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Abstract 

This research investigates evolutionary robotics which uses evolutionary computation to 

generate robotic controllers. The majority of research in this field has been primarily 

focused on the use of software genetic algorithms to evolve robotic controllers based on 

artificial neural networks and fuzzy logic. Investigation into other forms of evolvable 

robotic controllers however is less studied, thus the focus of this research was to 

investigate and develop new methods of evolving controllers for evolutionary robotics. 

This led to the creation of three novel concepts within this field including the evolution 

of lookup tables for robotic control, the implementation of the robotic simulation in 

hardware for fitness evaluation of individuals, and advances in virtual Field 

Programmable Gate Arrays (FPGAs) for robotic control. 

The innovative utilization of a lookup table for a robotic controller used multi-

dimensional lookup tables that linked the state of the robot obtained from input sensors 

to the required output for the robots actuators in order for the robot to function correctly. 

A population of these tables (chromosomes) were evolved using genetic algorithms. 

Two multi-dimensional lookup table robotic controllers were successfully evolved using 

standard genetic algorithms. 

The novel approach of implementing the robotic simulation in hardware rather than 

software was performed. The time required for a genetic algorithm to evolve a 

successful robotic controller is largely dependent on the fitness evaluation of an 

individual. If the robotic simulation could be performed in hardware then there will be a 

significant increase in performance. It was shown that hardware robotic simulations 

could be constructed with an improvement in evolution completion time of over two 

orders of magnitude greater than that of a software simulation.  

The use of robotic controllers in the form of two virtual FPGAs were evaluated using 

two Cartesian based architectures, a fixed layer and a reducing layer virtual FPGA. The 

configuration bit stream which describes the circuits within the virtual FPGA was 

evolved by a genetic algorithm implemented in hardware. The input sensors of the robot, 

indicating its current state were connected to the inputs of the virtual FPGA, while the 

output was connected to the robot actuators. It was found that both architectures could 

be evolved to produce robotic controllers. 
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1 

Chapter 1 

Chapter 1: Introduction 

The focus of this research was to investigate and develop new methods of evolving 

controllers for evolutionary robotics. Areas that were explored were the use of 

evolvable lookup tables and virtual FPGAs for robotic control, and the development of 

high speed hardware based simulations for fitness evaluations. As a result, two novel 

evolutionary capable robotic controllers, one based in software and the other in 

hardware were developed. A further outcome was the creation of a hardware robotic 

simulation that outperformed a similar software robotic simulation by two orders of 

magnitude. 

Within the field of study known as robotics, the term robot is defined in a multitude of 

ways. For the purposes of this thesis a ‘robot’ is deemed to be an electro-mechanical 

machine which can be programmed to interact with physical objects to perform specific 

actions either semi or fully autonomously. In contrast, a machine such as a mechanical 

pump has little processing control and achieves its task through a simple mechanical 

process. The more an electro-mechanical machine seems to have a purpose of its own, 

the more likely it is to be called a robot as it conveys a sense of intent. As such, a clock 

with its preset motions and inability to adapt to changes in its environment is not 

considered to be a robot, whereas an autonomous car which can sense and react to its 

environment is considered to be a robot. Gregory Dudek [1], the director of the Centre 

for Intelligent Machines at McGill University in Montreal, sets three criteria for robots: 

a) robots need to make measurements of the environment around them, b) they will 

follow a program which makes decisions, and c) they will take actions depending on the 

environment and the robots programmed decisions. 

Robots are utilised for specific purposes within a diverse area of applications such as 

industry (car production, packaging, electronics, transportation of goods within 

warehouses and container ports), agriculture (fruit harvesting, sowing and fertilizing), 

domestic use (vacuuming, lawn mowing and floor polishing), military (unmanned 
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combat air vehicles and unmanned aircraft vehicles), human safety (bomb disposal and 

nuclear handling), and within the healthcare sector (pharmaceutical production, mobility 

scooters and other such support for disabled and elderly people). 

Evolutionary robotics is a sub-field of robotics which uses evolutionary computation to 

generate the controller for the robot. It mimics biological evolution to evolve a robotic 

controller, thus enabling the robot to interact with its environment without the direct 

coding of the robots tasks by human programming instructions. In addition, this enables 

fault tolerant controllers which can adapt to environments that change beyond the 

programmer’s expectations. Evolutionary robotics applies evolutionary computation to 

robotic controllers such as artificial neural networks, fuzzy logic, proportional-integral-

derivative (PID), and evolvable hardware. It can be applied to most robotic systems; 

however the majority of research is focused in the area of autonomous robots that work 

without human intervention in unstructured environments. There are a range of areas 

within evolutionary robotics, such as control of manipulators, path planning, obstacle 

avoidance, behaviour based control and morphogenesis. 

Evolutionary computation is an optimization process that autonomously searches 

through a set of possible solutions to a problem, to find a solution that will adequately 

solve the problem. It applies the complex concepts embedded in the theory of biological 

evolution developed by Charles Darwin wherein a population of organisms, through the 

processes of variation, selection and heredity, evolve and adapt to their environment. In 

the case of evolutionary computation, the population is comprised of solutions to a 

problem which will evolve. Each solution is evaluated and given a fitness rating, and 

the solutions with a higher fitness are retained and used to create new solutions. These 

solutions are often referred to as individuals or chromosomes, while a group of 

solutions is called a population. Chromosomes can be in many forms depending on the 

problem to be solved. Evolutionary computation is used in a diverse range of areas and 

not limited to evolutionary robotics. There are several forms of evolutionary 

computation, one of which is the genetic algorithm, which is discussed in detail in 

chapter two.  

The genetic algorithm is a repetitive process with three parts including a) reproduction, 

where the genetic operators crossover and mutation are used to generate new individuals 

from the surviving population of individuals, b) fitness evaluation, which determines 

how well each individual within the population performs, and c) selection, which is the 
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process that determines which individuals within the population (based on their fitness) 

will survive to the next generation. 

1.1 Research Objectives 

The objective of this thesis was to explore new methods that could be used in 

evolutionary robotics. This led to the investigation into the improvement of two major 

components of evolutionary robotics, these being the robotic controllers themselves and 

the genetic algorithms used to evolve them. This research resulted in three significant 

developments. These included the creation and evaluation of an evolutionary capable 

robotic controller based on a lookup table, an evolutionary capable robotic controller 

based on virtual FPGAs and a hardware based high speed simulation used within a 

genetic algorithm.  

As a result of the above investigations, the following list of research questions arose: 

• Can a lookup table be evolved to function as a robotic controller? 

• Can a virtual FPGA be evolved to function as a robotic controller? 

• Can the genetic algorithm’s simulation be implemented in hardware? 

These questions and the systems used to evaluate them are described in the following 

section. 
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1.1.1 Can a lookup table be evolved to function as a robotic controller? 

The concept of using a lookup table as a robotic controller and configuring their 

parameters using a genetic algorithm was evaluated. Software genetic algorithms were 

developed to evolve two robotic controllers; the first to evolve a controller for a robotic 

mobile inverted pendulum, and the second to evolve a controller for a robotic ball-

balancing beam. In both cases, the heart of the controller was a lookup table. The axes 

of the lookup table were linked to the state of each robot. The parameters within each 

lookup table were the required motor speed and direction needed to control the robotic 

motion.  

In the case of the mobile inverted pendulum, the lookup table was a two dimensional 

array with one axis relating to the pendulum angle, and the other axis relating to the 

pendulum’s angular velocity. The parameters in the lookup table provided the motor 

speed and direction required to keep the pendulum in balance. In the case of the ball-

balancing beam, a three dimensional lookup table was evolved with the first axis 

relating to the ball position, the second axis relating to the ball speed, and the third axis 

relating to the beam position. The parameter at each lookup table location described the 

motor speed and direction required to keep the ball balanced on the beam. The genetic 

algorithm, robotic simulation, and lookup tables were contained within a computer as 

shown in Figure 1-1. 

 

Figure 1-1.  Software genetic algorithm using a lookup table and software simulation based in a 

computer. 
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1.1.2 Can a virtual FPGA be evolved to function as a robotic controller? 

To determine if a robotic controller implemented as a virtual FPGA could be evolved, 

both a hardware genetic algorithm and a virtual FPGA were designed and constructed. 

The virtual FPGA was used as a robotic controller whose task was to balance a ball on a 

beam. The virtual FPGA was evolved by performing a genetic algorithm on its 

configuration bit stream. The virtual FPGA was a hardware circuit that was specifically 

designed to suit the evolutionary process and could be created within a FPGA. A 

hardware genetic algorithm was created which was capable of evolving the 

configuration bit stream of the virtual FPGA. The virtual FPGA, hardware GA and 

NIOS processor were contained inside a FPGA, with a communication link to a 

computer as shown in Figure 1-2. The computer was used for data logging and 

graphical display of the ball and beam. The virtual FPGA was custom designed to suit 

evolution and replicated an ‘ideal’ FPGA. Due to limited FPGA resources, the hardware 

genetic algorithm used the mutation genetic operator without the crossover operator. 

The robotic simulation was executed on a NIOS processor located inside the FPGA. 

The virtual FPGA was connected to the robotic simulation output states via a 32 bit bus, 

sending the desired motor speed to the simulated beam motor. As well as executing the 

robotic simulation, the NIOS processor controlled the actions of the hardware genetic 

algorithm. The robotic platform that was used to evaluate the virtual FPGA and 

hardware genetic algorithm was the ball-balancing beam. 

 

Figure 1-2.  System interconnections for the virtual FPGA and a hardware genetic algorithm 

located inside a FPGA. 
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1.1.3 Can a simulation used for a genetic algorithm be implemented in hardware 

and benefit the evolutionary process? 

The process that consumes the most time within a genetic algorithm is fitness evaluation 

of individuals within a population. Any increase in speed in this process would 

significantly reduce the time taken for a genetic algorithm to reach a suitable solution. 

The fitness evaluation is normally performed using a robotic simulation executed on a 

computer with the simulation’s mathematical calculations performed sequentially. 

Alternatively if the simulation could be implemented in hardware with its associated 

parallelism rather than executed in software, the mathematical calculations could be 

performed in parallel giving an associated improvement in performance with a large 

improvement in the speed of the fitness evaluation. To investigate this question, a 

comparison between an integer simulation running on the NIOS processor and a 

hardware simulation was performed as shown in Figure 1-3. 
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Figure 1-3.  System interconnections for the hardware simulation and a software simulation 

running on a NIOS processor both located in an FPGA. 
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1.2 Publications 

A range of material generated from this thesis has been published in peer reviewed 

international conference, book chapters and journal articles: 

1.2.1 Conference Papers 

• M. Beckerleg, J Collins, "A GA based Controller for a  Mobile Inverted 
Pendulum," in ICARA The Third International Conference on Autonomous 

Robots and Agents Palmerston Nth, New Zealand, 2006. (Contribution MB 80% 

JC 20%) 

• M. Beckerleg, J Collins, “Evolving Electronic Circuits for Robotic Control” in 
Mechatronics and Machine Vision in Practice, 2008. M2VIP 2008. 15th 

International Conference on, 2008. (Contribution MB 80% JC 20%) 

• J. Currie, M. Beckerleg, and J. Collins, "Software Evolution Of A Hexapod 
Robot Walking Gait," in Mechatronics and Machine Vision in Practice, 2008. 

M2VIP 2008. 15th International Conference, 2008. pp. 305-310. (Contribution 

JC 50% MB 25% JC 25%) 

• M. Beckerleg, J. Collins, “Using a Hardware Simulation within a Genetic 
Algorithm to evolve Robotic Controllers” in International Conference on 

Intelligent Automation and Robotics (ICIAR'11) 2011. (Contribution MB 90% 

JC 10%) [Recommended best paper award and journal publication]. 

• M. Beckerleg, J. Collins, “Evolving a Three Dimensional Look Up Table 
Controller for a Curved Ball and Beam System” in International Conference on 

Intelligent Automation and Robotics (ICIAR'11) 2011. (Contribution MB 90% 

JC 10%) [Recommended best paper award and journal publication]. 

1.2.2 Book Chapters 

• M.  Beckerleg, J. Collins, "An Analysis of the Chromosome Generated by a 
Genetic Algorithm Used to Create a Controller for a Mobile Inverted 

Pendulum," Studies in Computational Intelligence, vol. 76, 2007. (Contribution 

MB 80% JC 20%) 

1.2.3 Journals 

• J. Currie, M. Beckerleg, and J. Collins, "Software Evolution Of A Hexapod 
Robot Walking Gait," in International Journal of Intelligent Systems Technology, 

2010, pp. 382-394. (Contribution JC 50% MB 25% JC 25%) 
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1.3 Thesis Structure 

This thesis is organised as follows: 

CHAPTER 1: This chapter explains the motivation for the thesis, the questions that the 

thesis explores, and an overview of the systems that were developed to test the 

hypotheses. 

CHAPTER 2: An introduction to the four areas of evolutionary computation is provided 

along with an explanation of the concepts of a genetic algorithm. Genetic reproduction, 

selection and fitness evaluation are investigated and the latest research in these areas is 

discussed, with a particular emphasis on robotic controllers. 

CHAPTER 3: This chapter explains the concepts of hardware evolution, describing its 

associated problems and solutions. The use of a virtual FPGA for hardware evolution is 

discussed with a focus on their application in robotic controllers. 

CHAPTER 4: An overview of artificial neural networks and fuzzy logic is provided, 

detailing how they can be adapted for evolution. The evolutionary process is explained 

in terms of evolution of the weights in an artificial neural network, and evolution of the 

rules and classes in fuzzy logic. Examples of robotic controllers are described in both 

cases. 

CHAPTER 5: This chapter reviews current research that utilised the mobile inverted 

pendulum and the ball-balancing beam, with particular focus on the mathematical 

modelling of these devices and the systems used to control them. 

CHAPTER 6: This chapter explains common systems that were developed for this 

thesis. These include mathematical models of the mobile inverted pendulum and ball-

balancing beam, the implementation of the model in simulation, the graphical user 

interfaces for data recording and control, and the data communication protocol between 

computer and FPGA. 

CHAPTER 7: A description is provided of how two robotic controllers based on lookup 

tables were created and evaluated for their evolutionary capabilities. The associated 

problems and solutions are described and the results presented. 

CHAPTER 8: This chapter explains how a virtual FPGA was designed and evolved for 

the controller of the ball-balancing beam. A description is provided about the hardware 
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genetic algorithm and the virtual FPGA that were used in the evolutionary process. 

Experimental results are presented. 

Chapter 9: A description is provided of how a simulation’s performance could be 

increased by moving its mathematical equations from software to hardware. Identical 

simulations were created in both software and hardware and their performance 

evaluated. 

CHAPTER 10: Conclusions are drawn and future research potentials identified. 
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Chapter 2 

Chapter 2: A Review of Software Genetic Algorithms and their use in 

Evolutionary Robotics 

Evolutionary computation is used to solve combinatorial optimization problems. Based 

on Charles Darwin’s biological theory of evolution, it utilizes an iterative process 

wherein populations of individuals evolve to best suit their environment. Evolutionary 

computation is employed to autonomously search through a sequence of possible 

solutions to a problem to eventually find a solution that will adequately solve that 

problem. It will not however necessarily find the optimum solution.  

To briefly summarise the tenets of biological evolution: there exist populations which 

are groups of individuals of a species. Each individual possesses a genome which 

consists of chromosomes which in turn contain a large number of genes. These genes 

encode for, or control, inherited traits. The complete genome for an individual is known 

as its genotype; the complete set of observable traits its phenotype. Individuals mate and 

reproduce offspring thereby transmitting traits from one generation to the next. During 

the process of reproduction specific mechanisms such as natural selection, genetic 

mutation, genetic recombination or gene flow enable genetic variation or change. Any 

change that enhances the individual’s traits becomes and remains more common in 

successive generations of a population. More offspring are produced than the 

environment can support and these offspring vary in their ability to survive and 

reproduce. As a result, competition for survival and reproduction ensues. Individuals 

with favourable traits which are best adapted to their environment possess, in 

evolutionary terms, greater ‘fitness’; as such, they are able to survive, reproduce and 

transmit their genetic characteristic in increasing numbers to succeeding generations. 

Over time, these ‘fitness’ traits become dominant within the population. 

This biological process of evolution is replicated in evolutionary computation where the 

chromosome may describe engineering or commercial parameters such as an aircraft’s 

landing schedule. Changing the chromosome will modify the landing schedule, and by 
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applying an evolutionary process to the chromosome, the landing schedule will evolve. 

Evolutionary computation is used in a wide range of commercial applications such as 

scheduling, bio-computing, economics, financial market analysis [2], 

telecommunications, imaging, integrated circuit design and drug design. Evolutionary 

computation consists of four broad areas: genetic algorithms, genetic programming, 

evolutionary strategies and evolutionary programming. 

2.1 Evolutionary Computation Techniques 

2.1.1 Genetic Algorithms 

The interest in genetic algorithms began in the 1960’s due to the work of John Holland 

[3, 4]. Holland’s principal aim was to increase the understanding of the natural 

evolutionary process, and to use these techniques in the design of man made systems.  

Genetic algorithms are used to find solutions to a problem using natural selection as a 

search engine, for example, the problem could be to create an aircraft landing schedule 

at an airport. They act on a population of individuals or chromosomes. Within this 

population, these chromosomes are potential candidate solutions to the problem needing 

to be solved. Chromosomes are comprised of various forms such as bits, numbers or 

parameter sequences, depending on the problem.  

The genetic algorithm is iterative and is comprised of three main processes: 

reproduction, fitness evaluation and selection. 

• Reproduction is the generation of offspring from the surviving population of 

individuals or chromosomes. Reproduction uses two genetic operators: 

crossover, where chromosomes are exchanged between parents, and mutation, 

where parts of the parents’ chromosomes are randomly altered. 

• Fitness evaluation determines how well each individual or chromosome in the 

population performs as a potential solution to the problem. 

• Selection determines which individuals or chromosomes within the population 

will survive to the next generation based on their fitness.  

The steps in a genetic algorithm are shown in Figure 2-1. Initially, a random population 

of chromosomes (candidate solutions) is generated. The population of chromosomes is 

then used to produce offspring by combining the chromosomes of the parents using 

crossover and mutation (reproduction). Each new chromosome is then evaluated to 
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determine how well it solves the assigned problem, and subsequently a fitness rating 

(fitness evaluation) given. The chromosomes with the best fitness are kept (selection) 

and used to create new offspring. The processes of reproduction, fitness evaluation and 

selection are repeated until the required fitness is reached or a set number of generations 

have been completed. 

 

Figure 2-1.  Flow chart describing the genetic algorithm process. 

Two examples of using a genetic algorithm to create a solution to a problem are 

provided. The first example uses the classic Travelling Salesman non-deterministic 

polynomial as the problem to be solved. The second example shows how a genetic 

algorithm can be used to generate a nurse work roster. 

Travelling Salesman 

The travelling salesman wishes to visit ten cities in New Zealand as listed in Table 2-1. 

The salesman wants to visit each city only once and then return home. The task is to 

find the shortest route he can take for his journey. The candidate solutions 

(chromosomes) will be a list of numbers with each number representing a city. The 

sequence that the numbers appear in the chromosome is the order that the cities will be 

visited. One possible chromosome would be [10, 2, 8, 6, 5, 1, 4, 9, 7, 3]. The fitness 

level would be judged on which chromosome described the shortest distance that the 

salesman would be required to travel. 
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Auckland 1 Rotorua 6

Hamilton 2 Tauranga 7

Wellington 3 Whangarei 8

Christchurch 4 New Plymouth 9

Dunedin 5 Invercargill 10  

Table 2-1.  List of cities and their associated numbers to be visited by the travelling salesman. 

This problem is referred to as a non-deterministic polynomial as it is difficult to know if 

the best solution is found since the number of possible solutions is so large. The number 

of possible solutions to this problem is the factorial of the number of cities. This number 

will rapidly increase as the number of cities visited by the salesman also increases. The 

number of possible solutions or chromosome permutations is referred to as the search 

space. In this example, the search space is factorial 10 which gives approximately 3.6 

million solutions. If 50 cities were visited, the search space would expand to 3x10
64
.  

Due to the reproduction process of crossover and mutation, it is possible that the new 

offspring will be damaged as the chromosome may contain the same city twice, or it 

might not include all the cities. Thus, after each reproduction cycle, the new 

chromosome needs to be checked and repaired if found to be damaged. 

Nurse Roster 

The second example uses a genetic algorithm to generate a nursing roster for nurses 

working twelve hour shifts at a hospital. The two variables involved are the nurses 

themselves and the times that they are required to work. The chromosome would be a 

sequence of letters where the letter represents the nurse, while the order within the 

sequence indicates the time they are required to work. In this example, there are five 

nurses, Sarah (S), Mark (M), Bronwyn (B) Ricky (R) and Terry (T). The times that the 

nurses are required to work are shown in Table 2-2. A possible chromosome would 

appear as [B, R, S, M, T, B, R, S, M, T, B, R, S, M]. 

Position in 0 1 2 3 ……………… 12 13

chromosome

Time Monday Monday Tuesday Tuesday ……………… Sunday Sunday

7am-7pm 7pm-7am 7am-7pm 7pm-7am 7am-7pm 7pm-7am  

Table 2-2.  An example of a chromosome for the nurse roster. 

The fitness evaluation would be determined by how well the chromosome met the roster 

criteria. This criteria would depend on the rostering requirements, for example, a nurse 

could not work more than one 12 hour shift in a day, a nurse could not work more than 
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three shifts per week, and it would be preferred that the nurses work three day shifts or 

three night shifts in a row. A more advanced fitness evaluation would allow nurses to 

request days or weeks off for scheduled holidays. In this case, although a chromosome 

might be poor, no newly generated offspring would be illegal, and thus chromosome 

repair would never be required. 

2.1.2 Genetic Programming 

Genetic programming was initially developed by John Koza [5]. This process is similar 

to a genetic algorithm except the chromosome is a computer program rather than a 

possible solution as used in a genetic algorithm. Thus genetic programming is used to 

evolve a computer program. The program is represented as a tree structure with the 

branches of the tree representing the functions of the program, while the leaves on the 

branches represent the variables and constants. It is this tree structure that is altered by 

the evolutionary process. The fitness is evaluated by running the program to see how 

well it performs.  

Figure 2-2 shows how an original program ((x+1)(y+1)) + ((x-2) + (y-2)) can be 

represented in a tree structure. The variables and constants are listed on the bottom of 

the tree with the arithmetic operators in the branches. In this example x and one are 

added together, y and one are added together then these two branches are multiplied to 

give (x+1)(y+1). Similarly, 2 is subtracted from x and 2 is subtracted from y. These two 

branches are added to give (x-2) + (y-2). It is this tree structure that is evolved 

producing a new program for each generation. 

 

Figure 2-2.  Diagrammatical representation of a tree structure in genetic programming. 

2.1.3 Evolutionary Strategies 

Evolutionary strategy was developed by Rechenberg [6, 7] and Schwefel [8] at the 

Technical Institute of Berlin. It is designed to solve technical optimization problems 
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(initially wind tunnel experiments) where the individuals represent the phenotype 

(characteristics) of the object to be optimised. These individuals are real numbers and 

are evolved using the same operators as a genetic algorithm (crossover and selection). 

The amount of mutation is however determined by a Gaussian distributed random value. 

In general, evolutionary strategies use an adaptive mutation rate, where the mutation 

rate was part of the chromosome and has a possibility of changing after each generation. 

If the offspring has a better fitness it will replace the parents.  

2.1.4 Evolutionary Programming 

Evolutionary programming was developed by Fogel et al. in the early 1960’s [9, 10] 

primarily as a way of achieving artificial intelligence through evolution, but has since 

been used for optimization problems. The term evolutionary programming came from 

initial experiments where a population of finite state machines were evolved to describe 

the behaviour of a software program. Later, these individuals were extended to real 

problem domains such as real-value vectors, ordered lists, trees or finite state machines. 

The evolutionary process uses only the mutation operator as the crossover operator is 

not normally used. 

2.2 Fitness Landscape 

The fitness landscape is a graphical representation showing the fitness of all possible 

combinations of chromosomes. It is a two dimensional graph with the fitness 

represented on the Y-axis and all possible chromosomes represented on the X-axis as 

shown in Figure 2-3. The size of the fitness landscape is proportional to the size of the 

chromosome, with a larger chromosome having a larger fitness landscape.  

Possible solutions or successful chromosomes are known as maxima on the graph. Most 

problems will have multiple maxima. The fitness of chromosomes between maxima is 

non linear, thus the fitness landscape becomes a succession of peaks and troughs. As the 

chromosomes evolve, they will move up the fitness landscape towards a maximum. 

However, they will often move to peaks known as local maxima, where an 

improvement in fitness is found, but not a final solution. The evolution may come to a 

halt at local maxima, unless the selection and reproduction process can move the 

chromosome into the adjacent trough and up to the next peak.  
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In Figure 2-3, points A and B are local maxima with C being the optimum solution. The 

arrows indicate the evolutionary direction as the population moves from a very low 

fitness value to the top of a peak. In order for a chromosome to move beyond the  local 

maxima at A, a large diversity in the population is required which is dependent on the 

type of selection process used, and a mutation rate high enough to allow the 

chromosomes to move down the trough and up the adjacent peak. 

 

Figure 2-3.  Graphical representation of the fitness landscape. 

Figure 2-4 shows how the selection process retains the chromosomes with the higher 

fitness, thus the fitness moves up the fitness landscape. The function of the mutation 

process is to prevent the chromosomes from becoming trapped at local maxima. The 

level of mutation required to move the chromosome beyond local maxima can be 

calculated from the hamming distance. The hamming distance describes the minimum 

number of changes required within the chromosome to move from the peak of the local 

maxima to the adjacent trough. 
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Figure 2-4.  Fitness landscape showing the hamming distance from the local maxima. 
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2.3 Genetic Reproduction 

The genetic algorithm has three processes: reproduction, fitness evaluation, and 

selection. The reproduction techniques crossover and mutation are used to alter the 

chromosome as demonstrated in this section. The following examples relate to the 

travelling salesman problem where the chromosome is configured for ten cities. The 

initial parents are shown in Figure 2-5. 

 

Figure 2-5.  The initial chromosome for a travelling salesman ten city journey. 

 

2.3.1 Crossover 

Crossover is a method that is used to split and “recombine” the chromosomes from two 

or more parents into one offspring. The standard crossover algorithms are described 

below. 

Single-point crossover: A point at random in one parent’s chromosome is chosen and 

the parameters in the chromosome after this point are swapped with the parameters of 

the other parent’s chromosome. This process creates an offspring with a combination of 

both parents’ chromosomes as shown in Figure 2-6. Note in this case the resultant 

chromosome (child) is invalid as the same city (9) occurs twice within it. This 

chromosome will need to be repaired (repaired child), so that it becomes valid. The 

disadvantage to single point crossover is that both the beginning and end of one parent’s 

chromosome may contain good properties but cannot both be passed to one offspring 

because only the first or last part of any parent will be transferred to the offspring.  
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Figure 2-6.  An example of a chromosome after single point crossover. 

