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Abstract

A complex system, as a collection of loosely coupled interacting components, can

group and create functioning units together. Complex systems have become a powerful

framework for describing, analysing, modelling systems in nature and society. Trust

among components, established by considering past interactions, represents a subjective

expectation which a component has about another’s future behaviour to perform given

activities dependably, securely, and reliably. Hence, trust is essential to effectively

reduce the perceived risks of transactions and guide future interactions. It is applied to

quantify the performance of both individual component behaviours and the correlations

among interdependent components in a complex system.

With regard to certain challenges in the current complex system research, this thesis

deeply investigates trust relationships among components within two different types

of complex systems, i.e., the collaborative complex system and the preference system,

and proposes three trust estimation approaches. Firstly, collaborative complex systems

consist of loosely coupled autonomous and adaptive components. In order to address

complicated problems which usually require multiple skills and functions, components

are grouped as composite teams and collaborate by providing different knowledge,

resource and skill. Two types of team formation strategies for collaborative complex

systems are proposed for scenarios of team formation without predefined workflow

structures, and team formation with predefined workflow structures, respectively. Hence,
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the Correlated Contribution trust evaluation model is proposed to explore the com-

positional trust through considering correlations and dependencies among both skills

required by tasks and individual components within collaborative composite teams.

Furthermore, we propose an automatic approach, i.e., the Same Edge Contribution

trust evaluation model, to estimate the trustworthiness of proposed candidate composite

teams by analysing historical provenance graphs which are adopted to capture pre-

defined workflow structures. Finally, preference systems mainly focus on the entities

with similar preferences and group them into various communities. However, in the real

world, a particular entity usually places its trust differently from other social entities,

because of their multi-faceted interests and preferences. In this thesis, a Community-

Based trust estimation approach is proposed to explore the similarity of criteria or

preference among entities within the same community in relation to a certain context. It

automatically infers trust relationships among entities from previous entity-generated

feedback, and predict a particular entity’s potential feedback for items which the entity

does not have previous experience with.
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Chapter 1

Introduction

Traditionally, the view of science holds knowledge to be specific and, thus, most

knowledge may usually be gained by studying more details of certain systems. Once the

view has led to professional specialization, the individual disciplines have progressively

become more and more isolated from one another. Therefore, nowadays, scientific

research is becoming increasingly universal and holistic, more emphasized on system-

level behaviour rather than system constituents, but also increasingly multidisciplinary

as the existence of potential synergies across different fields in being acknowledged

(Bar-Yam, 1997).

Recently, the study of complex systems in a common framework has become

recognized as a new discipline, breaking barriers to a wide range of domains, such as

social network, scientific collaboration network, biology, economics, service-oriented

systems, e-commerce, and psychology (Newman, 2003). There are three primary

reasons for the emergence of the complex systems research. Firstly, the large increasing

amount of data on diverse systems become available. Secondly, more sophisticated

mathematical machineries and approaches are developed for tracking these problems.

Thirdly, the advances in computing technologies and computational capacity enable

simulations and analysis of these systems.

1



Chapter 1. Introduction 2

Complex systems have become a powerful framework for describing, analysing,

modelling systems in nature and society. In this framework we learn about a system

by studying its network representation. The network represents a complex system by

focusing mainly on the essentials and elements denoted by nodes (vertices), and inter-

actions among the elements denoted by edges. For example, a scientific collaboration

system can be described as a complex network of diverse domain experts connected by

cross-domain problems. The approach is possible because the interaction topology of

the underlying system, captured by the network, is related to its function and dynamics.

Therefore, in this thesis we also learn about a complex system by studying its network

representation.

1.1 Complex Systems

A complex system contains a number of loosely coupled interacting components. The

components may flexibly group together toward achieving different incoming tasks.

The system become complex due to a characteristic set of evolving behaviours in both

system and subsystem levels, and the dynamic relationships among system components.

In order to understand a complex system well, we need to analyse the behaviour of

individual components and also the interrelationships among components in different

levels. Moreover, identifying and describing a system or hierarchies in a system requires

certain levels of abstractions (Bar-Yam, 1997; Mitchell & Newman, 2002).

1.1.1 Emergent Complexity

The emergent complexity is defined as the behaviours of a number of components

interacting in a way that the behaviour of the whole is complex (Bar-Yam, 1997).

Components are those parts of a complex system that may be considered simple when

describing the behaviour of the whole. Simple systems may also consist of parts, yet
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their behaviours usually are predictable and understandable. However, a complex system

may consist of a large number of components whose behaviours are emergent. Namely,

the behaviour of a complex system cannot be simply inferred from the behaviours of

its components. The amount of information necessary to describe the behaviour of

such a system is a measure of its complexity. In addition, the term "interconnected" are

essential to distinguish a simple system and a complex system. In a complex system,

each component must be described in relation to other interacted components.

Connectivity and interaction are necessary elements of the emergence of complexity.

Interactions among individual components in a complex system often lead to "large-

scale behaviours" that are not easy to predict only from the knowledge of the individuals.

Such collective effects are called "emergent" complexity. Namely, the behaviour of

many simple components interact in such a way that the behaviours of the whole

is complex (Bar-Yam, 1997). Examples of emergent complexity include short and

long-term climate changes, price fluctuations in markets, and so forth.

A complex system is identified with a global emergent property which is being

formed out of interdependent components. In contrast to "interacting", "interdependent"

not only demonstrates strong interactions among components, it also implies that each

of the components may have an influence on the others (Bar-Yam, 1997). Therefore, the

interdependent property may lead to unintended and unanticipated output for a complex

system. For example, in an ecosystem, which is another typical complex system, the

increase of temperature can be caused by the composition of the atmosphere, the solar

radiation budget, the Earth’s albedo, or a combination of all of these factors. Moreover,

these factors are also dependent on one another. Changes in atmospheric composition

can lead to changes in precipitation rates, which can lead to changes in the percentages

of land covered by snow and ice, thus changing the Earth’s albedo. Finally, human

activities also result in the change of global climate. In this case, it is obviously hard to

know exactly which and how these factors contribute to the observed output.
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1.1.2 Characteristics of Complex Systems

The complex system is a model for thinking about the real world around us, and for

understanding universal laws and phenomena in relation to the great complexity and

variety of systems. The main purpose of studying the complex system is to extract

general principles and the complexity which usually exhibits the following important

characteristics.

• Interacting components in the complex system can be organised into nested

groups which are represented as organisational hierarchies. Low level compon-

ents are joined into subsystems, and these groups are joined into higher level

margaropus or whole system. For example, if we make a graph of social interac-

tions of "who talks to whom", the clusters of dense interaction in the graph will

identify a hierarchical structure. The group detection process in this structure

may be defined operationally by some measure of frequency of interaction in the

sociometric matrix (Garud, Kumaraswamy & Langlois, 2009).

• A complex system becomes complex because of a characteristic set of evolu-

tionary process. Evolution is a general approach to the formation of complex

organisms from simple parts through incremental change. Hierarchic systems

evolve more quickly than non-hierarchical ones of comparable size (Jennings,

2001).

• A complex system can be decomposed as a set of more manageable interrelated

subsystems, each of which is in turn hierarchical in structure, until the lowest

level of elementary subsystem is reached. Each subsystem can be dealt with in

relative insolation to help reduce complexity. However, the appropriate coarseness

on which to ground a model is determined by the function task of interest,

because the complex system is differentiated in interlinked levels of organisation
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without preferred granularity level. The structure of a complex system consists

in the patterns that are caused by particular objects and the interactions among

components.

• Relationship between components and subsystems are dynamic and vary over

time in a complex system. This is because that the selection of system components

are primitive and relatively arbitrary. It is defined by the observer’s aims and

objectives (Jennings, 2001). The ability to specify and enact organisational

relationships is helpful for tackling complexity by not only enabling a number of

basic components to be grouped together and treated as a higher-level unit for

analysis, and it also helps by providing the meanings of describing high-level

relationships among the various parts. Therefore, to analyse the behaviour of a

complex system, the relationships among the components can be more important

than their individual characteristics.

• In complex systems, interactions within subsystems are more frequent and pre-

dictable than those among subsystems. Therefore, it raises the decomposable

attribute of a complex system and some of these interactions are predictable.

Rich interactions among complex systems and their environments also connect

different domains in various ways. The effects of those changes might propagate

through a system and into other domains (Chu, Strand & Fjelland, 2003).

• Feedback mechanism is a threshold concept for understanding complex systems,

which is difficult to learn yet transformative once mastered (Kastens et al., 2009).

A feedback loop is the update of a feedback value (either increasing or decreasing).

After feedback loops a few times, small changes in the initial conditions of the

system can have significant effects after they have passed through the emergence.

Therefore, feedback provides complex systems with a contextual dementedness

that makes system boundaries fuzzy and difficult to demarcate.
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1.1.3 Collaborative Complex Systems and Preference Systems

As mentioned in Subsection 1.1.2, a complex system contains a number of loosely

coupled interactive components with dynamic behaviours. Many existing systems with

such features can be considered as complex systems. This thesis mainly focuses on two

types of complex systems, i.e., collaborative complex systems and preference systems,

which commonly occur in many real world applications. Both of these two types of

complex systems can be thought of as social systems which consist of social entities

or groups of social entities (components) with some pattern of contacts or interactions

between them (Newman, 2003). Social networking service is a platform to build social

relations and interactions among entities. Moreover, in this thesis, the feedback is

represented as a numeric rating value. However, as the social entities and feedback

generation mechanism have different meanings in different system, we will describe

them in detail in this subsection.

Collaborative Complex Systems

Collaborative complex systems are typically affiliation networks in which participants

with different knowledge, resource and skill collaborate in groups of one kind or another

for diverse complex problems, and links between pairs of individuals are established by

common group membership (Newman, 2003). The collaboration of actors and directors

is a classic example of collaborative systems, which is published in the online Internet

Movie Database (IMDb) 1 and each movie has a rated value. In this example, actors

and directors collaborate in movies and pairs of actors/directors are connected if they

have appeared in a movie together. Co-authorship among academics is another example

of collaborative complex systems, where researchers, who have coauthored papers,

are linked. Moreover, in collaborative systems, trust feedback is normally generated

1http://www.imdb.com
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by using unified assessment standards. Hence, according to the same standard, each

composite team will be evaluated and given feedback related to the interaction between

entities.

Preference Systems

Preference systems mainly focus on the entities with similar preferences and group them

into various communities. There are two popular community detection approaches, i.e.,

topological and topical. The topological-based community detection approach considers

the graph structure of a network. On the other side, the topic-based community detection

approach mainly focuses on the analysis of the textual information of network nodes.

In both of these two approaches, the edge linking a pair of entities can be weighted by

the strength of preference similarity (Ding, 2011).

Usually, a preference system consists of two kinds of nodes representing individuals

and the objects of their preference. For example, customers are connected with the

books they bought with rating values. Therefore, a preference network also can be

represented as a bipartite network. The EachMovie dataset 2 of movie preferences is

a particular examples of a preference system. In order to predict users’ preference

similarity of movies, the collaborative filtering algorithms and recommendation systems

are widely applied based on comparisons of individuals’ rating histories (feedback).

1.2 Trust and Trust Mining in Complex Systems

Components in complex systems interact with each other, and trust is a subjective

expectation a component has about another’s future behaviour to perform given activ-

ities dependably, securely, and reliably based on experiences collected from previous

interactions (Skopik, Truong & Dustdar, 2009). In a complex system, trust among

2http://research.compaq.com/SRC/eachmovie
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components is established by considering past interactions in particular situations. By

representing a complex system as a network, entities (components) can be denoted as

vertices and interactions among them can be denoted as edges, and the feedback of

component interactions can be represented as edge weights.

As previously discussed, the complex system is identified by the significant cor-

relations among interdependent components (Maturana, 1980). Trust is essential to

effectively reduce the perceived risks of transactions and guide social interactions

(Metzger, 2004). We apply trust to quantify the performance of both individual com-

ponent behaviours and the collaborative relationships among components in a complex

system.

There are three main characteristics of a foundational trust model (Skopik, Schall &

Dustdar, 2010), as follows:

• Trust is extracted from previous interactions and supports the inference about a

prediction of components’ future performance

• Trust is influenced by subjective perceptions of the involved components, so it

cannot be expressed objectively.

• Trust is context dependent and is basically valid within a particular facet only,

such as the interest and criterion of a book about a certain domain.

There are five popular interaction metrics translating the feedback to trust values in

particular situations (Skopik et al., 2010).

• Background metrics: an entity’s expertise and knowledge degree in distinct

domains.

• Similarity metrics: entities’ criteria and interests similarities in certain domains.

• Trust Metrics: the trust relationship among entities in particular domains which

are interpreted from the background metrics and similarity metrics.
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• Collaboration metrics: the reliability of the collaboration between two social

entities.

• Group metrics: the reliability of the service group composition

As trust value cannot be obtained directly and the main process is to interpret

feedback from previous interactions in a complex system through different approaches.

Based on previously mentioned characteristics and metrics, in this thesis, we intend

to mine different trust from collaborative complex systems and preference systems

through analysing historical collaboration records and the similarity of dynamically

adapting interests and opinions among social entities, respectively.

Firstly, for collaborative systems, interactions among components signifies that,

according to the complexity of the problem, a group of skill providers collaborate

together by providing particular skills to satisfy the function requirements. Trust

relationships among skill providers indicate whether they are willing to collaborate or

not, and how confident they are in predicting others’ future performances. Therefore,

we consider trust in a collaborative system as compositional trust, which exists within

groups consisting of more than two components. Due to the emergent complexity and

characteristics of the complex system, it is hard to know exactly which and how these

individual components contribute to the observed output. Hence, it is challenging to

have an accurate trust evaluation without analysing the inter-relationships among the

different components in a collaborative system.

Secondly, in terms of preference systems, two different kinds of interactions exist,

i.e., "user-object" interaction and "user-user" interaction. Moreover, these two types of

interactions reveal different types of trust relationships. The "user-object" interaction

indicates the trust relationships between users and objects. Furthermore, it reveals which

kinds of preference and criteria the user holds in relation to particular items. The "user-

user" interaction reveals the trust relationship between users. It indicates whether a user
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trusts the feedback from other users on particular items or not. As the characteristic

of trust, the feedback which users give on different items is not always objective,

and, furthermore, social entities have different criteria to establish trust with others.

Hence, trust interpreted from such user-generated feedback is influenced by subjective

perceptions of the users involved. Therefore, trust relationships among users are context

dependent and basically valid within a particular facet only. According to interactions

and trust relationships types, we want to mine, from preference, context-specific inter-

personal trust which combines both personalised feedback and the multi-faceted trust.

Context-specific inter-personal trust is based on the diversity of trust by enabling the

flexible aggregation of various interaction metrics that are determined by observing

ongoing collaboration.

1.3 Research Methodology

Figure 1.1: Diagram: Research Methodology

Research is a systematic and methodical process of enquiry and investigation. The

research methodology is a standard on how to do research that aims to discover new
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knowledge. The steps of research by the research method can be summarized into five

steps and shown in Figure 1.1. In the first step, we review the existing approaches

and observations with regard to what has already been researched related to complex

systems. This is in order to clearly define our research questions. In the second

step, according to each defined research question, we formulate a hypothesis as a

tentative answer. Thirdly, we can deduce consequences and make predictions regarding

potential outcomes. Fourthly, the hypothesis is tested in a specific experiment field. We

construct experiments to collect and analyse data to see whether it supports or rejects

our hypothesis. The new hypothesis has to prove and offer considerable advantages,

in order to replace the existing approaches and observations. Then step 2 through 4 is

repeated with modifications of the hypothesis until agreement is obtained. Finally, at

the time consistency is obtained, the hypothesis becomes a theory and new approaches

are proposed (Dodig-Crnkovic, 2002).

1.4 Research Objectives and Major Contributions of

the Thesis

Due to the characteristics of different types of complex systems, different trust man-

agement approaches can be applied in different complex systems. In this thesis, we

propose three approaches for two different complex systems.

1.4.1 Compositional Trust in Collaborative Complex Systems

As previously mentioned, a collaborative complex system consists of a number of

loosely coupled autonomous and adaptive components. In such systems, a unified

assessment standard is normally predefined. The performance of all composite teams

for completing different tasks can be evaluated based on the unified assessment standard.
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Furthermore, a composite group can only obtain an overall rating for the completion of

each task. It is hard to know exactly which and how these team members contribute to

the observed output feedback value.

In this thesis, we intend to mine the compositional trust of each of the candidate

components for a certain complex problem request. As the emergent complexity and

characteristics of the complex system, in order to understand and predict the behaviour

of a composite team, it is necessary to analyse the behaviour of components, and it is

also necessary to investigate how they work together to form the behaviour of the whole

is also need to be investigated. Compositional trust is evaluated from a dynamic point

of view, whereby entities select interaction partners flexibly in a complex system.

1.4.2 Context-Specific Inter-Personalised Trust in Preference Sys-

tems

According to the decomposable characteristic of complex systems, we consider a prefer-

ence system as a set of manageable interrelated subsystems, and manage them in relative

insolation to help reduce complexity. However, most existing trust mining approaches

for preference systems mainly focuses on the analysis of preference similarity among

individual entities (Luo, Niu, Shen & Ullrich, 2008). In this thesis, we want to propose

a rational approach which combines user criteria clustering and link analysis for objects

to group entities into various subsystems. The combination is based on a subsystem

(community) structure to model and analyse the massive dataset with interactions in

preference systems.

The context-specific inter-personalised trust is considered as the similarity of criteria

or preference among users within the same community in relation to a certain context.

