hereafter determine the state transitions of individual cells in the 

CA for the (SIR)^n  model (Figure 9):  

 A cell changes its state from susceptible to infected (S → I) when it comes in 

contact with an infected cell in its defined neighbourhood and the mode of 

transmission rate is β. 

 The state of the cell changes from infected to recovered (I → R) after being in 

state I for a given α. In state I, the cells are capable of passing on the 

infection to neighbouring cells.  

 The state of a cell changes from recovery to susceptible (R →S) after being in 

state R for a given time   which takes an individual to move from recovery 

state back to susceptible state.  

Blue, red and orange squares correspond to 0, 1 and 0.1 with susceptible individuals, 

infected individuals and recovery individuals, respectively, in Figure 9. The light 

blue colour represents the R to S recurrence. 365 iterations were simulated, with one 

iteration representing a day. 
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Figure 9: (SIR)
n 

 model 

 

As shown Figure 9, the addition of δ in the thesis is an extension of the SIR model 

done by Kermack and McKendrick (1927). 

     

(13)                                                             

                        (12)                                                            

(11)                                                           
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dt
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The analysis of this (SIR)
n 

 model is presented in Appendix B. The proof 

demonstrates the steady state, the equilibrium and the basic reproduction number.  

4.3.4 Simulation Setup 

Four spatially separated populations (P1-P4) were created with a migratory schema 

described in Figure 10. Each arrow represents the movement of one randomly 

chosen infected individual per time step making a move to another population (five 

such movements in Figure 10). 
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                            Figure 10: Migration scheme model 

 

Figure 10 represents how the migration rules are applied. The movement of an 

infected individual depends on both transition probabilities and are deterministic.  In 

P1 and P2, the movement of the infected individual is probabilistic. For example, 

with P1, the migrant rule is either from (P1 to P2), (P1 to P3) or (P1 to P4) and the 

decision for any these three routes is selected by random probability. With the 

migrants rule applied to P2, the movement of an infected individual is either from (P2 

to P1) or (P2 to P4) and the decision for these two routes to occur is random 

probability.  The migrant rule in P3 is deterministic, while no movement occurs in 

P4. These are based on the CA written codes.  

 

Figure 11 shows the simulations of model (a-3) over 365 iterations, showing plots of 

population 1 to population 4 for grids of 50x50, 60x60, 70x70 and 90x90.  Pop.1, 

Pop.2, Pop.3 and Pop.4 respectively indicates that no migration of individuals 

infected with HIV migrated from one population to other.  

 
 

  

 
 

P1 
P2 

P3 P4 
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Figure 11: A dynamic spread process without migration 

 

In each of the four populations, 20 HIV individuals were introduced in each of the 

populations. The colours appears as red (HIV), light green (AIDS), orange (re-

infection) and blue (Susceptible).  In the Pop.1 model, the shown lattice contains 

50x50 cells, with no visible period after 365 steps. It can be seen that the 20 

introduced HIV individual populations die as compared to Pop.2, Pop.3 and Pop.4 

that did not have migration movement.  

 

Figure 12 Simulation of model (3) (365 iterations) showing plots of the population 1 

to population 4 for grid of 50x50, 60x60, 70x70 and 90x90 indicating that migration 

of  individuals infected with HIV does not depend on the area size of the population.   

The following colours appear as red (HIV), light green (AIDS), orange (re-

infection). 
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Figure 12: A dynamic spread process with migration 

 

It can be seen that the 20 introduced HIV individual populations in each of the four 

populations with migration movement continue to exist as compared to Figure 11 for 

Pop.1. 

 

The model indicates that there is increasing volatility in P4 after 200 days due to 

incoming but no outgoing migrants (Figure 13).  
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Figure 13: Size of the four populations (y-axis) without migration over time (x-axis) 

 

Disease in P2 disappeared at 90 days but reappeared after 320 days due to non-

migration. As seen in Pop.1, all the 20 HIV infected individuals introduced die as 

indicated in the infected state and recovery state respectively. 

 

The model indicates that there is increasing volatility in P4 after 200 days due to 

incoming but no outgoing migrants (Figure 14). 

  
Figure 14: Size of the four populations (y-axis) with migration over time (x-axis) 
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Disease in P1 disappeared at 201 days but reappeared after 250 days due to 

migration. It was noted that, in many cases, disease spread was at the leading edge of 

movements within a population (Figures 11, 12), resulting in the disease moving 

backward and forwards in waves as infection spread within the confines of 

populations and infected migrants entered the population from another population. 

4.4 Summary of Simulations 

These simulations have demonstrated that it is possible to create four distinct 

populations with a predefined migration schema that allows for the modelling of the 

(SIR)
n
 epidemic model. The spread of the disease does not depend on the size of 

population but on the migrant direction of the infected individual in Figure 12. 

Interestingly, the number of infected converged on the 365
th

 iteration for the first 

three populations (Figure10). The design of CA and the model analysed here do not 

incorporate the effect of delay or a latent period, birth and mortality in Figure 9. The 

migration is significant in disease modelling as seen with spread of infected HIV 

individuals persisting in Figure 12 seen in (Deering, Vickerman et al. 2008) as 

compared to Figure 11 (without migration movement). The results obtained will be 

used as a benchmark to compare the impact of introducing exposed and latencies 

parameters in the next chapter.  
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Chapter 5  

Extended SIR Model to SEIR Model 

 

The incubation time for AIDS is anything from a few months to years after the 

patient has been shown to have antibodies to the HIV. We can, for example, 

incorporate this in mathematical model as a delay effect, or by introducing a new 

class, )(tR say (removal stage), in which members of the susceptible population 

remain for a given length of time before moving into the infective class. Such 

models give rise to differential equation formulations and they can exhibit oscillatory 

behaviour as shown in Figure 15, as might be expected from the inclusion of delays. 