Two-point crossover: Two points in the chromosome are randomly chosen and the 

chromosomes inside these two points are swapped between the two parents’ 

chromosomes, as shown in Figure 2-7. This is considered to be a better technique than 

single-point crossover as it overcomes the problem that the single-point crossover has in 

not being able to transfer the first and last part of its chromosome. 

 

Figure 2-7.  An example of a chromosome after two point crossover. 

Multiple-point crossover: Multiple points are chosen at random and the chromosomes 

between these points are exchanged as shown in Figure 2-8. The advantage of this 

technique is that the search space can be more thoroughly explored; however, sequences 

or building blocks within the chromosome may be destroyed as good sequences within 

the chromosome may be split. 
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Figure 2-8.  An example of a chromosome after multiple point crossover. 

Uniform crossover: Each parameter within the parents’ chromosome will have a 50% 

probability of being passed to the offspring as shown in Figure 2-9. Although it can be 

disruptive, to the chromosome uniform crossover has a strong bias towards exploration 

of the search space. This method is particularly useful if the population size is small as 

it produces a high variation between parents and offspring, due to the chromosome 

being altered across its complete range. 

 

Figure 2-9.  An example of a chromosome after crossover uniform. 

There are many other methods of crossover such as a) arithmetic, where an arithmetic 

crossover operator is applied to the two parents to form an offspring, b) heuristic 

multiple parents using diagonal crossover and scanning crossover [11], and c) multiple 

parents using polynomial and lognormal distribution[12]. 

2.3.2 Mutation 

Mutation is a reproduction method that operates on a single chromosome. It is a random 

process and has a low probability of occurring which is typically between 0.1 to 2 

percent. Its purpose is to increase the diversity of the population. There are many 

mutation techniques, some of which are described in this section. 
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Insertion Mutation: A random point within the parent’s chromosome is selected and 

randomly altered. A variation of insertion mutation is creep mutation, where the 

parameter that is to be mutated will be replaced with a value that is within a percentage 

range of the original parameter rather than with a random value. 

 

Figure 2-10.  An example of a chromosome after insertion mutation. 

Inversion Mutation: Two random points are selected in the parent’s chromosome and 

the parameters between the selected points are inverted. This mimics a naturally 

occurring biological mutation. 

 

Figure 2-11.  An example of a chromosome after inversion mutation. 

Exchange Mutation: Two random points are selected in the parent chromosome and 

the parameters at that point are swapped. 

 

Figure 2-12.  An example of a chromosome after exchange mutation. 

Displacement Mutation: Two random points are selected, and the parameters between 

these points are moved to a randomly selected part of the chromosome.  

 

Figure 2-13.  An example of a chromosome after displacement mutation. 
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In general it has been found that the mutation rate should be high to begin with but then 

should be reduced as the evolution approaches a high fitness. Muhlenbein [13] studied 

bit-string chromosomes and found that as more bits within the chromosome string were 

correct, the probability of a mutation producing a better offspring decreased. Conversely, 

when more bits within the chromosome string were correct, the probability of crossover 

producing a better offspring increased. It was found that if a constant mutation rate was 

used, then the optimum mutation rate was 1/L where L was the bit string length. The 

use of the mutation operator has normally been performed in conjunction with the 

crossover operator. However, there are algorithms which use the mutation operator only. 

2.4 Genetic Selection 

Genetic selection is the method used to select which offspring will be kept to become 

parents for the next generation. Its purpose is to move the population to a higher fitness 

level. Genetic selection uses the fitness value of each offspring to determine if it will be 

retained. Each offspring is evaluated and given a fitness, which is used by the selection 

process. The selection pressure is an important parameter in genetic selection. The 

selection operator has a high selective pressure if it severely reduces the difference 

between individuals or a low selective pressure if it allows many different individuals to 

survive. A low selection pressure will have a slow rate of convergence to the optimum 

solution and can possibly stagnate, whereas a selection pressure that is too high may get 

trapped at local maxima due to loss of diversity. The choice of which selection method 

to use is dependent on what type of problem is to be solved. For instance, proportional 

selection, linear ranking and tournament selection have a comparative selection pressure 

that increases in the order listed [14]. Genetic selection depends on a range of variables 

such as selection pressure, loss of diversity, bias, selection variance, selection intensity, 

and takeover time. 

• Selective pressure: is the ratio of the probability of the best individual being 

selected, to the average probability of selection in all individuals within the 

population. It indicates the population diversity after the selection process. If the 

selective pressure is too small, then little or no improvement in the population 

fitness may occur; if the selective pressure is too high, it is possible to get 

premature convergence with the individuals centred on a local maximum. 

• Bias: is the probability that an individual with a relatively high fitness will be 

retained after selection. 
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• Loss of diversity: reflects the reduction of diversity of the individuals within the 

population due to the selection process. 

• Selection intensity: defines the population’s expected average fitness after the 

selection process has been applied. A sign of loss in diversity in a population is 

when the population has a high average fitness. 

• Selection variance: reflects the change in the population’s fitness distribution 

compared to the normalized Gaussian distribution after the selection process. 

• Take over time: is the time taken for the complete population to be replicated 

with the best individual. 

2.4.1 Selection Schemes 

There are many different selection methods each with its own advantages and 

disadvantages in both selection pressure, and maintenance of diversity. Some of these 

schemes are described in the next section. 

Fitness proportionate selection 

This is a probability based selection method where the chance of an individual being 

selected is dependent on its fitness divided by the average fitness of all individuals. An 

individual with a higher fitness therefore has a higher chance of being selected. This 

method of selection can be illustrated by spinning a roulette wheel or turning a 

stochastic universal sampling wheel as shown in Figure 2-14. Although individuals with 

a higher fitness have more numbers on the roulette wheel and thus have a better 

opportunity to be selected, poor individuals still retain a chance of being selected.  

Roulette Wheel

wheel spun five times

Roulette Wheel

wheel spun five times Stochastic Universal Sampling

wheel spun once

Stochastic Universal Sampling

wheel spun once

 

Figure 2-14.  Pie graph showing the operation of roulette wheel and stochastic universal sampling 

selection. 
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In the roulette wheel sampling technique, the wheel is spun repeatedly, and an 

individual is chosen on each spin until the required number of offspring is achieved. In 

contrast, stochastic universal sampling requires only one spin of the wheel, with 

multiple selection points evenly spaced, with the starting point being selected at random. 

Fitness-proportionate selection over several generations maintains diversity in its 

population and produces a fast increase in fitness of the best individuals although the 

average fitness is slower to increase. 

Rank-based selection 

Rank-based selection uses a process similar to the roulette wheel; however, each 

individual is given a fitness rating that is dependent on its rank within the population 

rather than its absolute fitness. After ranking, the fitness will range from one to the 

population size.  

All individuals will have a different rank, even if they have the same fitness level, 

therefore every individual will have a different probability of selection. This effectively 

introduces a uniform scaling, and controls selective pressures, i.e. selection pressures 

are reduced when the fitness variation is high and increased when the fitness variation is 

low, thus preventing one individual from dominating the selection process. 

Rank-based selection can be linear or exponential [15]. Rank-based selection provides a 

simple way of controlling the selective pressure. In the pie graphs shown in Figure 2-15, 

one individual dominates with fitness at 50%; however after ranking, this individual has 

only a slightly better chance of being selected than the second or third ranked individual. 

 

Figure 2-15.  Pie graph showing the selection chance in rank based selection. 
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Tournament selection 

This selection process divides the individuals within the population into subgroups, and 

within every generation the best individual in each subgroup is retained. The subgroups 

can vary in size from two or more individuals. The larger the subgroup size, the greater 

the selection pressure. With this method, the individuals with the highest fitness are 

generally selected; however, some low fitness individuals will also be retained 

maintaining diversity in the gene pool. Tournament selection is a favoured technique for 

hardware evolution as it is efficient, easy to implement and capable of parallelization.  

Microbial Genetic Algorithms 

Microbial genetic algorithms [16] is a specialized form of tournament-based selection 

which seeks to improve the efficiency of a standard tournament selection. Instead of 

generating and evaluating a new population in one step, a microbial genetic algorithm 

selects two individuals in a population at random. These two individuals are used to 

generate a new offspring which will replace one of the least fit parents within the 

population, as shown in Figure 2-16. This is known as a steady state, rather than a 

generational population.  

 

Figure 2-16.  Pictorial sequence of operations in microbial selection. 

This algorithm is useful for evolvable hardware as it is simple to implement. An 

example of its implementation was the evolution of a hardware controller by Okura et 

[17] for a Kephera robot for obstacle avoidance using a microbial genetic algorithm 

which acted on the configuration bit stream of a Xilinx XC6216 FPGA. 
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Elitist selection 

Elitist selection allows a limited number of the fittest individuals to go through to the 

next generation without modification by the crossover and mutation operators. This 

ensures that the maximum fitness is never lost by the destruction of the best individuals. 

However, a high number of elite individuals will cause a loss in population diversity. 

Elitism is often used in conjunction with other selection schemes. 

Scaling selection 

Scaling selection changes its selective pressure of the population as it evolves. Initially, 

the selection pressure is low allowing a wide range of individuals to survive to the next 

generation, but as average fitness increases, the selection pressure increases reducing 

the number of individuals who will survive. Thus, as the average fitness of the 

population increases, the selection pressure increases. Scaling selection initially has a 

low selection pressure but as the fitness of the individuals reaches an advanced level, 

the selection process becomes more discriminating. This method can be used as part of 

the fitness proportionate schemes previously discussed, changing their selection 

pressure from a constant to a scaling factor. If the selection pressure is too high to start 

with, convergence is faster; however the population diversity is quickly lost and the 

process may be trapped at a local maximum. Several methods are able to determine the 

scaling: linear scaling, sigma scaling, windowing [18] and relative fitness [19]. 

Generational selection 

Generational selection mimics a real life situation where no parents are retained and the 

best offspring are passed on to the next generation. 

Steady state selection 

In this process, a large percentage of the existing population will be kept after the 

selection process. Only a few of the best new offspring are retained to replace a small 

number of the worst existing population. 

Hierarchical selection 

Selection occurs multiple times within each generation; the first selections are simple 

and fast, eliminating many of the weaker offspring. The selection process then becomes 

more complex as the offspring numbers are reduced. This speeds up the overall 

selection process as the initial selection process takes less time.  
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Fitness Uniform Selection  

Fitness uniform selection [20, 21] has a selection pressure that favours individuals in 

sparsely populated fitness regions, rather than directly selecting an individual with high 

fitness. The selection method finds the highest (fmax) and lowest (fmin) fitness in the 

population. A random value is generated from a uniform distribution between the values 

of fmax and fmin and the individual with the fitness nearest this value is selected. Fitness 

uniform selection will have a higher selection pressure with a population of average 

poor fitness, and a lower selection pressure with a population of average high fitness. 

The norm being a population with only a few fit individuals, however, only one fit 

individual is required and there is a high diversity kept in the population. 

Island Model 

This model is suited for parallel applications typically found in FPGA’s where multiple 

genetic algorithms can be run simultaneously. It uses subpopulations on separate islands 

which are evolving in parallel, on parallel genetic algorithm machines. Periodic 

migration occurs where individuals are exchanged between subpopulations from the 

different islands. Thus, if the total population was Ttotal, and the number of islands was 

Iisland the subpopulation of each island is Isubpopulation = Ttotal / Iisland, where the total 

population is divided equally between islands. Two important parameters in the island 

model are migration size, which is the number of individuals that will be transferred 

when migration occurs, and migration interval, which is the number of generations that 

occur between migration [22]. 

2.5 Fitness Evaluation 

2.5.1 Simulation 

Using a genetic algorithm to evolve a robot controller is difficult due to the complexity 

of the robot’s actions and how it interacts with its environment. The robotic controllers 

used for this process have a large search space which the genetic algorithm needs to 

explore and thus large numbers of generations are required before a suitable controller 

can be evolved. This is time consuming if performed in real time on an actual robot, and 

potentially damaging to the robot and its environment. To overcome this problem, 

evolutionary robotic genetic algorithms are normally performed using software 

simulation of the robot. Once a suitable solution is found, it can be transferred to the 

actual robot. Simulation allows a rapid increase in the speed of evolution, however, 
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creating a simulation for a robot means modelling the real world which can never be 

entirely accurate, thus the final solution will carry with it the flaws in the simulation.  

2.5.2 Simulation Methods 

There is a sequence of steps that are required in order to create a simulation of a robot. 

These are described below; 

Create the simulation from the robot itself: Record empirical data of the sensors and 

actuators of the robot in real parts of its working environment to refine the model of the 

simulation. For example, Lund and Miglino [23] created a simulation of a Kephera 

robot by moving it through a maze, noting the activation of its sensors and also the 

motor settings and how they affected the actual motors. By using this simulation, a 98% 

reduction in time was achieved against a real life adaption. When the evolved controller 

was transferred to the real environment, no drop in fitness was noted. 

Introduce noise into the simulation: Once the initial simulation is developed, noise 

can be introduced into its inputs (sensors) and outputs (actuators) to more accurately 

represent a real life environment. The difficulties matching a simulation to the real 

world are numerous. Real-world sensors often do not give accurate readings, have 

uncertain responses and will vary between sensors themselves, whereas actuators do not 

react precisely to their input signals, have response times,  and other physical traits such 

as friction, inertia and wear. Some of these can be included in the mathematical models, 

however, not all discrepancies can be accounted for. Some of these discrepancies can be 

overcome by adding noise to the robot properties. Jakobi et al. [24] demonstrated that 

when the noise level in the simulation was similar to the noise level in reality, an 

evolved controller was more likely to work. 

Validate the simulation: After the simulation has been completed, it must be tested 

and its responses compared to that of the real robot for validation [25]. The simulation 

should receive only the information that the real robot receives. 

Methods to overcome the inaccuracies of simulations can be used. These include 

carefully modelling the parameters of the robot, taking empirical data of the input 

sensors and characteristics of the activators, and taking into account noise on the inputs. 

The problem is that a simulator can create an environment that is too clean. 
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There needs to be final adaptation or evolution in the real world; thus transferring the 

controllers to physical robots is a major challenge. 

2.5.3 Types of Simulation  

Simulation of robotic actions: A robot simulation can be based on a set sequence of 

actions that the robot must perform to obtain the desired outcomes, for instance, moving 

an arm to a weld joint and then activating the welder is a task a robot in a car 

manufacturing plant would perform. 

Simulation of robotic behaviours: The robot simulation can be based on a set of 

behaviours which the robot may display, with a range of abilities ranging from low to 

high behaviour. Low level behaviours may be simple movements such as move forward, 

turn or move backward. These are represented as behaviours and these behaviours are 

evolved. A high level behaviour will involve purpose, such as interaction with the 

environment such as moving out of the path of an obstacle. Three processes for 

evolution of behaviour are: a) the primitive phase, which uses mutation to create a wide 

range of behaviours; b) breeding, which uses crossover to refine behaviour; and c) 

competition, which tests behaviours in the real world. These processes are then repeated 

[26].  

2.5.4 Continuous Evolution  

Continuous evolution is also referred to as life long adaption or punctuated anytime 

learning. Continuous evolution has two stages, the initial evolution stage where a 

controller is evolved in simulation, and a lifelong adaption stage where the controller 

continuously evolves as the robot is being operated. This allows the robot to adapt to a 

change in its environment, such as wear in an actuator. This method requires the 

evolution process to operate relatively quickly so that a new solution can quickly be 

found if a fault suddenly occurs. Although the physical robot is using the best 

chromosome, it still contains a population of chromosomes. The simulation and genetic 

algorithm are continuously running inside the actual robot modifying the chromosomes 

in the population. The evolution can be paused at anytime and a new best solution 

uploaded to the robotic controller. As long as the population continues to improve, it is 

possible to improve the model of the simulation. This is achieved by dynamically 

updating the simulation itself based on the environment and current state of the robot. 
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Thus, if some damage occurs to the robot, it can model this in the simulation and evolve 

a controller that best suits this change in the environment [27-30]. 

2.6 Chromosome Data Types  

Robotic controller’s chromosomes have a wide range of data types that a genetic 

algorithm can be executed on. Some of these are listed below: 

• Evolution of coefficients within a formula: Capi et al. [31] evolved a 

controller that was used to provide trajectory information for a prismatic joint. 

They did this by generating specific X, Y co-ordinates that the robot’s foot 

would travel through and to. The formula contained real number coefficients 

which were the chromosomes that were evolved. 

• Evolution of a lookup table: This was used by the author, Beckerleg et al. [32-

34], where a lookup table was evolved for a robotic controller designed to 

balance an inverted mobile pendulum. 

• Evolution of behaviours: Thomaz et al. [35] used a chromosome comprised of 

a group of behaviours for the navigation of a robot. These behaviours were basic 

robotic actions such as forward, backward, left or right. The evolved controller 

was not locked into one environment i.e. it was able to adapt to a new obstacle 

course. The robot’s behaviours were influenced by its current location which 

was determined by its infrared proximity sensors and its desired direction 

towards its goal. 

• Evolution of artificial neural networks: The weighting coefficients of an 

artificial neural network can be evolved for robotic control. These are described 

in chapter four. 

• Evolution of a binary tree: This is often used for robotic path planning [36]. In 

this case, the path is represented as a set of angles which are stored in a binary 

tree, with each node in the tree representing the angle that two path segments 

can take. Note a binary tree is a data structure where each node has a maximum 

of two possible branches. The tree itself is represented as an array of angles, 

with the array indices relating to the position on the binary tree as shown in 

Figure 2-17. 
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Figure 2-17.  An example of a binary tree structure. 

• Evolution of integer numbers: Ahuactzin et al. [37] used a population of 

individuals comprised of two eight-bit variables concatenated together into an 

integer to create a path plan for a robot so that it could move an arm with two 

degrees of freedom around obstacles. The two eight-bit variables described a 

particular configuration of the arm, while the sequence of these variables within 

the chromosome described the path that the robot was to follow. 

• Evolution of lists: This has been used in robotic path planning [38] where each 

list or chromosome represents a path, beginning at the starting point and 

describing the path to the final point. The chromosome represents the path and 

obstacles location of the map that the robot is to transverse.  

2.7 Subsumption 

This type of robotics based on behaviour was first introduced by Brooks [39, 40]. It is a 

method of reducing complex behaviours into simpler layers of behaviour. Each layer 

can use the preceding layers, thus we can start with simple layers of a control system, 

and add a new layer on top in order to move to a more complex control system. Brooks 

started by building a complete robot controller that could achieve basic tasks (layer 

zero). He then built a second layer, the control layer (layer one) which could write and 

read data from layer zero. Layer zero ran unaware of layer one but layer one was now 

able to provide more complexity to the designated tasks. The same process could be 

repeated as the complexity increases. The interaction between layers in subsumption 

was either by way of passing messages, or by using suppression or inhibition methods. 

Brooks used the subsumption architecture in order to navigate a robot through a maze. 

Layer zero was designed so that the robot would not come in contact with an obstacle. If 

an object was in its path, the robot would move out of the way and then halt. Layer one 

was designed to wander around the environment, setting a new direction every 10 

seconds. It is linked to Layer zero to avoid any obstacle in its path. Layer two was 
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designed to explore the environment using vision to find things of interest; it was linked 

to layer one to give new directions, and to layer zero to avoid obstacles. 

Brooks expanded this research to control a six legged walking robot [41]. He used 

augmented finite state machines (AFSM) with registers and timers as the basis for each 

layer. The AFSM lower layers are connected directly to robot hardware, whereas the 

upper layers could write to the control registers of the AFSM below. Brooks then added 

levels of behaviours such as standing up, simple walking where all six legs were 

controlled for motion, force balancing when on uneven terrain, leg lifting to walk over 

obstacles, utilisation of whiskers for obstacle sensing, prowling and steered prowling for 

intelligent roaming. 

Subsumption can be seen at a very high level such as artificial intelligence. Brooks [42] 

describes how this behaviour-based approach can be used to create human behaviours in 

robots. These human behaviours are built upon layers: 1) bodily form, where the robot 

morphology is in human form; 2) motivation, why the robot should react; 3) coherence, 

how the robot switches between tasks; and 4) self adaptation, how the robot changes its 

behaviour with a changing environment.  

2.8 Mutation Only Genetic Algorithms 

The main reproduction operator in a genetic algorithm has historically been the 

crossover operator, with the mutation operator used as a means of maintaining diversity 

in a converging population. As the chromosome is altered mostly by the crossover 

operator, both the mutation rate and the mutation probability are kept at a low level. In 

contrast, other evolutionary computational techniques such as evolutionary strategies 

and evolutionary programming have mutation as the driving force, thus the mutation 

rate and the mutation probability are at a high level. 

An alternative to a genetic algorithm with both crossover and mutation is the use of a 

genetic algorithm with mutation only. Mutation only genetic algorithms have been used 

in both software and hardware genetic algorithms. The main advantage of using a 

mutation only genetic algorithm in hardware-based genetic algorithms is the reduction 

in the hardware resources of the device that implements the genetic algorithm. This is 

because the crossover operator is hardware intensive. 
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2.8.1 Software Genetic Algorithms Using Mutation Only 

Siva et al. [43] used a mutation only genetic algorithm to evolve an image recognition 

algorithm that could identify images such as faces and chess pieces. They developed a 

compact genetic algorithm where only one individual was used, based on a probability 

vector rather than a population of individuals (compact genetic algorithms are described 

in chapter three). These researchers used elitism for the selection method. After fitness 

evaluation and selection, only one individual was kept and mutated to create new off-

spring. Siva et al. [44] compared this genetic algorithm with other compact genetic 

algorithms which used both crossover and mutation on standard mathematical problems 

and found that the mutation only algorithm had a better quality of solutions and 

convergence speed with a smaller population base. 

Zhang and Szeto [45, 46] used a mutation only genetic algorithm based on a matrix to 

solve the classic knapsack problem. There are several variations to this problem, with 

one being that there are a number of objects with a specific weight and value that we 

wish to place into a knapsack that is capable of carrying a maximum weight. We need to 

determine which objects to place in the knapsack to maximize the value that the 

knapsack will contain. To solve this problem, Zhang et al. used a two dimensional (N x 

L) matrix to store a population of individuals. The fitness and locus were also 

incorporated into the matrix. The matrix population was divided into three groups: 

parents, children and randomly generated chromosomes for population diversity. 

Alongside this was a mutation matrix (N x L) giving the probability for mutation. This 

probability could be varied depending on the fitness of the individual, with a high 

fitness having a smaller probability of mutation than that of a low fitness. The actual 

mutation rate was derived from the fitness distribution of the population, making it 

independent of the specific problem the genetic algorithm was solving. This evolution 

compared favourably with standard methods. Zhang labelled the method a ‘mutation 

only genetic algorithm’ (MOGA). 

Shiu and Szeto [47] used a mutation only genetic algorithm to optimise the airport 

capacity of Beijing International airport. The mutation rate was varied depending on the 

fitness of the individual. A chromosome with a high fitness required a low mutation rate 

and was considered to be in an exploitation mode, in which a fit chromosome was 

exploited to optimize its performance. A chromosome with a low fitness required a high 

mutation rate and was in an exploration mode, where the high mutation rate allowed a 
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rapid examination in other areas of the search space. By making use of the locus 

statistics, the worst genes had a higher probability to mutate, thus the mutation rate was 

self adaptive.  

Xia et al. [48] used a mutation only genetic algorithm to search for successful 

investment strategies in a stock market, using the yield of the investment over a fixed 

period to determine the fitness. The chromosome was a set of rules about whether to 

buy, sell, hold or swap a stock relative to the moving averages of that stock quoted in 

the stock market. Historic data from the NASDAQ was used to evaluate the outcome of 

the investment. It was found that the genetic algorithm gave a higher overall return, 

bench marked against investing in one stock. 

Aguirre and Tanaka [49] investigated the effects of selection mutation and drift on 

genetic algorithms on NK fitness landscapes, where N is the number of genes and K 

reflects the interactions between genes. The NK fitness landscape relates the 

interdependency of the genes within the chromosome to the chromosome fitness level. 

The researchers found, under certain values of K, that a mutation only reproductive 

operator performed similarly or better than standard genetic algorithms with crossover.  

Bäck [50] investigated the evolution of bit strings with a mutation only algorithm for a 

range of coding problems. This researcher found that a constant mutation rate of 1/L 

(where L is the bit string length), was sufficient for unimodal functions with only one 

maxima. However, when the function became multimodal with multiple local maxima, 

a variable mutation rate produced a better result. 

Schaffer et al. [51] developed an evolutionary process based on mutation only called 

Naïve Evolution. They compared this algorithm with that of a full genetic algorithm 

which incorporated crossover and mutation, using mathematical functions as a testbed. 

Although the performance of the mutation only genetic algorithm was not as good as 

that achieved by a full genetic algorithm, it did perform well. 

Lau and Tsang [52] created a mutation only genetic algorithm to solve a processor 

network configuration problem. The task was to network a group of computers each 

with a limited number of communication channels. The fitness criteria were based on 

the chromosome which had the shortest maximum distance between processors. The 

crossover operator was not used as it was likely to damage the chromosome with an 

incorrect routing which would have to be repaired at every reproduction stage, and it 
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would also significantly increase the time taken for the genetic algorithm to operate. 

However the mutation only algorithm was designed so that no genetic damage would 

occur. A comparison of the mutation only and a full genetic algorithm was made, and it 

was found that the speed of the evolution process matched that of a conventional genetic 

algorithm process.  

Falco et al. [53] investigated mutation only reproduction operators, focusing on two 

nature based mutations, frame-shift and translocation. These were considered to be 

more powerful than normal point mutation operators. The frame-shift operator was 

based on the actual biological mutation of the nucleotides in a DNA sequence. The 

mutation modified a block of the chromosome and can operate in two modes, delete-

first or insert-first. The operation is explained with the aid of an eight bit parent 

11001001 as shown in Figure 2-18. 

.  

Figure 2-18.  An example of a chromosome after frame shift mutation. 

In this example, a random point in the parent chromosome is picked (bit 2), and a 

randomly chosen block size of three (bits 3-5) is also selected. In the delete-first mode, 

bits 0-1 are directly copied to the offspring (child), and the parent bits 3-5 are copied to 

offspring bits 2-4. Bit 5 of the offspring is filled with a random value (1), and bits 6-7 of 

the offspring are copied directly from the parents. The end result of this process is an 

offspring consisting of 11100101. In the insert-first mode, bits 0-1 are directly copied to 

the offspring, while bit 2 is given a random value, for example 1. Bits 2-4 of the parent 

are then inserted into bits 3-5 of the offspring and bits 6-7 are directly copied giving an 

offspring 11010102. 

The translocation operator divides the chromosome into blocks and transposes a 

segment of a block with that of a second segment and block as shown in Figure 2-19. 
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Figure 2-19.  An example of a chromosome after translocation mutation. 

Falco et al. tested these two mutation forms on a wide range of classical functions and 

found that although mutation only was not as strong as a classical genetic algorithm 

with crossover and mutation, it still produced significantly good results. 

2.8.2 Hardware Genetic Algorithm Using Mutation Only 

Nadav et al. [54] repeated the classic tone discrimination experiment undertaken by 

Thompson et al. [55], using a FPGA with a fine grained architecture for comparative 

studies of various genetic algorithm parameters. They compared the standard genetic 

algorithm using crossover and mutation, with a mutation only reproduction operator. 

