
Full citation: Buchan, J., Ekadharmawan, C.H., & MacDonell, S.G. (2009) Insights into domain
knowledge sharing in software development practice in SMEs, in Proceedings of the 16th Asia-Pacific
Software Engineering Conference (APSEC2009). Penang, Malaysia, IEEE CS Press, pp.93-100.
http://dx.doi.org/10.1109/APSEC.2009.47

Insights into Domain Knowledge Sharing in Software Development

Practice in SMEs

Jim Buchan
SERL, Auckland University of Technology

Private Bag 92006, Auckland 1142, New Zealand
jim.buchan@aut.ac.nz

Christian Harsana Ekadharmawan
SERL, Auckland University of Technology

Private Bag 92006, Auckland 1142, New Zealand
christian.harsana@gmail.com

Stephen G. MacDonell
SERL, Auckland University of Technology

Private Bag 92006, Auckland 1142, New Zealand
stephen.macdonell@aut.ac.nz

Abstract
The collaborative development of shared understanding is
crucial to the success of software development projects. It is
also a challenging and volatile process in practice. Small
organizations may be especially vulnerable due to reliance
on key individuals and insufficient resource to employ
several domain specialists. There is, however, minimal
empirical research on sharing domain understanding in the
context of small software organizations. In this paper we
present the results of a field study of commercial software
development practice in which we conducted semi-
structured interviews with practitioners from ten such
organizations. The study provides insights into practices,
perceptions, and challenges related to developing shared
domain understanding. Our results show that smaller
organizations place particular emphasis on the use of
prototypes or existing products to refine and verify domain
understanding. Furthermore they perceive the biggest
challenge to developing shared understanding as the quality
of the client representative(s).

Keywords: software engineering; empirical software;
knowledge sharing; requirements engineering

1. INTRODUCTION

Over the last few decades, research has shown that poor
quality requirements and poor requirements management
practices are among the main factors contributing to software
project failure or escalation (see for example [1], [2], [3] and
[4]). The high costs of late detection and correction of

requirements-related problems, including negative impacts
on application maintainability, reliability and usability, are
well documented ([5], [6], [7] and [8]). In a similar vein,
improvements to requirements engineering (RE) processes
and practices have been clearly linked to payoffs in software
project productivity, quality and risk management in an
empirical study by [9]. The need for continued research into
RE process improvement is further emphasised in [10]’s
recent summary of the current state of RE research and their
proposed research agenda for RE, based on emerging
software needs. This paper aims to contribute to the
improvement of RE practice by investigating one of the key
challenges in RE, namely the development of a shared
understanding of the problem (application) domain, which is
the foundation on which software solutions are evaluated,
designed and implemented.

In the next section we reflect on current thinking with
respect to knowledge sharing and RE, in section 3 we set out
our research methodology, and in section 4 we report the
results of our work and discuss their implications. We briefly
conclude the work in section 5 and provide pointers to
further work

2. KNOWLEDGE SHARING AND RE

A central contributor to the challenges in RE is the
communication and knowledge sharing interactions between
a software production (vendor) team and the client
stakeholder group in determining the most appropriate set of
features and attributes for a new software system. The aim of
these knowledge intensive interactions, often embedded in
requirements elicitation, analysis and verification activities,
is to collaboratively transform the initial uncertain and

http://dx.doi.org/10.1109/APSEC.2009.47�

ambiguous understanding of the domain problem into an
application concept, consistent system requirements, and
ultimately a software application that can be used by the
target organisation. This involves the client stakeholder
group (e.g. users, managers, and domain experts) and the
vendor group (e.g. analysts, designers and developers)
developing some common level understanding of the
problem domain. Although this is most visible at the
elicitation effort early in a software project, this process of
articulating, sharing, clarifying and sharing understanding is
iterative and incremental throughout a software project. At
the individual level it involves developing an understanding
of the application domain, refining that understanding to a
level that is appropriate for the role of that individual and
applying it at the time of “need”. That (evolving) individual
understanding needs to be periodically shared, “tested”,
verified and agreed upon so that those involved can work
cooperatively towards the same goals that create sufficient
value for the clients. It is characterised by cognitive, social
and organisational interactions that are unpredictable and
potentially error-prone. This includes, for example,
challenging activities such as developing a shared
vocabulary, sharing and internalising both conceptually
abstract and detailed information about the problem domain,
reconciling many points of view from diverse stakeholders,
accommodating changing and volatile understanding, as well
as periodic verification of some shared representation of the
understanding and how it maps to the software solution.