As the users within one community are closely connected, meanwhile they have the

same criteria for certain groups of items. The proposed approach can make more
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accurate context-specific inter-personal prediction for users’ expectation.

1.5 Thesis Organisation

The remainder of this thesis is organised as follows.

In Chapter 2, we classify current trust evaluation models into four types in terms

of the different risk estimation techniques that are employed. Then, different trust

evaluation models are reviewed and discussed from different perspectives.

In Chapter 3, we propose two trust evaluation approaches, i.e., the Correlated

Contribution model and the Same Edge Contribution model, to explore compositional

trust in terms of different composite team execution mechanisms in collaborative

complex systems. In addition, we define team formation strategies into two categories,

i.e., team formation without predefined workflow structures, and team formation with

predefined workflow structures. Experimental comparisons between two proposed

models and traditional approaches are also introduced.

Chapter 4 presents a community based approach for modelling and analysing

context-specific inter-personalised trust in preference systems. The proposed approach

combines the idea of traditional recommendation systems and identification of cluster

structures to explore heterogeneous trust relationships among diverse components.

The experimental results validate the effectiveness of the community based approach

comparing it with the traditional user-based collaborative filtering algorithm, the item-

based collaborative filtering algorithm, and the K Nearest Neighbour (KNN) algorithm.

Finally, the contribution of this thesis and future work related to this research are

presented in Chapter 5.



Chapter 2

Literature Review

2.1 Introduction

In a complex system, components interact with others to achieve their goals. In this

process, components are exposed to the risk of being exploited by others. In recent

years, researchers from various fields with different viewpoints have developed diverse

trust evaluation models for different complex systems with different characteristics.

In this chapter, some existing related research work and important techniques of trust

evaluation are reviewed.

In this thesis, we categorised trust evaluation models into four types in terms of the

diverse potential risk estimation techniques employed: (1) direct trust evaluation models

which rely on historical observed direct experience; (2) reputation-based trust evaluation

models which depend on third party (indirect) testimonies from other components in

the same environment; (3) trust-aware interaction decision-making models which select

interaction partners based on candidate components’ trust values evaluated by different

algorithms; and (4) community-based trust evaluation models which cluster components

into tightly knit groups with density of internal interactions through interpreting past

interactive behaviours and communication via direct or indirect connections in social

14
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media (Girvan & Newman, 2002).

We analyse and review these existing trust evaluation models from different per-

spectives: the problems these approaches attempt to address, the suitable operating

situations, the advantages and limitation of these approaches. In additional, we also

discuss whether these approaches can be adopted to mine compositional trust and

context-specific inter-personalised trust in collaborative and preference complex sys-

tems.

In Section 2.2, we review a number of direct trust evaluation models, and the

reputation-based trust evaluation model is mentioned in Section 2.3. In contrast to the

direct trust evaluation model, reputation-based trust evaluation models help a truster

build its trust model of a potential trustee by requesting indirect trust evidence from

third-party. In terms of different sources of trust evidence and filtering out biased

testimonies, reputation-based evaluation models can be classified into four categories:

trust evidence aggregation approaches (Section 2.3.1), testimony filtering approaches

(Section 2.3.2), socio-cognitive trust evaluation model (Section 2.3.3) and organizational

trust evaluation models (Section 2.3.4). In Section 2.4, in terms of receiving a cross

domain task, trust-aware interaction decision-making approaches are proposed to help a

truster to decide how to select a potential trustee to collaborate with. Finally, we review

community-based trust evaluation models in Section 2.5 to analyse how to mine trust

information from social media in regard to user-generated content.

2.2 Direct Trust Evaluation Models

Direct trust evaluation models establish trust among components within complex sys-

tems through observing the outcomes of a truster’s previous interactions with a trustee

to estimate that trustee’s future behaviour. Hence, the historical interaction outcomes

serves as the direct evidence available for trustees’ trustworthiness evaluation (Yu, Shen,
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Leung, Miao & Lesser, 2013). The risk of interactions is considered as the probability of

being cheated by the interaction partner based on the outcomes of previous interactions.

The direct trust evaluation model is advantageous when components have opportunities

for numerous and frequent interactions. When the outcomes of interactions are observ-

able, transaction experiences provide a candidate truster with trustworthiness feedback

that is certain (Fullam & Barber, 2007).

The Beta Reputation System (BRS), proposed by Jsang and Ismail (2002), is inspired

by the Beta distribution to project past interaction experience with a trustee entity into its

possible future behaviour and provide a measure of its trustworthiness prediction (Jsang

& Ismail, 2002). The reputation of a trustee is defined as the probability expectation

value of a distribution that consists of the positive and negative feedback about it and

the BRS estimates the trustworthiness of a trustee by calculating its reputation. Due

to the belief, disbelief and uncertainty with respect to the truthfulness of the feedback,

the BRS may discount the expectation value of candidate trustees’ future behaviour

and then introduce a time decay factor to allow past evidence to gradually diminish.

However, the BRS can only generate a binary value (i.e. successful/unsuccessful) for

the predictive outcome of an interaction between the truster and trustee.

In contrast to the BRS, the Dirichlet Reputation System (DRS) is proposed to handle

cases where the interaction outcomes are rated on a multinomial scale by Jsang and

Haller (2007) (Jøsang & Haller, 2007). In terms of a finely grained rating value,

the DRS introduces several approaches to derive the reputation of candidate trustees,

such as an evidence representation, a density representation, a multinomial probability

representation, and a point estimate representation. The basic principle underlying the

DRS model is similar to that in the BRS, even so previous two representation are still

difficult for human interpretation.

Furthermore, in a complex system, there are multiple factors that may affect the

performance of a trustee, so a several multi-dimensional trust model is proposed. An
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experience-based multi-dimensional trust evaluation approach is proposed by Griffiths

(2005) which models the trustworthiness of candidate trustees to minimize the risk

associated with cooperation. It mainly assesses the trustworthiness of a trustee along

four dimensions: 1) the likelihood that it can successfully generate an interaction result;

2) the likelihood of delivering an interaction output within the expected budget; 3)

the likelihood of completing the task within the specific deadline; 4) the likelihood

that the quality of the result meets the expectation (Yu et al., 2013). Based on the

truster’s personal preference with respect to these four dimensions, a weighted average

approach is applied to calculate the trustworthiness of candidate trustees. However,

the experience-based multi-dimensional trust evaluation approach can only predict the

component’s future behaviour according to its previous individual performance.

The Priority-Based Trust Model (PBTrust) is proposed by Su, Zhang and Mu for

selection of candidate service providers (trustees) in general service-oriented environ-

ments, according to the priority distribution on attributes (multi-dimensional factors)

from the perspective of the consumer (truster). The PBTrust model evaluates the

reputation for a candidate trustee from four perspectives: 1) the trustee’s historical

interaction experience; 2) the similarity of priorities distributions on attributes between

the referenced experience and the request; 3) the suitability of the candidate trustee

for the request and the time effectiveness of ratings from third parties (Su, Zhang, Mu

& Sim, 2010). The PBTrust model evaluates the component’s historical performance

and weights rating from a third party reference based on time stamps. However, it still

cannot be applied to predict the performance of a trustee group.

In 2011, Su et al. introduce a GTrust model for group services selection for a

multi-dimensional service request. There are four merits being employed: 1) the

functionalities coverage which a potential service group can provide corresponding

to the request from the consumer; (2) the dependency degree among trustee service

providers in a service group; (3) the historical performance of candidate trustee service
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providers; and (4) the similarity in terms of priority distributions on attributes between

historical services of group members and requested services. The GTrust model adopts

the group’s overall performance as the reference report for each of the members of the

group during the updating of their historical records. However, the dependency degree

among group members is needed to be predefined and it ignores many other factors

such as the uncertainty of the environment and the correlation among the truster and

candidate trustees (Su, Zhang, Mu & Bai, 2011).

The evidence-based trust model introduced by Wang and Singh (2007) quantifies the

uncertainty of trust evaluation evidence for two crucial characteristics, i.e., dynamism

and composition. It not only considers the challenge that trust evolves over time, it also

combines trust reports which cannot themselves be perfectly trusted, possibly because

of their provenance or the way in which they are obtained. The evidence-based trust

model satisfies two main insights. Firstly, if the amount of trust evidence is large, the

certainty is high; secondly, if the conflict among the feedback is low, the certainty is

high. Even though the evidence-based trust model takes the dynamic characteristic of

complex systems into account, it is only effective to predict the future behaviour of

individual candidate trustees. Another significant drawback of approaches reviewed in

this section is that they evaluate the trustworthiness of candidate without considering

the context. However, trust is context dependent and only valid within a particular facet

only.

2.3 Reputation-Based Trust Evaluation Models

Reputation can be defined as the opinion or view about someone on something and it is

useful for quickly learning trustworthiness characteristics of potential trustees without

previous direct interactive experience (Ramchurn, Huynh & Jennings, 2004) (Fullam

& Barber, 2007). Reputation can be evaluated based on two kinds of evidence, i.e.,
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the direct interaction experience, and 2) the information provided by other members

of the society about experiences they have had in the past (Sabater & Sierra, 2001).

Even though direct evidence usually is the most relevant and reliable sources for the

trustee evaluation, but it may not always be available, because if a large number of

components exist within a complex system, the interaction among them is rare. Hence,

reputation-based trust evaluation models adopt indirect evidence from the third party to

complement direct experience for estimating a candidate trustee’s trustworthiness (Yu

et al., 2013).

Through reputation-based trust modelling, a truster establishes its trust of a potential

trustee by requesting indirect trust evidence from a third-party (Fullam & Barber, 2007).

Such indirect trust evidences can be classified as three types, i.e., 1) witness reputation:

based on the information about the target components coming from others, 2) system

reputation: it is a default reputation value based on the role that the target component

played in the complex system, 3) neighborhood reputation: in terms of the social

environment of the target component, that is, the neighbours of the target and their

relations with it (Simmhan, Plale & Gannon, 2005). In terms of the indirect trust

evidence, the possibility of receiving biased testimonies exists which can negatively

influence the trust-aware interaction decisions. Therefore, the main purpose of the

reputation-based trust evaluation model research is to mitigate the adverse effects of

biased testimonies and aggregate trust evidence from diverse sources.

2.3.1 Trust Evidence Aggregation Approaches

As previously mentioned, there are two kinds of trust evidence: direct trust evidence

and indirect trust evidence. Many existing trust reputation-based approaches adopt a

weighted average method for aggregating these direct and indirect trust evidences. For

example, the direct trust evidence is assigned with a weight of γ, (0 ≤ γ ≤ 1), and the
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indirect trust evidence is assigned with (1 − γ) (Yu et al., 2013). There are two trust

aggregating categories, i.e., static approaches which predefine the value of of γ, and in

dynamic approaches, the value of γ can be adjusted.

The direct trust revision is a static trust aggregation approach based on multi-agent

belief revision (Barber & Kim, 2003). In this approach, direct trust is aggregated

through dissimilarity measurements. On the other side, indirect trust evidences retrieved

from communication between components gives an accurate picture more quickly, that

is, assuming the reputation information from third-party is accurate. However, some

existing static approaches exclusively use only one source of trust information, so

advantages of trust source previously mentioned are missed (Jonker & Treur, 1999;

Schillo, Funk & Rovatsos, 2000). Therefore, a predefined static value of γ usually is

not a good trust evaluation strategy for dynamic environments (Yu et al., 2013).

Mui, Mohtashemi and Halberstadt (2002) proposed an dynamic trust aggregation

model by increasing the value of γ with the changing number of direct interactive

candidate trustees. It is supposed that the amount of direct trust evidence of trustees

is accumulated gradually from no prior interaction experience. The advantage of this

model is that it proposes a probabilistic mechanism for inference among direct trust

and indirect trust evidence, and level of reciprocity. At the beginning, the direct trust

evidence is zero (i.e. γ = 0), so the truster completely relies on the indirect trust evidence

to select potential trustees. With the increasing number of interactions, the value of γ

also rises (Mui et al., 2002). However, once the value of γ reaching to 1, the approach

implicitly assumes that behaviors of the potential trustee do not change with time and

ignore most dynamic scenarios.

Fullam and Barber (2007) demonstrate Q-learning method for identifying the best

γ value (combination of direct trust evidence and reputation-based models). Based on

the reward accumulated by a truster agent under different γ values, the method selects

the value of γ associated with the highest accumulated reward. This research approach
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assumes consistent reputation errors and ignores the problem of identifying the most

reliable third-parties, who provide reputation information. Furthermore, a truster has to

learn separate γ values for each candidate trustee since interactions frequency, accuracy

of reputations, and trustee trustworthiness characteristics may be diverse (Fullam &

Barber, 2007).

2.3.2 Testimony Filtering Approaches

As previously mentioned, the reliability and accuracy of third-party also influences

the quality of trust evaluation. In this section, we mainly discuss some representative

models for filtering potentially biased third-party testimonies. Most of these models

assume some infrastructure support or special characteristics exist in the environment,

so each of them has different limitations.

The Regret system presents how the social relationships among the components of

a complex system can be used in a reputation system that takes into account the social

dimension of reputation (Sabater & Sierra, 2001, 2002). Based on the combination

of complementary methods which utilize various aspects of the interaction and social

relations, the Regret system enables the component to calculate reputation values at

different stages of its knowledge of the society (Sabater & Sierra, 2002). It predefines

fuzzy rules to estimate the credibility of each witness which is then used as the weight

of third-party testimony for a trustee component when aggregating all the testimonies.

Therefore, this model relies on the availability of social network information among

components.

Weng, Miao, and Goh (2006) proposed an entropy-based approach to measure

how much a testimony deviates from the current belief of the truster before deciding

whether to incorporate it into the current belief. Unlike some other existing methods,

the proposed method does not require the assumption regarding the rating distribution
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to carry out the testimony filtering. For example, the approach introduced by Whitby,

Jøsang and Jadwigato (2004) assumes that the majority opinion is always correct and

records testimonies in the form of counts of successful and unsuccessful interactions

with potential trustees. In contrast, the entropy-based approach scales linearly with

the increase of the testimony number. Even so, in terms of entropy-based approaches,

sufficient direct interaction experience with a trustee is required, even though it conflicts

with the purpose of the reputation-based trust modelling which is to help truster make

reliable decisions when trusters lack of direct trust evidences.

An integrated clustering-based approach (iCLUB) proposed by Liu et al. (2011)

filters unfair testimonies for reputation systems using multi-nominal testimonies. It

adopts two rounds of clustering of the received testimonies to identify testimonies

which are extremely positive or extremely negative about a trustee. However, due to

the iterative nature of iCLUB, the computational complexity of this approach is high.

Furthermore, like the approach introduced by Whitby, Jøsang and Jadwigato (2004),

the iCLUB is also not robust in most hostile environments where the majority of the

witnesses are malicious.

In practice, the information about prior experience of witness components usually is

obtained piecemeal and is required to be maintained over time. A probabilistic approach

introduced by Wang, Hang and Singh (2011) assist a truster to update its trust on a

potential trustee on an ongoing basis and allow both trust and certainty measures to

vary incrementally when new trust evidence is available. However, the probabilistic

approach does not accommodate either multi-valued events or distinct events whether a

referral overestimates or underestimates the quality of the potential trustee.
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2.3.3 Socio-Cognitive Trust Evaluation Models

In terms of the socio-cognitive trust evaluation models, when there is a lack of sufficient

evidence to make a trust decision, it analyses the intrinsic properties of the trustee

agents and the external factors as a complement to the evidence for inferring candidate

trustees’ future behaviors in interactions.

Castelfranchi, Falcone and Pezzulo developed a socio-cognitive trust model to

distinguish internal and external attributions by using Fuzzy Cognitive Maps (FCM)

(Castelfranchi, Falcone & Pezzulo, 2003). They introduced a degree of trust derived

from the credibility of the trust beliefs, while the credibility of the beliefs depend on

their sources and the sources’ number, convergence/divergence and reliability. The

main purpose of this approach is to capture trust variations instead of assigning absolute

values to the trustee. However, belief source variations and the variations in value

selection for causal links may dramatically influence the performance of the model, and

it is difficult to verify the validity of the models produced.

Whereas the SUNNY model presented by Kuter and Golbeck (2007) provides an

explicit probabilistic interpretation for confidence in social networks and produces a

Bayesian Network suited for approximate probabilistic reasoning, confidence is used as

heuristics to calculate the most accurate estimations of the trustworthiness of potential

trustees in the Bayesian Network (Yu et al., 2013). The model developed by Ashri et al.

(2005) builds up relationships between entities in an electronic marketplace and adopts

this information to reason regarding the trustworthiness of candidate trustees. Then

although these relationships are analyzed by an ontology-based framework to provide

a realistic application of semantic web technologies, it is difficult to explore complex

combinations of relationships (i.e., more than 3 entities in all relationships).

In complex systems, even though the short-term and temporal groups are formed to

meet some specific goals, it is difficult to gain necessary information, with regard to
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prior interactive experience and social relationship information, to make an accurate

trust evaluation. Therefore, the bootstrapping trust evaluations model introduced by

Burnett, Norman and Sycara (2010) generates stereotypes with known partners and

adopts these to form behavioral expectations about newcomer potential trustees. Such

stereotypes are learned based on some visible features in existing trustees’ profiles

through a decision tree based technique. Even so, how to obtain reliable and enough

visible features in trustees’ profiles is also a challenge in the complex system.