 

A delay in many population models considers that the transmission dynamic 

behaviour of the disease at time t can destabilise the equilibrium. There are two types 

of such delay:  a discrete or fixed delay, and a continuous or distributed delay. In 

models with discrete or fixed delay, the dynamic behaviour of the disease depends 

on the state at time t , where  is a fixed constant (Kaddar, Abta et al. 2011). For 

instance, the number of new-born at time  depends on the state of population at 

time , where the period of pregnancy. In the case of continuous or 

distributed delay, the dynamic behaviour of the model at time  depends on the 

states during the entire period prior to time . 

 

 We let individuals  in patch1 j in patch2 at time   be represented by  for the 

number of susceptibles in the population and  for susceptible individuals 

becoming exposed, that is, infected but not yet infective. The individual remains in 

the exposed class  for a certain latent period before becoming infective (  alp and 

t

t 

t

t

i t ijS

ijE
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Dem  rc   2011). Let represent the number infected and   the number recovered.  

 is the effective contact-rate per individual per unit of time, which introduces 

the Law of Mass Action assumption: the rate of ij from susceptible to exposed the 

natural death rate is assumed to be proportional to the population number in each 

state, with the rate constant  . The assumption is that  (delay time in days) is 

constant. By using similar work by Yan and Liu (2005), the probability that an 

individual survives the latent period to infected at [ ] is . Since, the 

number of susceptible individuals that become exposed at time is

, this leads to a deterministic model of






 




e

tN

tItS

ij

ijij

ij
)(

)()(
.  

5.1 Rules for Disease Spread 

The rules described below  determine the state transitions of individual cells in the 

CA for the SEIR model which will incorporate other probabilistic parameters as 

shown in Table 4 (Apenteng, Narayanan et al. 2012).  

 

 A cell changes its state from susceptible to exposed (S → E) when it comes in 

contact with an infected cell in its defined neighbourhood. 

 A cell changes its state from exposed to infected (E → I) after being in the E 

state for a given  which is the transition time. 

 The state of the cell changes from infected to recovery (I → R) after being in 

state I for a given k. In state I, the cells are capable of passing on the infection 

to neighbouring cells. 

 The cell remains in state R.  

ijI ijR

0ij



tt , e

t

)()()(   tNtItS ijijijij


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Let ),( jiC denote the state of each cell. We defined (10) as the probability that an 

infective individual removed. Let rp and dp  be the probability that infected 

individual become removal state and disease-induced mortality cell respectively. If

0)(),( tC ji , then 1)1(),( tC ji with the probability P , i.e. if Prand  , then the 

state of the individual in the ),( jiC change from susceptible to exposed at )1( t time, 

otherwise it remains in the susceptible, .i.e. 0)1(),( tC ji , where rand refers to 

random number between 0 and 1.  

The following outline the detail of the CA model how works including the cell state, 

rules and parameters used in the CA for the exposed, infection and removal 

respectively.  

1. If ItC ji )(),( , then 1)1(),( tC ji (death cell with probability dp ), or 

RtC ji )(),( with probability rp ; 

2. If RtC ji )(),( , then 0)1(),( tC ji with probability (10); 

3. If EtC ji )(),( , then 1)()1( ),(),(  tCtC jiji , and after t  time steps the cell 

becomes infected. 

 Figure 15 shows the summary of the rules for the disease spread. 

 

 

   
                    Figure 15: SEIR Model 
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Based on the aforementioned assumptions the CA rules, the ideas behind the classic 

SEIR models are based on differential equations. The set of ordinary differential 

equations corresponding to the CA model is 
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where   

This models a population of a constant size )()()()()( tAtItEtStN ijijijijij  . 

Table 4: The meaning of the parameters 

  

5.2 Stability Analysis of SEIR Model 

An important equilibrium point for any stochastic or deterministic disease model is 

the disease free equilibrium (DFE). The stability of the DFE is especially important 

since it determines whether or not a virus is capable of attacking a population. The 

 ek
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reproduction number  is a threshold value or number which determines the 

stability of the DFE. The reproduction number is the expected number of secondary 

cases produced by typical infection in completely susceptible populations (van den 

Driessche and Watmough 2005). If , an epidemic occurs and if , an 

epidemic does not occur.  can be calculated as (where F and V  are 

found below). The spectral radius is and is called next generation operator and 

represents the rate at which individuals in compartment j generate new infections in 

compartment .  

 

The  is the number of entries of matrix which represents the number of 

new infections in compartment  due to an infected individual being introduced into 

compartment  (van den Driessche and Watmough 2005; Arino, Jordan et al. 2007).  

 

Let  be the rate (transmitted rate) at which new infected enter compartment . 

Let  denote the transfer of individuals out of ( ) and into ( )  

compartment. Then: 

            For  

Note: 0x  is the disease free equilibrium (DFE). 

The reproduction number R0 is given by dominant eigenvalues (or spectral radius) of

. 

5.3 Experiment and results          

We implemented in MATLAB the cellular automata model based on the rules 

described in Section 5.1. Experiments are performed on populations occupying a 
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(100x100) cell space. Twenty infected individuals were introduced into the four 

different populations. Tables 4 and Figure 12 summarise the parameter values used, 

whereas Table 5 summarises the simulation protocol. Blue, light green, red and light 

blue squares correspond to 0, 0.5, 1 and 0.1 with susceptible individuals, exposed 

individuals, infected individuals and recovery individuals, respectively. 365 

iterations were simulated with one iteration representing a day. 

       Table 5: Simulation Protocol 

 

 

 

 

 

 

 

 

 

 

 

 

Figure16 depicts how the propagation of disease spread clusters in geographical 

distribution with 40 simulations. 

