
i 

Agility framework for software development: 

an investigation into agility concepts in the 

software development industry 

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF 

TECHNOLOGY IN PARTIAL FULFILMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF MASTER OF 

COMPUTER AND INFORMATION SCIENCES 

Supervisor: 

Dr Ramesh Lal 

2018

Kevin Kusuma 

Auckland University of Technology 

School of Engineering, Computer and Mathematical Sciences 



ii 
 

Abstract 

 

Context: With agile software development, agile values and principles (stated in the agile 

manifesto) may lead to agility with software development. In this study, agile 

organization concepts are investigated through the survey method with agile software 

development to identify agile practices that will support agile values and principles to 

guide adoption and adaptation of agile processes and method practices for achieving 

agility.  

Objective: This thesis shows agile organization concepts are influencing agile software 

development through practices to support agile values and principles to help shape the 

agile development environment for teams to achieve software development agility. 

Through this study, eight agile organization concepts (knowledge management, 

organizational culture, organizational learning, competencies, responsiveness, speed, 

team effort and workforce agility) and their relating agile practices are identified for 

driving the agile software development environment for agility.  

Method: A quantitative approach involving the survey method was used for this 

investigation. The survey questions were developed and tested based on the literature 

review on agile organizations and agile software development. A list of possible 

participants, consisting of agile software development practitioners (software vendors, 

in-house software development teams of business organizations or institutions and 

software development contracting companies) was compiled, and they were invited to 

take part in this investigation. The statistical analysis tool, SmartPLS was used to conduct 

the analysis of the data collected.  

Results: The research reveals eight (8) agile organization concepts that are critical factors 

driving agile software development for achieving agility. The results of the survey 

identify organizational learning as the most critical agile organization concept for agility. 

Hence, learning relating to product development and management in a software 

development environment is as critical as producing the actual software. Through the 

survey results, based on the eight agile organization concepts, a number of agile software 

development practices have been identified which can guide adoption and adaptation of 

agile method practices for gaining agility with software development.  



iii 
 

Conclusion: This study investigated the agile organization concepts that influence agility 

capability in the software development environment. From this investigation, it can be 

concluded that agile organization concepts must be recognized as critical for shaping agile 

values and principles, so that achieving agility with software development is reinforced 

as the mind-set for agile method practitioners.  

  



iv 
 

Acknowledgments 

 

First, I would like to express my deepest appreciation to my supervisor, Dr 

Ramesh Lal for the continuous support for me during the completion of this thesis; 

especially for his patience, enthusiasm, motivation and immense knowledge. During the 

hard times, he steered me in the right direction and always provided guidance whenever 

I needed it. I could not have imagined having a better advisor and mentor for my thesis.  

 I would also like to thank the participants who have willingly shared their precious 

time in the validation survey. The validation survey could not have been successfully 

conducted without their passionate participation and input. Individual and company 

details cannot be revealed to protect their anonymity. 

 A sincere thank you for Gary Ferguson for proofreading this thesis. He helped me 

to proofread this thesis in two weeks and he was professional, extremely organized and 

reliable. I would recommend Gary to anybody seeking proofreading service in the future. 

 Finally, I must express my very profound gratitude to my parents, sisters and 

friends for providing me with unfailing support and continuous encouragement through 

the process of researching and writing this thesis. This accomplishment would not have 

been possible without them.   



v 
 

Table of Contents 

 

Abstract ..................................................................................................................................... ii 

Acknowledgments ................................................................................................................... iv 

Table of Contents ...................................................................................................................... v 

List of Tables .......................................................................................................................... vii 

List of Figures ........................................................................................................................ viii 

Chapter One ................................................................................................................................ 1 

 Introduction ................................................................................................................... 1 

 Agility ........................................................................................................................... 1 

 Agility Benefits ............................................................................................................. 1 

 Structured and Agile Organizations .............................................................................. 2 

 Agile Organization Concepts ........................................................................................ 3 

 The Importance of Agility in Software Development .................................................. 4 

 Background ................................................................................................................... 5 

 Research Objectives .................................................................................................... 11 

 Research Method ........................................................................................................ 11 

 Outline of the Thesis ................................................................................................... 12 

 Study Roadmap ........................................................................................................... 13 

Chapter Two: Literature Review ............................................................................................ 15 

 The Structures of an Agile Organization .................................................................... 15 

 Workforce Agility ....................................................................................................... 16 

 Competencies .............................................................................................................. 19 

 Speed ........................................................................................................................... 21 

 Responsiveness ........................................................................................................... 23 

 Knowledge Management ............................................................................................ 24 

 Organizational Learning ............................................................................................. 27 

 Organizational Culture ................................................................................................ 29 

 Cooperative Teams (Team Effort) .............................................................................. 31 

 The Key Practices in Agile Software Development ................................................... 34 

Chapter Three: Hypothesis ...................................................................................................... 43 

 Knowledge Management and Organizational Learning ............................................. 43 

 Organizational Culture and Organizational Learning ................................................. 45 

 Organizational Learning and Competencies ............................................................... 47 

 Organizational Learning and Responsiveness ............................................................ 48 

 Organizational Learning and Speed ............................................................................ 49 

 Organizational Learning and Cooperative Teams (Team Effort) ............................... 51 

 Organizational Learning and Workforce Agility ........................................................ 54 



vi 
 

Chapter Four: Research Methodology ................................................................................... 57 

 Chapter Overview ....................................................................................................... 57 

 Research Paradigm ..................................................................................................... 57 

 Research Method ........................................................................................................ 58 

 Data Collection Methods ............................................................................................ 59 

 Ethical Considerations ................................................................................................ 62 

 Development of the Survey ........................................................................................ 62 

 Survey Administration ................................................................................................ 64 

 Data Analysis Techniques........................................................................................... 64 

4.7.1 Structural Equation Modelling ................................................................................ 65 

4.7.2 Specification of Measurement Model in SEM ........................................................ 68 

4.7.3 The Main Processes of PLS .................................................................................... 69 

Chapter Five: Data Analysis and Findings ............................................................................. 73 

 Survey Results ............................................................................................................ 73 

 Targeted Participants .................................................................................................. 73 

 Team Size ................................................................................................................... 74 

 Experience in Agile Environment ............................................................................... 75 

 Projects Undertaken in a Year .................................................................................... 77 

 Success Rate of the Projects ....................................................................................... 78 

 Agile Practice Used .................................................................................................... 79 

 Single Agile Method ................................................................................................... 81 

 Hybrid Agile Methods ................................................................................................ 82 

 Role to Compile Vision or Roadmap Plans ................................................................ 84 

 Measurement Model Validation ................................................................................. 85 

 Structural Model Validation ....................................................................................... 87 

 Coefficient of Determination ...................................................................................... 88 

Chapter Six: Discussion ............................................................................................................ 95 

 Chapter Overview ....................................................................................................... 95 

 Discussion ................................................................................................................... 97 

Chapter Seven: Conclusion .................................................................................................... 105 

 Theoretical Contributions ......................................................................................... 109 

 Practical Contributions ............................................................................................. 109 

 Limitations ................................................................................................................ 110 

 Future Research ........................................................................................................ 111 

References ................................................................................................................................ 113 

Appendix A. Participant Information Sheet ........................................................................ 131 

Appendix B. Questionnaire .................................................................................................... 133 

 

 



vii 
 

List of Tables 

Table 1. Agile Organization Concepts and Their Definitions ...................................................... 3 

Table 2. 4 Agile Values and 12 Principles .................................................................................... 6 

Table 3. List of Single Agile Methods .......................................................................................... 7 

Table 4. Example of Hybrid Method and The Agile Practices ..................................................... 8 

Table 5. Scaled Agile Methods (Alqudah & Razali, 2016) ........................................................ 10 

Table 6. Agile Organization Concepts Identified for This Study and Their Definition ............. 33 

Table 7. Agile Organization Concepts Related to Agile Software Development Practices ....... 41 

Table 8. Agile Software Development Practices with Reflected Questions ............................... 63 

Table 9. Comparison Between the Approaches of PLS-SEM and CB-SEM .............................. 66 

Table 10. Survey Information ..................................................................................................... 73 

Table 11. Organization Category ................................................................................................ 74 

Table 12. Team Size ................................................................................................................... 74 

Table 13. Team Size Break-down ............................................................................................... 75 

Table 14. Experience in Agile Environment ............................................................................... 75 

Table 15. Experience in Agile Environment Break-down .......................................................... 76 

Table 16. Projects Undertaken in a Year .................................................................................... 77 

Table 17. Projects Undertaken in a Year Break-down................................................................ 77 

Table 18. Success Rate of the Projects ....................................................................................... 78 

Table 19. Success Rate of the Projects Break-down ................................................................... 78 

Table 20. Agile Method Practices ............................................................................................... 80 

Table 21. Single Agile Method ................................................................................................... 81 

Table 22. Single Agile Method Break-down .............................................................................. 82 

Table 23. Hybrid Agile Methods ................................................................................................ 82 

Table 24. Hybrid Agile Methods Break-down ........................................................................... 83 

Table 25. Role to Compile Vision or Roadmap Plans ................................................................ 84 

Table 26. Composite Reliability Results .................................................................................... 85 

Table 27. Convergent Reliability Results ................................................................................... 86 

Table 28. Discriminant Validity Results ..................................................................................... 86 

Table 29. Coefficient of Determination (R2 Values) Results ...................................................... 88 

Table 30. Bootstrap Path Coefficient and T-Values in the Structural Model ............................. 88 

Table 31. Key Agile Software Development Practices for Knowledge Management ................ 89 

Table 32. Key Agile Software Development Practices for Organizational Learning ................. 89 

Table 33. Key Agile Software Development Practices for Organizational Culture ................... 90 

Table 34. Key Agile Software Development Practices for Competencies ................................. 90 

Table 35. Key Agile Software Development Practices for Responsiveness ............................... 91 

Table 36. Key Agile Software Development Practices for Speed .............................................. 92 

Table 37. Key Agile Software Development Practices for Team Effort .................................... 92 

Table 38. Key Agile Software Development Practices for Workforce Agility .......................... 93 

Table 39. Results of Hypothesis Tests ........................................................................................ 95 

Table 40. Identified Agile Practices Based on Agile Organization Concepts ............................ 95 

Table 41. Hypothesis Results .................................................................................................... 108 

 
 

 

 



viii 
 

List of Figures 

Figure 1. The research model and relationship of hypotheses .................................................... 56 

Figure 2. PLS-SEM proposed model results ............................................................................... 87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



ix 
 

Attestation of Authorship 

 

I hereby declare that this submission is my own work and that, to the best of my 

knowledge and belief, it contains no material previously published or written by another 

person (except where explicitly defined in the acknowledgements), nor material which to 

a substantial extent has been submitted for the award of any other degree or diploma of a 

university or other institution of higher learning. 

 

 

 

 

 

 

 

 

 

 

Signed:    Date: 8 December 2017  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 



1 
 

Chapter One 

 Introduction 

Agile approaches have become the mainstream software development method (West & 

Grant, 2010); hence, adopting it ought to result in software development agility (Danesh, 

2011). Agility capability enables software development organizations and development 

teams to have the ability to deal with unpredictable situations and rapid changes in their 

business environment faster than their competitors (Highsmith, 2002).  

Most of the studies undertaken to investigate an agile approach for software 

development focus on method adoption. To the best of knowledge, there are just two that 

investigate agility. Lee and Xia (2010) investigated agility concepts, but their study was 

limited to team autonomy, team diversity and responsiveness ability. However, there are 

several other agility concepts which are important characteristics of agile organizations 

(Lee & Xia, 2010; Sherehiy, Karwowski, & Layer, 2007). Hence, this study investigates 

a range of agility concepts based on agile organization characteristics to identify and 

provide understanding of agile software development practices that enable agility. 

Knowing and understanding these agility concepts together with agile values and 

principles are critical (Highsmith, 2002), as they provide development practices enabling 

software development organizations and development teams to have a strategic software 

development process in a market-driven environment. 

 Agility 

The concept of agility comes from the organizational psychology discipline (Goldman & 

Nagel, 1993). Agility is defined as the ability of organizations to respond to business 

challenges and to deal with rapidly changing global markets to provide high-quality and 

high-performing products or services, including proving customer-configured products 

and services (Bernardes & Hanna, 2009).  

 Agility Benefits 

Organizational agility offers several benefits. Agility capability enables identification and 

securing of market opportunities with speed and competitive action (Sambamurthy, 

Bharadwaj, & Grover, 2003). In addition, agility provides the capability for organizations 

to use market knowledge and create virtual corporations to enhance opportunities in a 

volatile market place (Mason-Jones, Naylor, & Towill, 2000). Furthermore, agility acts 



2 
 

as an overall strategy for organizations to respond efficiently in uncertain environments 

(Sanchez & Nagi, 2001). 

Moreover, agile organizations adapt to meet customer demand and rapidly 

respond to changes in an unpredictable market (Christopher, 2000). Agility capability not 

only enables taking advantage of changes, but also responding to change in a competitive 

way to deal with uncertainty (Sharifi & Zhang, 1999; Sherehiy et al., 2007). Importantly, 

agility enables more innovative responses to unpredictable changes (Wadhwa & Rao, 

2003).  

Finally, agile organizations have the ability to become competitive by enriching 

their customers, through cooperation, mastering changes and leveraging the impact of 

people and information (Goldman, Nagel, & Preiss, 1995).  

Thus, agility is critical for software development organizations and teams to have 

an on-going capability to learn and adapt their processes, practices, roles and skills in 

their software development environment.  

 Structured and Agile Organizations 

Mechanistic or structured organizations develop standardized products, emphasize 

development efficiency and compete based on product cost, quality and delivery (House, 

1991). These organizations are hierarchical, structured and procedural while being driven 

by order and control (Wallach, 1983). Due to their development efficiency, these 

organizations are regarded as machine-like organizations and individual behaviour is 

predetermined (Burns & Stalker, 1994). However, such organizational behaviour is 

counter-productive in a market-driven environment.  

In contrast, organic (agile) organizations operate in an unpredictable and changing 

environment, adapt to the environmental demands and are innovative and flexible (House, 

1991). According to House (1991), they compete based on new features and products, 

product customization and process and technology innovations. These are constantly 

changing and adapting organizations (Burns & Stalker, 1994). Such organizational 

behaviour is required to be able to deliver innovative products. The organizational culture 

is an outcome of its mechanistic or organic (agile) structure (Burns & Stalker, 1994). 

Therefore, there are certain agile concepts that ought to be adopted that lead to an agile 

culture and eventually, to agility. 



3 
 

 Agile Organization Concepts 

Table 1 provides a list of agility concepts that define agile organizations. These concepts 

have been compiled from agile organization literature. These agile organization concepts 

enable flexibility and continuous learning to have the ability to react to changes and meet 

the market requirements  

Table 1. Agile Organization Concepts and Their Definitions 

Agile organization concepts Definition 

1. Workforce agility Learning and self-development, problem-solving ability and ability 

to generate innovative ideas (Plonka, 1997). 

2. Teamwork skilled 

workforce 

Knowledge in teamwork and work in multi-functional workforce 

(Gunasekaran, 1999). 

3. Responsiveness attributes  Flexibility to respond to changes, quick to adapt if change happens 

and swiftly upskill (Breu, Hemingway, Strathern, & Bridger, 

2002). 

 The ability to identify changes and respond quickly (Sharifi & 

Zhang, 1999). 

4. Interactive and 

communication skills 

Ability for spontaneous collaboration and work in multiple roles 

(Dyer & Shafer, 2003). 

5. Information management 

ability with inter-

organization cooperation 

Utilize the network connection and have strategic partnership to 

create high quality information (Lin, Chiu, & Chu, 2006).  

6. Competency Wider abilities to improve productivity (efficiency and effectiveness) 

(Sharifi & Zhang, 1999) 

7. Flexibility The ability to change direction and achieve different objectives 

(Sharifi & Zhang, 1999) 

8. Speed The ability to perform tasks in shortest possible time (Sharifi & 

Zhang, 1999). 

9. Team building Empowered individuals that can work in cross-functional teams and 

are able to make effective decisions (Yusuf, Sarhadi, & Gunasekaran, 

1999). 

10. Organizational culture Supportive environment that enables employees to perform 

continuous improvement and innovation and have the ability to re-

configure (Sherehiy et al., 2007).  

 

For this study, the agility concepts investigated include: (1) Knowledge Management; (2) 

Organizational Culture; (3) Organizational Learning; (4) Competencies; (5) 

Responsiveness; (6) Speed; (7) Team Effort (Teamwork skilled workforce and Team 

building); (8) Workforce Agility. 

 



4 
 

 The Importance of Agility in Software Development  

One critical reason for software development agility is the challenge now to swiftly learn 

and capture the specific requirements to be implemented. This is due to the nature of the 

requirements, impacted by the current business environment and emerging technologies 

(Schmidt, Lyytinen, & Mark Keil, 2001). Hence, software development teams must have 

the ability to identify, learn, improve and use different tools, techniques and processes on 

the fly to able to identify, verify and validate business value requirements. According to 

Clancy (2014), incomplete requirements and lack of user involvement and resources are 

the main reasons why most projects are cancelled.  

In a survey report conducted in 2009 by the Economist Intelligence Unit shows 

that 40% of respondents considered agility as an “extremely important” factor 

contributing to the overall success of an organization. This shows that there is a growing 

awareness amongst businesses of agility capability in driving business success. 

Therefore, the key lies in the ability of software development teams to anticipate and 

adapt to change to enable their business organization to excel in a volatile environment 

through IT and software products.  

A report produced in 2012 by the Project Management Institute  shows that 75% 

of participants described “the ability to rapidly respond to strategic opportunities” as the 

main organizational agility characteristic, while 64% of respondents stated the ability to 

have shorter production, reviews or decision life cycles as the main characteristic of 

organizational agility. These capabilities are only possible through having agility in 

software development.  

As a result, organizations have to understand and manage an emerging concept 

like agility that could bring benefits for their business such as implementing best practices 

in terms of change and risk management and also to make change standard for business 

programmes, portfolios and project management practices (Project Management 

Institute, 2012).  

Researchers have investigated identifying agility characteristics of organizations 

(Christopher, 2000; Gunasekaran, 1998; Sherehiy et al., 2007; Yusuf et al., 1999). 

However, there is still little information and understanding on whether adoption of the 

agile software development approach has led to agility within the adopters in their 

software development environment, including whether they have realised the perceived 

agile benefits.  



5 
 

 Background  

Agile Approach for Software Development  

The agile approach for software development enables development teams to effectively 

deliver projects through short development cycles allowing planning and development 

through prioritization (Lin, Chiu, & Tseng, 2006). In addition, this approach allows 

learning and dealing with risks continuously throughout the project with an iterative 

approach rather than changing the model all at once and enabling the development team 

to build the product from the most important requirements (Sedehi & Martano, 2012).  

The agile approach for software development incorporates both managerial and 

technical practices with the emphasis on dealing with changes and risks throughout a 

project’s timeline.(Turk, France, & Rumpe, 2014). The agile philosophy of short 

development cycles allows development teams to deliver value for the customer through 

frequent and regular delivery throughout the project (Mohammadi, Nikkhahan, & 

Sohrabi, 2008). In addition, short development cycles provide the opportunity for 

reviews, including providing the ability to make changes to the implementation decisions, 

ensuring stakeholder satisfaction (Cockburn & Highsmith, 2001). The agile idea for a 

business role (implemented through an on-site customer role) and development team to 

work closely on a daily basis provides development capability to deliver features 

according to the exact needs of the business (Koskela & Abrahamsson, 2004).  

Agility in Software Development 

According to Henderson-Seller & Serour (2005), agility with software development 

means having the capability to respond to and deal with changes in the product 

development environment, which includes having the ability to adapt processes, practices 

and roles when changes happen during the project timeline. In addition, software 

development agility enables the ability to swiftly learn from the change and improve 

value for customers through simplicity and quality (Drury, Conboy, & Power, 2012). 

The motivation for agility in software development is same as the motivation for 

organizations to be agile organizations. Software development needs to adopt the agility 

philosophy in order to survive in the current market-driven environment characterised by 

emerging technologies and change in client/end-user behaviour. 

 

 



6 
 

Four Agile Values and Twelve Agile Principles 

The agile approach for software development has the Agile Manifesto (2001) that 

identifies the four values and twelve principles for agile software development (Schmidt, 

2015). According to Lal (2011), the agile values symbolise its fundamental viewpoints 

for successful software development. These teams ought to have continuous interaction 

amongst key individuals when designing and developing software, including having an 

on-going collaboration with the stakeholder (client) for feedback (Selleri Silva et al., 

2015). In addition, development teams must deliver client value through providing a 

working code on a continuous basis and respond to their requests for change throughout 

the project. The twelve principles provide strategies to achieve the agile values to ensure 

the successful development (Lal, 2011). These agile principles ought to guide small or 

large-scale software developments (Antanovich, Sheyko, & Katumba, 2010; Eklund & 

Bosch, 2012; Katumba & Knauss, 2014). 

Table 2. 4 Agile Values and 12 Principles 

 (Adopted from https://www.agilealliance.org/agile101/the-agile-manifesto/) 

Agile Values: 

1. Individuals and Interactions over Processes and Tools 

2. Working Software over Comprehensive Documentation 

3. Customer Collaboration over Contract Negotiation 

4. Responding to Change over Following a Plan 

Agile Principles: 

1. Customer satisfaction through early and continuous software delivery 

2. Accommodate changing requirements throughout the development process 

3. Frequent delivery of working software 

4. Collaboration between the business stakeholders and developers throughout the project 

5. Support, trust, and motivate the people involved 

6. Enable face-to-face interactions 

7. Working software is the primary measure of progress 

8. Agile processes to support a consistent development pace 

9. Attention to technical detail and design enhances agility 

10. Simplicity 

11. Self-organizing teams encourage great architectures, requirements, and designs 

12. Regular reflections on how to become more effective 

 

Agile Methods 

Several software development methods come under the agile banner. These methods are 

driven by four values and twelve principles. However, these methods also have their own 

phases and practices. Table 3 identifies most of widely used agile methods. 

 



7 
 

Table 3. List of Single Agile Methods 

Single Agile Method Creator/Author Lifecycle/Phases 

1. Extreme Programming 

(XP) 

Kent Beck  Planning 

 Design 

 Coding 

 Testing 

2. Scrum Ken Schwaber 

Jeff Sutherland 

 Pre-game (Planning) 

 Development (Sprint cycles) 

 Post-game (Release) 

3. Adaptive Software 

Development (ASD) 

Jim Highsmith 

Sam Bayer 

 Speculate (Initiation and Planning) 

 Collaborate (Concurrent feature 

development) 

 Learn (Quality review) 

4. Rapid Application 

Development (RAD) 

James Martin  Requirements planning phase 

 User design phase 

 Construction phase 

 Cutover phase  

5. Feature Driven 

Development (FDD) 

Jeff Luca  Develop an Overall Model 

 Build a Features List 

 Plan by Feature 

 Design by Feature 

 Build by Feature 

6. Crystal Methods Alistair Cockburn No clear processes defined, however the 

methodology can be divided into five 

different methods to develop a strategy 

with different team sizes, system 

criticalities, and project priorities. 

7. Dynamic Systems 

Development Method 

(DSDM) 

Association of 

vendors and experts in 

software engineering 

from British Airways, 

American Express, 

Oracle, and Logica 

 Pre-project 

 Feasibility 

 Foundations 

 Evolutionary development 

 Deployment 

 Post-project 

8. Kanban 

 

Inspired by Toyota 

Production System 
 Backlog 

 Requirements 

 Design 

 Testing 

 Development 

 Deployment 

 User Acceptance Testing 

 Done 

The Extreme Programming (XP) and Scrum methods appear to be the two most 

adopted agile methods (VersionOne, 2016).  

The reasons why the Scrum method is popular are as follows: 

1. Because of its simplicity, the Scrum method enables the development teams 

to gain direction through implementation and allows them to improve the 

response to changes (Maximini, 2015).  



8 
 

2. The Scrum method provides effective and efficient planning practices to plan 

and manage projects including the ability to deal with emerging risks and 

issues, and change during the project to deliver the project successfully 

(Guang-yong, 2011). 

3. Development teams learn continuously from the previous sprints through 

retrospective meetings and team members are encouraged to actively 

participate in the meetings and tasks so that the project can be delivered 

successfully (Sandberg & Crnkovic, 2017).  

 The XP method is another most adopted agile method due to the following reasons:  

1. XP has useful agile practices such as iterative development, velocity tracking 

and user stories, which create visibility and easily monitor progress on a daily 

basis (Srinivasan & Lundqvist, 2009).  

2. XP employs an on-site customer role that encourages developers to work 

closely and have effective collaboration on the critical tasks in projects with 

them so that right decisions can quickly be made (Zhou, 2009).  

3. With the XP method, a project can be divided and undertaken by sub-teams 

enabling development in parallel. (Zeng, Wang, & Long, 2009).  

Hybrid Agile Method 

Instead of adopting the entire agile method, development teams can also create a hybrid 

agile method based on selecting relevant practices from different agile methods, including 

prices from a structured method. However, the adoption of selected practices must be 

driven by the agile manifesto. Hence, a hybrid agile method is made of practices selected 

from at least one agile method together with practices from other agile or structured 

methods.  

Table 4 below lists some of the hybrid agile methods based on investigations done 

by different researchers on agile software development. It appears that the XP and Scrum 

methods practices are common to create a hybrid agile method.  

Table 4. Example of Hybrid Method and The Agile Practices 

Hybrid Agile Methods Author Agile Practices 

1. XP 

Scrum 

DSDM 

(Sultana, Motla, 

Asghar, Jamal, & 

Azad, 2014) 

 Coding Standard 

 Test Driven Development 

 Pair Programming 

 Continuous Integration 

 Product Backlog 

 Retrospectives 

 Acceptance Testing 



9 
 

 Unit Testing 

 Code Refactoring 

 Sprint Planning 

2. XP 

FDD 

(Doshi & Patil, 2016)  Pair Programming 

 Test Driven Development 

 Continuous Integration  

 Coding Standard 

 Release Planning 

 Iteration Planning (Sprint Planning) 

 Collective Code Ownership 

3. Scrum 

UCD 

(Anwar et al., 2014)  Retrospective 

 Release Planning 

 Sprint Planning 

 Product Backlog 

 Daily Stand-up Meeting 

 Coding Standard  

 Unit Testing 

 Continuous Integration 

4. Scrum 

XP 

Kanban 

(Bougroun, 

Zeaaraoui, & 

Bouchentouf, 2014) 

 Product Backlog 

 Pair Programming 

 Sprint Planning 

 Continuous Integration 

 Retrospective 

 Collective Code Ownership 

 Open Workspace 

5. Scrum 

XP 

(Braz, Rubira, & 

Vieira, 2015) 
 Release Planning 

 Sprint Planning 

 Product Backlog 

 Retrospective 

 Continuous Integration 

 Acceptance Testing 

 Daily Stand-up Meeting 

 Pair Programming 

 User Story 

6. XP 

Scrum 

Crystal 

(Shi, Chen, & Chen, 

2011) 
 Pair Programming 

 Test Driven Development 

 Retrospective 

 Continuous Integration 

 Release Planning 

 Sprint Planning 

 Product Backlog 

 Daily Stand-up Meeting 

 

Scaled Agile Method 

Agile methods were originally considered as the best suited for small software 

development projects with co-located teams (Abrahamsson, Conboy, & Wang, 2009; 

Williams & Cockburn, 2003). However, there is a dilemma in terms of scaling these 

methods to be used in large projects where multiple development teams work together.  



10 
 

Large development teams use the scaled agile method to build software 

functionalities quickly without sacrificing the underlying values and principles stated in 

the Agile Manifesto (Reifer, Maurer, & Erdogmus, 2003). The main challenge of 

deploying the scaled agile method in organizations is that the agile method must be 

applied where both traditional and agile methods can be used together (Reifer et al., 

2003).  

Table 5. Scaled Agile Methods (Alqudah & Razali, 2016) 

Scaled Agile Methods Creator/Author Lifecycle/Phases 

1. Disciplined Agile Delivery 

(DAD) 

Scott Ambler 

Mark Lines 

 Roadmap 

 Scope 

 Design 

 Implement 

 Integrate 

 Release 

 Support 

2. Scaled Agile Framework 

(SAFe) 

Dean Leffingwell  Take an economic view 

 Actively manage queues 

 Understand and exploit variability  

 Reduce batch sizes 

 Apply work in process (WIP) 

constraints 

 Control flow under uncertainty 

through cadence and synchronization 

 Get feedback as fast as possible 

 Decentralize control 

3. Large Scale Scrum (LeSS) Bas Vodde 

Craig Larman 

 Sprint Planning Part 1 

 Sprint Planning Part 2 

 Daily Scrum 

 Coordination 

 Overall PBR 

 Product Backlog Refinement 

 Sprint Review 

 Overall Retrospective 

4. Nexus Ken Schwaber  Refine the Product Backlog 

 Nexus Sprint Planning 

 Development Work 

 Nexus Daily Scrum 

 Nexus Sprint Review 

 Nexus Sprint Retrospective 

5. Recipe for Agile 

Governance (RAGE) 

Kevin Thompson  Business 

 Governance 

 Portfolio 

 Program 

 Project 

 Delivery 

Discipline Agile Delivery (DAD) and Scaled Agile Framework (SAFe) are the 

two most popular scaled agile methods (Laanti, 2014). DAD is a process decision 

framework that is goal-driven for phase and also uses the hybrid agile method where 



11 
 

practices are adopted from existing agile method such as Kanban, Extreme Programming, 

Scrum, and agile modelling etc. (Brown, Ambler, & Royce, 2013). The DAD framework 

provides guidance for the development team to develop a strategy that reflects the current 

situation and chooses the best approach to successfully apply agile in practice (Ambler & 

Lines, 2012); while SAFe aims to provide a continuous flow of value to the customer, 

end-user or business based on the development and deployment process to create a long-

lived system (Vaidya, 2014). In addition, SAFe presents guidelines on how to plan the 

releases, while the individual teams work and deliver iterations (Eklund, Olsson, & 

Strøm, 2014).  

 Research Objectives  

The main objectives of this research study were to learn agility practices directly from 

the agile software development teams and organizations to provide a list of agile method 

practices that lead to agility and to provide an understanding of agility elements in 

software development. 

The research question for this study is as follows: 

“What are the software development agility practices based on agile organization 

concepts?”  

In order to ensure that this research question is relevant and valid, leading to a desired 

outcome the following steps were undertaken: 

1. Key constructs (agility practices) for the study were identified through 

investigation of the literature in regard to agile organizations and agile software 

development method practices.  

2. Identify seven hypotheses based on the agile software development practices 

which ought to lead to organizational agility (agile organization concepts).  

3. Construct and improve survey questions based on the feedback. 

4. Improve the survey questions through a small pilot test.  

5. Conduct the survey by identifying and sending emails to the potential participants. 

Survey questions were hosted on Google Survey. 

 Research Method 

This study used a quantitative approach to learn agile method practices leading to 

organizational agility. Hence, a survey technique was used so that responses from a large 

number of respondents from the agile software development community in New Zealand, 



12 
 

and Australia could be targeted. Respondents were identified through agile community 

groups and various agile software development conferences held in New Zealand and 

Australia.  

This research used structural equation modelling techniques to analyse the data 

(Hair, Ringle, & Sarstedt, 2011). Smart PLS was used to assess the hypothesis 

relationship in the structural model, including for reliability and validity of the 

measurement model. Hence, some of the data analysis techniques used to assess the 

reliability and validity were as follows: Internal consistency reliability (ICR), Average 

variance extracted (AVE) for convergent validity, discriminant validity (square root of 

AVE), coefficient determination (R2 Values), path coefficients and t-values. 

 Outline of the Thesis  

The thesis is organized as follows: 

Chapter One provided the background, motivation and significance of the study. 

It included the research objectives and research questions for this study.  

Chapter Two discusses the relevant literature of the agile organization and agile 

practices in software development. It also discusses the main characteristics of an agile 

organization, and how it differs from an organization that applies a centralized approach.  

Chapter Three discusses how the characteristics from an agile organization can 

provide insight to the agile software development. A set of research hypotheses are 

proposed together with the research model.  

Chapter Four describes the methodology selected for this study. This section 

elaborates the specification for choosing data collection methods and data analysis 

techniques as well the reliability and validity of the data. 

Chapter Five reports the data analysis procedures and results. This section 

provides the information from general result of the survey and hypothesis testing results.  

Chapter Six discusses the main findings from the data analysis results. 

Chapter Seven summarizes the main findings of the study. 



13 
 

 Study Roadmap 

Research background and motivation

Research objectives and research questions
Chapter One

Extant literature on:

· Characteristics of Agile organization

· Agile software development especially on Agile practices

Chapter Two

Development of hypothesesChapter Three

Survey Development

Justification of data analysis technique

Data collection

Chapter Four

Data analysis

Findings and discussions

Chapter Five & 

Six

Conclusions:

· Research contributions

· Limitations

· Future research

Chapter Five & 

Six

  



14 
 

  



15 
 

Chapter Two: Literature Review 

 The Structures of an Agile Organization 

The concept of the adaptive organization originally came from the theory of the 

contingency approach (Miller, 1981). The contingency approach states that there is no 

single way to manage or organize a company and each organization is unique, having its 

own approach to solving the problem related to constraint at the organization’s 

operational level (McKenna, 2000).The main objective of the contingency approach is to 

have understanding in order to achieve better performance results. Organizations should 

fit themselves between the contingency and structure of the organization (Donaldson, 

2001). Thus, organizational strategies, organizational size and the environment play 

important roles for the organization to maintain the effectiveness and efficiency of its 

operations.  

Following the idea of the contingency approach, Burns and Stalker (1961) 

identified that there are two main types of organizational structure: mechanistic and 

organic organizational structures.  

The main features of mechanistic organizational structures are organizations that 

tend to have stable and predictable mechanisms that usually involve standard procedures 

to assist employees when solving the case of routine operations. This type of organization 

requires an employee to specialize in one task only and the communication is hierarchical. 

Hence, employees with lower authority must follow the instructions and be coordinated 

by upper management. Mechanistic organizations have many rules, standards and 

operating procedures, and as a result, mechanistic organizations are required to document 

all business operations (Burns & Stalker, 1994; Donaldson & Siegel, 2001; Pierce & 

Delbecq, 1977; Zammuto & O'Connor, 1992).  

Dynamic organizations are characterized by new challenges and face an unstable 

environment. This type of organization is also known as an organic organization. This 

type of organization has employees with multi-functional capabilities while being ready 

to adapt to change. The communication with and between employees tends to be less 

formal compared to mechanistic organizations (Burns & Stalker, 1994; Miles, Snow, 

Meyer, & Coleman, 1978; Nonaka, 1994; Sherehiy et al., 2007).  

 Goldman et al. (1995) developed a strategy to achieve competitive capabilities 

leading to organizational agility. Their strategy dimension for gaining agility involves: 



16 
 

(1) enriching the customer; (2) cooperating to enhance competitiveness; (3) organizing to 

learn changes and (4) leveraging the impact of people and information. The first strategic 

agility dimension allows organizations to deliver value that could help their customers to 

solve their business problems rather than just focusing on delivering products. 

Cooperation is required between organizations in order to deliver products swiftly to the 

marketplace. Furthermore, organizations are required to have flexible structures to master 

changes. According to Goldman et al. (1995), agile organizations are able to create the 

distinction between themselves when compared to their competitors at the marketplace 

through their product development experience, people and skills. Thus, it is essential to 

have continuous workforce training and education through formal and informal 

approaches. 