They argued that crossover was important in the first stages of evolution when the 

chromosome were more widely spread, but less important as the population diversity 

diminished. The population size was varied ranging from 500, 50, 5 and 1 with the 

results shown in Table 2-3. With a population size of only one individual, the selection 

process still allowed the fitness to evolve. It was noted that the fitness showed most 

improvement in the later stages of the evolutionary process.  

Population size Generations Circuits tested

1 68,000 68,000

5 28,000 140,000

50 5,000 250,000

500 fitness not reached 500,000  

Table 2-3.  The relationship between population size and the number of circuits tested before a 

successful evolution was achieved. 

From these experiments, the researchers found that the evolution of a population of one 

using single-point random mutation alone required the testing of less than half the 

circuits used in larger populations with the use of crossover. 

Zhu et al. [56] created a hardware genetic algorithm called an optimal monogenetic 

algorithm that only required a population of two individuals and used only the mutation 
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operator. They used two interactive search processes to investigate the search space; a 

global search using overlapping regions that were capable of searching through the 

entire search space, and a local search that would examine an area of interest. To 

achieve this, the genetic algorithm selected the best individual within the entire search 

space that had been searched by a local search to date. The second individual selected 

was the best in the local search currently being performed.  

The optimal monogenetic algorithm randomly generates individuals, and evaluates and 

records their fitness replacing the individual if their fitness improves. If the fitness has 

not changed over n generations, a local search is performed using the local best 

individual with a low mutation rate. The local individual will then be replaced if a better 

candidate is found. After n generations with no improvement, the local search is stopped, 

and the local individual will replace the global individual if the fitness is better. This 

process is repeated until there is no variation in the global individual fitness after n 

reiterations. This technique performs well in comparison to the compact genetic 

algorithm using a hardware roulette system, when tested on algorithms that would 

simulate a real world search problem.  

Sekanina et al. [57] created two mutation only hardware genetic algorithms. The first 

was used to evolve gate level multifunctional combinational circuits such as a 

multiplier-sorting network. Multifunctional circuits were designed to alter their 

functions depending on non-logic variables such as supply voltage and temperature. 

Standard methods of logic synthesis were not designed to include these variables; 

however, evolved hardware was affected by variations in voltage and temperature and 

thus could be used in the generation of multifunctional circuits. The genetic algorithm 

had a population size of fifteen and the mutation operator was bit inversion. A linear 

feedback shift register seeded from the computer was used to generate the population. 

The selection process was in steady state, which meant that if the mutated offspring had 

a better fitness than its parent, then the parent would be replaced by the offspring. 

The second mutation only hardware genetic algorithm designed by Sekanina et al. [58] 

was used to evolve three bit multipliers, adders, multiplexers and parity encoders. The 

genetic algorithm initially generated 1024 random individuals which were evaluated for 

fitness with the best four retained to form the starting population. The genetic process 

mutated each chromosome within the population, and if the resultant offspring was 

better than the parent, the offspring would replace the parent. 
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2.9 Evolutionary Robotics and Lookup Tables 

Lookup tables have been used in evolutionary computation in a variety of applications 

such as robotic simulation, cellular automata and FPGA functional elements. However, 

to the author’s knowledge, not as a robotic controller. In conjunction with this thesis, 

the author along with other staff at AUT university investigated the use of evolving 

lookup tables for generating walking gaits for a hexapod robot [59]. The hexapod 

motion was controlled by eighteen servo motors (three on each leg). A two-dimensional 

lookup table (nine by eighteen), as shown in Figure 2-20, described the gait sequence of 

the hexapod. There were nine discrete gait stances linked to the rows, with each gait 

stance detailing eighteen motor angular positions, one for each servo motor on the 

hexapod robot. There were twenty motor angular positions ranging from ±45
0
. A 

simulation of the hexapod was performed in Matlab based on a physical robot 

constructed from a Lynxmotion kitset with each leg having three degrees of freedom 

(pelvic joint, hip joint and knee joint). The fitness was calculated from three conditions: 

the robot walking forward in a straight line, the stability of the body of the robot, and 

the efficiency of the motion, (using the least number of steps). The genetic algorithm 

had a population of 100 lookup tables; the reproduction used two-point crossover with a 

mutation rate of 0.31 percent and the selection method was tournament. It was found 

that a successful gait was evolved within 700 generations.  

 

Figure 2-20.  The lookup table chromosome for the gait of a hexapod robot. 

Lund and Hallam [60] evolved a neuro-controller for a Khepera robot which was 

required to explore its environment and then return home to a light source. The 

simulation of the Khepera robot was implemented as a lookup table of possible sensor 

and motor responses. The lookup table was built from experimentation by placing the 
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robot at set positions in its environment and rotating the robot 360 degrees. The 

response from the light meter was noted and put into the lookup table. A second 

application of using a lookup table as a simulation was performed by Lund et al. [61] to 

co-evolve both robotic shapes (morphology), and their associated control systems based 

on LEGO robot parts. The simulation of the robot and its parts were included in the 

lookup table.  

Chavoya et al. [62] used a genetic algorithm to evolve cellular automata which were 

used to create predefined two dimensional and three dimensional shapes. The 

chromosome evolved by the genetic algorithm was the cellular automata rules which 

defined how the cells would grow. These rules were incorporated in a lookup table and 

the fitness defined by how well the final structure of the cells represented the desired 

shape.  

Greenfield [63] used actual DNA sequences from animals and plants which were 

converted into control sequences in order to drive a robotic simulation used to draw 

motifs. Two lookup tables were used for the chromosome, one that assigned codons (A, 

C, T, G) to robot commands, the second to assign codons that served as arguments to 

these commands. The fitness of each chromosome was evaluated from the motion of the 

simulated robot and the drawings that were produced. 

Krohling et al. [64] evolved the lookup table within a FPGA’s functional element. The 

FPGA was used to control a Kephera robot for navigation and obstacle avoidance. To 

overcome destructive architectures, the routing was kept fixed with only the lookup 

table evolved. The researchers used JBits, (a set of JAVA classes), which enabled the 

researchers to alter the functional elements lookup table without altering the routing, 

thus preventing destructive architectures. 

 

This chapter has summarised the concepts of genetic algorithms, detailing the 

algorithmic process and how it can be applied to robotic controllers, in particular, the 

use of mutation only genetic algorithms was explored. 
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Chapter 3 

Chapter 3: A Review of Hardware Controllers and their use in 

Evolutionary Robotics 

Hardware controllers and hardware genetic algorithms have been used extensively in 

this research. This chapter presents an overview of this topic. Evolutionary computation 

for robotic controllers has been used to evolve software controllers, topology and 

weightings of artificial neural network controllers, and class structures within fuzzy 

logic controllers [65, 66]. It has also been used to evolve digital and analogue circuits 

for robotic controllers using field programmable gate arrays (FPGA) [67] and field 

programmable analogue array (FPAA) devices [68]. FPGAs began as simple logic 

devices used for interfacing between integrated circuits, but now they have sufficient 

resources to create complex circuits including processors and high speed switching 

circuits. As the configuration of circuits within a FPGA can be easily and quickly 

altered, evolutionary computation can be used to modify them and thus the circuit 

(hardware) itself evolves. In comparison with software evolution where the 

chromosome is a set of control parameters, the chromosome in hardware evolution 

(evolvable hardware) is the bit sequence used to configure the FPGA. 

3.1 Commercial FPGA and FPAA Architectures 

This section details common architectures used inside FPGA and FPAA devices, and 

explains the concepts of fine and coarse grained architectures. 

3.1.1 Field Programmable Gate Array 

A FPGA is a silicon device that can be configured with custom designed digital circuits. 

An advanced FPGA consists of several systems, such as logic arrays, memory blocks, 

phase-locked-loops and embedded multipliers, with some devices including digital 

signal processing (DSP) blocks. These systems are connected together by a 

programmable routing system that can be altered to configure the system according to 
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the user circuit requirements. Some FPGAs are hybrids, with a separate processor and a 

FPGA included on the same chip. 

An overview of the FPGA is provided in the following section based on the Altera 

FPGA architecture. The heart of the FPGA is the logic element which is a RAM-based 

lookup table as shown in Figure 3-1. The lookup table has four inputs and one output 

which can be programmed to provide any logic expression of the four input variables as 

well as being used for storage. There are also control, clock and feedback registers 

which allow the output of the lookup table to be fed back to the input (d3-fb).  

 

Figure 3-1.  The Altera FPGA logic element. 

A typical number of sixteen logic elements are grouped together to make a logic array 

block as shown in Figure 3-2. Xilinx terminology for this structure is a configurable 

logic block. This block has programmable interconnect lines between the logic elements 

and control logic within the logic array block. 

 

Figure 3-2.  The Altera FPGA logic array block. 
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The logic array blocks themselves are formed into a two dimensional array consisting of 

hundreds of blocks. The inputs and outputs of these blocks can be routed to other blocks 

to create more complicated designs. These blocks can also be connected to the external 

pins of the FPGA device. The function of each logic element, logic array block and the 

way in which they are connected to other blocks is defined by a configuration bit stream 

that is either downloaded into the FPGA from an external computer, or loaded into the 

FPGA from onboard flash memory when the circuit is first powered up. 

An Integrated Development Environment (IDE) such as Altera’s Quartus design suite is 

used to create the circuit. The IDE allows the use of logic schematics, or a hardware 

description language such as Verilog or VHDL, to describe the circuit. The IDE 

compiles the designed circuit into a configuration bit stream which is then downloaded 

into the FPGA. At this point, the FPGA circuits are configured with the custom 

designed digital circuits. 

FPGA devices can be broken into two classes, partial and non-partial reconfiguration. 

Non-partial reconfiguration will reconfigure all the FPGA logic array blocks within the 

FPGA each time it is programmed. This feature is common to all FPGAs. Partial 

reconfiguration allows sections of the FPGA logic array blocks to be reconfigured, 

while still retaining other logic array block configuration hardware structures. For 

example, a processor could be retained while other hardware structures are changed. 

This allows dynamic reconfiguration of the FPGA while it is operational. 

3.1.2 Coarse and Fine Grained Architecture 

The two types of FPGA architectures, fine grained and coarse grained are related to the 

granularity of the logic modules. A fine grained architecture has very simple logic 

blocks with a great deal of flexibility but requires a large amount of silicon resources 

especially in the increased routing requirements. A coarse grained architecture has very 

large logic modules with sometimes two or more lookup tables within the one logic 

element. While this requires less routing between logic elements and logic array blocks, 

it can be less efficient in its use of resources than a fine grained architecture. 

More powerful FPGAs have predetermined sections of hardware such as multipliers, 

memory, floating point units, digital signal processor blocks and processors. This 

architecture is more efficient in power and silicon resources but less flexible. These 

more complex blocks are normally included within a fine grained FPGA with a great 
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deal of work involved in the interface between the local array blocks and the fixed 

hardware. Yu et al. [69] showed that fine grained and course grained architectures can 

also be successfully combined. 

3.1.3 Field Programmable Analogue Array  

The Field Programmable Analogue Array (FPAA) allows analogue operational 

amplifiers to be configured into a range of analogue circuits including amplifiers and 

filters. They are often used for analogue filtering as the frequency response of the filter 

can be dynamically altered. The FPAA has the same two dimensional array architecture 

as the FPGA; however the FPAA contains configurable analogue blocks rather than the 

logic array blocks of a FPGA. Both these configurable analogue blocks and the routing 

between them are analogue based, as shown in Figure 3-3. The configurable analogue 

block has a set of operational amplifiers whose gain and frequency response can be 

dynamically altered. 

 

Figure 3-3.  The architecture of a FPAA. 

There are two types of FPAAs: switched capacitor (discrete time domain) and 

transconductor (continuous time domain). The switched capacitor uses the principle of 

creating an equivalent variable resistance by altering the frequency of a switched 

capacitance. It has the advantages of programmability and insensitivity to resistance of 

programming switches but is limited in bandwidth. The transconductor consists of an 

operational amplifier and programmable capacitors linked by a transconductor based 

array. It has the advantage of greater bandwidth but a reduced programming range for 

its parameters. Each configurable analogue block can be configured for different 

applications including filtering, addition and multiplication. Once again, the analogue 

blocks and routing are configured by a configuration bit stream.  
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3.2 Overview of Hardware Evolution 

The FPGA is configured with a configuration bit stream. This configuration bit stream 

describes the electronic circuit and required routing that is to be created inside the 

FPGA. In comparison with software evolutionary computation where the chromosome 

is a possible solution in the form of a parameter, the chromosome in evolvable hardware 

is the configuration bit stream and the phenotype of the chromosome is the circuit 

described by the configuration bit stream. 

Using standard genetic algorithm, the FPGA configuration bit stream can be evolved 

and then downloaded into the FPGA as shown in Figure 3-4. The ensuing circuit can be 

tested for fitness, with the evolutionary process repeated until a suitable result is 

achieved. Thus, the hardware itself evolves. Evolving electronic circuits, often referred 

to as evolvable hardware, has advanced from the generation of simple circuits through 

to more complex functional systems such as robotic navigation [67, 70].  

 

Figure 3-4.  An evolved bitstream with corresponding circuit. 

Historically, evolvable hardware has been broken into two methods, extrinsic (off-line) 

and intrinsic (on-line) evolution as shown in Figure 3-5. The extrinsic method uses a 

circuit simulation to test the fitness of the individual during the evolutionary process. 

When the evolutionary process is completed and the solution is found, the resulting best 

individual is then downloaded to the FPGA. The intrinsic method does not use circuit 

simulation to test the individual; instead the individuals are tested for fitness on the 

FPGA in the environment they will run in. This overcomes the problems of matching a 

circuit simulation to real life. The evolutionary process is still performed in software by 

a genetic algorithm. 
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Figure 3-5.  Block diagram of the extrinsic and intrinsic evolutionary process. 

The first implementation of evolvable hardware was performed by Thompson [71, 72] 

when he created a tone discriminator using evolutionary techniques on a Xilinx XC6216. 

Thompson evolved a 1800 bit configuration bit stream using elitism with rank based 

selection, and used both crossover and mutation operators. The experiment fed two 

tones into the FPGA (1 kHz and 10 kHz) and the evolved circuit was able to 

differentiate between the two tones. However, the evolved circuit would cease to 

operate if variations in temperature or voltage occurred, or when the FPGA was 

replaced. After careful analysis, it was found that the evolved circuit did not take into 

effect the timing and propagation delays of the gates within the FPGA. These 

characteristics can be affected by changes in the temperature, voltage and device, and 

would normally be taken into account if an engineering design approach had been used. 

Direct evolution of the Xilinx configuration bitstream was possible because the 

architecture of the Xilinx XC6216 FPGA made it impossible for a destructive 

configuration of outputs connecting to outputs to occur. As shown in Figure 3-6, the 

logic element has connections from the north, south, east and west. 
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Figure 3-6.  The Xilinx XC6216 logic element. 

This non destructive architecture is more clearly seen in Figure 3-7 where the 

interconnection between logic elements is illustrated. The routing is very limited and it 

simply connects adjacent logic elements together in a grid like pattern. The connections 

between inputs and outputs are fixed, and are not affected by the configuration bit 

stream, thus a configuration bit stream modified by the genetic algorithm will not 

produce a destructive configuration. This allows the device to be directly used in 

evolvable hardware. However, as the XC6216 has been discontinued, it is no longer 

used in current research. 

 

Figure 3-7.  The Xilinx XC6200 logic element interconnections. 

From the initial research of Thompson, and subsequent research of others, three major 

problems confronting evolvable hardware were found. These are: a) destructive 

configurations, as new FPGA devices allow output to output connections; b) partial 

reconfiguration, as not all FPGA devices have partial reconfiguration which is useful for 



46 

evolvable hardware; and c) a large search space, the evolutionary search space of the 

configuration bit level is too large to allow complex circuits to evolve. 

3.3 Problems with Commercial FPGAs and Evolvable Hardware 

The obstacles to evolvable hardware with modern FPGAs are: a) scalability as the 

search space rapidly becomes too large; b) partial configuration, as altering only part of 

the FPGA is not fully supported by all FPGA manufacturers; and c) destructive 

architectures, as FPGAs have the ability to connect outputs to outputs. 

3.3.1 Scalability 

Scalability is the ability of the evolutionary process to perform acceptably as the 

complexity of the problem increases. A FPGA with a fine grained architecture requires 

a large configuration bit stream. Thus, the chromosome which is being used to describe 

a complex circuit design will be large, and will have a large search space which limits 

the ability for the evolution to find practical solutions. Methods to reduce this search 

space and manage the scalability problem are evaluated later in this thesis. 

3.3.2 Partial Reconfiguration 

Partial reconfiguration is the ability of the FPGA to reconfigure parts of its circuits 

while the remaining sections are still running. This process is very important for 

hardware evolution as the genetic algorithm itself may reside within the FPGA, and 

should not be modified. This feature of partial reconfiguration is not often required by 

industry and only a few manufacturers such as Xilinx supply these devices. 

3.3.3 Destructive Architectures 

Modern FPGAs have complex routing systems that will allow outputs to be connected 

to outputs, thus incorrect routing will quickly cause permanent damage to a FPGA. In a 

normal development environment using a compiler such as Altera’s Quartus, illegal or 

destructive configurations would create errors in the compilation stage, the 

configuration bit stream would not be generated, and the compiler would show a list of 

illegal operations. However, if the evolutionary process of crossover and mutation is 

applied directly to the configuration bit stream, then a circuit may be generated that 

connects an output directly to another output, therefore causing damage to the FPGA. 

Previously researchers in evolvable hardware used the Xilinx 6200 series which has an 



47 

internal architecture that makes it impossible for the routing to be programmed into a 

destructive state. This series of FPGA, however, has been discontinued.  

3.4 Solutions to Commercial FPGA and Evolvable Hardware 

Three methods have been developed to overcome the problems described in the 

previous section. The first method is to use a genetic compiler that can determine if an 

illegal configuration bit stream has been generated during the evolutionary process. The 

second method is to use genetic programming rather than genetic algorithms to evolve a 

hardware descriptive language (such as VHDL or Verilog) and to then use a compiler to 

create the bit stream. The third method is to create a virtual FPGA whose architecture 

will not allow output to output connections. 

3.4.1 Genetic Compilers 

For commercial reasons the two major manufacturers of FPGA devices, Xilinx and 

Altera, have not made public the configuration bit stream parameters for their devices. 

However two Xilinx employees, Levi and Guccione [73], have created a Java based 

program called GeneticFPGA, which can be used for evolvable hardware applications. 

As shown in Figure 3-8, this program performs the evolutionary techniques of 

reproduction and selection directly on the configuration bit stream, but filters out illegal 

or unreliable bit stream parameters generated by evolutionary techniques before 

downloading the configuration bit stream to standard Xilinx devices. 

 

Figure 3-8.  Block diagram of the evolvable hardware process using the Xilinx genetic FPGA. 
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JBits is a Java-based program (Application Programming Interface) produced by Xilinx, 

that allows the user to modify the configuration bit stream generated by the Xilinx 

design tools for the Virtex family of devices. This enables the user to dynamically 

reconfigure parts of the circuit inside the FPGA while the device is running. JBits 

converts the configuration bit stream into a two dimensional array of configurable logic 

blocks, and allows the alteration of these blocks as well as the routing between them.  

Hollingworth et al. [74] used Jbits to evolve a simple adder by first creating a four by 

two array of lookup tables with a fixed feedforward routing between lookup tables as 

shown in Figure 3-9. The position of the lookup table within the Virtex configurable 

logic block is known, thus JBits can be used with a genetic algorithm to modify these 

lookup tables without altering the routing. 

 

 

 

 

 

 

 

 

 

Figure 3-9.  The Virtex configurable logic blocks showing the interconnections of the lookup tables. 

The process for evolution is shown in Figure 3-10. The initial circuit with lookup tables 

and routing between them is performed in a hardware description language, then 

compiled and fed into the JBits program. The JBits can operate on, and modify, 

configuration bit streams either generated by the compiler, or read back from the FPGA. 

As the Xilinx FPGA allows for partial reconfiguration, it is possible to modify the 

contents of the lookup table without modifying the routing between tables. The genetic 

algorithm can then be used on the lookup table to evolve a solution. 
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Figure 3-10.  Block diagram of the genetic process using Jbits. 

3.4.2 Genetic Programming of Hardware Descriptive Languages 

Genetic programming evolves the hardware descriptive language program rather than 

the configuration bit-stream as performed by genetic algorithms. Genetic programming 

is normally used on a software program and will typically use a tree like structure for its 

evolutionary process. This is difficult to implement in a hardware descriptive language 

as it is not described in a similar fashion to a software language with a tree like structure. 

To overcome this, a parse tree representing the code is used; this is translated into a 

hardware descriptive code and then compiled. The parse tree is comprised of branches 

and terminating nodes, with the branches performing decision processes relating to the 

input state of the system, and the nodes relating to the desired robotic actions as shown 

in Figure 3-11. It is the parse tree itself that is evolved by the genetic algorithm. 

 

Figure 3-11.  Genetic programming using parse tree. 
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The advantages of genetic programming are portability of the language between 

different devices and manufacturers, and scalability for larger problems, giving a 

reduced search space as evolution is occurring at a higher function level than the 

configuration bit stream. The problem that arises with this method is that the 

compilation time for anything other than simple systems can be several minutes, thus 

the evolutionary process becomes time consuming and inefficient. In addition, the 

encoding of the program so that it can be modified by the genetic program is important. 

Several authors as included below have suggested ways to overcome these problems. 

Seok et al. [67] used genetic programming to evolve the motion of a robot towards a 

light source using a linear chromosome to represent the tree structure of the programme. 

This was performed by representing the tree as a binary string, and separating each path 

from the root node to the terminal node. The tree itself related the light sensors range 

and direction to the robot’s movement, while the terminal nodes represented motor 

states such as forward and backward. 

Dong-Wook et al. [75] used genetic programming to evolve a robotic controller. Due to 

the difficulties of genetic programming on a hardware descriptive language, they instead 

modelled the hardware on behaviours, using two sets. The first set was the function set 

(decision) for example if-obj, if-goal, the second set was the terminal set (action) such 

as move-forward, turn-left then move-forward. Dong-Wook et al. called these 

behaviours ‘context switchable identity blocks’, and used them to create a tree like 

structure as shown in Figure 3-12. 

if obj

if obj1 if goal

if obj2
MF

TR TL

MRMS

 

Figure 3-12.  Genetic programming using a tree structure of context switchable identity blocks. 

This tree is suitable for crossover operators. It was found that the tree had to be deep 

enough so that all possible input patterns could be obtained. Dong-Wook et al. used this 

system to evolve a Kephera robot to move boxes to the edge of an enclosure whilst 

avoiding obstacles. 
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Mizoguchi et al. [76] developed a program called production genetic algorithms that 

would allow evolution of grammatical language structures such as a hardware 

description language. They used production rules to regulate the evolutionary process 

and discarded any solutions that would violate these rules enabling the generation of 

complex hierarchical structures. The chromosome represented a tree structure making it 

possible to replicate grammatically correct offspring. They used standard genetic 

operators as well as duplication (copying functional blocks within the chromosome) and 

insertion (copying functional blocks from another chromosome). In this way, the 

chromosome could grow larger and create more complex circuits. The researchers used 

this technique to evolve an artificial ant that would follow a trail. 

Montana et al. [77] used genetic programming to evolve edge detection in image 

processing which was coded using VHDL. They created a system called EvolvaWare as 

shown in Figure 3-13, which represented the hardware descriptive language using a 

parse tree as previously described. To overcome the time problems of compiling for 

each generation, the parse tree was evaluated by a software algorithm that could 

simulate the actual code. Only when a suitable solution was found, was the FPGA 

actually programmed.  

 

Figure 3-13.  EvolvaWare structure using genetic programming and a parse tree. 

Further work has been performed on Cartesian genetic programming which is a subset 

of genetic programming. Cartesian genetic programming was developed by Miller et al. 

[78, 79] where the electronic circuit can be represented as a tree-like structure and thus 

allows genetic programming to be used. Cartesian relates to the Cartesian co-ordinate 
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graph system where a specific point on a plane can be represented by a pair of 

numerical co-ordinates. In this case, Cartesian genetic programming uses a linear string 

of integers as an indexed graph to represent the program tree. In Cartesian genetic 

programming, the program or circuit is seen as a two dimensional array of nodes (where 

the node is either a programming construct or an electronic function). All the inputs and 

outputs to these nodes are sequentially indexed. The circuit can therefore be expressed 

by a genotype that shows the connections between the nodes and the functions of the 

nodes. 

3.4.3 Virtual FPGA 

The concept of a virtual FPGA is to create an ‘ideal FPGA’ that would reside inside a 

commercial FPGA. An ideal evolutionary capable FPGA would have limited routing to 

reduce the search space and be designed so that destructive configurations cannot occur. 

In addition it would have a high level or function level abstraction. Current FPGAs do 

not support this and are therefore unsuitable for genetic processes. However, it is 

possible to create a virtual FPGA with the desired features and download it into a 

standard commercial FPGA.  

The virtual FPGA configuration bit stream which has been evolved by the genetic 

algorithm can be loaded in two separate ways. The virtual FPGA is created using the 

hardware descriptive language constructs and downloaded into the FPGA using the 

standard FPGA configuration bit stream interface. The virtual FPGA configuration bit 

stream is connected to a computer via a serial port such as a RS232 or USB serial input 

output system, as shown in Figure 3-14. The computer runs the genetic algorithm and 

fitness evaluation, downloading the new virtual FPGA configuration for each test. 

 

Figure 3-14.  System interconnections using an external genetic algorithm with a virtual FPGA. 
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Alternatively, the genetic algorithm and virtual FPGA both reside in the FPGA as 

shown in Figure 3-15. The computer is only used for the generation of the FPGA 

systems, and control and monitoring of the evolutionary process. Once the virtual 

FPGA, genetic algorithm, and simulation are loaded into the FPGA, the evolutionary 

process will begin with only control and monitoring occurring on the computer. Note 

the genetic algorithm and simulation can be run in software on a processor inside the 

FPGA, or these systems themselves can be implemented in hardware. 

 

Figure 3-15.  System interconnections using an internal genetic algorithm with a virtual FPGA. 

3.5 Virtual FPGA Architectures 

There have been several architectures suggested for this process with some researchers 

mimicking the Xilinx 6200 series. Other researchers have created new architectures that 

have a high level of abstraction and a reduction in the routing requirements making the 

evolvable hardware process more efficient. 

3.5.1 Xilinx XC6200 

The first attempt at creating a virtual FPGA was the implementation of the architecture 

of the original Xilinx XC6200 FPGA as shown in Figure 3-16.  
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Figure 3-16.  A virtual FPGA based on the Xilinx XC6200 core. 

Hollingworth et al. [80] evolved digital circuits using an array of XC6200-like cells in 

the Xilinx Virtex. They modified the architecture so that the routing requirements were 

reduced, and used Jbits, (Xilinx hardware interface) to program the Virtex device. They 

evolved two systems: firstly, a routing puzzle where a simple connection pathway 

between inputs and outputs was evolved, and secondly, an oscillator puzzle, where a 

55.5 kHz oscillator was evolved. 