Events Model Prediction CA Model 

Simulator matlab matlab 

Susceptible 80 people 80 people 

Exposed nil From model prediction 

Infected 20 people 20 people 

Removal nil From model prediction 

Natural death 0.0005yr
-1 

0.0005yr
-1

 

Incubation period 7 yr
-1 

7 yr
-1

 

No. Of time step 365 iterations 365 iterations 

Infection rate 0.25 0.25 
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   Figure 16: A dynamic spread process 

 

The colours: dark blue, green, red and light blue represent healthy individuals 

(susceptible), infected individuals (exposed), infectious individuals HIV and AIDS 

patients (recovery replaced by AIDS), respectively. We can see the breakdown of an 

initially homogenous spread-of-disease pattern. As the phase separation takes place, 

a persistent compact spread of disease is formed.  

 

Figure 17 depicts how the propagation of disease spread clusters in geographical 

distribution with 65 simulations. 
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Figure 17: A dynamic spread process      

The colours: dark blue, green, red and light blue represent healthy individuals 

(susceptible), infected individuals (exposed), infectious individuals HIV and AIDS 

patients (recovery replaced by AIDS), respectively. As the phase separation takes 

place, a persistent compact spread of disease is formed (HIV), surrounded by free 

exposed individual populations.  

Figure 18 depicts how the propagation of disease spread clusters in geographical 

distribution with 365 simulations. 
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Figure 18: A dynamic spread process 

The colours: dark blue, red and light blue represent healthy individuals (susceptible), 

infectious individuals (HIV) and AIDS patients (recovery replaced by AIDS), 

respectively.  As the phase separation takes place, a persistent compact spread of 

disease is formed (HIV and AIDS) within the population. 

 

The model indicates that there is increasing volatility in the susceptible population 

after 240 days due to outgoing moves from the susceptible to the exposed (Figure 

19A). 
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Figure 19: Snapshot of Susceptible 

The spread of the disease in discrete transform were at a peak at 230 and 360 days 

(Figure 19B) as indicated by the arrows. There were slower and faster frequency at 

the initial stages as well as the final stages at 10 and 360 days indicated by the 

arrows. The blue regions denote the probability densities. For example, at 330 days 

there was an indication of slower frequency which resulted in faster spread of the 

disease (Figure 19C) due to large coefficients in continuous wavelet transform.  

The model indicates that there is increasing volatility in the exposed after 200 days 

due to outgoing moves from exposed to infectious (Figure 20A).   
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Figure 20: Snapshot of Exposed 

The spread of the disease in discrete transform were at a peak at 70 days due to large 

coefficients (Figure 20B). In the continuous wavelet transform, at 72 days, there 

were no exposed individuals again (Figure 20C). They moved to the infectious stage.  

 

The model indicates that there is increasing volatility in the infectious after 240 days 

due to outgoing moves from infectious to recovery (Figure 21A). 
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Figure 21: Snapshot of Infected 

The spread of the disease in discrete transform were at a peak at 240 days (Figure B), 

and 240 and 280 days due to large coefficients (Figure C). The range of frequencies 

used in averaging is indicated by the arrow at 240 day which the peak of the disease 

spread (Figure 21C).  

 

The model indicates that there is increasing volatility in recovery after 240 days due 

to outgoing moves from recovery to natural death (Figure 22A). 
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Figure 22: Snapshot of Recovery 

 

The model indicates that there is increasing volatility in recovery after 240 days due 

to outgoing moves from recovery to natural death (Figure 22A). The spread of the 

disease in discrete transform were at a peak at 240 days (Figure 22B), and 230, 250 

and 340 days due to large coefficients (Figure 22C).  The range of frequencies used 

in averaging is indicated by the arrow at 250 and 362 days which are the peak of the 

disease spread (Figure 21C).  

 

The model indicates that there is increasing volatility in natural death after 50 days 

due to outgoing moves from infectious and recovery to natural death (Figure 23A). 
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Figure 23: Snapshot of Natural Death 

The spread of the disease in discrete transform were at a peak at 240 day (Figure 

22B). The range of frequencies used in averaging is indicated by the arrow at 362 

days which are the peak of the disease spread (Figure 21C). 

 

As shown in Figure 24, the CWT coefficients are large in scales (which represent the 

absolute coefficients). 
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Figure 24: Sinusoidal of Susceptible 

 The frequencies of the susceptible waves depict the sinusoidal pattern in the 

continuous wavelet transform (CWT) coefficients at these scales. The amplitude is 

the power of the spread of the disease. The sinusoidal wave amplitude is the height 

of the crest and frequency is the number of oscillations per second. Hence, amplitude 

remains same for any change in frequency. The maximum and minimum is 4105.1 

Hz which demonstrates that the spread of the disease in the susceptible was high. 

 

Figure 25 plots the same transform from a different angle for better visualization. 
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Figure 25: Sinusoidal of Susceptible 

Figure 25 is a typical time-space diagram of the CA-model (14-17). The closed-loop 

lattices contain 100x100 cells, with a visible period of 365 time steps. The strong 

interaction between the (x, y) coordinates is 0.026Hz. As seen in Figure 19C, the 

arrow at 330 days indicated slower frequency which resulted in faster spread of the 

disease. 

 

As shown in Figure 26, the continuous wavelet transform (CWT) coefficients are 

large at scales near the frequencies of the exposed waves and clearly depict the 

sinusoidal pattern in the CWT coefficients at these scales for the exposed. 
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 Figure 26: Sinusoidal of Exposed 

The sinusoidal wave amplitude is the height of the crest and frequency is the number 

of oscillations per second. Hence, amplitude remains same for any change in 

frequency. The maximum and minimum is 225 Hz which demonstrates that the 

spread of the disease in the exposed was at the peak state. 

 

Figure 27 plots the same transform from a different angle for better visualization. 
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Figure 27: Sinusoidal of Exposed 

In this plot, the value of each (x, y) coordinate represents the strength of spread of 

the disease between coordinates. The strong interaction between the (x, y) 

coordinates is 0.026Hz. As seen in Figure 20C, the arrow at 70 days indicated faster 

frequency which resulted in slower spread of the disease. 