Although it is inherently challenging, the development of
shared understanding is critical to the success of a software
project. Successful development of a software system is
predicated on the vendor team’s understanding of the main
concepts, goals and purpose of the software system and how
well this aligns with a client group’s expectations. A number
of researchers in RE (see for example [11], [12], [13] and
[14]) argue convincingly for the central role domain
knowledge sharing plays in RE activities. Empirical evidence
from their studies of RE practice demonstrates that high
quality requirements are crucially dependent on the client
and vendor stakeholders sharing a sufficient level of
understanding of the problem domain.

The need to improve practice in this area is not lessening
either, despite significant advances in modeling, tools and
processes over the last few decades. We are seeing the
application of software systems to an ever widening diversity
of application domain, often conceptually challenging and
complex. This broadens and deepens the domain knowledge
that developers and other non domain experts have to
understand. The need for further research into supporting and
comprehending the phenomenon of “developing shared
understanding” in practice becomes even more evident in the
context of new types of software (e.g. ubiquitous, service
oriented, self-managing, or mesh) and emerging
development contexts (e.g. global development teams,
distributed users, product or market driven development).

Unsurprisingly, there has been considerable research into
developing tools, techniques and processes to support the
activities and complex interactions that contribute to
developing a shared domain understanding in the context of
emerging software needs. Many of the findings and proposed

approaches, however, are aimed at large organisations, with
the tacit assumption that these findings will apply to small
organisation (i.e. having less than 50 employees [15]). This
point is highlighted in [16], where the authors argue that RE
in small organisations is under-represented in research
literature. They further observe that such organisations make
up a large part of the software industry) and in [17] they
estimate that SMEs contribute 80% to economic growth
worldwide. Moreover, it is likely that small organisations are
more vulnerable to the complexities and volatility of
developing a shared domain understanding compared to
large organisations. It is widely acknowledged in literature
that there are some fundamental operational differences
between small and large organisations (see for example the
Sept/Oct 2000 issue of IEEE Software). In empirical studies
of small and medium organisations, [18], [19], and [20]
characterise them as having fewer resources to devote to
tools and hiring domain experts. Compared to their larger
counterparts, small organisations appear to be more
concerned about practice rather than “compliance” to formal,
defined processes. They also observe that small organisations
generally focus on shorter term priorities, which are typically
directed towards deliverables. These ideas, strengthened by
personal observations of small software companies, suggest
that current understanding of and approaches to the
development of shared domain understanding may not
directly transfer to smaller organisations.

In addition, there is little research that investigates
current practice for developing a shared domain
understanding for software development, especially for small
organisations. As pointed out in [16] in their study of RE
practice in seven small companies, there is substantial
anecdotal evidence (and they present some case-based
evidence) to suggest that practitioners in small organisations
do not always follow practices described in literature.
Knowing what is actually practiced and understanding the
challenges, as well as the actual phenomenon, should inform
future process improvement in the area of RE and domain
understanding for small organisations.

This paper addresses this lack of information on current
practices in small organisations in the area of shared domain
understanding, and examines the applicability of previously
reported findings, generally drawn from experiences with
larger organisations, to small companies. In addition, it is the
intention of this research to gain insights into practitioners’
perceptions of their practices and challenges in this area.
This is based on a desire to “know” the practitioners more
deeply as “customers” of RE research and understand their
experiences and needs in this area.

3. RESEARCH DESIGN AND IMPLEMENTATION

3.1 Aims and Methodology
The selection of a research methodology and specific

data collection and analysis methods are based on the nature
of the research aims and questions. It is the aim of this
research to gain insights into the development of shared
domain understanding in practice through practitioners’
perceptions. In particular, in the context of small software

organisations, the research questions outlined in Table 1 are
addressed.

In line with other exploratory studies of this type, a
multiple case study method, with semi-structured interviews
for data collection, is employed. A semi-structured interview
was employed, rather than a formal, structured interview or
survey, because it has the advantage of being able to clarify
and probe issues and extend the focus of the discussion to
interesting aspects as they arise. Thus, as observed by [21], a
deeper and richer understanding of the phenomenon may be
gained. In addition this technique encourages the
development of a rapport and trust between the investigator
and the interviewee. This is desirable if interviewees are to
feel they can freely discuss their practices, challenges and
successes.

How do practitioners conceptualise the process of developing a
shared domain understanding?
Is the development of a shared understanding important to
practitioners?
What practices, techniques and tools do practitioners use to
support the development of shared domain understanding?
How efficacious are these practices perceived as? How is
understanding represented?
Is the development of a shared understanding challenging for
practitioners? If so, what are the barriers?
How do the challenges and practices identified for these small
organisations compare to existing findings reported in
literature?