3.5.2 S-block 

One of the problems in evolvable hardware on a fine grained FPGA is the large search 

space due to the length of the configuration bit stream that is required for the logic and 

routing. To help reduce this problem Haddow and Tufte [81, 82] proposed a virtual 

FPGA architecture that reduced the configuration bit stream by combining the logic and 

routing as part of the lookup table. This architecture is called the S-Block, and was 

designed so that it could fit into one slice of the Xilinx configurable logic block, 

minimizing the FPGA resources. 

Inside each S-block are a lookup table and an input/output wiring structure on each side 

as shown in Figure 3-17. The lookup table has five inputs: one input from each of its 

sides (north, east, west and south), and one input feedback from its output. The output is 

clocked to prevent parasitic oscillations and is fed to each side of the block. Each S-

block can be configured for either logic or routing. The S-block structure avoids 

destructive configurations as it only allows the outputs to be connected to the inputs, 

and vice versa.  
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Figure 3-17.  The virtual FPGA S-block showing logic unit and the S-block structure. 

The S-block is laid out in a grid pattern with each block connected to the blocks 

adjacent to it as shown in Figure 3-18.  

 

Figure 3-18.  An array of S-blocks showing the interconnections between logic elements. 

An example of how the S-block can be used for routing is shown in Figure 3-19. In this 

example a signal is fed into S-block2 from the east and then fed back out of S-block1 to 

the east. The lookup table in S-block2 is configured to read the input from the east, and 

feed this input to all its outputs. The S-block1 lookup table is configured to read the 

input from the south (the output of S-block2) and feed this signal to all its outputs, thus 

the two S-blocks are acting as a router. Other S-blocks can be configured as logic 

functions.  



56 

 

Figure 3-19.  The S-block lookup table contents used to rout a signal from east in to east out. 

3.5.3 Gate Level and Functional Level Logic Units 

Higuchi et al. [83] and Vassilev and Millar [84] showed how the functional level rather 

than the gate level evolution performed better by reducing the search space and thus 

decreasing the time taken to evolve. A gate-level evolutionary process evolves simple 

gates such as AND or OR gates to generate a high level circuit, as shown in Figure 3-20. 

This is the basic logic unit of a normal FPGA, and it allows only simple circuits to be 

evolved as the search space is too large for more complex circuits.  

 

Figure 3-20.  Schematic representation of gate level evolution. 

However, if the circuits are comprised of higher elements or functions, more complex 

circuits can be evolved, as shown in Figure 3-21. The higher level functions can be 

arithmetic functions such as adders, subtractors, multipliers and dividers. More complex 

functions such as sine cosine generators, or programming structures such as if else 

switches can be used. 
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Figure 3-21.  Schematic representation of functional level evolution. 

3.5.4 Cartesian-Based Virtual FPGA Architecture 

This type of architecture is based on Cartesian genetic programming which has 

previously been described. The circuit architecture consists of a two dimensional array 

of nodes linked via a Cartesian co-ordinate system, with the data flow moving from left 

to right. The circuit can therefore be expressed by a configuration bit stream that 

describes the connections between the nodes, and the functions of the nodes. To 

overcome destructive architectures, only feedforward connections between nodes are 

allowed. In general, Cartesian genetic programming cells would have multiple inputs 

and outputs, and feedback would be allowed. 

A Cartesian based architecture is shown in Figure 3-22. The inputs and outputs of the 

FPGA, as well as the outputs of the nodes and the nodes themselves are numbered. The 

function of the node is linked to the number (in this example, 11 is an AND gate 

whereas 12 is OR gate). The chromosome is a one dimensional array which represents 

both the routing and node function for the complete circuit. In the example circuit 

provided, each node and input connections are represented by four numbers. The first 

three numbers describe how the node inputs are connected, and the fourth number 

describes the function of the node. This sequence is repeated in the array until the full 

virtual FPGA is described. Note all connections are feedforward, as no feedback 

connections are allowed. After reproduction, any damaged chromosome will be required 

to be repaired. 
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In this example, the first AND gate is implemented as a two-input gate connected to A 

and C (note the third input is always held high). The first OR gate is implemented as a 

two input gate (note the third input is always held low) connected to the outputs of the 

preceding two AND gates. In this way the one dimensional array can describe the 

connections of the circuit, and it is this array that can have genetic algorithms performed 

on it. 

 

Figure 3-22.  Cartesian architecture showing the functional elements numbers and the string that 

describes their interconnections. 

Several examples of virtual FPGA based on the Cartesian programming architecture 

have been used to evolve digital circuits. Higuchi et al. [85] used this approach to 

generate two high level applications, an adaptive equaliser and a lossy data 

compression. The researcher used a two dimensional array of ‘Programmable Function 

Units’ as shown in Figure 3-23. The programmable function units were capable of 

adding, subtracting, if-then, sine generator, cosine generator, multiplying or dividing. 

These programmable function units and the routing between them were controlled by 

the configuration bit stream. The unit was comprised of one hundred nodes or 

programmable function units in an array of twenty columns by five rows. Each column 

could access the data from the previous column, or directly from the inputs. There were 

two inputs with the output fed back to the input. The data was a floating point number. 
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Figure 3-23.  Cartesian architecture showing programmable functional units for signal processing. 

Sekanina [86] used a virtual FPGA based on Cartesian programming for image 

processing. In his original studies he found evolving at the gate level virtually 

impossible for complex circuits due to the large search space, whereas good results 

could be produced by evolving higher level configurable functional blocks. In his 

research, Sekanina created a configurable function block that had two eight-bit inputs 

and one eight-bit output. The functions within this logic block are shown in Figure 3-24.  

 

Figure 3-24.  Functional listing of the lookup table for a configurable function block. 

The configurable function blocks were laid out in a two dimensional grid of seven 

columns by four rows, with a final block on the output, as shown in Figure 3-25. 
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Figure 3-25.  Cartesian architecture showing configurable function blocks for image processing. 

The configuration bit stream controls the routing between the configurable function 

blocks as well as the function within the block. In order to reduce the routing overheads, 

connections between blocks were limited. The circuit was evolved to minimize the 

difference between a corrupted image and the uncorrupted original. In comparison to 

conventional filters, it was found that the evolved circuit produced a better quality 

picture and in some cases, more efficient use of resources.  

Sekanina [87] has also investigated evolvable intellectual property cores. He proposed 

that these cores should be able to be reused in a similar fashion to standard intellectual 

property cores, and that they can perform autonomous evolution of their internal circuits. 

The cores will be made available as hardware descriptive language modules, comprised 

of a virtual reconfigurable circuit and a genetic unit controller which can be synthesised 

into any reconfigurable device. The evolvable intellectual property will be stored in a 

standard component library and downloaded to the FPGA, however, when running they 

will evolve their circuit autonomously. These cores can be reused in a similar way to 

intellectual property, for example an evolvable digital filter. The genetic controller will 

perform genetic operators, such as crossover, mutation, and reproduction, and will have 

memory storage for fitness, although it does not perform fitness testing as this is a 

specific task. Note that the evolutionary intellectual property does not have to reside in a 

partial reconfigurable FPGA. 

Moreno Arostegui et al. [88] suggested a FPGA architecture that simplifies the routing 

requirements inside the FPGA. Currently, FPGAs are designed with a high degree of 

flexibility which requires a complex routing system. This routing system demands a 

large search space which makes it difficult to evolve a complex system. They proposed 
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a hierarchical layered organization of a regular two-dimensional array of cells whose 

routing strategies are part of the hierarchical layer allowing incremental routing paths 

amongst the functional cells. This allows the addition of more functional units without 

having to calculate complex routing strategies and is better suited towards evolvable 

hardware. 

Wang et al. [89] used a Cartesian based virtual FPGA with a hardware genetic 

algorithm to evolve a character recognition FPGA circuit. The virtual FPGA had 30 

inputs which were connected to the 5x6 pixel array. (Note in their experiment they used 

a lookup table with the character pixels rather than an actual camera.) These pixels were 

then passed through a four layer functional block array as shown in Figure 3-26. The 

blocks had simple logic functions, and selection. The virtual FPGA had sixteen outputs 

that were associated with a character ranging from A to P. 

 

Figure 3-26.  Virtual FPGA architecture used for character recognition. 

3.6 Chromosome Length Reduction 

The most task orientated process is fitness evaluation; however, this is linked to the size 

of the genetic algorithm and the search space that needs to be explored. If the 

chromosome length can be reduced, then the search space and the corresponding time 

taken to evolve is shortened. The difficulty with a standard genetic algorithm is that as 

the complexity of the problem increases, so too does the possible permutations and the 

time required to evolve. 

The chromosome used to describe a circuit can be large and impractical to evolve. 

Proposals for using a virtual FPGA with limited routing and function level blocks in 

order to reduce the chromosome length have been previously discussed. Alternative 
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methods are to alter the one to one mapping between the genotype and the phenotype 

and thus the length of the chromosome. In biological terms the genotype is the gene 

inside the chromosome and the phenotype is the expression of that gene. For example, a 

gene determines eye colour, whereas the phenotype is the actual eye colour the gene 

produces. For example, blue or green or brown is the phenotype or expression of that 

gene. 

The genotype-phenotype map relates to how a genotype will be expressed as a physical 

trait. The genotype represents the exact genetic makeup, for example, the bit or number 

sequence that is being manipulated by the genetic algorithm. The phenotype represents 

the actual physical properties, for example, what type of gate or function is expressed. 

The way that the genotype affects the phenotype is called the genotype-phenotype map. 

Evolvable hardware could be made more efficient if the genotype-phenotype mapping 

were made more complex, allowing the genotype to be reduced in size. A good example 

of a genotype-phenotype map is to imagine you are building a paper plane using a list of 

instructions on where to fold paper (A – Z). The genotype could be GABKJAAND; the 

phenotype would be the expression of the genotype, which is the shape of the paper 

plane. Reducing the genotype moves the complexity to the genotype-phenotype 

mapping. 

3.6.1 L-system mapping  

The L-system was originally used in biology to predict how simple multi-cellular 

systems will grow. It is a mathematical system that uses a rule-based system to show 

how the structure would grow from a particular starting point. For instance, if the rules 

were X changes to a Y, Y changes to X, Y then the following pattern would occur as 

shown in Figure 3-27. 

 

Figure 3-27.  An example of a growing structure based on L-system mapping. 
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In genetic programming, the set of rules is the genotype and what they produce is the 

phenotype. To use L-system mapping with evolution, the rules themselves are the 

chromosome and these are evolved. Thus, we evolve a population of rules, where the 

chromosome stays fixed while the phenotype can vary in length depending on what the 

rule produces. 

Haddow et al. [90] used this method to implement a routing structure in a grid array of 

S-blocks. He had two modes, change, (where the chromosome stayed the same size but 

changed the S-block operation), and growth (where the chromosome increased in size 

and included more S-blocks). Thus, the chromosome would increase in size as the 

complexity of the circuit increased. Note this system does not have a one to one 

mapping between the genotype and the phenotype, therefore it has less search space. 

Schaefer [91] used genetic programming using the L-system for path planning in robots. 

An example of an evolved rule was A → < f b - s f +> where f is forward one step, b is 

back one step, s is stop, + is turn right, and – is turn left. He used this chromosome to 

evolve a controller whose objective was to drive the robot towards a light whilst 

avoiding obstacles. 

3.6.2 Variable Length Genetic Algorithms 

A normal genetic algorithm uses a chromosome with a fixed length that describes the 

solution to the problem. A variable length genetic algorithm is similar to the normal 

genetic algorithm, except that it is able to increase or decrease the length of its 

chromosome. This makes it capable of increasing its complexity as it evolves for more 

difficult tasks.  

Kajitani et al. [92] used a variable length genetic algorithm for hardware evolution by 

initially reducing the chromosome, by not incorporating all possible permutations of the 

programmable logic device switching elements. As the circuit evolved, the chromosome 

was increased to include more switching elements to allow more complexity in the 

circuits.  

Iwata et al. [93] also used a variable length genetic algorithm to evolve a programmable 

logic device for pattern recognition. The chromosome consisted of the location and 

connection types of the fuse array that configures the programmable logic device. 

Initially, the chromosome was small, limiting the number of input connections that the 
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pattern recognition could use. However this chromosome could be increased in size, 

connecting more resources as required. It was found that the average evolved variable 

length genetic algorithm chromosome had a chromosome length of 187.6 bits as 

compared to a standard genetic algorithm chromosome length of 840 bits.  

3.6.3 Species Adaptation Genetic Algorithms 

Thompson et al. [94] used variable length chromosomes in his use of species adaptation 

genetic algorithms (SAGA). Standard genetic algorithms are not suitable for cognitive 

structures as these require a slow rather than abrupt change. Robotic controllers need to 

be able to move from simple to more complex architectures which suit the use of a 

variable length genetic algorithm. Thompson et al. investigated the use of species 

adaptation where similar individuals are likened to a species. He used a method of hill 

crawling, balancing the need for exploitation (maximizing the fitness locally) with 

exploration (finding new fitness maxima). Thompson et al. considered tournament as 

the best method of selection because of its ability to adapt to high mutation rates while 

maintaining hill crawling features. 

 

Figure 3-28.  Diagrammatic comparison of the search space for SAGA and a standard genetic 

algorithm. 

A standard genetic algorithm chromosome will start with a random distribution within 

the search space and narrow down to a high fitness individual (goal) as the evolution 

progresses, as shown in Figure 3-28. In comparison, SAGA has a chromosome that is 

capable of increasing in length, and is associated with the evolution of a species or 

homogenic groups of individuals within the population. This gives the possibility of the 

chromosome splitting into separate species, or extinction of species. 
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3.6.4 Compact Genetic Algorithms 

Gallagher et al. [95] investigated using compact genetic algorithms for evolvable 

hardware to reduce the size of the chromosome and subsequent decrease in the search 

space. Rather than having a population of numerous chromosomes, the compact genetic 

algorithm has only one chromosome. Each parameter in the chromosome has a 

probability ranging from one to zero. This chromosome is used to generate offspring 

where the probability parameter for each bit is used to determine if the associated bit in 

the offspring will be a one or zero. At the start of the evolution, all the probabilities 

within the chromosome are set to 50%, thus the offspring will have a random bit pattern. 

After each generation, the bit pattern of the better individuals will alter the probabilities 

in the parent chromosome. As the evolution progresses, these probabilities move 

towards 0% or 100%.  

3.6.5 Morphogenetic Algorithms 

In nature a separation between the genotype and phenotype allows complex organisms 

to evolve. The genotype (bit pattern) and the phenotype (generated circuit) is separate, 

with the phenotype being generated from the genotype. If the genome expressed is a 

growth process (morphogenesis), rather than an explicit configuration of a circuit, then 

complex forms can be created from a simplified genome. Natural evolution evolves 

simple structures which go on to evolve into more complex systems. Biology maps 

genotype to phenotype through regulated gene expression. Mapping can be performed 

by using a set of production or grammar rules, thus the evolutionary process can work 

on the grammar rather than that of a program modifying system. A common production 

rule is the Lindenmayer system (L-system) which was originally used to model the 

growth in plants. The parallel nature of this system suits evolvable hardware. 

Lee and Sittle [96] used a cell based morphogenetic model for hardware evolution. The 

mapping of the genome was via the Xilinx JBits application programming interface. 

The cell structure was closely based on the Xilinx Virtex architecture, with each cell 

stored within a configurable logic block slice. These researchers created and packaged a 

chromosome that represented the chromosomes from nature, using a variable length 

chromosome with base-4 encoding. This chromosome imitated the structure of a 

biological cell. 
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Gordon and Bentley [97] modelled a circuit based on a cellular structure where the 

chromosome and proteins control the function of the cell. The proteins were binary state 

variables that were present, not present or don’t care. The chromosome was a set of 

rules based on the L-system which would affect the cell and its proteins, either creating 

more proteins or altering the function of the cell. The cell was modelled as a functional 

unit which incorporated input/output, protein detector/generator and a function 

generator. 

3.6.6 Incremental Learning 

Incremental learning, or increased complexity evolution, is used to overcome the 

problem of long configuration bit streams. Evolution occurs discretely on small units 

such as logic gates and functional blocks. These evolved blocks are then used in a 

second stage evolutionary process to create more complex circuits or systems. This 

design can be likened to a bottom up process. The fitness function can either be a subset 

of the complete fitness function, or it can be designed for individual tasks which are 

combined to create a global fitness function. 

Torresen [98, 99] used incremental learning to create a road image recognition system. 

The image system had several processing stages including noise removal, thinning, and 

recognition. The information was to be used for autonomous driving using the road 

markers as a reference. This system was too complex for a one step evolution. Torresen 

based the architecture on an array of logic gates, using the Xilinx 6200 FPGA. The 

inputs to this architecture was a 4x8 pixel image, and the output was turn right, turn left, 

move straight ahead. A comparison was made between evolving the system directly, 

and using subsystems, with each subsystem having a limited amount of outputs. There 

was a substantial reduction in the number of generations required for a successful 

evolution when incremental learning using subsystems was used. 

3.7 Hardware-Based Genetic Algorithms  

An important feature of FPGAs is their parallel nature. The hardware descriptive 

language produces digital circuits that execute simultaneously, rather than a computer 

program that executes instructions in a sequence. This technique can be implemented in 

evolvable hardware to speed up the evolutionary process. The hardware genetic 

algorithm can be split into three functions: reproduction, selection and fitness 
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assessment. These can be performed in either hardware, software or a mixture of the 

two. 

3.7.1 Mutation Only Hardware Genetic Algorithms 

The genetic unit can comprise either a mutation unit alone, or a mutation unit with 

crossover. There has been research into using these two operators independently or 

together. When used together, the crossover is used to select the best trait within the 

population, and mutation is used to provide diversity as the population converges on 

local maxima. However, research has also investigated mutation only genetic 

algorithms which do not use crossover. This has been described in chapter two. 

Wang et al. [89] created a hardware genetic algorithm as shown in Figure 3-29 that had 

five basic systems. These are: a) a random number generator; b) population memory; c) 

best chromosome; d) a mutation block; and e) a mutation rate selector. The mutation 

rate was part of the chromosome and was able to be varied each time a new individual 

was created. The hardware genetic algorithm had a population memory of four, which 

were evaluated and the best one was then used to generate a further four offspring. The 

hardware genetic algorithm used mutation only as the reproductive operator. The 

mutation rate varied between 0.2 to 1.6 %. This hardware genetic algorithm was used in 

conjunction with a virtual FPGA to implement a character recognition circuit. 

 

Figure 3-29.  System blocks and their interconnections for a mutation only hardware genetic 

algorithm. 

Sekanina et al. [57, 58] created a hardware genetic algorithm using mutation only as the 

genetic operator as shown in Figure 3-30. The virtual FPGA used functional blocks 

grouped in a Cartesian genetic programming array. A population of individuals was 

generated using a random number generator, and mutation was performed on the 
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reproduction of the new off-spring. A hardware fitness unit was also used which 

compared the outputs of the virtual FPGA with the desired or wanted outputs. The 

fitness was the sum of the correct outputs relative to the inputs. Simple circuits such as 

multiplexers, adders and parity encoders were generated. 

 

Figure 3-30.  System interconnections of a virtual FPGA, a mutation only genetic algorithm and 

fitness evaluation. 

3.7.2 Crossover and Mutation 

Shackleford et al. [100] created a hardware genetic algorithm using both crossover and 

mutation operators. Two parents were loaded into the crossover system, with each bit of 

the parent connected to two-bit multiplexers as shown in Figure 3-31. A crossover 

template was used to select which point in the chromosome would be cut, depending on 

the input pattern of the crossover template shift register. This allowed a range of cut 

points ranging from single point, to multipoint, to crossover uniform. The crossover 

pattern was generated by comparing a randomly generated number to a threshold value, 

producing a one or zero which is serially fed into the crossover template. Increasing the 

threshold value increased the number of cut points.  



69 

 

Figure 3-31.  Hardware crossover using a crossover template two bit multiplexers. 

Shackleford et al. also used a template for the mutation operator as shown in Figure 

3-32. A mutation will occur when two ‘ones’ occur simultaneously in the shift register 

bit positions giving a logic one after the AND gate, and inverting the bit after the 

Exclusive OR. To increase the efficiency of the hardware they used a steady state 

genetic algorithm model rather than a generational genetic algorithm. 

 

Figure 3-32.  Hardware mutation using shift registers. 

3.7.3 Pipeline Processing 

Maruyama et al. [101] used the pipelining and parallelism features of a FPGA to speed 

up the evolutionary process and applied this to solve the classic knapsack problem. 

They used two FPGAs, one for the hardware genetic algorithm including crossover, 

selection and mutation, and the other for the fitness testing. As shown in Figure 3-33, 

the individuals are serially clocked into the genetic algorithm. The blocks inside the 

genetic algorithm are the randomization block used to change the order of the 

population, and the selection block which uses tournament selection between two 

adjacent individuals. After passing through these two blocks, the population is then 
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randomized again. The crossover block is performed with counters and switches, with 

the counters incrementing to a random number and then flipping the switch between the 

two individuals being crossed over. Finally the chromosome passes through the 

mutation block which randomly inverts a bit. The resulting offspring was sent to the 

second FPGA for fitness evaluation. The researchers incorporated several of these 

pipelined genetic algorithms using the island model selection process. 

 

Figure 3-33.  A pipelined hardware genetic algorithm with both crossover and mutation. 

Yang et al. [102] used a hardware genetic algorithm as shown in Figure 3-34, to evolve 

a functional digital circuit that would implement high performance digital image filters. 

They used a virtual FPGA modelled on a Cartesian-based array of functional logic 

blocks. The genetic algorithm was created in hardware with mutation only; it used 

elitism for its selection operator and had a fixed population of sixteen individuals. Only 

one individual was kept after each generation, and this was mutated to provide fifteen 

offspring to replace the population. The operation was as follows: a) the image was 

passed to the input buffer and then to the virtual FPGA; b) the virtual FPGA was 

configured by the individual sent from the internal memory and its fitness accessed; c) 

the selection process determined which individual had the best fitness and notified the 

interface memory; d) the best individual was kept and sent to the mutation unit to 

generate fifteen more individuals; then e) the process was repeated until the required 

fitness was reached. Adaptive mutation was implemented with the mutation rate being 

inversely proportional to the fitness. The fitness was derived from the mean difference 

per pixel, which was the difference between the original and filtered image. The results 

of this study found that the hardware implemented genetic algorithm was faster than a 

similar software algorithm by two orders of magnitude. 
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Figure 3-34.  Block diagram of a mutation only hardware genetic algorithm. 

3.8 Examples of Robotic Controllers 

There are several examples of evolvable hardware being used to control a robot using 

either the Xilinx 6200 series of non-destructive FPGAs, or virtual FPGAs. 

As previously discussed, Krohling et al. [64, 103] used evolvable hardware to control 

the motion of a Khepera robot for obstacle avoidance. In a similar fashion, Tan et al. 

[104] used evolvable hardware with the Khepera robot to successfully follow a light 

source whilst avoiding obstacles in real time. Tan et al. also investigated how the effects 

of a traction fault were overcome by the evolutionary hardware, as a fault like this could 

not be taken into account with normal software. These researchers used a turret that 

contained a Xilinx 6216 FPGA which could be attached to the Khepera robot. The 

infrared sensors from the robot were sent to the FPGA, and the output from the FPGA 

was sent to the robot’s motors. Intrinsic evolution using the Khepera robot’s internal 

Motorola 68331 microprocessor was performed to evolve the Xilinx FPGA 

configuration bit stream. The fitness was determined by the response of the robot to the 

light source. 

Okura et al. [105] evolved a hardware controller for a Khepera robot for obstacle 

avoidance using the Xilinx XC6216 turret. The FPGA was configured by the Khepera 

robot microcontroller using C functions. These functions could initialise and disable the 

FPGAs ports, set communication between FPGA and microprocessor, and configure the 

cells within the FPGA. This last function was important as each cell could be 

specifically altered allowing a reduction in the chromosome length, as redundant bits 
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were not included. The fitness was determined from the distance travelled before an 

obstacle was hit, as well as how many paths the robot took, (preventing a simple 

forward backward motion from having a high fitness). Okura et al. also compared a 

microbial and standard genetic algorithm finding that while both algorithms could 

successfully evolve controllers, the microbial could outperform the standard.  

Seok et al. [67] used genetic programming to evolve a robot controller that could move 

towards a light whilst avoiding obstacles. An example of the tree structure based on the 

robot path for this problem is shown in Figure 3-35, where the desired path is to avoid 

obstacles while continuing to move towards a light. If an obstacle is found, it will move 

down the sub-tree depending on the direction of the light source and obstacles until 

reaching the bottom layer nodes which specify the motor action. The direct 

implementation of this tree in hardware is difficult as it is inefficient in both hardware 

and routing resources, and the crossover operator is difficult to perform. To overcome 

these problems, Seok et al. created a linear representation of the tree which expressed as 

binary strings with each path illustrated from the top node to a bottom node. 

 

Figure 3-35.  Example of the tree structure required for obstacle avoidance and light following. 

Lund et al. [106] investigated evolving the body of the robot as well as evolving the 

robot controller. The controller was simulated on a specific hardware configuration 

where the hardware was able to include the circuit on which the controller was 

implemented, as well as at a more advanced level, the motors, sensors and physical 

structure of the robot. For example, a small wheel might have been useful for a fast 

turning robot whereas a large wheel was more useful for a slow turning robot. To 

evolve the robot, Lund et al. used part of the chromosome to determine its body shape 

as well as the robot controller. This chromosome was used to configure the robot’s body 
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and its actions in simulation. The researchers used Lego parts for the evolution so that 

the robot could be easily built. They then went on to develop ears for a Khepera robot 

which could follow a sound source much like a cricket would when finding a mate. 

This chapter has summarised the concepts of using a genetic algorithm to evolve 

hardware. It has shown three main processes, genetic compilers, genetic programming, 

and virtual FPGAs. In particular, the use of the virtual FPGA and its application in 

robotic control has been examined. 
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Chapter 4 

Chapter 4: A Review of Artificial Neural Networks and Fuzzy Logic 

Controllers and their use in Evolutionary Robotics 

The previous chapters have presented the current research in evolving robotic 

controllers using both software programs and hardware circuits.  Although not 

specifically part of the research presented in this thesis, artificial neural network and 

fuzzy logic robot controllers have been widely used in the field of evolutionary robotics. 

This chapter identifies and examines the extensive research that has been performed in 

the field of evolving artificial neural networks and fuzzy logic robotic controllers. 

4.1 Evolution of Artificial Neural Networks Robotic Controllers 

4.1.1 Artificial Neural Network Overview  

An artificial neural network is a network of interconnected neurons that are modelled on 

neural networks found in nature. Each neuron has two or more inputs whose values are 

modified by a weighting factor. These weighted inputs are then fed into a summing 

input. The output of the neuron will fire when the sum of the inputs exceeds a threshold 

value. A model of an artificial neural network is shown in Figure 4-1. The individual 

inputs are each multiplied by a weighting factor, (ωkm). This is then passed to a 

summing network which has an input bias that is used to adjust the sensitivity of the 

neural network. When the summing input reaches a predetermined threshold level, the 

activation unit will output a value whose shape is determined by the activation function 

Φ(). 
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Figure 4-1.  Diagrammatic representation of an artificial neuron. 