From Figure 28, the continuous wavelet transform (CWT) coefficients are large at 

scales near the frequencies of the infectious waves and clearly depict the sinusoidal 

pattern in the CWT coefficients at these scales for the infectious. 
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Figure 28: Sinusoidal of Infectious 

The greater the amplitude of a wave, the more energy it carries. The sinusoidal wave 

amplitude is the height of the crest and frequency is the number of oscillations per 

second. Hence, amplitude remains same for any change in frequency. The maximum 

and minimum is 2000Hz which demonstrates that the spread of the disease in the 

infectious was at peak state. 

 

Figure 29 plots the same transform from a different angle for better visualization. 
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Figure 29: Sinusoidal of Infected 

Figure 29 is a typical time-space diagram of the CA-model (14-17). The closed-loop 

lattices contain 100x100 cells, with a visible period of 365 time steps. The strong 

interaction between the (x, y) coordinates is 0.0056Hz. As seen in Figure 21C, the 

arrows at 240 and 320 days indicated slower frequency which resulted in faster 

spread of the disease. 

 

In Figure 30, the CWT coefficient are large at scales near the frequencies of the 

recovery waves and also shows the sinusoidal pattern in the CWT coefficients at 

these scales for recovery. 
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Figure 30: Sinusoidal of Recovery 

The greater the amplitude of a wave, the more energy it carries. The sinusoidal wave 

amplitude is the height of the crest and frequency is the number of oscillations per 

second. Hence, amplitude remains the same for any change in frequency. The 

maximum and minimum is 1750Hz which demonstrates that the spread of the 

disease in recovery was at peak state. 

 

Figure 31 plots the same transform from a different angle for better visualization. 
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Figure 31: Sinusoidal of Recovery 

Figure 31 is a typical time-space diagram of the CA-model (14-17). The closed-loop 

lattices contain 100x100 cells, with a visible period of 365 time steps. The strong 

interaction between the (x, y) coordinates is 0.006Hz. As seen in Figure 22C, the 

arrows at 240, 280 and 320 days indicated slower frequency which resulted in faster 

spread of the disease. 

 

The CWT coefficients are large at scales near the frequencies of the death waves and 

clearly depict the sinusoidal pattern in the CWT coefficients at these scales for death. 
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Figure 32: Sinusoidal of Natural Death 

The sinusoidal wave amplitude is the height of the crest and frequency is the number 

of oscillations per second. Hence, amplitude remains same for any change in 

frequency. The maximum and minimum is 200Hz which demonstrates that the 

spread of the disease in natural death was at peak state. 

 

Figure 33 plots the same transform from a different angle for better visualization. 
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Figure 33: Sinusoidal of Natural death 

Figure 33 is a typical time-space diagram of the CA-model (14-17). The closed-loop 

lattices contain 100x100 cells, with a visible period of 365 time steps. The strong 

interaction between the (x, y) coordinates is 0.0027Hz. As seen in Figure 23C, the 

arrow at 362 days indicated faster frequency which resulted in slower spread of the 

disease. 



77 | P a g e  

 

5.4 Summary of Simulations 

In summary, we extended the SIR model to an SEIR model into four compartments. 

The disease stopped spreading in the exposed state at 72 days but continue to 

spreading in susceptible, infectious and recovery after 240 days. The spread of AIDS 

continue to persist in Figures 19, 21, 22 and 23. This has demonstrated that the 

slower the frequency the higher the spread of the disease in (Figure 25, 29, 31 and 

33), as stated in section 3.3. The model was used to generate artificial data to 

describe the spread of AIDS in terms of different populations over time.   
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Chapter 6  

Discussion 

 

This thesis gave a review of both CA and mathematical models of AIDS. And 

overview of CA and mathematical models, their background and simulation setup 

are given. These techniques are applied to this work to model the spread of AIDS.   

 

During the experiments there was much evidence of different interactions between 

infected individuals and others. The simulations show the competition between the 

three different individual populations which differ in infection period (Figures 11 

and 12). The simulation which shows the competition between the three different 

individual populations which differ in infection period correspond to Figure 16. HIV 

period 1 (red) resulted in higher outbreak frequency compared to a period of 0 (blue) 

for susceptible, 0.5 (green) for exposed and recovery (AIDS) 0.1 (light blue). For 

example, 166 were infected with HIV as compared to 67 exposed, 15 got AIDS in 10 

days. In addition 373 got HIV, 127 were exposed and 210 got AIDS in 20 days. The 

interactions between infectious and susceptibles leads to the exposed stage of the 

disease. As shown in Figure 16, the individuals who were exposed to the disease 

were much more at the beginning of the spread of the disease, which agrees with 

study done by Deering, Vickerman et al. (2008) concerning the impact of out-

migrants and out-migration on the HIV/AIDS epidemic in India. More individuals 

became exposed after 40 days. The simulation which shows the competition between 

the three different individual populations which differ in infection period correspond 

to Figure 17. HIV period 1 (red) resulted in higher outbreak frequency compared to a 

period of 0 (blue) for susceptible, 0.5 (green) for exposed and recovery (AIDS) 0.1 

(light blue). For example, 700 were infected with HIV as compared to 172 exposed 
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and 663 got AIDS in 60 days. In addition 945 got HIV, 274 were exposed and 859 

got AIDS in 83 days. The interactions were between the infected and the susceptible 

which leads to the exposed stage of the disease, for example, see recent work by 

  alp and Dem  rc   (2011). There were 7886 of susceptible individual who became 

exposed to the disease (Figure 17) in 83 days.  The exposed individuals move to 

infectious stage (Figure 21). 