Table 1. Research Questions

Note that it is not the intention of this initial study to
observe practices or analyse artefacts, which are also
common sources of data in case studies. In addition, the
viewpoint of the study is restricted to the perceptions of the
vendor, as represented by senior member of the participating
software production teams. Comparison of the viewpoints of
representatives of the client stakeholder groups is planned for
a future study.

3.2 Case Selection
Invitations to participate in this study were sent to 204

organisations, based on the company size (small), and
involvement primarily in software development. We selected
candidates who had been operating for at least 5 years to
allow for maturing of its practices.

3.3 Research Implementation
Of the candidate organisations invited, 11 organisations

initially agreed to participate and 10 organisations actually
proceeded with the interviews. Experienced senior-level staff
from the organisations were interviewed, with the view that
they would have a clear overview of processes as well as
some depth of interaction with client representatives, which
proved to be the case. Two of the authors of this paper were
involved in interviewing all the participants, one facilitating
the interview, and the other taking detailed interview notes.
The interviews were all recorded on audio tape for later
transcription. The interviews were generally located at the
place of work, or a neutral venue if requested, and lasted
between one and two hours.

The rich and extensive set of data collected from the
interviews includes information related to issues such as
company size, roles of staff, descriptions of processes, tool
support, client communication, knowledge representation,
verification of understanding with clients, the quality of
client representation, and changes to understanding.
Thematic analysis of this data was employed as the method
of data analysis. As noted in [22] this is a common method
of analysing qualitative interview data in order to identify
concepts or themes related to a phenomenon. The main
construct being analysed is the process of developing shared
domain understanding. As [23] points out, analysing a
process may provide a holistic view of a system of action,
which includes activities, roles, artefacts tools and
techniques. The unit of analysis is the (small) organisation
rather than specific teams or projects.

4. RESULTS AND DISCUSSION

This section presents the results of the investigation,
discusses implications for practitioners, and speculates on
some possible directions for addressing some of the issues.
After describing the case organisation, this section is
structured according to the questions posed in Table 1.

4.1 The Case Organisations
The participating organisations represent a wide diversity

of application domains and include 3 product-driven
companies and 7 providing bespoke software development
services. All of the organisations had been operating for over
8 years and most of them closer to 20 years. The
representatives from the companies were all at a senior level
ranging from senior systems analyst to company owners,
with 8 of them having more than 10 years’ experience in the
software industry and the other two having extensive
business or domain experience.

4.2 The Conceptualisation of Shared Understanding
In order to explore practitioners’ views on the processes,

challenges and representations of shared understanding, it is
firstly important to understand how these practitioners
conceptualise the notion of “shared understanding” in their
context of software development. This allows for an
interpretation of their views informed by their understanding
of this concept.

The participants perceive a close relationship between
RE and developing shared understanding of the problem
domain. They describe the process of sharing understanding
in very similar language to RE, describing phases such as
“initial elicitation”, “knowledge analysis and integration”,
“artefact development”, “validation and verification”, and
“finalization”. In line with contemporary thinking, almost all
participants conceptualise domain understanding as evolving
and changing over the life of the project and generally
considered such changes positive, resulting in “happier
clients”. Paradoxically, formal “sign off” of requirements is
still seen as a required step in confirming agreement of
understanding for most participating organisations. This
seems to be driven by the contractual nature of the client-
vendor relationship, in contrast to the iterative, agile,

partnership model that they describe. The iterations are
typically seen as clarification and verification of a larger up-
front effort of elicitation and documentation, and may or may
not result in changes to understanding and a re-negotiation of
requirements.

The main aim of sharing domain understanding is seen as
being closely aligned with the development of requirements-
related artefacts in the early phases, and verifying and
clarifying understanding further into a project. The concept
of “requirements” was used quite loosely in general
throughout the interviews, with no strong distinctions made
between user, business, functional and quality requirements.
This lack of clarity could cloud thinking and could result in
people talking across purposes or even driving towards a
solution with insufficient understanding of the problem.

The distinction between problem space and solution
space is an important part of conceptualizing “sharing
domain understanding”. Interviewees conceptualized this
distinction as the delineation of the “business problem” (or
“domain problem”) and the “software solution”, although
occasionally this separation was blurred. The interviewees
suggested that it is important to demonstrate, to the
satisfaction of the client stakeholders and as soon as possible,
that the proposed solution or product is a suitable solution for
their domain problem.