The artificial neural network can be described by mathematical parameters such as the 

neuron activation value, the decay rate, the bias term, the firing rate, and the strength of 

the synaptic connections from neuron to neuron. The mathematical model of the above 

neuron is shown in Equation 4-1. 
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Where  

x is the input,  

w is the weighting,  

b is the bias,  

φ is the activation function,  

The activation function sets the type of output of the artificial neural network. There are 

many different types including step, sign, linear, sigmoid and tanh as illustrated in 

Figure 4-2. The most common output is the sigmoid function. 

 

Figure 4-2.  A graphical representation of activation outputs from an artificial neural networks. 

An artificial neural network is comprised of layers of neurons where each neuron in one 

layer is connected to every neuron on the following layer. The simplest network is the 

single layer where the inputs connect to one layer and these then connect to the outputs 

as shown in Figure 4-3. More complex artificial neural networks will have layers in 

between the input layer and output layer, called hidden layers, which do not connect to 

the external world.  
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Figure 4-3.  A single layer artificial neural network. 

The aim of the artificial neural network is to provide a correct response on its outputs 

depending on its inputs. This in turn is dependent on the weightings of the 

interconnections to each neuron. Before the network can operate, it must first be trained 

by going through a learning phase. In this phase the weight associated with each neuron 

interconnection is adjusted so that the network can provide the appropriate response to 

its inputs. There are three types of learning including supervised, unsupervised, and 

reinforcement. 

• Supervised learning: This is where the output pattern of the network is known 

for each example of input patterns. The input pattern is presented to the network 

and the output recorded. The weightings on the neuron interconnections are then 

adjusted to set the output of the network to best match the desired output. The 

difference between the required output and the actual output is called the error. 

The artificial neural network weights are adjusted to minimize this error, thus 

the neurons are trained to either fire or not fire for different input patterns. 

• Unsupervised learning: The weight of each interconnection is adjusted on the 

basis of the input pattern alone. The network learns by adjusting its weights so 

that similar inputs cause similar outputs. This forms the input pattern into a 

number of meaningful classes.  

• Reinforcement learning: This is a combination of supervised and unsupervised 

learning. Although no desired outputs for a given pattern of inputs is provided, 

the network is told if it is learning in the right direction. 

The learning process can occur either offline, where the neural network is non 

operational while it learns, or online, where the neural network learns while it operates. 

Normally supervised learning is offline and unsupervised learning is online. 
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When operating the artificial neural network and the input pattern is presented, the 

neuron will respond as trained. However if the pattern is not present, then the neuron 

will fire depending on the firing rule. An example of a simple firing rule would be to 

use the hamming distance, which is a measure of how far the input pattern differs from 

the trained pattern. 

4.1.2 Types of Artificial Neural Networks 

Feed Forward network: The artificial neural network information moves in one 

direction only, starting from the input layer, moving forward to the hidden layers and 

then to the output layer.  

Recurrent network: The artificial neural network information flows in both directions, 

making it possible for outputs of one layer to feed back to inputs of previous layers. 

This artificial neural network is time dependent as the feedback paths contain the 

information from the previous state, allowing a type of pseudo memory. This gives the 

artificial neural network the ability to perform sequence prediction tasks. A fully 

recurrent network is not layered, as every neuron connects to every other neuron in the 

network. 

Spiking network: The artificial neural network will replicate typical brain activity 

which sends inter-neuron messages in brief spikes of short duration, rather than as a 

continuous signal. 

Weightless network: The artificial neural network uses only binary values on its inputs 

and outputs with no weights on the neuron interconnections. The neuron function is 

stored in a RAM lookup table. Learning consists of changing the contents of the lookup 

table parameters. The advantages of this type of network are that they can learn in one 

shot, or epoch, and they do not require multipliers. Its limitation is that if the number of 

inputs is high, then a large amount of memory is required for each neuron.  

4.1.3 Creating Artificial Neural Networks on a FPAA and FPGA 

Creating an artificial neural network on a FPAA 

Artificial neural networks created for software program systems are comprised of a 

series of additions and multiplications which are calculated sequentially. These same 

artificial neural networks can be created on a FPAA. The advantage of implementing an 
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artificial neural network on a FPAA is that adders and multipliers can be easily 

implemented and that computations can take place in parallel and asynchronously, 

limited only by propagation delays in the circuit. The disadvantage is that the number of 

neurons is limited to the resources within the FPAA device. 

Creating an artificial neural network on a FPGA 

Artificial neural networks have also been developed on FPGAs, although it is more 

difficult than using a FGAA as the extensive use of floating point arithmetic multipliers 

and the nonlinear activation function of the neurons is resource intensive for FPGA 

applications. Several methods have been developed to overcome the use of floating 

point multiplier in FPGAs. A description of some of these is provided below. 

Pulse Stream Arithmetic: The floating point number can be encoded as a pulse stream 

rather than an integer number. For example, a fractional value such as 7/16 can be 

described as 7 pulses in a 16 bit window. The inputs to the neurons are a pulse stream 

which can be gated. The addition process can be performed by simply ORing the 

separate lines going into the neuron, while multiplication is performed by ANDing these 

input lines. Note the signals are derived by synchronous non overlapping clock pulses. 

These pulses are then passed through an up/down counter to produce a binary step 

function on the output of the neuron. An artificial neural network of this type was 

implemented by Lysaght et al. [107].  

Power of two arithmetic operations: In order to avoid multipliers, the weighted values 

can be limited to powers of two, or sums of the power of two. Thus addition and 

multiplication can be performed with the use of shift registers which are easier to 

implement in an FPGA. Marchesi [108] implemented this technique to create a neural 

network that was used in pattern recognition. The neural network architecture was based 

on back-propagation, while the learning phase required real arithmetic and was 

performed offline. Once the weights were learnt, the corresponding powers of two were 

loaded into the network. 

Conversion of real numbers to integers: The reduced complexity of the integer 

multiplier requires fewer resources than a floating point multiplier in a digital circuit. 

However the use of integers leads to a loss of precision in the final design.  
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Fixed floating point numbers: The binary number is broken into two separate parts: 

one for the integer and the second for the fraction. The binary number has less range 

than a floating point number. Prieto et al. [109] used a 16 bit sign magnitude binary 

format with 6 bits to represent the integer and sign and 10 bits for the fraction. They 

created a three layer network and compared this binary network with a decimal network 

with successful results. 

Stochastic arithmetic: In a similar manner to a pulse stream, stochastic arithmetic uses 

values that are represented as a pulse density, where the numeric value is proportional to 

the density of the 1’s in a bit stream. This allows addition and multiplication to be 

performed with simple digital architecture. Multiplication can be performed by a simple 

AND gate, and addition by the use of an OR gate. Bade and Hutchings [110] used this 

approach in their implementation of an artificial neural network on a FPGA.  

Weightless neural network: This network has been described previously in this 

chapter. The advantage of this network is that it does not require multipliers, making it 

more efficient for FPGA implementation. Hannan Bin Azhar and Dimond [111] 

developed a RAM based weightless neural network on a FPGA for a robot controller 

which was used for obstacle avoidance. 

4.1.4 Evolving Artificial Neural Networks 

As an artificial neural network initially goes through a learning cycle (of either 

supervised, unsupervised, or reinforced learning to modify the weights of the artificial 

neural network), it is trained to react to its environment in a particular way. Evolution 

can also be used to create an artificial neural network by using a genetic algorithm to 

evolve either the weight functions of the neurons, the neural network structure, or the 

learning rules. Examples of evolved networks for robotic controllers in both software 

and hardware (FPAA and FPGA) are described in the next section. 

Evolving artificial neural networks in software for robotic controllers 

Bianco and Nolfi [65] evolved a neural controller to control a simulated two-finger 

robotic arm. The aim of the arm was to grasp objects of different shapes based on the 

tactile information coming from the hand sensors, while also dealing with the 

constraints of gravity and collisions. They used a two layer network with fifteen 

neurons on the input sensors and nine neurons for the motor control. Six of the inputs 
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were contact sensors and nine were proprioceptive sensors which showed the angular 

position of the arm and fingers. The outputs went to nine motors controlling the 

actuators for each joint. The chromosome held the connection weights and biases of 

each neuron in the controller. The population size was 100, with a two percent mutation 

rate. Fitness was initially set by the number of times the object was grasped, and then by 

the number of objects grasped within a certain time frame. 

Mondada and Floreano [112] evolved an artificial neural network for a Khepera robot 

for three separate tasks including navigation while avoiding obstacles, homing, and 

gripping. The artificial neural network was a multilayer perceptron with recurrent 

connections on the hidden layers (except for the navigation task which had no hidden 

layers). Sensors were connected to fixed inputs of the neural network and its outputs 

were connected to the motors as shown in Figure 4-4. The genetic algorithm used linear 

scaling for its selection, with single point crossover and creeping mutation for its 

reproduction. The population size was one hundred, with the chromosome showing the 

neurons synaptic weights and thresholds encoded as floating point numbers. 

 

Figure 4-4.  The neural network configured for navigation on a Khepera robot. 

Nelson et al. [113] evolved artificial neural networks that were used for robotic 

controllers to play a game called ‘Catch the Flag’. The evolved robotic controller 

required 150 inputs to process its video sensor, and produced two drive wheel command 

outputs. Several network structures were used including feed forward, and feed back 

topologies, with a range of activation functions for each neuron. The chromosome was a 

combination of two arrays with the first containing the connectivity and weighting 

relationships of the network, and the second containing the neuron type. Thus the 

chromosome could describe varying sized networks and their connections. The 

evolution of the artificial neural network was in simulation. The fitness was calculated 
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with two weightings, the first selected for minimal competence to successfully complete 

the task, and the second based on whether they won or lost.  

Kim and Cho [114] evolved artificial neural networks based on cellular automata to 

create a robot controller for a simulated Khepera robot using incremental evolution. 

Cellular automata were used to create the artificial neural network in ‘CAM-Brain’, a 

system based on artificial intelligence that was first developed in Japan. The network 

grew to the cellular automata rules. The genetic algorithm was applied to the cellular 

automata rules thus altering the structure of the neural network. Initially basic 

behaviours were evolved such as move straight, avoid obstacles, and follow a light. 

Maes action selection mechanism was then used to determine which evolved basic 

behaviour to apply.  

Tuci et al. [115] evolved a simulated robotic controller based on the Khepera robot to 

move towards a light source. The evolution was performed on a recurrent artificial 

neural network that could be configured to any size and connectivity. The network had 

ten inputs for the sensors and four outputs for the motors. The researchers employed the 

novel technique of keeping the weights of the network constant and modifying the 

activation parameters of the neuron. The chromosome detailed the input and output 

connections of the neuron and its associated activation threshold and decay values. The 

genetic algorithm used elitist selection with a population size of 200. Micro-mutation 

was used to randomly alter parameters within the chromosome, while macro-mutation 

was used to operate on a complete chromosome (that was to add or delete a complete 

chromosome, thereby adding or deleting a neuron). 

Leon et al. [116] looked at a discrete-time recurrent artificial neural network with two 

variants, plastic artificial neural network and feed forward artificial neural network, to 

see how they could be modified by a genetic algorithm for robotic navigation. They 

used two classes, recurrent and non-recurrent. The development of an evolved controller 

which could navigate towards a light was successfully achieved by evolving the weights 

in the artificial neural network.  

Abhishek et al. [117] evolved a robot controller for the Khepera robot using a recurrent 

neural network configured by a variable length chromosome. The researchers used a 

recurrent neural network as it was capable of memory and non reactive behaviour. The 

chromosome described the whole network including the number of neurons, the number 
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of inputs and outputs, and the connections, weights, threshold and delay times of each 

neuron. The number of layers in the network was kept constant; however the number of 

neurons in each layer was variable apart from the input and output layers. Each new 

chromosome created by the genetic algorithm was passed to a neural network generator 

to create the network which was then tested for its fitness on the robot. Tournament 

selection was used, although rather than using crossover which can be disruptive to the 

chromosome, they used mutation only as well as a change length operator which could 

add or delete neurons. As the chromosome was capable of increasing in size and thus 

increasing the search space, the chromosome size was included as part of the fitness 

function. A penalty was given to a large size, helping to limit the size of the artificial 

neural network. Several controllers were evolved including obstacle avoidance and 

garbage collection, where the robot had a gripper that would pick up an object and place 

it outside the arena. 

Berlanga et al. [118] used evolutionary strategies to evolve an artificial neural network 

for a robotic controller. The experiment used a feed forward artificial neural network to 

control a simulation of the Khepera robot for navigation and collision avoidance. The 

inputs to the artificial neural network were the infrared sensors and wheel encoders, 

while the outputs from the artificial neural network were connected to the wheel drivers. 

A simulation of the Khepera robot was developed and used to test the process. The 

artificial neural network neurons were encoded as a twenty dimensional real-valued 

vector which were evolved using evolutionary strategies. Although it was found that the 

evolved artificial neural network adjusted its weights rapidly to the training 

environment, it did not perform well when tested in an environment that was different to 

the one it trained in. 

Lund et al. [23] combined a simulated and physical implantation of an evolvable robotic 

controller using an artificial neural network to control the navigation of a Khepera robot. 

Using its own sensors, the Khepera robot was able to map out its environment which 

could be used by the simulation. The artificial neural network was a simple two layer 

network connecting the sensors to the motors. 
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Evolving artificial neural networks in hardware (FPAA, FPGA) for robotic 

controllers 

Gallagher et al. [119] have evolved a continuous time recurrent artificial neural network 

on a custom built hardware platform. A recurrent artificial neural network has discrete 

sequences due to the feedback occurring within the network allowing each of the 

neurons to compute its output simultaneously. In comparison a continuous time 

recurrent artificial neural network is a recurrent artificial neural network, where the 

inputs and outputs are not steps but a continuous time variable and the neurons have a 

temporal response. In the research undertaken by Gallagher et al., the neuron was 

implemented in hardware using a row of analog adders for the weighted inputs and 

leaky integrator, while an operational amplifier was used for the sigmoidal output from 

the activation unit. The experiment used a microcontroller to interface between the 

computer performing the genetic algorithm and the artificial neural network. The 

microcontroller changed the setting of the digital potentiometers. The neural network 

was evolved to control a legged robot. 

Berenson et al. [68] used FPAAs to create a two layer artificial neural network that was 

used to control both a biped robot and a damaged quadruped mobile robot. Both 

controllers were evolved and evaluated on a physical robot without simulation. The 

neurons were created using a summing network for the weighted inputs and an 

integrator to create the threshold trigger level. The weightings, integration constants, 

and polarity of outputs were evolved by evolutionary algorithms. Elitism was used for 

selection on the population size of 32 while both crossover and creep mutation were 

used for reproduction.  

Rocke et al. [120] showed how three neuron models that could be evolved by a genetic 

algorithm were implemented in a FPAA. The neuron models implemented were: a) the 

McCulloch-Pitts, with a step function on its output; b) the multi-layer-perceptron, where 

the threshold function was replaced by either a sigmoid, tanh or Gaussian curve; and c) 

the spiking neuron, where the output from the neuron was a spike which gradually 

decayed to zero over time. 

Manjunath and Gurumurthy [121] investigated fabricating an artificial neural network 

on an integrated circuit, using special purpose configurable analog blocks CAB with 

differential feedback. They proposed using a pair of transistors for a synapse, with a 

current mirror for the signed weights associated with a neural network, and a 
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logarithmic amplifier for the activation function of the neuron to produce a sigmoid 

response.  

Roggan et al. [122] used a FPGA to create a spiking neural network to control a 

Khepera robot for obstacle avoidance. The artificial neural network was comprised of 

spiking neurons classified as cells, whose inputs and outputs were spikes from other 

cells. The weightings and connectivity (neural pathways) could be dynamically changed 

at run-time by the control function input of each cell. This cell function and connectivity 

was defined in a genetic chromosome which was evolved using a genetic algorithm. A 

NIOS processor was used to control the evolutionary process, program each cell 

function, and interface between the sensors, motor control and the spiking neural 

network. An array of eight x eight neurons was created and evolved for obstacle 

avoidance. The fitness was evaluated on an individual that could maintain maximum 

forward speed and distance from an object with minimal rotation of the robot. 

Hannan Bin Azhar and Dimond [123] evolved an artificial neural network on a FPGA 

for the navigation of a Kephera robot using a RAM base neural network. The genetic 

algorithm evolved an artificial neural network chromosome. This chromosome was held 

in RAM, determined the size of the neurons, the number of neurons per class, the 

number of classes, how the sensors connected, and the speed control for the motors. 

Thus the artificial neural network architecture and its behaviour were controlled by the 

chromosome. The chromosome also held the robot ID and its fitness evaluation which 

was used by the evolutionary process.  

Amaral et al. [124] created a neuron on a programmable analog multiplexer array as two 

blocks. The first block was a body circuit block, which implemented the synaptic 

weights and summation. The second block was the activation function block, which 

implemented the activation function. The programmable analog multiplexer used a 128 

bit configuration bit string to configure its analog circuits, and it was this bit string 

which was evolved using the genetic algorithm. The selection process was steady state, 

the population size was 400, and the reproduction used one point crossover with 

mutation. Amaral et al. successfully evolved both the body and functional activation.  
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4.2 Evolution of Fuzzy Logic Robotic Controllers 

4.2.1 Fuzzy Logic Controller Overview 

Fuzzy logic is used in control systems that utilize imprecise input data to determine 

what output action to take. The concept of fuzzy logic for control systems was created 

by Lofti Zadeh in the mid 1960’s. At that time control systems were developed using 

precise (crisp) data of either true or false. Zadeh noted that as humans control systems 

using imprecise (fuzzy) data, so too could computer systems.  

Boolean logic has only two states, true and false, with no input or output able to occupy 

both states at the same time. In comparison, fuzzy logic has a range of conditions 

related to the input and output states. For example the crisp data description of the 

temperature in a control system would state the input temperature was either hot or cold, 

or give a precise temperature such as 42 degrees. Fuzzy data however, would be 

imprecise in its description of the temperature, giving a range of conditions such as very 

cold, cold, warm, hot, and very hot. This is shown in Figure 4-5. 

 

Figure 4-5.  Membership function and degrees of membership for temperature inputs. 

The input membership function is the shape illustrated in the above diagram, showing 

the magnitude of each input for the input range. The shapes in the above diagram are 

trapezoidal and shoulder, however many shapes can be used, such as bell or triangular. 

The degree of membership (truth value) is how much the input conforms to each pattern. 

In the diagram above, the degrees of membership for a temperature of 42 degrees are 

very cold 0.0, cold 0.0, warm 0.0, hot 0.7 and very hot 0.3. The output membership 

functions are described in a similar way with the heater element being nearly off, partly 

on, and almost fully on. The inputs from the sensors come in as crisp data, for example 

the temperature is 42 degrees. This crisp data is then converted to fuzzy data using the 

membership sets and the degrees of membership. This conversion is known as 

fuzzification of the inputs. In a similar manner the output of the fuzzy logic would be 
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converted from fuzzy data back to crisp data that can then be used by a control system. 

This is known as defuzzification. 

Fuzzy operators are used to combine the fuzzy inputs into a value that the fuzzy rules 

can use. Three common operators are the AND, OR and NOT. These are graphically 

shown in Figure 4-6 where max(very cold, cold) acts like an OR of the two inputs, 

min(warm, hot) acts like an AND of the two inputs, and NOT(very hot) will invert the 

input. There are many other operators that are used to combine the fuzzy data. 

 

Figure 4-6.  Graphical representation of fuzzy operators AND, OR and NOT. 

Fuzzy logic is based on linguistic behaviours which are defined in the fuzzy rule base 

that relates the input sensor states to the desired output action states. Each rule in the 

rule base will activate (fire) with a strength proportional to the fuzzified input 

antecedent. These fuzzy rules are based on the if-then structure (else is not used as it 

will exclude ranges). The fuzzy rules describe what action to take for a range of input 

conditions. Rather than using precise measurements, the code could read ‘if the 

temperature is cold and getting warmer then turn the heater on slightly’. The general 

form is if variable is condition (antecedent) then action (consequent). Note the 

antecedent and consequent are not absolute, that is if the antecedent is only partially true 

(less than one) then the consequent will have a corresponding degree of truth. 

Thus the steps in fuzzy logic are: a) fuzzify the inputs: change the crisp data to fuzzy 

data using the membership functions to obtain the degree of truth between zero and one; 

b) inference and fuzzy rules: apply fuzzy operators if there are multiple inputs to give 

the antecedent a value between zero and one then use the rule base to produce the 

corresponding consequent; and d) defuzzify the outputs: pass the consequent through 

the output membership functions to produce a crisp output. These steps are shown in 

Figure 4-7. 
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Figure 4-7.  The three steps in a fuzzy logic controller. 

4.2.2 Evolving Fuzzy Logic Controllers 

The parameters of a fuzzy logic controller can be grouped into three areas. These are the 

fuzzification of the inputs, the fuzzy rules, and the defuzzification of the outputs. These 

areas are normally configured by experiment or design; however a genetic algorithm 

can be applied to these parameters to evolve the fuzzy logic controller. These 

parameters can be represented by a chromosome in several ways. A chromosome for the 

membership function is shown in Figure 4-8. The parameters in the chromosome show 

the shape descriptor: ls (left shoulder), tp (trapezoid), tr (triangle) and rs (right shoulder). 

The parameters immediately after the shape descriptor show the size of the shape giving 

the points at which the shape changes relative to zero on the x-axis. The fuzzy rules can 

also be encoded either as numerical values or symbols that are translated into linguistic 

rules. 

 

Figure 4-8.  Chromosome representation of membership functions. 

4.2.3 Examples of Evolving Fuzzy Logic for Robotic Controllers 

The following section provides examples of evolved fuzzy logic robotic controllers that 

have been used in robotic applications. 
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Makaitis [66] used evolutionary strategies to evolve the fuzzy rule base in a fuzzy 

controller that was used to control the motion of a lift. The fuzzy rules were encoded 

into a chromosome by using integer numbers that represented linguistic terms such as a) 

position: including far above, above, same height, below, far below; b) velocity: 

including quickly upward, upward, slowly upward, stopped, slowly downward, 

downward, quickly downward; and c) acceleration: including high upward, upward, 

same speed, downward, high downward. These parameters were defined as real 

numbers. These linguistic terms were inserted into a Mamdani type rule such as ‘if the 

position is far above, and the velocity is stopped, then set the acceleration to high 

downward’. The evolved controllers were tested in simulation, with the fitness 

determined by the time taken for the controller to bring the lift to a desired floor while 

following boundaries of maximum speed and velocity. It was found that the evolved 

controller was superior to custom designed controllers. 

 

Sung Hoe et al. [125] used a genetic algorithm to evolve the fuzzy input and output 

membership functions as well as the rule base of a robotic fuzzy logic controller for a 

simulated wheeled robot. They used a variable length chromosome which allowed both 

the number of membership functions and rules to increase. The evolutionary process 

was performed in three stages: 1) the first step was to evolve the elements of the output 

membership function and the rule base that connects to them; 2) the removal of 

elements and rules that were not required while still retaining the same fitness; and 3) 

the input membership functions were evolved.  

Jeong and Lee [126] successfully evolved the rules in a fuzzy logic controller that 

provided co-operative behaviour between multiple robots playing a predator-prey game 

where several robots worked together to capture a prey. This experiment used 

distributed artificial intelligence to develop co-operation strategies where the behaviour 

of each predator was governed by the fuzzy logic controller with all predators 

containing the same rule base. The rule base was a series of if then statements relating 

the current heading of the robot, the distance and angle to the prey, and the position of 

the other predator robots to the required robot direction. The robots were implemented 

in simulation with a fitness test ending after either the prey was captured or a set 

number of time steps were completed. The population size was 50, with each 

chromosome encoded with a 64 bit binary string, representing five linguistic variables, 

and two fuzzy sets for each variable; the selection process was roulette wheel.  
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Doitsidis and Tsourveloudis [127] investigated the role of the fitness function when 

applying a genetic algorithm to a fuzzy logic robotic controller with current fitness 

functions focused on the robot’s completion of moving to a target with obstacle 

avoidance. Three types of fitness function were investigated: 1) aggregate (how well the 

robot completed the task without regard to how the task was achieved); 2) behavioural 

(how well the robot functions when performing a task); and 3) tailored (which had 

aspects of both aggregate and behavioural traits). The aggregate fitness was measured as 

to how close the robot moved to a target position. The behavioural fitness measured 

whether the robot moved directly to the target, and the tailored fitness measured both 

how close and how straight the robot moved to the target. The inputs to the fuzzy logic 

controller were the heading error, and the distance from the obstacles derived from two 

infrared sensors with the outputs driving the robot’s left and right servo motors. The 

input membership functions were trapezoidal, whereas the output membership functions 

were triangular. These membership patterns were described in the chromosome. As the 

fuzzy rule base was fixed, it was not part of the chromosome. The evolution was 

performed on a real robot, with the evolutionary process stopped after 80 generations. 

Each generation was limited to 30 seconds of motion. From the researcher’s 

experiments, it was determined that tailored fitness function produced the best result. 

Gu and Hu [128, 129] evolved a reactive behaviour based fuzzy logic controller for a 

Sony legged robot that could play soccer, by evolving the input and output membership 

functions with a genetic algorithm. The required behaviour was to move towards the 

ball and face the goal. The inputs were the orientation of the robot relative to the ball, 

the distance of the robot from the ball, and the orientation of the goal. The output was 

discrete commands that could be recognised by the Sony controller. The fitness was a 

combination of the final position of the robot, and the least number of steps taken to 

move to that position. The population size was fifty, with one individual describing a 

complete fuzzy logic controller. The robot was tested in simulation and the evolution 

was completed after 300 generations. It was found that a fuzzy controller could be 

successfully evolved. 

Li et al. [130] created a fuzzy logic controller that could park a simulated car into a 

garage. The novel concept was that they implemented the controller on a FPGA. Six 

input sensors for car position produced a kinematic model of the car. There were four 

stages to the parking process: 1) approach parking space; 2) pass parking space; 3) back 
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into parking space; and 4) final correction of park. Two controllers, one for steering 

angle and the other for speed control, were used in this experiment. They used the 

relative distances between the front of the car, the front right wheel, the rear right wheel, 

the front left wheel, and the rear left wheel as inputs to the fuzzy logic controller. 

Wu et al. [131] evolved a fuzzy logic controller for a robot whose task was to navigate 

down a pipeline. The pipeline robot used fifteen ultrasonic sensors mounted on its side 

and front to determine its environment. Two wheel encoders were used to determine the 

robot position from a known starting point, and a speed sensor was used to determine 

the robot’s velocity. These inputs were combined into three memberships: 1) distance 

from the robot to a wall; 2) the steering angle of the robot to a target; and 3) the robot’s 

velocity. The outputs from the controller drove the robot’s wheels. The robot’s direction 

was determined by the shape of the pipe it was moving in (which was either straight, 

crossroad, t-junction or dead end). The rule base was comprised of linguistic variables 

that used six variables for the distance, three for the steering angle, and four for the 

velocity, giving 72 control rules which were encoded in the chromosome. In addition, 

the chromosome contained another 48 positions to describe the triangular membership 

functions. The fitness was comprised of three criteria: 1) the time taken to reach the goal; 

2) the number of collisions of walls and obstacles; and 3) where the rules and fuzzy sets 

were kept to a minimum. It was found that the evolved fuzzy logic controller could 

control a simulated robot that could successfully find a good path. 