 

The simulation which shows the competition between the four different individuals 

which differ in infection period correspond to Figure 18. HIV period 1 (red) was 

wining against a period of 0 (blue) for susceptible, 0.5 (green) for exposed and 

recovery (AIDS) 0.1 (light blue),  for example 1180 were infected with HIV as 

compared to 701 AIDS in 140 days. The interactions between the infected and the 

susceptible lead to an exposed stage of the disease, which agrees with global 

dynamics behaviours for a new delay SEIR epidemic disease model studied by  

Meng and Chen et al. (2007). As shown in Figure 14, the individuals who were 

infectious to the disease were much more at the beginning of the spread of the 

disease. The simulation which shows the competition between the three different 

individuals which differ in infection period correspond to Figure 17. HIV period 1 

(red) resulted in higher outbreak frequency compared to period of 0 (blue) for 

susceptible, 0.5 (green) for exposed and recovery (AIDS) 0.1 (light blue). For 

example, 1457 were infected with HIV as compared to 911 AIDS in 170 days. Also, 

1850 got HIV and 1098 had AIDS in 202 days. The interactions were between the 

infected and the susceptible which leads to the exposed stage of the disease. There 

were more exposed individuals who became infectious to the disease (Figure 18). 

The exposed individuals move to the infectious stage (Figure 23 and 24) with 365 
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simulations. For example, 1221 were infected with HIV, 848 AIDS and 7459 were 

susceptible. 

 

The (SIR)
n
 model experiment has demonstrated that it is possible to create four 

distinct populations with a predefined migration schema that allows for the 

modelling of the (SIR)
n
 epidemic model. Our simulations show that the spread of the 

disease does not depend on the size of population but on the migrant direction of the 

infected individual. Interestingly, the number of infected converged on the 365
th

 

iteration for the first three populations (Figure 14). It was noted that, in many cases, 

disease spread was at the leading edge of movements within a population (Figures 

13, 14), resulting in the disease moving backward and forwards in waves as infection 

spread within the confines of populations and infected migrants entered the 

population from another population, see, for example recent work by Aagaard-

Hansen and Nombela et al. (2010).  

 

Wavelets are very important for detecting abrupt changes in the distribution of 

disease spread (Bjørnstad 2005). These abrupt changes occur from one compartment 

to another (susceptible, exposed, infectious, and recovery). It produced relatively 

large wavelet coefficients centred around the discontinuity at all scales. The location 

of the discontinuity based on the CWT coefficients is obtained at the smallest scales. 

This selection for shorter infection period was also reported in (Apenteng, 

Narayanan et al. 2012). It should be noted that, due to the stochastic nature of the 

model parameters, the introduction of the dead period is only a transient 

phenomenon. An infection will only cause a new infection if, at the time, the 

individual is still exposed. Alimadad and Dabbaghian et al. (2011) also reported that 
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an individual become exposed to an infection when a randomly chosen neighbour 

individual is susceptible to it.   

 

 The smooth oscillations in Figures 19 to 23 produced relatively large wavelet 

coefficients at scales where the oscillation in the wavelet correlates fit best with the 

SEIR model, where wavelet analysis was taken into account. This is in contrast to  

Meng, Chen et al. (2007) who focused on delay functional and impulsive differential 

equation. The CWT detects both the abrupt transitions and oscillations in the 

susceptible, exposed, infectious and recovery states. The abrupt transitions affect the 

CWT coefficients a t all scales and clearly separate themselves from the smooth in 

the four compartments at small scales.  

 

For example, in Figure 25 the precise location of the high frequency (discontinuity 

part) is explicit in the case of different time intervals; 10 and 365 days corresponding 

to frequencies 0.1Hz and 0.0027Hz respectively. The average of these frequencies is 

0.051Hz. Whereas, in Figure 27, the precise location of the high frequency 

(discontinuity part) is explicit at the time interval of 38 days corresponding to a 

frequency of 0.026Hz, the simulation was stopped in Figure 27 at 72 days, indicating 

that those individuals who had been exposed have moved to the infectious states. In 

Figure 17, at step 65, the individuals who have been exposed were fewer than the 

infectious and recovery because they were all moving to the infectious states. See, 

for example, previous work by Coffee and Lurie et al. (2007).   

 

On the other hand, in Figure 29, the precise location of the high frequency 

(discontinuity part) is explicit in the case of different time intervals 50, 100, 150, 

200, 270, and 320 days corresponding to frequencies 0.020Hz, 0.010Hz, 0.007Hz, 
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0.005Hz, 0.004Hz and 0.003Hz respectively, these frequencies show the spread of 

the disease (Figure 30).  The average of these frequencies is 0.008Hz. Figure 33 has 

the location of high frequency at 360 days which corresponds with 0.0027Hz due to 

the low disease spread (Figure 19). The dominant order of the frequencies shows that 

delay in the transition between exposed to infectious states takes place after the HIV 

and AIDS are at peak points in the different time intervals, for example see studies 

by Huang and Shen et al. (1998). The detection of these discontinuities (delays) was 

associated with the spread of disease and is detectable in the frequency and phase of 

the CWT. The results have also shown how the contact rates dispersed from one 

compartment to other in Figures 23-31, with the sinusoidal representing the delay in 

the exposed state. Figures 17, 19 and 20 show how the sinusoidals are affected by 

the population movement. 
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Chapter 7  

Further Theoretical Work 

 

In this chapter, we explore the implications of extending our model to deal with co-

infection from a theoretical perspective.  

 

It has recently been discovered that HIV patients also commonly acquire HCV 

(Hepatitis C) through shared routes of transmission (Askarieh, Alsiö et al. 2010). 

While it is known that there is a route from HIV to HCV, the rate of infection from 

HCV to HIV is unknown and is the subject of controversy (Falconer, Sandberg et al. 

2009). Also, relationships between HIV and tuberculosis (TB) are also being 

reported (Sharma, Mohan et al. 2005). While co-infection models are relatively well 

known in the influenza literature (Colijn, Cohen et al. 2009) and other commonly co-

occurring diseases (Keeling 1999), there is still uncertainty as to how such co-

infection models can be applied to HIV and related infections. Finally, while there 

has been previous work on the use of probabilistic CA to model co-infection, such 

work does not take into account the population characteristics of the infected 

populations nor their possible migration routes.  The aim of this final piece of 

research will be used to extend our knowledge of how CA  can be used to model co-

infection involving HIV and other associated diseases as well as to identify 

appropriate strategies for constructing CA models that best fit any real world data for 

further research work. These models may then be useful for extracting parameter 

values for exposure, susceptibility and infection that can be used in future 

preventative strategies. 
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As seen earlier, there have been many mathematical models of single infection, such 

as HIV/AIDS infection, based on susceptibility (S), infection (I) and recovery (R). 