Another important aspect of conceptualizing “shared
understanding” is the role of the different participants in this
sharing. The interviewees had a fairly restricted view of the
roles of the client stakeholders and software production team
and their relationships, as depicted in Figure 1. The
knowledge elicitation and sharing between vendor
(development) group and client group is perceived as being
driven mainly by the vendor group, and is the analyst’s role.
Typically in a small organization the analyst is the CEO or
senior team member since it is perceived as a critical job.
This aligns well with the observations of [16] that the
Requirements Engineer is typically the CEO or senior sales
person. The concept of a “Regulator” captures the need for
some of the participating organisations to comply with
government or Standards regulations.

Figure 1. Perceived Stakeholder Roles and Relationships

The consequence of an inadequate level of shared
domain understanding was an important aspect of
participants’ notion on “shared understanding”. A lack of
shared domain understanding is seen as leading to
“miscommunications”, “misinterpretations” or
“misunderstandings”. The consequences of this are described
as unexpected client actions, behaviors or decisions, which

result in increased frustration levels, increased conflict,
inefficient processes, the need for “extra” work, poor quality
systems or even project failure.

4.3 The Importance of Sharing Understanding
Gauging the importance of sharing understanding to the

participants should provide some indication of the level of
effort participants will allocate to improving this shared
understanding or related processes. The participants were
asked to rank the importance of developing shared
understanding on a scale of 1 (“not at all”) to 5 (“very
important”), and all ten selected the highest score. This
seems to reflect more their acknowledgement that a lack of
understanding can significantly affect project success, rather
than their effort on activities in this area. For example, more
than half the participants claim to spend 20-30% of software
project effort on activities directly related to sharing domain
understanding. They “justified” this “low percentage” (their
perception) as stemming from the need to maintain a balance
between refining understanding and other development
activities such as development, testing and implementation.
They described it as a “closed sum” situation where more
effort in sharing understanding (and RE in general) would
lessen what could be done in the other development
activities. This is in conflict with the notion of the high cost
of not detecting errors early in the development lifecycle
reported in literature and noted by participants in this study.

Participants also believed that their current practices need
improvement and that the development of shared
understanding is still problematic (as discussed more fully in
section 4.4). The conclusion from these findings is that, at
least in small organisations, there is the perception that this is
an important and (still) challenging area of software
development.

4.4 Practice, Tools and Techniques
This research aimed to gain some insights into what

practices and supporting tools and techniques the
practitioners in SMEs utilize to enhance sharing of domain
understanding between the production team and the client
stakeholders.

None of the organisations claimed to use a “named”
methodology or specialized tool to support the development
of shared domain understanding (or even requirements
engineering). In fact, quite a diverse set of techniques, tools
and practices related to developing domain understanding
were reported among the organisations. The results are as
summarised, in order of strength of use, in Table 2.
Conversational techniques, which ranged from casual
conversation to semi-structured interviews, were identified
by all ten participants as the most common activity used
throughout the life of a project to support shared
understanding. Client and vendor stakeholders with strong
verbal communications skills are perceived as crucial to the
development of shared understanding. This is well supported
by evidence from research in [24, 25].

For product-driven organisations the use of regular focus
groups is found to supplement informal communications
with existing clients to confirm domain understanding with
the “market”.

Documents are perceived as the “main communication
device” for most organisations. This is typically a document
related to a specification (e.g. requirements) with both
textual and graphical material. The document is seen as
“giving people something to talk to”. It was widely
acknowledged by participants that the utility of the
documents by themselves is limited for sharing
understanding, being described as “dry”, “always
ambiguous”, “do not help people in reality” and “words are
only words”. The organisations all stressed the need to
complement written understanding with verbal discussion
with the client to confirm the “accuracy and meaning” of the
documentation. Documents are not seen as a substitute for
“getting together with the client as often as we can”.

Technique/Tool Typical functions

Conversational
techniques (e.g.
conversation, interview)

Eliciting, clarifying & verifying
understanding. Conflict resolution.

Prototype/product
review Validating understanding

Document review Validating understanding
Artefact development
tools (e.g. MS Word,
Visio, PowerPoint)

Analysing & representing understanding.
Artefacts for later verification and
communication of understanding.