Chronis et al. [132] used a genetic algorithm to evolve the rule base of a fuzzy logic 

controller whose task was to move towards a target while avoiding obstacles. The 

membership functions were kept fixed while the antecedents and consequents along 

with the number of rules in the rule base were evolved. The rules were of the general 

form: if obstacle distance is x, and obstacle direction is y, and target direction is z, then 

the robot direction is w. The chromosome that described the rule varied proportionally 

to the antecedent value of each variable with distance described in terms such as very-

close, close, far, very-far, and direction described as front, front-right, right, back-right, 

back, back-left, left, front-left. The chromosome was divided into parts showing the 

total number of rules and the appropriate antecedent and consequent for each rule. The 

evolution was performed in simulation and the evolved chromosome was successfully 

tested on the real robot. 
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Islam et al. [133] created a fuzzy logic traffic controller that was implemented in 

hardware. The behaviours and the finite state machine were implemented in hardware 

using a hardware descriptive language. The inputs to the system were traffic volume  

This chapter has reviewed both artificial neural networks and fuzzy logic controllers. 

The use of genetic algorithms to evolve these controllers has been examined. 
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Chapter 5 

Chapter 5: A Review of Robotic Controllers for the Mobile Inverted 

Pendulum and Ball-Balancing Beam 

Two robots were used to evaluate the robotic controllers that were evolved in this 

author’s research. These robots included the mobile inverted pendulum and the ball-

balancing beam. Both were chosen as they had a high degree of instability, making the 

control systems more complex. In the case of the ball-balancing beam, the beam was 

curved to make the system more unstable. This chapter reviews the current research 

associated with both the mobile inverted pendulum and the ball-balancing beam 

including their control systems, and control systems created by evolutionary 

computation. 

5.1 Mobile Inverted Pendulum 

Mobile inverted pendulums are of interest to university research due to their high level 

of instability and their application to robotics, such as walking gaits for bipedal robots. 

The reduction in the cost of gyroscopes and accelerometers has enabled universities and 

students to create mobile inverted pendulums in projects and for research. The most 

widely known implementation of the mobile inverted pendulum is the Segway used as a 

transporter for people and materials.  

The Segway has been used in research including NASA’s ‘Robonaut’. Ambrose et al. 

[134] who worked for NASA, combined their robonaut upper torso with a Segway 

mobile base to give mobility to the robot and to enable human robot interactions such as 

following people, and tracking people with flashlights. Other planned uses were 

assisting astronauts in space, bomb disposal, and security. 

Browning et al. [135] used the Segway robotic mobility platform that could interact 

with human players riding Segway transporters, to play a modified form of soccer. The 

robot used cameras for visual tracking to identify the ball, and a wireless interface to a 

central computer for position and game playing decisions. The referee communicated to 
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the human players via a whistle and verbal instructions, and to the mobile robots via 

wireless communications. 

5.1.1 Non-evolved Robotic Controllers for a Mobile Inverted Pendulum  

This section provides a review of the robotic controllers for the mobile inverted 

pendulum developed by other researchers. 

Standard control state-space equations for a mobile inverted pendulum were developed 

by Grasser et al. [136] in their creation of JOE, the mobile inverted pendulum. JOE had 

three degrees of freedom, roll, yaw, and pitch, and was implemented as a non-

autonomous robot. The control system that they constructed was implemented as two 

separate state-space controllers, the first acting on the yaw or turning motion, the second 

acting on the pitch or balance of the pendulum. The outputs of these systems were 

translated into signals for the right and left wheeled motors respectively.  

Noh et al. [137] modelled a biped walking robot that used a balancing weight similar to 

an inverted pendulum using a linear non-homogeneous second order differential 

equation to find the zero moment point at the foot of the robot. Various gaits were 

produced in simulation to give the robot a walking motion. 

Kim et al. [138] developed a two wheeled inverted pendulum robot that could be used 

as a home robot. They gave particular regard to the stability of the robot on inclined 

surfaces and turning motion. The researchers performed a detailed mathematical 

analysis of the kinematics of the robot on a flat surface and then advanced their models 

for inclined surfaces and finally for turning motion. They then used their models on a 

real two wheeled inverted pendulum with successful results. 

Huang et al. [139] created a fuzzy controller for a two wheeled inverted pendulum using 

three fuzzy control units: the first for motionless balance, the second for travelling  

forward and backward, and the third for steering using yaw in the pendulum. All three 

fuzzy controllers were implemented by a NIOS processor inside a FPGA. The 

motionless balance fuzzy rules were based on a range of factors including the pendulum 

angle, angular velocity, the wheel angular velocity, the motor speed and the pendulum 

position. The travelling fuzzy rules were designed to move the pendulum to an 

unbalanced state so that it could move forward or backward, while the steering fuzzy 
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rules were designed to change the yaw of the pendulum so that it could steer left or right. 

Both simulation and real life experiments showed that the controller behaved well.  

5.1.2 Evolved Robotic Controllers for the Mobile Inverted Pendulum 

Anderson [140] described a method of using an artificial neural network to balance a 

inverted pendulum using reinforcement and temporal-difference learning. The only 

feedback mechanism for learning was a fail due to the pendulum falling over, thus the 

artificial neural network had to deal with delayed performance evaluation, as the 

pendulum could have a long sequence of actions before it fell over, making it difficult 

to determine which action led to the failure. He created two, two layered networks. The 

first was an action network with two outputs which drove the cart either left or right. 

The second was an evaluation network, which was used to determine which sequence of 

actions led to a failure. To overcome the delayed response in learning, the evaluation 

network used temporal-difference learning, which learns associations between signals 

separated in time, (in this case the states of the pendulum and the failure signals). Thus 

the evaluation network would indicate how soon a failure would occur. The output of 

the evaluation function was fed into the inputs to the action network along with the 

pendulum states. For example a failure would be likely to occur when the pendulum 

angle was near its boundary and the angular velocity was high.  

Pasero and Perri [141] created a FPGA based neural controller used to balance an 

inverted pendulum on a cart, using an offline supervised trained multilayer perceptron. 

They used a hidden layer neural network, with five inputs: the pendulum angle, the 

pendulum angular velocity, the cart speed, the cart acceleration, and friction. The 

network had one output to drive the cart motor forward and backward. The artificial 

neural network used SRAM to store the weights, multiplication factors, number of 

inputs, number of neurons and activation function for each neuron. As a low resourced 

FPGA was used, only one neuron was constructed and time multiplexing was performed 

to provide for the number of neurons required. 

Jung and Kim [142] used a neural network interfaced to a PID controller as shown in 

Figure 5-1, to balance a real mobile inverted pendulum. The neural network had six 

inputs, nine hidden layers and six outputs. The inputs to the neural network were the 

current and previous states of the pendulum angle θ and its horizontal movement x. The 

activation function within the network was the hyperbolic tangent function. The outputs 
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of the neural network were fed into two PID controllers, one to control angle, the other 

to control position, which were then combined to drive the two wheels of the motor. 

Both the neural network and PID controller were implemented on a TMS320F2812 

digital signal processor.  
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Figure 5-1.  A neural network with PID for a mobile inverted pendulum. 

Noh et al. [143, 144] created two robotic controllers using a similar technique to Jung 

and Kim, combining an artificial neural network with PID to create a controller that 

could balance the pendulum while it moved in a circular path. They used a radial basis 

function neural network with one hidden layer and a nonlinear radial basis activation 

function. The inputs to the neural network and connections to the PID controller were 

similar to the work performed by Jung and Kim. 

Obika et al. [145] evolved a controller for an inverted pendulum with a double jointed 

arm as shown in Figure 5-2, which was capable of swinging its arm to an upright 

position and then keeping the arm upright. The chromosome was a variable length 

chromosome that was comprised of quantised motor speeds for set periods of time. The 

fitness evaluation was set by how quickly the pendulum would become upright, and 

how little movement there was in the arm once it was balanced. The genetic algorithm 

was based on the minimal generation gap model, which used a steady state algorithm 

and had a low selection pressure. The population size was ten, with the chromosomes 

starting with an initial length of 160 steps giving an eight second length of actions. The 

controller was successfully evolved, and compared well to a standard control system 

based on the zero dynamics method. 
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Figure 5-2. Double jointed inverted pendulum. 

Hoffman [146] evolved a fuzzy logic controller for a pole balancing cart. The input and 

output membership functions along with the rule base were encoded into a chromosome 

that was evolved using a genetic algorithm. The chromosome was fixed in length, thus 

the number of membership functions and rules were fixed. The complete system is 

shown in Figure 5-3. The fitness was proportional to the amount of time that the beam 

remained balanced. The genetic algorithm used two point crossover with creeping 

mutation while the selection process was scalar.  

 

Figure 5-3.  Block diagram of a fuzzy logic genetic algorithm. 

Shieh et al. [147] used a genetic algorithm to evolve a Sugeno-type fuzzy logic 

controller for an inverted pendulum mounted on a cart. The Sugeno-type generates 

fewer rules than a standard fuzzy logic controller, making it more suitable for a genetic 

algorithm. Four fuzzy rules each having six coefficients were developed relating to the 

angle and angular rotation of the pole. The coefficients of the fuzzy rule base were 

encoded into the chromosome. The population size was twenty with crossover and a 

mutation rate of 0.5%. Two experiments were performed, one where the fitness 
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evaluation was determined by how quickly the pole would balance, the second for the 

reduction in overshoot as the pole was brought to balance. Both routines performed well. 

Kwon and Lee [148] evolved a fuzzy logic controller that was used to balance an 

inverted pendulum mounted on a cart using evolutionary strategies. They used a Takagi-

Sugeno type fuzzy logic controller with a Q-learning algorithm for its fuzzy rules. The 

chromosome was a string of real values used to configure the 25 rules in the rule base. 

Rank selection was used with two types of crossover, simple and arithmetical. 

5.2 Ball-Balancing Beam 

The ball balancing beam has been used as a standard laboratory experiment to 

demonstrate control systems for many years. It has also been employed as a benchmark 

for research into control systems due to its non-linear dynamics and behaviour. Control 

systems such as standard control, fuzzy logic, neural networks, and other systems have 

used the beam to test their responses. 

5.2.1 Non-evolved Ball-Balancing Beam Controllers 

Xuerui et al. [149] used a beam driven by two magnetic actuators to study how active 

magnetic actuators could be used to drive a tilt mechanism as shown in Figure 5-4. In 

particular they wanted to study the use of active magnetic actuators in the application of 

artificial blood pumps where the heart pump impeller was suspended in the pumping 

tube by magnetic suspension units. The difficulties in the control system were due to the 

non linear properties of the magnetic actuators. The objective was to keep the beam 

stationary around a nominal point. It was found that using an integral sliding mode 

controller with an integrator allowed the beam to reach a stable condition within 0.3 

seconds of an external disturbance.  

 

Figure 5-4.  Beam controlled by magnetic actuators. 
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Ka and Nan [150] used a ball-balancing beam as a demonstration of optimal and 

disturbance accommodating control. To present a more difficult control system, the 

researchers used a beam with an arc which was mounted on a cart, as shown in Figure 

5-5. The position of the ball was controlled by the horizontal motion of the cart which 

could be driven forward and backward by a DC motor; note the beam did not tilt. The 

aim of the control system was to keep the ball positioned at the centre of the arc while 

keeping the cart positioned at a midway point. They modelled the system using linear 

equations of motion, and used a linear quadratic regulator controller to stabilize the ball.  

 

Figure 5-5.  Ball-balancing beam on a cart. 

Gordillo et al. [151] looked at the ball-balancing beam control system and how it would 

respond to transient disturbances. They used an asymptotically stabilizing controller to 

keep the ball stable on the bar during the transient conditions. They then created a 

controller that would cause the ball to oscillate between two fixed points. 

Dadios et al. [152] incorporated camera vision and a fuzzy logic controller to balance 

the ball on a flat beam. The camera was used to accurately determine the ball velocity 

and distance of the ball from the centre of the beam. The fuzzy controller inputs were 

the ball velocity, the distance of the ball from the centre of the beam (taken from the 

camera), and the beam angle derived from a rotational sensor. These parameters were 

converted to a fuzzy input set and passed to the fuzzy controller inference and rule base. 

The output of the fuzzy controller was the motor speed and direction for the beam’s DC 

motor. It was found that the beam could stabilize the ball in less than six seconds. 

In a similar manner Iqbal et al. [153] created a fuzzy logic controller for the ball-

balancing beam using a 68HCS12 micro-controller which is unique in the fact that it has 

inbuilt fuzzy logic instruction sets. A camera was used to determine the position of the 

ball using pixel images to determine the ball centre. This information was sent to a 

micro-controller and then used to calculate the error in the ball position (distance from 

the centre) and the rate of change in the error position. These three components (ball 
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position, ball error, and rate of change of ball error) were fed into the fuzzy inputs of the 

68HCS12 where they were compared against membership functions to determine the 

degree of membership, and processed by the fuzzy rules. The resulting crisp data output 

was fed into a servo motor for beam control. The complete system is shown in Figure 

5-6. 

 

Figure 5-6.  System interconnections for a ball-balancing beam using a 68HCS12 microcontroller 

with in-built fuzzy instructions. 

Ng and Trivedi [154] combined a fuzzy logic controller in combination with a neural 

network for a ball-balancing beam. The system as shown in Figure 5-7 was comprised 

of three sections: 1) a fuzzy membership function, where the three inputs ball velocity, 

ball position and beam angle were fuzzified using triangular functions; 2) a rule neural 

network which mapped the fuzzy input vectors to fuzzy output vectors; and 3) an output 

refinement neural network which was used to drive the motor. Using the neural 

networks allowed a reduction in the number of fuzzy if-then rules that were required, 

thereby allowing more tolerance in the input parameters and the ability to cope with a 

noisier system. Both neural networks were multilayer feedforward with a back 

propagation algorithm. The system was able to balance the ball using a range of 

different balls and masses. 
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Figure 5-7.  A fuzzy logic controller for the ball-balancing beam. 

 

Eaton et al. [155] increased the complexity of the ball-balancing beam system by using 

a beam covered with a sticky substance, which gave an uneven response of the ball to 

the beam position. This made it difficult to model the system using classical control 

techniques. The researchers increased the difficulty to the controller by not using the 

ball velocity which is commonly used in other systems. They then developed a recurrent 

neural network using truncated back-propagation for the controller. The ball position, 

obtained from a single line 512 element CCD camera, and the beam position were fed 

into a Kalman filter to update the weights of the network. 

Benbrahim et al. [156] used reinforcement learning on a connectionist actor-critic neural 

network to balance the ball. This type of neural network has two networks, the actor 

(action) network that controls the beam motor and the critic (value) neural network that 

provides reinforcement learning to the actor network. The four inputs to the neural 

network were ball position, ball velocity, beam position and beam angular velocity, 

while the output from the neural network provided the DC motor speed and direction.  

5.2.2 Evolved Ball-Balancing Beam Controllers 

Tettamanzi [157] evolved a ball-balancing beam fuzzy logic controller based on the 

SGS-Thomson fuzzy controller processor. The processor contained a weight associative 

rule processor, up to 16 inputs membership functions of any shape, up to 256 rules 

containing up to four antecedents and one consequent clause and 128 output 

membership functions. Five beam states were input to the fuzzy controller: ball position, 

ball velocity, ball acceleration, beam angle and beam angular velocity. The controller 
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had one output that was used to drive the beam motor. The chromosome for the neural 

network was the variables used to configure the SGS-Thomson fuzzy controller 

processor which were the input and output membership functions and the rule sets. As 

there were specific requirements for the set up of the processor, hand written 

chromosomes were used for the initial population and chromosome repair was required 

after the reproduction process. The evolution went through three stages, keeping the ball 

on the beam, keeping the ball in the centre of the beam, and finally moving quickly 

towards the beam centre and stability. 

Yi and Xiuxia [158] used a genetic algorithm to successfully evolve a PID ball-

balancing beam controller where the chromosome was a double float real number 

comprised of the three PID: constants, proportional gain, the integral constant and the 

differential constant. They used a modified form of genetic algorithm called the chaos 

genetic algorithm which mimics chaos theory where very small differences in an initial 

variable (termed the chaotic variable) causes large differences in long term behaviour. 

The aim of the chaos genetic algorithm is to help reduce premature convergence and 

reduce the number of iterations required to find a solution. The genetic algorithm used 

the island selection model with the population divided into separate groups.  

This chapter has reviewed the use of mobile inverted pendulums and ball-balancing 

beams using non-evolved and evolved control systems. 
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Chapter 6 

Chapter 6: Systems Developed for Experimentation 

This chapter describes the common systems that were developed for the 

experimentation performed in this research. It is broken into sections:  

• the mathematical models required for the simulations of the mobile inverted 

pendulum and the ball-balancing beam;  

• the conversion of the mathematical model into simulation;  

• the graphical user interfaces that were used for control, monitoring and data 

recording;  

• the data command protocols used to connect the graphical user interface on the 

computer to the NIOS processor on the FPGA and then to the evolving virtual 

FPGA and hardware simulation.  

The research presented in this thesis created two novel evolutionary capable robotic 

controllers and a hardware based simulation. The first evolutionary capable robotic 

controller was based on a lookup table; the second on a virtual FPGA. In order to 

evaluate these controllers and hardware simulation, two robotic platforms were chosen, 

both based on student projects performed at AUT University. The first was a mobile 

inverted pendulum; the second was a ball-balancing beam. These two robotic platforms 

are described in the next two sections.  

6.1 Mobile Inverted Pendulum 

6.1.1 Overview of the Mobile Inverted Pendulum 

An undergraduate student project performed at AUT University was the design and 

construction of a non-autonomous mobile inverted pendulum which was capable of 

balancing upright and controlled motion using PID control software. The hardware was 

comprised of an Atmel 8-bit microcontroller which interfaced to a digital gyroscope, a 

three axis accelerometer, wheel encoders and a RF receiver. The microcontroller 
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calculated the beam roll tilt and yaw parameters by applying a Kalman filter to the data 

received from the gyroscope and accelerometers. These values, along with the 

pendulum planar positions determined from the wheel encoders, were used to balance 

the pendulum in its inverted state. The pendulum was also capable of motion by 

adjusting its tilt and yaw until it was off balance, allowing a horizontal movement to 

take place for compensation. The mobile inverted pendulum was successfully built and 

tested, as shown in Figure 6-1, and became the platform used for the evolvable 

controller.  

 

Figure 6-1.  The physical and simulated mobile inverted pendulum used to evaluate the robotic 

controllers. 

6.1.2 Mathematical Model of the Mobile Inverted Pendulum 

The pendulum is a non-holonomic robot with three degrees of freedom (DOF), two 

planar motions and one tilt-angular motion, but with direct control of the pendulum in 

only the planar motions driven by the two wheels. Thus the control of the planar motion 

must work in such a way as to control the angular motion of the pendulum. As shown in 

Figure 6-2, the pendulum can rotate around the z axis (tilt); this is described by its angle 

θp and its angular velocity ωp. The pendulum can move on its x axis described by its 

position x and its velocity υ.  
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The parameters used for the mathematical model are shown in Table 6-1. 

g gravitational acceleration (m/s
2
) 

θp angle of the pendulum relative to the vertical axis (rad) 

Mp mass of the pendulum (kg) 

Mw mass of the wheel (kg) 

Ø angle of the wheel (rad) 

Ip inertia of the pendulum (kgm
2
) 

Iw inertia of the wheel (kgm
2
) 

r radius of the wheel (m) 

x horizontal displacement (m) 

l length from the axis to the centre of mass (m) 

T motor torque (Nm) 

F friction force (N) 

H horizontal force (N) 

V vertical force (n) 

p x coordinate of pendulum centre of mass 

q y coordinate of pendulum centre of mass 

Table 6-1.  Parameters used in the mathematical model of the mobile inverted pendulum. 

 

 

Figure 6-2  Diagrammatic sketch used for the mathematical model of the mobile inverted pendulum 

To simplify the evolutionary process, the pendulum was constrained to only one planar 

axis x by driving the two wheels together so there would be no yaw. The pendulum was 
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on a flat surface so there would be no roll, therefore yaw and roll would not be 

implemented in the mathematical model. The important parameters were the 

pendulum’s angle, angular velocity and the linear displacement along the x-axis.  

Wheel 

 

Figure 3.  Pictorial representation of the torque produced on the wheel. 

The motion of the wheel is described in Equation 6-1 (horizontal motion), and Equation 

6-2 (rotational motion). The vertical motion is not used thus the ground reaction force in 

not needed. 

���� � � � � 
Equation 6-1 

	�∅� � � � ��		 � 		 	� ��� 			���	� � �∅� 
Equation 6-2 

Body 

 

Figure 4.  Pictorial representation of the forces on the pendulum. 
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The motion of the wheel is described in Equation 6-3 (horizontal motion), Equation 6-4 

(vertical motion) and Equation 6-5 (rotational motion) 

���� � 2� 
Equation 6-3 

���� � 2� �	��� Equation 6-4 

	��� � 2������� � 2������� � 2� 
Equation 6-5 

Also  

� � � � ������ Equation 6-6 

� � ������	 Equation 6-7 

 

From the above equations the motion of the pendulums angle, angular velocity and 

linear displacement along the x axis can be described by Equation 6-8 and Equation 6-9. 

��� � 2�� � 2	�
� ! �� � ����������� � 2�

� ������"  ����� Equation 6-8 

#	����� $��� ����������� � ��������� � 2� 
Equation 6-9 
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6.2 Ball-Balancing Beam 

6.2.1 Overview of the Ball-Balancing Beam 

The second robotic platform was a ball-balancing beam where the beam was curved, as 

shown in Figure 6-5. The ball-balancing beam was created by AUT students over 

several sequential final year projects. The beam was designed to demonstrate general 

control principals, such as a PID control. A stepper motor was used to alter the beam 

angle via a three to one right angled gear drive. The curved beam and the frame for the 

motor were hand built.  

 

 

Figure 6-5.  The physical ball-balancing beam system and the GUI display that the simulation 

controlled. 

An Atmel mega128 microcontroller was used to control the motion of the beam, using a 

daughter board for the microcontroller and a mother board for the signal conditioning of 

the inputs and outputs of the beam. The position of the ball was determined by twenty 

one ball position sensors which used modulated infrared LED transmitters and 

photodiode receivers. It was possible to have two sensors activated at the same time, 

when the ball was between two sensors thus doubling the resolution of the ball position. 

Two limit switches mounted on the motor frame indicated when the beam was at either 

end of its travel. The original stepper motor had a maximum pulse rate of 8ms (125Hz) 

with each pulse producing a 0.22
0
 shift in the beam, giving a maximum angular beam 

motion of 27.5
0
/s. The maximum travel of the beam was 60

0
 (30

0
 to the left and 30

0
 to 

the right), thus it took 2.2 seconds to move the beam from the maximum left position to 

the maximum right position.
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Using standard proportional-integral-derivative control techniques, it was found that the 

motor was not powerful enough to move the beam quickly enough to balance the ball on 

the beam. Steps to overcome this problem would be to use a more powerful stepper 

motor, or to reduce the curvature of the beam itself. 

6.2.2 Mathematical Model Ball-Balancing Beam  

The parameters used in the mathematical model are shown in Table 6-2. 

g gravitational acceleration (m/s
2
) 

R radius of curvature of the beam (rad) 

m mass of the ball (kg) 

r radius of the ball (rad) 

I rotational inertia of the ball (kgm
2
) 

θ ball position (angle from the centre) (rad) 

Ø beam position (angle from horizontal) (rad) 

F frictional force (N) 

P reaction force (N) 

W weight force (N) 

x distance of the ball from the beam centre (m) 

v velocity of the ball along the tangent m/s 

a acceleration of the ball along the tangent m/s
2
 

ω angular velocity of the rolling ball (rad/s) 

T torque on ball (Nm) 

Table 6-2.  Parameters used in the mathematical model of the ball-balancing beam. 

In the model of the beam as shown in Figure 6-6, the beam position was measured as an 

angle φ (phi) from horizontal, and the ball position was measured as an angle θ (theta) 

from the centre of the beam.  
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Figure 6-6.  Diagrammatic representation of the angles θ and Φ in the ball-balancing beam. 

In the free body diagram of the ball as shown in Figure 6-7, the ball is shown on the 

tangent to the beam. The three forces on the ball are its weight force W, the reaction 

force P of the beam on the ball and the friction force F. The direction of the friction 

force assumes the ball was travelling to the right, moving down the beam. 

 

Figure 6-7.  Diagrammatic representation of the three forces applied to the ball on a slope. 

From Newton’s second law of motion, the resolving forces parallel to the tangent gave 

the ball acceleration: 

)sin( θφ ++−= WFma  
Equation 6-10 

The forces perpendicular to the tangent are not used in this analysis. Assuming the ball 

was rolling, the rotational motion of the ball is given by: 
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 Equation 6-11 

The relationship between the ball’s linear and rotational motion is: 

ω&ra =  Equation 6-12 

Eliminating F  and ω&  and replacing W by mg: 

)sin(
2

θφ ++−= mg
r

Ia
ma  Equation 6-13 

The relationship between the ball’s distance from the centre of the beam and its angle 

from the centre is: 

θRx =  Equation 6-14 

so that 

θ&&&& Rxa ==  Equation 6-15 

Eliminating a between 4 and 5: 

)sin(
2

θφθ ++=






 + mgR
r

I
m &&  Equation 6-16 

Hence 

)sin(

1
2

θφθ +








 +
=

mr

I
R

g
&&  

Equation 6-17 

This can be written as 

)sin( θφθ += A&&  Equation 6-18 

where 








 +
=

2
1

mr

I
R

g
A  

Equation 6-19 

Note that A is a positive constant. When ∅ � � is greater than zero the ball accelerates 
to the right and when	∅ � � is less than zero, the ball accelerates to the left. This shows 
the inherent instability in the beam with the inverted curve. 

FrI =ω&



111 

If the angles θ and φ  are small then 

)( θφθ += A&&  Equation 6-20 

The stepper motor can directly control the rate of change of the beam angle (φ& ) which 

indirectly controlled the beam angle (φ ). 

For the actual beam % was found experimentally by rolling the ball down a stationary 
beam. % was found to be twelve. 

6.2.3 Ball-balancing beam simulation mathematical model 

To simplify the simulation calculations, Equation 6-20 was converted to the following 

units, corresponding to the parameters actually measured by the sensors on the beam. 

Where 

x - ball position from the position sensors (-19 to +19) 

b – beam position from horizontal in units of the stepper motor pulses (-135 to 

+135) 

v – ball speed = �" 		(-1 to +1)  
d – distance between ball sensors 

δ - change of beam angle for a single pulse. 