However, there has been much less research on co-infection (simultaneous infection 

by two or more pathogens). There are a growing number of articles that demonstrate 

that HIV and Hepatitis C (HCV) share co-infection. It appears that HIV-positive 

patients are commonly co-infected with HCV, probably due to shared routes of 

transmission. Below, we describe the possibility of modelling HIV and HCV co-

infection through our SEIR mathematical model introduced in Chapter 5. For 

example: Colijn and Cohen et al. (2009) demonstrated how SEIR models can be 

used to model latent co-infection of TB with different strains. Roeger and Feng et al. 

(2009) formulated simplified deterministic models of co-infection between TB and 

HIV.  

 

Based on the research problems and issues that are outlined, the following two 

research issues are explored further in this chapter:   

 Neither model above deals with population migration – one of the key factors 

in the spread of HIV and HCV as well as other diseases – although 

individual-to-individual transmission is modelled.  

 There is very little understanding of how HIV and HCV, and other major co-

infection diseases, are related in mathematical terms. 

This research will extend the theoretical framework to allow for interactions in co-

infected diseases. 

7.1 SEIR Model Enhancement of Co-infection 

When a person infected with HIV acquires another major infection like HCV, this is 

called co-infection. HIV and HCV are transmitted by exposure to infected blood. 
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One-quarter of the people infected with HIV also have HCV (Control 2002).  To 

deal with this problem, our SEIR model will be modified in order to make it more 

effective for modelling co-infection. The SEIR model will be converted to an SEIA 

(susceptible-exposed-infectious- AIDS) model by replacing the recovery state to an 

AIDS state. This is because the final state of HIV and co-infection involving HIV 

will be AIDS.    

7.2 The Future Model  

The transmission and evolution of HIV/AIDS and HCV are dynamic processes. The 

model classifies the sexually active population into four states with respect to HIV 

and HCV. These are susceptible, exposed state for HIV, exposed state for HCV, 

infected state for HIV, infected state for HCV and finally AID cases. Population 

numbers in each state are denoted as functions of time by , , , ,  

 and , respectively. Individuals enter the susceptible state at constant rate

. The natural death rate is assumed to be proportional to the population number in 

each state, with constant . There is an AIDS related death constant in the AIDS 

state.  

 

The model assumes that the spread of the disease will be present in future times and 

changes to the trend only come with human actions at given times during the disease. 

These activities might include behaviour change and increasing the number of 

people under HCV. The movement of individuals from one compartment to another 

is as described in Figure 34. 

)(tS )(1 tE )(2 tE )(1 tI

)(2 tI )(tA



 



86 | P a g e  

 

              

                 Figure 34: The proposed model for co-infection of HIV/HCV  

 

The following models will be formulated based on Figure 34.  

1. AISE 11  

2. AIEISE 2211  

3. AISE 22  

4. AIEISE 1122  

 

The equations of the SE1I1A model are thus given by  
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The total states involved in (18-21) are , where 

and  are the rates of transmission from the susceptible state to the exposed state of 

HIV and the exposed state of HCV, respectively. and  represent the two 

exposed rates to the infected state of HIV and the infected state of HCV, 

respectively.  and  represent the two infected rates to the exposed state of HIV 

and the exposed state of HCV, respectively, representing  and (the N means 

Not).Finally,  and represent the two infected rates to the AIDS state. Model 2, 

3 and 4 will be formulated later.  

7.2.1Invariant Region 

To check the changes in the population, the variables and the parameters are 

assumed to be positive for al . The model (18-21) will therefore be analysed in 

a suitable feasible region  of preventive interest. The following Lemma1 on the 

region of the model (4a) is restricted to. 

Lemma1  

The feasible region defined by  

 (22)                                                                  ),,,( 4
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





 
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
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with initial conditions , , , is positively invariant 

and attracting with respect to model (4) for . 
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Proof:  Adding the model (18-21) given by  

                       

(22)                                                                        

N

AN
dt

dN








                            

 

The solution  of the differential equation (22) has the following property 

       (23)                                                              1)0()(0 tt eeNtN 





   

where represents the sum of initial values of the variables. Note that 

as . If , then   is the upper bound of . On the other hand if

, then will decrease to . This means that if , then the 

solutions  approaches it asymptotically. Hence it is positively 

invariant under the flow induced by model (18-21).  

7.2.2 Positivity of solutions 

For model (18-21), it is important to prove that all the state variables remain non-

negative so that the solutions of the system with positive initial conditions will be the 

main positive for all .  This is shown in the following lemma 2.  

Lemma 2  

Given that the initial conditions for model (4) are , ,  and 

,the solutions ,  , , and are non-negative for all . 

Proof: Assume that 

. 

Hence and it follows from the first equation of model (22) that 
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From the second equation of the model (18-21), we have 
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, 

 

Similarly, it can be shown that, and for all and this completes 

this proof.  

 

As shown in (11-13) and (14-17), the model and extended version will allow the 

proposed model to act as death rate parameters for AIDS and there will be additional 

probabilistic parameters to possibly reduce the spread of the co-infection. Intensive 

investigation and analysis of this proposed model will be conducted in order to 

evaluate its accuracy and the capability of the CA model.  

 

It has not been possible in the time available to produce CA simulations of this 

theoretical model. However, there is also the possibility of real-world data from 

Ghana being made available to evaluate both this theoretical model and the 

simulations reported in Chapter 5.  

 

It is natural for any research to have some slight adjustment in the research direction 

based on the new input gained during the period of research work. The co-infection 

will be determined by a deterministic model. 