White boarding session Triggering new ideas & eliciting
understanding

Review of similar
products Triggering new ideas & discussion

Observation Eliciting understanding
Focus group Eliciting & verifying understanding
Questionnaire Eliciting understanding
Iterative User acceptance
test Validating understanding

Issue tracking system Knowledge storage & management
Glossary Knowledge sharing

Table 2. Tools and techniques used for developing shared
understanding

Face-to-face discussions with client stakeholders is
viewed as the most productive mode of communications for
sharing understanding, in line with other findings reported in
literature (for example [26] and [27]). It was described by
participants as improving subsequent communications with
clients by getting them “closer” to clients and improving
“trust” and “empathy” as well as deepening understanding. A
lack of face-to-face communications, in fact, was identified
as a serious barrier to developing shared understanding by
most of the participating organisations. During later phases
of projects, face-to-face meetings were described as being
less frequent and needed mainly for issues which were
perceived by the vendors as likely to have a significant
impact on the project. Phone and email are the prevalent
modes of developing shared understanding later in projects.
Where clients and developers are a significant distance apart,
use of video conferencing (e.g. WebEx) is seen as a viable
alternative to face-to-face discussion, although not as “rich”.

The use of prototyping techniques, including executables,
as well as screen-based and paper-based prototypes, is given
particular emphasis by participants as being effective for
developing shared domain understanding. It is viewed as a
“rich” artefact for validation of understanding of the problem

domain and iterative refinement of this understanding.
Prototypes are conceived as visual and concrete and allow
client stakeholders to test their understanding effectively,
particularly since few clients “can assess a concept, they
have to see it manufactured.” Some participants noted that
prototyping predominantly provides feedback on workflow
and the user interface, which are not related to solution space
rather than the problem domain.

The process of sharing understanding generally involves
sharing some artefact that represents the domain
understanding that is shared or needs to be shared and
verified. The representations of understanding that were
viewed as most effective for evolving shared domain
knowledge are dominated by informal, loosely structured
natural language representations. The challenge of reducing
ambiguity inherent in such text was also acknowledged.
Participants particularly emphasised the prototype (or
product) as a representation of the current state of domain
understanding also. Such representations were seen by the
vendors as “accessible and understandable” by the clients, as
opposed to more formal representations such as UML
diagrams, which were seen as unfamiliar to clients. The
predominant view they expressed was that most of the shared
understanding is in individuals’ minds as a result of
conversations and informal communications.

In summary, the predominant practices in small
organisations seem to rely on largely textual documentation
and prototypes as tools for developing and representing and
verifying shared understanding. Participants seem to have
evolved a diversity of practices that are “good enough” but
say they are open to improvement. It appears that there have
been few mistakes with an impact serious enough to cause
radical change of practices in the participating organisations.
Perhaps, as suggested by [16], companies who have
experienced such high impact mistakes have already gone
out of business.

4.5 Challenges and Barriers
This study sought to explore the challenges and barriers

to sharing domain understanding as perceived by the vendor
(production) group. These insights should provide directions
for future research and identify opportunities for research-
practice communications.

All organisations had stories of miscommunications and
misunderstandings that had contributed to project difficulties
and acknowledged a number of challenges and barriers in
developing a shared domain understanding. Table 3 depicts
the main challenges identified in order of decreasing strength
from this study. Although a number of barriers were
identified in this study, this discussion focuses on the two
most strongly presented by participants, namely issues with
client representation and the differences between the
production (vendor) and client groups. It should be
emphasised that all the barriers are interrelated both causally
and hierarchically and are represented in Table 3 according
to the perceptions of the participants of this study.

The challenges presented by poor quality client
representatives is consistently emphasised as a significant
barrier to shared understanding by all participants. The
prevalent view is that the client representative(s) is a key

“interface” to the client organisation and if this relationship
and interactions are poor then communications suffers and it
is difficult to elicit domain knowledge and verify shared
understanding. Characteristics of poor quality client
representatives generally related to their perceived lack of
knowledge or some form of “resistance” to sharing. Table 4
summarises the main challenges identified by the
participants related to client representative quality.

Challenges and Barriers
Inadequate client representatives
Diversity between client and vendor groups
Lack of common language/terminology
Difficult access to key stakeholders
Change in problem understanding
Client uncertainty
Unfamiliar or complex representations
Ambiguity of natural language
Client's internal conflict
Communication timing and frequency
Non-engaging representations
Lack of enough “rich” communication

Table 3. Barriers to Shared Domain Understanding

The most strongly emphasised characteristics of a poor
quality client representative relate to perceptions of their
domain knowledge. This may be a lack of depth, breadth or
inability to clearly articulate the ideas, all resulting in an
information need not being satisfied or conceptual
understanding being limited. Some representatives were
perceived as “poor learners” and slowed the development of
new understanding or possible innovation.