 

 Workforce Agility 

Workforce agility refers to the ability to adapt skills and practices in a short time frame 

to accept and act on the change, enabling organizational agility (Sohrabi, Asari, & 

Hozoori, 2014). Hence, the critical reason to have workforce agility is to have the 

organizational ability to respond appropriately and deal with unpredictable changes that 

frequently happen at the marketplace (Qin & Nembhard, 2015). According to Sherehiy 

et al. (2007), workforce agility ought to result in organization benefits such as on product 

quality, customer service, learning and ability to identify the product scope. 

The workforce agility strategy is often ignored in structured organizations because 

top-level management often themselves coordinate tasks and solve any problems arising 

from the tasks carried out by employees. Hence, such employees have limited authority, 

resulting in insufficient knowledge of processes to have problem solving abilities (Tata 

& Prasad, 2004).  

From the agile organization’s perspective, workforce agility means having the 

ability to swiftly solve problems and being able to respond promptly to uncertainties in 

their business environment. Agile organizations develop and maintain workforces that 

are skilled and flexible to deal with emerging and non-routine tasks (Youndt, Snell, Dean, 

& Lepak, 1996). Moreover, Sumukadas and Sawhney (2004) explained that workforce 

agility is achieved through job rotation, enrichment and teamwork.  

Workforce requirements are changing all the time and there is always a need to 

anticipate future skill requirements for employees (Weick, 1969). Specialization of the 



17 
 

work force prevents organizations from adapting and reacting to market situations swiftly 

(Dyer & Shafer, 2003; Qin & Nembhard, 2015).  

The five attributes of workforce agility are responsiveness, quickness, 

competence, adaptability and cooperativeness (Qin & Nembhard, 2015). Responsiveness 

relates to the attitude of workers towards unexpected changes. Quickness capability 

relates to the swift ability to adapt to new working conditions without any impact on 

productivity. Competence ability relates to the creativity and ability of workers to solve 

problems. Adaptability relates to the accepting and performing in required work 

conditions. Cooperativeness means having collaboration and helping each other when 

pursuing the common goal when working in different roles and functional units.  

Breu et al. (2002) explains that information technology (IT infrastructure and 

mobile technologies) plays an important role in enabling workforce agility by providing 

physical, structural and cultural resources to enable responsiveness, speed and flexibility 

abilities including empowerment in decision making. Breu et al. (2002) also identified 

intelligence, competencies, collaboration, culture and information systems as the main 

attributes of workforce agility.  

Plonka (1997) investigated the human factors in workforce agility in order for 

organizations to develop an effective production system for the manufacturing 

environment, targeting to enhance the capabilities and skills of the roles and individuals. 

The human factors involved were attitude toward self-development and continuous 

learning, ability to solve problems, being comfortable with new changes, ideas and 

technologies, the ability to generate innovative ideas, and accepting new responsibilities 

(Plonka, 1997). 

Griffin & Hesketh (2003) suggest that employees must adapt to have proactive, 

reactive and tolerant behaviours. According to their study, people with proactive 

behaviour bring positive impacts to the dynamic environment. Reactive behaviour allows 

individuals to adapt while tolerant behaviour allows individuals to maintain productivity 

despite change.  

According to Gunasekaran (1999), the important characteristics of an agile 

workforce are empowerment, multi-functional teams, negotiating ability, knowledge 

management, self-management teams and IT staff. Sumukadas and Sawhney (2004) 

developed a theoretical framework concentrating on various types of management 

practices for employees related to workforce agility such as information sharing, training, 



18 
 

reward and power sharing. Based on the empirical investigation, power sharing was 

described as the most important attribute enhancing workforce agility through enabling 

employees to solve problems and provide suggestions (Sumukadas & Sawhney, 2004).  

According to Hopp and Van Oyen (2004), workforce agility enables organizations 

to deliver products or services providing customer value based on cost, time, quality and 

variety. Hence, workforce agility enables organizations to have higher productivity and 

responsive employees, quality improvement and capability to provide more products or 

services. 

Dyer and Shafer (2003) identified proactive, adaptive and generative behaviours 

as key to the agility mind-set. Being proactive means actively looking for opportunities 

to enable competitive advantage at the marketplace while also embracing creative 

thinking among employees to pursue more opportunities. Adaptiveness is described as 

employees having the ability to perform in multiple roles in projects. Generative ability 

motivates employees for continuous learning, increasing their competency in multiple 

areas while sharing knowledge and information in the organization.  

Sherehiy et al. (2007) also discussed the agile workforce based on the conceptual 

models of Dyer and Shafer (2003) and Griffin and Hesketh (2003), such as ability to 

anticipate requirement change; having self-motivation and creativity abilities; capability 

to work with individuals in different roles and with different cultures; aptitude for 

continuous learning; knack for positive attitude towards new technology and changes; 

capacity to deal with stress in the working environment and having the aptitude to manage 

unexpected situations. 

In software development, developers need to deliver working software with less 

bugs and performance issues in order to meet customer satisfaction. This approach can 

be achieved with educating the development teams to have high and diverse skillsets, the 

ability to use new technologies, the ability to self-adapt and respond to unexpected 

changes (Youndt et al., 1996). In a related study, Li (2012) identified that as an individual, 

a developer needed to have development ability, learning ability, ability to predict 

changes, and versatility in terms of skills to provide agility in the enterprise information 

system. He also mentioned that development teams need to have experience, internal 

communication, flexibility and customer initiatives.  

Janz (1999) investigated the impact of self-directed work teams on an 

organization’s performance from 231 IS professionals with 28 different SDWT systems 



19 
 

developments within 13 organizations. Based on the result, he found that cooperative 

learning levels played the most important role affecting work outcomes of an 

organization.  

In addition, Lagerberg et al. (2013) conducted an empirical study on a large-scale 

software development to investigate the impact of agile practices and principles in global 

telecommunication company, Ericsson, with two different projects. The first project 

consisted of 420 team members from 15 teams with the characteristic of separating the 

systems analysis, design and integration stages and only delivering product once every 

nine months, while the second project consisted of 120 team members from 14 teams 

with the characteristics of a cross-functional team delivering software product in three 

weeks. Each cross-functional team in the second project at least must have developers 

with roles of system analysts, designers and testers, product owners and scrum masters.  

Many developers can remain working effectively in small teams, but it is quite 

difficult to achieve agility when developers are involved in large-scale software 

development. Moore and Spens (2008) found that continuous integration and dependency 

management were the main challenges on a large-scale project within Siemens Medical 

Solutions which acted as one of the leading companies in the healthcare industry in the 

USA. The project faced challenges when team members needed to put more effort into 

cross-functional meetings. The project consisted of 300 people with different types of 

roles such as product analysts, developers, testers and scrum masters with a team 

consisting of 25 team members with the details of one scrum master, four to five pairs of 

developers, one to two analysts and testers (Moore & Spens, 2008). 

 

 Competencies 

Business competencies refers to the ability of an organization to develop unique business 

practices and services or products that makes it hard for competitors to copy (Yusuf et 

al., 1999). Hence, competent managers and employees are required to learn and respond 

quickly to changes and market opportunities, including competitive threats (Assen, 2000).  

According to Quélin (2000), organizations must encourage learning and 

understanding of work practices organization-wide by implementing and managing the 

competencies required. In addition, employees must be encouraged to interact with each 

other, evaluate their performances, including their ability to know how to act (knowledge 



20 
 

in practice) and being able to act (adaptation of tools and practices that are available in 

the organization).  

Structured organizations lack a wide range of competencies with their individual 

employees since competencies are limited to one or two tasks, restricting innovative 

solutions (Siggelkow & Levinthal, 2005). According to Siggelkow and Levinthal (2005), 

agile organizations come up with diverse solutions providing long-term positive impacts 

on an organization’s performance. Agile organizations set out to develop a set of 

competencies to support their business strategies and have a horizontal structure to 

accumulate resources, manage business strategies and foster innovation (Quélin, 2000). 

According to (Assen, 2000; Hopp & Spearman, 2011), technology is a great 

enabler for organizations to have a wide-range of competencies with their employees. 

The employees must have skills to work with certain technologies, including the 

integration of technologies to support employee tasks and duties.  

Decision-making requires individuals with wider competencies at all the levels in 

business organizations, and requires managers to be aware of product performance at the 

marketplace and helping organizations to achieved strategic goals (Sharifi & Zhang, 

1999).  

Breu et al. (2002) identified the competency of “speed” as vital to swiftly being 

able to develop new skills, adapt to new changes, learn IT skills (hardware and software) 

and to develop management skills to achieve workforce agility.  

Semeijn, Van Der Heijden, and Van Der Lee (2014) investigated managerial 

competencies based on multiple rating criteria to identify managerial competencies. Other 

managerial competencies are the ability to drive integration, plan and manage change 

management, to ensure operational effectiveness and efficiency, provide highly 

innovative products and empowered employees, and adopt high productivity technology 

(Sharifi & Zhang, 1999).  

The agile practices in software development emphasize that competency is very 

important to enable development teams to deliver working software in fast cycles (Misra, 

Kumar, & Kumar, 2009). Chesebrough and Davis (1983) highlighted the 

recommendation for IT professionals to become more responsible for planning their own 

professional careers.  

 Turley and Bieman (1995) conducted a qualitative study to identify competencies 

that could differentiate software developers into two categories: exceptional and non-



21 
 

exceptional. The authors involved 129 developers at one software company and found 

that exceptional developers had diversity of action, could maintain the big picture of 

software projects, played proactive roles, had actions driven by a sense of mission and 

discussed with other developers if problems were encountered in software projects.  

In a related study, Colomo-Palacios, Tovar-Caro, García-Crespo, and Gómez-

Berbís (2012) identified the technical competencies of IT professionals from one of the 

leading software development companies in Spain involving 50 IT professionals. Based 

on their findings, software quality is the most important competency followed by tools 

and methods in software engineering and software testing, while software configuration 

management and software maintenance were considered less important.  

Based on research conducted by Lindvall et al. (2002), they mentioned that a 

software project needed at least 25% competent developers with high experience. As a 

result, the competencies of agile development teams not only concern the pace of software 

development, but also concern delivering working software according to the requirements 

of customers and being able to deal with changes (Misra et al., 2009).  

 

 Speed 

Speed in agile organizations refers to the organization’s capability to respond swiftly to 

unexpected requests for change from customers and to be able to provide competitive 

advantage (Gandossy, 2003). Sharifi and Zhang (1999) defined the term “quickness” 

(speed) as the organization’s capability to execute business operations rapidly in 

delivering products and services to customers including the timely delivery of recent 

product developments by organizations to the market.  

Agile organizations have to possess speed in providing solutions to short-term 

problems including plan strategies to achieve long-term benefits (Chonko & Jones, 2005). 

According to Vesey (1992), speed-to-market enables better market opportunities, 

requiring to embrace innovation and utilize proven tools. When competitors are trying 

sell their products, agile organizations are already marketing new products. If competitors 

provide products with the similar cost and quality, agile organizations have the capability 

of “time-to-respond” as a deciding factor (Chonko & Jones, 2005). According to Shapiro 

(2001) time management is important for organizations to develop a product that can 

satisfy customer demand, allowing the organizations to get a head start on the 

competition.  



22 
 

 Zander and Kogut (1995) identify the importance of speed in knowledge transfer 

within organizations to obtain competitive advantage at the marketplace. They also 

mentioned that speed could improve the capability to develop innovative product. 

According to Talaulicar, Grundei, and Werder (2005), speed in decision making is critical 

for organizations to grow rapidly in a competitive environment. When the organization 

is dealing with change, the employees must be flexible and open-minded, utilizing 

organizational resources to provide working solutions to solve customer problems 

(Chonko & Jones, 2005).  

In agile manufacturing, speed is very important with the production process 

because it allows organizations to meet their customer demands in their supply chain 

distribution (Allwood et al., 2016). Kessler and Chakrabarti (1996) developed a 

conceptual framework that captures the relationship of innovation speed and production 

outcomes. It shows that development speed is highly critical when organizations are in 

dynamic environments, impacting an organization’s capability to achieve strategic 

outcomes. Speed also impacts project success since this may have an impact on cost of 

product development and product quality. 

 A success factor for a software project is on-time delivery of the software products 

to the market, requiring highly productive development teams. Being late at the 

marketplace often results in the loss of both current and potential customers (Blackburn, 

Scudder, & Wassenhove, 1996). Blackburn et al. (1996) identified eleven factors that can 

help development teams to reduce the overall time for a software project:  

1. The use of prototyping 

2. Gaining a thorough understanding of customer requirements 

3. The use of case tools  

4. Parallel development of features 

5. Improving the quality of features  

6. Improved project team management 

7. Better testing strategies  

8. Reuse of codes or modules  

9. Changes in module size 

10. Improvement in communication between team members  

11. Having programmers with high skills  

 Herbsleb and Mockus (2003), conducted an empirical investigation on 

communication and speed with vendors in the global software development environment. 



23 
 

They identified strategies to speed up collaboration in a global development environment 

through better utilization of resources, technology and practices to provide 

communication between different sites by increase in the use of informal communication, 

splitting the work across sites optimally, awareness and finding experts (Herbsleb & 

Mockus, 2003). 

Tonelli et al. (2013) investigated whether the effect of agile practices could 

improve the delivery time of software products based on their investigation of a team 

which included 109 professionals engaged in different aspects of software development. 

The authors stated that the professionals preferred to adopt various agile practices from 

different methods than from a single agile method for software development. In addition, 

customer satisfaction was one of the determinant variables for agile practices to improve 

delivery time of software development which also involved professionals’ perception.  

 

 Responsiveness 

Responsiveness means having the organizational capability to detect, anticipate and deal 

with changes (Sharifi & Zhang, 1999). Through responsiveness capability, agile 

organizations survive volatile markets (Christopher, 2000). In addition, responsiveness 

ability enables agile organizations to reconfigure their processes to meet new market 

requirements, share information organization-wide and adopt new technologies to create 

innovative product, enabling competitive advantage (Hoyt, Huq, & Kreiser, 2007). 

 Structured organizations are usually less responsive to customer demand because 

managers and employees may not have the authority to make decisions when interacting 

with their customers (Moon, 1999). In structured organizations, often employees are not 

allowed to take part in high risk activities which potentially limits the information flow 

between low-level units, sub-groups and executive levels (Moon, 1999). 

 Sufian and Monideepa (2013) developed a model to examine an organization’s 

responsiveness and performance abilities with a business partner (supplier). Hoyt et al. 

(2007) identified five elements to measure organizational responsiveness: environmental 

scanning, strategic planning, flexible manufacturing infrastructures, supply chain 

governance mechanism, and multi-skilled workers. Hence, organizations can now 

evaluate their agility capability to response to rapid changes in the market.  



24 
 

Suppliers and partners integrating their systems could enable organizations to 

achieve more responsiveness to their customer demands (Christopher, 2000). In a related 

study, Billington and Amaral (1999) indicated that sharing information could improve an 

organization’s responsiveness behaviour although the impact of sharing information is 

more less compared to the effect of delayed configuration.  

 In a large-scale software development, it is challenging for development teams to 

meet their delivery targets while also being responsive to new and extra feature requests. 

Most software companies prefer to focus on the scale of a software project because 

customers often ask for features that add complexity to the version and may interfere with 

the software project (Olsson, Sandberg, Bosch, & Alahyari, 2014). Hsu, Chan, Liu, and 

Chen (2008) investigated user feedback to learn if it improved software quality and 

reduced uncertainties. They found that customer involvement during the development 

phase actually reduces the requirement uncertainty rather than them just being involved 

once during the requirement phase.  

 Nidumolu (1995), conducted an empirical study to investigate the impact of 

uncertainty, and vertical and horizontal coordination on software project performance. 

His study involved 64 software development projects from the banking industry. His 

study findings showed that vertical coordination reduces the risks and uncertainty in a 

project while horizontal coordination had a positive effect on project performance.  

 Olsson et al. (2014) identified three approaches that could help software 

development teams to achieve responsiveness capability based on his case study research 

with Ericsson: traditional development using scale, customized development and a 

combination of responsiveness and scale. They also suggested several practices such as 

the use of cross-functional teams, effective allocation and utilization of resources, 

shortening the feedback loops, quality driven feature development, mind-sets for new 

features and having the mentality for continuous improvement. 

 

 Knowledge Management 

Knowledge management has become vital and organizations must control the flow and 

integrate information to create a knowledge base for innovation, development, testing and 

marketing, including for technical research (Pérez-Bustamante, 1999). Knowledge 

management refers to the process of transferring important information so that there is 

organizational capability to organize and have proficiency to carry out the tasks, have 



25 
 

dynamic learning abilities, create sustainable plans and have problem-solving abilities 

(Gupta, Iyer, & Aronson, 2000).  

Knowledge management in structured organizations allows only vertical transfer 

of knowledge which is from senior staff to employees they manage, while cross-

functional collaboration is required to allow horizontal knowledge transfer (Walczak, 

2005). Hence, structured setups reduce the opportunity for individual growth, restrict well 

thought-out solutions due to lack of interaction and mostly rely on explicit forms to 

transfer knowledge within organization (Mahmoudsalehi, Moradkhannejad, & Safari, 

2012).  

 Dove (1999) explained the importance of effective knowledge management in an 

agile enterprise which is required to have a balanced approach between knowledge 

management and change proficiency. According to Dove (1999), knowledge could be 

measured through its strategy and competency, including how people utilize the 

knowledge and knowledge repositories. In addition, change-proficiency focuses on the 

ability of the organization to integrate people, processes, practices and procedures to 

respond to the changes with various organizational competency (low cost, flexible, rapid 

and low expense). Hence, knowledge management is an important long term task because 

the organizational approach for knowledge management may affect the quality of service 

being provided and organizational resources (Darroch, 2005).  

In an agile organization, knowledge management served as the basic foundation 

that encouraged team members to exchange ideas within the organization which leads to 

innovation, insight and intellectual capital (Chandani, Neeraja, & Sreedevi, 2007). 

Intellectual capital in knowledge management enables the agile organization to anticipate 

emerging needs, satisfy current needs, and remove unnecessary needs mostly in the form 

of tacit knowledge within the organization rather than that kept in the form of documents 

or stored in online repositories (Dove, 1999). 

 Pérez-Bustamante (1999), suggests that organizations must implement a culture 

for knowledge management to identify and implement innovations. The most important 

aspect in knowledge management is that employees at all levels must help to create, share, 

protect and improve knowledge repositories in their organizations. According to Wiig 

(1997), for an enterprise to maximize benefits from knowledge management, the 

following four aspects are important:  



26 
 

a) Organizations must have an effective approach (operational) to obtain knowledge 

to build, manage and update their knowledge assets.  

b) Organizational staff must have the responsibility to create and organize the 

infrastructure of knowledge management. 

c) Organizations must also have governance procedure to monitor and control their 

knowledge base, including encouraging employees towards knowledge 

management activities. 

d) Organization-wide awareness towards the value of knowledge though knowledge 

distribution and utilization from their knowledge repositories. 

According to Rouse (2007), there are three ways to categorize the value of 

information in agile setups:  

1) Provide ways for employees to pursue their motives (usefulness)  

2) Provide easy access and use of knowledge repositories (usability)  

3) Support teams to achieve short-term plans (urgency)  

The knowledge management strategy allows organizations to add value to their 

business and share knowledge among their employees through socialization enabling the 

capture, disseminating and internalizing of knowledge (Gupta et al., 2000). The reason 

behind this is knowledge management is considered as one of the processes that cover 

most of the activities in an organization and there are so many problems from past 

management (Wiig, 1997).  

 One of the key activities in software development is logging where developers 

need to obtain the knowledge (Dávideková & Ml, 2016). The reason behind this is that 

when developers log information, it requires a large repository which can also easily 

become flooded with unnecessary information.  

 Xue-Mei, Guochang, Yong-Po, and Ji (2009) investigated a knowledge 

management system for software testing. They proposed a knowledge management 

system based on an ontology to solve problems such as low usage rate, challenges for 

knowledge transfer, poor sharing environment and inability to achieve optimal 

distribution of human resources. Chandani et al. (2007) showed that knowledge 

management could help developers to improve execution and coordination in projects, 

enhancing delivery speed.  

 



27 
 

 Organizational Learning 

Organizational learning refers to the process of building, supplementing and organizing 

knowledge around their activities to improve efficiency and adaptation (Dodgson, 1993). 

Organizational learning provides the organizational ability to innovate through sharing 

the vision and developing innovations through initiatives (Yeung, 1999). Organizational 

learning initiates with individual action and then moves to the group level followed by 

the organization level, forming a continuous learning process involving knowledge 

acquisition, transfer and integration (Jerez-Gómez, Céspedes-Lorente, & Valle-Cabrera, 

2005).  

Structured organizations with a centralized structure reinforce their employees to 

perform single-loop learning. This type of organizational learning happens when the 

organization changes its strategies to satisfy organizational performance after an error, 

resulting in no organizational change to the strategies as long as organizational 

performance is within an acceptable level (Shrivastava, 1983).  

On the other hand, agile organizations adopt double-loop learning as their learning 

process. Double-loop learning enables the organization to produce different results and 

outcomes compared to solo-loop learning, through changes in organizational strategy and 

procedures (Pérez-Bustamante, 1999; Shrivastava, 1983). Agile organizations evaluate 

current activities to become better, adapting themselves to be competitive (Pérez-

Bustamante, 1999). Jerez-Gómez et al. (2005), highlighted the importance of 

organizational learning in a competitive environment and developing a measurement 

scale that could be used by managers to transform their company into a learning 

organization.  

Jerez-Gómez et al. (2005) proposed a model for managers to measure the learning 

capability of their organizations based on their investigation of 111 Spanish firms in the 

chemical industry. They identified four dimensions that affected learning capability in 

organizations: adaptive management, systems perspective, knowledge transfer and 

integration. The major benefits of organizational learning are to develop and understand 

various approaches for employees to avoid the same mistake, the parallel development 

between learning organizations and individuals, creation of competitive advantage, 

enhancement in competence and capacity of workforce for competitiveness and changes 

(Appelbaum & Gallagher, 2000). 



28 
 

Marquardt (1996) elaborated that there are three optimal dimensions for 

employees to create a dynamic learning environment: (1) levels of learning (individual 

and group learning), (2) different types of learning (active, anticipatory, flexible and 

reflective learning), and (3) organizational learning skills (communication, shared vision, 

systems thinking, specialization, team learning and concept visualization). In another 

study, Yeung (1999) identified four learning styles: (1) continuous improvement, (2) 

experimentation, (3) benchmarking and (4) competency acquisition. 

Antonacopoulou and Chiva (2007) investigated the complexity of organizational 

learning based on complexity procedures – schema variety and interaction 

interdependence. Their study shows that organizational learning could be described as a 

learning process between multiple employees engaged in organizational work, if 

necessary adjusting the learning process in order to encourage employees from different 

functional areas to work together.  

Software development based on a highly collaborative environment requires an 

intensive learning process involving different roles and a large number of developers (Ras 

& Weber, 2009). Arechavala-Vargas, Diaz-Perez, Madrigal-Torres, and Ferrer-Ramirez 

(2007) explained that the processes of organizational learning are constructed from 

collaboration and trust among individuals to solve problems. They also categorized 

organizational learning into four different levels based on organization maturity, where:  

1) The first level focuses on problems that cannot be handled by the organization, 

2) The second level can be obtained through evaluation based on previous decisions, 

3) The third level is derived when the decisions satisfy the performance evaluation 

in order to achieve the organization’s goals,  

4) And the fourth level can be found when the organizational learning process 

involves two or more organizations.  

Their findings showed that the role of the early culture of a software company 

could lead to an effective learning and capital building process. Huntley (2003) focused 

on the impact of organizational learning on open-source programming projects and 

identified three key points related to organizational learning which involve the system 

complexity, adaptive learning and learning curve effects. Adaptive learning is defined as 

the approach of development teams to evolve and respond to opportunities, problems and 

changes in the working environment. The process of adaptive learning is applied during 

the debugging process to help developers overcome software complexity and provide 

feedback about the software’s quality (Huntley, 2003). 



29 
 

 Organizational Culture 

Organizational culture plays an important role shaping the behaviour of employees. 

According to Schein (2010), there are three levels of organizational culture: 

(1) At the surface level, it shows the visible part of the organizational culture (norms 

or procedures).  

(2) At the middle level, it covers beliefs and values of what should be done within 

organizations.  

(3) At the deep level, employees are completely aware of the behaviour of other 

employees without observing them (shared assumptions) (Iivari & Iivari, 2011; 

Schein, 2010). 

There are seven main characteristics of organizational culture identified by 

O'Reilly, Chatman, and Caldwell (1991): people orientation, team orientation, innovation 

and risk, detail orientation, outcome orientation, aggressiveness and stability.  

The organizational culture in structured organizations is based on the assumption 

that power should be with the top management, dependent upon predetermined roles and 

responsibilities in order to pursue organizational goals and stakeholders’ interests 

(Janićijević, 2013). Employees follow the procedures to coordinate tasks with other 

employees from other departments where each process has written procedures, 

regulations and manuals to be followed to the full extent (Janićijević, 2013). 

Agile organizations adopt a collective approach, have a well-coordinated action 

for efficiency and are well prepared to face the market with rapid changing requirements 

(Janićijević, 2013; Van Veelen, Storms, & van Aart, 2006). In an agile environment, 

employees work together and have mutual benefits without considering individual goals 

to provide a significant contribution to the activities. Barney (1986) explained that 

organizations must have the three characteristics of value, uniqueness, and flexibility to 

engage in a competitive environment. These organizational characteristics help to 

improve the performance with their own approach, and without an organizational culture, 

organizations could not obtain a competitive advantage (Barney, 1986).  

 Iivari and Iivari (2011) investigated the correlation between organizational culture 

with the deployment of agile methods by using the Competing Values Framework (Quinn 

& Rohrbaugh, 1983) for organizational culture where enterprises could achieve agility 

(developmental culture) when they embraced change and focused more on external 



30 
 

factors rather than operational ones. They found that agile methods were not compatible 

with an organization with a relatively strong hierarchical structure.  

 Gotwon and Ditomaso (1992) also investigated the relationship between two 

factors of organizational culture that could affect an organization’s performance, which 

was measured based on the responses from participants related to stability and 

adaptability. Based on their findings, an adaptability culture provided better insights and 

predicted the organization’s short-term performance. According to Sherehiy et al. (2007), 

the culture of change in organizations starts from a supportive environment that 

encourages employees to perform continuous improvement through training and positive 

attitudes in dealing with changes, ideas, people and technology. 

 The organizational culture presents as the way for acting and thinking by 

employees and it can be seen as an important value that holds organizations together 

(Passos, Mendon, & Cruzes, 2014).  

 Tolfo and Wazlawick (2008) investigated the aspects of an organizational culture 

that might influence the output from Extreme Programming (XP) practices from six 

software companies. From their study, organizational culture could facilitate or constrain 

the adoption of the XP method because not every software development teams would 

adopt the same organizational culture. They developed the organizational culture 

dimensions from O'Reilly et al. (1991) framework. However, if the adoption of XP 

practices can be managed properly through an organizational culture, developers can 

produce good results in software projects (Tolfo & Wazlawick, 2008).  

 Verma and Amin (2010) proposed a conceptual framework to identify the risk 

management from software practices by using several cultural factors that might become 

major causes of software failures.  

 Passos et al. (2014), conducted an empirical study on four software companies in 

Brazil to investigate their organizational culture in terms of origins, sources and impacts 

on software development practices. The authors developed a conceptual framework from 

the Theory of Reasoned Action and found new insight that can be adopted by developers. 

The findings can be categorized into three levels of culture (values, assumptions and 

artifacts) and related to the relationship between software practices and organizational 

culture. Practices identified based on the agile approach relating to agile culture are face-

to-face meetings between representatives from the project team and the customer where 



31 
 

aim is to get clarification about requirements and enable project teams to focus on the 

most important features (Verma & Amin, 2010).  

 

 Cooperative Teams (Team Effort) 

Agile organizations are strongly driven by internal and external cooperation (Goldman, 

1995). Cooperative teams have all their individuals working collectively on a task. Brown 

and Palincsar (1989) suggested that in a cooperative environment, team members 

collectively provide the best analysis and ideas for problem solving, leading to better 

outcomes.  

Structured organizations employ specialists and differentiate responsibilities of 

each employee in a formal way, which means that every task is assigned to an individual 

rather than to a team where employees focus on their assigned work (Moch & Morse, 

1977), whereas in the agile organization, employees are assigned in small teams and not 

only represent their functional departments but become committed members to the whole-

team effort concept (Crispin & Gregory, 2008). A task in an agile team is often assigned 

to two or more people, working together towards a common goal, which also prevents 

them focussing on individual gains (Yauch, 2007).  

Agile organizations require cooperation and flexibility organization-wide in order 

to respond to customers’ needs (Maskell, 2001). According to Nerur, Mahapatra, and 

Mangalaraj (2005), cooperative social processes were required in order for agile 

organizations to become successful based on communication and collaboration based on 

value and trust. The cooperative and flexibility abilities are also extended to third parties 

such as customers and suppliers to develop value-added products and services (Maskell, 

2001).  

Beersma et al. (2003) examined the impact of team performance and reward 

systems on team composition, task dimension and individual performance. Their findings 

suggested that a competitive environment encouraged the individuals to achieve speed 

while a cooperative environment helped to achieve accuracy. According to Beersma et 

al. (2003), the impact of a reward system could work effectively in a team environment 

where performance level is below than what is the expected.  

Kohn (1999) argues for a collaborative environment but without the reward 

system that promotes competition affecting team performance. Janis and Mann (1977) 



32 
 

highlighted that the negative effect of excessive cooperation could prevent conflicts in 

the team and individuals prefer to exclude their opinions during important discussions. 

Although conflict could lead to work disruption, it is becoming a characteristic of 

organizations with diverse employees to require them to be flexible and have specialized 

skills to deliver innovation (Yauch, 2007).  

A cooperative concept in agile software development can be identified through 

self-organizing teams. The objective of self-organizing teams is to work together and 

participate in team decision making for common goals. Self-organizing teams in agile 

software development have leadership roles to provide direction, motivate, obtain 

resources and align people (Anderson et al., 2003; Cockburn & Highsmith). Self-

organizing teams usually have a leadership role such as a scrum master who can perform 

interdependent jobs, and has authority to create plans, do scheduling and assign tasks to 

team members including making decisions (Guzzo & Dickson, 1996; Moe et al., 2008). 

 Moe et al. (2008), investigated the obstacles of introducing self-organizing teams 

in agile software development. Their study involved professional developers from scrum 

teams and found that managing responsibilities among individuals was the most critical 

obstacle that development teams need to handle, including lack of autonomy and 

specialized skills in teams. 

Hoda, Noble, and Marshall (2013), conducted a study over four years on self-

organizing roles in agile software development teams, which involved 58 practitioners 

from 23 software organizations in New Zealand and India. Their study revealed that self-

organizing roles could help software development teams manage their responsibilities 

better in their development teams. In order for self-organizing teams to prepare and face 

new challenges, they must have mutual trust, shared vision, respect and the ability to re-

organize (Cockburn & Highsmith, 2001).  

 

 

 

 

 

 



33 
 

Table 6 provide a summary of agile organization concepts based on literature 

review. 

Table 6. Agile Organization Concepts Identified for This Study and Their 

Definition 

Agile Organization Concepts Definition 

1. Workforce Agility The ability to learn and adapt skills and practices in a 

short time frame to act on change for successful product 

development outcomes. 

2. Competencies Organizational ability to develop unique business and 

development practices including services/products that 

make it hard for competitors to copy. 

3. Speed The organization’s capability to execute business 

operations swiftly in delivering products/services to 

market.  

4. Responsiveness The organization’s capability to detect, anticipate and 

deal with changes at the marketplace. 

5. Knowledge Management  The process of creating and maintaining knowledge for 

continuous improvement and effective effort. 

6. Organizational Learning The process of building, supplementing and organizing 

knowledge around activities to improve efficiency and 

adaptation. 

7. Organizational Culture The organizational assumptions, beliefs and values that 

are shared organization-wide to be successful at the 

marketplace. 

8. Cooperative Teams (Team 

Effort) 

Collect cross-functional effort for decision-making and 

product development. 

Organization learning is the most important agile organization concept. At the 

agile organization level, organizational learning allows organizations to become more 

successful and adapt to rapidly changing environments which enable employees to find 

the best solutions to fulfil the organization’s goals and objectives (Giesecke & McNeil, 

2004). Organizational learning also promotes employees to unlock individual creativity 

and knowledge creation with the importance of an adaptive and flexible organization 

structure (Dasgupta & Gupta, 2009).  

 At the software development level, organizational learning can help software 

development teams to capture and maintain necessary knowledge with an incremental 

approach (Kavitha & Ahmed, 2011). Based on the learning focus, the organization can 

develop choices on how the speed of development is related to other goals such as the 

cost, risk, quality and innovative content of the project (Mathiassen & Pries-Heje, 2006). 

 



34 
 

 The Key Practices in Agile Software Development 

Product Backlog 

Product backlog consists of a list of prioritized features that are needed in the software 

product and serve as the source for all requirements for any changes to the final product 

(Pichler, 2010). The tasks are usually defined in the form of user stories and add each 

product functionality in small increments (Cobb, 2015). Early development of a product 

backlog only identifies best-understood requirements and expands as the product try to 

match the environment (Schwaber & Sutherland, 2012).  

When the team gets new ideas and new requests for implementation (change) 

during the development, it is added to the product backlog so the content in the product 

backlog continuously evolves; hence it is continuously reviewed, approved and 

prioritized by the product owner (Cobb, 2015). Product backlogs are usually created 

based on the value, risk, priority and necessity for features, which explains why higher 

priority product backlog items are more detailed compared to lower priority items where 

each product backlog item have a description, priority and estimate (Schwaber & 

Sutherland, 2012).  

Daily Stand Up Meeting 

During daily stand up meetings, team members report their progress on work items since 

the previous meeting to the team and provide their goals for the day including providing 

suggestions related to their task or any other member’s task (Sivanantham, 2012). This 

meeting is usually time-boxed at fifteen minutes and happen at the same location and 

time, where team members focus on the information shared with the other members to 

synchronize their work as a team (Dorairaj, Noble, & Malik, 2012). 

Vision Planning  

The purpose of vision planning is to identify and make decisions on the new 

functionalities of the product, to elaborate the specification of high-level requirements, 

decide on the required resources and plan the releases (Wang, Pfahl, & Raffo, 2008). 

Initially, product owners identify the requirements with collaboration from the 

development team, customers, industry and other business functions before proposing the 

new features to the steering committee for implementation decisions. The process of 

product vision planning enables the product management team to share and extend the 

product concepts with their software engineering unit and other business functions to 



35 
 

ensure they work together to achieve desired results (Sliger & Broderick, 2008; Werder, 

Zobel, & Maedche, 2016).  

Development teams need to have a good understanding of their client’s business 

processes, existing systems, operations and future goals in order to understand the 

business needs of the client, ensuring that the core values are part of the key features of 

the software product (Q. Wang et al., 2008). A successful vision plan implementation 

requires an organization-wide commitment (Donaldson & Siegel, 2001).  