The model proposed by Noorian, Marsh and Fleming (2011) contains a two-layer

filtering algorithm that cognitively elicits the behavioral characteristics of the participat-

ing components in an e-marketplace. In the first layer, the competency of the truster’s

neighbours is measured according to the required experience and reliability. Afterwards,

the second layer measures the similarity for opinions received from competent witness

neighbours and the current belief by the truster self. This approach enriches the trust-

worthiness evaluation process by incorporating social entities’ dispositions, such as

optimism, pessimism and realism. As previously mentioned, as the notion of unfairness

does not exclusively refer to deception, it can also imply differences in dispositions and

criteria of social entities. Nevertheless, it only explores the personal disposition of social

entity in the single world fact without considering the context-specific inter-personalised

trust.

2.3.4 Organizational Trust Evaluation Models

If there exists at least one trusted third-party who can act as a supervising entity for

the transactions among others in a complex system, an organizational structure can

be introduced for trust management. The supervised interaction model, introduced by

Kollingbaum and Norman (2002), is one of the earliest research works in this area. The

supervised interaction consists of three elements, i.e., an organizational framework, a
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contract specification language, and a contract management process. Furthermore, three

essential roles in the organizational framework are: the addressee, the counter-party,

and the authority as a "trusted third party". In order to conduct transactions, an entity

needs to register with the authority, negotiate with other entities to set up the terms in

the contracts, and carry out the work required by the contracts under the supervision of

the trusted third party.

The Certified Reputation (CR) model introduced by Huynh, Jennings and Shadbolt

(Huynh, Jennings & Shadbolt, 2006a) allows entities to actively provide third-party

references with certified ratings about their historical performances. In this way, trusters

build up trust with their potential interaction partners, and the certified ratings are

adopted as a standard part of setting up a transaction between a truster and trustee.

Therefore, in terms of trusters, it is unnecessary to solicit third-party testimonies and

then filter these testimonies. Furthermore, all available third-party references are sent to

a truster directly, thus making the CR model suitable for distributed environments.

A role-evolution-based trust model introduced by Hermoso, Billhardt, Ossowski

(2010) assigns components to different roles based on their observed performance in

diverse types of interactions. Based on the descriptive features of roles, the model can

identify potential trustees who are competent for a particular task. In complex systems,

the role of each system component may gradually evolve, and, thus, dynamically change

the organizational structure with the evolution of an organizational taxonomy.

2.4 Trust-Aware Interaction Decision-Making

The goal of trust-aware interaction decision-making is to help a truster decide which

candidate trustee(s) is to be selected to perform a given task. The greedy and dynamic

approaches are two popular trust-aware interaction decision making categories to help

trusters to select potential trustees for interactions. The greedy approach tends to use
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simple rules to explore candidate trustees with a desired reputation standing through

either some supporting infrastructure (e.g. peer recommendation, social network ana-

lysis, etc.) or random exploration. From an individual truster’s point of view, the greedy

approach is to select the best available option and help the truster achieve maximum

long term wellbeing. Therefore, the reputation values of the candidate trustees are

calculated using a choice evaluation model and the potential trustee with the highest

reputation value is selected for interaction (Yu et al., 2013).

The aim of dynamic approaches is to balance the exploitation of known trustworthy

candidate trustees with the exploration for potentially better alternatives by assessing

the changing situation in the operating environment. In current computational trust

literature, reinforcement learning is one of the most popular dynamic approaches. A

computationally tractable Bayesian reinforcement learning algorithm introduced by

Teacy et al. (2008) selects each trustee component for further interaction according to

the Q-value from Q-learning as well as the expected value of perfect information of an

entity’s actions. At each time stamp, a truster entity selects an action sequentially to

maximize its gain by assessing different conditions.

An adaptive trust-based sequential decision making model, introduced by Hoogen-

doorn, Jaffry and Treur (2010), dynamically determines the amount of exploration and

exploitation the potential trustee performs. In this approach, each truster keeps the

value of candidate trustees’ both the long term trust based on experiences over a longer

time period, and the short term trust based on the most recent set of experiences. The

average absolute difference between long term and short term trust is used to estimate

the collective degree of changes in trustees’ behaviours. When the collective degree

is equal to 0, the trustee with the highest reputation evaluation is always selected for

interaction.

In highly dynamic complex systems, if it is hard for components to form stable trust

relationships necessary for confident interactions, the system may break down, because
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the trust between components is too low to motivate interactions. Therefore, except for

decisions in regard to the balance of exploration and exploitation, Burnett, Norman and

Sycara also introduced additional mechanisms to induce the desired behaviour from

candidate trustees (Burnett, Norman & Sycara, 2011). There are three kinds of controls

which permit interactions when trust is low, i.e., explicit, monitoring, and reputational

incentives. By employing such controls in addition to trust, the truster can be motivated

to provide some crucial initial interactions which is necessary to bootstrap trust.

The trust-related decision is not only related to whom to trust and how trustworthy

to be, it is also relative to which reputation information to believe and how truthful

to be when exchanging reputation information with others. As previously mentioned,

most trust evaluation models are designed to help trusters select potential trustees. In

contrast, Fullam and Barber (Fullam & Barber, 2006) introduced an interesting model,

which can help candidate trustees to explain the interdependencies between decisions

which a truster may face in systems with reputation exchange and correlate rewards to

each decision. Based on a case study of the Agent Reputation and Trust (ART) Testbed,

the interdependencies, rewards and complexities of these decisions are explained. Then,

a Q-learning approach is employed to help trusters determine the factors relating to the

trust-related decision.

2.5 Community-Based Trust Evaluation Models

2.5.1 Community Analysis and Mining

In terms of social media, it can be defined as a group of web-based applications that

allow the creation and exchanges of user-generated content. The main purpose of social

media gives entities an easy way to communicate and network with each other. Social

trust among social entities refers to interpretation of previous interactive behaviors
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and communication in social media. In most situations, previously mentioned trust

evaluation models are suitable for the social network trust evaluation. For example, in

scientific collaboration systems, once a cross-domain problem is proposed, based on the

feedback of previous social interaction, candidate experts are evaluated and compose a

group to complete the request, by using direct trust evaluation models, reputation-based

trust evaluation models, or trust-aware interaction decision-making approaches.

However, in some social complex systems, social entities are indirectly connected

via interacting with same intermediate entities. Social media, such as opinion, reviews

and ratings, enables people to connect friends and find new users with similar interests.

Therefore, the trust between social entities may be interpreted from the similarity

between the feedback they previously gave to the same intermediate entities. The more

similar the feedback distributions are, the stronger the trust relationship between the

pair of social entities could be. In terms of such a social system, the network is a

powerful framework for describing, analyzing and modelling complex systems, where

the elementary components of a system and their mutual interactions are represented as

nodes and links, respectively.

Complex systems are usually organized in compartments with their own role and/or

function. As the property of complex systems, the nodes are not uniformly distributed,

rather they are clustered together into some small groups. Therefore, finding compart-

ments sheds light on the organization and decomposition property of complex systems,

as well as the community structure is one of the most important properties in network

systems. For network representation, such compartments appear as sets of nodes which

are joined together in tightly knit groups with density of internal interaction, whereas

links between compartments are comparatively looser (Girvan & Newman, 2002). In

terms of the community structure of complex systems, individual components within

a group interact with each other more frequently than with those outside the group.

Hence, communities can be observed via connections in social media, because social
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media allows entities to expand their networks (Gundecha & Liu, 2012).

2.5.2 Community Detection Algorithms

In a complex system, the communities implicitly emerge naturally through interactions,

so the definition of a community is subjective for specific context. Therefore, the

community detection approach can help mine context-specific inter-personalised trust

in preference systems. Most current community detection algorithms are based on

following four categories of principle, but not exclusive (L. Tang & Liu, 2010).

• Node-centric community detection: each node in a group satisfies certain proper-

ties, such as node degrees, frequency of within and outside ties, and so forth.

• Group-centric community detection: considering the connections within a group

as a whole, a group needs to satisfy certain properties without zooming into

node-level.

• Network-centric community detection: groups are formed based on partition of

network into disjoint sets through diverse approaches, such as clustering based on

vertex similarity, modularity maximization, and spectral clustering, and so forth.

• Hierarchy-centric community detection: based on the network topology, the

complex system can be decomposed into a hierarchical structure of communities.

Divisive clustering and agglomerative clustering are the two main approaches in

hierarchy-centric community detection.

Newman (2006) proposes a quality function Q to evaluate the goodness of a particu-

lar partition of the network into groups as follows:

Q = ∑
i

(eii − a
2
i ), (2.1)
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where eii is the number of edges within the same community connecting the nodes and

a2
i is the sum of edges from vertices in the ith community to anther jth communities.

This quality function is called modularity. The modularity can be either positive or

negative, with positive values indicating the possible presence of community structure,

with larger values indicating stronger community structure. In order to improve the

effectiveness and reduce complexity, Clauset and Newman (2004) introduced the fast

greedy modularity optimization approach based on the modularity technique. It is

a hierarchical divisive algorithm whereby links are iteratively removed/added. The

procedure of link removal/addition ends when the modularity of the resulting partition

reaches a maximum.

The fast modularity optimization approach, introduced by Blondel, et al. (2008), is

a heuristic method based on local optimization. There are two iterative phases in the

approach. Firstly, each node of a network is assigned as a community, so the initial

number of communities is as many as the number of nodes. Then, for each node i, the

gain of modularity that would take place by removing i from its community and by

placing it in its neighbors’ community j is evaluated. Subsequently, the node i is then

placed in the community for which this gain is maximum. If no positive gain is possible,

i stays in its original community. This process is adopted repeatedly for all nodes until

no further improvement can be achieved. Secondly, after a partition is identified in

the first phase, communities are replaced by supernodes, yielding a smaller weighted

network. Nevertheless, the order of nodes selection influence the computation time.

Radicchi et al. (2004) proposed a hierarchical method by removing links iteratively

based on the value of their edge clustering coefficient. The edge clustering coefficient

is a local measurement, which is defined as the ratio between the number of loops

based on the link and the largest possible number of loops based on the link. So its

computation is not as heavy as that of the edge "betweenness" mentioned proposed by

Newman, thereby significantly reducing the complexity of the algorithm. In contrast
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to Newman’s algorithm, the stopping criterion of this approach is dependent on the

properties inherent in the communities instead of the modularity.

In the above approaches, the community detection is regarded as a single-objective

optimization problem and different algorithms vary in optimization technique and

criterion. Moreover, such algorithms are not suitable for the complex networks with

multiple potential structures (e.g., hierarchical or overlapping). Hence, Rosvall and

Bergstrom (2007) proposed a multi-objective community detection (MOCD) algorithm

for finding efficient solutions under a multi-objective framework for community detec-

tion. The MOCD algorithm includes two phases, i.e., community detection phase and

model selection phase. Firstly, the MOCD simultaneously optimizes two conflicting

objective functions with evolutionary algorithm (EA) and returns a set of solutions

which are optimal in terms of optimization objectives. Secondly, one recommendation

solution will be selected from the solution set returned by two model selection methods,

i.e., Max Q and Max-Min Distance. Compared with the single-objective community

detection problem, the MOCD can deliver a more comprehensive community structure.

Nevertheless, the approaches mentioned above only detect communities through

analyzing the linkage in a network, but cannot reflect the semantics such as the inter-

esting topics shared by social entities of the community. As previously mentioned,

except for nodes and links, the social media also allow for the creation and exchange

of user-generated content, and a lot of information is encoded in the content of the

interaction among entities in the complex systems. For example, participants with sim-

ilar content of communication are much more likely to belong to the same community

than those who do not. Taking Flickr as another example, users may tag an image with

keywords. Such keywords, which are kinds of edge content, not only help to construct

a network of both people and images, they also provide knowledge about the nature

of the underlying community. Therefore, the context, such as interests and expertise,

of the community can be identified based on the internal edges which are associated
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with similar content. In addition, the edge content is also useful to analyse subject

matter that is most relevant to the particular community. Although it is possible to

mine the context-specific inter-personalised trust from the edge content of the particular

community, how to extract and model accurate and relevant edge content is still a

challenging problem.

Qi, Aggarwal and Huang (2012) introduced a community detection algorithm by

tightly integrating the structural and content aspects of the network with the use of

a matrix-factorization approach. Edge content models the characteristics of pairwise

interactions to provide better supervision to enable the community detection process.

The content from social media, such as interested topics, expertise, keywords etc.,

is represented as social objects in the topic oriented community detection approach

proposed by Zhao et al. (2012). Firstly, it groups all social objects into topics via a

subspace clustering algorithm. Secondly, social entities which are involved in those

social objects are divided into topical clusters corresponding to a distinct topic. A

link analysis on each topical cluster is adopted to detect the topic communities by

differentiating the strength of connections. However, both of the two approaches require

preliminary text-content preparation to transform the initial content from social media

in a structural format. In additional, they fail to extract opinions expressed in the

user-generated content without sentiment analysis and opinion mining, which directly

influence the context-specific inter-personalised trust in the preference network.

2.6 Summary of Literature Review

Trust is an integrated topic that involves diverse techniques in a number of research

areas. In this thesis, we classified trust evaluation models into four categories, i.e.,

direct trust evaluation models, reputation-based trust evaluation models, trust-aware

interaction decision-making models, and community-based trust evaluation models, in
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different complex system operating environments.

Firstly, multiple direct trust evaluation models were reviewed. Such approaches

are appropriate for some complex systems when numerous and frequent interactions

among components exist. Outcomes of historical interactions serve as the direct trust

evidence available for trustees’ further trustworthiness evaluation. Secondly, in terms of

complex systems without sufficient interactions among various components, reputation-

based trust evaluation models predict the future performance of a potential trustee

by requesting information about reputation from third-party. There are four main

approaches for the reputation-based trust evaluation, i.e., trust evidence aggregation

approaches, testimony filter approaches, socio-cognitive trust evaluation models, and

organization trust evaluation models. Thirdly, by virtual of the trust-aware interaction

decision-making approach, once given a multi-skill task, the truster can select candidate

trustees to collaborate and deliver desirable outcome. Fourthly, community-based trust

evaluation models mine trust from various user-generated content from social media in

terms of social complex systems. The communities implicitly emerge naturally through

interactions among components. There are two main community detection approaches,

i.e., the topological and topical approaches. The topology-based community detection

approach considers the graph structure of the complex network. On the other hand, the

topic-based community approach reflects the semantics from user-generated contents

which provide knowledge about the nature of the underlying community.



Chapter 3

Compositional Trust in Collaborative

Complex Systems

3.1 Introduction

Collaboration is a critical issue in complex systems. For most complex systems, it

is difficult for an individual component to provide solutions and resources necessary

for addressing complex problems which usually require multiple skills and functions.

Meanwhile, a collaborative complex system normally consists of a number of loosely

coupled autonomous and adaptive components for handling these problems. Namely,

tasks in a complex system are achieved through collaborations in composite teams.

Interactions between pairs of components are established by common composite team

experiences. Even though components in collaborative systems are usually heterogen-

eous in terms of their operating environments, behaving roles and goals, they collaborate

together as a composite team to achieve common or compatible goals. Hence, the aim

of compositional trust evaluation in collaborative systems is to focus on the structure,

behaviour, and evolving dynamics of systems of autonomous components that collabor-

ate to achieve goals better and more effectively by supporting interactions among them

34
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(Camarinha-Matos & Afsarmanesh, 2005).

There are two kinds of general social entity in collaborative complex systems: skill

and skill provider. Firstly, skill denotes the provision of a discrete function within a

certain system environment. For example, a complex problem request may contain a

particular set of different functions, so the skill denotes a certain function type. Secondly,

the skill provider decides which skills to expose in collaborative environment. Once a

request is generated, a set of skill providers who can satisfy the function requirements

are selected and comprise a composite team to complete the request.

Traditionally, a naive scheme to form teams would be to identify and group compon-

ents with required functions for achieving tasks. Obvious refinements of such strategies

would be to define some ways to rank candidate composite teams, for example, based

on the degree of competence of the team members (Rodrigues, Oliveira & de Souza,

2005). However, due to the emergent complexity and characteristics of the complex

system, another important factor determining the quality of a composite team is how

well team members can collaborate together. This depends on the degree of cohesive-

ness, correlation and dependency among the team members (Hupa, Rzadca, Wierzbicki

& Datta, 2010).

There are two major challenges for team composition and selection in collaborative

complex systems. Firstly, most collaborative complex systems employ predefined

and unified assessment standards to evaluate the performance of composite teams in

different task executions. A composite team can only obtain an overall feedback for

a particular accomplished task. According to the characteristics of complex systems,

it is hard to know exactly which and how individual team members contribute to the

observed performance of the whole team. Secondly, the performance of composite

teams depend not only on historical experience for each team member, it can also be

influenced by other factors, such as uncertainty of the environment and the correlation

among different components.
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As previously mentioned, trust is the subjective expectation a component has about

others’ future behaviours to perform a given task. In terms of team performance, trust

reflects interrelationships among team members. It discovers that, in addition to the

skill competence of individual components, the soft skills, such as the effectiveness and

efficiency of information exchange, the distances among individual goals and so forth,

are at least equally important (Skopik et al., 2009).

In this chapter, according to the availability of execution related information, we

classify team formation strategies into two categories, i.e., team formation without

predefined workflow structures, and team formation with predefined workflow struc-

tures. Firstly, without a predefined workflow structure, we assume each individual

component in a team operates independently without relying on any prerequisite actions

of other team members. On the other hand, with a predefined workflow structure, the

collaboration among components is based on an event-triggered mechanism. According

to this classification, we propose two different automatic trust mining approaches to

recommend the most trustable and reliable candidate composite teams by evaluating the

compositional trust relationship among team members in Section 3.2 and Section 3.3,

respectively.