Barriers Related to Inadequate Client Representatives

Depth of domain knowledge insufficient.
Unable to articulate tacit domain knowledge.
Is unaware of the views of other stakeholders.
Availability is too restricted.
Perceived as inaccessible or lacking commitment.
Actively resistant to participation.
(Uncooperative. Unforthcoming. Unwilling to compromise. Always
disagrees).
Passively resistant to participation.
(Always agrees. Non-committal. Doesn’t engage).
Expectations unrealistic. Too demanding
Always changing their mind. Uncertain or inconsistent.
Has a hidden agenda.
Has no authority to make decisions or to speak for other stakeholders.

Table 4. Barriers Related to Client Representatives

Lack of availability of the client representative is also
highlighted as being a barrier to developing and sharing
domain understanding. A variety of circumstances are
identified as being the root cause of this access challenge,
including geographical distance, delegation of responsibility,
multiple layers of stakeholders, office policy, high cost of
representatives, or indifference. There is a strong perception
that the representative is often too busy with other work
(over-worked perhaps) and consequently takes too long to
respond to requests for information or confirmation of
understanding, or provides shallow or incorrect responses
due to this work pressure.

The other significant area of inadequate client
representation relates to the attitudes and behavior of the
representatives. Broadly speaking this is perceived as overt
uncooperative behavior such as “holding back” feedback or
information, or more passive behavior such as always
agreeing, with little depth of thought. This was seen as due to
a low value being placed on role by the client representative
resulting in a lack of “buy-in”, “commitment” or
“resentment” to the client representation role.

Power is another clear barrier related to effective
communication with the client representative. Some are
perceived as playing power games with hidden political
agendas, so that aspects of understanding were withheld to
the advantage of the client in some way. Related to this is the
frustration expressed by some participants when trying to
negotiate understanding and perhaps reach a compromise or
decide on alternative views, when the representative doesn’t
have the authority to speak for the organisation and must
consult with a higher authority.

It is clear from the interviews that most participants
placed significant reliance on getting quality domain
expertise and quality feedback and verification of
understanding from the client representatives. They generally
perceived the selection of the client representative(s) as
largely out of their control, although two organisations report
influencing the selection of the customer representative
through negotiation. Another three organisations reported
employing their own domain experts, who act as “proxy”
clients. Presumably the client organisations don’t actively
select a poor quality representative for a project, so the
question remains as to how this situation arises? No clear
causes are offered by the participants, although the “blame”
was certainly placed with the client group by the (vendor)
interviewees. While the quality of client representation is
discussed in RE literature ([26], [28]) it appears that for
small organisations it is perceived as a particularly
significant and frequent barrier to developing shared
understanding. Perhaps this is because larger teams in larger
organisations have multiple points of contact. This could be a
fruitful area for process improvement and better tool support.
How can a more visible “client management” process be
designed that will promote the selection of the client
representatives based on appropriate criteria and support
them to engage and commit, despite having competing work
pressures?

“Diversity” between the client and vendor groups is also
identified strongly as a barrier to shared understanding. This
is described by the participants as being linked to the
differences in individuals’ characteristics such as their
experiences, depth of knowledge, abilities to conceptualise,
values, risk tolerance, and priorities. It is conceptualised as
resulting in difference “trends” between the groups that
develop over a series of inter-group interactions. This can
lead to increased misunderstandings, miscommunications or
misinterpretations that disrupt clear communications and
hinder the development of shared understanding. Particularly
noted by participants are the differences in depth of
knowledge between the two groups, more technical on the
vendor side and business oriented in the case of the client
group. Three particular issues that relate to sharing

understanding, which are a result of this diversity, are
emphasised by participants. One relates to the “difficulty to
get them to speak the same language”. This is seen as a
significant barrier to developers gaining a sufficient
understanding of the business processes and goals, and being
the root cause of “some projects failing badly”. Another
barrier, related to this, is the problem of the developers
“jumping into the coding process before they understand the
business goals and processes”, resulting in a “cycle of
change, change, change”, which is problematic to
accommodate. Another interesting challenge relates to the
lack of “big-picture” some users exhibit. This is seen as
resulting in users often getting “lost” and “missing the point
because they don’t understand what the business is trying to
do”. This may be in part due to the tendency for the
production group to move from domain problem
understanding to software solution too soon.

A commonly cited issue with requirements management
is the difficulty in managing changes to scope and
requirements. When prompted about changes to domain
understanding, participants expressed the view that, although
they considered changes “normal”, it can be problematic if
not “well managed”. They described challenging experiences
such as overly frequent changes, clients not sharing changes
with the vendor, and lack of clarity on the wider impact of
new understanding.