� � &�
'  Equation 6-21 

∅ � () Equation 6-22 

&��
' � %�() � &

' �� Equation 6-23 

�� � %� � %('
& ) Equation 6-24 

�� � � � 12� � 2.8) Equation 6-25 

The simulation calculates 

-./� � - � �0 Equation 6-26 
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�./� � � � -0 � �0 
2  Equation 6-27 

Substituting in the value for acceleration from Equation 6-25 and using a time period of 

1ms 

�./� � � � -
102 �

12� � 2.8)
2x104  Equation 6-28 

Changing to integer with divisors to the power of 2 

�./� � � � 1049-
2 7 � 101� � 24)

2 8  Equation 6-29 

Thus we can find the new ball position. 

The ball velocity can be found from its current velocity plus its acceleration. Replacing 

acceleration with empirical data and using a time step of 1ms 

-./� � - � 12� � 2.8)
102  Equation 6-30 

Changing so divisor is a multiple of 2 

-./� � - � 786� � 184)
2;4  Equation 6-31 

Note the simulation’s values chosen for the divide where carefully chosen to represent a 

number equating to a power of 2, this meant that the hardware description language 

synthesis could use left shifting or other minimization techniques, rather than a divide 

function. The RTL viewer in Quartus allows the user to see a schematic of the internal 

structure of the design net-list. An investigation of the hardware simulation that was 

generated by Quartus showed that no dividers where used in the circuit, and only five 

signed multipliers where used. The rest of the circuit was comprised of multiplexers and 

comparators. 
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Chapter 7 

Chapter 7: Evolving Lookup Tables for Robotic Controllers 

This chapter presents a novel approach of using a genetic algorithm to evolve a lookup 

table which was used as a controller for robotic applications. Experimentation was 

performed on two robotic platforms, the mobile inverted pendulum and the ball-

balancing beam.  

In chapter five, a literature review of the mobile inverted pendulum and the ball-

balancing beam was carried out. This review described current research on the actual 

modelling of these systems and the control systems used to balance them. These control 

systems included PID, fuzzy logic and artificial neural networks. In the past, most of the 

research that used genetic algorithms to evolve the control systems for robotic 

applications was performed on evolving either an artificial neural network or a fuzzy 

logic controller. With regard to artificial neural networks, the genetic algorithm was 

used to evolve the weightings and neural pathways. In the case of a fuzzy logic 

controller, the genetic algorithm had been applied to the input and output membership 

functions and the fuzzy rules base. 

As an alternative to using PID, artificial neural networks or fuzzy logic controllers for 

robotic control, the author of this research has taken the unusual approach of basing the 

controller on a multidimensional lookup table. The axes of the lookup table were 

connected to the robot’s input sensors providing the current state of the robot, such as 

its position or speed. The parameter at each position within the lookup table gave the 

desired action that the robot should take, and this parameter was sent to the robot’s 

actuators (for example a motor). In this way the lookup table could be used to provide 

an output which controlled the actions of the robot dependent on its input states. 

If used in a conventional way, the use of a lookup table for a robotic controller would 

require the initialization of the lookup table with the appropriate parameters before use. 

These parameters could be derived from standard mathematical models and control 

algorithms, such as PID control for the robot. However in this application the lookup 
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table was initially loaded with random values and a genetic algorithm was used to 

evolve the appropriate lookup table parameters for the system to function. 

Two robotic controllers, the mobile inverted pendulum and the ball-balancing beam, 

were evolved using a software genetic algorithm applied to a lookup table. A block 

diagram of the complete system is shown in Figure 7-1. The system contained a 

graphical user interface for a dynamic visual representation of the robot, control of the 

evolutionary process, and data logging to record the evolutionary steps. The outputs of 

the simulation presenting the current states of the robot were connected to the axis of 

the multidimensional lookup table. The parameters at the specified position within the 

lookup table were sent to the inputs of the simulation to control the actions of the 

simulated robot. The software genetic algorithm used the lookup table itself as a 

chromosome, and evolved a population of these lookup tables until a solution was found. 

 

Figure 7-1.  Block diagram of the systems and interconnections for the software genetic algorithm 

used to evolve a lookup table. 
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7.1 Evolving Lookup Tables for the Mobile Inverted Pendulum  

The main difficulties in the field of evolutionary robotics are that:  

• initial chromosomes can be destructive to the robot and its environment; 

• initial chromosome populations have very little selective pressure as they all 

perform poorly making the beginning phase of the evolutionary process slow 

(this is known as the bootstrap problem [159]);  

• robotic tasks are complex, creating a large search space and subsequently a large 

amount of time is required to evolve a controller.  

Robotic simulation is used to overcome the first two issues of destruction and selective 

pressure. The problem of a large search space can be diminished by either using coding 

methods to reduce the chromosome size and thus the search space, or by using 

subsumption architecture where individual behaviours of the robot are evolved 

independently of each other before being combined together. In this application 

subsumption architecture was employed with balancing the first behaviour to evolve. 

Future behaviours such as navigation or autonomy could then be independently evolved. 

This experiment used a genetic algorithm to evolve a controller for a mobile inverted 

pendulum. The experiment used subsumption behaviours, where layers of behaviour 

were evolved separately and then combined to create more complex behaviours. The 

first evolved behaviour was to keep the pendulum balanced while moving only on the x 

axis. This was achieved by keeping the drive to each wheel the same value, thus 

removing the yaw, and it was operated on a flat surface so the roll had been removed. 

The mathematical model of the mobile inverted pendulum moving on the x axis has 

been described in chapter six. The pendulum states that were used, were the pendulum 

angle θp, angular velocity ωp, and horizontal position x. The following sections detail 

the graphical user interface, chromosome and genetic algorithm used to evolve the 

robotic controller. 

7.1.1 Graphical User Interface 

The graphical user interface shown in Figure 7-2 presents a diagrammatic representation 

of the pendulum and numerical displays of the pendulum’s current state. The 

evolutionary processes such as current generation, individual number, average fitness 

and maximum fitness were also displayed. These parameters were automatically saved 
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to a file for later analysis. When enabled, the motion of the pendulum could be 

displayed in real time, although this slowed down the evolutionary process and was 

normally turned off. In a similar manner the pendulum and evolutionary parameters 

could also be displayed in real time. Both the best individual’s fitness and average 

population fitness were automatically recorded at the end of every generation. In 

addition, the best individual chromosome and the motion of the pendulum could also be 

recorded. This motion showed the pendulum’s angle and angular velocity, giving the 

positions in the lookup table that the individual stepped through as its fitness was 

evaluated. This data allowed the lookup table (chromosome) to be monitored as the 

chromosome was evolving, to see: a) what parts of the lookup table the individual 

passed through as it was evaluated; b) where it spent most of its time; and c) what 

caused the individual to fail the evaluation.  

 

Figure 7-2.  Graphical user interface used for the mobile inverted pendulum software genetic 

algorithm. 
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7.1.2 Genetic Algorithm 

Chromosome 

A chromosome is a possible solution to a problem. In regard to the pendulum, the 

chromosome was a two dimensional lookup table as shown in Figure 7-3, which related 

the angle and angular velocity of the pendulum to the required motor direction and 

torque. The columns represent the pendulum’s current angle ranging ±18 degrees from 

vertical with a step size of 3 degrees. The rows represent the pendulum’s current 

angular velocity ranging ±30 degrees per second with a step size of 5 degrees per 

second. 

 

Figure 7-3.  Pendulum chromosome in the form of a two dimensional lookup table. 

The simulated pendulum’s output states of angle and angular velocity were linked to the 

two dimensional arrays column and row selections. The parameters inside the lookup 

table, which showed the required motor direction and speeds for a given angle and 

angular velocity, were connected to the simulated drive motor of the pendulum. The 

motor driver for the actual pendulum was an H-bridge driver controlled by an eight bit 

number. This number was a linear representation of the motor direction and torque, with 

0 representing the maximum reverse torque, 125 representing the motor stopped and 

250 representing the maximum forward torque. These values were mimicked in the 

chromosome. The step size was 25, allowing a maximum of 11 possible motor torque 

settings, 5 forward, 5 reverse and 1 stopped. 
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The search space for this chromosome can be calculated by Equation 7-1. This equation 

relates the number of positions in the lookup table (169 positions), with the number of 

possible speeds (eleven speeds), giving a total search space of 11
169
 = 9.9 x 10

175
. 

positionstableofnumberspeedsofnumberspacesearch ______ =  Equation 7-1 

Reproduction  

The chromosome reproduction used a two point crossover scheme where two points 

within the parent’s chromosome were randomly chosen and the gene code of the two 

parents between these two points swapped to create two offspring as shown in Figure 

7-4.  

 

Figure 7-4.  An example of two point crossover on the pendulum chromosome. 

To generate two point crossover, four points were selected. These were the column and 

row at the start of the crossover, and the column and row at the end of the crossover. To 

find the first starting points, two random numbers between the values of one and 
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thirteen were generated. To find the two end points, two random numbers between the 

starting points and thirteen (the number of rows and columns) were generated. Creeping 

mutation was then applied to the newly generated offspring to maintain population 

diversity. Creeping mutation is a mutation technique where the gene is replaced with a 

value within a limited range of the original non-mutated value. On each generation after 

crossover was performed, five of the hundred individuals were chosen for mutation. A 

mutation of ten randomly positioned genes within the individual chromosome was 

performed.  

Selection 

The selection process used was tournament selection. This process divides the 

population into subgroups of individuals, and after fitness evaluation, only the fittest 

individual within that subgroup is retained. The selection pressure in tournament 

selection is dependent on the subgroup size. If the subgroup size is large then only a few 

individuals in the total population will be retained after each generation, thus the 

selection pressure will be high. However with a high selection pressure over time, there 

will be a corresponding drop in chromosome diversity, increasing the possibility of the 

evolutionary process becoming trapped in local maxima. As the size of the subgroup 

decreases, more of the total population of individuals will be retained. Thus the 

selection pressure will decrease, while the population diversity will be maintained. The 

selection process in this experiment had a subgroup size of two, giving low selection 

intensity while maintaining a diverse chromosome pool. 

The genetic algorithm stepped through the population of individuals, selecting two 

individuals that were adjacent to each other and removing the individual with the lower 

fitness. When the selection process was completed the order of population was shuffled, 

allowing reproduction to occur from different parents after each generation. 

7.1.3 Simulation and Coding Structure 

The simulation used floating point numbers for the pendulum angle and angular 

velocity. These numbers were required to be converted to the x-y coordinates of the 

lookup table (zero to twelve). A flow chart illustrating the interaction between the 

simulation and the lookup table is shown in Figure 7-5. The simulation ran until an 

angle or angular velocity boundary was reached. The simulation then gave the current 

floating point values for the pendulum’s angle and angular velocity to a subroutine, 
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which converted these parameters to the lookup table axis, to provide a new motor 

speed. A new angle and angular velocity boundary was generated and passed to the 

simulation.  

 

Figure 7-5.  Flow chart of the simulation’s interaction with lookup table. 

The basic coding structure showing the iteration of reproduction, fitness evaluation and 

selection that is performed by the genetic algorithm is provided below.  

main() 

{ 

initialise_population(); 

record_parameters();  // store the maximum and average fitness, and generation 

do 

{ 

procreate(); // perform crossover and mutation 

terminated = find_fitness(); // run simulation over a range of start conditions 

        // can also record the pendulum motion 

best_fitness = selectiont(); // perform tournament selection 

if(generation%5 == 0) 

record_parameters();  // store the max & av fitness, and generation 

if (store_chromosome) 

 record_chromosome() ; //store the chromosome population 

if(store_motion) 

 record_motion(); // store the motion of the pendulum 

generation++; 

} while (generation <= 500 && !terminated); // 

record_parameters();  // store the maximum and average fitness, and generation 

} 

7.1.4 Fitness Evaluation 

The main component of the fitness evaluation was the length of time that the pendulum 

remained upright within a set angle. However after initial experiments, other fitness 

evaluation criteria were included, allowing the evolutionary process to produce an 
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increased performance of the pendulum with a more robust robotic controller. The final 

fitness was determined by the length of time that the pendulum remained within a 

vertical angle ranging from ±18 degrees and within a horizontal position ranging from 

±0.5 meters of its start position.  

Two experiments were performed, each with a different range of pendulum starting 

angles. The first had a pendulum starting angle ranging from ±18 degrees, with 12 

starting angles each spaced 3 degrees apart. The beam was not tested at the vertical 

position as starting an ideal simulation of a pendulum at zero degrees and zero angular 

velocity with zero motor speed would give this starting position a perfect score. In real 

life this could not occur as there would always be a slight pendulum angle or angular 

velocity. The second experiment had a pendulum starting angle ranging from ±12 

degrees with eight start angles each spaced 3 degrees apart. Once again no test was run 

with a pendulum starting angle of zero degrees.  

The fitness evaluation of each individual was stopped after 300 seconds if the pendulum 

had not moved outside either the maximum vertical or horizontal range within this time. 

A time of 300 seconds (five minutes) was considered to be a thorough assessment, 

giving a high probability that the pendulum would remain balanced indefinitely. Each 

individual was tested twelve times from twelve different start angles; these times were 

summed and then divided by twelve to give the average time that the pendulum had 

remained balanced. This was performed in a similar manner for the experiments with 

eight starting angles ranging from ±12 degrees.  

The process of determining the fitness criteria was modified during experimentation to 

improve the behaviour of the evolved pendulum. This fitness criteria were modified in 

the following manner. The original genetic algorithm had the pendulum starting from 

only one angle. An investigation on the evolved chromosome found that only a limited 

part of the lookup table would evolve. This occurred as the pendulum would learn to 

balance from its initial offset starting angle. However the pendulum did not learn how to 

balance from other initial start conditions. To prevent this from happening, the same 

individual was evaluated over 12 starting angles, ranging from ±18 degrees with a step 

size of 3 degrees. The starting angular velocity was 0.  

After modification of the original fitness evaluation criteria, experimentation began 

again. A further study of the pendulum’s horizontal motion found that the pendulum 
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would remain upright, however it would develop a constant forward or backward 

momentum, i.e. the pendulum would maintain a fixed balance point that required a 

constant horizontal motion moving the pendulum away from its starting position. It was 

determined that this was a poor characteristic and it was penalized by terminating the 

experiment when the pendulum moved beyond ± 0.5 meters from the initial horizontal 

starting position. Thus the fitness for each individual was now determined by both its 

ability to balance the pendulum and to remain stationary. 

Further experimentation found that some fitness evaluations would last an indefinite 

period of time. This was a good result for one individual at one starting point, however 

the fitness evaluation would never end and the evolution process would stop. To 

overcome this, all fitness evaluations were terminated after a 300 second interval, thus 

the maximum fitness that the controller could achieve would be five minutes. 

A final investigation of the lookup table found that the parameters at the extreme 

positions of the table did not evolve to the value expected from the mathematical model; 

with a motor speed at a maximum forward or reverse torque. An investigation of the 

pendulum’s motion found that at the ranges of ±18 degrees the motor, even at maximum 

torque, did not have enough power to bring the pendulum upright. Thus the extremities 

of the lookup table would not evolve as there were no values that would offer a 

significant difference in fitness. 

7.1.5 Results 

Idealised lookup table 

An ideal chromosome was derived from a standard control system algorithm with a 

linear progression of motor torque values dependent on the angle and angular velocity. 

When the pendulum angle and angular velocity was zero, then the motor would be 

stopped, with a motor parameter of 125. As the pendulum angle moved towards -18 

degrees, the motor parameter moved towards 200 (nearly full left). As the pendulum 

angle moved towards +18 degrees, the motor parameter moved towards 50 (nearly full 

right). In both cases the motor was being driven in a direction that would return the 

angle of the pendulum to zero. A corresponding pattern occurred with the angular 

velocity. It was expected that the evolved chromosome would look like the ideal lookup 

table as shown in Table 7-1.  
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Angular Velocity (degrees/second)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

-18 225 200 200 200 200 200 200 175 175 175 175 175 150

-15 200 200 200 200 175 175 175 175 175 175 150 150 150

-12 200 200 175 175 175 175 175 150 150 150 150 150 150

-9 175 175 175 175 175 150 150 150 150 150 150 125 125

-6 175 175 175 150 150 150 150 150 125 125 125 125 125

-3 175 150 150 150 150 150 125 125 125 125 125 125 100

0 150 150 150 150 125 125 125 125 125 100 100 100 100

3 150 125 125 125 125 125 125 100 100 100 100 100 75

6 125 125 125 125 125 100 100 100 100 100 75 75 75

9 125 125 100 100 100 100 100 100 75 75 75 75 75

12 100 100 100 100 100 100 75 75 75 75 75 50 50

15 100 100 100 75 75 75 75 75 75 50 50 50 50

18 100 75 75 75 75 75 50 50 50 50 50 50 25
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Table 7-1.  An example of an ideal pendulum chromosome. 

This ideal chromosome was run on the simulation, but when assessed it performed 

poorly, failing the test after less than one second. A review of the recorded pendulum’s 

motion showed the reason for failure was that even though the pendulum moved to an 

upright position and could achieve balance, it did not become vertical quickly enough to 

avoid a horizontal drift within the required ±0.5 meter distance from starting. From this 

it could be seen that a successful chromosome would require motor torque settings that 

quickly moved the pendulum to a vertical position, and maintained that vertical position 

while keeping the pendulum within the horizontal boundary. Further investigation found 

that the motor torque was not strong enough to pull the pendulum upright within the 

±0.5 meter boundary from start angles of ±18 and ±15. 

Two groups of experiments were performed: one with a pendulum starting angle 

ranging from ±18 degrees, the second with a starting angle ranging from ±12 degrees. 

The population size was 100 with the starting population randomly generated. During 

the evolutionary process three events were recorded and analysed. These were:  

• the fitness and chromosome of the best individual within the population;  

• the average fitness of the population;  

• the pendulum motion.  
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Results starting angle from ± 18 degrees 

A typical result is shown in Figure 7-6 with an initial large gap between the best and 

average fitness, and then a convergence between these values with each generation. The 

best fitness increased in large jumps as there was a step change in the best individual 

within the large population. However the average fitness of the population gradually 

improved until the complete population had approximately the same fitness. It was 

thought at this point that the population had converged and diversity had been lost, with 

only mutation producing new variations in offspring. However an investigation of the 

population’s chromosomes found that diversity still existed with different patterns of 

pendulum motion still being performed.  
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Figure 7-6.  Fitness relative to generation for pendulum starting angle ±18
0
 showing the best 

individual and population average fitness. 

The best individual fitness and average population fitness of several successful runs are 

shown in Figure 7-7. It can be seen that the evolutionary process was similar over a 

number of experiments with the beam able to balance for 100 seconds within 40 

generations, making steady improvement after that with the best individual eventually 

capable of balancing for 200 seconds. The upper limit for fitness was 300 seconds, 

although this was not reached because the pendulum could not start at an angle less than 

±12 degrees without moving outside its ±0.5 horizontal position before it could become 

stable. This resulted in four of the test results behaving poorly, giving a maximum 

overall possible fitness of 208 seconds.  
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Figure 7-7.  Fitness relative to generation for pendulum starting angle ±18
0
 showing the best 

individual and average fitness for multiple runs. 

Results starting angle from ± 12 degrees 

The experiments were repeated with the starting pendulum angle ranging from ±12 

degrees. The fitness step response of the best individual and gradual improvement of 

fitness for the population average was similar to the ±18 degree experiments as shown 

in Figure 7-8. The difference between the two was the maximum fitness that could be 

reached, changing from a maximum of 200 seconds to 262 seconds due to the reduced 

extreme starting angles of the second range of experiments. 

 

Figure 7-8.  Fitness relative to generation for pendulum starting angle ±12
O
 showing the best 

individual and the population average. 
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Figure 7-9 shows the best individual fitness over several runs. It can be seen that the 

population has distinct stages to its evolution. The initial stage has a rapid increase in 

levels up to a balance period of 50 seconds and then step changes after that point. Then 

a plateau occurs at 150, 180, 220 and 262 seconds. These plateau are explained by the 

starting angles that are nearest to 0 degrees can be easily evolved, while the starting 

angles further away from the upright position require a large initial response to avoid 

the ±0.5 meter penalty. These are then evolved separately which are indicated by the 

large steps at these points.  

 

Figure 7-9.  Fitness relative to generation for pendulum starting angle ±12
0
 showing the best 

individual with multiple runs. 

Figure 7-10 shows the best individual fitness and associated average fitness of the 

population over several runs. It can be seen that the best individual and average 

population fitness converge over 50 generations, then a resultant better fitness is found 

and there is a divergence in the best and average fitness. These eventually come 

together until the next leap in best fitness. An examination of the chromosomes 

indicated that the diversity was maintained, with a range of possible solutions being 

presented with different motions of the pendulum for each chromosome.  
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Figure 7-10.  Fitness relative to generation for pendulum starting angle ±12
0
 showing the best 

individual and population average with multiply runs. 

Pendulum motion 

The graphical user interface could record the motion of the pendulum during the 

simulation. This allowed the pendulum’s access of the lookup table to be investigated 

showing the pendulum angle, pendulum angular velocity, and the corresponding motor 

parameters of direction and speed. The pendulum motion was analysed using a 

successful chromosome so the characteristics of the pendulum motion in relation to its 

chromosome could be observed. 

The characteristics of a successful chromosome were that the pendulum would quickly 

be brought to an upright position, which prevented the pendulum from moving out of its 

±0.5 meter horizontal limit. Two different characteristics of the pendulum motion were 

seen. Firstly, the pendulum would jitter around a static horizontal position so that 

horizontal drift was eliminated. Secondly, the pendulum would have a slow horizontal 

drift in one direction and then kick back to the start to begin the slow horizontal drift 

once again. It was noted that the pendulum did not use the entire lookup table; instead it 

would move through a set path which would be endlessly repeated. It was also observed 

that successful chromosomes differed from each other as there were many different 

possible means of successfully balancing the pendulum. 

Interestingly the pendulum did not fail a test by exceeding its angular limit. Instead the 

termination of a test run was due to either the pendulum running to the time limit, or the 
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pendulum accumulating a small horizontal drift that over a long period of time would 

take the pendulum outside the ±0.5 meter horizontal limit.  

A successful chromosome is shown in Table 7-2. An investigation of the parameters 

within the lookup table showed that at an angular velocity of zero, the motor was driven 

harder to the left as the angle moved towards -18 degrees, and harder to the right as the 

angle moved towards +18 degrees. This was the initial kick that the pendulum got at the 

beginning of its test. 

The evolved chromosome had a non-linear progression between cells, thus the path that 

the pendulum took through the chromosome was highly convoluted. Some of the cells 

would seem to have incorrect values according to their angle and angular velocity; 

however adjacent cells compensated for the incorrect settings. It was this erratic 

sequence of motor torques that created the jitter and corresponding horizontal stability.  

Angular Velocity

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

-18 50 100 225 0 50 175 25 100 50 150 200 50 125

-15 25 250 25 125 0 0 50 125 75 175 250 225 100

-12 175 150 25 25 25 225 75 75 0 175 25 100 75

-9 250 25 25 25 150 0 100 75 0 200 50 50 100

-6 25 125 150 75 150 175 75 25 125 0 100 50 0

-3 100 175 0 150 25 50 0 25 25 0 100 25 225

0 225 100 100 150 25 250 75 150 200 50 100 200 100

3 225 75 75 125 100 250 225 100 225 100 250 0 100

6 200 225 200 175 225 225 0 200 175 100 0 150 25

9 250 150 200 100 175 0 225 125 200 25 175 150 100

12 225 225 175 200 225 125 225 225 150 200 25 225 150

15 250 250 250 225 125 250 200 225 125 125 225 250 250

18 50 250 50 50 75 150 250 250 100 0 175 200 200
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Table 7-2.  An example of a pendulum’s evolved chromosome showing the relationship between 

angle and angular velocity with the motor speed output. 

The best chromosomes from several evolutionary runs were compared and it was found 

that the chromosomes differed even though they had a similar fitness. This was due to 

the random initial chromosomes and the many possible successful solutions that could 

be evolved.  
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7.1.6 Conclusions 

This first experiment has described a novel method in which a lookup table based 

robotic controller for a simulation of a mobile inverted pendulum controller could be 

evolved to a point where an acceptable level of balance was achieved. It was found that 

the genetic algorithm produced a controller capable of balancing the pendulum for 200 

seconds within 200 generations (starting angle ranging from ±18
0
) and for 262 seconds 

(starting angle ranging from ±12
0
). The fitness evaluation was an important parameter 

of the evolutionary process as it determined the final behaviour of the pendulum. In the 

case of the mobile inverted pendulum, without a fitness penalty the pendulum would 

remain balanced but have an unwanted continuous horizontal motion. It was found that 

the population of individuals, though having the same fitness level had not lost diversity; 

instead multiple paths to obtaining a balanced pendulum were found.  

A conference paper and a book chapter were published on using a lookup table to 

evolve a controller for the pendulum (see chapter 1). The simulation and graphical user 

interface can be found in the CD accompanying this thesis. 
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7.2 Evolving Lookup Tables for the Ball-Balancing Beam  

The second experiment investigated the use of a genetic algorithm to evolve a ball-

balancing beam controller by evolving a population of three dimensional lookup tables 

used to control the beam motor. The beam position, ball position and ball speed states of 

the beam were used to determine which parameter within the lookup table would be 

used to give the required motor speed and direction that would move the beam in a 

motion that would balance the ball. The genetic algorithm was similar to that used by 

the mobile inverted pendulum; however the search space was far larger due to the larger 

size of the ball-balancing beam lookup table. A graphical user interface was developed 

to record the beam and ball states, the chromosomes within the population, and the 

genetic algorithm parameters such as best fitness within the population and the average 

fitness of the entire population. 

Historically a straight beam has been used for the ball-balancing beam, as it simplifies 

the control system algorithms that are required to balance the ball. However in this 

research the beam was curved, as this provided a more complex simulation model and 

algorithm, and also meant that the ball would never reach a static stable state with the 

motor stopped. The simulation was modeled around a ball-balancing beam that was 

developed at AUT University for a student project, as shown in Figure 7-11. The 

physical beam was curved; it had twenty-one infrared detectors to determine the 

position of the ball; and a stepper motor to control the angle of the beam. The angular 

velocity of the beam was controlled by the number of pulses fed into the stepper motor 

per second. The maximum angular velocity was determined by the maximum pulse rate 

that the stepper motor could respond to (125 pulses per second). The angular movement 

of 0.22 degrees per pulse gave a maximum angular velocity of the beam as 27.5 degrees 

per second.  

The mathematical analysis for the ball-balancing beam has been described in chapter six. 

This analysis was converted into a simulation model that employed fixed integers that 

was used in the following chapters.  



Figure 7-11.  Picture of 
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Graphical User Interface 
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Figure 7-12.  Graphical user interface for the ball-balancing beam controlled by an evolved lookup 

table. 