Release Planning 

Release Planning is a continuous activity that enables agile development teams to 

transform product vision into a list of features with priorities for implementation 

(Shalloway, Beaver, & Trott, 2009). Release planning cannot be done in a single session 

and is usually revisited when development team need to update the plan at the end of each 

sprint (Cobb, 2015). There are some critical items to be considered when teams do release 

planning such as customer satisfaction and time-to-market, including features which are 

dependent on other features (Agarwal, Karimpour, & Ruhe, 2014).  

When dealing with uncertainty, development teams need to put in a collective 

effort to learn and solve the problem and uncertainty before including the items in the 

next release (Cobb, 2015). According to Cobb, the level of tolerance in the release 

planning is higher compared to sprint planning. Development teams can predict the 

number of user stories to include in a release by using risk factors, velocity and story 

estimates (Shore & Warden, 2008). Release planning provides a clear direction and effort 

estimation for development teams to determine the features to be included in the next 

release to meet stakeholder expectations and ensure the software project within budget 

and on schedule (Danesh, 2011). 

Collective Code Ownership 

With collective code ownership practice, the team itself is responsible for maintaining the 

code base. Each team member has responsibility to make necessary changes if they 

encounter coding issues, which means that team individuals can fix problems to improve 

the quality of the code (Shore & Warden, 2008).  

Teamwork is essential for collective code ownership practice to produce good 

code with high quality (Chromatic, 2003). At the beginning, development teams may 

focus to produce adequate quality code that can work as expected. The sense of team 

ownership increases when team members fix coding issues and improve the existing code 



36 
 

with shared solutions (Shore & Warden, 2008). Small and frequent releases are required 

in order to create an effective environment for collective code ownership, which 

motivates the members for friendship and collective effort as the code evolves one step 

at a time from one release to another (Chromatic, 2003).  

Pair Programming 

In pair programming, two developers work together on a single task from the same space, 

sharing a single development machine while frequently switching their roles from driver 

to navigator until the completion of the task (Cockburn & Highsmith, 2001). When in the 

driver role, the developer has the responsibility to focus on the task details to write the 

appropriate code and while in the navigator role, the other developer must ensure that the 

code fulfils the team guidelines for implementing and testing, including carrying out any 

other quality assurance tasks in parallel with code implementation (Chromatic, 2003).  

Pair programming reinforces good programming habits since peer pressure to 

perform important tasks ensures they are not distracted by other tasks (Shore & Warden, 

2008). Pair programming practice requires active participation by both developers in the 

navigation and driver roles to have a desirable outcome (Hunt, 2006).  

Test-Driven Development 

Test Driven Development (TDD) means bringing upfront relevant testing and quality 

assurance activities and carrying them out with development for each short development 

cycle (Farcic & Garcia, 2015). The main procedure of TDD consists of a few steps from 

writing the test, running and verifying all tests, writing the implementation code, running 

automated tests and refactoring (Laranjeiro & Vieira, 2013). The benefits of TDD practice 

are enhanced productivity for testing and development, fewer defects as a result of test 

automation, results in lower code maintenance and improved cost efficiency because 

TDD enables development teams to perform testing faster through automation and 

continuous integration with the code base through unit, component, system and regression 

tests (Rico, Sayani, & Sone, 2009). 

User Story Acceptance Testing 

Acceptance testing covers the high-level tests of business operations and is often used by 

development teams to ensure the software meets the criteria of business goals (Read, 

Melnik, & Maurer, 2005). Testing practices in agile software development are significant 

since they enhance communication and feedback for developers, including providing 

visibility to customers (Haugset & Hanssen, 2008). The main focus of the acceptance test 



37 
 

is on the story acceptance, feature acceptance, usability, user acceptance and alpha/beta 

test (Leffingwell, 2010). A user story is complete if it passes its acceptance tests. This 

test confirms if a user story is complete and functioning as expected. 

Developers often use automated tools to implement user acceptance testing, 

resulting in fewer errors, more safety to make changes in the code, no or less manual 

testing and improved understanding of how the system works from the developer’s 

perspective (Haugset & Hanssen, 2008).  

Regression Testing 

The purpose of a regression test is to validate the change, e.g. added a new functionality 

to the software, to ensure the current code still works as intended and there will not be 

any failure with new code integration with the previous version of the software (Stamelos, 

2007). According to Onoma, Tsai, Poonawala, and Suganuma (1998), regression testing 

should be used whenever there is change and should be include in the overall approach 

for software development and maintenance rather than perform in an independent stage.  

As project progresses, it becomes difficult to perform manual regression tests 

because it could be possibly range from hundreds to thousands of tests and the code 

always keep changing (Cobb, 2015). Automating the regression testing ensures and 

improves the consistency for software quality since now it frees the quality assurance 

team to concentrate on the value-adding tasks to enhance the quality of the features and 

product (Cobb, 2015; Hazzan & Dubinsky, 2009).  

Sprint Planning 

In Sprint Planning, the scrum team usually discusses about how much work the team will 

commit for the current sprint cycle (Schiel, 2009). At the initial stage, the product owner 

and the whole team must have clear agreement about the sprint goals and have a clear 

understanding on the acceptance criteria for each backlog item (Resnick, Bjork, & de la 

Maza, 2011).  

In the second half of the sprint planning, the scrum team does detailed task 

planning to clearly define how the team will perform the tasks related to the user stories, 

including assigning them to team members for implementation (Cobb, 2015; Resnick et 

al., 2011). When development teams encounter, and are unable to solve, defects during 

the sprint process, they will prioritize the backlog item to a higher priority for the next 

sprint session, otherwise the task may become a bottleneck for the whole project (Cobb, 

2015).  



38 
 

Refactoring  

Refactoring refers to a process of changing the internal structure of the current code 

without modifying its external behaviour (Fowler, Beck, Brant, Opdyke, & Roberts, 

2012). With refactoring, developers can improve the design of the existing code and make 

the code easier to understand, thus allowing the developers to identify defects and 

implement new features more quickly (Fowler et al., 2012).  

Furthermore, refactoring in short cycles enables developers to enhance 

maintainability in the long term because it can reduce the work needed to be done later 

while significantly reducing the cost in the software life-cycle (Nidhra, Dondeti, Katikar, 

& Tekkali, 2012). However, if the developers perform refactoring with implementation, 

there could be not enough time left at the end, becoming quite challenging for 

inexperienced developers because it may lead to complex changes in the refactoring 

process (Vasileva & Schmedding, 2016).  

Coding Standards 

Coding standards are a set of guidelines that ensure developers have agreement and 

consistency when writing the code. In projects with a large number of developers, coding 

standards become important since developers have their own style but a standard is 

required for consistency so that later anyone with a minimum effort is able to understand 

the program logic when reviewing or carry-out maintenance tasks (Fowler et al., 2012).  

Coding standards enable developers to communicate effectively through their 

code, achieved through teamwork involving the whole team to establish clear 

communication in the form of habits and preferences (Chromatic, 2003). The coding 

standard practices should be short and easy to remember, requiring participation by all 

the developers to create team values rather than just identifying the types of code to write 

(Chromatic, 2003; Kelly, 2015).  

Retrospective 

The main objective of the Retrospective process is to identify alternative choices and 

improve the outcomes from the entire team’s perspective for the next iteration or project 

(Kelly, 2008). Retrospective often occurs at the end of the iteration or project and the 

meeting lasts for an hour with the involvement of the entire team and scrum master (Kelly, 

2008; Pollard, 2016). The scrum master has the responsibility to ask each person from 

the team to identify any ideas or backlog items to initiate, continue or stop (Pollard, 2016).  



39 
 

After a list of ideas has been gathered, team members can discuss and decide 

which backlog items should be implemented in the next sprint. It is important to deal with 

this kind of problem at an early stage rather than pushing and delaying them into bigger 

problems which may lead to failure for the development team (Schiel, 2009). 

User Stories 

User Stories are the requirements to be implemented and the team uses them to create a 

plan based on their estimates to implement the software functionality (Cohn, 2004). 

Developers create and gather user stories by using the following techniques: user 

interviews, questionnaires, observation and story-writing workshops (Monochristou & 

Vlachopoulou, 2007).  

Each user story has a value stated through story points. Hence, a complex user 

story that describes a large piece of software functionality is allocated a higher story point 

value while smaller simple user stories will be allocated lower story point values (Schiel, 

2016). Before implementing the user stories, developers provide estimates for each user 

story. If a user story is estimated to take more than three weeks, developers can divide it 

into smaller pieces to ensure the stories become much clearer and their scope much more 

limited (Schiel, 2009).  

Open Workspace 

In Open Workspace developers share workstations, encouraging face-to-face 

communication between developers and providing flexibility with organizational change 

(Schifferstein & Hekkert, 2011). According to Schifferstein and Hekkert (2011), 

developers may find it hard to work from an open workspace but when used effectively 

it can provide insights into conversations and immediate face-to face feedback on 

developer queries and issues, if any, during the day.  

The layout depends on the number of people sharing the workspace and ensures 

that there are no small cubicles, including no boundaries in the team workspace helping 

the developers to focus and collaborate on tasks (Babar, Brown, & Mistrik, 2013; 

Schifferstein & Hekkert, 2011). 

Burn-Down / Burn-Up Charts 

A Burn-down Chart provides information on the work or the user stories left to be done 

versus the available time, allowing prediction of when all of the work will be completed 

(Solanki, 2009). The burn-down chart shows the remaining hours, velocity, discontinuous 

plot and planning plot (Goodpasture, 2015). Development teams use burn-down charts to 



40 
 

track the remaining tasks with the remaining time throughout the working sequence 

unless specified by the project leader (Cobb, 2015). A burn-down chart is usually 

discussed by the development team during their team meetings in order to update the 

information on the plan and estimation (Goodpasture, 2015). 

A burn-up chart presents information which relates to the number of user stories 

the development team has accomplished to keep accumulating the functionality until it is 

completed (Solanki, 2009). From the accumulated functionalities, development teams can 

compare the goals of the software project such as the release plan or budget in order to 

provide clear feedback to the entire team (Cobb, 2015). The benefit of a burn-up chart is 

that it is easy to understand, which is similar to the traditional chart techniques that display 

the number of story points achieved in the release (Rubin, 2012). Burn-down and burn-

up charts are simple yet powerful tools that can help development teams to provide 

visibility for each iteration if two charts are combined (Cobb, 2015).  

Continuous Integration 

The Continuous Integration is a software development practice that enables software 

development teams to integrate the source code in a common repository (Duvall, Matyas, 

& Glover, 2007). The main objective of continuous integration is to eliminate software 

integration issues and have “traceability” (Dömges & Pohl, 1998). Traceability is 

important in software development since it has multiple purposes such as helping teams 

to identify improvements and guiding evaluation of their development effort, internal 

follow-up on implementation, and producing an accurate and consistent audit-trail report 

on implemented features and tests carried out on one specific version of the software 

product (Stahl, Hallén, & Bosch, 2017). 

Self-Organizing Teams 

A self-organizing team is a group of employees that work together for the purpose of 

accomplishing a common goal to deliver software features and products by taking 

ownership of the work, reducing their dependency on management (Moreira, 2013). Self-

organizing teams have values such as mutual trust, respect, a common focus and the 

ability to re-organize the team itself to meet new challenges (Grisham & Perry, 2005). 

Self-organizing teams solve implementation problems through collective responsibility, 

self-assignment and cross-functionality effort, including continuously seeking 

improvements (Hoda et al., 2013).  

 



41 
 

Unit Testing 

Unit testing is the basic level of testing involved with software development. Hence, a 

unit test on an individual function of the software confirms that it performs its function 

correctly, providing a better way for development teams to manage the integration of 

functions into a program (Lewis, 2016). Therefore, unit testing is crucial to determine the 

success of the software development since it provides indications of whether a functional 

unit satisfies the expected positive behaviour or not. Unit testing also acts as the first stage 

of testing before developers release the application for user acceptance testing (Khan, 

2016).  

The table below identifies the agile organization concepts, together with the 

related agile software development practices based on the understanding acquired 

through the literature review on both. These two were the basis for developing the survey 

questions provided in Appendix B. 

Table 7. Agile Organization Concepts Related to Agile Software Development 

Practices 

Agile organization concepts Agile software development practices 

1. Workforce Agility  Self-organizing teams 

 Daily stand-up meeting 

 Sprint planning 

 Retrospective 

 User stories 

2. Competencies  Continuous integration 

 Self-organizing teams 

 Product backlog 

 Test-driven development 

 User stories 

 Unit testing 

 User story acceptance testing 

3. Speed  Sprint planning 

 Product backlog 

 Test-driven development 

 Continuous integration 

 Refactoring 

4. Responsiveness  Product backlog 

 Release planning 

 Sprint planning 

 Retrospective 

 User story acceptance testing 

5. Knowledge Management  Pair programming 



42 
 

 Test-driven development 

 Retrospective  

 User story acceptance testing 

 Regression testing 

 Refactoring 

 Coding standard 

6. Organizational Learning  Vision planning 

 Retrospective 

 Release planning 

 Sprint planning 

 Retrospective 

 Test-driven development 

7. Organizational Culture  Open workspace 

 Coding standard 

 Collective code ownership 

 Retrospective 

 User story acceptance testing 

8. Cooperative Teams  Vision planning 

 Product backlog 

 Daily stand-up meeting 

 Pair programming 

 Sprint planning 

 Coding standard 

 Retrospective 

  



43 
 

Chapter Three: Hypothesis 

 Knowledge Management and Organizational Learning 

Knowledge management refers to an organization’s capability to organize, transfer and 

integrate to create a new knowledge base required to create achievable work plans and 

the ability to learn on the fly (dynamic learning) to accomplish tasks (Gupta et al., 2000; 

Pérez-Bustamante, 1999). The core value of knowledge management is facilitating team 

members to collaborate, communicate, coordinate and share knowledge to successfully 

accomplish a task (Duffy, 2000).  

An agile organization has processes to generate, build and organize knowledge 

around their daily activities and continuously develop through innovation in order to 

adapt and have organizational efficiency (Dodgson, 1993; Yeung, 1999). The 

organization must go through knowing, understanding, thinking and learning to become 

a learning organization. An agile organization encourages its employees to adopt the 

process of double-loop learning which allows the organization to produce better results 

through changes in organizational strategy and procedures (Pérez-Bustamante, 1999; 

Shrivastava, 1983). The major benefits of organizational learning are developing and 

understanding various approaches for employees to avoid the same mistake, the parallel 

development between learning organizations and individuals, creation of competitive 

advantage and enhancement in the competence and capacity of the workforce for 

competitiveness and change (Appelbaum & Gallagher, 2000).  

In agile software development, organizational learning refers to the capabilities 

of the organization to survive, develop and increase innovation (Arechavala-Vargas et al., 

2007). Organizational learning in agile software development serves as a critical measure 

of performance in the project (Landaeta, Viscardi, & Tolk, 2011). Based on the learning 

focus, the organization can develop choices on how the speed of development is related 

to other goals such as the cost, risk, quality and innovative content of the project 

(Mathiassen & Pries-Heje, 2006). All agile software development practices, tasks and 

activities require solid knowledge management and continuous learning to undertake 

these tasks to be able to successfully deliver any project.  

When two developers work to design and test software together, they obtain 

various kinds of knowledge in forms of task-related knowledge (systems knowledge, 

coding invention, design practices, technology knowledge and tool usage tricks) and 

contextual knowledge (using past experiences to determine whether it is appropriate to 



44 
 

use specific design patterns in different coding projects) (Sivanantham, 2012). It is 

recommended that project teams perform pair rotation often in order to maximize the use 

of pair programming and ensure the knowledge is shared among team members (Cobb, 

2015).  

Reflection encourages development teams to review their tasks, reflect on how to 

make the activities more efficient and adjust the whole process to fit in with the current 

situation (Unhelkar, 2016). According to Talby, Hazzan, Dubinsky, and Keren (2006), 

reflection is one of the beneficial ways for development teams to enhance collaboration 

and team effectiveness because each member may work and act differently towards 

output in the long term. During this process, it is very important to convert tacit 

knowledge to explicit knowledge and put the knowledge in common areas so everyone 

can access the resources (Sivanantham, 2012). Development teams can also use reflection 

as a mechanism to conduct external communication with customers in order to gain 

significant feedback that can be useful for project goals (Pikkarainen, Haikara, Salo, 

Abrahamsson, & Still, 2008). Using reflection can create awareness for software 

developers to improve their skillset because the area becomes very broad which means 

required skills that can work successfully in certain areas from the past (e.g., 30 years 

ago) may not apply in the current practice (Capretz, 2003). 

When developers adopt the Test-Driven Development (TDD) approach, they 

write detailed specifications effectively by using a Just-in Time (JIT) basis (Sivanantham, 

2012). Developers need to understand about user requirements and obtain the required 

information before writing test cases in a TDD environment (Farcic & Garcia, 2015; 

Laranjeiro & Vieira, 2013). The reason behind this is when developers develop test cases 

without understanding user requirements, they will end-up writing unnecessary test cases 

which are not efficient for the software project (Rico et al., 2009). Using TDD, developers 

can specify the requirements and validate their work from writing the tests that aim either 

at developer level or acceptance level before writing the actual code to fulfil the tests 

(Sivanantham, 2012).  

Developers could improve their learning process and execution and coordination 

between internal team members and enhance speed to delivery and accurate estimation 

for the software project with organizing, transferring and integrating the knowledge.  

Hypothesis 1: Knowledge management positively affects the organizational learning of 

agile software development teams or organizations. 



45 
 

 Organizational Culture and Organizational Learning 

Organizational culture in agile organizations is based on coordination, collaboration and 

informal communication to enable mutual benefits that provide competitive advantage at 

the marketplace (Janićijević, 2013; Van Veelen et al., 2006). Without the shared agile 

culture organization-wide that is valuable, unique and flexible, organizations will have 

less opportunity to obtain competitive advantage (Barney, 1986). The major benefit of 

the agile culture is continuous learning by employees to improve the organization’s 

performance by adapting to changing situations, decision making, embracing change for 

better results, encouraging cooperation and continuously getting highly valued feedback 

on their work (Gotwon & Ditomaso, 1992; Iivari & Iivari, 2011; Sherehiy et al., 2007). 

The agile culture helps to deliver competitive products by identifying and producing 

customer-oriented products, teamwork, learning and a mind-set for change (Sherehiy et 

al., 2007). 

The entire agile development team must communicate, collaborate and work 

together through intensive interaction to identify and deal with implementation issues and 

challenges for successful implementation (Highsmith, 2002; Wendorff, 2002). The 

collective effort is critical to deal with any client request for changes requiring the entire 

team for product backlog meetings for discussion, re-evaluating and setting new priorities 

to tasks in order to deliver the software on time (Cobb, 2015; Schwaber & Sutherland, 

2012).  

 According to Lindvall et al. (2002), rapid interaction and communication, 

accepting requirement changes, trusting people, collective team effort and fast feedback 

(learning) from customers is the key agile culture. 

 In software development teams, the agile organizational culture is enforced 

through an open workspace for the entire team. An open workspace also encourages 

learning on the collective effort for the entire team by sharing information and having 

spontaneous interaction and immediate feedback between developers (Schifferstein & 

Hekkert, 2011). The agile team consists of team members of diverse backgrounds and 

different functional departments to enable effective collaboration including often 

adopting pair programming practices (Babar et al., 2013). The on-site customer (business 

oriented) role which provides cross-functionality in agile development teams is critical 

for decision making, team learning coordination, collaboration and informal 

communication (Martin, Noble, & Biddle, 2003).  



46 
 

In agile software development, pair programming has a positive impact on 

scheduling of tasks, acquaintance culture and team cohesion (Vanhanen & Lassenius, 

2007). Pair programming enforces the agile culture for learning to improve the engineers’ 

discipline, helps to implement better solutions, grows team morale and enhances 

knowledge required to carry out work on projects (Nosek, 1998; Williams, McDowell, 

Nagappan, Fernald, & Werner, 2003). These benefits of pair programming lead to 

improvement in the quality of the software (DeClue, 2003; Hanks, McDowell, Draper, & 

Krnjajic, 2004; McDowell, Werner, Bullock, & Fernald, 2002).  

Organization learning enables the entire team including the scrum master 

discusses and agrees on which tasks should be concentrated during sprint planning with 

the sprint duration between two weeks and four weeks (Schiel, 2009). As the team 

becomes more mature, they learn from their actions and act on the learning (Cobb, 2015). 

The development team can perform low priority tasks with flexibility while crucial tasks 

must be completed in the same sprint cycle to avoid the introduction of new problems for 

the next iteration (Cobb, 2015), otherwise the development team needs to adjust their 

sprint cycle at a later stage of the development or possibly hire an agile coach to help 

them solve the problem (Srinivasan & Lundqvist, 2009).  

After the development team reaches the end of a sprint cycle, they often perform 

a sprint retrospective (sprint review) meeting to continuously increase awareness and 

knowledge from multiple perspectives to deal with certain problems during software 

development (Kelly, 2008; Pollard, 2016). Collaboration from the entire team can 

produce higher organizational learning levels which lead to better performance 

(Arechavala-Vargas et al., 2007). The sprint review process becomes more effective for 

the overall learning process when the development team gains a better understanding of 

the process (Srinivasan & Lundqvist, 2009). 

Another example that reflects organizational learning in software development is 

TDD. In a TDD environment, developers build and test the code at the same time for each 

new functionality that they want to implement in several repetition cycles before writing 

the actual implementation code (Farcic & Garcia, 2015). The TDD process may represent 

an overlap with the tester role, however it can be considered as positive aspect of the 

learning process because the developer ends up implementing the test during software 

development and it can improve the test estimation for the software project (Santos, 

Goldman, Shinoda, & Fischer, 2011).  



47 
 

As a result, an organizational culture encourages the entire team to learn, interact 

and collaborate, leading to delivery of software projects.  

Hypothesis 2: Organizational culture positively affects the Organizational Learning of 

software development teams or organizations. 

 

 Organizational Learning and Competencies  

Organizational competencies deal with the ability of an organization to develop unique 

product development practices and have the ability to respond quickly to market 

opportunities, including having unique capabilities to deal with competitive threats 

(Assen, 2000; Yusuf et al., 1999). The major benefits of competency are to establish a 

strategic product vision, continuous improvement in product quality, cost and operations; 

effectiveness / efficiency; achieving effective internal and external collaboration and 

having in-house ability to manage change and empower employees (Sharifi & Zhang, 

1999). In order for employees to become competent they must have a swift learning 

ability to develop new skills, obtain necessary skills to perform changes, acquire 

innovative management skills and obtain technical skills (Breu et al., 2002).  

An agile organization encourages their employees to adopt the process of double-

loop learning which allows the organization to produce better results through changes in 

the organizational strategy and procedures (Pérez-Bustamante, 1999; Shrivastava, 1983). 

The major benefits of organizational learning are to develop and understand various 

approaches for the employees to avoid the same mistake, the parallel development 

between learning organizations and individuals, creation of competitive advantage, 

enhancement in competence and capacity of workforce for competitiveness and changes 

(Appelbaum & Gallagher, 2000). In agile software development, learning is crucial for 

development teams to meet their development targets and increase innovation 

(Arechavala-Vargas et al., 2007).  

Competencies facilitate developers to play proactive roles, carry-out diverse tasks 

and actions, maintain the pace of software development and deliver the software 

according to customer requirements (Lindvall et al., 2002; Misra et al., 2009). Without 

competence, this can pose serious problems such as affecting the morale of the team 

(Nerur et al., 2005). 



48 
 

Agile software development requires solid competencies on incremental 

development, continuous integration and test driven development (unit test, integration 

test, alpha/beta test, story acceptance, feature acceptance, usability and user acceptance 

test) (Humble & Farley, 2010; Laukkanen, Paasivaara, & Arvonen, 2015; Leffingwell, 

2010). Developers require competencies to be able to perform automation during the 

acceptance testing phase in order to reduce the effort when customers change the 

requirements so they can concentrate with other critical tasks (Haugset & Stalhane, 2012). 

Agile software development teams must consist of competent individuals so that 

they can step into different formal and informal roles required for the teamwork (technical 

leader, team leader, project manager, developer and tester) (Hedberg, 2015). 

The organization has enough software competency when development teams can 

perform the tasks in coordinated actions (Barton & Brooks, 2012). Agile teams also 

encourage team members to work in different types of projects when necessary 

(Sundararajan, Bhasi, & Vijayaraghavan, 2014).  

Agile software development is dependent upon the competency developed 

through continuous and swift learning abilities of the individuals and the team as a 

collective unit.  

Hypothesis 3: Organizational Learning positively affects the Competencies of software 

development teams or organizations. 

 

 Organizational Learning and Responsiveness 

In an agile organization, responsiveness capability is described as the ability of an 

organization to anticipate, detect and deal with changes including ability to swiftly plan 

that allows for an immediate response to deal with the threat (Sharifi & Zhang, 1999). 

Responsive behaviour is critical to be able to swiftly adjust business objectives and goals 

and deliver products according to market requirements (Breu et al., 2002). Agile 

organizations have responsive behaviour to swiftly determine and deliver market-driven 

products before competitors (Kusiak & He, 1997). 

The agile workforce must develop responsiveness attributes through learning and 

empowerment, allowing them quickly to adapt to the changed work environment which 

requires new skills development, having workplace independence (virtual teams) and 

requiring responsive ability to deal with any external change (Breu et al., 2002).  



49 
 

The major advantage of having responsiveness capability by agile organizations 

is that they are swiftly able to identify and share information organization-wide on 

changes in the marketplace, while being able to re-configure processes and practices to 

meet new market requirements and obtain an early competitive advantage (Hoyt et al., 

2007).  

Responsive behaviour requires the software development teams and organizations 

to have the ability to swiftly learn, adapt and respond to deliver to market needs (Salo & 

Abrahamsson, 2005). Agile software development teams require responsiveness 

capability in order to deal with, or create, change and respond rapidly to changes from 

uncertain environments (Cockburn & Highsmith, 2001). Responsiveness capability 

means agile software teams and organizations have the ability to modify their processes, 

practices and structures in a turbulent environment (Reed & Blunsdon, 1998). In an agile 

software development environment, the customer requirements swiftly change, requiring 

product creativity and innovations (Vazquez-Bustelo, Avella, & Fernández, 2007). A 

critical part of this behaviour for agile in-house software development is learning 

practices to swiftly acquire new knowledge, skills and support to deliver market-driven 

products.  

Boehm (2002) identified the requirement for highly skilled developers, customer 

involvement, architecture, refactoring and size of a development team as crucial for 

having responsiveness capability. According to Law and Learn (2005), responsive 

behaviour can be achieved through adopting pair programming to up-skill newcomers. 

To be agile in a market-driven environment requires teamwork response (this is a key 

part of the core competency to continuous enhancement though learning (Vernadat, 

1999). Agile software development requires an on-going organizational reconfiguration 

in structure, strategies, roles and management style.  

Hypothesis 4: Organizational Learning positively affects the Responsiveness Behaviour 

of agile software development teams or organizations. 

 

 Organizational Learning and Speed 

In an agile organization, speed capability enables them to swiftly deliver products 

including ability to swiftly respond to unexpected changes to provide competitive 

advantage in a timely manner (Gandossy, 2003; Sharifi & Zhang, 1999). The capabilities 

in agile organizations are highly dependent upon the learning process and ability of 



50 
 

employees carrying out operations and completing tasks in the shortest possible time 

(Sherehiy et al., 2007). With speed, agile organizations require using resources 

effectively, providing more opportunities to meet customer satisfaction (Chonko & Jones, 

2005; Shapiro, 2001; Vesey, 1992).  

Individuals in agile organizations swiftly develop new skills and abilities 

including quickly adapting to new development approaches and innovative management 

skills (Breu et al., 2002). For agile in-house development, the collective abilities to 

quickly learn, adapt and respond to innovations ahead of the competition are key 

developer-embodied factors.  

Agile software development environments focus on the high talents and skills of 

individuals including ability to learn and swiftly develop high capabilities and expertise 

to help teams accomplish their tasks and projects (Cockburn & Highsmith, 2001).  

According to Shinkle (2009), in agile software development, individuals go 

through various skill levels to become experts in agile environments: novice, advanced 

beginner, competent, proficient and expert levels. Ability to learn and carry out tasks 

efficiently in the product development environment means they are able to deliver new 

products in the shortest possible time (Sherehiy et al., 2007). According to Hopp and Van 

Oyen (2004), individual adaptability, speed improvement to do tasks, reduction in setup 

time (sprint-planning) and cross-functional training enabler shorter average development 

cycle times. Achieving shorter development cycles is dependent upon expertise built 

through learning in one’s own agile software development (Shinkle, 2009). 

Most important is the ability to learn and carry out tasks efficiently in a 

development environment delivering products in the shortest possible time (Sherehiy et 

al., 2007). Individual learning and flexibility, improvement in task speed, reduction in 

setup time and cross-training are the key factors facilitating shorter average development 

cycle times (Hopp & Van Oyen, 2004). The goal for shorter development cycles can only 

be achieved through expertise in agile software development (Shinkle, 2009).  

Automation is a critical factor for short development cycles reducing development 

time, achieving development flexibility and delivering innovations (Gunasekaran, 1998). 

Upfront testing in agile software development driven by short development cycles 

requires automation (Shaye, 2008). 

Agile software development requires high performing hardware and tools 

(Gunasekaran, 1999) to deliver features at a constant pace. Internet access for email, 



51 
 

collaboration systems, IM tools, net meeting and video conferencing, is critical resource 

for short development cycles allowing instant collaboration and feedback with industry 

experts, product managers and customers for rapid feedback (Phalnikar, Deshpande, & 

Joshi, 2009). 

Hypothesis 5: Organizational Learning positively affects the Speed of agile software 

development teams or organizations. 

 

 Organizational Learning and Cooperative Teams (Team 

Effort) 

Cooperative teams relate to collective effort (team effort) for decision making and 

undertaking various tasks (task sharing) rather than having individual or solo effort 

(Yauch, 2007). Hence, cooperative teams are based on empowerment, cross-functional 

teams and decentralised decision making (Yusuf et al., 1999).  

Some of the major benefits of collective effort are mutual acceptance and 

understanding between different functional units on organizational goals and objectives, 

enhanced speed associated to carry out tasks and to make decisions, shared responsibility 

for team deliverables, loyalty and commitment and responsiveness capability (Sherehiy 

et al., 2007). The impact of collective effort is enormous in a dynamic product 

development environment as it helps to achieve product goals and objectives by carrying-

out tasks based on collective thought and effort (Tjosvold & Tjosvold, 2015).  

An agile organization, has an inbuilt approach to create, organize knowledge and 

learn around their daily work process and activities to continuously upskill their 

employees (Dodgson, 1993; Yeung, 1999). An agile organization encourages its 

employees to adopt the process of double-loop learning which allows employees to learn 

from one another on the job and produce better results (Pérez-Bustamante, 1999; 

Shrivastava, 1983).  

The major benefits of organizational learning are (1) to become better and more 

responsive to the marketplace, (2) the parallel development effort while learning enables 

competitive advantage, (3) enhances competency organization-wide for tasks, and (4) 

enables having a workforce capable of adapting to changes (Appelbaum & Gallagher, 

2000).  



52 
 

In agile software development, team effort involves two or more developers 

working together on a single task (task sharing). One of the major benefits identified is 

that developers learn more effectively in a team environment based on cooperation, 

especially when working with the entire team rather than working by themselves which 

often results in competing with others in the team (Brown & Palincsar, 1989).  

Agile software development is based on team effort (cooperative teams) to carry-

out tasks involved in identifying and developing software products. Hence, vision 

planning and roadmap planning (Sliger & Broderick, 2008; Wang, Hsu, Chen, & Lin, 

2008; Werder et al., 2016) requires a planning or steering committee to make decisions 

collectively on proposed features for implementation (Lal, 2011).  

Developing business cases can help a steering committee to make effective 

decisions by setting priorities, evaluating the business value of the software product and 

reducing the risks of developing software with the wrong requirements (Boehm, 2003). 

The involvement and cross-functional collaboration of the product management and 

software engineering units (including any other business function such as marketing and 

sales) with the steering committee (product planning team) ensures that the software 

project follows a critical path and as a result delivers the project successfully within 

budget and on time (Batra, Xia, VanderMeer, & Dutta, 2010).  

The cooperative social process can be achieved through proper collaboration 

(example: developers working closely on a daily basis) and communication from team 

members who value and trust each other (Nerur et al., 2005). The communication and 

joint activities from two or more team members working together can reduce potential 

risks to the software project (Bardis, 1979). The entire team including the on-site 

customer must evaluate and explore decisions during product backlog meetings to 

determine what kind of software functionality needs to be added for each release and 

estimation to implement the functionality (Cobb, 2015).  

The entire team evaluates each backlog item based on its risk, priority, value and 

necessity which requires a collaborative effort (Schwaber & Sutherland, 2012). The 

impact of having an on-site customer at an early stage can reduce the number of errors 

related to business requirements and improvement of product quality through better 

understanding about their needs (Mohammadi et al., 2008).  

During sprint planning, the entire team with the on-site customer (product owner) 

selects a few user stories from the product backlog to be implemented in the sprint cycle. 



53 
 

Hence, the team collectively makes the commitment decision to deliver user stories 

(Cohn, 2004). The collaboration from sprint planning enables the entire team to organize, 

make commitments and perform the tasks that become shared team problems (Hansen & 

Baggesen, 2009). It requires a high level of trust to establish desired consistency, shared 

vision, commitment and teamwork between developers in agile teams (Cockburn & 

Highsmith, 2001).  

In daily-scrum meetings, each developer has the opportunity to discuss and 

communicate about their work from the previous day, their objectives for the current 

day’s work, and to identify issues that might prevent them completing their tasks 

(Maximini, 2015). After every team member reports their progress in the daily-scrum 

meeting, anyone from the team can propose a task that requires additional actions to be 

discussed further as part of the collaborative process (Stray, Moe, & Aurum, 2012).  

The daily discussions with the team expand and evolve around the shared 

unsolved problems rather than arguing about the errors encountered in the past (Hansen 

& Baggesen, 2009). Because of the high involvement and participation, developers 

become motivated to perform the task with more commitment which may lead to 

innovation, more productivity and helping other developers (Fenton-O'Creevy, 1998; 

Moe et al., 2008).  

The common practice from pair programming usually only involves two 

programmers to perform a common task. However, the collaboration of pair 

programming with an on-site customer and usability engineer may possibly lead to better 

understanding about the software project. The on-site customer should work very closely 

(possibly in the same room) with the developers in order to answer questions and provide 

instant feedback because the on-site customer possesses many of the critical knowledge 

about the project requirements (Koskela & Abrahamsson, 2004), while the usability 

engineer integrates user stories from the on-site customer with scenario-based design for 

unit testing, user acceptance testing and usability testing (Sohaib & Khan, 2010). The 

collaboration between developers, the on-site customer and the usability engineer can 

produce a usable product clearly identified from the user’s perspective.  

According to Melnik and Maurer (2004) a team effort involves face-to-face 

interaction facilitating a higher team velocity since they continuously support and learn 

from each other. At all levels (business and development) the experienced individuals of 

the team provide learning, knowledge and speed in agile development environments 

(Savolainen, Kuusela, & Vilavaara, 2010). According to Chen (2005), newcomers in the 



54 
 

agile team must be quick learners and adapt to the team culture. A study done by Hoegl 

and Proserpio (2004) shows close proximity enables higher levels of learning and 

meetings, a flow of rich information and better coordination of tasks and contributions.  

Hypothesis 6: Organizational learning positively affects the Team Effort of agile software 

development teams or organizations. 