Overall, participants identified a broad range of
interrelated barriers and challenges to adequate sharing of
domain understanding. The potential for client
representatives to inhibit the sharing of domain
understanding between the two groups was emphasised in
the frequency and strength with which interviewees,
unprompted, raised this as an issue. The next most forcefully
expressed barrier related to the diversity in “world views”
and experiences of the vendor and client groups. This
contributed to a number of communications issues that
obstructed sharing understanding between the two groups.

5. CONCLUSION AND FUTURE WORK

This study found evidence that shared problem
understanding is perceived as being an important but
challenging contributor to software quality in small
organisations. This suggests that practitioners in small
organisations may be open to suggestion for process
improvement and technology transfer from research to
practice may be less of a challenge than with larger
organisations.

It was also discovered that the notion of shared domain
understanding is conceptualised as being closely related to
activities in requirements engineering and that it is thought of
as a complex, iterative, and evolutionary process. The wide
diversity of practices used by these organisations possibly
reflects the diversity of both experiences and market niches
they occupy. The absence of formal methodologies to
support RE activities, while on the face of it could be
interpreted as a research-practice gap, is more likely to
reflect the sufficiency of practices that are “good enough”. If
researchers are to influence SMEs to improve processes or
supporting tools in this area, then the value of such a change
must be clearly evidenced and communicated to

practitioners. The demonstrated business value of proposed
improvements must be such that they override the
(perceived) overhead of going further than the sufficiency of
current processes.

Lack of distinctions between the problem and solution
space and different types of requirements became apparent
throughout the interviews and this may cloud some of the
understanding in this area. Perhaps distinguishing these
concepts more carefully in literature, with clearer
justifications will assist this knowledge transfer.

Twelve barriers to shared domain understanding are
identified in this study. While these barriers generally align
with literature, a greater emphasis was given to the quality of
the client representative(s). To some extent this may reflect
the reliance small organisations place on the domain
expertise of the client organisation. A better understanding of
client representative selection and management may suggest
techniques which could increase the “visibility” of this issue
and support the management of client representative
selection, commitment and communication. These findings
suggest that such improvements could have a significant
impact on domain knowledge sharing in small organisations.

Another significant finding is the (over) reliance on
prototype techniques as a representation of “embedded”
domain understanding and its frequent mention as method of
early verification of this understanding. This may lead to the
selection of a solution system approach before sufficient
shared understanding of the problem domain is achieved. A
consequence of this could be that possible alternative domain
solutions are not considered or a solution is developed for the
“wrong” problem. A technique that models the domain
understanding at a conceptual level and is shareable, easily
manipulated as well as (cognitively) accessible to both client
and vendor stakeholders, could complement the more
concrete representations such as a prototype. This would
encourage deeper domain understanding and verification at a
more conceptual level, and having the “big picture” front of
mind when appropriate.

It was beyond the scope of this study to investigate the
development of shared domain understanding from a client
stakeholder perspective, but this would be an interesting
comparison that could provide some useful insights for
software development practitioners and researchers.

6. REFERENCES
[1] F. P. Brooks, The Mythical Man-Month, Anniversary ed.:

Addison-Wesley, 1995.
[2] M. I. Kamata and T. Tamai, "How Does Requirements

Quality Relate to Project Success or Failure?," in
Requirements Engineering Conference, 2007. RE '07. 15th
IEEE International, 2007, pp. 69-78.

[3] M. Keil, J. Mann, and A. Rai, "Why software projects
escalate: an emperical analysis and test of four theoretical
models," MIS Quarterly, vol. 24, pp. 631-664, 2000.

[4] U. K. Kudikyala and R. B. Vaughn, "Software requirement
understanding using pathfinder networks: Discovering and
evaluating mental models," Journal of Systems and Software,
vol. 74, pp. 101-108, 2005.

[5] D. J. Flynn, Information systems requirements: determination
and analysis: McGraw-Hill, London, 1992.

[6] L. Hoffmann and F. Lehner, "Requirements Engineering as a
Success Factor in software projects," IEEE Software, vol. 18,
pp. 58-66, 2001.

[7] B. Boehm, Software Engineering Economics. Upper Saddle
River, NJ: Prentice Hall, 1981.

[8] A. Katasonov and M. Sakkinen, "Requirements quality
control: a unifying framework," Requirements Engineering,
vol. 11, pp. 42-57, 2006.

[9] D. Damian and J. Chisan, "An empirical study of the complex
relationship between the requirements engineering process
and other processes that lead to payoffs in productivity,
quality and risk management," IEEE Transactions on
Software Engineering, vol. 32, pp. 433-453, 2006.