3.2 Team Formation without Predefined Workflow Struc-

ture

In this section, we propose a Correlated Contribution trust evaluation model to explore

the compositional trust within collaborative composite teams without predefined work-

flow structure. During task executions, each component may have chances to directly

interact with other team members, so the correlations and dependencies among both

skills required by tasks and individual components are considered in this model. The
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remainder of this section is organised as follows. First, the description of the problems

we want to handle, and some assumptions are presented in Subsection 3.2.1. The details

of the Correlated Contribution model are described in Subsection 3.2.2. Finally, we

evaluate the performance and effectiveness of the Correlated Contribution model by

conducting some experiments, and the experimental results are explained and discussed

in Subsection 3.2.3.

3.2.1 Problem Definition and Assumption

In the Correlated Contribution trust evaluation model, we suppose there is a universe

of n predefined abstract skill types ST = {ST1, ST2, ST3, ..., STn} in a collaborative

complex system. If a skill provider can provide a particular type of skill, e.g., STi, it

can register as a concrete individual service sli, where i is the skill type ID, and l is an

unique ID of the provider.

A collaborative complex system receives tasks which require multiple skills. The

task requirements are specified as multi-skill problem requests (see Definition 3.1).

Definition 3.1: A multi-skill problem request R is defined as a 2-tuple, i.e., R =<

RequestID;ReqSkillTypeSet = {STi;STj;STk; ...} >. RequestID is the unique

identifier of R, and ReqSkillTypeSet is a finite set of skill types required for achieving

the functional requirement of R.

In order to complete a specific task in systems, a set of skill types are required. The

system will select individual services for each required skill type and form a composite

team for the task. After the completion of a task, the system generates feedbackRF (see

Definition 3.2) for the composite team which indicates the quality of team performance,

and also contains team composition information.

Definition 3.2: A request feedbackRF is defined as a 3-tuple,RF =< RequestID,GS,

Q >. Based on a predefined team performance assessment standard, a composite team
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obtains an overall rating Q for the task completion quality. GS describes a set of

selected individual services for satisfying ReqSkillTypeSet in R:

GS =

⎛
⎜
⎜
⎝

STi STj STk

sli smj snk

⎞
⎟
⎟
⎠

Definition 3.3: A Correlated Contribution CR is defined as the correlation among

a pair of skill types or individual services in contributing to the deduction of team

performance uncertainty.

Correlated Contributions (CRs) to composite team performance are existing in two

levels, i.e. the abstract skill type level, and the concrete individual service level. CRs

can be represented as an undirected weighted graph, which is shown in Figure 3.1.

Figure 3.1: Correlated Contribution among Skill Types and Quality Contribution among
Individual Services

Definition 3.4: A correlated contribution edge STCEij links two skill types STi and

STj . The Skill Type Correlated Contribution, STCRij (0 ≤ STCRij ≤ 1) is the weight

of STCEij .

Once given a cross-domain task, the system will generate a request R and define a

finite set of skill types to meet the functional requirement. In terms of diverse tasks, the
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same skill type may enjoy different importance, so the compositional trust contribution

of skill types in a specific composite team will be calculated based on the value of

STCRij and the required skill type set in R. Since no predefined workflow structure

exists, all team members can potentially collaborate with others during task executions.

Therefore, after the required skill types are fixed, all possible compositions of individual

services can be taken into account for compositional trust evaluation. In order to

calculate the compositional trust value for the possible compositions, it is necessary for

us to determine the correlated edge between individual services.

Definition 3.5: A Quality Contribution edge ISCEil,jm is the link between two indi-

vidual services sli and smj . The individual service quality contribution QCRil, jm, is

defined as the weight of ISCEil,jm, −1 ≤ QCRil, jm ≤ 1.

Different with STCRij , the value of QCRil,jm is determined by the correlation

degree between the two individual services, and also the historical performance of

the composite teams which used to contain both sli and smj . Therefore, QCRil,jm can

have a negative value, which means the coexistence of individual service sli and smj can

cause poor performance in composite teams. The equations for calculating STCRij

and QCRil,jm will be introduced in Subsection 3.2.2.

3.2.2 Analysis of Correlated Contribution

Due to the dynamic nature of operating environments, uncertainties are unavoidable

and need to be considered in forming composite team in complex systems. Modeling of

uncertainty and dynamics has been investigated in many fields, especially information

theory (Cover & Thomas, 2012; Garg, Konugurthi & Buyya, 2011). In particular,

probability is a tool for dealing with uncertainty, which represents the likelihood of

the occurrence of an event based on knowledge of physical law and historical records

(Cover & Thomas, 2012). Probability is the ratio of the number of favorable cases to the
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number of possible cases. It is a theoretical expectation of occurrence frequency (Garg

et al., 2011). In addition, Entropy H(X) and Mutual Information I(X;Y ) can also be

used for calculating the uncertainty level of random behaviors (Garg et al., 2011). In

this thesis, these methods are used to measure the correlations of skill types/components

and the quality of composite team performance in collaborative complex systems.

In this research, the quality of a composite team performance (Q) is assumed as a

random behaviour. The uncertainty degrees of such random behaviors are related with

the required skill types in the request, and can be reduced by the existence of particular

skill types and individual service compositions. Therefore, we firstly calculate the

Quality Entropy (H(Q)) by using Equation 3.1 to measure the average uncertainty of

the quality of composite team performance (Cover & Thomas, 2012). Then, mutual

information (i.e., I(Q;X)) is used to measure how much reduction a particular skill type

STi or individual service ski can make to the performance uncertainty (Renner & Maurer,

2000). Finally, the conditional mutual information (i.e., I(Q;X ∣Y )) is calculated by

using Equation 3.2 to measure the uncertainty reduction due to the existence of a skill

type or individual service (X in Equation 3.2) when another skill type or individual

service (Y in Equation 3.2) is given (Qu, Hariri & Yousif, 2005).

H(Q) = −∑p(Q) log2 p(Q) (3.1)

I(Q;X,Y ) = I(Q;X) + I(Q;Y ∣X)

= I(Q;Y ) + I(Q;X ∣Y ) (3.2)

I(Q;X) is smaller than I(Q;X ∣Y ), if a pair of skill types (or individual services)

X and Y are strongly correlated. Furthermore, when a skill type STj or individual
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service slj is given, the reduction of quality uncertainty due to the existence of another

skill type STi or individual service ski is larger than the reduction caused by STi or ski .

If a skill type or individual service (i.e., X) is totally independent with the QoS value,

I(Q;X) = 0. If a skill type STj or individual service slj (i.e., X) is independent in

relation to the existence of the quality value and another skill type or individual service

(i.e., Y ), then I(Q;X ∣Y ) = 0.

Calculation of Skill Type Correlated Contribution

Mutual information and conditional mutual information are used to calculate correlated

contribution (STCR) of pairs of skill types within different requests. The "decision" of

Q is set to the selection of individual services in order to achieve the expected quality.

The correlation measurement is to quantify the information redundancy between STi

and STj with respect to Q in all previous request feedback. It can be calculated by

using Equations 3.3 and 3.4.

STCRij =
I(Q;STi, STj)

H(Q)
(3.3)

WSTij =
STCRij

STCRij + STCRik + STCRjk

(3.4)

In Equation 3.4, WSTij is the correlated contribution of STi and STj for the re-

quired types in request R. The larger STCRij is, the closer interrelationship between

skill types STi and STj is, and the less uncertainty the Q (quality) value is. When skill

types STi and STj are completely correlated, they contribute 100 percent in determining

Q, i.e., STCRij=1.
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Calculation of Joint Individual Service Quality Contribution

The correlation between pairs of individual services may also be impacted by the skill

types they belong to. Hence, we also use service quality contribution edge to decide the

optimal route for the final component composition. However, the correlation values may

have two different meanings, i.e., complementariness or exclusion. Complementariness

means that two individual services, e.g., sli and smj , are positively correlated with the

performance quality of composite teams they participate in. Namely, high quality is

more likely to be achieved. Exclusion means that smi and snj are negatively correlated

with respect to the performance quality of composite teams they participate in. Namely,

a low performance quality value is more likely to be obtained. Therefore, in our

approach, the performance quality values of previous composite teams participated by

these two individual services are also taken into account for potential team performance

evaluation by using Equation 3.5.

p(Qth) =
count(Qi ≥ th)
n

∑
q=1

count(Qi)

(3.5)

In Equation 3.5, p(Qth) represents the proportion of previous compositions where

both sli and smj are involved, and with performance quality value greater than a required

quality threshold th. In addition, users can also define their quality weight assignment

functions WQq = f(Qq) (−1 ≤WQq ≤ 1), where Qq is a QoS value and WQi represents

the assigned weight value of Q. For example, if "level 1" and "level 4" represent the

highest and lowest quality levels, respectively, the system will have the following quality

weight assignment function: Wlevel1 = 1 and Wlevel4 = −1.

The weight of the quality contribution (QCR) between two joint individual services

sli and smj can be calculated by using the following two equations.
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CR(sli, s
m
j ) =

I(Q; sli, s
m
j )

H(Q)
(3.6)

QCRil,jm = CR(sli, s
m
j ) ∗

n

∑
q=1

p(Qth) ∗WQq (3.7)

When individual services sli and smj are positively correlated with respect to the

quality of composite team performance, the quality contribution edge will range from 0

to 1, which means complementariness correlation between these two individual services

exists. On the other hand, if exclusion correlation exists between sli and smj , the quality

contribution edge will range from 0 to -1. Moreover, if they contribute 100 percent

information in determine the decision of Q, the absolute value of QCRil,jm is equal to

1. This means that sli and smj are completely correlated and all previous composite team

performance records including these two individual services reaches to the same quality

level. According to the weighted skill type correlated contribution edge WSTij with

respect to a particular request, we can get different correlations between different pairs

of skill types required to achieve a particular task by using Equation 3.8:

rSTi,j =WSTij ∗ STCRij (3.8)

The trust value for possible group composition can be calculated by summing all

edge value within the path. Then, the best composition is those nodes (individual

services) in the path with the highest sum value by using the following equation.

Trust = rSTi,j ∗QCRil,jm

+rSTi,k ∗QCRil,kn (3.9)

+rSTj,k ∗QCRjm,kn
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Figure 3.2: Composition protocol

Correlated Contribution Trust Evaluation Protocol

In the Correlated Contribution trust evaluation approach, the component composition

is generated from the protocol in Figure 3.2. There are six major components in the

protocol and each module is introduced in detail, as follows:

1. Composition Retrieval Module: Based on the functional requirements of a

cross-domain task, a multi-skill request R will be generated. Then R will be sent

to the Composition Retrieval Module. The Composition Retrieval Module then

searches for all candidate composite teams which can satisfy R, and the number

of potential teams is based on the number of required skill types in R and the

number of available individual services in these skill types.

2. Composition Team Record Database: All team composite records are stored

in the Composition Record Database. Based on these records, the Skill Type

Analysis Module and the Individual Service Analysis Module update the cor-

related contributions between skill types, and the quality contributions between

individual services.
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3. Reply Module: The function of the Reply Module is to generate feedback RF

for composite teams. After each task, the Reply Module evaluates the performance

quality Q for the composite team in this execution, and stores the feedback RF ,

which contains the composition details (selected individual services) and Q into

the Composition Record Database for future evaluations.

4. Skill Type Analysis Module: The Skill Type Analysis Module is for evaluating

the Request-Oriented trust relationships between different skill types. According

to a skill request R, the Skill Type Analysis Module weighs the STCRij and

return rSTij (refer to Definition 3.4 and Equation 3.3 and 3.8) to the Trust

Calculation Module. The default value for each STCRij is 1.0, which will not

be updated until all STCRij values are calculated. Therefore, at the beginning,

all skill types are given the same weight within the request.

5. Individual Service Analysis Module: The Individual Service Analysis Module

is for evaluating the compositional trust relationship based on the correlation

between pairs of individual services within candidate composite teams. According

to each candidate group composition, the Individual Service Analysis Module

returns QCRil,jm (refer to Equation 3.7) to the Trust Calculation Module. Since

the default value for each QCRil,jm is set to 0.0, we intend to give each individual

service the same chance to be selected.

6. Trust Calculation Module: Based on the outputs from the previous two analysis

modules, the Trust Calculation Module is for estimating the compositional Trust

value for each potential group, and select the composite team (GS) with the

highest trust value. Then, GS is returned to the Reply Module. If more than one

team obtains the highest trust value, the Trust Calculation Module will randomly

pick a service group within these alternatives.
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3.2.3 Experiments

In this research, we evaluated the performance of the Correlated Contribution model

on a set of synthetic data. In the experiments, the Correlated Contribution model

was compared with the Reputation-Based model and Random model. According to

the Definition 3.2, the dataset for experiments need to contain both team composition

details and team performance information. However, there is no such desirable dataset

available in any of the recent research. Therefore, we have to generate a dataset to

simulate the collaboration complex system operation environments.

Experiment Setup

In the experiments, we included four skill types, i.e., {ST0,ST1,ST2,ST3 }, in a simulat-

ive collaborative complex system. Each skill type contains five registered individual ser-

vices, i.e., ST0 = {s0
0, s

1
0, s

2
0, s

3
0, s

4
0}, ST1 = {s0

1, s
1
1, s

2
1, s

3
1, s

4
1}, ST2 = {s0

2, s
1
2, s

2
2, s

3
2, s

4
2},

ST3 = {s0
3, s

1
3, s

2
3, s

3
3, s

4
3}. Each request R requires three different skill types to meet its

functional requirements of multi-domain skills task. Therefore, we can have at most

four different kinds of requests: {ST0, ST1, ST2}, {ST0, ST1, ST3}, {ST0, ST2, ST3}

and {ST1, ST2, ST3}, and there are six skill type correlated contribution edges among

the four skill types, which are STCR01, STCR02, STCR03, STCR12, STCR13 and

STCR23. Four quality-level classes are adopted to represent team performances, i.e.,

Level 1, 2, 3 and 4. Level 1 stands for the highest quality level and Level 4 stands

for the lowest level. As previously mentioned, a unified assessment standard is ap-

plied to evaluate the performance of composite teams. In order to find high quality

compositions, we set four different quality weights for the above four classes: W1 = 1,

W2 = −0.1,W3 = −0.5 and W4 = −1.

Firstly, we predefined six pairs of individual services with high correlations. Four of

them have exclusion correlation, i.e., they have high possibility (over 90%) to generate



Chapter 3. Compositional Trust in Collaborative Complex Systems 47

low performance quality values (e.g., Level=4). We also include two pairs of individual

services with complementariness correlations, which means they have high possibility

(over 90%) to generate high performance (e.g., Level=1). Secondly, we established a

true value table by predefining all classification level for each candidate composite team

for each kind of request. There are 500 possible team compositions in the true value

table, 78 for Level 1 (high quality), 111 for Level 2, 140 for Level 3 and 171 for Level

4 (low quality). Thirdly, based on our algorithms we randomly generated 100 requests

and calculated the trust value for each alternative composite team. We then choose the

most trustable team composition. If the highest trust value equal to 0.0 (initial value),

all the recommended group service will be randomly chosen from those compositions

whose trust value is equal to the highest trust value. This is because we want to give

the same chance for different team composition. Fourthly, in terms of each selected

composite team, we get the predefined quality level GP for the true value table and then

place it with the composite team member information GS into the feedback RF . All

RF s will be stored in the Composite Team Record Database for further calculations.

Experimental Results

We conducted the experiments by using the Correlated Contribution model for three

times, and, in each experiment, 100 compositions were conducted. The experimental

results are demonstrated in Figure 3.3. Each line in Figure 3.3 represents the changing

trend of team performance. It can be seen that in Experiment 1, all teams maintain at

high quality since the 32th request. The Experiment 2 has the poorest performance.

However, it also can be found that the best group composition can be discovered since

the 65th request. According to the Figure 3.4, in terms of a particular request, the

Correlated Contribution model randomly pick potential team, when there is no enough

knowledge to make prediction at the beginning, until the team with the highest quality

appears. Once the high quality composition has been selected, the following quality
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Figure 3.3: Changing Trend of Performance Quality of Composite Team by Using
Correlated Contribution Model

of composite team for such request will stand at highest level and maintain. In Figure

3.8, the proportion of high quality performance of teams which are selected by the

Correlated Contribution model occupies at more than 70%, and even it reaches 84% in

Experiment 3.

Figure 3.4: The Correlated Contribution Model

In order to compare the performance of the Correlated Contribution model, we

applied the same dataset on the Reputation-Based model and the Random model,

and then compared their performances. Usually, the Reputation-Based models are
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Figure 3.5: The Reputation-Based Model

implemented as a centralized rating system so that clients can report about the quality of

the composite team in previous transactions via ratings (Huynh, Jennings & Shadbolt,

2006b). The reputation of an individual service is based on the average quality of the

previous composite team which the individual service participated.

With the same setting, each model has been repeated a total of three times. It has

been found that neither the Reputation-Based model nor the Random model could

perform stably. From Figure 3.5, it can be found that the Reputation-Based model can

only figure out the highest quality (Level =1) composite team for one kind of multi-

domain request (i.e., ST [0,2,3]). In terms of the other three kinds of requests, once the

model picked a potential composite team whose performance is better than previous, the

quality may maintain at a local optimal value, even if it has not reached at the highest

level. We also compared the performance quality of composite team distribution of three

models in Figure 3.6. From this figure, it can be seen that the Correlated Contribution

model performs significantly better than the other two, as it generates more than 80%

high performance composite teams and low quality teams are less than 10%. In terms

of the average performance quality of composite team (see Figure 3.7), the Correlated

Contribution model performed better than the Reputation-Based model and the Random
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Figure 3.6: Comparison of QoS Distribution by using the Correlated Contribution
Model, the Reputation-Based Model and the Random Model

model, could also increasingly improve the performance.