 

 Organizational Learning and Workforce Agility 

Workforce agility acts as one of the main enablers for organizational agility, requiring 

the workforce to adapt to changes in the shortest possible time in order to deal with 

unpredictable changes at the marketplace (Qin & Nembhard, 2015; Sohrabi et al., 2014). 

A highly skilled and adaptable workforce will have the flexibility to be able to deal with 

non-routine tasks and problems (Youndt et al., 1996).  

The attributes of workforce agility can be identified through employees’(1) 

positive attitudes towards continuous learning and self-development; (2) welcoming and 

accepting of new ideas and changes; (3) taking full responsibility for their work and cross-

functional effort based upon empowerment; (4) effort and contribution in problem solving 

via knowledge management; (5) ability to work in different work environments; and (6) 

ability to take multiple roles (formal and informal) in a team setup (Dyer & Shafer, 2003; 

Griffin & Hesketh, 2003; Gunasekaran, 1999; Plonka, 1997; Sherehiy et al., 2007). In 

addition, workforce agility provides benefits such as enhancement in product quality, 

self-learning curve, customer service and identifying product scope accurately (Sherehiy 

et al., 2007).  

Agile software development requires general skill set (generalists) individuals 

who are flexible and have multiple development and business skills to be able to work in 

agile development teams (McConnell, 2004). As such, individuals are required to be 

continuously learning through on-job training to develop new skills (Bottani, 2009).  

According to Hopp and Van Oyen (2004), the generalist roles lead to workforce 

agility through high productivity, meeting frequent delivery commitments, reducing time 

for short development cycles, their understanding leading to better quality products with 

better features. Workforce agility often leads to a highly skilled and experienced 

development team (Cockburn, 2002). 



55 
 

In agile software development, development teams are cross-functional teams. 

The cross-functional team must have developers with at least the roles of systems 

analysts, designers and testers, the product owner and a scrum master (Lagerberg et al., 

2013). Collaboration in cross-functional teams enables generalist skillsets through 

learning each other’s jobs and roles (Marczak, Kwan, & Damian, 2009). The team 

members in cross-functional teams establish shared understanding to achieve effective 

communication and successful coordination to work collectively on tasks (Marczak et al., 

2009).  

Workforce agility leads development teams be adept at using multiple approaches 

to deliver software projects (Ashmore & Runyan, 2014). Workforce agility means that 

development teams and on site customers are required to collaborate and work together 

on a daily basis to accept and deal with unanticipated changes (Ashmore & Runyan, 

2014).  

According to Hopp and Van Oyen (2004), agile software development enforces 

cross-training and job sharing to enable individuals to learn to develop multi-skills to take 

other roles in their teams. Pair programming, mentoring and coaching are key practices 

for knowledge transfer to develop multi-skilled engineers (Goebel, 2009). Task sharing 

is critical in agile development environments to develop a general skill base. 

Therefore, the successful implementation of workforce agility in agile software 

development can improve the overall process of software development and it can be 

achieved by using a common language and aims and consistent goals that are based on 

the innovation, ideas, knowledge, expertise and learning of diverse team members.  

Hypothesis 7: Organizational Learning positively affects the Workforce agility of 

software development teams or organizations. 

 

 

 



56 
 

Knowledge 
Management

Organizational 
Culture

Organizational 
Learning

Competencies

Responsiveness

Speed

Team Effort

Workforce Agility

H1

H2

H3

H4

H5

H6

H7

 

Figure 1. The research model and relationship of hypotheses 

 

This chapter identified seven hypotheses as shown in Figure 1. The next chapter 

provides information about research methodology. 

  



57 
 

Chapter Four: Research Methodology 

 Chapter Overview 

This chapter provides information on the research methodology, i.e. the overall research 

process, used for this study. First, information is provided on the research paradigm that 

was the basis for this study, followed by information on the research method used to 

answer the research questions and to achieve the research objective defined in Chapter 1. 

In addition, this chapter discusses the data collection method and data analysis technique 

used, including information on ethical considerations for this study.  

 Research Paradigm 

The purpose of a research paradigm acts as guidance for the researchers to design and 

construct a model representing the study to ensure the study can be perceived by members 

of the research community (Johannesson & Perjons, 2014). A research paradigm is the 

belief that guides the researcher to conduct appropriate research, helping to establish a 

perspective from the community of researchers based on shared concepts, values, 

assumptions and practices (Johnson & Christensen, 2010). Hence, the research paradigm 

guides the researcher to formulate the research question(s), participant selection, data 

collection instruments and collection procedures, including the data analysis (Kivunja & 

Kuyini, 2017). 

Generally, there are three main research paradigms: positivist, interpretive and 

critical theory approach (Creswell, 2009). Each research paradigm is characterized based 

on its philosophy to deal with the nature of truth and of reality (Ontology), knowledge 

and justification (Epistemology), and identification of a research method for the study 

(Methodology) (Johnson & Christensen, 2010).  

The positivist paradigm assumes that the tested knowledge is derived by 

investigating the phenomenon, and the outcomes are predicted based on descriptive and 

factual statements (Scotland, 2012). The researcher observes the object as an independent 

entity, aiming to find meaning behind the discovered reality (Cohen, Manion, & 

Morrison, 2013; Crotty, 1998; Pring, 2000). The empirical investigation driven by the 

positivist approach uses a deductive approach (testing a theory) to generalize and make 

predictions (Scotland, 2012). Hence, the positivist approach may include a process to 

generate hypotheses, form correlation on models, quantify measures on controlled 

dependent and independent variables, and generalize from the sample (Chen & 



58 
 

Hirschheim, 2004). Following this assumption, the researcher can predict the outcome 

from natural human activities by collecting data from potential participants while making 

sure that there is no bias in the research approach (selection of participants, results 

interpretation etc.) (Bryman, 2012). 

The key process of the interpretive approach is to construct and refine information 

from multiple assessments before integrating to create a new knowledge (Sarantakos, 

2005). Unlike the positivist approach, the interpretive approach does not require defining 

of dependent and independent variables before conducting the research but focuses on 

the opinions and perceptions of people based on their observations and interviews 

(Kaplan & Maxwell, 2005). The aim of interpretive methodology is to have an 

understanding of individuals’ perspectives including interaction between individuals and 

their behaviour (Creswell, 2009). Therefore, interpretive researchers require to interpret 

information through direct social interaction with people’s consciousness, language and 

shared meanings (Myers, 2013).  

In contrast with the other paradigms, the critical theory paradigm assumes that 

reality is derived from a combination of social, political, cultural, economic, ethical and 

gender values (Guba & Lincoln, 1994). The main purpose of the critical theory approach 

is to examine the values and assumptions of the participants when engaging in a social 

action (Crotty, 1998; Scotland, 2012). The critical theory method generates data similar 

to the interpretive paradigm, however explicit values are now placed on the thematic 

interpretation of data (Scotland, 2012).  

For this study, positivist approach is identified to be the most suitable among the 

three paradigms described above to investigate the research problem. Following the 

positivist paradigm, this study attempts to investigate software development practices that 

enable agility for the entire organization. Hence, a list of agile method practices will be 

identified which ought to be considered to improve or change their development 

environment to successfully develop and deliver software products. 

 Research Method 

Generally, there are three types of research methods: qualitative, quantitative and mixed 

method. The main difference between qualitative and quantitative study is that one 

focuses on closed-ended questions and relies on numerical data in order to conduct 

statistical analysis and interpret the result, while the other focuses on open-ended 

questions where the researcher collects the data during the engagement with participants 



59 
 

directly (Creswell, 2013). The mixed method is an approach that uses both qualitative 

and quantitative methods. Most researchers tend to use the mixed method because it helps 

them to provide a complete understanding of their research problem through diverse types 

of data being collected, rather than use quantitative or qualitative data alone (Creswell, 

2013).  

The purpose of a research helps the researcher to determine the kind of knowledge 

to be produced using a specific research method (Blaikie, 2009). The purpose of a 

research can be differentiated into two types: exploratory and explanatory. Exploratory 

research is used when there is little information available on the research problem so that 

the researcher can provide clear understanding of the research problem (Blaikie, 2009). 

Explanatory research provides rich insights and seek patterns on observed phenomena, 

behaviour, relationships, attitudes, social processes and social structures (Blaikie, 2009).  

This is an exploratory study using the survey (quantitative) method. Hence, this 

study uses the widely available literature on agile organizations and agile software 

development methods to investigate and identify the agile software development 

practices that lead to agility based on an agile organization’s concepts. Hence, this study 

identifies agile software development practices that software organizations and vendors 

‘ought to consider’ for their development environment to successfully develop and 

deliver software products and to become market leaders. 

This study chooses the quantitative method to answer the research questions and 

to examine the relationship between the hypotheses. From the perspective of a 

quantitative study, it provides guidance for the researcher to collect data and develop 

numerical measurements from observations in order to produce generalizations from 

statistical evidence (Creswell, 2013). 

 Data Collection Methods 

The survey method is used for this study because it enables the researcher to involve 

widely targeted participants for this study. The survey method also ensures that there is 

no data manipulation from participants during the data collection process which is one of 

the characteristics of a survey (Creswell, 2013). While in the experimental study, the 

researcher attempts to control all variables that may affect the result: however it is still 

one of the most important approaches to explain causality from the manipulation of an 

independent variable to expect the desired result on the dependent variable (Singh, 2007).  

 



60 
 

Web-Based Survey 

There are several reasons for using a web-based survey for this investigation compared 

to other survey approaches such as a paper-based survey or an email-based survey. First, 

the participants identified in this study are software development organizations and 

development teams and most of them were working during work days. Consequently, the 

researcher used a web-based survey to provide easy access for these participants to be 

part of this research by using the internet whenever and from wherever it suited the 

participants, and also it can be useful for those who may face difficulty participating 

through other channels (Wellman, 1997).  

Second, a web-based survey creates distance between the researcher and the 

participants. Therefore, there is no interference from the researcher when participants are 

filling out the questionnaire. If the participants know the researcher or vice versa, the 

responses from a web-based survey may become biased and this could affect the results 

of the study (Andrews, Nonnecke, & Preece, 2007).  

Third, the web-based survey decreases the time and cost spent on distributing the 

questionnaire to a large number of participants (Garton, Haythornthwaite, & Wellman, 

1997; Yun & Trumbo, 2006). The researcher can reach participants separated by 

geographic distance in a short time using a web-based survey while it would consume 

more time to collect the equivalent amount of data in a face-to-face study environment 

(Wright, 2005). The web-based survey eliminates the costs of paper and other expenses 

such as travel and recording tools (Wright, 2005).  

Fourth, a web-based survey enables the researcher to ensure quality responses 

from the participants by designing the questionnaire using a systematic approach and 

having flexibility with the design. For example, participants are required to answer a 

question on a behaviour, which will also have options that the participant may use if the 

question does not fit with their situation. As a result, it helps to prevent or reduce the risks 

of missing data (Andrews et al., 2007). In addition, there are settings in a web-based 

survey to prevent the submission of multiple responses from same IP address or required 

e-mail address.  

Lastly, data analysis becomes easier because the participants’ responses from a 

web-based survey are usually represented in a database automatically which eliminates 

the risks of transcription errors. In addition, the researchers can export the data to a 

desired format and use it for data analysis.  



61 
 

Sampling 

Sampling is the process of selecting representatives from a population and usually the 

researcher wants to generalize the characteristics of a subset from a large group so they 

can make statements about the population based on the study’s sample (Johnson & 

Christensen, 2010). The purpose of sampling is to enable researchers to attain their 

research goal since it is impossible to study every single member in a population because 

of cost and time to collect the data (Muijs, 2010). 

There are two main types of sampling methods: probability sampling and non-

probability sampling. Probability sampling refers to a selection procedure of members 

from the population having a chance to be selected and the result can be used to reflect 

on the entire population (Reis & Judd, 2000). Non-probability sampling refers to a 

selection procedure where participants are not randomly selected from the population, 

often used by researchers in special cases (Reis & Judd, 2000). As discussed in the 

previous chapter, the sampling frame of this study was only agile software organizations 

or development teams and only those that were using agile software development 

approaches or methods. especially in New Zealand and Australia. 

The companies were identified through an index website that contains the 

software company name and contact information in New Zealand and Australia. Each of 

the agile software development teams or organizations were invited through an email. 

Some of the potential participants’ information was also acquired from contact 

information on NZ agile conference members.  

Respondents were identified through agile community groups and various agile 

software development conferences held in New Zealand and Australia. The following are 

the URL address of some of them: 

1. New Zealand agile conference (http://agilenz.co.nz/) 

2. Agile Australia conference (http://www.agileaustralia.com.au/2016/) 

3. Agile Auckland (http://www.meetup.com/Agile-Auckland/) 

4. Agile Wellington(http://www.meetup.com/AgileWelly/) 

5. Agile Brisbane (http://www.meetup.com/Agile-Brisbane/) 

 

http://agilenz.co.nz/
http://www.agileaustralia.com.au/2016/
http://www.meetup.com/Agile-Auckland/
http://www.meetup.com/AgileWelly/
http://www.meetup.com/Agile-Brisbane/


62 
 

 Ethical Considerations 

Ethical principles in research methodology are important, reflecting the researcher’s 

professional behaviour when conducting a research. The purpose of ethical considerations 

is to protect all parties involved in the data collection and the information used from the 

findings of study, especially the researcher, the participants and the researcher’s 

institution (Creswell, 2009). 

This study was undertaken following approval from AUTEC (Auckland 

University of Technology Ethics Committee). The ethics approval was required before 

conducting the web-based survey and information about the research was provided on the 

information sheet for the participants. The information sheet is available in appendix A  

From an ethical perspective, this study informed all participants that their 

participation was voluntary. Before taking the questionnaire, the participants were 

informed that their responses from the questionnaire were completely anonymous and the 

information provided by them would only be used for this study. During the process of 

answering the questionnaire, participants had the right to withdraw their participation at 

any time if they felt uncomfortable. In addition, participants’ confidentiality and privacy 

were protected and data related to this study was kept in a secure place which could only 

be accessed by the researchers involved in this study.  

 Development of the Survey  

Initially, the survey questions were developed based on a literature review and aimed to 

address the 7 hypotheses and consisted of 120 questions. After revision and improvement 

with the supervisor, 76 questions were selected and divided into nine sections (reflecting 

themes of agile organization concepts). Then, a pre-test survey (pilot study) was 

conducted with the involvement of one master’s student with similar studies and two 

lecturers who are experts in agile software development. According to Fowler (2009), the 

purpose of pre-testing a survey is to discover how reliable the survey instruments and 

data collection protocols work under realistic conditions. Additionally, the pre-test of the 

survey questionnaire ensured the questions were clear and were likely to obtain the 

desired information (Gaddis, 1998). The questionnaire was then sent to AUTEC for 

approval before sending the email invitation to the participants.  

 

 



63 
 

The questionnaire was structured in the following sequence: 

At the beginning of the questionnaire, there was a welcome page that provided 

brief information about this study followed by an information sheet which was also 

approved by AUTEC. The detail of the information sheet is available in Appendix A. 

Based on the pre-test survey, it was estimated that it would take around 20 to 25 minutes 

for participants to complete the survey. The full version of the survey questionnaire is 

provided in Appendix B.  

 

Table 8 below explains the agile software development practices with reflected 

questions in the survey.  

Table 8. Agile Software Development Practices with Reflected Questions 

Agile organization concepts Agile software development practices Reflected in Survey 

1. Cooperative Teams  Vision planning 

 Product backlog 

 Daily stand-up meeting 

 Pair programming 

 Sprint planning 

 Coding standard 

 Retrospective 

Question 12-33 

2. Competencies  Continuous integration 

 Self-organizing teams 

 Product backlog 

 Test-driven development 

 User stories 

 Unit testing 

 User story acceptance testing 

Question 34-45 

3. Responsiveness  Product backlog 

 Release planning 

 Sprint planning 

 Retrospective 

 User story acceptance testing 

Question 46-49 

4. Organizational Learning  Vision planning 

 Retrospective 

 Release planning 

 Sprint planning 

 Retrospective 

 Test-driven development 

Question 50-56 

5. Organizational Culture  Open workspace 

 Coding standard 

 Collective code ownership 

 Retrospective 

 User story acceptance testing 

Question 57-62 

6. Workforce Agility  Self-organizing teams 

 Daily stand-up meeting 

 Sprint planning 

 Retrospective 

Question 63-65 



64 
 

 User stories 

7. Speed  Sprint planning 

 Product backlog 

 Test-driven development 

 Continuous integration 

 Refactoring 

Question 66-72 

8. Knowledge 

Management 
 Pair programming 

 Test-driven development 

 Retrospective  

 User story acceptance testing 

 Regression testing 

 Refactoring 

 Coding standard 

Question 73-76 

 

 Survey Administration 

An invitation message regarding the recruitment of participants for the survey was sent 

through email. The invitation message indicated that this study was part of a master’s 

thesis and the objective of this study was to investigate the agility elements from the 

software development industry and identify factors (specific software development 

practices required to achieve agility) that software organizations and vendors ought to 

consider improving or changing in their development environment. It also informed 

participants that the survey was anonymous and voluntary. In addition, their identities 

would not be included for any other study.  

The survey was made available online on Google Survey between May 2017 and 

July 2017. The survey was closed on 10 July 2017. There were 63 responses gathered in 

total. The collected data is analysed in detail in Chapter Five.  

 Data Analysis Techniques 

After collecting the data from participants, the dataset was analysed using Structural 

Equation Modelling (SEM). SEM is used by IS researchers to analyse data to meet the 

standard criteria with utilizing high quality statistical analysis from this second generation 

data analysis technique (Gefen, Straub, & Boudreau, 2000). The difference between SEM 

and first generation statistical tools such as regression analysis is that at first researchers 

need to build a relationship model between dependent and independent variables in order 

to obtain answers from a collection of research questions (Anderson & Gerbing, 1988). 

Then the analysis result displayed to the researcher is presented in simple form, 

systematic, including comprehensive analysis to test the validity of the SEM model 

(Gefen et al., 2000). There are two parts that the researcher has to include in the SEM 



65 
 

model: structural model and measurement model (Gefen et al., 2000; Mehlsen, 2009). 

The structural model explains the correlation among the latent variables as this 

connection is the main purpose of the analysis while the measurement model describes 

the connection between the latent variables with manifest indicators (Mehlsen, 2009). 

The reason why SEM requires a measurement model is to assist latent variables because 

they cannot be measured directly, so manifest indicators serve as measurement variables 

in the questionnaire (Mehlsen, 2009). The analysis from a combination of structural and 

measurement models allows the researcher to analyse measurement errors on the 

observed variables which acts as an integral part of the model and also evaluates the 

hypothesis testing from variable relationships (Gefen et al., 2000).  

4.7.1 Structural Equation Modelling 

Generally, there are two types of SEM methodologies that can produce formative 

measurement models with latent variables: Covariance-Based SEM (CB-SEM) which can 

be analysed by using the software packages of AMOS and LISREL; and Partial Least 

Squared (PLS) which used a PLS-Graph and SmartPLS (Wong, 2013a). This study 

selected PLS over CB-SEM for two reasons. First, it is more appropriate to use PLS when 

the research model is in an early stage. Second, this research model has formative 

constructs and PLS can estimate formative constructs (Chin & Newsted, 1999).  

As discussed in section 4.2, this study chose exploratory as the research objective 

and it is really suitable with the role of PLS to assist the researcher on exploratory research 

whose main goal is to predict or identify the latent variable while CB-SEM is more 

suitable when it is applied in theory testing, theory confirmation and other forms of 

comparison (Hair et al., 2011; Wilburn, 1984; Wong, 2013a).  

The advantage of CB-SEM is that it can reduce the effect of measurement errors 

and also separate each error from other sources which makes it easier for the researcher 

to analyze the data than with PLS (Kotzab, Seuring, Müller, & Reiner, 2006). PLS 

provides a less accurate estimation of errors in measurement models compared to CB-

SEM which provides higher quality criteria for the overall measurement model 

(Gänswein, 2011).  

To sum up, this study used PLS as the most suitable data analytical technique. 

PLS uses SmartPLS because it has the capability to work with SPSS and has a user-

friendly graphical interface. 

 



66 
 

 

Table 9. Comparison Between the Approaches of PLS-SEM and CB-SEM 

(Chin & Newsted, 1999; Codita, 2011) 

Criteria PLS Covariance-based SEM 

Fundamental method Variance-based Covariance-based 

Objective Prediction oriented Parameter oriented 

Data distribution 

assumptions 

Predictor specification 

(non-parametric) 

Multivariate normal 

distribution and 

independent observation 

(parametric) 

Model evaluation Heuristic method Statistical “fit” measures 

Relationship between the 

indicators and the 

construct 

Formative and reflective Typically reflective 

Parameter estimates Consistent as indicators 

and sample size increase 

(consistency at large) 

Consistent 

Interdependence between 

constructs 

Not possible in the basic 

model 

Possible 

Sample Size Small sizes are admissible 

under appropriate sample 

power considerations 

Depending on the 

complexity of the model, 

large sizes are mandatory 

Implications Optimal for prediction 

accuracy 

Optimal for parameter 

accuracy 

 

Data Screening 

Data Screening refers to the initial process of data examination to ensure the quality of 

data and data accuracy (Tavakoli, 2012). The purpose of data screening is to find any 

error or inconsistency in the data that may affect the research findings (reference). The 

data from participants is considered as invalid and is not included in the data analysis 

when the participants leave a question unanswered in the questionnaire or submit an 

incomplete questionnaire. The process of data screening can be considered as time 

consuming when the researchers who conduct data collection and data entry are different 

researchers (Goyal, 2010). However, with this research the primary researcher was the 

one who was responsible for the data collection and entry stages for this study. In 

addition, data screening helps the researcher to comprehend the fundamental relationships 



67 
 

between variables and ensures the responses from intended participants meet all 

requirements and are valid before the data is transferred into the data analysis stage.  

 

Outliers (Extreme observation) 

Outliers is one of the processes included in the data screening to identify and remove or 

replace critical data that are different from others (Jegerski & VanPatten, 2013). There 

are three main steps to handle outliers: find the outliers from data entry, determine the 

cause of outliers and reduce the impact of outliers (Tinsley & Brown, 2000). The purpose 

of identifying outliers is to ensure that the data are reflected on the normal distribution 

within the population because if not, it may affect the statistical results, especially in 

quantitative research (Loewen & Plonsky, 2015). There are two ways to reduce the impact 

of outliers: univariate (case with extreme value on single variable) or multivariate outliers 

(unusual case between combination of scores on two or more variables) (Tinsley & 

Brown, 2000). 

Multivariate Analysis  

This study chose normality to ensure that the shape of the data distribution was related to 

a normal distribution before examining the sample data further in the PLS. Following the 

outlier, normality analysis also includes the same terms: univariate and multivariate 

normality. The evaluation of univariate normality is already sufficient during data 

screening and is used in most cases when the distribution value is symmetrical while the 

evaluation of multivariate normality is used when each variable in the data model is 

normally distributed with a fixed value (Nimon, 2012).  

If the data is considered multivariate normality, it means the variables are also 

valid in univariate normality (Stamatis, 2002). However, the evaluation of multivariate 

normality itself is difficult to achieve and only necessary when it is critical (Stamatis, 

2002). Therefore, this study used univariate normality as the initial step of multivariate 

analysis then proceeded to multivariate normality when it was required. There are two 

methods that the researcher can use to examine univariate normality which involve 

graphical tests (histograms and normality probability plots) and non-graphical tests 

(Shapiro-Wilks test, the evaluation of kurtosis and skewness values) (Nimon, 2012).  



68 
 

4.7.2 Specification of Measurement Model in SEM 

The measurement model in SEM indicates that the relationships between each latent 

variable and indicator variables have to be specified logically and systematically for each 

construct in the structural model (Döscher, 2014). There are two approaches to construct 

a measurement model in SEM: formative and reflective measurement models. 

Determining the measurement model between formative and reflective is very crucial 

because it serves as one of the requirements to establish the relationship between variables 

in the structural model or it may end up with the researcher producing a misleading result 

from the incorrect interpretation of the research theory (Coltman, Devinney, Midgley, & 

Venaik, 2008).  

 This study chose the formative measurement model as the most suitable approach 

to construct the measurement model in SEM. There are several theoretical and empirical 

considerations which specify whether the construct of the measurement model is 

formative or reflective (Coltman et al., 2008).  

The first priority of the theoretical consideration to identify the measurement 

model is the direction of causality between items and latent constructs. In the reflective 

model, the causality is formed from the construct to the items which indicates that one 

construct can cause many variations in the item measures or show that from the existing 

latent construct, it can produce an independent measurement (Bollen & Lennox, 1991). 

The formative model has the opposite effect where a variation in item measure causes a 

variation in the construct or combination of indicator variables causing the latent 

construct (Jarvis, MacKenzie, & Podsakoff, 2003).  

Still following the theoretical consideration, the next priority is the characteristics 

of used items to measure the construct. The reflective model can be identified from the 

interchangeable used items where adding or removing an item does not affect the 

conceptual domain of the construct and also shares a common attribute (Coltman et al., 

2008). On the other hand, the formative model can be observed through a unique attribute 

for each item and the items are not interchangeable so if there are some changes, they 

could affect the conceptual domain of the construct (Jarvis et al., 2003).  

From the empirical consideration, each item in the reflective model should be 

interrelated with a high positive value and it can be tested using internal consistency and 

reliability from Cronbach alpha (Coltman et al., 2008), while in the formative model, the 

interrelation can contain any value with the minimum provision of having the same 



69 
 

directional relationship. In addition, the reflective model can identify the measurement 

error in the construct by using confirmatory factor analysis to find the error while the 

formative model cannot identify the measurement error. However, vanishing tetrad tests 

are recommended to predict the formative items as intended (Coltman et al., 2008). 

The next priority coming from empirical considerations is that items in the 

reflective model have identical signs of relationships with consequences or antecedents 

as the construct while it may appear not identical for the formative model (Jarvis et al., 

2003). In order to achieve this consideration, the researcher can test the content validity 

for the reflective model or nomological validity for the formative model (Coltman et al., 

2008).  

4.7.3  The Main Processes of PLS 

There are three sets of relationships that can be found in the latent variable path models 

in PLS: inner model, outer model and weight relations (Chin & Newsted, 1999). The inner 

model describes the relationship between the latent variables based on the theory, while 

the outer model defines the relationship of each indicator that relates to its latent variable. 

Weight relations need to be defined in order to complete the specification for the PLS 

estimation algorithm based on these two models.  

There are three weighting schemes that are available to use in PLS: centroid 

scheme, factorial scheme and structural or path weighting scheme. This study chose the 

path weighting scheme because it was considered the best in terms of describing models 

and also provides the highest R2 value for endogenous latent variables which are 

applicable for all kinds of path model specifications and estimations (Hair, Hult, Ringle, 

& Sarstedt, 2016; Vinzi, Chin, Henseler, & Wang, 2010). 

Validating the measurement model 

The measurement model attempts to represent the connection between observed variables 

and latent variables. The objective of testing the measurement model is to state how the 

latent variables are measured, which is based on observed variables and used to define 

the measurement properties of the observed variables (validity and reliability). 

Reliability Considerations 

Reliability ensures that the portion of items used to measure a construct is related to be 

considered as a set of items. The reliability of a construct is calculated separately and 

assessed independently which is based on internal consistency (Netemeyer, Bearden, & 



70 
 

Sharma, 2003). This study used composite reliability (CR) to assess the internal 

consistency from a set of items in PLS. The results can vary between 0 and 1. The 

recommended value of CR for each construct should be greater than 0.70 in order to reach 

a satisfactory level and a higher value of CR indicates higher reliability (Hair et al., 2011).  

Discriminant and Convergent Validities  

Discriminant validity indicates that each of the constructs is distinct from the other. The 

result can be assessed by using the recommendation provided by Gefen, Straub, and 

Rigdon (2011), which compares the square root of the average variance extracted (AVE) 

values for each construct which should be greater than the corresponding correlations 

between this construct and any other constructs. 

 Convergent validity measures the correlation between a construct’s indicators and 

the alternative indicators of the same construct. It can be assessed by using AVE which 

acts as the summary indicator among a set of items measuring the same construct. The 

recommended value of AVE should be greater than 0.50 in order to reach a satisfactory 

level (Wong, 2013b). 

Validating the structural model 

The structural model measures the validity of the measurement model and tests the 

relationships among theoretical latent variables (Schumacker & Lomax, 2010). The 

structural model and hypotheses are evaluated through the coefficient of determination 

(R2) of the dependent variable, which measures its variance based on the independent 

variables in the structural model. The recommended value for R2 should be above 0.2 

which indicates that the structural model is valid and independent variables successfully 

predict the changes of dependent variables (Wong, 2013b).  

 PLS does not evaluate the goodness of fit metric for the measurement and 

structural model. The purpose of model fitting is to emphasize the overall model fit with 

the entire indicator variables with hypothesized covariance from the measurement model 

to form the best possible construct and the researcher can use various statistical tests from 

the fit indices in order to determine if the model fits the data (Gefen et al., 2000).  

According to Chin (2000), there are two reasons for considering model fit in PLS 

analysis. Firstly, the goodness of fit measurement is related to the model and requires all 

measures as reflective, however the construct model used in this study is being modelled 

as formative. Secondly, it does not predict and relate to how well the parameter estimates 



71 
 

of latent variables or any item measures. As a result, this study does not include indices 

during PLS analysis to avoid confusion. 

 

 This chapter provides information on the research methodology used for this 

study. This study was driven by the positivist approach. For the data collection, this study 

used a web-based survey targeting participants from the software development 

organizations and development teams. The data analysis was done using the PLS method 

using SmartPLS as the software tool. 

  



72 
 

  



73 
 

Chapter Five: Data Analysis and Findings 

 Survey Results 

This section provides results from the survey, and includes statistical analysis done using 

SmartPLS. 

Section 5.1 – 5.11 provide general results of the survey on agile method practices 

and section 5.12 – 5.14 provide results on the hypotheses tested through this survey 

investigation. 

 Targeted Participants 

Table 10 provides data on the actual participants who were invited to take part in this 

survey, including data on those who took part in the survey. The result shows that there 

was almost a 35% success rate in terms of actual participation for this study. There were 

181 invitations emailed out to the prospective participants (in-house agile software 

development teams, agile software development contracting companies and agile 

software vendors), mostly in New Zealand and some in Australia. However, only 63 

participants responded to the online survey. From the 63 responses, 58 were screened to 

be suitable for data analysis. With 58 responses from different agile software 

development organizations, there were a sufficient number of responses for data analysis 

to able to identify agile organizational practices for gaining agility in software 

development.  

Table 10. Survey Information 

Survey Information Responses Percentage 

Survey Invitations Sent 181 100.0% 

Submitted Responses 63 34.8% 

Valid Responses 58 32.0% 

 

Participant Break-down 

Table 11 shows that almost 33% of respondents were from in-house software 

development teams of business organizations and institutions. In addition, 43% of the 

respondents were software vendor organizations and 24% were from contracting software 

development organizations. Hence, this survey involved participants from organizations 



74 
 

that are using one of three ways the software is most likely to be developed and made 

available for business use.  

Table 11. Organization Category 

Organization Category Responses Percentage 

In-house development teams  19 32.8% 

Software vendors 25 43.1% 

Contracting IT/Software development teams 14 24.1% 

 

 Team Size 

Table 12 shows that almost 52% of the respondents had agile software development teams 

with 10 to 50 individuals. In addition, 24% of the respondents indicated that they had 

more than 50 individuals in their agile software development teams. The other 24% had 

less than 10 individuals in their agile software development teams. Hence, this survey 

involves participants from both large and small agile software development teams and 

organizations, so the findings will be applicable and can be used by all agile software 

development practitioners to improve their software development environment for agility 

and as a result achieve the benefits at the market place.  

Table 12. Team Size 

Team Size Responses Percentage 

Less than 10 14 24.1% 

10 – 50 30 51.7% 

Over 50 14 24.1% 

 

Team Size Break-down 

Table 13 shows that for the in-house software development teams, an overwhelming 89% 

of respondents were part of large agile software development teams (i.e. 47% of 

respondents indicated that they were part of agile software development teams which had 

10 to 50 team members and 32% indicated that they were part of agile software 

development teams that had over 50 team members). Furthermore, for software vendors 

80% (68% + 12%) of the respondents were part of large agile software development teams 

that had from 10 to 50 team members). For contracting development teams, 64% of the 

respondents were part of large agile software development teams. On the other hand, 

almost 36% of respondents were from agile software development teams that had less 



75 
 

than 10 team members. The large number of respondents from large team sizes shows 

that agile software development is now regarded as a useful development approach for 

providing an effective work breakdown structure not only for small size teams but also 

for large size teams. When agile software development emerged in the 1990s, it was seen 

as a useful approach for small sized teams.  

Table 13. Team Size Break-down 

Team Size Break-down Responses Percentage 

For In-house development teams   

Less than 10 4 21.1% 

10 – 50 9 47.4% 

Over 50 6 31.6% 

For Software vendors   

Less than 10 5 20.0% 

10 – 50 17 68.0% 

Over 50 3 12.0% 

For Contracting development teams   

Less than 10 5 35.7% 

10 – 50 4 28.6% 

Over 50 5 35.7% 

 Experience in Agile Environment 

Table 14 provides statistics on the agile software development experience of the 

respondents. As shown in the table 14, almost 86% of the respondents had more than two 

years of agile software development experience. Hence, with a high number of the survey 

respondents with a good level of agile software development experience it is expected 

that it would lead to significant survey results, which will have both practical and 

theoretical benefits.  

Table 14. Experience in Agile Environment  

Experience in Agile Environment Responses Percentage 

1-2 years 8 13.8% 

2-3 years 9 15.5% 

3-5 years 20 34.5% 

5-10 years 15 25.9% 

10-15 years 4 6.9% 

>15 years 2 3.4% 



76 
 

Table 15 provides a further breakdown of the respondents on agile software development 

experience for in-house software development teams, software vendors and contact 

development teams. Most of the respondents for each of these different options for 

software development had more than two years of software development experience (for 

in-house development teams almost 90%, software vendors 88% and contracting 

development teams almost 79%). Having a significantly large number of respondents 

with more than two years of agile software development experience is critical to ensure 

the external validity of the survey results. 

Table 15. Experience in Agile Environment Break-down  

Experience in Agile Environment Break-down Responses Percentage 

For In-house development teams   

1-2 years 2 10.5% 

2-3 years 2 10.5% 

3-5 years 8 42.1% 

5-10 years 5 26.4% 

10-15 years 2 10.5% 

For Software vendors   

1-2 years 3 12.0% 

2-3 years 3 12.0% 

3-5 years 11 44.0% 

5-10 years 6 24.0% 

10-15 years 1 4.0% 

>15 years 1 4.0% 

For Contracting development teams   

1-2 years 3 21.4% 

2-3 years 4 28.6% 

3-5 years 1 7.1% 

5-10 years 4 28.6% 

10-15 years 1 7.1% 

>15 years 1 7.1% 

 

 

 



77 
 

 Projects Undertaken in a Year 

Table 16 shows that 43% of respondents indicated that they had undertaken between four 

and six agile software development projects in a year and another 43% of the respondents 

had undertaken more than six agile software development projects. Just 14% of the 

respondents indicated that they undertook between 1 and 3 agile projects per year. Thus, 

most respondents would have significant understanding and skills on applying agile 

software development approach/practices in software development projects. In addition, 

the data presented in Table 17 shows that the agile software development projects are 

mostly short duration in nature based on the number of projects they undertook in a year, 

including the survey respondents had a solid experience and understanding in undertaking 

agile software development projects. It is not a surprising to see software vendors taking 

more than six projects in a year, since producing and selling software is their business 

and they have to keep ahead of competitors.  