12211
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Chapter 8  

Conclusion 

  

HIV/AIDS has slow transition stages in terms of population migration, therefore the 

long term effects of HIV/AIDS cannot be observed by investigation of infected 

individuals. Mathematical models and CA of HIV/AIDS help us understand the 

dynamics of HIV transmission at the population level of migration. In this thesis, a 

number of models from the literature are modified to capture different types of 

HIV/AIDS infection, where different treatment strategies and drug resistance could 

be applied to minimise the spread of HIV/AIDS infections in Figure 14. We also 

presented models which focus on how multiple populations can be modelled with 

four different geographically distributed populations showing how the infected 

individuals are dominant at different population-levels in the susceptible-infected-

recovery (SIR)
n
 model experiment.  The spread of the disease does not depend on the 

size of the population but on the migratory direction, as shown in Figure 10. 

Preventative strategies can now be modelled through adjusting the migration schema 

(Figure 9).  

The mathematical disease propagation model of (SIR)
n
 has been successfully 

extended to a four compartmental epidemiological model with SEIA which is the 

spread of infectious disease in a population with delay. The dominant order of the 

frequencies shows that delay in the transition between exposed to infectious states 

takes place after peak points in the different time intervals. The detection of these 

discontinuities (delays) was associated with the speed of spread of disease and is 

detectable in the frequency and phase of the CWT. This implies that: a) the higher 

the frequency, the lower the spread of the disease, and b) the faster the spread of the 
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disease, the slower the frequency. The discrete and continuous transforms 

demonstrate where and how the propagation of disease was dominated in the 

population.  

 

In conclusion, the findings showed that migration could play a significant role in the 

epidemic modelling of HIV. Understanding how the spread of AIDS change in areas 

with migration is crucial for understanding the overall impact of migration, HIV 

prevention design as well as for migration destination (Figure 10).   

  



93 | P a g e  

 

Chapter 9  

Summary 

 

The transmission models for directly transmitted HIV/AIDS have been introduced 

and analysed. The models consist of two different systems of three and four coupled 

non-linear ordinary differential equations which do not possess a formula solution. 

However, simple tools from CA allow extracting a great deal of information about 

the solutions.  

 

The discrete and continuous transform methods were used to evaluate the intensities 

of the frequencies of the population in sinusoidal patterns. The experimental 

simulations of the (SIR)
n
 and SEIR delay model were carried out to assess the 

difference in the infected individual behaviour in each model, see (Kaddar, Abta et 

al. 2011). The results show that changes in delay of days have an effect on the 

distribution of the infected individuals, see, for example (Sen, Agarwal et al. 2010). 

Although some assumptions are made in epidemiological models, mathematical 

models still capture the dynamics of HIV/AIDS to an extent. They anticipate the 

course of an HIV/AIDS epidemic, which is usually longer than the average lifetime 

of an individual. These estimates direct control efforts for HIV/AIDS and improve 

success for eradication of the disease. Models identify certain migrant HIV groups at 

risk at particular time intervals from one population to other in Figure 10. Therefore, 

epidemiological models and mathematical models with the supplement of CA give 

an overall view of HIV/AIDS dynamics and direct efforts for surveillance and 

reduction of AIDS.  

 

Along the way, it was illustrated how the simple (SIR)
n
 model is possible to create 

four distinct populations with a predefined migration schema that allows for the 
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modelled geographical (spatial) distributions of HIV/AIDS by using CA. The spread 

of the disease does not depend on the size of population but on the migrant direction 

of the infected individual. Interestingly, the number of infected converged on the 

365
th

 iteration for the first three populations (Figure10).  

 

The implications of our models have helped to lay a theoretical foundation for future 

co-infection (as described in Chapter 7) for public health interventions and how 

several cornerstones of public health required such a model to illuminate future 

work. 

 

Finally, the proposed model needs to be tested against real world data to test for 

fitness in order to evaluate its accuracy and the capability of the CA model, as stated 

in section 1.3. Also, the proposed model needs to verify the higher the frequency, 

then the slower the spread of disease and vice versa.  
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Appendix A  

 

 

In the SIR model, R can be determined if and only if S  and I are known. By 

dropping R from the (1-3) from the SIR model, we have 

(A2)                                                                                                      )(
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dt

dI

SI
dt

dS
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
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These become very difficult to solve analytically but we can solve these equations 

following this qualitative approach. We can observe that 0
dt

dS
 for all t  and 

0
dt

dI
if and only if S . With this assumptions it is given that (A1) and (A2) 

can be solve analytically as 
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This implies that 
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On the condition that at 0t , 
0II   and 00 INSS  , at 00 R  for all 0t

NIS 0 . We have 
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For maximum, maxI occurs at S where 0
dt

dI
. From (11) with S   
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Hence, I increases as long as S  but since S decreases for all t , I basically 

decreases and approaches zero. If )0(S , I decreases to zero there is no 

epidemic. On other hand, if I increases to maximum when S and then 

decreases to zero, there is an epidemic). The quantity  )0(S is a threshold 

quantity, called the basic reproduction number and is denoted by 0R , which 

demonstrates whether there is an epidemic or not. If 10 R  then infection dies out, 

while if 10 R there is an epidemic. 

Threshold Theorem of Epidemiology 

From the epidemic model we can observe in terms of phase plane that the course of 

the epidemic at t  runs 0t  to   tot . This implies that  

(A11)                                                                                                          0)( t
dt

dS
 

that )(tS is a decreasing function and 

(A12)                                                                                                      lim   St  

The unique root of (1) can obtain 0S  for :t  
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  


S

S
SSI  

S  depicts the number of susceptible who were infected before. From (1-3) the 

number of susceptible can be calculated at any time t  
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This will always show a positive value, thus, there always remains some susceptible 

who have never infected. 

Theorem 1 

Kermack-Mckendrick: A general epidemic evolves according to the differential 

equation (1) from initial values )0,,( 00 IS ; where NIS  00 . 