[10] B. Cheng and J. Atlee, "Research Directions in Requirements
Engineering," in International Conference on Software
Engineering, Future of Software Engineering, 2007, pp. 285-
303.

[11] E. G. Alcázar and A. Monzón, "A process framework for
requirements analysis specification," in Proceedings of 4th
International Conference on Requirements Engineering,
2000, pp. 27-35.

[12] R. Offen, "Domain Understanding is the Key to Successful
System Development," Requirements Engineering, vol. 7, pp.
172-175, 2002.

[13] A. Osada, D. Ozawa, H. Kaiya, and K. Kaijiri, "The role of
domain knowledge representation in requirements elicitation,"
in 25th IASTED International Multi-Conference Software
Engineering, Innsbruck, Austria, 2007, pp. 84-92.

[14] J. Coughlan, M. Lycett, and R. D. Macredie, "Communication
issues in requirements elicitation: a content analysis of
stakeholder experiences," Information and Software
Technology, vol. 45, pp. 525-537, 2003.

[15] EU, "The new SME definition. User guide and model
declaration. ," European Commission,
2005, http://www.ec.europa.eu/enterprise/enterprise_policy/s
me_definition/sme_user_guide.pdf.

[16] J. Aranda, S. Easterbrook, and G. Wilson, "Requirements in
the wild: How small companies do it," in Proc. 15th IEEE
International Requirements Engineering Conference RE '07,
2007, pp. 39--48.

[17] S. Pavic, S. C. L. Koh, M. Simpson, and J. Padmore, "Could
e-business create a competitive advantage in UK SMEs?,"
Benchmarking: An International Journa, vol. 14, pp. 320-
351, 2007.

[18] E. Kamsties, K. Hörmann, and M. Schlich, "Requirements
engineering in small and medium enterprises," Requirements
Engineering, vol. 3, pp. 84-90, 1998.

[19] F. Pino, F. García, and M. Piattini, "Software process
improvement in small and medium software enterprises: a
systematic review," Software Quality Journal, vol. 16, pp.
237-261, 2008.

[20] A. Atherton, "The uncertainty of knowing: An analysis of the
nature of knowledge in a small business context," Human
Relations, vol. 56, pp. 1379-1398, 2003.

[21] L. Karlsson, A. G. Dahlstedt, B. Regnell, J. N. Dag, and A.
Persson, " Requirements engineering challenges in market-
driven software development - An interview study with
practitioners.," Information and Software Technology, vol. 49,
pp. 588-604, 2007.

[22] M. Miles and A. Huberman, Qualitative Data Analysis. Sage,
CA: Thousand Oaks 1994.

[23] W. Tellis, "Application of a case study methodology," The
Qualitative Report, vol. 3, 1997.

[24] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the
software design process for large systems," Communications
of the ACM, vol. 31, pp. 1268-1286, 1988.

[25] K. E. Emam and N. H. Madhavji, "A field study of
requirements engineering practices in information systems

development," in Proceedings of the Second IEEE
International Symposium on Requirements Engineering,
1995, pp. 68-80.

[26] L. Cao, & Ramesh, B., "Agile requirements engineering
practices: An empirical study," IEEE Software, vol. 25, pp.
60-67, 2008.

[27] D. Damian, "Stakeholders in global requirements engineering:
Lessons learned from practice," IEEE Software, vol. 24, pp.
21-27, 2007.

[28] C. Lu, Chu, W. C., C. Chang, and C. Wang, "A model-based
object-oriented approach to requirements engineering
(MORE)," in 31st Annual International Computer Software
and Applications Conference, 2007, pp. 153-156.

http://www.ec.europa.eu/enterprise/enterprise_policy/sme_deﬁnition/sme_user_guide.pdf�
http://www.ec.europa.eu/enterprise/enterprise_policy/sme_deﬁnition/sme_user_guide.pdf�
http://www.ec.europa.eu/enterprise/enterprise_policy/sme_deﬁnition/sme_user_guide.pdf�

	1. Introduction
	2. Knowledge Sharing and RE
	3. Research Design and Implementation
	3.1 Aims and Methodology
	3.2 Case Selection
	3.3 Research Implementation

	4. Results and Discussion
	4.1 The Case Organisations
	4.2 The Conceptualisation of Shared Understanding
	4.3 The Importance of Sharing Understanding
	4.4 Practice, Tools and Techniques
	4.5 Challenges and Barriers

	5. Conclusion and Future Work
	6. References