Table 16. Projects Undertaken in a Year 

Projects Undertaken in a Year Responses Percentage 

1-3 projects 8 13.8% 

4-6 projects 25 43.1% 

>6 projects 25 43.1% 

 

Table 17. Projects Undertaken in a Year Break-down 

Projects Undertaken in a Year Break-down Responses Percentage 

For In-house development teams   

1-3 projects 2 10.5% 

4-6 projects 9 47.4% 

>6 projects 8 42.1% 

For Software vendors   

1-3 projects 1 4.0% 

4-6 projects 11 44.0% 

>6 projects 13 52.0% 

For Contracting development teams   

1-3 projects 5 35.7% 

4-6 projects 5 35.7% 

>6 projects 4 28.6% 

 



78 
 

 Success Rate of the Projects 

Table 18 shows that almost 90% of respondents had over 75% success with agile software 

development projects. Interestingly almost 50% of the respondents indicated that they 

have more than 90% success rate with their agile software development projects. This 

shows that the agile approach for software development is making a difference to the 

ability for the development teams to deliver projects successfully. It is well known that 

prior to the emergence of the agile approach, the success rate with software development 

projects was around 30%.  

Table 18. Success Rate of the Projects 

Success Rate of the projects Responses Percentage 

<30% 1 1.7% 

30%-50% 0 0.0% 

51%-75% 4 6.9% 

76%-90% 25 43.1% 

91%-99% 27 46.6% 

100% 1 1.7% 

 

Table 19 shows that software vendors and contract development teams had 100% success 

rate with their agile software development projects while in-house development teams 

were not far behind with almost 94% success rate. These success rates clearly suggest 

that the agile approach is heading towards becoming a mainstream software development 

approach. This shows the significance of not only this research but any other research 

into agile software development, providing valuable information for successful agile 

adoption.  

Table 19. Success Rate of the Projects Break-down 

Success Rate of the Projects Break-down Responses Percentage 

For In-house development teams   

<30% 1 5.3% 

51%-75% 1 5.3% 

76%-90% 9 47.4% 

91%-99% 8 42.1% 

For Software vendors   

51%-75% 1 4.0% 

76%-90% 10 40.0% 



79 
 

91%-99% 14 56.0% 

For Contracting development teams   

51%-75% 2 14.3% 

76%-90% 6 42.9% 

91%-99% 5 35.7% 

100% 1 7.1% 

 

 Agile Practice Used 

Table 20 provides data on some of the key agile method practices which ought to bring 

development success. Data on product backlog (almost 90%), sprint backlog (86%) and 

daily stand-up meetings (86%) shows that planning in agile software development is 

critical compared with other software development approaches; hence, successful agile 

software development must be driven by planning. The release planning (stated by almost 

73% of respondents to be part of their development environment) practices may not rate 

as a high value practice for in-house software development teams compared to a software 

vendor environment or even with contract development teams since anything that is 

produced through in-house software development is usually for internal use only.  

In a software vendor environment, a release plan is based on the roadmap plan for 

a time period capturing the strategic dates for market release up to two years. Similar 

Table 20 shows that the vision planning is ranked 10th overall in the table in terms of the 

practices adoption with only 60.30% of respondents indicating its adoption in their 

development environment. This is critical practice in a software vendor environment 

since they need to ensure any new development is well thought out, needed and will sell 

well at the marketplace.  

It is worthwhile to note a high level of adoption (almost 73% of respondents stated 

that it is part of their development environment) rate for pair programming practices in 

agile software development projects. Often this practice has been misunderstood due to 

the cost assumption when two developers are working collectively on a single task. 

However, this practice ought to lead to a shorter implementation time, quality features, 

learning from each other when task sharing and having quality assurance work done 

upfront with implementation.  

Agile method practices such as continuous integration (69%), retrospective (69%) 

and refactoring (65.5%) ought to be amongst the critical agile software development 



80 
 

practices but the level of data on adoption does not suggest every agile approach adopter 

sees these three practices in same light for their development environment. Continuous 

integration practice through automation is vital for short development cycles in projects 

whereas refactoring practice enables target performance requirements of the software 

product. In addition, retrospective practice is vital for reflection to get better from one 

short development cycle to the next including from one project to another.  

It is interesting to note that with the test-driven development (TDD) practices, 

only 41.40% of respondents indicated that they had it as part of their development mind 

set. One possible explanation for this result could be that the quality assurance and testing 

tasks are still treated as separate activities from sprints. Another possible explanation is 

that most development environments still require significant levels of manual testing and 

quality assurance tasks. However, there appears to be a good level of adoption for TDD-

related practices such as acceptance testing (62.1%), unit testing (almost 57%) and 

regression testing (55.2%).  

These testing practices ought to be automated in an agile software development 

environment and are key for continuous delivery of working codes in short development 

cycles to be deployed in a production environment. Low levels of adoption for coding 

standards (almost 40%) and collective code ownership (almost 28%) show that agile 

software development requires to be discipline driven. As a result, the software 

development community is being advocated with the prominence of scaled agile methods 

especially with the emerging of cloud technology to host and offer the software product 

to a vast audience worldwide. 

Table 20. Agile Method Practices 

Agile Method Practices Responses Percentage 

Product backlog 52 89.7% 

Sprint backlog 50 86.2% 

Daily stand-up meeting 50 86.2% 

Release planning 42 72.4% 

Pair programming 42 72.4% 

Continuous integration 40 69.0% 

Retrospective 40 69.0% 

Refactoring 38 65.5% 

Acceptance testing 36 62.1% 

Vision planning 35 60.3% 



81 
 

Unit testing 33 56.9% 

Regression testing 32 55.2% 

Common workspace 24 41.4% 

Test-driven development 24 41.4% 

Coding standard 23 39.7% 

User story mapping 20 34.5% 

Self-organizing team 18 31.0% 

Collective code ownership 16 27.6% 

Burn-down/Burn-up chart 13 22.4% 

 

 Single Agile Method 

Table 21 shows that almost 52% of respondents indicated that they had adopted a single 

agile method. The SCRUM method is the most popular method, which is not surprising 

since it provides solid project planning practices (product backlog and sprint planning) 

which create visibility organization-wide of the total amount of work that would be 

carried out including making it easier to execute, monitor and control the work in short 

development cycles. The next most adopted single agile methods are in fact two methods: 

XP (20%) and Kanban (20%). They both are strong with practices on development and 

delivery of projects. 

Table 21. Single Agile Method 

Single Agile Method Responses Percentage 

Extreme programming (XP) 6 20.0% 

Scrum 13 43.3% 

Adaptive software development 3 10.0% 

Feature-driven development 1 3.3% 

Kanban 6 20.0% 

Agile modelling  1 3.3% 

Total Responses 30 51.7% 

 

Table 22 provides data on single method adoption in the three different types (in-house 

development teams, software vendors and contract development teams) of development 

environments. The high adoption rate of the SCRUM method in all three different 

environments suggests that project planning is considered vital for development success 

regardless of the type of the development environment. 



82 
 

Table 22. Single Agile Method Break-down 

Single Agile Method Break-down Responses Percentage 

For In-house development teams   

Extreme programming (XP) 2 25.0% 

Scrum 3 37.5% 

Feature-Driven Development (FDD) 1 12.5% 

Kanban 1 12.5% 

Agile modelling  1 12.5% 

For Software vendors   

 Extreme programming (XP) 1 10.0% 

 Scrum 5 50.0% 

 Adaptive software development 1 10.0% 

 Kanban 3 30.0% 

For Contracting development teams   

 Extreme programming (XP) 3 25.0% 

 Scrum 5 41.7% 

 Adaptive software development 2 16.7% 

Kanban 2 16.7% 

 

 Hybrid Agile Methods 

Table 23 shows 48.3% of the respondents said that they had adopted a hybrid (software 

development practices adopted from more than a single agile method) agile method. The 

SCRUM (82.1%) method and XP (64%) methods are the two most popular ones for 

practices to create a hybrid method. The SCRUM method provides effective planning 

practices whereas the XP method practices mostly focus on implementation tasks. Hence, 

these two methods provide practices for an effective hybrid method. Interesting to see 

User-Centered Design (UCD) (38%) as part of a hybrid approach as, knowing the various 

user groups of the product, more reliable and achievable product backlogs can be created 

through the design phase of the project.  

Table 23. Hybrid Agile Methods 

Hybrid Agile Methods Responses Percentage 

Extreme programming (XP) 18 64.3% 

Scrum 23 82.1% 

Adaptive software development 8 28.6% 

Dynamic systems development method 4 14.3% 



83 
 

Feature-driven development 1 3.6% 

Rapid application development 5 17.9% 

Lean software development 6 21.4% 

Kanban 12 42.9% 

Agile modelling  2 7.1% 

User-Centered Design (UCD) 8 28.6% 

Total Responses 28 48.3% 

 

Table 24. Hybrid Agile Methods Break-down 

Hybrid Agile Methods Responses Percentage 

For In-house development teams   

 Extreme programming (XP) 6 54.5% 

 Scrum 8 72.7% 

 Adaptive software development 5 45.5% 

 Dynamic systems development method 2 18.2% 

 Feature-Driven Development (FDD) 1 9.1% 

 Rapid application development 3 27.3% 

 Lean software development 2 18.2% 

 Kanban 4 36.4% 

 User-Centered Design (UCD) 3 27.3% 

Total Responses 11 39.3% 

For Software vendors   

 Extreme programming (XP) 12 80.0% 

 Scrum 13 86.7% 

 Adaptive software development 5 33.3% 

 Dynamic systems development method 1 6.7% 

 Lean software development 4 26.7% 

 Kanban 8 53.3% 

 Agile modelling  2 13.3% 

 User-Centered Design (UCD) 4 26.7% 

Total Responses 15 53.6% 

For Contracting development teams   

 Scrum 2 100.0% 

 Adaptive software development 2 100.0% 

 Dynamic systems development method 1 50.0% 

 Rapid application development 2 100.0% 

 Agile modelling  1 50.0% 



84 
 

Total Responses 2 7.1% 

 

 Role to Compile Vision or Roadmap Plans 

Table 25 highlights some of the new and emerging positions that are playing prominent 

roles in agile software development. The product manager role has now become crucial 

to provide direction with software product development – 69% of respondents indicated 

that a product manager is part of their team that compiles vision or roadmap plans. The 

product manager has substantial product domain knowledge and client business 

knowledge, including having foresight for future client needs, hence, they are in the best 

position to provide product vision and understanding at software engineering level.  

Almost 66% of respondents have indicated that project managers help to compile 

vision/roadmap plans. This shows that there is a shift in the traditional roles and 

responsibilities of the project manager role. Project managers now are increasingly 

having to be multi-skilled (generalised skilled) to be part of the team to help compile 

vision/roadmap plans.  

Table 25 also shows that almost 33% of respondents indicated that their agile 

development environment has a product development manager as part of the team to 

compile vision/roadmap plans. This is a new role that replaces the project manager role 

and is a proxy product manager role which is co-located with the development team 

managing and directing implementation in agile development teams (Lal, 2011). 

In addition, Table 25 also shows that 29.30% of respondents have indicated that 

software engineering managers play a part in helping to compile vision/roadmap plans. 

Hence, the software engineering manager role too is a generalist type of role whereby 

engineering managers not only help develop reliable and achievable product 

vision/roadmap plans but also help to communicate it at a development team level so that 

they can swiftly develop effective and reliable product backlog/sprint plans.  

Table 25. Role to Compile Vision or Roadmap Plans 

Role to Compile Vision or Roadmap plans Responses Percentage 

Product manager 40 69.0% 

Project manager 38 65.5% 

Business analyst 26 44.8% 

Product development manager 19 32.8% 

Software engineering manager 17 29.3% 



85 
 

Functional manager 10 17.2% 

Marketing manager 5 8.6% 

 

 Measurement Model Validation  

This section assesses the reliability and validity of the model. The measurement results 

enable the researcher to compare the theoretical measurement with the structural model 

and collected data. The reliability of the model can be assessed using an internal 

consistency reliability technique, while the validity of the model can be assessed using 

convergent validity and discriminant validity.  

Internal Consistency Reliability 

The first criteria to evaluate PLS is to test the Internal Composite Reliability (ICR). The 

result is obtained through the reliability of each latent variable. Reliability ensures that 

the portion of items used to measure a construct are related to be considered as a set of 

items. The reliability of a construct is calculated separately and assessed independently 

based on internal consistency (Netemeyer et al., 2003). The recommended value may 

vary between 0 and 1 with a minimum value of 0.7. Any higher value means that there is 

a higher reliability (Hair et al., 2011). Table 26 shows that all latent variables (agile 

organizations concepts) in the PLS model have internal consistencies greater than 0.7, 

indicating the reliability of all the constructs (agile organizations concepts) of this study. 

Table 26. Composite Reliability Results 

Construct Composite Reliability  

Competencies 0.842 

Knowledge Management 0.851 

Organizational Culture 0.815 

Organizational Learning 0.836 

Responsiveness 0.739 

Speed 0.838 

Team Effort 0.855 

Workforce Agility 0.749 

 

Convergent Validity 

Convergent validity measures the positive correlation between each indicator with 

different indicators in the same construct. The result can be obtained through either 



86 
 

considering the outer loading of the indicators or the Average Variance Extracted (AVE). 

According to Hair et al. (2011), the AVE value should be greater than 0.50 in order to be 

accepted. Table 27 provides the AVE result, calculated using the statistical analysis tool 

SmartPLS, which suggests that the constructs used in this study all have convergent 

validity, confirming the relationship between the indicators of each construct. 

Table 27. Convergent Reliability Results 

Construct AVE 

Competencies 0.774 

Knowledge Management 0.857 

Organizational Culture 0.724 

Organizational Learning 0.618 

Responsiveness 0.760 

Speed 0.768 

Team Effort 0.797 

Workforce Agility 0.605 

 

Discriminant Validity 

Discriminant validity determines how constructs are distinct from each other, compared 

by calculating the square root of the AVE values with the latent variable correlations. The 

recommended AVE value must be higher than the corresponding correlations among the 

latent variables (Hair et al., 2016). Table 28 shows the outer loadings and cross loadings 

of model constructs.  

Table 28. Discriminant Validity Results 

Construct COM KM OC OL RES SPD TE WA 

Competencies (COM) 0.807        

Knowledge Management (KM) 0.529 0.860       

Organizational Culture (OC) 0.640 0.549 0.774      

Organizational Learning (OL) 0.670 0.661 0.629 0.798     

Responsiveness (RES) 0.479 0.648 0.672 0.658 0.747    

Speed (SPD) 0.656 0.549 0.542 0.712 0.475 0.804   

Team Effort (TE) 0.287 0.463 0.540 0.443 0.668 0.303 0.823  

Workforce Agility (WA) 0.493 0.611 0.501 0.616 0.572 0.501 0.419 0.736 

 



87 
 

 Structural Model Validation 

This section measures the effect based on sets of dependence relationships in the proposed 

model, providing an indication of the quality of the predictions. The outputs of PLS-SEM 

result are shown below in Figure 2 

Figure 2. PLS-SEM proposed model results 

 

The results of the validation test suggest that the proposed model passed all the criteria 

for assessment in relevance with the path coefficient and model loadings or weights on 

their measured latent variables. In addition, the formative measurement models are 

established properly with data from convergent validity (Table 27).  

The PLS bootstrap procedure was recommended for this process. This process 

involves a large number of additional samples taken from the original sample at random 

and replaced with another when an observation is drawn. According to Hair et al. (2011), 

5000 bootstrap samples are recommended for the PLS bootstrap procedure.  



88 
 

 Coefficient of Determination 

The most common method to evaluate the structural model is by using the coefficient of 

determination (R2 value). The coefficient of determination measures the accuracy of the 

proposed model and allows comparison between the correlation of a specific construct’s 

actual and predicted value (Hair et al., 2011). The value range for R2 is between 0 and 1, 

where a value over 0.2 can be considered as high when measuring any specific thing. 

However, the R2 must be at least 0.75 or higher when assessing customer satisfaction or 

loyalty (Hair et al., 2011). Table 29 provides the structural model’s R2 values.  

Table 29. Coefficient of Determination (R2 Values) Results 

Construct R2 Value 

Competencies 0.618 

Organizational Learning 0.706 

Responsiveness 0.602 

Speed 0.681 

Team Effort 0.643 

Workforce Agility 0.537 

 

 Table 29 provides R2 values showing the strongest relationship is provided by 

Organizational Learning (0.706), followed by Speed (0.681), then Team Effort (0.643), 

next is Competencies (0.618), then Responsiveness (0.602), and finally Workforce 

Agility which has the lowest value. The R2 values provide a measurement of how the 

outcomes are replicated in the model which means organizational learning is the most 

critical organizational concept (Hair et al., 2016).  

 

Table 30. Bootstrap Path Coefficient and T-Values in the Structural Model 

Hypothesis Path Original Sample (O) 
Sample 

Mean (M) 
Standard Deviation (STDEV) T-Values P-Values 

H1 KM OL 0.475 0.448 0.142 3.348 0.001 

H2 OC  OL 0.395 0.420 0.103 3.816 0.000 

H3 OL  COM 0.720 0.724 0.070 10.242 0.000 

H4 OL  RES 0.708 0.727 0.080 8.819 0.000 

H5 OL  SPD 0.762 0.763 0.070 10.908 0.000 

H6 OL  TE 0.493 0.503 0.170 2.893 0.004 

H7 OL  WA 0.666 0.661 0.113 5.904 0.000 

 



89 
 

The column, Original Sample (O), in Table 30 is used to determine how strong the 

relationship is between the hypothesized agile organization concepts in the structural 

model. According to Hair et al. (2011), the path coefficient values must range between 0 

and 1 and only then can it be determined if the relationship is very weak (0 – 0.2), weak 

(0.2 – 0.4), moderate (0.4 – 0.6), strong (0.6 – 0.8) or very strong (0.8 – 1.0). 

 

 Hypothesis 1: Knowledge Management and Organizational Learning 

Table 30 shows a moderate relationship between knowledge management and 

organizational learning (Path = 0.475, t = 3.348, p<0.001). These results show that H1 is 

supported. 

Hence, based on the agile concepts of Knowledge Management and 

Organizational Learning, Table 31 and Table 32 show the critical agile practices 

(from the survey results) that must be part of the agile software development 

environment regardless of agile values, principles and agile method practices for 

gaining agility.  

Table 31. Key Agile Software Development Practices for Knowledge Management 

Knowledge Management as part of Agile practices Percentage 

Collective (team) effort on all the tasks relating to product and 

project planning, implementation (development and testing). 
94.7% 

Task sharing at development level (including implementation). 91.4% 

Work (method) practices at development level must help to build 

knowledge for future projects. 
86.2% 

 

Table 32. Key Agile Software Development Practices for Organizational Learning 

Organizational Learning as part of Agile practices Percentage 

The (your) software engineering level has well thought-out practices 

and structures (functional unit and roles) based on continuous 

reviews and reflections. 

91.4% 

The learning and understanding on the organizational core 

competency has enabled the (your) development team to identify 

and learn firm-specific development competencies. 

89.7% 

The team-effort, ownership and cross-functional cooperation in the 

(your) development team are enforced through adoption of practices 

mutually accepted by all the stakeholders. 

93.1% 

The (your) development team is also driven by the mind set for 

continuous learning in projects. 
91.4% 

 



90 
 

 Hypothesis 2: Organizational Culture and Organizational Learning 

Table 30 shows a weak relationship between organizational culture and 

organizational learning (Path = 0.395, t = 3.816, p<0.000). These results indicate that H2 

is also supported. 

Hence, based on the agile concepts of Organizational Culture and 

Organizational Learning, Table 32 and Table 33 show the critical agile practices 

(from the survey results) that must be part of the agile software development 

environment regardless of agile values, principles and agile method practices for 

gaining agility.  

 

Table 33. Key Agile Software Development Practices for Organizational Culture 

Organizational Culture as part of Agile practices Percentage 

Face-to-face interaction and spontaneous collaboration are a critical 

culture in the (your) development team/organization. 
89.7% 

Individuals in the (your) team take part in a wide variety of work 

and decision-making. 
89.6% 

Collective decision-making is another critical element in the (your) 

development team/organization. 
91.3% 

Collective responsibility is a key part of the (your) development 

team’s work practices. 
89.7% 

 

 Hypothesis 3: Organizational Learning and Competencies 

Table 30 shows a strong relationship between organizational culture and organizational 

learning (Path = 0.720, t = 10.242, p<0.000). These results indicate that H3 is also 

supported. 

Hence, based on the agile concepts of Organizational Learning and 

Competencies, Table 32 and Table 34 show the critical agile practices (from the 

survey results) that must be part of the agile software development environment 

regardless of agile values, principles and agile method practices for gaining agility.  

 

Table 34. Key Agile Software Development Practices for Competencies 

Competencies as part of Agile practices Percentage 

Continuous integration allows the (your) development team to fix 

most of the bugs before release. 
87.9% 



91 
 

The (your) development team consists of individuals able to perform 

formal and informal (i.e. multiple) roles required in the project. 
93.1% 

The (your) development team has a fully integrated test-driven 

development environment. 
84.5% 

Test-driven development has enabled the (your) development team 

to deliver working software on a regular basis. 
82.8% 

 

 Hypothesis 4: Organizational Learning and Responsiveness 

Table 30 shows a strong relationship between organizational culture and organizational 

learning (Path = 0.708, t = 8.819, p<0.000). These results indicate that H4 is also 

supported. 

Hence, based on the agile concepts of Organizational Learning and 

Responsiveness Table 32 and Table 35 show the critical agile practices (from the 

survey results) that must be part of the agile software development environment 

regardless of agile values, principles and agile method practices for gaining agility.  

 

Table 35. Key Agile Software Development Practices for Responsiveness 

Responsiveness with Agile practices Percentage 

The empowerment of the (your) development team is a critical 

factor for the ability to learn and quickly adapt. 
94.9% 

The (your) development team has the ability to accept change in 

requirements during projects. 
89.7% 

The (your) development team has on the fly adopted or has the 

ability to adopt new development practices and skills. 
94.8% 

The (your) development team does beta releases of features to get 

useful insights and feedback to deliver useful features for the 

marketplace. 

82.7% 

 

 Hypothesis 5: Organizational Learning and Speed 

Table 30 shows a strong relationship between organizational culture and organizational 

learning (Path = 0.762, t = 10.908, p<0.000). These results indicate that H5 is also 

supported. 

Hence, based on the agile concepts of Organizational Learning and Speed 

Table 32 and Table 36 show the critical agile practices (from the  survey results) that 

must be part of the agile software development environment regardless of agile 

values, principles and agile method practices for gaining agility.  



92 
 

 

Table 36. Key Agile Software Development Practices for Speed 

Speed with Agile practices Percentage 

The (your) development team only works the normal hours per day 

or week on a consistent basis to deliver projects. 
91.3% 

Development infrastructure of the (your) development team does not 

place limitations to the team’s expected work pace (speed).  
82.8% 

Avoiding technical debt is a critical mind set of (your) development 

team even if it affects the delivery speed of your team. 
89.7% 

TDD (Test-Driven Development) and refactoring are essential work 

practices to delivery software in short development cycles even 

though it affects the delivery speed of the (your) development team. 

86.2% 

 

 Hypothesis 6: Organizational Learning and Team Effort 

Table 30 shows a moderate relationship between organizational culture and 

organizational learning (Path = 0.493, t = 2.893, p<0.004). These results indicate that H6 

is also supported. 

Hence, based on the agile concept of Organizational Learning and Team 

Effort Table 32 and Table 37 show the critical agile practices (from the survey 

results) that must be part of the agile software development environment regardless 

of agile values, principles and agile method practices for gaining agility.  

 

Table 37. Key Agile Software Development Practices for Team Effort 

Team Effort with Agile practices Percentage 

Product manager’s collaboration with the (your) development team 

for input and feedback is critical to make effective vision/roadmap 

decisions. 

96.6% 

In the (your) development team, a cross-functional effort is required 

to create a reliable product backlog.  
93.1% 

Reviewing the product backlog more than once during the project 

timeline with the key stakeholders enables the (your) development 

team to deliver strategic benefits. 

91.4% 

The (your) whole team participates to achieve reliable sprint plans.  94.8% 

 

 

 



93 
 

 Hypothesis 7: Organizational Learning and Workforce Agility 

Table 30 shows a strong relationship between organizational culture and organizational 

learning (Path = 0.666, t = 5.904, p<0.000). These results indicate that H7 is also 

supported. 

Hence, based on the agile concept of Organizational Learning and Workforce 

Agility Table 32 and Table 38 show the critical agile practices (from the survey 

results) that must be part of the agile software development environment regardless 

of agile values, principles and agile method practices for gaining agility.  

 

Table 38. Key Agile Software Development Practices for Workforce Agility 

Workforce Agility with Agile practices Percentage 

The (your) development team consists of individuals with 

appropriate skills and knowledge to carry out multiple tasks. 
98.3% 

The (your) development team consists of highly skilled and 

competent individuals. 
96.6% 

The (your) development team has negotiation capabilities and 

consensus behaviour ability to accept change, generate new ideas 

and accept new responsibilities.  

91.4% 

 

  



94 
 

  



95 
 

Chapter Six: Discussion 

 Chapter Overview 

This section provides discussion on the hypotheses that were tested through the data 

collected from the survey method, including discussion on agile practices that ought to 

be part of agile software development for gaining agility.  

Table 39 shows the results of the seven hypotheses that were tested and Table 40 

presents a list of agility practices based on agile organization concepts that ought to be 

part of agile software development based on the agile organization concepts. The research 

question for this study is  

“What are the software development agility practices based on agile organization 

concepts?”  

Table 39. Results of Hypothesis Tests 

 Hypothesis Result 

H1 Knowledge management will have a positive influence 

on organizational learning 

Supported 

H2 Organizational culture will have a positive influence on 

organizational learning 

Supported 

H3 Organizational learning will have a positive influence 

on competencies 

Supported 

H4 Organizational learning will have a positive influence 

on responsiveness 

Supported 

H5 Organizational learning will have a positive influence 

on speed 

Supported 

H6 Organizational learning will have a positive influence 

on team effort 

Supported 

H7 Organizational learning will have a positive influence 

on workforce agility 

Supported 

 

Table 40. Identified Agile Practices Based on Agile Organization Concepts 

Agile Organization Concepts Agile Practices 

Knowledge Management  

 Collective effort provides solid critical thinking and problem-solving 

ability in the (your) development team.  

 In the (your) development team, task sharing in projects is vital to 

build knowledge and experience. 

 In the (your) development team, work (method) practices also build 

experience and knowledge for undertaking future projects. 

Organizational Culture  Face-to-face interaction and spontaneous collaboration are a critical 

culture in the (your) development team/organization. 



96 
 

 Individuals in the (your) team take part in a wide variety of work and 

decision-making. 

 Collective decision-making is another critical element in the (your) 

development team/organization. 

 Collective responsibility is a key part of the (your) development 

team’s work practices. 

Organizational Learning 

 The (your) software engineering level has well thought-out practices 

and structures (functional unit and roles) based on continuous reviews 

and reflections.  

 The learning and understanding on the organizational core competency 

has enabled the (your) development team to identify and learn firm-

specific development competencies. 

 The team-effort, ownership and cross-functional cooperation in the 

(your) development team are enforced through adoption of practices 

mutually accepted by all the stakeholders. 

 The (your) development team is also driven by the mind-set for 

continuous learning in projects. 

Competencies 

 Continuous integration allows the (your) development team to fix most 

of the bugs before release. 

 The (your) development team consists of individuals able to perform 

formal and informal (i.e. multiple) roles required in the project.  

 The (your) development team has a fully integrated test-driven 

development environment.  

 Test-driven development has enabled the (your) development team to 

deliver working software on a regular basis. 

Responsiveness 

 The empowerment of the (your) development team is a critical factor 

for the ability to learn and quickly adapt. 

 The (your) development team has the ability to accept change in 

requirements during projects. 

 The (your) development team has on the fly adopted or has the ability 

to adopt new development practices and skills. 

 The (your) development team does beta releases of features to get 

useful insights and feedback to deliver useful features for the 

marketplace. 

Speed 

 The (your) development team only works the normal hours per day or 

week on a consistent basis to deliver projects. 

 Development infrastructure of the (your) development team does not 

place limitations to team’s expected work pace (speed).  

 Avoiding technical debt is a critical mind set of (your) development 

team even if it affects the delivery speed of your team. 

 TDD (Test-Driven Development) and refactoring are essential work 

practices to delivery software in short development cycles even though 

it affects the delivery speed of the (your) development team. 

Team Effort 

 Product manager’s collaboration with the (your) development team for 

input and feedback is critical to make effective vision/roadmap 

decisions. 

 In the (your) development team, a cross-functional effort is required to 

create a reliable product backlog.  

 Reviewing the product backlog more than once during the project 

timeline with the key stakeholders enables the (your) development 

team to deliver strategic benefits. 

 The (your) whole team participates to achieve reliable sprint plans 

Workforce Agility 

 The (your) development team consists of individuals with appropriate 

skills and knowledge to carry out multiple tasks. 

 The (your) development team consists of highly skilled and competent 

individuals. 



97 
 

 The (your) development team has negotiation capabilities and 

consensus behaviour ability to accept change, generate new ideas and 

accept new responsibilities.  

 

 Discussion 

H1 - Knowledge management will have a positive influence on organizational 

learning. 

This hypothesis (H1) is supported for gaining agility in software development.  

The investigation validates that this hypothesis (H1) is true (supported) for agile 

software development. To gain agility in software development, knowledge 

management is critical. This simply means that agile software development must have 

the mind set and be driven by knowledge management just like the agile software mind 

set for team effort, self-organising teams and cross-functional support (Chandani et al., 

2007; Dove, 1999; Gupta et al., 2000; Pérez-Bustamante, 1999; Walczak, 2005). 

Knowledge (information, experience, understanding and skills) must be acquired through 

and on each and every method fragment (roles, practices and techniques) (Dove, 1999) 

when applied to carry out the work in agile software development projects.  

A collection of method fragments make up a software development method or 

process (Chandani et al., 2007). In agile software development little knowledge is 

captured through documentation but most is tacit knowledge (Lei, Hitt, & Bettis, 1996) 

which the teams must build and enhance continuously. Tacit knowledge builds the 

transactive memory – a team memory system for collection and retrieval of development 

and business domain knowledge that helps to swiftly carry out work and effectively solve 

problems (Wegner, 1987). The knowledge management in agile software development is 

on the collective effort and shared tasks, these team-based practices not only allowing to 

undertake the project work to deliver the expected output swiftly but also ensuring the 

entire team becomes better (enhance) with skills and knowledge development (Table 40). 

Hence, agile software development projects ought to be driven by these practices to so 

that teams within have the knowledge and skills and are able to draw upon past 

experiences to carry out tasks on the next project successfully and achieve agility with 

software development.  

Hence, to have the mind set for knowledge management drives the conviction for 

continuously organizational learning in the agile software development environment 

when carrying out the project work. Through continuous organizational learning well 



98 
 

thought-out practices and structures (functional unit and roles), i.e. method fragments, are 

achieved (hence reviews and reflections become part and parcel of development cycles 

in projects to become better for next cycle). It helps to understand organizational core 

competency to identify and learn firm-specific development competencies and has 

practices that are mutually accepted by all the stakeholders (Table 40).  

These are all software development necessities in a market-driven environment to 

have software development agility. Well thought-out practices mean no bottlenecks and 

having nimble work practices enables swift ability to carry out work as expected. 

Focusing on the firm’s core competency means the organization continuously becomes 

better at identifying and delivering new software features and products, which are highly 

innovative and bring high value automation for clients and customers. Continuously 

learning each other’s (all stakeholders impacted by the project and product) needs and 

requirements helps to adopt and adapt mutually acceptable processes and practices that 

enable an effective cross-functional effort; the resulting output benefits the entire 

organization, functional team roles and clients/customers.  

 

H2 - Organizational culture will have a positive influence on organizational learning 

This hypothesis (H2) is supported for gaining agility in software development.  

Organizational culture enables mutual benefits that provide competitive 

advantage at the marketplace (Janićijević, 2013). The culture in an agile environment 

requires team members to proactively to take rewarding action (Wendorff, 2002). The 

organizational culture increases the motivation for learning to enable flexibility with 

roles, functional units, processes and practices (Van Veelen et al., 2006). An agile culture 

enables quick responses for developing high value products through having dynamic 

functional units, roles, tasks, responsibilities and management (Christopher & Towill, 

2000).  

The investigation reveals that software development requires an organizational 

culture for face-to-face interaction and spontaneous collaboration, required to take part in 

a wide variety of work and decision-making, collective decision-making and collective 

responsibility. Hence the agile culture means enormous opportunity to learn and get better 

with software development for the benefit of the entire organization and 

clients/customers. Face-to-face interaction and spontaneous collaboration in a 

development environment allows individuals to probe in-depth to understand the 



99 
 

requirements, codes or any other technical knowledge from people who have that 

knowledge and understanding. Taking part in a wide variety of work in the software 

development environment allows continuous learning and understanding including 

getting knowledge and skills of other tasks, practices, processes and roles. Collective 

decision-making and responsibility means having the ability to make first time right 

decisions including ensuring a collective effort to implement the decision that was made 

in the software development environment. It is crucial to build an agile culture where 

team members solve problems better (Tolfo, Wazlawick, Ferreira, & Forcellini, 2011).  

Hence, an agile culture is critical for organizational learning for well thought-out 

practices and structures (functional units and roles) (i.e. method fragments); 

understanding on the organizational core competency and for mutually accepted practices 

by all the stakeholders. Without these organizational learnings becoming better, agility 

will not be there to identify and deliver market-driven software features and products 

ahead of the competition. Hence, an agile organizational culture and learning must drive 

an agile software development environment. 

 

H3 - Organizational learning will have a positive influence on competencies.  

This hypothesis (H3) is supported for gaining agility in software development.  

Test-driven development, continuous integration and individuals to perform in 

formal and informal (i.e. multiple) roles in agile software development teams, are critical 

and ought to be part of core competencies for agility in the product development 

environment. According to Plonka (1997), agility requires individuals to take up 

additional responsibilities. Hence, with software development it is through informal roles 

which individuals must perform in while having a formal role. Informal roles are 

temporary and can be for a sprint or for a project only. These agile competencies require 

continuous reflection for learning for improvement from one short development cycle to 

another throughout the project so that development teams have relevant and effective 

practices to meet current goals and objectives for the business organization.  

Without the competency for test-driven development and continuous integration 

there is no possibility to deliver working software in short development cycles. Having 

individual competency in software development teams to step up into formal and informal 

software engineering roles (be a software engineer but at the same time perhaps setup as 

team leader or technical leader for a sub-team) is important in an agile setup to have 



100 
 

sufficient development capacity to be able to deliver software in short development 

cycles. For individuals to work in formal and informal roles requires continuous learning 

on the fly for the required skills through task sharing with another individual or with the 

entire team. Hence, on the fly learning must drive all agile software development 

practices and roles for any software development to be able to gain agility.  

Core competencies deal with the ability of an organization to develop unique 

business practices and the ability to respond quickly to market opportunities and 

competitive threats (Assen, 2000). Employees must have the speed to develop new skills, 

obtain necessary skills to perform changes, innovative management skills and obtain IT 

skills (software and hardware) in order to become more competent (Breu et al., 2002). 