(i) (Survival and Total Size) When infection ultimately ceases spreading, a 

positive number S  of susceptible remains uninfected, and the total 

number of individuals ultimately infected and removed equals to

 SIS 00 . It is the unique root of the equation 

(A19)                                                 ,000





 

R

eSRISRN  

where 0000 ISRI  ,   being the relative removal rate. 

(ii) (Second Threshold Theorem ) If 0S exceeds  by a small quantity v , and 

if the initial number of infectious 0I is small relative to v , then the final 

number of susceptible left in the population is approximately v , and

vR 2 . In other words, the level of susceptible is reduced to appoint as 

far below the threshold as it originally was above it. 
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Proof: 

(i) From (1-3), we can say that 
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from this we get 
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we can assume that 0R  equals zero. In (A13) and (A18), for 0t as 

already shown, we get 
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(ii) Using the relations between (A1) and (A17) with constraints on the 

population size we obtain 
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The equation is very different to have an explicit solution for R  in terms 

of t. By using the Taylor’s expansion of the exponential term 












 


)(

 i.e.

tR

e

according to the formula )(
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1 32 xQxxe x   and by neglecting 

the last term. We get 
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The expression of the right-hand side is as follows: 
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We get 
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By substituting   
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So we get: 
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From the relation for  in (A29) we also have: 
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Hence, (A29) and (A30) gives: 
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and we can now obtain the solution for )(tR  by solving the differential equation 
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where we use the formula (A36) to get 
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and finally, using (A32) we have: 
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Equations (A45) and (A46) show a symmetric bell shaped curve in Figure 34. It is 

also known as the epidemic curve of the disease. The epidemic curve is widely used 

due to its significant comparison between the results predicted by models with the 

data from public health statistics in various models. 

 
Figure 35: Epidemic curve 

 

From (A46), )(lim tRR t   is given by 
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Taking (A22) into consideration, when )()(2 2
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From (A48) we get 

  2vR  □ 

when taking into consideration that vS  0 for some 0v . 
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Equivalently, vvvS   2 . 
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(B3)                                                                    

                        (B2)                                                                   

(B1)                                                                  

RI
dt

dR

ISI
dt

dI

SIR
dt

dS













 

Theorem 2 

Let the initial data be  , , and 0)()( 0   RR  

for all , with , , and . Then solutions )(tS , 

)(tI  and )(tR of system (3) are positive for all 0t . For the model system (B1-

B3), the region is positively invariant and all solutions starting in 0  or 

approach, enter or stay in . 

Proof: 

To look for steady states we solve the system: 

(B6)                                                                     0

                      (B5)                                                                   0

(B4)                                                                   0

RI

ISI

SIR













 

From (B6) we get (B7)                                                   IR



  

From (B5) we get either 0I  or (B8)                               



S  

If 0I , 0R . Consequently, we get a disease free equilibrium given by 

)0,0,1(0 E  

The basic reproduction number of system (B5) is given by



0R .  

0)()( 0   SS 0)()( 0   II

)0,[   0)0(0 S 0)0(0 I 0)0(0 R
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To find the endemic equilibrium, we substitute  



S  and IR




 in 

 (B9)                                                         1 eee RIS  

Thus, 

(B12)                                                           

(B11)                                                     

(B10)                                                     1
























 



































e

e

ee

I

I

II

 

Therefore      
(B13)                                        





















eR

 

This leads to a unique endemic equilibrium given by



















)(

)(
,

)(

)(
,












eE . 

Theorem 3  

The disease-free equilibrium is locally and globally asymptotically stable if 10 R  

and unstable if 10 R . 

Theorem 4 

The endemic equilibrium is locally asymptotically stable if 10 R and unstable 

otherwise.  
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                                                                   Appendix C 

  

Let the initial data be , , , and

0)()( 0   RR  for all , with , , , and 

. Then solutions , , , and  of the SEIR model are 

positive for . 

Proof: 

We use matrix F to represent the rate of new infections in different compartments, 

differentiated with respect to E and I and then evaluated at the disease-free 

equilibrium. 

  (C1)                                                        
00

0

00







 

























k

I

F

E

F

F
ijij 

 

 We use V to represent the rate of transfer of infected from one compartment to 

another )(   iii VVV : 

  (C2)                                                      
00
















































I

V
E

V

V                

(C3)                                                      
0

))((

1





















V         

(C5)                                          0

-0

)

))((

)(

         

(C4)                            
1))((

01

00

0
1































 
















kk

k
FV

ijijijij

ijij

 

Thus, 

0)()( 0   SS 0)()( 0   EE 0)()( 0   II

)0,[   0)0(0 S 0)0(0 E 0)0(0 I

0)0(0 R )(tS )(tE )(tI )(tR

0t
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      = 
  □ 

     
 

where denotes the spectral radius. If  then the DFE is globally 

asymptotically stable, and  if 
 
then the DFE is unstable (Shuai and Driessche 

2011).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

))((

)(
0










k
R

ijij

))((

)1(



 



 eij

)( 1

0

 FVR 

 10 R

10 R
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                                                                  Appendix D 

  

Algorithm for Wavelet  

For simplicity, we let )(ks represent susceptible )(kS , exposed )(kE , infected )(kR , 

and recovery )(kR  in each cases respectively.   

(D1)                                                                
1

)(, dt
a

bt

a
tsC

R

ba 






 
    

(D2)                                                        
1

)(
1

, dt
a

bt

a
tsC

k

k

k
bc 







 




  

since )()( ksts  , if ]1,[  kkt  

then 

(D3)                                                        )(
1 1

,  









 


k

k

k
ba dt

a

bt
ks

a
C   

(D4)                           )(
1 1

,    














 








 




 
k

k k

ba dt
a

bt
dt

a

bt
ks

a
C   

so at any scale a, the wavelet coefficients baC ,  for 1b  to length (s) can be obtained 

by convolving the signal s and  a dilated and translated version of the integrals of the 

form 

 

k

dtt)( . 

 

 