3.3 Team Formation with Predefined Workflow Struc-

ture

Nowadays, with the development of provenance technologies, information about work-

flow structures and task executions can be tracked and recorded. Provenance describes

the origins and processes related to the generation of service or data products in a stand-

ard format (Moreau et al., 2008). Furthermore, it can also be used to capture workflow

structures of composite teams in complex systems. Hence, with the availability of

provenance information, workflow structures of composite teams in complex systems

can also contribute to trust mining.

The analysis of provenance information is a complex process which normally

requires rich domain knowledge and expertise (Bai et al., 2011). In this section, we

propose an automatic approach, i.e., the Same Edge Contribution trust evaluation (SEC)

model, to estimate the trustworthiness of proposed composite teams by analysing



Chapter 3. Compositional Trust in Collaborative Complex Systems 51

Figure 3.7: Average QoS Level for Correlated Contribution Model vs Reputation-Based
Model vs Random Model

Figure 3.8: Performance Quality distribution of Composite Team by Using the Correl-
ated Contribution Model

historical provenance data. In the SEC model, provenance information of a composite

team is represented as a provenance graph (Moreau et al., 2008), and is then based

on graph similarities and correlation to trust values, the SEC model can predict the

future performance of a candidate composite team. The rest of this section is organised

as follows. We define the problem and introduce some assumptions in Section 3.3.1.

Section 3.3.2 presents the SEC model, and how to derive trust support values from

provenance graph. In Section 3.3.3, some experimental results are given to demonstrate

the performance of the SEC model by comparing it with decision tree J48.
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3.3.1 Problem Definition and Assumption

A number of graph-based provenance models have been developed to represent proven-

ance information (Moreau et al., 2008). These models normally define a number of

nodes and links to represent different concepts in provenance, and the generation pro-

cess of a composite service can then be represented as a provenance graph. In this

research, we describe the workflow of a composite team in its provenance graph. It

identifies data passed among components, interactions involved in the generation of

results, component members in the composite team and so forth (Freire, Koop, Santos

& Silva, 2008) (Simmhan et al., 2005). We try to analyse provenance information based

on the features of provenance graphs. Hence, some graph analysis methods (Sanfeliu &

Fu, 1983) are used to measure the similarities of provenance graphs.

Given a multi-skill request R, workflows with detailed team composition inform-

ation, which can satisfy R, will be proposed by different skill providers. The sys-

tem will estimate each proposed workflow based on the analysis of historical proven-

ance data (graphs). We suppose that there is a universe of n skill components S =

{S1, S2, ..., Si, ..., Sn}, where S1 to Sn are loosely coupled to satisfy the requirement

of multi-skill requests R in a collaborative complex system. Ex(Si, Sj) represents an

interaction leads from Si to Sj . Suppose Sj is a successor of Si and reachable from

Si, and Si is a predecessor of Sj . Proposals from different providers are encoded as

proposal graph (see Definition 3.6).

Definition 3.6: A proposal graph PRG is a 2-tuple PRG = (VPRG,EPRG), where

• VPRG = vS1 , vS2 , vS3 , ..., vSn is a finite set of nodes

• EPRG ⊆ V × V is the finite set of edges

• ∣ PRG ∣=∣ VPRG ∣ + ∣ EPRG ∣ denote the size of composite team
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PRG is the proposal graph from providers that describes a finite set of service com-

ponents VPRG = {S1, S2, S3, ..., Sn} and a finite set of edgesEPRG = {E1(S1, S2),E2(S1,

S3), ...,En(Sn−1, Sn)}. The skill components in VPRG are required to achieve the func-

tional requirement of R, and EPRG indicates the process of a composite team. Though

compositional trust evaluation, the most trustable proposal graph PRG will be selected

to complete R. After the request completion, the system will generate feedback RF

contains both the provenance graph PV G and performance quality of composite team

for achieving R.

Definition 3.7: A provenance graph PV G is defined as 2-tuple, i.e., PV G =< ReqestID,

PRG = (VPRG,EPRG) >. ReqestID is the unique identifier for each multi-domain

skill request, and proposal graph PRG describes concrete skill components and pro-

cesses of task execution.

Definition 3.8: A feedback RF is defined as a 2-tuple,RF =< PV G,Q >. Q represents

the performance quality of composite team.

Definition 3.9: g = (Vg,Eg) is a subgraph of a graph PRG or PV G, denoted by

g ⊆ PRG/PV G, if Vg ⊆ VPRG/VPV G and Eg ⊆ EPRG/EPV G.

Definition 3.10: A common subgraph cg of PV G and PRG is a subgraph of PV G

and PRG, and there exist subgraph isomorphisms from cg to PV G and from cg to

PRG (Bunke & Kandel, 2000). A Maximum Common Edge Subgraph (MCES) is a

common subgraph consisting of the largest number of edges common to both PV G

and PRG (Raymond, Gardiner & Willett, 2002).

3.3.2 The Provenance-Based Trust Estimation Approach

In this approach, compositional trust estimation is achieved via two steps. Firstly, we

adopt tier screening procedure to calculate an upper bound on the size of a MCES

between candidate proposal graph PRG and provenance graph PV G in the knowledge
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Figure 3.9: Provenance Compositional Trust Estimation Protocol

base. Secondly, if the similarity between PRG and PV G reach a minimum acceptable

value, we calculate the exact edge-based edit operation cost of each PV G to get the

support trust value for the class of target graph.

Trust Estimation Protocol

In our approach, compositional trust prediction is conducted by following the protocol

in Figure 3.9. Firstly, after the system generates a multi-skill request, proposal graphs

PRG based on the functional requirements of requests will be generated. Then the

proposal graphs will be sent to the Prediction Retrieval Module. The Prediction Retrieval

Module will search the knowledge base for all possible provenance graphs PV Gs,

which are similar to PRG. Then, based on the previous provenance graphs PV G

in the knowledge base, the Edge Contribution Module updates the edge contribution

value for total available edges. At the beginning, all edges are given the same weight

within the request. The General Similarity Calculation Module calculates the similarity

between proposal graphs PRG and provenance graph PV G based on the common skill

components and edges in graphs, and then passes the most similar provenance graphs
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PV Gs to the Prediction Calculation Module. Comparing the same edges in proposal

graph PRG and provenance graphs PV G, the Prediction Calculation Module will use

the edge contribution value to give each provenance graph PV G a support value. The

system will then send the performance quality value of the provenance graph PV G for

the composite team which obtains the highest support value to the Reply Module.

General Similarity Calculation

Figure 3.10: Proposal Graph PRG

Figure 3.11: Provenance Graph PV G

The general similarity between potential proposal graphs PRGs and previous

provenance graphs PV Gs in the knowledge base is decided by an upper bound on

the size of the MCES. First, according to skill components S in each graph, the set

of vertices is partitioned into l partitions. Let cgPRGi and cgPV Gi denote the sub-graph

in the ith partition in graph PRG and PV G, respectively (Raymond et al., 2002).

An upper-bound on the similarity between provenance graph PRG and PV G, i.e.,

sim(PRG,PV G), can be calculated as follows:
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V (PRG,PV G) =
l

∑
i=1

min{∣cgPRGi ∣, ∣cgPV Gi ∣} (3.10)

E(PRG,PV G) = ⌊

cg

∑
i=1

max{∣cgPRGi ∣,∣cgPV Gi ∣}

∑
j=1

min{d(cgPRGj ), d(cgPV Gj )}

2
⌋ (3.11)

sim(PRG,PV G) =
[V (PRG,PV G) +E(PRG,PV G)]2

[∣V (PRG)∣ + ∣E(PRG)∣] × [∣V (PV G)∣ + ∣E(PV G)∣]
(3.12)

A higher sim(PRG,PV G) value means more common edges and nodes are shared

between PRG and PV G. For example, based on Figure 3.10 and 3.11, V (PV G,PRG) =

3, E(PV G,PRG) = 1+2+3
2 = 3, sim(PV G,PRG) =

(3+3)2
(4+5)(4+4) = 0.5. Therefore, the

general similarity between PV G and PRG is 0.5. In order to reduce the calculation

complexity, we set a minimum acceptable value simth for general similarity meas-

urements. If sim(PV G,PRG) ≤ simth, a candidate provenance graph PV G will be

ignored.

Edge Contribution Calculation

In our approach, the composite team performance is assumed as a random behaviour

and we intend to adopt the Edge Contribution to quantify the edit operation cost of

each edge E(Si, Sj). The uncertainty of such a random behaviour is related to the

required edges Ex
G(Si, Sj) in the process of a multi-skill request. It can be reduced with

the existence of a particular edge. Therefore, we firstly calculate the Quality Entropy

(H(Q)) by using Equation 3.13 to measure the average uncertainty of performance

quality values of a composite team (Cover & Thomas, 2012). Then, mutual information

I(Q;Ex
G) (Renner & Maurer, 2000) is used to measure how much reduction a particular
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edge Ex
G can make to the uncertainty of the performance quality value.

H(Q) = −∑p(Q) log2 p(Q) (3.13)

CExG(Si,Sj) =
I(Q;Ex

G(Si, Sj))

H(Q)
(3.14)

WCExG =
CExG
∑

Ex∈EG
CExG

(3.15)

In Equation 3.14 and 3.15, G represents PRG or PV G in different situations, and

WCExG is the contribution of edge Ex
G for PRG or PV G. The larger the WCExG is,

the more contribution the edge Ex
G makes in the process. If Ex

G is the only path in the

process, it contributes 100 percent in determining Q, i.e., WCExG = 1.

Comparing a candidate proposal graph PRG and previous provenance graphs

PV Gs passed from the General Similarity Calculation step, we can get a particular

same edge set between PRG and each PV G (see Equation 3.16).

{Ei
sameSet} = Same(EPRG,EPV G) = {Ei,Ej,Ek, ...} (3.16)

where all edges {Ei,Ej,Ek, ...} in {Ei
sameSet} occur in both PRG and PV G. For

example, according to Figure 3.10 and 3.11, {EsameSet} = {E(S1, S3),E(S2, S3)}.

Then, we can calculate the Same Edge Contribution rate (SEC) on a proposal graph

PRG and a particular provenance graph PV G as follows (see Equation 3.17 and 3.18):

SECPRG =

∑
Ex∈EisameSet

WCExPRG

∑
Ex∈EPRG

WCExPRG
(3.17)
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SECPV G =

∑
Ex∈EisameSet

WCExPV G

∑
Ex∈EPV G

WCExPV G
(3.18)

Due to different edge compositions in different graphs, edge contributions WCExG

in different graphs are different. For example, according to Figures 3.10 and 3.11,

SECPRG = 0.4 + 0.3 = 0.7 and SECPV G = 0.3 + 0.2 = 0.5. In order to compare the

contribution of the same edge set which occurs in both PRG and PV G, we calculate

the Support value of each provenance graph PV G for a particular proposal graph

SECPV G, as follows (see Equation 3.19):

Support = SECPRG × SECPV G (3.19)

The Support value ranges from 0 to 1. In order to get a high Support value for a certain

provenance graph PV G, Same Edge Contribution rate for proposal graph (SECPV G)

and provenance graph (SECPV G) should be as high as possible, and as close as possible.

For example, according to Figures 3.10 and 3.11, Support = SECG1 × SECG2 =

0.7 × 0.5 = 0.35. The class which the proposal graph PRG should be classified into

is dependent on the support value of each provenance graph PV G. Finally, the Reply

Module generates a feedback RF for the selected proposal PRG after the execution,

and store RF which contains both the provenance information of composite team and

preformation quality into the knowledge base for further compositional trust evaluation.

3.3.3 Experiments

In order to compare the performance of the Same Edge Contribution (SEC) model, we

compare it with the decision tree (J48) model with the same synthetic dataset, and then

get the result will be discussed together with SEC model in the following part. Decision

tree algorithm is a divide-and conquer approach to the problem of learning from a set
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of instances by offering a genuine simplicity of interpreting models, which helps to

consider the most important factors in a dataset first by placing them at the top of the

tree (Xhemali, Hinde & Stone, 2009). The unknown instance is classified by being

routed down the tree according to the values of the attributes tested in successive nodes

until the instance encounters a leaf which indicates a specific class (Witten & Frank,

2005). In this experiment, we adopt C4.5 decision tree revision 8 (J48) to execute the

experiment.

Table 3.1: Setup of the three Experiments

Number of Skill Components Number of Edges Dataset Size

Experiment 1 Training Dataset 10 45 500
Test Dataset 10 45 100

Experiment 2 Training Dataset 10 45 500
Test Dataset 10+2(New) 66 100

Experiment 3 Training Dataset 10+2 45+12 500+100
Test Dataset 12 66 100

Experiment Setup

As mentioned in section 3.3.1, the dataset for experiments should contain information

related to the quality of team performance, and also provide provenance information

in relation to each composite team for each particular task. However, there is no

such desirable dataset available in recent research. Therefore, it is necessary for us to

generate a synthetic dataset to simulate the collaboration complex system operation

environments.

In the experiments, we included 10 skill components, i.e., {S0, S1, S2, S3, S4,

S5, S6, S7, S8, S9} and 45 kinds of edges E(Si, Sj). In order to represent performance

quality, two kinds of classes are adopted, namely, successful and unsuccessful. As pre-

viously mentioned, a unified assessment standard is applied to evaluate the performance

of composite team as feedback for future consultation. In our experiments, we consider

it as a classification problem with two class values, i.e., Successful and Unsuccessful.
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Firstly, we predefined 8 high contribution edges among the total 45 edges with high

contribution to the successful class. The probability of successful class is dependent on

high contribution edge included in the proposal/provenance graph, ranging from 50% to

100%. Secondly, if a proposal/provenance graphs does not include any high contribution

edges, the class value is assigned randomly. Namely, in the scenario, we assume that

the performance quality of a composite team is a random behaviour. Thirdly, based

on the result of General Similarity Calculation sim(PRG,PV G), the ten most similar

provenance graphs PV G will be selected and be calculated. Finally, the class with the

highest support value of provenance graph PV G will be assigned to the proposal graph

PRG as the predicted performance.

Experimental Results

In view of the characteristics of the dataset, we mainly expect two standard classification

metrics, i.e., accuracy and precision for successful class. Firstly, except for 8 high

contribution edges, most class values for composite teams are assigned randomly (50%

to 50%). Therefore, if the accuracy of classifier is higher than 0.5, we consider that the

classification model has already been improved. Secondly, the precision for successful

class means the proportion of the predicted successful class for provenance graph

that were correct. In terms of composition recommendation issue, the success rate of

predicting high performance composite team should be as high as possible to avoid poor

performance of recommended composite team. We conducted three experiments under

different situations by comparing the result from the SEC model and the J48 model.

Experiment 1

In Experiment 1, all graphs in the knowledge base and requests can be composed

by the same 10 skill components and 45 edges. We have 500 provenance graphs in

the knowledge base and submit 100 proposal graphs for prediction (see Table 3.1).

According to Confusion Matrix for the two models (see Table 3.2), the accuracies
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Table 3.2: Confusion Matrices for the SEC model and the J48 model

ACTUAL
Successful Unsuccessful

Experiment 1
SEC PREDICTED Successful 51 12

Unsuccessful 20 17

J48 PREDICTED Successful 60 24
Unsuccessful 11 5

Experiment 2
SEC PREDICTED Successful 58 11

Unsuccessful 22 7

J48 PREDICTED Successful NaN NaN
Unsuccessful NaN NaN

Experiment 3
SEC PREDICTED Successful 64 12

Unsuccessful 18 6

J48 PREDICTED Successful 70 14
Unsuccessful 12 4

from the SEC model and the J48 model are similar. The SEC model achieved a higher

precision (0.810) than the J48 model (0.714) (see Table 3.3).

Experiment 2

Table 3.2 and Table 3.3 show the result of Experiment 2. In this experiment, although

two new skill components emerged with 21 new edges from the proposed graphs, the

knowledge base will still be the same as the first experiment (10 skill components and 45

edges within 500 provenance graphs, see Table 3.1). The SEC model still achieved the

similar performance of Experiment 1 with higher precision (0.841). The J48 decision

tree model cannot work in such a situation as the condition for training dataset and

testing dataset is not compatible. Therefore, once new skill components and edges

appear, the decision tree model has to be rebuilt.

Experiment 3

In Experiment 3, we added the test dataset in Experiment 2 into the original knowledge

base (see Table 3.1). Therefore, the current knowledge has been enlarged to 600

provenance graphs PV G with 12 skill components and 66 edges. Reviewing Table 3.2

and Table 3.3, even though it can be seen that the accuracies of the SEC model and the

J48 model are similar, the SEC model still achieved a higher precision (0.842) than the

J48 model (0.833).
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Table 3.3: Experimental Results

Model Accuracy Precision

Experiment 1 SEC 0.68 0.810
J48 0.65 0.714

Experiment 2 SEC 0.65 0.841
J48 NaN NaN

Experiment 3 SEC 0.7 0.842
J48 0.74 0.833

Result Analysis

Experiments 1 to 3 compare the performance of the SEC model and decision tree J48

model in three different scenarios. In Experiment 1, all training dataset and test dataset

share the same set of skill components and edges. Although new skill components and

edges appear in the test in Experiment 2, they cannot be found in the knowledge base.

In Experiment 3, provenance graphs PV G with new service components and edges are

added into the knowledge base.

From the three experiments, the following characteristics of the SEC model can be

demonstrated. Firstly, even if new skill components and edges appear in proposal graph

PRG, the SEC model still can work and perform better in precision for predicting

successful performance of composite team. Secondly, according to the experimental

results, the precision for the SEC model in three experiments seems to be similar,

because they share the same high contribution edge set. Thirdly, once a new edge is

included into the knowledge base, if it contributes greatly to the class value, its WCx
EG

will immediately influence the prediction ability of the SEC model.