Software development agility depends upon competent development teams (Dybå & 

Dingsøyr, 2008; Hedberg, 2015).  

 

H4 - Organizational learning will have a positive influence on responsiveness  

This hypothesis (H4) is supported for gaining agility in software development.  

  The following practices define the responsive abilities in agile software 

development: empowerment to learn and quickly adapt, ability to accept changes in 

requirements, ability on the fly to adopt new development practices and skills and ability 

for beta releases to get useful insights and feedback (learn) to deliver useful features for 

the marketplace. These practices are critical and must drive the agile software 

development environment since responsive ability defines agility capability.  

  According to (Sharifi & Zhang, 1999), this ability in agile organizations enables 

them to continuously anticipate, detect and deal with changes, including being able to 

swiftly plan for an immediate response. In addition, organizational learning ability is 

critical to enable responsive ability (Cohen & Levinthal, 1990; Schulz, 2001). Hence, 

agility with software development requires responsive teams and developers with high 

skills in order to create change and respond rapidly to change in an uncertain environment 

(Cockburn & Highsmith, 2001).  

  For responsive ability in agile software development, all the work practices 

relating to creating and managing product backlogs including the short development 

cycles (others as well) requires continuous learning to adapt and build skills and 

understanding to deliver projects incorporating the changing needs of all critical 

stakeholders. In addition, successful responsive ability is also defined by ability to learn 



101 
 

and improve through feedback on implemented features from potential users. Making 

sure the practices remain reliable from one project to another is critical for development 

agility to able to meet successful market release. Hence, the mind set for organizational 

learning is vital for having responsive ability with agile software development.  

 

H5 - Organizational learning will have a positive influence on speed  

This hypothesis (H5) is supported for gaining agility in software development.  

Agility is also dependent upon speed, which relates to in-house capability to get 

work done on time, enabling competitive advantage at the marketplace (Gandossy, 2003). 

It is no different for agile software development where speed is critical to be on time at 

the marketplace with outstanding software. Speed enabling agility with software 

development means the in-house capability for making software features and products 

available rapidly, faster than competitors (Duguay, Landry, & Pasin, 1997). Hence, 

practices that ought to be part of agile software development for agility gains are as 

follows: (1) working normal hours per day or week on a consistent basis (avoid burnout 

so that team’s performance is not affected in projects); (2) no limitations to a team’s 

expected work pace (speed); (3) The pace of work must be based on practices that avoid 

technical debt, and TDD (Test-Driven Development) and refactoring are essential work 

practices and must help to determine the work pace.  

However, speed is dependent upon well-thought practices (no bottle necks), solid 

technical understanding and skills (core competency), a team effort based on cross-

functional support and collaboration enabling swift designing making including on-going 

reflection for learning throughout the project. Hence, on-going organizational learning on 

these practices is vital as it impacts speed or pace of work.  

Speed enables agile organizations to respond to unexpected changes, deliver 

products and services rapidly to the customers and provide a competitive advantage for 

the agile organization in time-based competition (Sharifi & Zhang, 1999).  

 

H6 - Organizational learning will have a positive influence on team effort  

This hypothesis (H6) is supported for gaining agility in software development.  

Agility in software development is achieved through collective cross-functional 

team effort and ownership which involves business function at the development level. 



102 
 

The team approach enables delivering quality products in the shortest time (Edmondson 

& Nembhard, 2009). This enables agility capability for their market-driven product 

development (Sherehiy et al., 2007). In agile software development, team effort enables 

coordination of the domain and technical knowledge for swift development and 

availability of new features (Faraj & Sproull, 2000). 

The practices that ought to be part of agile software development for agility are 

as follows (Table 40): for product planning driven by business (product managers) 

collaboration with the development team for input and feedback, project planning done 

through a cross-functional effort to create a reliable product backlog, product backlog 

reviews involving key stakeholders and a collective team effort to achieve reliable sprint 

plans.  

However, the team effort is also dependent upon organization learning. It requires 

continuous learning on team effort to have well-thought practices that enables effective 

team effort, solid technical understanding and skills (core competency) for high team 

performance, and practices that are based on cross-functional support and collaboration. 

Collective effort from development teams is used to make decisions on various 

tasks (task sharing) rather than based on role or individual effort (Yauch, 2007). 

Organizational learning allows employees to obtain necessary knowledge when carrying 

out tasks. The tacit knowledge is often generated and exchanged during collaboration for 

problem solving (Lam, 2000). In a collaborative environment, employees maintain 

mutually shared cognition which leads to an increase in team performance  

 

H7 - Organizational learning will have a positive influence on workforce agility 

This hypothesis (H7) is supported for gaining agility in software development. 

Workforce agility capability enables product management individuals to swiftly 

adapt to changes through acquiring new technical skills, new business knowledge and 

understanding, and modern process and practices to deal with unpredictable changes and 

competition in the market (Qin & Nembhard, 2015; Sohrabi et al., 2014). Therefore, agile 

organizations ought to have a highly skilled and adaptable workforce in order to have the 

flexibility capability and to have ability to successfully deal with unstructured tasks as a 

result of competition (Youndt et al., 1996). According to Santos-Vijande, López-Sánchez, 

and Trespalacios (2012), organizational learning gives organizations the ability to adapt 

and develop successful products in evolving market conditions. Workforce agility means 



103 
 

an agile software development environment has competent engineers with responsive 

behaviour capable of swift problem-solving related to development and having decision-

making abilities (Plonka, 1997). Engineers also adapt with responsive behaviour to 

deliver features according to new priorities (market or business objective changes).  

Without workforce agility, software development agility will not be achieved. 

Hence for software development agility, agile practices must drive the product 

development environment. Development teams must consist of individuals with 

appropriate skills and knowledge to carry out multiple tasks including having highly 

skilled and competent individuals. All software development practices must be based 

around the ability to negotiate, accept changes, generate new ideas and accept new 

responsibilities. All these are achieved through the mind set for organizational learning 

whereby the development teams identify and learn firm-specific development 

competencies.  



104 
 

  



105 
 

Chapter Seven: Conclusion 

This study investigated agile software development practices based on agile organisation 

concepts to provide an understanding on agility with software development. Agile 

organisation concepts are critical factors leading to agility regardless of the type of 

business. However, it is not known if agile organisation concepts are also the basis for 

adopting agile methods and their practices for software development. With agile software 

development, agile values and principles (agile manifesto) ought to drive agile adoption, 

which may lead to agility. Hence, this investigation’s findings clearly identify agile 

practices which will aid and support agile values and principles for successful agile 

method adoption for achieving agility with software development. 

 The aim of this study was to learn directly from the software development teams 

to provide a list of agile method practices together with agile values and principles that 

drive agile method adoption that lead to agility in software development. Agility in 

software development is crucial due to the dynamic nature of business and its 

requirements, impacted by the current business environment, which is market-driven with 

customer and competitive challenges, and emerging technologies. Agility with software 

development enables appropriate software development method practices able to deliver 

software that matches businesses and their end-users’ needs. Hence, this investigation 

with its findings, i.e. agile software development practices based on agile organisation 

concepts, will aid and support agile values and principles for successful agile adoption 

for achieving agility with software development. 

This study involved a quantitative approach using a web-based survey to collect 

data. The web-based survey allowed targeting of a wide-range of participants from the 

software development community. An exploratory study was employed to investigate and 

identify the agile software development practices that lead to agility based on the agile 

organization concepts. The agile organization concepts and agile software development 

practices were identified through the literature review.  

The research question was “What are the software development agility practices 

based on agile organization concepts?”  

 To answer the research question, first, a literature review was undertaken to 

identify agile organization concepts. Eight agile organisation concepts were identified: 

knowledge management, organizational culture, organizational learning, competencies, 

responsiveness, speed, team effort and workforce agility. Second, a literature review on 



106 
 

agile software development practices was done to identify key agile method practices. 

Third, the agile method practices were matched with specific agile organization concepts 

and used to construct the survey questionnaires. Finally, based on agile organisation 

concepts, seven hypotheses were identified to be tested to identify the agile software 

development practices for agility based on the survey that was undertaken.  

 Initially when the survey questions were designed, there were 120 questions but 

after feedback and improvement from supervisor, 67 questions were selected reflecting 

the eight agile organization concepts. The researcher pre-tested the survey questions by 

involving a master’s student also researching agile software development and two other 

Auckland University of Technology lecturers who are experts in agile software 

development. 

 The potential participants were identified through agile community groups and 

various agile software development conferences held in New Zealand and Australia. 

Before conducting the web-based survey, the researcher was given ethical approval by 

the ethics committee to conduct the research.  

 The survey invitations were sent to software development organizations or teams 

in New Zealand and Australia. 181 invitations were emailed to potential participants (in-

house agile software development teams, agile software vendors and agile software 

development contracting companies). 63 participants responded to the online-survey. 

From 63 responses, 58 met the criteria for PLS data analysis. From the results section, 

there were 19 responses from in-house development teams, 25 responses from software 

vendors, and 14 responses from contracting development teams.  

 For statistical analysis this study used the partial least squared (PLS) over 

covariance-based SEM (CB-SEM). The required data for CB-SEM is at least two hundred 

responses and is mostly used for theory testing or theory confirmation. The goal of this 

study was to identify key constructs which were suitable with exploratory research and 

the researcher used SmartPLS as the analysis tool.  

The Table 30 provides the information that seven hypotheses values have been 

met based on agile organization concepts.  

 

 

 



107 
 

Table 30. Bootstrap Path Coefficient and T-Values in the Structural Model 

(repeated table) 

Hypothesis Path Original Sample (O) 
Sample 

Mean (M) 
Standard Deviation (STDEV) T-Values P-Values 

H1 KM OL 0.475 0.448 0.142 3.348 0.001 

H2 OC  OL 0.395 0.420 0.103 3.816 0.000 

H3 OL  COM 0.720 0.724 0.070 10.242 0.000 

H4 OL  RES 0.708 0.727 0.080 8.819 0.000 

H5 OL  SPD 0.762 0.763 0.070 10.908 0.000 

H6 OL  TE 0.493 0.503 0.170 2.893 0.004 

H7 OL  WA 0.666 0.661 0.113 5.904 0.000 

 

T-value evaluates the difference relative to sample data from the standard error during 

hypothesis testing. When the t-value equals to 0, it means the sample results are exactly 

equal to the null hypothesis.  

P-value measures the probability of the null hypothesis (opposite direction of the 

observed hypothesis) being true compared with confidence intervals. If the p-value is 

smaller than the confidence intervals, it means the null hypothesis is rejected and if the 

p-value is near the confidence interval, it indicates the null hypothesis is accepted and the 

current hypothesis is rejected. The confidence interval ranged from 0.01, 0.05 and 0.1. 

This study chose 0.05 because it was the most common confidence interval used in the 

quantitative study.  

 

Table 29. R2 Value Results (repeated table) 

Construct R2 Value 

Competencies 0.618 

Organizational Learning 0.706 

Responsiveness 0.602 

Speed 0.681 

Team Effort 0.643 

Workforce Agility 0.537 

 

The R2 values provide measurement of how the outcomes are replicated in the model 

which means organizational learning is the most critical organizational concept (Hair et 

al., 2016). In addition, other agile organization concepts were met.  



108 
 

Table 41. Hypothesis Results 

Hypothesis Path Conditions 

H1 Knowledge Management  Organizational Learning Supported 

H2 Organizational Culture  Organizational Learning Supported 

H3 Organizational Learning  Competencies Supported 

H4 Organizational Learning  Responsiveness Supported 

H5 Organizational Learning  Speed Supported 

H6 Organizational Learning  Team Effort Supported 

H7 Organizational Learning  Workforce Agility Supported 

 

 Table 40 explains the agile organization concepts and related agile practices that 

were identified from respondents with SmartPLS.  

Table 40. Identified Agile Practices Based on Agile Organization Concepts (repeated 

table) 

Agile Organization Concepts Agile Practices 

Knowledge Management  

 Collective effort provides solid critical thinking and problem-solving ability in the (your) 
development team.  

 In the (your) development team, task sharing in projects is vital to build knowledge and 
experience. 

 In the (your) development team, work (method) practices also build experience and knowledge 
for undertaking future projects. 

Organizational Culture 

 Face-to-face interaction and spontaneous collaboration are a critical culture in the (your) 

development team/organization. 

 Individuals in the (your) team take part in a wide variety of work and decision-making. 

 Collective decision-making is another critical element in the (your) development 
team/organization. 

 Collective responsibility is a key part of the (your) development team’s work practices. 

Organizational Learning 

 The (your) software engineering level has well thought-out practices and structures (functional 

unit and roles) based on continuous reviews and reflections.  

 The learning and understanding on the organizational core competency has enabled the (your) 
development team to identify and learn firm-specific development competencies. 

 The team-effort, ownership and cross-functional cooperation in the (your) development team 
are enforced through adoption of practices mutually accepted by all the stakeholders. 

 The (your) development team is also driven by the mind-set for continuous learning in 
projects. 

Competencies 

 Continuous integration allows the (your) development team to fix most of the bugs before 
release. 

 The (your) development team consists of individuals able to perform formal and informal (i.e. 

multiple) roles required in the project.  

 The (your) development team has a fully integrated test-driven development environment.  

 Test-driven development has enabled the (your) development team to deliver working 

software on a regular basis. 

Responsiveness 

 The empowerment of the (your) development team is a critical factor for the ability to learn 
and quickly adapt. 

 The (your) development team has the ability to accept change in requirements during projects. 

 The (your) development team has on the fly adopted or has the ability to adopt new 

development practices and skills. 

 The (your) development team does beta releases of features to get useful insights and 
feedback to deliver useful features for the marketplace. 

Speed 

 The (your) development team only works the normal hours per day or week on a consistent 
basis to deliver projects. 

 Development infrastructure of the (your) development team does not place limitations to 
team’s expected work pace (speed).  



109 
 

 Avoiding technical debt is a critical mind set of (your) development team even if it affects the 
delivery speed of your team. 

 TDD (Test-Driven Development) and refactoring are essential work practices to delivery 

software in short development cycles even though it affects the delivery speed of the (your) 

development team. 

Team Effort 

 Product manager’s collaboration with the (your) development team for input and feedback is 
critical to make effective vision/roadmap decisions. 

 In the (your) development team, a cross-functional effort is required to create a reliable 
product backlog.  

 Reviewing the product backlog more than once during the project timeline with the key 
stakeholders enables the (your) development team to deliver strategic benefits. 

 The (your) whole team participates to achieve reliable sprint plans 

Workforce Agility 

 The (your) development team consists of individuals with appropriate skills and knowledge to 
carry out multiple tasks. 

 The (your) development team consists of highly skilled and competent individuals. 

 The (your) development team has negotiation capabilities and consensus behaviour ability to 

accept change, generate new ideas and accept new responsibilities.  

 The agile organization concepts and their related agile practices can be used for 

software development teams or organizations as a guide to consider and develop their 

agile approach. By doing that, software development teams can measure their own 

capability to deliver working software efficiently and become more responsive to 

changes.  

 Theoretical Contributions 

This thesis highlights and promotes an understanding of the importance of agility in the 

software industry with agile organization concepts and agile software development 

practices. The four agile values and twelve principles are also important because software 

development teams tend to forget them; thus, they cannot achieve absolute agility in real 

practice. Software development teams can become agile if they follow more transparency, 

evaluation and adaptation towards the software project. From transparency, software 

development teams can track the visibility and delivery process to the customers without 

affecting the project results. With frequent evaluation, software development teams can 

identify unacceptable traits that may bring critical failure to the development process and 

the adaptation allows software development team to adjust the development process 

rapidly and efficiently. 

 Practical Contributions 

The practical implications from this investigation to achieve software development agility 

are as follows:  

1. For knowledge management, the agile method practices must help to create the 

work break-down structure for a collective effect (team effort on important tasks 

such as product backlog and sprint planning, retrospectives) and task sharing (two 



110 
 

or more individuals collectively working on the same planning and engineering 

tasks and for knowledge creation and retention).  

2. All agile method practices defining the tasks must be carried out through the 

organisation culture for face-to-face communication, including delivering through 

the organisational culture for collective decision-making and responsibility for 

planning, design and implementation.  

3. For organisational learning, the agile method practices must also enforce 

continuous learning to enhance organisational culture, teamwork, technical skills, 

roles, business domain knowledge and development infrastructure or tools, 

including the adopted agile process and method practices. 

4. The team must adopt and continuously adapt the agile method practices that 

enable in-house software development competencies for the Test-Driven 

Development (TDD) practices, and continuous code integration, including regular 

bug free software releases through short development cycles.  

5. For responsiveness ability, the development team must adopt a mind-set for 

change, driven and empowered for adoption and adaptation of agile method 

practices. 

6. For speed, agile method practices must help to build a consistent work pace for 

the entire project without team burnouts, must enforce an acceptable level of 

productivity supported by high productivity tools/infrastructure, while 

incorporating all the required practices to deliver high quality software products 

or features.  

7. All agile method practices are based upon collective team effort. 

8. For work force agility, agile method practices must also help to develop highly 

skilled and highly capable individuals for continuous learning.  

 Limitations 

The limitations of the study are as follows: 

First, the respondents were mostly from New Zealand and a few from Australia. 

Thus the responses may vary when compared with software development organizations 

or teams in other countries. 

Second, the survey had a response rate of 32% from the 181 invitations sent to 

software development organizations or teams. A better response rate would have 

provided a better understanding on agile organisation concepts and the related practices.  



111 
 

Third, there was no response related to the scaled agile method in the survey. The 

researcher hopes it can be a topic for future research. 

 Future Research 

This study serves as foundation for future research which may investigate agile 

organisation concepts through qualitative study to do an in-depth investigation with a few 

selected case study organisations to identify and provide a list of agile software 

development practices for agility.  

 A future survey could be carried-out for world-wide participation through 

collaboration with researchers from the other countries which could help to validate the 

results of this study. 



112 
 

  



113 
 

References 

Abrahamsson, P., Conboy, K., & Wang, X. (2009). ‘Lots done, more to do’: the current state of 
agile systems development research: Springer. 

Agarwal, N., Karimpour, R., & Ruhe, G. (2014). Theme-based product release planning: An 
analytical approachIEEE. Symposium conducted at the meeting of the System Sciences 
(HICSS), 2014 47th Hawaii International Conference on 

Agile Manifesto. (2001). Manifesto for agile software development. Retrieved from 
http://www.agilemanifesto.org/ 

Allwood, J. M., Childs, T. H. C., Clare, A. T., De Silva, A. K. M., Dhokia, V., Hutchings, I. M., . . . 
Turner, S. (2016). Manufacturing at double the speed. Journal of Materials Processing 
Technology, 229, 729-757. doi:http://dx.doi.org/10.1016/j.jmatprotec.2015.10.028 

Alqudah, M., & Razali, R. (2016). A Review of Scaling Agile Methods in Large Software 
Development. 

Ambler, S. W., & Lines, M. (2012). Disciplined Agile Delivery: A Practitioner's Guide to Agile 
Software Delivery in the Enterprise: Pearson Education. Retrieved from 
https://books.google.co.nz/books?id=CwvBEKsCY2gC 

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review 
and recommended two-step approach. Psychological bulletin, 103(3), 411. 

Anderson, L., Alleman, G. B., Beck, K., Blotner, J., Cunningham, W., Poppendieck, M., & Wirfs-
Brock, R. (2003). Agile management-an oxymoron?: who needs managers 
anyway?ACM. Symposium conducted at the meeting of the Companion of the 18th 
annual ACM SIGPLAN conference on Object-oriented programming, systems, 
languages, and applications 

Andrews, D., Nonnecke, B., & Preece, J. (2007). Conducting research on the internet:: Online 
survey design, development and implementation guidelines. 

Antanovich, A., Sheyko, A., & Katumba, B. (2010). Bottlenecks in the Development Life Cycle of 
a Feature-A Case Study Conducted at Ericsson AB. 

Antonacopoulou, E., & Chiva, R. (2007). The social complexity of organizational learning: the 
dynamics of learning and organizing. Management Learning, 38(3), 277-295. 

Anwar, S., Motla, Y. H., Siddiq, Y., Asghar, S., Hassan, M. S., & Khan, Z. I. (2014, 8-10 Dec. 2014). 
User-centered design practices in scrum development process: A distinctive 
advantage? Symposium conducted at the meeting of the 17th IEEE International Multi 
Topic Conference 2014 doi:10.1109/INMIC.2014.7097330 

Appelbaum, S. H., & Gallagher, J. (2000). The competitive advantage of organizational learning. 
Journal of Workplace Learning, 12(2), 40-56. doi:doi:10.1108/13665620010316000 

Arechavala-Vargas, R., Diaz-Perez, C., Madrigal-Torres, B. E., & Ferrer-Ramirez, S. (2007, 5-9 
Aug. 2007). Organizational Learning Strategies and Managerial Culture in Software 
Firm Networks in Mexico Symposium conducted at the meeting of the PICMET '07 - 
2007 Portland International Conference on Management of Engineering & Technology 
doi:10.1109/PICMET.2007.4349419 

Ashmore, S., & Runyan, K. (2014). Introduction to Agile Methods: Pearson Education. Retrieved 
from https://books.google.co.nz/books?id=hE7iAwAAQBAJ 

Assen, M. F. v. (2000). Agile‐based competence management: the relation between agile 
manufacturing and time‐based competence management. International Journal of 
Agile Management Systems, 2(2), 142-155. doi:doi:10.1108/14654650010337168 

Babar, M. A., Brown, A. W., & Mistrik, I. (2013). Agile Software Architecture: Aligning Agile 
Processes and Software Architectures: Elsevier Science. Retrieved from 
https://books.google.co.nz/books?id=wJb9pG1gcUsC 

Bardis, P. D. (1979). Social Interaction and Social Processes. Social Science, 54(3), 147-167. 
Barney, J. B. (1986). Organizational culture: can it be a source of sustained competitive 

advantage? Academy of management review, 11(3), 656-665. 

http://www.agilemanifesto.org/
http://dx.doi.org/10.1016/j.jmatprotec.2015.10.028
https://books.google.co.nz/books?id=CwvBEKsCY2gC
https://books.google.co.nz/books?id=hE7iAwAAQBAJ
https://books.google.co.nz/books?id=wJb9pG1gcUsC


114 
 

Barton, B., & Brooks, B. (2012, 13-17 Aug. 2012). Agile's Role in Developing Robust Software 
Competency at Precor Symposium conducted at the meeting of the 2012 Agile 
Conference doi:10.1109/Agile.2012.29 

Batra, D., Xia, W., VanderMeer, D., & Dutta, K. (2010). Balancing agile and structured 
development approaches to successfully manage large distributed software projects: A 
case study from the cruise line industry. Communications of the Association for 
Information Systems, 27(1), 21. 

Beersma, B., Hollenbeck, J. R., Humphrey, S. E., Moon, H., Conlon, D. E., & Ilgen, D. R. (2003). 
Cooperation, competition, and team performance: Toward a contingency approach. 
Academy of Management Journal, 46(5), 572-590. 

Bernardes, E. S., & Hanna, M. D. (2009). A theoretical review of flexibility, agility and 
responsiveness in the operations management literature: Toward a conceptual 
definition of customer responsiveness. International Journal of Operations & 
Production Management, 29(1), 30-53. 

Billington, C., & Amaral, J. (1999). Investing in product design to maximize profitability through 
postponement. Achieving Supply Chain Excellence Through Technology, San Francisco: 
Montgomery Research. 

Blackburn, J. D., Scudder, G. D., & Wassenhove, L. N. V. (1996). Improving speed and 
productivity of software development: a global survey of software developers. IEEE 
Transactions on Software Engineering, 22(12), 875-885. doi:10.1109/32.553636 

Blaikie, N. (2009). Designing Social Research: Wiley. Retrieved from 
https://books.google.co.nz/books?id=lpCeLiDLZVYC 

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64-69. 
Boehm, B. (2003). Value-based software engineering: reinventing. ACM SIGSOFT Software 

Engineering Notes, 28(2), 3. 
Bollen, K., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation 

perspective. Psychological bulletin, 110(2), 305. 
Bottani, E. (2009). On the assessment of enterprise agility: issues from two case studies. 

International Journal of Logistics: Research and Applications, 12(3), 213-230. 
Bougroun, Z., Zeaaraoui, A., & Bouchentouf, T. (2014, 20-22 Oct. 2014). The projection of the 

specific practices of the third level of CMMI model in agile methods: Scrum, XP and 
Kanban Symposium conducted at the meeting of the 2014 Third IEEE International 
Colloquium in Information Science and Technology (CIST) 
doi:10.1109/CIST.2014.7016614 

Braz, A., Rubira, C. M. F., & Vieira, M. (2015, 3-7 Aug. 2015). Development of Complex 
Software with Agile Method Symposium conducted at the meeting of the 2015 Agile 
Conference doi:10.1109/Agile.2015.18 

Breu, K., Hemingway, C. J., Strathern, M., & Bridger, D. (2002). Workforce agility: the new 
employee strategy for the knowledge economy. Journal of Information Technology, 
17(1), 21-31. 

Brown, A. L., & Palincsar, A. S. (1989). Guided, cooperative learning and individual knowledge 
acquisition. Knowing, learning, and instruction: Essays in honor of Robert Glaser, 393-
451. 

Brown, A. W., Ambler, S., & Royce, W. (2013). Agility at scale: economic governance, measured 
improvement, and disciplined delivery. presented at the meeting of the Proceedings of 
the 2013 International Conference on Software Engineering, San Francisco, CA, USA. 

Bryman, A. (2012). Social Research Methods: OUP Oxford. Retrieved from 
https://books.google.co.nz/books?id=vCq5m2hPkOMC 

Burns, T., & Stalker, G. M. (1961). The management of innovation. [London: Tavistock 
Publications. Retrieved from /z-wcorg/ database. 

Burns, T., & Stalker, G. M. (1994). The Management of Innovation: Oxford University Press. 
Retrieved from https://books.google.co.nz/books?id=SFev_VZDlIUC 

https://books.google.co.nz/books?id=lpCeLiDLZVYC
https://books.google.co.nz/books?id=vCq5m2hPkOMC
https://books.google.co.nz/books?id=SFev_VZDlIUC


115 
 

Capretz, L. F. (2003). Personality types in software engineering. International Journal of 
Human-Computer Studies, 58(2), 207-214. doi:http://dx.doi.org/10.1016/S1071-
5819(02)00137-4 

Chandani, A., Neeraja, B., & Sreedevi. (2007, 20-22 Dec. 2007). Knowledge Management: An 
overview &#x00026; its impact on software industry Symposium conducted at the 
meeting of the Information and Communication Technology in Electrical Sciences 
(ICTES 2007), 2007. ICTES. IET-UK International Conference on 

Chen, G. (2005). Newcomer adaptation in teams: Multilevel antecedents and outcomes. 
Academy of Management Journal, 48(1), 101-116. 

Chen, W., & Hirschheim, R. (2004). A paradigmatic and methodological examination of 
information systems research from 1991 to 2001. Information systems journal, 14(3), 
197-235. 

Chesebrough, P. H., & Davis, G. B. (1983). PLANNING A CAREER PATH IN INFORMATION-
SYSTEMS. Journal of Systems Management, 34(1), 6-13. 

Chin, W. (2000). Partial least squares for IS researchers: an overview and presentation of 
recent advances using the PLS approach Symposium conducted at the meeting of the 
ICIS 

Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small 
samples using partial least squares. Statistical strategies for small sample research, 2, 
307-342. 

Chonko, L. B., & Jones, E. (2005). The Need for Speed: Agility Selling. Journal of Personal Selling 
& Sales Management, 25(4), 371-382. doi:10.1080/08853134.2005.10749071 

Christopher, M. (2000). The Agile Supply Chain. Competing in Volatile Markets [Article]. 
Industrial Marketing Management, 29, 37-44. doi:10.1016/S0019-8501(99)00110-8 

Christopher, M., & Towill, D. R. (2000). Supply chain migration from lean and functional to 
agile and customised. Supply Chain Management: An International Journal, 5(4), 206-
213. 

Chromatic. (2003). Extreme Programming Pocket Guide: O'Reilly Media. Retrieved from 
https://books.google.co.nz/books?id=Wt0FlVWrEXkC 

Clancy, T. (2014). The Standish Group Report. 
Cobb, C. G. (2015). The Project Manager's Guide to Mastering Agile: Principles and Practices 

for an Adaptive Approach: Wiley. Retrieved from 
https://books.google.co.nz/books?id=vHjTBQAAQBAJ 

Cockburn, A. (2002). Agile software development (Vol. 177): Addison-Wesley Boston. 
Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor. 34(11), 

131-133. 
Codita, R. (2011). Contingency Factors of Marketing-Mix Standardization: German Consumer 

Goods Companies in Central and Eastern Europe: Gabler Verlag. Retrieved from 
https://books.google.co.nz/books?id=kewkSVcjp1sC 

Cohen, L., Manion, L., & Morrison, K. (2013). Research Methods in Education: Taylor & Francis. 
Retrieved from https://books.google.co.nz/books?id=mLh0Oza3V1IC 

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning 
and innovation. Administrative science quarterly, 128-152. 

Cohn, M. (2004). User Stories Applied: For Agile Software Development (Adobe Reader): 
Pearson Education. Retrieved from 
https://books.google.co.nz/books?id=DHZP_YL3FxYC 

Colomo-Palacios, R., Tovar-Caro, E., García-Crespo, Á., & Gómez-Berbís, J. M. (2012). 
Identifying technical competences of it professionals: The case of software engineers. 
Professional Advancements and Management Trends in the IT Sector, 1. 

Coltman, T., Devinney, T. M., Midgley, D. F., & Venaik, S. (2008). Formative versus reflective 
measurement models: Two applications of formative measurement. Journal of 
Business Research, 61(12), 1250-1262. 

http://dx.doi.org/10.1016/S1071-5819(02)00137-4
http://dx.doi.org/10.1016/S1071-5819(02)00137-4
https://books.google.co.nz/books?id=Wt0FlVWrEXkC
https://books.google.co.nz/books?id=vHjTBQAAQBAJ
https://books.google.co.nz/books?id=kewkSVcjp1sC
https://books.google.co.nz/books?id=mLh0Oza3V1IC
https://books.google.co.nz/books?id=DHZP_YL3FxYC


116 
 

Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods 
Approaches: SAGE Publications. Retrieved from 
https://books.google.co.nz/books?id=bttwENORfhgC 

Creswell, J. W. (2013). Research Design: Qualitative, Quantitative, and Mixed Methods 
Approaches: SAGE Publications. Retrieved from 
https://books.google.co.nz/books?id=EbogAQAAQBAJ 

Crispin, L., & Gregory, J. (2008). Agile Testing: A Practical Guide for Testers and Agile Teams: 
Pearson Education. Retrieved from 
https://books.google.co.nz/books?id=68_lhPvoKS8C 

Crotty, M. (1998). The Foundations of Social Research: Meaning and Perspective in the 
Research Process: SAGE Publications. Retrieved from 
https://books.google.co.nz/books?id=j4hXocGn1yIC 

Danesh, A. S. (2011). A survey of release planning approaches in incremental software 
development. In Computational Intelligence and Information Technology (pp. 687-
692): Springer. 

Darroch, J. (2005). Knowledge management, innovation and firm performance. Journal of 
Knowledge Management, 9(3), 101-115. doi:doi:10.1108/13673270510602809 

Dasgupta, M., & Gupta, R. (2009). Innovation in organizations: A review of the role of 
organizational learning and knowledge management. Global Business Review, 10(2), 
203-224. 

Dávideková, M., & Ml, M. G. (2016, 22-24 Aug. 2016). Software Application Logging: Aspects to 
Consider by Implementing Knowledge Management Symposium conducted at the 
meeting of the 2016 2nd International Conference on Open and Big Data (OBD) 
doi:10.1109/OBD.2016.22 

DeClue, T. (2003). Pair programming and pair trading: effects on learning and motivation in a 
CS2 course. The Journal of Computing Sciences in Colleges, 18(5), 49-56. 

Dodgson, M. (1993). Organizational Learning: A Review of Some Literatures. Organization 
Studies, 14(3), 375-394. doi:doi:10.1177/017084069301400303 

Dömges, R., & Pohl, K. (1998). Adapting traceability environments to project-specific needs. 
Communications of the ACM, 41(12), 54-62. 

Donaldson, L. (2001). The Contingency Theory of Organizations: SAGE Publications. Retrieved 
from https://books.google.co.nz/books?id=bbRhBAAAQBAJ 

Donaldson, S. E., & Siegel, S. G. (2001). Successful Software Development: Prentice Hall PTR. 
Retrieved from https://books.google.co.nz/books?id=lrix5MNRiu4C 

Dorairaj, S., Noble, J., & Malik, P. (2012, 13-17 Aug. 2012). Knowledge Management in 
Distributed Agile Software Development Symposium conducted at the meeting of the 
2012 Agile Conference doi:10.1109/Agile.2012.17 

Döscher, K. (2014). Recovery Management in Business-to-Business Markets: Conceptual 
Dimensions, Relational Consequences and Financial Contributions: Springer 
Fachmedien Wiesbaden. Retrieved from 
https://books.google.co.nz/books?id=7DtdAwAAQBAJ 

Doshi, V. P., & Patil, V. (2016, 24-26 Feb. 2016). Competitor driven development: Hybrid of 
extreme programming and feature driven reuse development Symposium conducted 
at the meeting of the 2016 International Conference on Emerging Trends in 
Engineering, Technology and Science (ICETETS) doi:10.1109/ICETETS.2016.7602985 

Dove, R. (1999). Knowledge management, response ability, and the agile enterprise. Journal of 
knowledge management, 3(1), 18-35. 

Drury, M., Conboy, K., & Power, K. (2012). Obstacles to decision making in Agile software 
development teams. Journal of Systems and Software, 85(6), 1239-1254. 
doi:http://dx.doi.org/10.1016/j.jss.2012.01.058 

Duffy, J. (2000). Knowledge management: What every information professional should know. 
Information Management, 34(3), 10. 

https://books.google.co.nz/books?id=bttwENORfhgC
https://books.google.co.nz/books?id=EbogAQAAQBAJ
https://books.google.co.nz/books?id=68_lhPvoKS8C
https://books.google.co.nz/books?id=j4hXocGn1yIC
https://books.google.co.nz/books?id=bbRhBAAAQBAJ
https://books.google.co.nz/books?id=lrix5MNRiu4C
https://books.google.co.nz/books?id=7DtdAwAAQBAJ
http://dx.doi.org/10.1016/j.jss.2012.01.058


117 
 

Duguay, C. R., Landry, S., & Pasin, F. (1997). From mass production to flexible/agile production. 
International Journal of Operations & Production Management, 17(12), 1183-1195. 

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous Integration: Improving Software 
Quality and Reducing Risk: Pearson Education. Retrieved from 
https://books.google.co.nz/books?id=PV9qfEdv9L0C 

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic 
review. Information and Software Technology, 50(9–10), 833-859. 
doi:http://dx.doi.org/10.1016/j.infsof.2008.01.006 

Dyer, L., & Shafer, R. A. (2003). Dynamic organizations: Achieving marketplace and 
organizational agility with people. 

Economist Intelligence Unit. (2009). Organisational agility: How business can survive and thrive 
in turbulent times. 

Edmondson, A. C., & Nembhard, I. M. (2009). Product development and learning in project 
teams: The challenges are the benefits. Journal of product innovation management, 
26(2), 123-138. 

Eklund, U., & Bosch, J. (2012). Applying Agile Development in Mass-Produced Embedded 
Systems [Eklund2012]. In C. Wohlin (Ed.), Agile Processes in Software Engineering and 
Extreme Programming: 13th International Conference, XP 2012, Malmö, Sweden, May 
21-25, 2012. Proceedings (pp. 31-46). Berlin, Heidelberg: Springer Berlin Heidelberg. 
Retrieved from http://dx.doi.org/10.1007/978-3-642-30350-0_3. doi:10.1007/978-3-
642-30350-0_3 

Eklund, U., Olsson, H. H., & Strøm, N. J. (2014). Industrial challenges of scaling agile in mass-
produced embedded systemsSpringer. Symposium conducted at the meeting of the 
International Conference on Agile Software Development 

Faraj, S., & Sproull, L. (2000). Coordinating expertise in software development teams. 
Management science, 46(12), 1554-1568. 

Farcic, V., & Garcia, A. (2015). Test-Driven Java Development: Packt Publishing. Retrieved from 
https://books.google.co.nz/books?id=tRl1CgAAQBAJ 

Fenton-O'Creevy, M. (1998). Employee involvement and the middle manager: evidence from a 
survey of organizations. Journal of Organizational Behavior, 67-84. 

Fowler, F. J. (2009). Survey Research Methods: SAGE Publications. Retrieved from 
https://books.google.co.nz/books?id=2Enm9gWeH2IC 

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (2012). Refactoring: Improving the 
Design of Existing Code: Pearson Education. Retrieved from 
https://books.google.co.nz/books?id=HmrDHwgkbPsC 

Gaddis, S. E. (1998). How to design online surveys [Article]. Training & Development, 52(6), 67. 
Gandossy, R. (2003). The need for speed. Journal of Business Strategy, 24(1), 29-33. 

doi:doi:10.1108/02756660310508245 
Gänswein, W. (2011). Effectiveness of Information Use for Strategic Decision Making: Gabler 

Verlag. Retrieved from https://books.google.co.nz/books?id=6DNGt1eY2ugC 
Garton, L., Haythornthwaite, C., & Wellman, B. (1997). Studying online social networks. Journal 

of Computer‐Mediated Communication, 3(1), 0-0. 
Gefen, D., Straub, D., & Boudreau, M.-C. (2000). Structural equation modeling and regression: 

Guidelines for research practice. Communications of the association for information 
systems, 4(1), 7. 

Gefen, D., Straub, D. W., & Rigdon, E. E. (2011). An update and extension to SEM guidelines for 
admnistrative and social science research. Management Information Systems 
Quarterly, 35(2), iii-xiv. 

Giesecke, J., & McNeil, B. (2004). Transitioning to the learning organization. 
Goebel, C. J. (2009). How being agile changed our human resources policiesIEEE. Symposium 

conducted at the meeting of the Agile Conference, 2009. AGILE'09. 
Goldman, S. L. (1995). Agile competitors and virtual organizations: strategies for enriching the 

customer: Van Nostrand Reinhold Company. 

https://books.google.co.nz/books?id=PV9qfEdv9L0C
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1007/978-3-642-30350-0_3
https://books.google.co.nz/books?id=tRl1CgAAQBAJ
https://books.google.co.nz/books?id=2Enm9gWeH2IC
https://books.google.co.nz/books?id=HmrDHwgkbPsC
https://books.google.co.nz/books?id=6DNGt1eY2ugC


118 
 

Goldman, S. L., & Nagel, R. N. (1993). Management, technology and agility: the emergence of a 
new era in manufacturing. International Journal of Technology Management, 8(1-2), 
18-38. 

Goldman, S. L., Nagel, R. N., & Preiss, K. (1995). Agile Competitors and Virtual Organizations: 
Strategies for Enriching the Customer: Van Nostrand Reinhold. Retrieved from 
https://books.google.co.nz/books?id=ZBNPAAAAMAAJ 

Goodpasture, J. C. (2015). Project Management the Agile Way, Second Edition: Making it Work 
in the Enterprise: J ROSS PUB Incorporated. Retrieved from 
https://books.google.co.nz/books?id=nF7hCgAAQBAJ 

Gotwon, G. G., & Ditomaso, N. (1992). PREDICTING CORPORATE PERFORMANCE FROM 
ORGANIZATIONAL CULTURE [Article]. Journal of Management Studies, 29(6), 783-798. 

Goyal, R. C. (2010). Research Methodology for Health Professionals: Jaypee Brothers,Medical 
Publishers Pvt. Limited. Retrieved from 
https://books.google.co.nz/books?id=yNv5AwAAQBAJ 

Griffin, B., & Hesketh, B. (2003). Adaptable behaviours for successful work and career 
adjustment. Australian Journal of psychology, 55(2), 65-73. 

Grisham, P. S., & Perry, D. E. (2005). Customer relationships and extreme programmingACM. 
Symposium conducted at the meeting of the ACM SIGSOFT Software Engineering 
Notes 

Guang-yong, H. (2011, 27-29 May 2011). Study and practice of import Scrum agile software 
development Symposium conducted at the meeting of the 2011 IEEE 3rd International 
Conference on Communication Software and Networks 
doi:10.1109/ICCSN.2011.6013698 

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. Handbook of 
qualitative research, 2(163-194), 105. 

Gunasekaran, A. (1998). Agile manufacturing: Enablers and an implementation framework. 
International Journal of Production Research, 36(5), 1223-1247. 
doi:10.1080/002075498193291 

Gunasekaran, A. (1999). Agile manufacturing: a framework for research and development. 
International journal of production economics, 62(1), 87-105. 

Gupta, B., Iyer, L. S., & Aronson, J. E. (2000). Knowledge management: practices and 
challenges. Industrial Management & Data Systems, 100(1), 17-21. 
doi:doi:10.1108/02635570010273018 

Guzzo, R. A., & Dickson, M. W. (1996). Teams in organizations: Recent research on 
performance and effectiveness. Annual review of psychology, 47(1), 307-338. 

Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A Primer on Partial Least Squares 
Structural Equation Modeling (PLS-SEM): SAGE Publications. Retrieved from 
https://books.google.co.nz/books?id=Xn-LCwAAQBAJ 

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of 
Marketing theory and Practice, 19(2), 139-152. 

Hanks, B., McDowell, C., Draper, D., & Krnjajic, M. (2004). Program quality with pair 
programming in CS! ACM SIGCSE Bulletin, 36(3), 176-180. 

Hansen, M. T., & Baggesen, H. (2009, 24-28 Aug. 2009). From CMMI and Isolation to Scrum, 
Agile, Lean and Collaboration Symposium conducted at the meeting of the 2009 Agile 
Conference doi:10.1109/AGILE.2009.18 

Haugset, B., & Hanssen, G. K. (2008, 4-8 Aug. 2008). Automated Acceptance Testing: A 
Literature Review and an Industrial Case Study Symposium conducted at the meeting 
of the Agile 2008 Conference doi:10.1109/Agile.2008.82 

Haugset, B., & Stalhane, T. (2012, 4-7 Jan. 2012). Automated Acceptance Testing as an Agile 
Requirements Engineering Practice Symposium conducted at the meeting of the 2012 
45th Hawaii International Conference on System Sciences doi:10.1109/HICSS.2012.127 

Hazzan, O., & Dubinsky, Y. (2009). Agile Software Engineering: Springer London. Retrieved 
from https://books.google.co.nz/books?id=kNFqQW3uZucC 

https://books.google.co.nz/books?id=ZBNPAAAAMAAJ
https://books.google.co.nz/books?id=nF7hCgAAQBAJ
https://books.google.co.nz/books?id=yNv5AwAAQBAJ
https://books.google.co.nz/books?id=Xn-LCwAAQBAJ
https://books.google.co.nz/books?id=kNFqQW3uZucC


119 
 

Hedberg, M. (2015). Competences in Agile Development: Exploring the social, functional and 
cognitive requirements of a systems developer. 

Henderson-Sellers, B., & Serour, M. (2005). Creating a dual-agility method: The value of 
method engineering. Journal of Database Management, 16(4), 1. 

Herbsleb, J. D., & Mockus, A. (2003). An empirical study of speed and communication in 
globally distributed software development. IEEE Transactions on Software Engineering, 
29(6), 481-494. doi:10.1109/TSE.2003.1205177 

Highsmith, J. A. (2002). Agile Software Development Ecosystems: Addison-Wesley. Retrieved 
from https://books.google.co.nz/books?id=uE4FGFOHs2EC 

Hoda, R., Noble, J., & Marshall, S. (2013). Self-Organizing Roles on Agile Software Development 
Teams. IEEE Transactions on Software Engineering, 39(3), 422-444. 
doi:10.1109/TSE.2012.30 

Hoegl, M., & Proserpio, L. (2004). Team member proximity and teamwork in innovative 
projects. Research policy, 33(8), 1153-1165. 

Hopp, W. J., & Spearman, M. L. (2011). Factory physics: Foundations of Manufacturing 
Management: Waveland Press. 

Hopp, W. J., & Van Oyen, M. P. (2004). Agile workforce evaluation: a framework for cross-
training and coordination. IIE Transactions, 36(10), 919-940. 

House, R. j. (1991). The distribution and exercise of power in complex organizations: A MESO 
theory. The Leadership Quarterly, 2(1), 23-58. doi:https://doi.org/10.1016/1048-
9843(91)90005-M 

Hoyt, J., Huq, F., & Kreiser, P. (2007). Measuring organizational responsiveness: the 
development of a validated survey instrument. Management Decision, 45(10), 1573-
1594. doi:doi:10.1108/00251740710837979 

Hsu, J. S.-C., Chan, C.-L., Liu, J. Y.-C., & Chen, H.-G. (2008). The impacts of user review on 
software responsiveness: Moderating requirements uncertainty. Information & 
Management, 45(4), 203-210. doi:http://dx.doi.org/10.1016/j.im.2008.01.006 

Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, 
Test, and Deployment Automation (Adobe Reader): Pearson Education. Retrieved from 
https://books.google.co.nz/books?id=6ADDuzere-YC 

Hunt, J. (2006). Agile Software Construction: Springer London. Retrieved from 
https://books.google.co.nz/books?id=P8sWloUWrdIC 

Huntley, C. L. (2003). Organizational learning in open-source software projects: an analysis of 
debugging data. IEEE Transactions on Engineering Management, 50(4), 485-493. 
doi:10.1109/TEM.2003.820136 

Iivari, J., & Iivari, N. (2011). The relationship between organizational culture and the 
deployment of agile methods. Information and Software Technology, 53(5), 509-520. 
doi:http://dx.doi.org/10.1016/j.infsof.2010.10.008 

Janićijević, N. (2013). The mutual impact of organizational culture and structure. Economic 
annals, 58(198), 35-60. 

Janis, I. L., & Mann, L. (1977). Decision making: A psychological analysis of conflict, choice, and 
commitment: Free Press. 

Janz, B. D. (1999). Self-directed teams in IS: correlates for improved systems development 
work outcomes. Information & Management, 35(3), 171-192. 

Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct 
indicators and measurement model misspecification in marketing and consumer 
research. Journal of consumer research, 30(2), 199-218. 

Jegerski, J., & VanPatten, B. (2013). Research Methods in Second Language Psycholinguistics: 
Taylor & Francis. Retrieved from https://books.google.co.nz/books?id=jMdiAgAAQBAJ 

Jerez-Gómez, P., Céspedes-Lorente, J., & Valle-Cabrera, R. (2005). Organizational learning 
capability: a proposal of measurement. Journal of Business Research, 58(6), 715-725. 
doi:http://dx.doi.org/10.1016/j.jbusres.2003.11.002 

https://books.google.co.nz/books?id=uE4FGFOHs2EC
https://doi.org/10.1016/1048-9843(91)90005-M
https://doi.org/10.1016/1048-9843(91)90005-M
http://dx.doi.org/10.1016/j.im.2008.01.006
https://books.google.co.nz/books?id=6ADDuzere-YC
https://books.google.co.nz/books?id=P8sWloUWrdIC
http://dx.doi.org/10.1016/j.infsof.2010.10.008
https://books.google.co.nz/books?id=jMdiAgAAQBAJ
http://dx.doi.org/10.1016/j.jbusres.2003.11.002


120 
 

Johannesson, P., & Perjons, E. (2014). Research Paradigms [Johannesson2014]. In An 
Introduction to Design Science (pp. 167-179). Cham: Springer International Publishing. 
Retrieved from http://dx.doi.org/10.1007/978-3-319-10632-8_12. doi:10.1007/978-3-
319-10632-8_12 

Johnson, B., & Christensen, L. (2010). Educational Research: Quantitative, Qualitative, and 
Mixed Approaches: SAGE Publications. Retrieved from 
https://books.google.co.nz/books?id=b2ujHWrRpVQC 

Kaplan, B., & Maxwell, J. A. (2005). Qualitative research methods for evaluating computer 
information systems. In Evaluating the organizational impact of healthcare 
information systems (pp. 30-55): Springer. 

Katumba, B., & Knauss, E. (2014). Agile Development in Automotive Software Development: 
Challenges and Opportunities [Katumba2014]. In A. Jedlitschka, P. Kuvaja, M. 
Kuhrmann, T. Männistö, J. Münch, & M. Raatikainen (Eds.), Product-Focused Software 
Process Improvement: 15th International Conference, PROFES 2014, Helsinki, Finland, 
December 10-12, 2014. Proceedings (pp. 33-47). Cham: Springer International 
Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-13835-0_3. 
doi:10.1007/978-3-319-13835-0_3 

Kavitha, R., & Ahmed, M. I. (2011). A knowledge management framework for agile software 
development teamsIEEE. Symposium conducted at the meeting of the Process 
Automation, Control and Computing (PACC), 2011 International Conference on 

Kelly, A. (2008). Changing Software Development: Learning to Become Agile: Wiley. Retrieved 
from https://books.google.co.nz/books?id=-4Nji7jhLXcC 

Kelly, a. (2015). Xanpan: Team Centric Agile Software Development: Ipicturebooks. Retrieved 
from https://books.google.co.nz/books?id=5oyzBgAAQBAJ 

Kessler, E. H., & Chakrabarti, A. K. (1996). Innovation Speed: A Conceptual Model of Context, 
Antecedents, and Outcomes [research article](4), 1143. Retrieved from 
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=tru
e&db=edsjsr&AN=edsjsr.259167&site=eds-live 

Khan, O. M. A. (2016). JavaScript for .NET Developers: Packt Publishing. Retrieved from 
https://books.google.co.nz/books?id=JevUDQAAQBAJ 

Kivunja, C., & Kuyini, A. B. (2017). Understanding and Applying Research Paradigms in 
Educational Contexts. International Journal of Higher Education, 6(5), 26. 

Kohn, A. (1999). Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, 
and other bribes: Houghton Mifflin Harcourt. 

Koskela, J., & Abrahamsson, P. (2004). On-site customer in an XP project: Empirical results 
from a case studySpringer. Symposium conducted at the meeting of the European 
Conference on Software Process Improvement 

Kotzab, H., Seuring, S., Müller, M., & Reiner, G. (2006). Research Methodologies in Supply 
Chain Management: Physica-Verlag HD. Retrieved from 
https://books.google.co.nz/books?id=LnGJJbImqngC 

Kusiak, A., & He, D. (1997). Design for an enterprise. In Enterprise Engineering and Integration 
(pp. 420-430): Springer. 

Laanti, M. (2014). Characteristics and principles of scaled agileSpringer. Symposium conducted 
at the meeting of the International Conference on Agile Software Development 

Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., St, D., x00E, & hl. (2013, 10-11 Oct. 
2013). The Impact of Agile Principles and Practices on Large-Scale Software 
Development Projects: A Multiple-Case Study of Two Projects at Ericsson Symposium 
conducted at the meeting of the 2013 ACM / IEEE International Symposium on 
Empirical Software Engineering and Measurement doi:10.1109/ESEM.2013.53 

Lal, R. (2011). Strategic factors in agile software development method adaptation: a study of 
market-driven organisations: a thesis presented in partial [fulfilment] of the 
requirements for the degree of Doctor of Philosophy in Information Technology at 
Massey University, Albany campus, New Zealand. Massey University. 

http://dx.doi.org/10.1007/978-3-319-10632-8_12
https://books.google.co.nz/books?id=b2ujHWrRpVQC
http://dx.doi.org/10.1007/978-3-319-13835-0_3
https://books.google.co.nz/books?id=-4Nji7jhLXcC
https://books.google.co.nz/books?id=5oyzBgAAQBAJ
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsjsr&AN=edsjsr.259167&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsjsr&AN=edsjsr.259167&site=eds-live
https://books.google.co.nz/books?id=JevUDQAAQBAJ
https://books.google.co.nz/books?id=LnGJJbImqngC


121 
 

Lam, A. (2000). Tacit knowledge, organizational learning and societal institutions: An 
integrated framework. Organization studies, 21(3), 487-513. 

Landaeta, R. E., Viscardi, S., & Tolk, A. (2011). Strategic management of scrum projects: An 
organizational learning perspectiveIEEE. Symposium conducted at the meeting of the 
Technology Management Conference (ITMC), 2011 IEEE International 

Laranjeiro, N., & Vieira, M. (2013). Adapting Test-Driven Development to Build Robust Web 
Services. Software Design and Development: Concepts, Methodologies, Tools, and 
Applications: Concepts, Methodologies, Tools, and Applications, 50. 

Laukkanen, E., Paasivaara, M., & Arvonen, T. (2015, 3-7 Aug. 2015). Stakeholder Perceptions of 
the Adoption of Continuous Integration -- A Case Study Symposium conducted at the 
meeting of the 2015 Agile Conference doi:10.1109/Agile.2015.15 

Law, A., & Learn, S. (2005). Waltzing with changes [agile software development]IEEE. 
Symposium conducted at the meeting of the Agile Conference, 2005. Proceedings 

Lee, G., & Xia, W. (2010). Toward agile: an integrated analysis of quantitative and qualitative 
field data on software development agility. Mis Quarterly, 34(1), 87-114. 

Leffingwell, D. (2010). Agile Software Requirements: Lean Requirements Practices for Teams, 
Programs, and the Enterprise: Pearson Education. Retrieved from 
https://books.google.co.nz/books?id=pTExbNmZwZUC 

Lei, D., Hitt, M. A., & Bettis, R. (1996). Dynamic core competences through meta-learning and 
strategic context. Journal of management, 22(4), 549-569. 

Lewis, W. E. (2016). Software Testing and Continuous Quality Improvement, Third Edition: CRC 
Press. Retrieved from https://books.google.co.nz/books?id=fgaBDd0TfT8C 

Li, Y. (2012). Workforce agility metric in EISIEEE. Symposium conducted at the meeting of the 
2012 International Conference on Information Management, Innovation Management 
and Industrial Engineering 

Lin, C.-T., Chiu, H., & Chu, P.-Y. (2006). Agility index in the supply chain. International Journal of 
Production Economics, 100(2), 285-299. 

Lin, C.-T., Chiu, H., & Tseng, Y.-H. (2006). Agility evaluation using fuzzy logic. International 
Journal of Production Economics, 101(2), 353-368. 
doi:http://dx.doi.org/10.1016/j.ijpe.2005.01.011 

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., . . . Zelkowitz, M. (2002). 
Empirical findings in agile methodsSpringer. Symposium conducted at the meeting of 
the Conference on Extreme Programming and Agile Methods 

Loewen, S., & Plonsky, L. (2015). An A–Z of Applied Linguistics Research Methods: Palgrave 
Macmillan. Retrieved from https://books.google.co.nz/books?id=UCYpCwAAQBAJ 

Mahmoudsalehi, M., Moradkhannejad, R., & Safari, K. (2012). How knowledge management is 
affected by organizational structure. The Learning Organization, 19(6), 518-528. 
doi:doi:10.1108/09696471211266974 

Marczak, S., Kwan, I., & Damian, D. (2009, 31-31 Aug. 2009). Investigating Collaboration Driven 
by Requirements in Cross-Functional Software Teams Symposium conducted at the 
meeting of the 2009 Collaboration and Intercultural Issues on Requirements: 
Communication, Understanding and Softskills doi:10.1109/CIRCUS.2009.2 

Marquardt, M. J. (1996). Building the learning organization: McGraw-Hill Companies New York, 
NY. 

Martin, A., Noble, J., & Biddle, R. (2003). Being Jane Malkovich: A look into the world of an XP 
customer. Extreme Programming and Agile Processes in Software Engineering, 1012-
1012. 

Maskell, B. (2001). The age of agile manufacturing. Supply Chain Management: An 
International Journal, 6(1), 5-11. doi:doi:10.1108/13598540110380868 

Mason-Jones, R., Naylor, B., & Towill, D. R. (2000). Engineering the leagile supply chain. 
International Journal of Agile Management Systems, 2(1), 54-61. 

Mathiassen, L., & Pries-Heje, J. (2006). Business agility and diffusion of information technology: 
Springer. 

https://books.google.co.nz/books?id=pTExbNmZwZUC
https://books.google.co.nz/books?id=fgaBDd0TfT8C
http://dx.doi.org/10.1016/j.ijpe.2005.01.011
https://books.google.co.nz/books?id=UCYpCwAAQBAJ


122 
 

Maximini, D. (2015). The Scrum Culture: Introducing Agile Methods in Organizations: Springer 
International Publishing. Retrieved from 
https://books.google.co.nz/books?id=ShojBgAAQBAJ 

McConnell, S. (2004). Professional Software Development. Boston: Addison-Wesley. 
McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002). The effects of pair programming on 

performance in an introductory programming course. ACM SIGCSE Bulletin, 34(1), 38-
42. 

McKenna, E. F. (2000). Business Psychology and Organisational Behaviour: A Student's 
Handbook: Psychology Press. Retrieved from 
https://books.google.co.nz/books?id=v1fqm6WlOcMC 

Mehlsen, M. Y. (2009). Introduction to Structural Equation Modelling using SPSS and AMOS. 
Psyke & Logos, 30(2), 5. 

Melnik, G., & Maurer, F. (2004). Direct verbal communication as a catalyst of agile knowledge 
sharingIEEE. Symposium conducted at the meeting of the Agile Development 
Conference, 2004 

Miles, R. E., Snow, C. C., Meyer, A. D., & Coleman, H. J. (1978). Organizational strategy, 
structure, and process. Academy of management review, 3(3), 546-562. 

Miller, D. (1981). Toward a new contingency approach: The search for organizational gestalts. 
Journal of management studies, 18(1), 1-26. 

Misra, S. C., Kumar, V., & Kumar, U. (2009). Identifying some important success factors in 
adopting agile software development practices. Journal of Systems and Software, 
82(11), 1869-1890. doi:http://dx.doi.org/10.1016/j.jss.2009.05.052 

Moch, M. K., & Morse, E. V. (1977). Size, Centralization and Organizational Adoption of 
Innovations. American Sociological Review, 42(5), 716-725. doi:10.2307/2094861 

Moe, N. B., Dings, T., x0F, yr, Dyb, T., & x0E. (2008, 26-28 March 2008). Understanding Self-
Organizing Teams in Agile Software Development Symposium conducted at the 
meeting of the 19th Australian Conference on Software Engineering (aswec 2008) 
doi:10.1109/ASWEC.2008.4483195 

Mohammadi, S., Nikkhahan, B., & Sohrabi, S. (2008, 13-15 Oct. 2008). An Analytical Survey of 
"On-Site Customer" Practice in Extreme Programming Symposium conducted at the 
meeting of the International Symposium on Computer Science and its Applications 
doi:10.1109/CSA.2008.72 

Monochristou, V., & Vlachopoulou, M. (2007). Requirements specification using user stories. 
Agile Software Development Quality Assurance, 71. 

Moon, M. J. (1999). The Pursuit of Managerial Entrepreneurship: Does Organization Matter? 
Public Administration Review, 59(1), 31-43. doi:10.2307/977477 

Moore, E., & Spens, J. (2008, 4-8 Aug. 2008). Scaling Agile: Finding your Agile Tribe Symposium 
conducted at the meeting of the Agile, 2008. AGILE '08. Conference 
doi:10.1109/Agile.2008.43 

Moreira, M. E. (2013). Being Agile: Your Roadmap to Successful Adoption of Agile: Apress. 
Retrieved from https://books.google.co.nz/books?id=2ZErAQAAQBAJ 

Muijs, D. (2010). Doing Quantitative Research in Education with SPSS: SAGE Publications. 
Retrieved from https://books.google.co.nz/books?id=apFMQHF768EC 

Myers, M. D. (2013). Qualitative Research in Business and Management: SAGE Publications. 
Retrieved from https://books.google.co.nz/books?id=XZARAgAAQBAJ 

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile 
methodologies. Commun. ACM, 48(5), 72-78. doi:10.1145/1060710.1060712 

Netemeyer, R. G., Bearden, W. O., & Sharma, S. (2003). Scaling Procedures: Issues and 
Applications: SAGE Publications. Retrieved from 
https://books.google.co.nz/books?id=c2dN7HDbr7kC 

Nidhra, S., Dondeti, J., Katikar, P., & Tekkali, S. (2012, 5-7 Sept. 2012). Implementing the 
concept of refactoring in software development Symposium conducted at the meeting 

https://books.google.co.nz/books?id=ShojBgAAQBAJ
https://books.google.co.nz/books?id=v1fqm6WlOcMC
http://dx.doi.org/10.1016/j.jss.2009.05.052
https://books.google.co.nz/books?id=2ZErAQAAQBAJ
https://books.google.co.nz/books?id=apFMQHF768EC
https://books.google.co.nz/books?id=XZARAgAAQBAJ
https://books.google.co.nz/books?id=c2dN7HDbr7kC


123 
 

of the 2012 CSI Sixth International Conference on Software Engineering (CONSEG) 
doi:10.1109/CONSEG.2012.6349468 

Nidumolu, S. (1995). The Effect of Coordination and Uncertainty on Software Project 
Performance: Residual Performance Risk as an Intervening Variable. Information 
Systems Research, 6(3), 191-219. doi:doi:10.1287/isre.6.3.191 

Nimon, K. F. (2012). Statistical assumptions of substantive analyses across the general linear 
model: a mini-review. Frontiers in psychology, 3, 322. 

Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organization 
science, 5(1), 14-37. 

Nosek, J. T. (1998). The case for collaborative programming. Communications of the ACM, 
41(3), 105-108. 

O'Reilly, C. A., Chatman, J., & Caldwell, D. F. (1991). People and organizational culture: A 
profile comparison approach to assessing person-organization fit. Academy of 
management journal, 34(3), 487-516. 

Olsson, H., Sandberg, A., Bosch, J., & Alahyari, H. (2014). Scale and Responsiveness in Large-
Scale Software Development. IEEE Software, 31(5), 87-93. doi:10.1109/MS.2013.139 

Onoma, A. K., Tsai, W.-T., Poonawala, M., & Suganuma, H. (1998). Regression testing in an 
industrial environment. Commun. ACM, 41(5), 81-86. doi:10.1145/274946.274960 

Passos, C., Mendon, M., & Cruzes, D. S. (2014, Sept. 28 2014-Oct. 3 2014). The Role of 
Organizational Culture in Software Development Practices: A Cross-Case Analysis of 
Four Software Companies Symposium conducted at the meeting of the Software 
Engineering (SBES), 2014 Brazilian Symposium on doi:10.1109/SBES.2014.12 

Pérez-Bustamante, G. (1999). Knowledge management in agile innovative organisations. 
Journal of knowledge management, 3(1), 6-17. 

Phalnikar, R., Deshpande, V., & Joshi, S. (2009). Applying agile principles for distributed 
software developmentIEEE. Symposium conducted at the meeting of the Advanced 
Computer Control, 2009. ICACC'09. International Conference on 

Pichler, R. (2010). Agile Product Management with Scrum: Creating Products that Customers 
Love (Adobe Reader): Pearson Education. Retrieved from 
https://books.google.co.nz/books?id=aLSu0P0EojEC 

Pierce, J. L., & Delbecq, A. L. (1977). Organization structure, individual attitudes and 
innovation. Academy of management review, 2(1), 27-37. 

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The impact of agile 
practices on communication in software development [journal article]. Empirical 
Software Engineering, 13(3), 303-337. doi:10.1007/s10664-008-9065-9 

Plonka, F. E. (1997). Developing a lean and agile work force. Human Factors and Ergonomics in 
Manufacturing & Service Industries, 7(1), 11-20. 

Pollard, N. (2016). Getting Started with Agile Software Development: BookRix. Retrieved from 
https://books.google.co.nz/books?id=dVCBCwAAQBAJ 

Pring, R. (2000). The ‘false dualism’of educational research. Journal of Philosophy of Education, 
34(2), 247-260. 

Project Management Institute. (2012). Pulse of the Profession - Organizational Agility: Project 
Management Institute. 

Qin, R., & Nembhard, D. A. (2015). Workforce agility in operations management. Surveys in 
Operations Research and Management Science, 20(2), 55-69. 

Quélin, B. (2000). Core competencies, R&amp;D management and partnerships. European 
Management Journal, 18(5), 476-487. doi:http://dx.doi.org/10.1016/S0263-
2373(00)00037-2 

Quinn, R. E., & Rohrbaugh, J. (1983). A spatial model of effectiveness criteria: Towards a 
competing values approach to organizational analysis. Management science, 29(3), 
363-377. 

Ras, E., & Weber, S. (2009, 19-19 May 2009). Software organization platform: Integrating 
organizational and individual learning Symposium conducted at the meeting of the 

https://books.google.co.nz/books?id=aLSu0P0EojEC
https://books.google.co.nz/books?id=dVCBCwAAQBAJ
http://dx.doi.org/10.1016/S0263-2373(00)00037-2
http://dx.doi.org/10.1016/S0263-2373(00)00037-2


124 
 

Wikis for Software Engineering, 2009. WIKIS4SE '09. ICSE Workshop on 
doi:10.1109/WIKIS4SE.2009.5069997 

Read, K., Melnik, G., & Maurer, F. (2005). Examining Usage Patterns of the FIT Acceptance 
Testing Framework [Read2005]. In H. Baumeister, M. Marchesi, & M. Holcombe (Eds.), 
Extreme Programming and Agile Processes in Software Engineering: 6th International 
Conference, XP 2005, Sheffield, UK, June 18-23, 2005. Proceedings (pp. 127-136). 
Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from 
http://dx.doi.org/10.1007/11499053_15. doi:10.1007/11499053_15 

Reed, K., & Blunsdon, B. (1998). Organizational flexibility in Australia. International Journal of 
Human Resource Management, 9(3), 457-477. 

Reifer, D. J., Maurer, F., & Erdogmus, H. (2003). Scaling agile methods. IEEE Software, 20(4), 
12-14. doi:10.1109/MS.2003.1207448 

Reis, H. T., & Judd, C. M. (2000). Handbook of Research Methods in Social and Personality 
Psychology: Cambridge University Press. Retrieved from 
https://books.google.co.nz/books?id=j7aawGLbtEoC 

Resnick, S., Bjork, A., & de la Maza, M. (2011). Professional Scrum with Team Foundation 
Server 2010: Wiley. Retrieved from 
https://books.google.co.nz/books?id=YocPEY3YyoYC 

Rico, D. F., Sayani, H. H., & Sone, S. (2009). The Business Value of Agile Software Methods: 
Maximizing ROI with Just-in-time Processes and Documentation: J. Ross Pub. Retrieved 
from https://books.google.co.nz/books?id=anLeaMMgmo0C 

Rouse, W. B. (2007). Agile information systems for agile decision making. Agile Information 
Systems, 16. 

Rubin, K. S. (2012). Essential Scrum: A Practical Guide to the Most Popular Agile Process: 
Addison-Wesley. Retrieved from https://books.google.co.nz/books?id=HkXX65VCZU4C 

Salo, O., & Abrahamsson, P. (2005). Integrating agile software development and software 
process improvement: a longitudinal case studyIEEE. Symposium conducted at the 
meeting of the Empirical Software Engineering, 2005. 2005 International Symposium 
on 

Sambamurthy, V., Bharadwaj, A., & Grover, V. (2003). Shaping agility through digital options: 
Reconceptualizing the role of information technology in contemporary firms. MIS 
quarterly, 237-263. 

Sanchez, L. M., & Nagi, R. (2001). A review of agile manufacturing systems. International 
Journal of Production Research, 39(16), 3561-3600. doi:10.1080/00207540110068790 

Sandberg, A. B., & Crnkovic, I. (2017, 20-28 May 2017). Meeting Industry-Academia Research 
Collaboration Challenges with Agile Methodologies Symposium conducted at the 
meeting of the 2017 IEEE/ACM 39th International Conference on Software 
Engineering: Software Engineering in Practice Track (ICSE-SEIP) doi:10.1109/ICSE-
SEIP.2017.20 

Santos-Vijande, M. L., López-Sánchez, J. Á., & Trespalacios, J. A. (2012). How organizational 
learning affects a firm's flexibility, competitive strategy, and performance. Journal of 
Business Research, 65(8), 1079-1089. 

Santos, V. A., Goldman, A., Shinoda, A. C. M., & Fischer, A. L. (2011). A view towards 
Organizational Learning: An empirical study on Scrum implementation Symposium 
conducted at the meeting of the SEKE 

Sarantakos, S. (2005). Social Research: Palgrave Macmillan. Retrieved from 
https://books.google.co.nz/books?id=yIjCQgAACAAJ 

Savolainen, J., Kuusela, J., & Vilavaara, A. (2010). Transition to agile development-rediscovery 
of important requirements engineering practicesIEEE. Symposium conducted at the 
meeting of the Requirements Engineering Conference (RE), 2010 18th IEEE 
International 

Schein, E. H. (2010). Organizational culture and leadership (Vol. 2): John Wiley & Sons. 

http://dx.doi.org/10.1007/11499053_15
https://books.google.co.nz/books?id=j7aawGLbtEoC
https://books.google.co.nz/books?id=YocPEY3YyoYC
https://books.google.co.nz/books?id=anLeaMMgmo0C
https://books.google.co.nz/books?id=HkXX65VCZU4C
https://books.google.co.nz/books?id=yIjCQgAACAAJ


125 
 

Schiel, J. (2009). Enterprise-Scale Agile Software Development: CRC Press. Retrieved from 
https://books.google.co.nz/books?id=qtwlk-AYYhYC 

Schiel, J. (2016). The ScrumMaster Study Guide: CRC Press. Retrieved from 
https://books.google.co.nz/books?id=Be7RBQAAQBAJ 

Schifferstein, H. N. J., & Hekkert, P. (2011). Product Experience: Elsevier Science. Retrieved 
from https://books.google.co.nz/books?id=iQnfJHjcVQ8C 

Schmidt, C. (2015). Agile Software Development Teams: Springer International Publishing. 
Retrieved from https://books.google.co.nz/books?id=oVs-CwAAQBAJ 

Schmidt, R., Lyytinen, K., & Mark Keil, P. C. (2001). Identifying software project risks: An 
international Delphi study. Journal of management information systems, 17(4), 5-36. 

Schulz, M. (2001). The uncertain relevance of newness: Organizational learning and knowledge 
flows. Academy of management journal, 44(4), 661-681. 