3.4 Summary

In this chapter, we propose two compositional trust evaluation approaches, i.e., the

Correlated Contribution model and the Same Edge Contribution model for the collabor-

ative complex system without or with workflow structure, respectively. The Correlated
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Contribution model evaluates both skill types and individual services, which have

directly contributed to the performance quality value of composite teams. Experimental

results have shown that the performance of the Correlated Contribution model is better

than the traditional Reputation-Based models, which are widely applied in complex

systems. Especially, the Correlated Contribution model has demonstrated a significant

improvement in the performance quality value of composite teams when receiving

dynamic multi-skill requests.

With the workflow structure information, we investigated the possibility of using

provenance graphs in trust estimation, and proposed a compositional trust estimation

model, named the SEC model. The SEC model can predict the trustworthiness of a

composite team based on related provenance information. The proposed approach can

work effectively to facilitate systems to analyse huge amounts of provenance data, and

derive trust information from the provenance data automatically. Through a comparison

with the J48 model, which is a well known classification approach, it can be found that

the SEC model has better performances in relation to compositional trust estimation,

especially when new skill components and composition relationships occur in a complex

system randomly. Therefore, we claim that our approach is more suitable for dynamic

working environments, and can be applied for component composition in open systems.



Chapter 4

Context-Specific Inter-Personalised

Trust in Preference Systems

4.1 Introduction

In terms of the decomposable characteristic of the complex system, the preference

system can also be classified as one kind of complex system. Research in preference

systems mainly focus on the analysis of preference similarity among entities (Newman,

2003). In this research, we consider the preference system as a set of manageable

interrelated subsystems and each of them is in turn in a hierarchical structure. As

mentioned in Chapter 1, a preference system contains three kinds of social entities, i.e.,

users, items and objects. An item denotes an objective article or unit in the system.

Users are able to provide feedback to items based on their interactive experience with

them. An object is a 2-tuple which represents an item with a particular feedback

rating value. E-Commerce system is a good example of the preference system. In an

E-Commerce system, customers can be modeled as users. They can have a particular

preference and opinions on a list of products, i.e., items, which they have previous

experience. Rating values of items provided by users imply the preferences of these

64
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users. The detailed definition will be given in Section 4.2.

The aim of this chapter is to explore context-specific inter-personalised trust from

the preference complex system. As previous mentioned, trust, as a social concept,

has many facets (Golbeck, 2009). So, the context-specific inter-personalised trust

indicates multiple and heterogeneous trust relationships between social entities in terms

of different contextual situations. In other words, a particular social entity may place its

trust differently to different social entities in terms of their multi-faceted interests and

opinions of different types. Therefore, the trust relationship between a pair of users is

context dependent and is basically valid within a particular facet only. In contrast to

the unified assessment standard in collaborative complex systems, the feedback for a

particular item from different users is not objective and each user may have a particular

preference. Hence, the process of interpreting the context-specific inter-personalised

trust from such entity-generated feedback is influenced by subjective perceptions of

users.

The aim of trust mining in preference systems is to track the context-specific

inter-personalised trust in preference complex systems based on various activities and

relationships from huge archives of data, such as transaction records from social media.

In a preference complex system with network structures, the users and objects are not

uniformly distributed, rather they are clustered into some small groups. Namely, the

network has some dense subnetworks, which are called communities. A community is

formed by individuals who more frequently interact with each other within a group than

with others outer-side the group. The discovery of inherent community structures for

both the user community and object community can help us understand the networks

more deeply and reveal interesting properties shared by the community members

(Zhao et al., 2012). Therefore, in order to explore multi-facet and heterogeneous

trust relationships among users, items and objects need to be organised into nested

groups which are represented as organisational hierarchies. Furthermore, based on the
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decomposable and organisational characteristic of preference systems, a set of more

manageable interrelated subsystems can help to reduce complexity of analysis and trust

evaluation by dealing them in relative isolation.

In this chapter, we proposed a community based approach for modelling and analys-

ing massive transactional data in preference systems by analysing the network structure.

The proposed approach reveals potential trust relationships among entities of a prefer-

ence system, and these relationships are not usually readily discernible (Mao, 2012).

Furthermore, the approach predicts a user’s potential feedback for particular items

corresponding to his/her preference in terms of the user’s previous interaction experi-

ence. In the approach, we combine the idea of traditional recommendation systems and

identification of network structures to explore context-specific inter-personalised trust

relationships in preference complex systems.

Our approach is motivated by the intuition that , according to the rating history

of users, a group of users share the similar feedback records for same items, as they

have similar preference and criteria for items. The proposed approach is based on the

hypothesis that users who are socially connected are more likely to share the same or

similar preferences and criteria for a particular group of items. Hence, recommendations

from the members of the community that a user belongs to are more suitable for the

user’s preference.

The rest of this chapter is arranged as follows. Firstly, the detailed problem defini-

tion and some assumptions in this research are presented in Section 4.2. Secondly, the

general protocol of the proposed community-based trust evaluation model is introduced

in Section 4.3, and then the detailed algorithm analysis will be discussed in Section

4.4. Thirdly, in Section 4.5, some experimental results are given to demonstrate the

performance of the community-based model by comparing it with a user-based collab-

orative filtering algorithm, an item-based collaborative filtering algorithm, and the KNN

algorithm. Finally, the summary of this chapter is presented in Section 4.6.



Chapter 4. Context-Specific Inter-Personalised Trust in Preference Systems 67

4.2 Problem Definition

In this section, we give some definitions which are used in the Community-Based

approach. We consider a preference complex system which consists of an item set,

i.e., I = {item1, item2, item3, ..., itemn}, and a user set, i.e., U = {u1, u2, u3, ..., um}.

Many to many relationships among users and items exist, namely, a group of users can

collect many different items, and a set of items can be collected by many different users.

Given a preference complex system consisting of m users and n items, there is a

m × n user-item rating matrix R. Each entry rm,n in R represents the feedback rating

of item itemn provided by user um. The default value of rm,n is 0, which means that

um does not have any previous interactive experience with itemn. The user-item rating

matrix R can be decomposed into row vectors:

R = [Ru1 ,Ru2 ,Ru3 , ...,Rum]T ,Rum = [rm,1, rm,2, rm,3, ..., rm,n], (4.1)

where each row vectorRum represents the ratings of all items given by um. Alternatively,

the matrix can also be represented by its column vectors:

R = [Ritem1 ,Ritem2 ,Ritem3 , ...,Ritemn]
T ,Ritemn = [r1,n, r2,n, r3,n, ..., rm,n], (4.2)

where a column vector Ritemn represents the ratings of itemn given by different users.

In our approach, an item with a particular non-zero rating value is regarded as an

distinct object, and a preference system can have an object set.

Definition 4.1: The object set O in a preference system is a set of objects. Each object

oτitemn =< itemi, τx >, where itemn ∈ I , and τx denotes the particular rating value for

each itemn.

As mentioned in Chapter 1, network is a useful tool for reasoning about the structure

and dynamics of complex systems by mainly focusing on the essentials and elements
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denoted by nodes (vertices), and the interaction between the elements denoted by edges.

Once a pair of users, e.g., uj and uk, provide a same rating τx for an item itemn, the

object oτxitemn is connected to both uj and uk. In other words, the edges between users

are constructed by objects, vice versa. Hence, we can model a preference complex

system as a bipartite network consisting of two exclusive kinds of vertices representing

users and their objects, and in addition, edges which link vertices belonging to different

sets, i.e., U , O, respectively. Therefore, we can have the following formal definition for

a preference complex system.

Definition 4.2: A preference complex system is represented as a bipartite network with

three-tuple: CG =< U,O,E >, where

• U is the user vertex set involved in the preference complex network CG.

• O is the set of object vertex set that users have usually interacted with particular

items by giving particular feedback ratings.

• E is the edge set representing interactions that exist in CG. E = EUO, where

EUO = {(uj, o
τx
itemk

)∣uj ∈ U, o
τx
itemk

∈ O}.

In terms of edges linking two vertices from different vertex sets, there is no connec-

tion among vertices in the same vertex set. One of the basic approaches for transforming

bipartite networks into unipartite networks is projection (Guimerà, Sales-Pardo & Am-

aral, 2007). In order to get single vertices set, projection transforms such uj −oτxitemk −ul

or oτxitemj − ul − o
τy
itemk

connection into uj − ul or oτxitemj − o
τy
itemk

connection. However,

such projection transformation cause the loss of information about the edge-content

between user-object interactions, which is valuable for characterizing the preference

complex system. If there is one-to-one correspondence between an object set and a user

set, it shows that one particular group of objects only attracts one particular group of

users. On the other hand, if there is many-to-many correspondence between an object
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group and some user groups, it shows that some objects may attract several different

groups of users, as well as objects preferred by difference users may have overlaps.

In traditional bipartite network based on community detection approaches, several

real-world relations are represented as bipartite graphs composed on two types of ver-

tices, such as actor-event network, product-customer networks (E-Commerce systems)

and book-reader networks (J. G. Liu, Zhou, Che, Wang & Zhang, 2010; Guimerà et

al., 2007). The communities reflect topological relationships between elements of the

underlying system and represent functional entities (Lancichinetti, Fortunato & Kertész,

2009). However, most of researches do not take the available feedback rating in the

system into consideration to improve the community detection process. Actually, feed-

back ratings, which are one kind of user-generated content, are critical for perceiving

item opinions according to users’ preferences through sentiment analysis and opinion

mining (Gundecha & Liu, 2012). Therefore, in our approach, we take feedback ratings

into account which will provide better supervision to the community detection process

in the preference complex systems by providing rich context information.

Once a particular interaction has been completed, the system will update the interac-

tion record IR related with the user, item and object information.

Definition 4.3: The interaction record IR is defined as a 3-tuple, IR =< ui, itemj, o
τx
itemj

>.

τx represents the feedback rating which user ui gives to item itemj .

If ui inquires the potential quality of itemj , and ui lacks of previous interaction

experience with itemj , the system will generate an item enquiry IE containing the

information of ui and itemj , i.e., IE =< ui, itemj >. IE.itemj represents which item

a user IE.ui enquires about.
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4.3 Trust Estimation Protocol

The protocol for community-based trust estimation approach is illustrated in Figure

4.1. There are six modules in the protocol, including, the Reply Module, the Interaction

Record Database, the User Criteria Clustering Module, the Facet Object Set Generation

Module, the Prediction Retrieval Module and the Trust Calculation Module. In this

section, we will introduce the overall process in detail.

Firstly, once a user ui completes an interaction between an item itemj , the Reply

Module updates the interaction record IR related with ui, itemj and oτxitemj . Then, the

feedback ratings on diverse items given by users are stored as interaction records and sent

to the Interaction Record Database. Then, based on the records in the Interaction Record

Database, the User Criteria Clustering Module and the Facet Object Set Generation

Module will detect user communities and object communities, respectively.

The objective of the User Criteria Clustering Module is to cluster users into hier-

archical communities according to the user-generated ratings of items. The user criteria

clusters generation is based on hierarchical clustering organises users as a hierarchy

of nested partitions. The lower the level of communities the users belong to, the more

same ratings for particular items users gave.

Similarly, the purpose of the Facet Object Set Generation Module is to generate

object communities based on the hierarchical user criteria clustering tree from the

User Criteria Clustering Module. This module transforms the item with specific rating

values to objects. Based on the rating interactions between users and items, objects

are partitioned into communities on different levels corresponding to a user criteria

clustering tree in an optimization phase by link analysis.

If a user inquires about particular items that the user does not have previous interac-

tions with, the enquiry will be sent to the Prediction Retrieval Module. The Prediction

Retrieval Module will search for all facet object sets which include objects related to the
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required item IE.itemj . Then, the Facet Object Set Generation Module will pass the

facet object sets which satisfies the item enquiry IE to the Trust Calculation Module.

The objective of this module is to generate a quality prediction for the required

item IE.itemj based on the preference of required user IE.ui. Therefore, in terms of

each related facet object set passed from the previous module, the Trust Calculation

Module will compare the objects with the enquirer’s previous interaction records. The

more similar objects between the related facet object set and the enquirer’s previous

interaction records, the more confident it is that the objects in the particular facet object

set will match the preference of user IE.ui. Finally, the Trust Calculation Module will

return the rating value of the object regarding to the required item IE.itemj in the facet

object set which obtained the most confidence to user IE.ui.

Figure 4.1: Community-Based Trust Estimation Protocol

4.4 Hierarchical Community Structure

As mentioned in the previous section, a preference complex system can be represented

as a bipartite network, which contains three kinds of elements, including, users, items

and objects. In this section, a four-step trust mining algorithm is proposed to partition

theses three kinds of elements into different community (subnetwork) structures, called

user criteria cluster, object community and facet object set, respectively. A community
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detection approach is also introduced in this section, which combines user criteria

clustering and link analysis for objects. In terms of the hierarchical organisation of a

preference complex system, the lower-level communities are embedded within other

higher-level communities and vertices can be shared between different communities

(Lancichinetti et al., 2009). Discovering inherent structures for both user communities

and object communities can help us understand a preference complex system better

and reveal interesting hidden patterns (Zhao et al., 2012). Whereas users within one

communities are closely connected, they have the similar preference for certain groups

of items.

4.4.1 User Community

The goal of user criteria clustering is the separation of users into groups based on user-

item rating matrix R. The user community evolution is based on the idea that two users

should have more chances to be in the same community when they share more similar

ratings for different items. Meanwhile, as users in the same community are more likely

to have common preferences, they are more likely to have similar expectations about

a certain group of items. In this thesis, we cluster user criteria based on hierarchical

clustering (HC) and organise users as a hierarchy of nested partitions. By using HC,

partitions can be obtained through "horizontal" cuts. This enables us to see how users

are being merged into clusters. Therefore, according to the user-item rating matrix R,

we utilise agglomerative hierarchical clustering to build user criteria clusters by joining

users with the most similar rating history into pairs, and then evolve groups (Kraskov &

Grassberger, 2009).

In this approach, items are regarded as random variables and mutual information is

capable of measuring general dependence among them. The entropy of a user rating

pattern is a measurement of the uncertainty in the feedback value given on items. It can
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be calculated by using Equation 4.3 (Cover & Thomas, 2012):

H(uj) = −
n

∑
i=1

P (Ruj = rj,i) logP (Ruj = rj,i), (4.3)

where n is the number of possible items which um can rate. Higher entropy of users for

item variables means that their selection and rating pattern levels are more randomly

distributed (Zhou, Wang, Dougherty, Russ & Suh, 2004). Mutual information describes

the amount of common feedback rating given by both users. Thus, it can be used to

derive distance measure quantifying the similarity of pairs of user selection and rating

pattern. The mutual information between user uj and uk is defined by Equation 4.4

(Cover & Thomas, 2012):

I(uj, uk) =H(uj) +H(uk) −H(uj, uk). (4.4)

The smaller values of mutual information I(uj, uk) is, the larger difference between

pair of user selection and rating patterns. Another feature of mutual information which

is essential for the hierarchical cluster analysis is its grouping property. It means

that the mutual information can be decomposed into hierarchical levels. For example,

the mutual information between three users ui, uj and uk is equal to the sum of the

mutual information between ui and uj , plus the mutual information between uk and the

combined variable (ui uj) (see Equation 4.5) (Cover & Thomas, 2012):

I(ui, uj, uk) = I(ui, uj) + I((uiuj), uk). (4.5)

It means that the mutual information can be decomposed into hierarchical levels of

preference complex system. By iterating it, we can decompose I(u1u2u3...um) (m > 2)

for any partitioning of the user set (u1u2u3...um) into the mutual information between

elements within one cluster (Kraskov & Grassberger, 2009).
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However, mutual information is not bounded, so it would not be a suitable distance

measurement for itself. Therefore, we transform the mutual information into a bounded

mutual-information-based distance by normalizing it (see Equation 4.6).

D(uj, uk) = 1 −
I(uj, uk)

max(H(uj),H(uk))
. (4.6)

In Equation 4.6, D(uj, uk) denotes the preference similarity between a pair of

users. It is equal to zero, when identical users have maximum possible selection and

rating patterns and have identical entropies, i.e., H(uj) = H(uk) = I(uj, uk) (Dawy,

Hagenauer, Hanus & Mueller, 2005). Hence, given a user set with m users, an m ×m

mutual-information-based distance matrix can be calculated by using Equation (4.6).

Internal nodes of the HC tree T.Node correspond to subsets of the set of all leaves,

and the root represents all user sets, i.e., the joint variables (u1u2u3...um). Therefore,

we define that there is a user set T.Node.U at each cluster, which contains all leaves of

the node. When presenting the mutual-information-based clustering tree, the leaf nodes

are user instances group u1, u2, u3, ..., um and the height of the leaf nodes is zero. We

put the leaf nodes on the x-axis and use the value of the distance/similarity to control the

height of the tree. Let’s assume that an internal node Φ has two child nodes X and Y ,

i.e. Φ =(X Y ). X and Y themselves might be either leaves or internal nodes. Therefore,

the user set UΦ and the height of the parent node Φ can be defined as Equations 4.7 and

4.8.

UΦ = {UX ∪UY ∣UX ∩UY = φ}, (4.7)

height(Φ) =D(X,Y ). (4.8)

The user criteria clustering analysis algorithm is shown in Algorithm 1. In the
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Algorithm 1 The User Criteria Clustering Analysis
Input: U , R
Output: T

1: KC = KT = ∣U ∣, ci.ID = i, ci ← ui, ci.rating ← Rui , T.Nodei ← ci, T.Nodei.left =
T.Nodei.right = Null

2: while KC > 1 do
3: for ∀ci ∈ C do
4: for ∀cj ∈ C ∧ i ≠ j do
5: Mi∗j =D(ci.rating, cj .rating)
6: (ci, cj) ← argmin(D(ci.rating, cj .rating))
7: end for
8: end for
9: KC = KC − 1, KT = KT + 1, ctemp ← merge(ci, cj), ctemp.U ← merge(ci.U, cj .U),

T.NodeKT ← ctemp, T.NodeKT .U ← ctemp.U , T.NodeKT .left ← ci,
T.NodeKT .right ← cj , T.Nodeci.ID.parent = T.Nodecj .ID.parent = T.NodeKT ,
ci ← ctemp, C.remove(cj), ci.ID =KT

10: end while
11: return T

algorithm, there are two input variables, i.e., U denoting user set, and R denoting user-

item rating matrix. T is the output variable in the algorithm. It denotes the hierarchical

user criteria tree. Furthermore, ci.rating denotes the rating matrix for each cluster,

and Mi∗j denotes the entry of the mutual-information-based distance proximity matrix.

M∣U ∣∗∣U ∣ is symmetric and the diagonal is zero. A more detailed explanation of the

algorithm is given below.

• Line 1: Initialize the leaf nodes of the user criteria cluster tree T by assigning

each user into a cluster.

• Line 2 - Line 8: If the number of clusters is still more than 1, the mutual-

information-based distances between the each pair of clusters are calculated. The

proximity matrix M is updated and the minimum distance for the pair of clusters

(ci, cj) are found.

• Line 9: The closest pair of clusters are merged as a new cluster ctemp and a new

cluster user set ctemp.U . ctemp and ctemp.U are assigned as the latest internal
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node T.NodeKT and T.NodeKT .U , respectively T.Nodeci.ID and T.Nodecj .ID

are assigned as the left/right child node of the T.NodeKT . Meanwhile, T.NodeKT

is the parent node for these two nodes.

• Line 10-11: If the size of the cluster set is equal to 1, the construction of the user

criteria cluster tree is completed.

4.4.2 Object Community

As previously mentioned, users with similar preference usually give same feedback

value for a certain group of items, so we intend to figure out such groups of items

with particular feedback values based on the user criteria tree. In our approach, each

item with particular feedback rating, except for 0, are regarded as objects. Therefore,

the object community implies the preference and criterion of particular user group for

certain items. In order to make an accurate prediction for a user’s item enquiry, we need

to find out what the preference and criterion the enquirer holds for a certain groups

items related to enquired items IE.itemj based on the enquirer’s previous feedback

rating experience.

Although the contents of item description may often imply some common interests

of users who used to collect them, such information only represents a simplistic world

view and may still contain weak connections between members within user communities

(Zhao et al., 2012). In this section, we perform a link-based community detection

approach to differentiate the strength of connections between users and objects. An

object oτxitemi is connected to both uj and uk between these two vertices set and models

the characteristics of pairwise interactions rather than individual users. Hence, the

object as one of the end points of the edges, not only represents the linkages of the

community, it also indicates the edge-content which provides an idea of the nature of

the interactions (Qi et al., 2012). Two edges sharing a same end point clearly have a
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higher similarity degree than those without a common end point.

Based on the user criteria cluster tree, the user community has already emerged at

each level of the tree. In terms of each node of the tree, the edge set E are partitioned

into object communities in a principle way with the use of linkage and edge-content

information. However, the common endpoints of edges are unable to provide sufficient

information for the similarity measurement. Hence, the higher degree of an object

is within the current level user community than without the community, the more

significant correlation between objects within the community.

The aim of partitioning a set of objects into different communities is to ensure

that intra-interactions within communities are dense and inter-interactions between the

communities are sparse. In most uniqartite network research, modularity maximization

is the most popular approach for community identification. Modularity Q uses the

denseness and sparsity of the communities’ intra-connections and inter-connections

to quantify the quality of community structure (Mao, 2012). Here, we modify the

previous modularity functions that, upon optimization, yield a partition of the objects in

a bipartite network into community at each node of the cluster tree.

Definition 4.4: An object community is defined as a 3 tuple, i.e., OC =< U,O,E > ,

where

• OC.U ← T.Node.U

• OC.O ← T.Node.parent.O

• OC.E = {(ui, o
τk
itemj

)∣ui ∈ OC.U, o
τk
itemj

∈ OC.O}

A preference complex system withm×n×l edges can be represented as an adjacency

matrix E(ui,oτkitemj )
, where m represents (see Equation 4.9 and Equation 4.10 ). The

entry in the ith row and [(j −1)× l+k]th column, ( i.e., e(ui,oτkj ) ) is referred as the edge

between user ui and object oτkitemj . e(ui,oτkitemj )
equals to 1 if the rating value of itemj
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given by ui is τk, and equals to 0 otherwise. Then, a weight woτkitemj
can be assigned for

each edge linking to the object oτkitemj . woτkitemj
can be calculated according to the edge

degree of an object vertex oτkitemj which is denoted as deg(oτkitemj) by using Equation

4.11.

E(ui,o
τk
itemj

) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e(u1,oτ1item1
) ⋯ e(u1,oτlitemn)

⋮ ⋱ ⋮

e(um,oτ1item1
) ⋯ e(um,oτlitemn)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.9)

e(ui,o
τk
itemj

) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if the rating value which user ui gives item itemj equals to τk

0 otherwise
(4.10)

woτkitemj
=

1

deg(oτkitemj)
(4.11)

The traditional modularity method starts off with each vertex representing a com-

munity which contains only one member, and then it calculates the changes of modular-

ity to choose the largest of them (Zhao et al., 2012). In terms of each node T.Node of

the user criteria cluster tree T , the gain of modularity ∆Q is obtained by removing an

isolated object oτkitemj from the object community of its parent node T.Node.parent.O

in the optimization phase. This process is applied repeatedly and sequentially for all

object vertices until a local maximum modularity is achieved, i.e. when no object

vertex removal can improve the modularity. It is noted that the result of the algorithm is

influenced by the order in which the objects are considered. Although the ordering of

the objects may not exert significant influence on the modularity, it still can dramatically

affect the computation time and efficiency (Blondel et al., 2008). In this approach, we

calculate the distance value dvoτkitemj ∈T.Node.parent.O
for each object oτkitemj belonging to
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the object community of its parent node T.Node.parent.O by using Equation 4.12.

Therefore, the gain of the modularity ∆Qo
τk
itemj

is calculated in the decreasing order of

the dvoτkitemj ∈T.Node.parent.O
(see Equation 4.13).

dvoτkitemj ∈T.Node.parent.O
= (

T.Node.parent

∑
ui∈T.Node.parent.U

e(ui,o
τk
itemj

) −
T.Node

∑
ui∈T.Node.U

e(ui,o
τk
itemj

)) ×woτkitemj

(4.12)

∆Qoτkitemj
= [
∑in∖oτkitemj

+2loτkitemj ,in

2m
−(
∑tot∖oτkitemj

+loτkitemj
2m

)2]−[
∑in∖oτkitemj

2m
−(
∑tot∖oτkitemj

2m
)2−(

loτkitemj
2m

)2]

(4.13)

In Equation 4.13, m is the sum of the weights of all the edges in the preference

complex system CG; ∑in∖oτkitemj
denotes the sum of the weights of the edges inside OC

except for inside edges linking object oτkitemj ; ∑tot∖oτkitemj
denotes the sum of the weights

of the edges incident to objects inOC except for object oτkitemj ; loτkitemj
denotes the sum of

the weights of the edges connecting to object oτkitemj in the whole network CG; loτkitemj ,in

denotes the sum of the weights of the edges from object oτkitemj to users belonging to

the current node of the user criteria cluster tree. The values of these parameters can be

calculated from Equations 4.14 to 4.18, respectively.

m =
CG

∑
oτxitemj

∈CG.O

CG

∑
ui∈CG.U

e(ui,oτxitemj )
×woτxitemj

(4.14)

∑
in∖oτkitemj

=
OC

∑
oτxitemj

∈OC.O,oτxitemj≠o
τk
itemj

OC

∑
ui∈OC.U

e(ui,oτxitemj )
×woτxitemj

(4.15)

∑
tot∖oτkitemj

=
OC

∑
oτxitemj

∈OC.O,oτxitemj≠o
τk
itemj

CG

∑
ui∈CG.U

e(ui,oτxitemj )
×woτxitemj

(4.16)
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loτkitemj
=

CG

∑
ui∈CG.U

e(ui,o
τk
itemj

) ×woτkitemj
(4.17)

loτkitemj ,in
=

OC

∑
ui∈OC.U

e(ui,o
τk
itemj

) ×woτkitemj
(4.18)

If ∆Qo
τk
itemj

is positive, the object vertex oτkitemj is then added into the object com-

munity of the current node of the tree T.Node.O for which its gain is maximum. If no

positive gain can be found, the object oτkitemj only stays in the T.Node.parent.O. The

discrepancy of the modularity ∆Qo
τk
itemj

is expected to be as large as possible so that

itemj is more likely to be rated as τk by users in the user community of the current

node of the user criteria tree T.Node.U than users from outside. Furthermore, some

objects are connected with limited users. If it is randomly distributed, these objects

will be removed from higher object communities. On the other hand, such objects may

be connected with particular user groups. So, they will always be maintained in some

object communities.

The hierarchical object community generation algorithm is shown in Algorithm 2.

In the algorithm, Line 1 to Line 11 are to initialize the top object community based on

the user criteria clustering tree. Line 12 to Line 31 are to generate the object community

OC for each node of the user criteria cluster tree T . The output of the algorithm is

the object community OC set and each OC is assigned to the related node of the user

criteria clustering tree T . A more detailed explanation of the algorithm is given below.

• Line 1 - Line 2: The top node of the hierarchical object community OC is

initialised. The ID of each object community OC is same as the ID of the node

of the user criteria cluster tree T . The user set of the object community OC is the

corresponding node of the user criteria cluster tree T ;

• Line 3: A temporal object set tempO1 is generated. Due to the top node of the
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user criteria cluster tree T without parent node, the tempO1 is assigned to the

top object community and is equal to the object set of the bipartite subnetwork

CG.O;

• Line 4 -Line11: All objects which are not rated by any users are removed from

the tempO1;

• Line 12: The updated tempO1 is assigned to the top object community OC and

the object set of the top node of the user criteria clustering tree T ;

• Line 13 to Line 14: T.Nodeindex.parent.O is the object set belongs to the parent

node of corresponding node of the user criteria clustering tree T . For each object

community OC, a temporal object set tempO2 is generated and assigned as the

object set of its parent node.

• Line 15 to Line 25: The difference amounts (distanceV alue) of user rating for

each object in the tempO2 between the user set of node T.Nodeindex.U and its

parent node T.Nodeindex.parent.U are checked. All distanceV alue are sorted

in decreasing order and stored in the queue distanceQue[];

• Line 26 to Line 31: According to the order of distanceQue[], ∆Qo
τk
j

for each

object in tempO2 is calculated. If ∆Qo
τk
itemj

is less than zero, object oτkitemj is

removed from the tempO2.

• Line 32: The updated tempO2 are assigned to the object community OC.O and

the object set T.Node.O of the node of the user criteria cluster tree. Furthermore,

the user set T.Node.U is assigned to the corresponding user set OC.U of the

object community OC.
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Algorithm 2 The Hierarchical Object Community Generation Algorithm
Input: T , CG =< U,O,E >
Output: T , {OC}

1: index = T.Node.size() − 1
2: OCindex.U ← T.Nodeindex.U
3: tempO1← CG.O
4: for ∀oτxj ∈ tempO do
5: for ∀ui ∈ OCindex.U do
6: sum = sum + e(ui,oτxj )
7: end for
8: if (sum == 0) then
9: tempO1.remove(oτxj )

10: end if
11: end for
12: OCindex.O ← tempO1, T.Nodeindex.O ← OCindex.O
13: for ∀T.Nodeindex ∈ T ∧ T.Nodeindex ≠ Null do
14: tempO2← T.Nodeindex.parent.O
15: for ∀oτxj ∈ tempO2 do
16: tP = tC = 0
17: for ∀ui ∈ T.Nodeindex.parent.U do
18: tP = tP + e(ui,oτxj )
19: end for
20: for ∀ui ∈ T.Nodeindex.U do
21: tC = tC + e(ui,oτxj )
22: end for
23: distanceV alueoτxj = (tP − tC) ∗woτxj
24: distanceQue[].add(distanceV alueoτxj ), sort(distanceQue[])
25: end for
26: for ∀distanceV alueoτkj ∈ distanceQue[] do
27: calculate ∆Qoτkj
28: if (∆Qoτkj < 0) then
29: tempO2.remove(oτkitemj )
30: end if
31: end for
32: OCindex.O ← tempO2, T.Nodeindex.O ← OCindex.O, OCindex.U ←

T.Nodeindex.U
33: end for
34: return OC, T

4.4.3 Facet Object Set

In terms of the emergent complexity defined in Chapter 1, we can characterise a

preference complex system through removing part of the system, because the properties
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of the rest are affected by the removal of a part. Such a complex system has a collective

behaviour that is dependent on the behaviours of all of the components in the system.

Therefore, this concept becomes more precise when we connect it to a quantitative

measurement of complexity (Bar-Yam, 1997).

Trust is considered as the level of belief established between two entities in relation

to a certain context (Pitsilis & Marshall, 2005). In our approach, such belief is inter-

preted as the user criteria for certain items. Most of the recommended algorithms only

assume a single type of trust between users. The main idea is to suggest items to users

or give predictions on ratings of item based on who provided previous rating experience.

However, the characteristics of a user have many aspects. If we try to characterize a

user by one aspect only, the rest will be disregarded. Trust, as a social concept, naturally

has multiple facets, indicating different aspects of character and heterogeneous trust

relationships between users (Gundecha & Liu, 2012). Therefore, users’ multifaceted

interests and criteria of different items suggest that user may place trust differently to

different interaction partners (J. Tang, Gao & Liu, 2012).

In the previous two steps, i.e. user criteria clustering and object community detection,

for each node of the user criteria clustering tree, both user community and object

community have been figured out. At each node of user criteria clustering tree, the

user community not only shares a common preference, it also accepts a similar criteria

of items. Hence, the object community of this level implies a particular facet of the

real-world. One important feature for hierarchical object community is that the lower

level an object community is, the more significant a correlativeness exists among objects.

However, too low levels of object community cannot include all relevant objects, and

too high levels of object community may consist of too many noisy objects. Therefore,

we narrow the scope of the object community to generate the corresponding facet object

set which imply the preference of a certain user community.

Let FO = {oi∣oi ∈ O} denote the facet object. The objects in a particular facet
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object not only have correlation among each others, yet are also evaluated under the

same criteria by certain group of users. In terms of each internal node T.Node with

child nodes T.Node.left/T.Node.right, users in the user community of left child node

T.Node.left.U should also have interactions with part of objects belonging to the

object community of right child node T.Node.right.O, and vice versa. Equation 4.19

defines the distance between two child nodes of current internal node. The community

distance value CDist(T.Node) is smaller if two objects in object communities of child

nodes are more frequently and evenly connected with users in both two child user

communities. It is necessary to specify a minimum acceptable threshold value, i.e. δ.

The facet object set generation algorithm is shown in Algorithm 3. There are two input

variables, i.e., user criteria clustering tree T , and predefined threshold δ. The output of

the algorithm is a set of facet objects {FO}. If CDist(T.Node) ≥ δ, the contraction of

facet object set will be terminated.

CDist(T.Node) =

¿
ÁÁÁÁÁÁÁÁÁÀ

T.Node

∑
o
τk
itemj

∈T.Node.O
(

T.Node.left.U

∑
ui∈T.Node.left.U

e(ui,o
τk
itemj

)

∣T.Node.left.U ∣
T.Node.U

∑
ui∈T.Node.U

e(ui,o
τk
itemj

)

∣T.Node.U ∣

−

T.Node.right.U

∑
ui∈T.Node.right.U

e(ui,o
τk
itemj

)

∣T.Node.right.U ∣
T.Node.U

∑
ui∈T.Node.U

e(ui,o
τk
itemj

)

∣T.Node.U ∣

)2

(4.19)

Algorithm 3 The Facet Generation Analysis
Input: T , δ
Output: {FO}

1: for ∀T.Nodei ∈ T ∧ T.Nodei.left ≠ Null ∧ T.Nodei.right ≠ Null do
2: if (ComDependency(T.Nodei) ≤ δ) then
3: {FO}.add(T.Nodei.O)
4: end if
5: end for
6: return {FO}
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4.4.4 Context-Specific Inter-Personalised Trust Calculation

In terms of the inquired item in particular enquirer IE, more than one facet object sets

which include the item IE.itemj usually exists. Therefore, in order to make a more

accurate prediction of inquired item IE.itemj potential performance corresponding

to the preference of the enquirer IE.ui, the system will compare the user’s previous

interaction records with the particular facet object sets related to inquired item, and then

figure out the most trustable facet object set. Finally, the feedback rating of the object

about the required item IE.itemj in the most trustable facet object set which obtained

the most confidence will be returned to the user IE.ui as a prediction result.

In this section, we define two factors: Distance and Support, which influence the

confidence of candidate facet object sets.

Definition 4.5: Distance represents the divergence between user’s preference, Rui and

the certain facet of the world implied by the facet object set, FO. It can be calculated

by using Equation 4.20.