Schumacker, R. E., & Lomax, R. G. (2010). A Beginner's Guide to Structural Equation Modeling: 
Routledge. Retrieved from https://books.google.co.nz/books?id=58pWPxWPC90C 

Schwaber, K., & Sutherland, J. (2012). Software in 30 Days: How Agile Managers Beat the 
Odds, Delight Their Customers, And Leave Competitors In the Dust: Wiley. Retrieved 
from https://books.google.co.nz/books?id=sdnAZOAuuDkC 

Scotland, J. (2012). Exploring the philosophical underpinnings of research: Relating ontology 
and epistemology to the methodology and methods of the scientific, interpretive, and 
critical research paradigms. English Language Teaching, 5(9), 9. 

Sedehi, H., & Martano, G. (2012, 17-19 Oct. 2012). Metrics to Evaluate &amp;amp; Monitor 
Agile Based Software Development Projects - A Fuzzy Logic Approach Symposium 
conducted at the meeting of the 2012 Joint Conference of the 22nd International 
Workshop on Software Measurement and the 2012 Seventh International Conference 
on Software Process and Product Measurement doi:10.1109/IWSM-
MENSURA.2012.22 

Selleri Silva, F., Soares, F. S. F., Peres, A. L., Azevedo, I. M. d., Vasconcelos, A. P. L. F., Kamei, F. 
K., & Meira, S. R. d. L. (2015). Using CMMI together with agile software development: 
A systematic review. Information and Software Technology, 58, 20-43. 
doi:http://dx.doi.org/10.1016/j.infsof.2014.09.012 

Semeijn, J. H., Van Der Heijden, B. I. J. M., & Van Der Lee, A. (2014). Multisource Ratings Of 
Managerial Competencies And Their Predictive Value For Managerial And 
Organizational Effectiveness [Article]. Human Resource Management, 53(5), 773-794. 
doi:10.1002/hrm.21592 

Shalloway, A., Beaver, G., & Trott, J. R. (2009). Lean-Agile Software Development: Achieving 
Enterprise Agility: Pearson Education. Retrieved from 
https://books.google.co.nz/books?id=8lm9_k_fvfkC 

Shapiro, B. P. (2001). Sprint sell to close sales quickly: Boston: Harvard Business School Press. 
Sharifi, H., & Zhang, Z. (1999). A methodology for achieving agility in manufacturing 

organisations: An introduction. International journal of production economics, 62(1), 7-
22. 

Shaye, S. D. (2008). Transitioning a team to agile test methodsIEEE. Symposium conducted at 
the meeting of the Agile, 2008. AGILE'08. Conference 

Sherehiy, B., Karwowski, W., & Layer, J. K. (2007). A review of enterprise agility: Concepts, 
frameworks, and attributes. International Journal of industrial ergonomics, 37(5), 445-
460. 

Shi, Z., Chen, L., & Chen, T.-e. (2011, 11-13 March 2011). Agile planning and development 
methods Symposium conducted at the meeting of the 2011 3rd International 
Conference on Computer Research and Development 
doi:10.1109/ICCRD.2011.5764064 

Shinkle, C. M. (2009). Applying the Dreyfus model of skill acquisition to the adoption of Kanban 
systems at software engineering professionals (SEP)IEEE. Symposium conducted at the 
meeting of the Agile Conference, 2009. AGILE'09. 

https://books.google.co.nz/books?id=qtwlk-AYYhYC
https://books.google.co.nz/books?id=Be7RBQAAQBAJ
https://books.google.co.nz/books?id=iQnfJHjcVQ8C
https://books.google.co.nz/books?id=oVs-CwAAQBAJ
https://books.google.co.nz/books?id=58pWPxWPC90C
https://books.google.co.nz/books?id=sdnAZOAuuDkC
http://dx.doi.org/10.1016/j.infsof.2014.09.012
https://books.google.co.nz/books?id=8lm9_k_fvfkC


126 
 

Shore, J., & Warden, S. (2008). The Art of Agile Development: O'Reilly Media, Incorporated. 
Retrieved from https://books.google.co.nz/books?id=2q6bAgAAQBAJ 

Shrivastava, P. (1983). A TYPOLOGY OF ORGANIZATIONAL LEARNING SYSTEMS. Journal of 
Management Studies, 20(1), 7-28. doi:10.1111/j.1467-6486.1983.tb00195.x 

Siggelkow, N., & Levinthal, D. A. (2005). Escaping real (non-benign) competency traps: linking 
the dynamics of organizational structure to the dynamics of search. Strategic 
Organization, 3(1), 85-115. doi:doi:10.1177/1476127005050521 

Singh, K. (2007). Quantitative Social Research Methods: SAGE Publications. Retrieved from 
https://books.google.co.nz/books?id=-OMnt3CT-SwC 

Sivanantham, V. (2012). Knowledge Management in Agile Projects. Cognizant 20-20 Insights. 
Sliger, M., & Broderick, S. (2008). The Software Project Manager's Bridge to Agility: Pearson 

Education. Retrieved from https://books.google.co.nz/books?id=5Ir-Bgy95w4C 
Sohaib, O., & Khan, K. (2010). Integrating usability engineering and agile software 

development: A literature reviewIEEE. Symposium conducted at the meeting of the 
Computer design and applications (ICCDA), 2010 international conference on 

Sohrabi, R., Asari, M., & Hozoori, M. J. (2014). Relationship between Workforce Agility and 
Organizational Intelligence (Case Study: The Companies of" Iran High Council of 
Informatics"). Asian Social Science, 10(4), 279. 

Solanki, P. (2009). EARNED VALUE MANAGEMENT: Integrated View of Cost and Schedule 
Performance: Global India Publications Pvt. Limited. Retrieved from 
https://books.google.co.nz/books?id=4lmXKNR46tIC 

Srinivasan, J., & Lundqvist, K. (2009). Using agile methods in software product development: A 
case studyIEEE. Symposium conducted at the meeting of the Information Technology: 
New Generations, 2009. ITNG'09. Sixth International Conference on 

Stahl, D., Hallén, K., & Bosch, J. (2017). Continuous Integration and Delivery Traceability in 
Industry: Needs and PracticesIEEE. Symposium conducted at the meeting of the 
Software Engineering and Advanced Applications (SEAA), 2017 43rd Euromicro 
Conference on 

Stamatis, D. H. (2002). Six Sigma and Beyond: Statistics and Probability: CRC Press. Retrieved 
from https://books.google.co.nz/books?id=iDnMBQAAQBAJ 

Stamelos, I. G. (2007). Agile Software Development Quality Assurance: Information Science 
Reference. Retrieved from https://books.google.co.nz/books?id=TWscMx09ENkC 

Stray, V. G., Moe, N. B., & Aurum, A. (2012, 5-8 Sept. 2012). Investigating Daily Team Meetings 
in Agile Software Projects Symposium conducted at the meeting of the 2012 38th 
Euromicro Conference on Software Engineering and Advanced Applications 
doi:10.1109/SEAA.2012.16 

Sufian, Q., & Monideepa, T. (2013). Lean and agile supply chain strategies and supply chain 
responsiveness: the role of strategic supplier partnership and postponement. Supply 
Chain Management: An International Journal, 18(6), 571-582. doi:10.1108/SCM-01-
2013-0015 

Sultana, S., Motla, Y. H., Asghar, S., Jamal, M., & Azad, R. (2014, 26-28 Feb. 2014). A hybrid 
model by integrating agile practices for Pakistani software industry Symposium 
conducted at the meeting of the 2014 International Conference on Electronics, 
Communications and Computers (CONIELECOMP) 
doi:10.1109/CONIELECOMP.2014.6808600 

Sumukadas, N., & Sawhney, R. (2004). Workforce agility through employee involvement. Iie 
Transactions, 36(10), 1011-1021. 

Sundararajan, S., Bhasi, M., & Vijayaraghavan, P. K. (2014). Case study on risk management 
practice in large offshore-outsourced Agile software projects. IET Software, 8(6), 245-
257. 

Talaulicar, T., Grundei, J., & Werder, A. v. (2005). Strategic decision making in start-ups: the 
effect of top management team organization and processes on speed and 
comprehensiveness. Journal of Business Venturing, 20(4), 519-541. 

https://books.google.co.nz/books?id=2q6bAgAAQBAJ
https://books.google.co.nz/books?id=-OMnt3CT-SwC
https://books.google.co.nz/books?id=5Ir-Bgy95w4C
https://books.google.co.nz/books?id=4lmXKNR46tIC
https://books.google.co.nz/books?id=iDnMBQAAQBAJ
https://books.google.co.nz/books?id=TWscMx09ENkC


127 
 

Talby, D., Hazzan, O., Dubinsky, Y., & Keren, A. (2006, 23-28 July 2006). Reflections on 
reflection in agile software development Symposium conducted at the meeting of the 
AGILE 2006 (AGILE'06) doi:10.1109/AGILE.2006.45 

Tata, J., & Prasad, S. (2004). Team Self-management, Organizational Structure, and Judgments 
of Team Effectiveness. Journal of Managerial Issues, 16(2), 248-265. 

Tavakoli, H. (2012). A Dictionary of Research Methodology and Statistics in Applied Linguistics: 
Rahnama. Retrieved from https://books.google.co.nz/books?id=-UcbDQAAQBAJ 

Tinsley, H. E. A., & Brown, S. D. (2000). Handbook of Applied Multivariate Statistics and 
Mathematical Modeling: Elsevier Science. Retrieved from 
https://books.google.co.nz/books?id=IIbMnrgTpWMC 

Tjosvold, D., & Tjosvold, M. (2015). Building the Team Organization: How To Open Minds, 
Resolve Conflict, and Ensure Cooperation: Palgrave Macmillan. Retrieved from 
https://books.google.co.nz/books?id=B2AMCgAAQBAJ 

Tolfo, C., & Wazlawick, R. S. (2008). The influence of organizational culture on the adoption of 
extreme programming. Journal of Systems and Software, 81(11), 1955-1967. 
doi:http://dx.doi.org/10.1016/j.jss.2008.01.014 

Tolfo, C., Wazlawick, R. S., Ferreira, M. G. G., & Forcellini, F. A. (2011). Agile methods and 
organizational culture: reflections about cultural levels. Journal of Software 
Maintenance and Evolution: Research and Practice, 23(6), 423-441. 
doi:10.1002/smr.483 

Tonelli, A. O., Bermejo, P. H. S., Santos, M. A., Zambalde, A. L., Oliveira, M. S. d., & Antonialli, L. 
M. (2013, 7-10 Jan. 2013). Agile Practices to Accelerate the Delivery of Software: A 
Quantitative Study with Software Professionals Symposium conducted at the meeting 
of the System Sciences (HICSS), 2013 46th Hawaii International Conference on 
doi:10.1109/HICSS.2013.75 

Turk, D., France, R., & Rumpe, B. (2014). Limitations of agile software processes. arXiv preprint 
arXiv:1409.6600. 

Turley, R. T., & Bieman, J. M. (1995). Competencies of exceptional and nonexceptional 
software engineers. Journal of Systems and Software, 28(1), 19-38. 

Unhelkar, B. (2016). The Art of Agile Practice: A Composite Approach for Projects and 
Organizations: CRC Press. Retrieved from 
https://books.google.co.nz/books?id=ZqnMBQAAQBAJ 

Vaidya, A. (2014). Does dad know best, is it better to do less or just be safe? adapting scaling 
agile practices into the enterprise. PNSQC. ORG, 1-18. 

Van Veelen, B., Storms, P., & van Aart, C. (2006). Effective and efficient coordination strategies 
for agile crisis response organizations. Proceedings of ISCRAM 2006. 

Vanhanen, J., & Lassenius, C. L. (2007). Perceived effects of pair programming in an industrial 
contextIEEE. Symposium conducted at the meeting of the Software Engineering and 
Advanced Applications, 2007. 33rd EUROMICRO Conference on 

Vasileva, A., & Schmedding, D. (2016, 6-9 Sept. 2016). How to Improve Code Quality by 
Measurement and Refactoring Symposium conducted at the meeting of the 2016 10th 
International Conference on the Quality of Information and Communications 
Technology (QUATIC) doi:10.1109/QUATIC.2016.034 

Vazquez-Bustelo, D., Avella, L., & Fernández, E. (2007). Agility drivers, enablers and outcomes: 
empirical test of an integrated agile manufacturing model. International Journal of 
Operations & Production Management, 27(12), 1303-1332. 

Verma, C., & Amin, S. A. (2010, 6-8 Sept. 2010). Significance of Healthy Organizational Culture 
for Superior Risk Management During Software Development Symposium conducted 
at the meeting of the Developments in E-systems Engineering (DESE), 2010 
doi:10.1109/DeSE.2010.37 

Vernadat, F. (1999). Research agenda for agile manufacturing. International Journal of Agile 
Management Systems, 1(1), 37-40. 

VersionOne. (2016). Manage Your Mission-Critical VersionOne Integrations with ALM Connect. 

https://books.google.co.nz/books?id=-UcbDQAAQBAJ
https://books.google.co.nz/books?id=IIbMnrgTpWMC
https://books.google.co.nz/books?id=B2AMCgAAQBAJ
http://dx.doi.org/10.1016/j.jss.2008.01.014
https://books.google.co.nz/books?id=ZqnMBQAAQBAJ


128 
 

Vesey, J. T. (1992). Time-to-market: Put speed in product development. Industrial Marketing 
Management, 21(2), 151-158. doi:http://dx.doi.org/10.1016/0019-8501(92)90010-Q 

Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (2010). Perspectives on partial least squares. 
In Handbook of Partial Least Squares (pp. 1-20): Springer. 

Wadhwa, S., & Rao, K. (2003). Enterprise modeling of supply chains involving multiple entity 
flows: role of flexibility in enhancing lead time performance. Studies in informatics and 
control, 12(1), 5-20. 

Walczak, S. (2005). Organizational knowledge management structure. The Learning 
Organization, 12(4), 330-339. doi:doi:10.1108/09696470510599118 

Wallach, E. J. (1983). Individuals and organizations: The cultural match. Training & 
Development Journal. 

Wang, M. L., Hsu, B. F., Chen, W. Y., & Lin, Y. Y. (2008, 27-31 July 2008). Structural 
characteristics, process and effectiveness of cross-functional teams consisted of 
specialists and technicians in the healthcare industry Symposium conducted at the 
meeting of the PICMET '08 - 2008 Portland International Conference on Management 
of Engineering & Technology doi:10.1109/PICMET.2008.4599870 

Wang, Q., Pfahl, D., & Raffo, D. (2008). Making Globally Distributed Software Development a 
Success Story: International Conference on Software Process, ICSP 2008 Leipzig, 
Germany, May 10-11, 2008, Proceedings: Springer Berlin Heidelberg. Retrieved from 
https://books.google.co.nz/books?id=f7FtCQAAQBAJ 

Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind. In 
Theories of group behavior (pp. 185-208): Springer. 

Weick, K. E. K. E. (1969). The social psychology of organizing. 
Wellman, B. (1997). An electronic group is virtually a social network. Culture of the Internet, 4, 

179-205. 
Wendorff, P. (2002). Organisational culture in agile software developmentSpringer. 

Symposium conducted at the meeting of the International Conference on Product 
Focused Software Process Improvement 

Werder, K., Zobel, B., & Maedche, A. (2016). PDISC–Towards a Method for Software Product 
DISCoverySpringer. Symposium conducted at the meeting of the International 
Conference of Software Business 

West, D., & Grant, T. (2010). Agile development: Mainstream adoption has changed agility. 
Wiig, K. M. (1997). Knowledge management: an introduction and perspective. journal of 

knowledge Management, 1(1), 6-14. 
Wilburn, A. J. (1984). Practical Statistical Sampling for Auditors: Taylor & Francis. Retrieved 

from https://books.google.co.nz/books?id=V0WETIr0KSEC 
Williams, L., & Cockburn, A. (2003). Guest Editors' Introduction: Agile Software Development: 

It's about Feedback and Change. Computer, 36(6), 39-43. 
Williams, L., McDowell, C., Nagappan, N., Fernald, J., & Werner, L. (2003). Building pair 

programming knowledge through a family of experimentsIEEE. Symposium conducted 
at the meeting of the Empirical Software Engineering, 2003. ISESE 2003. Proceedings. 
2003 International Symposium on 

Wong, K. K.-K. (2013a). Partial least squares structural equation modeling (PLS-SEM) 
techniques using SmartPLS. 

Wong, K. K.-K. (2013b). Partial least squares structural equation modeling (PLS-SEM) 
techniques using SmartPLS. Marketing Bulletin, 24(1), 1-32. 

Wright, K. B. (2005). Researching Internet‐based populations: Advantages and disadvantages 
of online survey research, online questionnaire authoring software packages, and web 
survey services. Journal of Computer‐Mediated Communication, 10(3), 00-00. 

Xue-Mei, L., Guochang, G., Yong-Po, L., & Ji, W. (2009, March 31 2009-April 2 2009). Research 
and Implementation of Knowledge Management Methods in Software Testing Process 
Symposium conducted at the meeting of the Computer Science and Information 
Engineering, 2009 WRI World Congress on doi:10.1109/CSIE.2009.360 

http://dx.doi.org/10.1016/0019-8501(92)90010-Q
https://books.google.co.nz/books?id=f7FtCQAAQBAJ
https://books.google.co.nz/books?id=V0WETIr0KSEC


129 
 

Yauch, C. A. (2007). Team-based work and work system balance in the context of agile 
manufacturing. Applied Ergonomics, 38(1), 19-27. 

Yeung, A. K. (1999). Organizational Learning Capability: Oxford University Press. Retrieved 
from https://books.google.co.nz/books?id=QcTnCwAAQBAJ 

Youndt, M. A., Snell, S. A., Dean, J. W., & Lepak, D. P. (1996). Human resource management, 
manufacturing strategy, and firm performance. Academy of management Journal, 
39(4), 836-866. 

Yun, G., & Trumbo, C. (2006). Comparative response to a survey executed by post, e-mail, and 
web form. 2000. 

Yusuf, Y. Y., Sarhadi, M., & Gunasekaran, A. (1999). Agile manufacturing:: The drivers, concepts 
and attributes. International Journal of production economics, 62(1), 33-43. 

Zammuto, R. F., & O'Connor, E. J. (1992). Gaining advanced manufacturing technologies' 
benefits: The roles of organization design and culture. Academy of Management 
Review, 17(4), 701-728. 

Zander, U., & Kogut, B. (1995). Knowledge and the speed of the transfer and imitation of 
organizational capabilities: An empirical test. Organization science, 6(1), 76-92. 

Zeng, M., Wang, C., & Long, Q. y. (2009, 19-21 May 2009). Practices of Extreme Programming 
for ERP Based on Two-dimensional Dynamic Time Scheduling Interface Method 
Symposium conducted at the meeting of the 2009 WRI World Congress on Software 
Engineering doi:10.1109/WCSE.2009.186 

Zhou, Y. (2009, 7-8 March 2009). UniX Process, Merging Unified Process and Extreme 
Programming to Benefit Software Development Practice Symposium conducted at the 
meeting of the 2009 First International Workshop on Education Technology and 
Computer Science doi:10.1109/ETCS.2009.690 

  

https://books.google.co.nz/books?id=QcTnCwAAQBAJ


130 
 

  



131 
 

Appendix A. Participant Information Sheet 
Participant Information Sheet  

Date Information Sheet Produced: 

9 May 2017 

Project Title 

Agility framework for software development: an investigation into agility 

concepts with the software development industry.  

An Invitation 

My name is Kevin Kusuma. I am a master student in the Computer and Information Sciences School 

at the Auckland University of Technology under the supervision of Dr Ramesh Lal. I would like to 

invite you to participate in my research to investigate agility elements in software development. Your 

participation in this study is voluntary and will take approximately forty-five to fifty minutes of your 

time. You are not obliged to take part in this research if you do not feel like it. You may withdraw from 

this study at any time before completion. Once you have done the survey, the survey data cannot be 

withdrawn. This survey is anonymous and information regarding the participants will not be published 

or disclosed in the study outputs. 

What is the purpose of this research? 

The purpose of this research is to propose an agility framework for agile software development 

processes. This framework will identify factors that software engineering organizations and vendors 

ought to consider improving or changing in their development environment to successfully deliver 

software products. Hence, the framework will provide the software engineering community with 

knowledge and understanding on agility competencies. This research will be conducted by me (Kevin) 

in order to write up a thesis for Master of Computer and Information Sciences. The findings of this 

research are also expected to be presented in software development conferences and to be written up 

in a journal article. 

How was I identified and why am I being invited to participate in this research? 

You were identified as a potential participant because your company has had at least one year of agile 

software development experience. The researcher has compiled a list (with email contact, phone 

contact and postal address) of potential participants consisting of 140 New Zealand software vendors 

and business organizations that have in-house software development teams. Most of these 

organizations are known to be practising software development based on the agile approach for longer 

than one year (known through the New Zealand Agile Software Development conference and the 

Facebook page of agile community groups in New Zealand). An email will be sent to invite a senior 

member of the software engineering team to take part in the research. The contact details of potential 

participants are compiled through channels such as personal connection of both supervisor and 

researcher including web search. 

The researcher will enhance this list by including potential participants from overseas, mostly from 

Australia. 

How do I agree to participate in this research? 

Your participation in this research is voluntary (it is your choice). Completion of the survey will 

indicate your consent to participate in this research. You are able to withdraw from the study at any 

time. However, once the findings have been produced, removal of your data may not be possible.  

What will happen in this research? 

This study needs your agreement in order to participate in the survey. You will be asked to answer 

short, anonymous questions. The questionnaire contains sets of questions related to your opinion about 

the agile elements in software development. It will take approximately forty-five to fifty minutes to 

complete the survey. You can ignore the questions that you feel uncomfortable to answer. If you do 

not wish to continue participating at a certain point, you are free to leave the survey. Based on your 

responses, the researcher will use the findings to produce a thesis and related conference papers and 

journal articles.  

What are the discomforts and risks? 

There are no significant discomforts or risks involved in taking part in completing the questionnaire. 

Your participation is entirely voluntary. You will not be asked questions relating to your culture, 

religion, values or beliefs. Your responses are entirely confidential and will be used for research 

purposes only. You or your organization’s details will not be identified in the thesis or in any other 

writeup. 

How will these discomforts and risks be alleviated? 

If you feel any discomfort, you may withdraw your survey participation at any time 

What are the benefits? 

Your responses will help to investigate the agility elements in software development. The findings of 

this research will provide understanding on agility attributes that agile practitioners may want to focus 



132 
 

on and consider in order to achieve agility in software development which could possibly enrich your 

future experience.  

How will my privacy be protected? 

Your participation is completely anonymous and your personal information or identity will not be 

associated with your response. Once the research project is completed, all information will be stored 

in locked storage at an AUT office. Only the associated researchers have authority to access the data. 

After six years, the data will be destroyed. You will not be identified in any outputs of this research.  

What are the costs of participating in this research? 

There is no cost for you to participate in this research except for forty-five to fifty minutes of your 

time. 

What opportunity do I have to consider this invitation? 

You can decide to accept or decline this invitation after going through this information sheet. If you 

would like to make further inquiries, contact details about researcher and supervisor are provided below 

in the contact details section. Once again, you are free to withdraw from the survey at any time before 

completing all the questions. 

Will I receive feedback on the results of this research? 

I will provide a summary and copy of the final results of my thesis once completed. 

What do I do if I have concerns about this research? 

Any concerns regarding the nature of this project should be notified in the first instance to the Project 

Supervisor, Dr Ramesh Lal, ramesh.lal@aut.ac.nz, +64 9 921 9999 ext 6323 

Concerns regarding the conduct of the research should be notified to the Executive Secretary of 

AUTEC, Kate O’Connor, ethics@aut.ac.nz , 921 9999 ext 6038. 

Whom do I contact for further information about this research? 

Researcher Contact Details: 
Kevin Kusuma, xhd4124@aut.ac.nz  

Project Supervisor Contact Details: 
Dr Ramesh Lal, ramesh.lal@aut.ac.nz, +64 9 921 9999 ext 6323 

Approved by the Auckland University of Technology Ethics Committee on 10 May 2017, AUTEC Reference number 16/144. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

mailto:ramesh.lal@aut.ac.nz
mailto:xhd4124@aut.ac.nz
mailto:ramesh.lal@aut.ac.nz


133 
 

Appendix B. Questionnaire 
 

You are warmly invited to participate in a survey. 

Dear Sir/Madam, 

My name is Kevin Kusuma. I am a master student in the Computer and Information 

Sciences School at the Auckland University of Technology (AUT) under the 

supervision of Dr Ramesh Lal.  

As part of my Master’s thesis, I am conducting a survey on agile software development 

to investigate the agility elements. Specifically, I am trying to create a framework that 

will identify factors that software organizations and vendors ought to consider 

improving or changing in their development environment to successfully develop and 

deliver software products. 

I would be extremely grateful if you would kindly help me in my research by 

completing the attached questionnaire.  

All responses will be kept strictly confidential. Participation in this survey is voluntary 

and anonymous. Please click on the 'next' button below to undertake the survey. The 

survey will take approximately forty-five to fifty minutes to complete. 

If you are interested in the results of the study, please provide your email address 

below.  

Thank you very much for your valuable time. Your input in this research is highly 

appreciated. 

Kevin Kusuma, Master Student 

Auckland University of Technology (AUT) 

55 Wellesley St E, Auckland, 1010 

Auckland City, New Zealand 

E-mail: kevinkusuma21@yahoo.com 

 

 

 

Enter your email address: 

 
_____________________________________________________________________________ 

 
 
 
 
 
 
 
 
 
 

mailto:kevinkusuma21@yahoo.com


134 
 

General Questions 

1. What is the size of your software engineering team? 

o Less than 10  

o 10-50 

o Over 50  

 

2. How long have you been working in an agile environment? 

o 1-2 years 

o 2-3 years 

o 3-5 years 

o 5-10 years 

o 10-15 years 

o >15 years 

 

3. Which one of the following do you belong to? 

o In-house development team of a business organization/corporate/government 

department.  

o In-house development team of a software vendor. 

o Contracting IT/Software development team 

o Contractor  

 

4. How many projects does your organization undertake in a year since agile adoption?  

o 1-3 Projects 

o 4-6 Projects 

o >6 Projects 

 

5. What is the success rate of your projects after agile adoption? 

o < 30% 

o 30% - 50% 

o 51% - 75% 

o 76% - 90% 

o 91% - 99% 

o 100% 

 

6. Respondent can choose more than one practice. 

Which of the following agile practices does your software engineering team use? 

o Product backlog 

o Sprint backlog 

o Daily stand-up meeting 

o Vision planning 

o Release planning 

o Sprint planning 

o Coding standard 

o Collective code ownership 

o Acceptance testing 

o Regression testing 

o Unit testing 

o Continuous integration 

o Common workspace 

o Burn-down/Burn-up chart 

o Pair programming 

o Refactoring 



135 
 

o Retrospective 

o Test-driven development 

o User story mapping 

o Self-organizing teams 

 

7. Which of the following methods are used by your organization? 

a) Agile method 

b) Hybrid method (practice from two different agile methods) 

c) Agile maturity framework 

If your answer is a, go to question 8. 

If your answer is b, go to question 9. 

If your answer is c, go to question 10. 

 

8. Which agile method has your organization adopted? 

o Extreme programming (XP) 

o Scrum 

o Adaptive software development (ASD) 

o Dynamic systems development method (DSDM) 

o Feature-driven development (FDD) 

o Rapid application development (RAD) 

o Lean software development 

o Kanban 

o Agile modelling 

o Crystal clear methods 

o User-centered Design (UCD) 

 

Go to Question 12. 

 

9. Respondent can choose more than one method. 

Which methods make up your hybrid agile approach? 

o Extreme programming (XP) 

o Scrum 

o Adaptive software development (ASD) 

o Dynamic systems development method (DSDM) 

o Feature-driven development (FDD) 

o Rapid application development (RAD) 

o Lean software development 

o Kanban 

o Agile modelling 

o Crystal clear methods 

o User-centered Design (UCD) 

 

Go to Question 12. 

 

10. Which agile maturity framework does your company/organization use? 

o Disciplined agile delivery (DAD) 

o Scaled agile framework (SAFE) 

o Scrum of scrums 

o Internally created methods 

o Lean management 

o Agile portfolio management (APM) 

o Large-scale scrum (LESS) 

 



136 
 

11. Respondent can choose more than one method. 

What agile methods are part of your maturity framework? 

o Extreme programming (XP) 

o Scrum 

o Adaptive software development (ASD) 

o Dynamic systems development method (DSDM) 

o Feature-driven development (FDD) 

o Rapid application development (RAD) 

o Lean software development 

o Kanban 

o Agile modelling 

o Crystal clear methods 

o User-centered Design (UCD) 

 

Team Effort 

12. Respondent can choose more than one answer 

Who (role) in your organization initially compiles and is responsible for creating vision 

and roadmap plans?  

o Product manager 

o Business analyst  

o Marketing manager 

o Project manager 

o Product development manager 

o Software engineering manager 

o Functional managers 

13. Does your organization have an independent body (steering committee/product 

planning team) for approving new features and product for development? 

o Yes 

o No 

14. In the (your) organization, the steering committee/product planning team makes well 

thought-out and first-time-right development decisions. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

15. Product manager’s collaboration with the (your) development team for input and 

feedback is critical to make effective vision/roadmap decisions. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

16. In the (your) development team, a cross-functional effort is required to create a reliable 

product backlog.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 



137 
 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

17. Reviewing product backlog more than once during the project timeline with the key 

stakeholders enables the (your) development team to deliver strategic benefits. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

18. Face-to-face communication is vital to dive deep for crucial information helping the 

(your) development team to create reliable product backlog with independent tasks. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

19. In the (your) development team, ability to make reliable task estimation is dependent 

upon acquiring solid understanding and knowledge of tasks. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

20. The (your) development team has clearly defined criteria for planning (creating) 

product backlogs. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

21. In the (your) development team, the on-site customer facilitates a better understanding 

of the project requirements. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

22. In the (your) development team, the on-site customer enables swift backlog planning. 

o Strongly Disagree 

o Disagree 



138 
 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

23. Product backlog allows the (your) development team to incorporate requests for change 

during the project timeline. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

24. The (your) whole team participates to achieve reliable sprint plans.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

25. Trust in the (your) development team is a key factor for signing up for sprint 

commitments.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

26. What approach does (your) development team use to write code?  

o Solo programming 

o Pair programming 

 If your answer to question 26 is solo programming, go to question 27. 

If your answer to question 26 is pair programming, go to question 28. 

27. The (your) development team uses code review practice to deliver high-quality code. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

28. The (your) development team achieves better quality features through pair 

programming.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 



139 
 

o Strongly Agree 

29. One to one meetings bring better project outcomes in (your) development team. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

30. Daily stand-up meetings encourage open communication in (your) development team. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

31. Daily stand-up meetings help the (your) development team to identify any problems 

with the tasks being undertaken. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

32. Daily stand-up meetings enable the (your) development team to effectively coordinate 

sprint/iteration tasks in projects.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

33. Daily stand-up meetings enable the (your) development team to identify how the team 

is going to be productive for the day. 

o Strongly Disagree 

o Disagree  

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

 

Competencies 

34. Continuous integration practice is one of the critical practices for the (your) 

development team. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 



140 
 

o Somewhat Agree 

o Agree 

o Strongly Agree 

35. Continuous integration enables reliability of software releases by the (your) 

development team. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

36. Continuous integration enables (your) development team to be more productive.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

37. Continuous integration allows the (your) development team to fix most of the bugs 

before release. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

38. The (your) development team consists of individuals able to perform formal and 

informal (i.e. multiple) roles required in the project. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

39. The (your) development team consists of individuals with substantial local business, 

customer/client and product knowledge. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

40. The (your) development team consists of individuals with substantial local technical 

product knowledge. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 



141 
 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

41. The (your) development team consists of a good number of senior individuals. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

42. The (your) development team has a fully integrated test-driven development 

environment.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

43. The (your) development team has the capability to consistently deliver working 

software in short development cycles. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

44. Test-driven development has enabled the (your) development team to deliver working 

software on a regular basis. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

45.  The (your) development team is fully capable of implementing unit tests. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

 

 

 

 

 



142 
 

Responsiveness 

46. The empowerment of the (your) development team is a critical factor for the ability to 

learn and quickly adapt. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

47. The (your) development team has the ability to accept change in requirements during 

projects. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

48. The (your) development team has on the fly adopted or has the ability to adopt new 

development practices and skills. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

49. The (your) development team does beta releases of features to get useful insights and 

feedback to deliver useful features for the marketplace. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

 

Organizational Learning 

50. The (your) organizational product planning process (at a business level) has well 

thought-out practices and structures.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

51. The (your) software engineering level has well thought-out practices and structures 

(functional unit and roles) based on continuous reviews and reflections.  

o Strongly Disagree 

o Disagree 



143 
 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

52. The learning and understanding on the organizational core competency has enabled the 

(your) development team to identify and learn firm-specific development competencies. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

53. The team-effort, ownership and cross-functional cooperation in the (your) development 

team are enforced through adoption of practices mutually accepted by all the 

stakeholders. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

54. The (your) development team is also driven by the mind-set for continuous learning in 

projects. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

55. Task sharing in the (your) development team helps to gain in-depth understanding on 

other roles, responsibilities and skills. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

56. The (your) development team has the ability to solve unfamiliar problems and is able to 

cope with stressful situations in the projects.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

 



144 
 

Organizational Culture 

57. The (your) organization has a supportive mind-set based on cross-functional effort.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

58. Face-to-face interaction and spontaneous collaboration are a critical culture in the 

(your) development team/organization. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

59. Individuals in the (your) team take part in a wide variety of work and decision-making. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

60. Collective decision-making is another critical element in the (your) development 

team/organization. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

61. Retrospective and continuous feedback of improvements is a critical practice in the 

(your) development team/organization.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

62. Collective responsibility is a key part of the (your) development team’s work practices. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 



145 
 

 

Workforce Agility 

63. The (your) development team consists of individuals with appropriate skills and 

knowledge to carry out multiple tasks. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

64. The (your) development team consists of highly skilled and competent individuals. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

65. The (your) development team has negotiation capabilities and consensus behaviour 

ability to accept change, generate new ideas and accept new responsibilities.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

 

Speed 

66. The (your) development team only works the normal hours per day or week on a 

consistent basis to deliver projects. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

67. Development infrastructure of the (your) development team does not place limitations 

to team’s expected work pace (speed).  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

68. The (your) development team achieves reliable product backlogs to ensure the expected 

speed for implementation.  

o Strongly Disagree 

o Disagree 



146 
 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

69. To ensure a consistent work pace (speed) in projects, the (your) development team 

makes certain that the team members have a solid understanding of the product backlog.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

70. The work practice of the (your) development team to create a reliable sprint plan 

requires a collective effort involving all the software engineers. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

71. Avoiding technical debt is a critical mind set of (your) development team even if it 

affects the delivery speed of your team. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

72. TDD (Test-Driven Development) and refactoring are essential work practices to 

delivery software in short development cycles even though it affects the delivery speed 

of the (your) development team. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

 

Knowledge Management 

73. In the (your) development team, significant local business and technical knowledge 

plays a vital role to make swift and first-time-right decisions (planning, design, 

implementation).  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 



147 
 

o Agree 

o Strongly Agree 

74. Collective effort provides solid critical thinking and problem solving ability in the 

(your) development team.  

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

75. In the (your) development team, task sharing in projects is vital to build knowledge and 

experience. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

76. In the (your) development team, work (method) practices also build experience and 

knowledge for undertaking future projects. 

o Strongly Disagree 

o Disagree 

o Somewhat Disagree 

o Neutral 

o Somewhat Agree 

o Agree 

o Strongly Agree 

 