Dist(ui, FOj) =

Rui ,FOj

∑
Rui .ri,k≠0,oτx

k
∈FOj

√
(Rui .ri,k − τx)

2

∣ui.ratedItemSet ∩ FOj.ItemSet∣
(4.20)

, where ∣ui.ratedItemSet ∩ FOj.ItemSet∣ denotes how many items that user ui used

to rate are also covered in the item-set of facet object set FOj.ItemSet. In terms of

itemk, (Rui .ri,k − τx) calculates the difference between the rating given by ui and τx

implied by the object oτxitemk in facet object FOj . Dist(ui, FOj) (in our dataset, the

value of Dist(ui, FOj) ranges from 0 to 5) and will be smaller if objects in the facet

object set FOj are more appropriate for user’s criteria about inquiry itemk.

Definition 4.6: Support is the ratio that each facet object set FOj supports the rating

history of user ui. It can be calculated by using Equation 4.21. Kcon in a normalized

constant, which can be calculated by using Equation 4.22, and Support(ui, FOj)
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ranges from 0 to 1.

Support(ui, FOj) =
∣ui.ratedItemSet ∩ FOj.ItemSet∣

Kcon

(4.21)

Kcon =max(Support(ui, FOj)) (4.22)

As both Distance and Support occur by degrees, it is challenging to establish a

mathematic model to define the membership function. Therefore, we adopt fuzzy

solution to assign degrees (Eberhart, Simpson & Dobbins, 1996; Skopik et al., 2010). A

fuzzy method is applied to determine the confidence degree for each candidate facet

set, FO. Dist(ui, FOj) and Support(ui, FOj) are two input parameters in the fuzzy

method. The output parameter is confidence which represent the personal trust value for

particular facet object set, ranging from 0 to 1. By calculating the Distance and Support

between enquirers’ rating experience and rating value of items in the different facet

object sets, the system can produce the most trustable and suitable quality prediction

of particular item IE.itemj required by the user IE.ui. The detailed trust calculation

process will be introduced in the following paragraphs.

Membership Functions for Input Parameter

For Distance, three linguistic states are defined and expressed by appropriate fuzzy sets.

They are Similar, Medium and Different. The membership functions for Distance are

defined from Formulae 4.23 to 4.25, and depicted in Figure 4.2.

FDistanceSimilar(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 x ∈ [0,0.8]

−10
7 x +

15
7 x ∈ (0.8,1.5)

(4.23)
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FDistanceMedium(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10
7 x −

8
7 x ∈ (0.8,1.5]

1 x ∈ (1.5,2]

−2x + 5 x ∈ (2,2.5)

(4.24)

FDistanceDifferent(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2x − 4 x ∈ (2,2.5)

1 x ∈ [2.5,5]

(4.25)

Figure 4.2: Distance Membership

For Support, three linguistic states are defined, which are Low, Medium, High. The

membership functions for these three fuzzy sets are defined from Equations 4.26 to

4.28, respectively. They are also depicted in Figure 4.3.

FSupportLow(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 x ∈ [0,0.1]

−5x + 3
2 x ∈ (0.1,0.3)

(4.26)
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FSupportMedium(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5x − 1
2 x ∈ (0.1,0.3]

1 x ∈ [0.3,0.5]

−10
3 x +

8
3 x ∈ (0.5,0.8)

(4.27)

FSupportHigh(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

10
3 x −

5
3 x ∈ (0.5,0.8)

1 x ∈ [0.8,1]

(4.28)

Figure 4.3: Support Membership

Membership Functions for Output Parameter

Confidence is the output parameter in the fuzzy method. It has five linguistic states,

which are Very Low, Low, Medium, High and Very High. The more confidence the

facet object set is, the more trustable the rating value of the object about the enquired

item IE.itemj in the facet object set is, corresponding to the preference of the enquirer

IE.ui. Fuzzy membership functions of these fuzzy sets are defined from Formulae 4.29

to 4.33 and described in Figure 4.4.
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FConfidenceV eryLow(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 x ∈ [0,0.1]

−10x + 2 x ∈ (0.1,0.2)

(4.29)

FConfidenceLow(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10x − 1 x ∈ (0.1,0.2]

1 x ∈ [0.2,0.3]

−10x + 4 x ∈ (0.3,0.4)

(4.30)

FConfidenceMedium(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10x − 3 x ∈ (0.3,0.4]

1 x ∈ [0.4,0.6]

−10x + 7 x ∈ (0.6,0.7)

(4.31)

FConfidenceHigh(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10x − 6 x ∈ (0.6,0.7]

1 x ∈ [0.7,0.8]

−10x + 9 x ∈ (0.8,0.9)

(4.32)

FSupportV eryHigh(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

10x − 8 x ∈ (0.8,0.9)

1 x ∈ [0.9,1]

(4.33)

Fuzzy Rule Base

A fuzzy rule base is represented as a matrix of combinations of each of the input

parameters. Each matrix position is corresponding to one value of the output parameter

(Eberhart et al., 1996). The rule base matrix is shown Table 4.1. It contains nine rules

that describe the interaction between inputs and output. The columns are Support ranges

and the rows are Distance ranges.
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Figure 4.4: Confidence Membership

Table 4.1: Fuzzy Rule Base Matrix
XXXXXXXXXXXSupport

Distance
Similar Medium Different

Low Low Confidence Low Confidence Very Low Confidence
Medium Medium Confidence Low Confidence Very Low Confidence
High Very High Confidence High Confidence Very Low Confidence

Determination of Output membership Values and Defuzzification

Each entry in the rule base is defined by ANDing two linguistic parameters to produce

individual output response, in the form of: IF (F(Distance)=α AND F(Support)=β)

THEN (F(Confidence)=γ), where α ∈ (Similar, Medium, Different), β ∈ (Low, Medium,

High), and γ ∈ (Very Low, Low, Medium, High, Very High). In this mechanism,

AND/MIN operator is used to combine the membership values together, i.e. the weakest

membership determines the degree of membership in the interaction of fuzzy sets

(Eberhart et al., 1996). Hence, the output membership value µγ(Confidence) can be

calculated by using Equation 4.34.

µγ(v) =MIN(µα(Distance), µβ(Support)) (4.34)
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With the output membership, the output values can be determined by tracing the

membership values for each rule back through the output membership functions. Finally,

the centroid defuzzification method (Eberhart et al., 1996) is used to determine the

output value. In centroid defuzzification, the output value is calculated by using

Equation 4.35, where µ(vi) is the ith output value, vi is its corresponding output value,

and k is the number of activated fuzzy rules.

DF =

k

∑
i=1

(vi ∗ µ(vi))

k

∑
i=1
µ(vi)

(4.35)

4.5 Experiments

4.5.1 Experiment Setup

To analyse the performance of the community-based trust estimation approach, some

experiments have been conducted. In the experiments, we compare the proposed ap-

proach with two memory-based collaborative filtering approaches, i.e. the user-based

approaches and the item-based approach, and one traditional data mining algorithm,

i.e. the KNN algorithm. In the experiments, we used the real world dataset collected

by Paolo Massa. The dataset were collected via a five-week crawl from (Novem-

ber/December 2003) epinions 1, which is a consumer opinion website containing users’

reviews of various items (cars, books, music, etc.). Numeric ratings, ranging from 1 to

5, are used in each review. The dataset consists of 195 users who rated a total of 200

different items. There are in total 5035 reviews.

A realistic collaborative filtering matrix may contain millions of users and millions

of items. In practice, users only rate a few of the entire set of items, which results in

a sparse matrix. The "sparseness" of a collaborative filtering matrix is the percentage

1www.epinions.com/
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of empty cells (Massa & Bhattacharjee, 2004). Figure 4.5 shows the number of users

who created reviews. The X axis in Figure 4.5 represents the user ID, while the Y axis

indicates the item rating amount of each user. The sparseness of the dataset is around

87.1%. There are more than 17% users providing no more than five rating records,

while the maximum number of rating given by one user is 121. The mean number of

created reviews is 25.82 with a standard deviation of 24.40, and the median is 19.

Figure 4.5: Numbers of Reviews Rated by Users with Cold Start Users

4.5.2 Comparison Method

There are two major categories of collaborative filtering approaches, including the

memory-based and the model-based approaches. In terms of the memory-based al-

gorithm, it provides recommendations based on the entire user profile database. In

contrast, the model-based approach applies a compact model, which is previously

learned from the user profile database, to generate recommendations.

• User-Based Collaborative Filtering Algorithm User-based collaborative filter-

ing predicts an active user’s evaluation criteria for a particular item based on

rating records from users with similar profiles. Firstly, it calculates all similarities

of any two row vectors of the user-item matrix. With regarding to the prediction
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for a target user’s rating of a particular item, a set of most similar users can be

identified. Those similar users’ ratings for an item will be averaged by weights.

Equation 4.36 computes the similarity between the test user ua and his/her neigh-

bours. The predicted rating ˆrua,itemy of the test item y of ua is computed by using

Equation 4.37

wua,ub =

∑
i∣rua,i,rub,i≠0

(rua,i − rua)(rub,i − rub)

√
∑

i∣rua,i,rub,i≠0
(rua,i − rua)

2 ×
√

∑
i∣rua,i,rub,i≠0

(rub,i − rub)
2

(4.36)

ˆrua,itemy = rua +

K

∑
k=1

wua,uk × (ruk,itemy − ruk)

K

∑
k=1

∣wua,uk ∣

(4.37)

• Item-Based Collaborative Filtering Algorithm Item-based recommendation

algorithms use the similarity between items instead of users. Firstly, the similarity

of items can be calculated from Equation 4.38 to 4.40. Then unknown ratings can

be predicted by averaging the ratings for other similar items generated by the test

user (see Equation 4.41).

ditema =
√

∑
i∣rui,itema ,rui,itemb≠0

(rui,itema − ritema)
2 (4.38)

ditemb =
√

∑
i∣rui,itema ,rui,itemb≠0

(rui,itemb − ritemb)
2 (4.39)

witema,itemb =
∑

i∣rui,itema ,rui,itemb≠0
(rui,itema − ritema)(rui,itemb − ritemb)

ditema × ditemb
(4.40)
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ˆrua,itemy = ritemy +

K

∑
k=1
witemy ,itemk × (rua,itemk − ritemk)

K

∑
k=1

∣witemy ,itemk ∣

(4.41)

• KNN In many recommendation systems, correlation and similarity between items

or users are utilized as measurements of proximity to form a neighborhood

scheme. The best-k-neighbours algorithm (Larose, 2005) selects k most similar

neighbours to be considered in the prediction algorithm.

4.5.3 Experimental Results

Figure 4.6: Accuracy for Dataset with Cold Start Users

When a new user enters the system without any rating history, it is hard to predict

her preference as the user has never left any ratings before. We consider users with

less than five rating records as "cold start users". In terms of "cold start users", tra-

ditional collaborative filtering algorithms are usually unable to provide high quality

recommendations. Moreover, accurate predictions also create an incentive for such

users to continue using the system. Therefore, in our experiments, we also compare

algorithms’ performances for "cold start users".

In the experiment, we mainly apply two metrics, i.e., accuracy and difference,
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Figure 4.7: Accuracy for Cold Start Users

Figure 4.8: Difference for Dataset with Cold Start Users

to compare the performance of the community-based trust estimation algorithm and

the other three algorithms. The accuracy of an algorithm denotes the percentages of

potential quality prediction of items which are equal to the actual feedback rating values

given by enquirers. However, neither user-based collaborative filtering algorithm nor

item-based collaborative filtering algorithm can predict exact rating values for required

items. Hence, difference is adopted as another comparison metric. It measures the

average distance between actual (true) values and predicted rating values.
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Figure 4.9: Difference for Cold Start Users

Comparison of Accuracy

Figure 4.6 illustrates the comparison of the accuracy of both the community-based

algorithm and the KNN algorithm. The accuracy of proposed algorithm reaches 0.56,

which is much higher than the accuracy of KNN at 0.37. In terms of the "cold start

users" (see Figure 4.7), the accuracy of community-based algorithm increased by 0.01

which is significantly higher than the performance of KNN at 0.32. Therefore, once a

new comer user has rating experience, the community-based recommendation algorithm

still can provide trustable suggestions to users.

Comparison of Difference

Figure 4.8 compares the difference values of the four algorithms. The community-

based algorithm performed better than the other three algorithms, where the difference

is around 0.72. Furthermore, from Figure 4.9, it can be seen that, the difference of

the community-based approach narrowed to 0.6339 in terms of the "cold start users".

However, the difference of the KNN and item-based algorithm increased to above 1.

Although the performance of the user-based recommendation algorithm improved, the

difference (0.8252) is still larger than the community-based trust estimation algorithm.
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From the experimental results, it can be seen that the performance of the community-

based approach can perform better than the other three approaches in terms of both

difference and accuracy, under the "cold start users" situation.

4.6 Summary

In this chapter, we proposed a community-based trust estimation approach to mine

context-specific inter-personalised trust within the preference complex system. In terms

of the decomposable characteristic of the complex system, we organise the preference

system as a set of more manageable interrelated communities, each of which is in turn

hierarchical in structure. The approach mainly focuses on the user-to-user with similar

preference and groups them into various user communities. Furthermore, the object

community implies the interest and criterion of particular user community for certain

items. Finally, the fuzzy logic membership function is applied to ascertain the most

confident facet object set and make the trustable quality prediction based on the rating

value of the object about the enquired item IE.itemj in this facet object set.
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Conclusion

Trust evaluation is an important topic in complex system research. A complex system

is a collection of interacting components which can group and create functioning

units together (Mitchell & Newman, 2002). The trust among these components is

derived from interactions. It represents a subjective expectation which a component

has about another’s future behaviour to perform given activities dependably, securely,

and reliably. For many complex systems, the generalisable methods and measures for

characterisation are required. These measures cannot be too application specific and

need to be transferred to disparate complex systems.

Collaborative and preference complex systems are two major types of complex

systems, and can be applied in many potential applications. In this thesis, we proposed

several trust evaluation approaches by targeting the characteristics of these two types of

complex systems. In this chapter, the major contributions and conclusion of this thesis

are summarised and the future work of this research is outlined.

98
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5.1 Summary of Major Contributions

In this thesis, we proposed three trust estimation approaches to explore trust relation-

ships among components within the collaborative complex system and the preference

system. A collaborative complex system consists of a number of loosely coupled

autonomous and adaptive components, and diverse composite teams are formed to

address complicated problems which usually require multiple skills and functions. Solu-

tions for such problems are achieved through collaborations in composite teams. Hence,

interactions between pairs of components are established by common composite team

experiences. In this thesis, we assume that a unified assessment standard is adopted

to generate feedback value for the performance of a composite team. However, due

to the emergent complexity and characteristics of the complex system, it is difficult to

know exactly which and how each team member contributes to the observed output.

Therefore, in order to understand and predict the behaviour of a composite team, it

is necessary to analyse the behaviour of the components, and it is also necessary to

analyse how they work together to form the behaviour of the whole.

Two types of team formation strategies for collaborative complex systems were

proposed for scenarios of team formation without predefined workflow structures,

and team formation with predefined workflow structures, respectively. In terms of

team formation without predefined workflow structure, each individual component in a

team operates independently without relying on any prerequisite actions of other team

members. During task executions, individual components may have chances to directly

interact with other team members, so the relationships between the components are

generally more important than their characteristics.

Hence, we propose the Correlated Contribution trust evaluation model to explore

the compositional trust through considering correlations and dependencies among both

skills required by tasks and individual components within collaborative composite teams.
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On the other hand, in terms of a composite team with a particular pre-defined workflow,

the coordination between components and the implementation of the workflow are all

based on an event-triggered mechanism. When a particular event occurs, the workflow

system will let components execute according to pre-defined workflow. Therefore,

we should not only consider the correlation between pairs of components, we should

also take the workflow structure into account. Provenance information is adopted to

capture the workflow structure of composite teams in a standard format. However, the

analysis of provenance information is a complex process which requires rich domain

knowledge and expertise. Hence, we propose an automatic approach, i.e., the SEC

model, to estimate the trustworthiness of proposed candidate composite teams by

analysing historical provenance graph. Based on graph similarities and correlation to

compositional trust values, the SEC model can predict future performance of a proposed

composite team.

For preference systems, we proposed the Community-Based trust estimation ap-

proach to explore the context-specific inter-personalised trust. According to the de-

composable characteristic of complex systems, we organise the preference complex

system as a set of more manageable interrelated subsystems (communities) based on

the density of internal interactions to discover the multi-facet and heterogeneous trust

relationships among users, items and objects in terms of different contextual situations.

In the real world, a particular social entity usually places its trust differently from other

social entities, because of their multi-faceted interests and preferences. Therefore, a

user intends to trust another user’s feedback with respect to one specific item, whilst not

necessarily to another. The Community-Based trust estimation approach can automatic-

ally infer such trust relationships from previous user-generated feedback, and predict

a particular user’s potential feedback for items which the user does not have previous

experience with.
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5.2 Future Works

This research can be extended by engaging in investigations focussing on the following

two directions.

Firstly, future exploration of trust evaluation for collaborative complex systems can

be conducted by focusing on multi-dimensional trust evaluation. Usually, there are

several attributes to adopt to evaluate the performance of a composite team. Furthermore,

with regard to different attributes, in terms of different tasks, the user also has different

priorities. Therefore, multi-dimensional trust evaluation will improve the prediction

accuracy of the potential quality of task completion.

Secondly, in this thesis, the Community-Based trust estimation model is proposed

to explore context-specific inter-personalised trust in the preference complex system.

However, the proposed approach still manages trust information in a centralized manner.

Therefore, future work related to this research could focus on extending the community-

based mechanism to include distributed environments.
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