7.2.2 Genetic Algorithm 

Chromosome 

The heart of the controller was a three dimensional lookup table as shown in Figure 

7-13. The lookup table contained the desired motor speed and direction required to drive 

the motor in such a way as to balance the ball. The three dimensions of the lookup table 

were linked to the ball and beam states. These were, ball position (nineteen inputs), 

beam position (ten inputs), and ball speed (three inputs). Several lookup tables were 

evaluated with a range of motor speeds varying from two to eleven. The elements of the 

array were defined as char variables initialized with a randomly generated number 

quantised into 11 discrete steps ranging from 0 to 250. This enabled each location in the 

array to describe a motor speed with five left speeds, five right speeds and one stopped. 
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The speed range was reduced when evaluating different speeds by adjusting the 

threshold so that the motor had limited speeds. For example with a two speed range, 

values below 125 would drive the motor hard left, while values above 125 would drive 

the motor hard right. 

 

Figure 7-13.  Balancing beam chromosome in the form of a three dimensional lookup table. 

The search space for the range of motor speeds that were tested is shown in Table 7-3. 

These figures were derived from Equation 7-1, with the number of positions in the table 

set at 570 (10x3x19). The search space for the beam with its three dimensional array far 

exceeded the search space that was used for the pendulum. 

speeds search space

2 3.9 x 10
171

3 9.1 x 10
271

5 2.6 x 10
398

11 3.9 x 10
593

 

Table 7-3.  Balancing beam lookup table search space. 
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Reproduction 

Two point crossover was used using the x-axis (ball position) and y-axis (beam position) 

of the array as the positions within the array to be cut. The first cut points of the 

crossover were determined by randomly choosing points between 0-18 and 0-9. The end 

cut points of the crossover were determined by randomly choosing points between the 

first cut points and the end of the array, 18 or 9. The chromosomes between these two 

parents were swapped as shown in Figure 7-14. A mutation rate of two percent was 

chosen, with every individual in the population being mutated after crossover occurred. 

 

Figure 7-14.  An example of reproduction of ball-balancing beam chromosome using two point 

crossover. 

Selection 

The selection process used was similar to that of the mobile inverted pendulum. The 

selection process was tournament with a group size of two, giving a moderately low 

selection pressure but maintaining a higher diversity in the population after selection. 

The selection process stepped through the population sequentially and compared the 

fitness of two adjacent parents, keeping the parent with the higher fitness. After the 

selection process was finished, the population was shuffled so that future selection 

processes acted on different groupings of parents. 
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7.2.3 Simulation and Coding Structure 

The simulation used the equations as shown in Equation 7-2 and Equation 7-3. The 

derivation of these equations is described in chapter six. These equations were 

configured for a one millisecond time period, with a new ball position and speed 

calculated on each time step. Correspondingly the distance at which the beam moved 

was set for the same time period. The maximum beam movement was calculated from 

the real beam system, using two maximum motor speeds of 125 and 250 pulses per 

second, or a beam angular velocity of 22.7 and 45.4 degrees per second. The simulation 

used the motor speed and direction to calculate the new beam position. From this the 

new ball speed and position was calculated for the next millisecond and then fed back to 

the lookup table. The actual time that the ball was in motion was calculated from the 

number of times the simulation was called using the one millisecond time period as a 

reference. 

�./� � � � 1049-
2 7 � 101� � 24)

2 8  Equation 7-2 

-./� � - � 786� � 184)
2;4 	 Equation 7-3 

The simulation kept the ball and beam parameters as a 32-bit integer number, which 

needed to be converted to a value the lookup table could use. These values were 

nineteen ball positions, ten beam positions and three ball speeds. Therefore a series of 

if-else statements were used to convert the simulation integer numbers to the lookup 

table requirements. In a similar manner, the motor speeds from the lookup table were 

converted into a simulation value that was added to or subtracted from, the current beam 

position to give a new beam position after one millisecond had passed. 
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Coding structure 

main() 

{ 

open data files and     print number of speeds and motor speed 

do 

{ 

setup();  //create a randomized population and set the time 

do 

{ 

reproduce();  //perform crossover and mutation 

find_fitness(); // call simulation to find the fitness all the individuals 

selection(); //perform tournament selection 

generation++; 

if ( !(generation %5)) 

store(); //store maximum fitness, average fitness, runtime 

if (record_pop && (!(generation%50))) 

record_population(); // store the population 

} while( max_fitness < 300000);  //repeat test until maximum fitness is reached 

if (record_last_run) 

record();        //store the chromosome of the best individual and replay it  

repeat_test++; 

} while (wanted_tests != repeat_test); // repeat evolutionary process 

} 

7.2.4 Fitness Evaluation 

The individual’s fitness was determined by how long the ball remained balanced on the 

beam before hitting either end-stop. At the start of each test, the beam was placed in the 

horizontal position and the ball was at rest. The simulation was then run until either the 

ball hit an end-stop or 60 seconds had passed. Each individual was tested seven times 

with the ball positioned at seven different locations on the beam, giving a combined 

total maximum fitness for each individual of 420 seconds. 

7.2.5 Results  

Initial experiments employed a two dimensional lookup table which used only the beam 

and ball positions. It was found that this information alone was not enough to provide a 

successful evolution, so the lookup table was modified to provide for a third parameter 

incorporating speed. 
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Two ranges of experiments were performed with two maximum stepper motor pulse 

rates. The first used 125 pulses per second which equated to a maximum beam angular 

velocity of 22.7 degrees per second. This was the speed of the actual beam motor and 

was at the limit at which the beam could control the ball. The second experiment used 

250 pulses per second which equated to a maximum beam angular velocity of 45.4 

degrees per second. For each experiment, four ranges of motor speeds (two, three, five 

and eleven speeds) were evaluated. 

The first experiments used eleven start positions ranging from ±18 degrees relative to 

the top of the beam. Initial experiments showed that the fitness level never reached the 

maximum fitness. Under investigation it was found that the motor could not move the 

beam quickly enough to prevent those balls starting at the extreme angles from 

immediately hitting an end-stop. The experiment was changed to seven ball starting 

positions ranging from ±12 degrees relative to the top of the beam, with each individual 

tested seven times. A run was successful when the ball was balanced for 60 seconds, 

giving a combined total maximum fitness for each individual of 420 seconds. 

Evolutionary stages 

The graphs for these runs are presented in Figure 7-15 through to Figure 7-18. They 

show the relationship between the fitness of the best individual within the population 

and the number of generations for the four ranges of motor speeds. The graphs show 

step changes in the fitness level as the evolution progresses. These step changes 

occurred at fitness levels in the region of 180, 240, 300, and 360 seconds. These values 

were linked to the number of starting positions of each test and the 60 seconds that each 

test was performed. For every start position the beam evolved a behaviour that would 

bring the ball to a stable state before it reaches and end-stop. It was a simpler task to 

bring the ball to a stable state when the ball was started near the center of the beam, and 

therefore these evolved solutions were found first. The latter solutions with the ball 

started further from the center of the beam were harder to find, causing the fitness to 

plateau at these levels.  

It can be seen from the graphs that the experiments with only two motor speeds evolved 

to successful solutions in less generations and time than the other speeds. This was 

partly due to the fact that the two speed chromosome required a reduced search space, 

as well as only using the motor at a maximum speed. 
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Figure 7-15. Fitness relative to generation using two motor speeds with at 8ms pulse rate showing 

multiple runs. 

 

 

Figure 7-16.  Fitness relative to generation using three motor speeds at 8ms pulse rate showing 

multiple runs. 
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Figure 7-17.  Fitness relative to generation using five motor speeds with at 8ms pulse rate showing 

multiple runs. 

 

Figure 7-18.  Fitness relative to generation using eleven motor speeds at 8ms pulse rate showing 

multiple runs 

The motion of the ball and beam was observed in different stages of the evolutionary 

process using the graphical display. The stages were shown as:  

• the ball would roll towards the beam end-stops with little or no beam motion;  

• the beam would react to the ball movement, reversing the motion of the ball, 

however the ball would then roll to the opposite end-stop;  

• the beam moved in an oscillating pattern, causing the ball to stay balanced in 

between two points (however after five to ten seconds the ball would break free 
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and gather too much speed for the beam to prevent the ball from hitting an end-

stop);  

• in the final stage of evolution, the beam was able to keep the ball trapped 

between two points for the full sixty seconds.  

This characteristic oscillation of the beam was seen in all motor speed ranges. With only 

two speeds, the beam moved in rapid oscillations to keep the ball steady. However with 

a larger number of speeds, the beam would move at a slower pace. Eventually the beam 

evolved to keep the ball rocking between two points for all seven start positions, using 

an oscillating motion of the beam. 

It can be seen from the graphs that there were two main plateaus in the fitness level near 

320 and 360 seconds. These plateaus can be explained by the two start positions at the 

furthest point from the center of the beam. These were the most difficult points at which 

to bring the ball to a stable oscillating condition, as the ball tended to gather a high 

speed and was difficult to capture. This plateau was more noticeable when the 

experiment used five and eleven motor speeds. 

For the five and eleven motor speed range, the ball would not be balanced in the middle 

of the beam. Instead it would be gently moved to either end of the beam and kept 

centered around that point. This trait can be explained by the way the ball position was 

determined. The position of the ball was determined by the ball sensors, and as the 

position of the ball is able to be determined between sensors as well as across a sensor, 

there are far more ball positions than the nineteen required for the lookup table. Thus 

the ball position is determined over a range of sensors. This range was unevenly spaced 

with the spacing placed closer together at the ends of the beam and further apart in the 

middle of the beam. This was done because it was thought that determining the ball’s 

position and speed was more critical near the beam ends. Unintentionally however, this 

gave the evolved controller the best location of the ball and its speed near either end of 

the beam. Subsequently the evolved controller used the end locations to balance the ball. 

This characteristic was not seen with the two and three motor speeds experiments. 

As a simulation was used, when a test was started with the ball motionless in the center 

of the upright beam, the evolved solution kept the motor off, so the ball stayed perfectly 

balanced for the duration of the test. This trait was not seen for the two speed range as 

the motor could not be stopped, instead the beam would move the ball to a stable 

position.  
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Evolved chromosome 

An investigation of successfully evolved chromosomes and the corresponding sequence 

of beam and ball motions showed different patterns for each evolved chromosome. This 

was due to there being multiple ways of successfully balancing a ball. A successful 

evolution did not use a large part of the parameters in the lookup table, especially at the 

extreme values of beam and ball positions. The ball simply tracked to a position on the 

beam, and beam oscillations around that point kept it in place. 

A comparison of the maximum and average fitness showed the maximum fitness 

increased in steps with the average fitness converging when the maximum fitness 

reached a plateau. At each plateau it was thought that as all the population had the same 

fitness, the population diversity had been lost. However an investigation of each 

chromosome revealed that this was not the case. This was confirmed by observation of 

the beam and ball motion at the plateau points. The evolution produced multiple 

solutions, although no individual chromosome had found a solution that would balance 

the ball when started in either, or both, its first and last start position. Eventually this 

solution was found and the evolution was completed. 

 

 

Figure 7-19.  Fitness relative to generation for maximum and average fitness, with eleven motor 

speeds and at 8ms pulse rate. 
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successful evolution. From this table it can be seen that the faster motor and minimum 

number of motor speeds had the best results in terms of the number of generations and 

the time taken to come to a successful evolution. It was noted that the time taken for the 

five and eleven motor speeds to successfully evolve was also acceptable despite the 

much larger search space. The reason for this was because the actual search space was 

reduced by: a) the ball did not travel on all places on the beam, learning to quickly come 

to a stable position; and b) not all the possible speeds were used, with a tendency to use 

the higher motor speeds.  

speed range generation av fitness time (s) generation av fitness time (s) 

2 118 347726 197 42 268456 35

3 268 364240 592 56 327891 76

5 398 357240 3624 98 351811 297

11 861 359427 25794 103 349563 467

8ms stepper motor pulse rate 4ms stepper motor pulse rate

 

Table 7-4.  Comparison of the average fitness, average number of generations and the average time 

taken for a chromosome to evolve. 

A comparison of the four motor speeds for the 8ms and 4ms maximum motor pulse 

rates are shown in Figure 7-20 and Figure 7-21. From these graphs it can be seen that 

doubling the motor pulse rate had a significant improvement on the ability of the system 

to evolve, especially at the five and eleven speed range. The fitness plateau at 320 and 

360 seconds is clearly illustrated. All the solutions had difficulty with one or both of the 

extreme starting points. 

 

Figure 7-20.  Fitness relative to generation for the four motor speeds at 8ms pulse rate. 
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Figure 7-21.  Fitness relative to generation for the four motor speeds at 4ms pulse rate. 

7.2.6 Conclusions  

It has been demonstrated that a robotic controller for a ball and beam system based on a 

three dimensional lookup table can be successfully evolved. While both motor pulse 

rates and all motor speed ranges were capable of being evolved to keep a ball balanced 

for a combined time of more than five minutes, the best evolutionary performance was 

achieved using a limited number of motor speeds and a higher motor pulse rate. The 

average time taken to evolve the circuit was dependant on the maximum speed of the 

motor and the number of speeds that were used. The evolution found the most difficult 

point of balance was when the ball was started at the angles furthest from the beam 

centre. This was mainly due to the slow beam motor and correspondingly slow beam 

angular velocity, making it difficult to stop the motion of the ball before it hit an end-

stop.  

A conference paper was accepted for this section on evolving a lookup table robotic 

controller for a ball-balancing beam with a recommendation for best paper award, and 

recommendation of journal publication (see chapter 1). The simulation and graphical 

user interface can be found in the CD accompanying this thesis. 
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Chapter 8 

Chapter 8: Evolving a Fixed Layer Virtual FPGA for Robotic 

Controllers 

This chapter describes how a hardware genetic algorithm was used to evolve a virtual 

FPGA based controller that controlled the motion of a simulated ball-balancing beam. 

The virtual FPGA was structured on a Cartesian architecture, with a two dimensional 

array of logic elements layered in four columns. The functionality of these logic 

elements and the routing between them was defined by a configuration bit stream. A 

hardware genetic algorithm was developed to evolve the virtual FPGA’s configuration 

bit stream. It was found that after an average of 40,000 generations, the virtual FPGA 

could be evolved to balance the ball on the beam for more than five minutes. The 

simulation was modelled on a physical beam as described in chapter six and shown in 

Figure 8-1. The concepts of hardware genetic algorithms and virtual FPGAs have 

previously been discussed in chapter three. 

 

Figure 8-1.  The physical balancing beam that the simulation was modelled on. 

Programmable logic devices such as a FPGA are programmed with a configuration bit 

stream which describes the digital circuit that is to be implemented inside the FPGA. As 
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it is programmable, the FPGA is able to contain any digital circuit design providing 

there are enough FPGA resources. The FPGA is comprised of two main parts: an array 

of logic elements each containing a lookup table which can implement any logical 

function, and routing which interconnects the logic elements. Both the function of the 

logic element and the routing are configured by the configuration bit stream that 

describes the circuit to be implemented. The digital circuits within the FPGA can be 

evolved by a process called evolvable hardware which is a subset of evolutionary 

computation. In contrast to evolutionary computation where the chromosome is a 

possible solution, the chromosome in evolvable hardware is a possible circuit described 

by the configuration bit stream. This bit stream can be modified by a standard genetic 

algorithm and then downloaded into the FPGA. The ensuing circuit is tested for fitness, 

which is used in the selection process to determine which chromosomes are kept. The 

retained chromosomes are used to generate new offspring. This process is then repeated 

until a suitable result is achieved, thus the hardware itself evolves. 

As explained in chapter three, there are difficulties with directly evolving the FPGA 

configuration bit stream. To avoid these problems a virtual FPGA was designed; this 

mimicked a FPGA, was suited to evolution, and could be downloaded into a normal 

FPGA. The FPGA contained both non-evolutionary circuits such as a processor or 

hardware genetic algorithm and evolutionary circuits such as the virtual FPGA. The 

virtual FPGA function was modified by its configuration bit stream which could be 

downloaded either externally from a computer via an external FPGA pin, or internally 

via an internal processor or hardware genetic algorithm. 

The FPGA used for this experiment was the Altera cyclone EP1C12F324C8 FPGA 

which was incorporated on the Altium Live Design Board (refer Appendix B). 

8.1 System used in Experimentation  

The aim of this experiment was to evolve a robotic controller based on a virtual FPGA 

to balance a ball on a beam. The states of the simulated ball-balancing beam were 

connected to the input of the virtual FPGA. The virtual FPGA used these inputs to 

generate an output that was then used to control the simulated beam motor. A hardware 

genetic algorithm was used to modify the configuration bit stream and thus evolve the 

virtual FPGA. The complete system is illustrated in Figure 8-2 showing the NIOS 

processor, the virtual FPGA and the hardware genetic algorithm. An RS232 serial 
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interface was used to connect a graphical user interface to the NIOS processor allowing 

for control and monitoring of the evolutionary process. 

 

Figure 8-2.  Overview of the system used to evolve the fixed layer virtual FPGA. 

The system within the FPGA was comprised of three major subsystems. These were: 

• NIOS processor, which provided the robotic simulation, fitness evaluation, 

control of the evolutionary process and data transfer of the results to the 

graphical user interface. 

• Virtual FPGA, which was an evolutionary capable digital circuit using a four 

layer Cartesian based architecture with a programmable logic element at each 

node. 

• Hardware genetic algorithm, comprised of memory storage, random number 

generation and chromosome mutation capabilities, which was used to evolve the 

configuration bit stream of the virtual FPGA.  

The calculations for the simulation of the ball-balancing beam based on the model are 

provided in chapter six. The simulation had thirty-two outputs to match the thirty-two 

inputs of the virtual FPGA. These outputs were divided into nineteen ball positions, ten 

beam positions and three ball speeds. They were connected to the virtual FPGA as a bit 

sequence, in a similar manner as the actual physical beam would have supplied. For 

example the ball positions used sensors that were only active when the beam was 

broken, thus only one sensor was on at any one time. Subsequently only one bit of the 

nineteen ball positions provided by the simulation was active at any moment in time. 

This was duplicated for the ball speed and beam position bits, thus the thirty-two bit 

output from the virtual FPGA only had three bits active at any point in time. The virtual 
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FPGA would pass these thirty-two bits through its configured logic elements and 

routing, to provide a one bit signal to give a motor speed of either forward or backward 

which was sent to the simulation. 

The simulation was executed on the NIOS processor, running in one millisecond time 

steps. On every time step it would read the direction of the motor speed from the virtual 

FPGA, calculate the new ball position, ball speed and beam position, and send these 

states back to the virtual FPGA. These steps were then repeated, allowing the virtual 

FPGA to control the motion of the beam and ball. The hardware genetic algorithm used 

only mutation to evolve the virtual FPGA configuration bit stream, utilizing the fitness 

derived from the NIOS processor to determine which individuals in the population were 

to be kept.  

The interconnections between the four systems are shown in Figure 8-3. These were: 

• the connection between the Quartus compiler and the Altera FPGA;  

• the RS232 interface (57.6 kbps) between the NIOS processor and the graphical 

user interface;  

• the interface between the NIOS processor and the hardware genetic algorithm;  

• the link between the simulation on the NIOS and the virtual FPGA;  

• the configuration bit stream sent from the hardware genetic algorithm and the 

virtual FPGA. 

The NIOS processor ran the simulation of the balancing beam, and controlled the 

process of the genetic algorithm via the control lines. It could also serially read out the 

chromosome of the best individual using the reset chromosome counter, serial data, and 

serial clock lines. The hardware genetic algorithm was configured as four units to match 

the four layers of the virtual FPGA. 
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Figure 8-3.  Interconnections between the three systems within the FPGA for the ball-balancing 

beam controller. 

8.2 Fixed Layer Virtual FPGA 

Initially the virtual FPGA was designed with sixteen inputs, using only the beam 

position and ball position from the virtual FPGA. These sixteen inputs were broken into 

fifteen beam positions and one input to indicate direction of ball motion (left or right). 

When this system was evaluated it was found that the virtual FPGA could not be 

evolved to balance the ball. An analysis of the results revealed that not only ball 

position and ball direction were required, but also that the beam position and ball speed 

were important components. The number of inputs to the virtual FPGA was increased. 

These were split into ten inputs for the beam position, nineteen inputs for the ball 

position and three inputs for the ball speed (indicating left, almost stopped or right). For 

each of the three parameters only one of the inputs was active at any one time. To 

accommodate the increased number of inputs, the first layer of the virtual FPGA was 

expanded from sixteen to thirty-two inputs. 

The virtual FPGA architecture used in the experiment is shown in Figure 8-4, with 

thirty-two inputs and sixteen outputs. The outputs of the virtual FPGA were combined 

into a one bit output using an exclusive OR gate giving only two possible speeds to the 

beam motor: full forward or full reverse. The virtual FPGA was comprised of sixty-four 

logic elements which were grouped into a two dimensional array structure. This array 

was implemented as four layers of sixteen logic elements, with the connections moving 

in only the forward direction from layer one through to layer four. The layers were 
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connected in a feed-forward Cartesian based architecture, with each logic element 

within the layer able to access any two bits from the previous layer. The logic element 

was programmed to perform a logical operation on these two bits, and then output the 

one bit result to the following layer. 

 

Figure 8-4.  The Cartesian architecture for the fixed four layer virtual FPGA. 

Logic elements 

The logic elements in the second, third and fourth layers had identical architectures, 

however the logic element in the first layer was different to accommodate the 32 inputs. 

A block diagram of the logic element in the first layer is shown in Figure 8-5. The first 

layer had 16 logic elements each with 32 inputs that were connected to the inputs of the 

virtual FPGA. These 32 inputs were fed into two 1-bit multiplexers (multiplexer A and 

B), where each multiplexer could select any one bit from the 32 bit inputs. The 1-bit 

output from each multiplier was then fed into a function table which could select 

between two functional operators. These were select source A and source !B. The 

output of the logic element was 1-bit which was combined with the other 15 logic 

elements in the first layer to present 16 bits to the following layer (layer two). The 

number of configuration bits for each element was 11, 5 for each multiplexer, and 1 for 

the function table. With 16 elements in each layer, a total of 176 configuration bits were 

required for the routing and logic elements in the first layer. 
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Figure 8-5.  A logic element in the first layer of the fixed layer virtual FPGA. 

The second, third and fourth layers each had 16 logic elements with each logic element 

connected to the 16 outputs from the previous column. The logic elements were the 

same for each of these layers, as shown in Figure 8-6. The two, one bit multiplexers 

could select any two bits from the previous layer and feed these into the function table. 

 

Figure 8-6.  A logic element in layers two to four of virtual FPGA. 

The function table had eight logic operations as shown in Table 8-1. The two inputs to 

the function operator were selected by the two multiplexers, the one bit output from the 

function operator was sent to the next layer. 
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selection function

000 A

001 !A

010 B

011 !B

100 AND

101 OR

110 NAND

111 NOR  

Table 8-1.  List of functional operators for the fixed layer virtual FPGA. 

The main difference between the first and the subsequent layers is that the first layer 

had 32 inputs, requiring 10 configuration bits for the multiplexers, leaving only 1 bit for 

the functional table, whereas the following layers had 16 inputs requiring 8 

configuration bits for the multiplexers, leaving 3 bits for the function table, enabling it 

to have a greater range of function operators. Once again each logic element had only a 

1 bit output; this was combined with the logic elements on that layer to provide a 16 bit 

output to the following layer. The final output from layer four was sixteen bits, which 

was reduced to 1 bit with the addition of an exclusive OR circuit giving two motor 

states, forward and backward. 

The control of the multiplexers and which function was to be used in the function table 

was set by the configuration bit stream. A total of 11 bits were required to configure 

each logic element, thus with 16 elements per layer a total of 176 bits were required to 

configure each layer, giving a total of 704 bits for the four layers of the whole virtual 

FPGA. The search space of this chromosome can be derived from Equation 7-1 giving a 

value of 2
704
. This equates to a search space of 8.4 x 10 

211
.  

The configuration bit stream was kept as four separate entities (one for each layer), and 

it was this bit stream that was evolved by the four hardware genetic algorithms. 

8.3 Hardware Genetic Algorithm 

The hardware genetic algorithm was implemented as four duplicate sections working in 

parallel which interfaced to the configuration bits stream of the four layers of the virtual 

FPGA as shown in Figure 8-7. The total configuration bits required for the complete 

virtual FPGA were 704 bits (176 bits per layer). Two extra configuration bits were used 

on each layer to set the mutation rate. Each hardware genetic algorithm stored the 

chromosome for its associated layer and worked independently from the other layers. 
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Figure 8-7.  The NIOS and fixed layer virtual FPGA connections for the hardware genetic 

algorithm. 

The operation of the hardware genetic algorithm was controlled from the NIOS 

processor with the aid of six control lines and one serial data output. These were  

• reset, which generated a new chromosome from the random number generator; 

• replace chromosome, which replaced the parent chromosome with the mutated 

offspring; 

• mutate, which generated a new off-spring from the parent using mutation; 

• system clock, which was used for the random number generator and system 

synchronization; and 

• serial clock, serial data, and reset chromosome counter, which were used to send 

the best chromosome to the graphical user interface for display and storage. 

The hardware genetic algorithm was based on a paper produced by Wang [89] with 

modifications to the population size and mutation rate. The genetic algorithm used only 

mutation in its reproduction of new offspring. By not implementing the crossover 

operator the number of logic elements required by the FPGA was reduced. This allowed 

the genetic algorithm to be implemented within a relatively small FPGA. The FPGA 
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that was used in the experiments in this research was the Altera Cyclone 

EP1C12F324C8 which had a capacity of 12,000 logic elements. The final circuit 

including the NIOS processor, virtual FPGA, and hardware genetic algorithm, used 86% 

(10,543 logic elements) of the Cyclone EP1C12F324C8 FPGA resources. In 

comparison a high end Cyclone IV has over 100,000 logic elements, and a high end 

Stratix V has over a 1,000,000 logic elements.  

Each hardware genetic algorithm was comprised of three main sections as shown in 

Figure 8-8. These were a random number generator, storage for the best chromosome, 

and a mutation unit. The configuration bit stream was connected in parallel to the virtual 

FPGA. This parallelisation increased the routing resources within the FPGA, but greatly 

reduced the time taken to load the configuration bit stream, in comparison to a serial bit 

stream. 

 

Figure 8-8.  System and interconnections within the hardware genetic algorithm with an evolving 

mutation rate. 

8.3.1 Random Number Generator 

The random number generator used a linear feedback shift register to generate both the 

initial 178-bit starting chromosome (2 bits for mutation), and four 10-bit random 

mutation points that were used to mutate random bits within the configuration bit stream.  

8.3.2 Memory Storage 

The best chromosome memory stored the current chromosome under review. If the 

fitness level of the offspring chromosome generated by the mutation unit was equal or 
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better than the parent chromosome, then the parent chromosome would be replaced. It 

was found under test conditions that replacement of the individual at a fitness level 

equal to or above the fitness level of the parent (rather than only above), had a greater 

chance of evolutionary success as it allowed the individual to move more easily through 

the adjacent search space, reducing the possibility of stagnation at local maxima. This 

genetic algorithm had a lack of diversity with its limited population and therefore did 

not exhibit a strong selection process; however it was shown that it did work as a 

hardware genetic algorithm for a virtual FPGA. At any stage the best chromosome 

could be read back to the graphical user interface via the NIOS processor.  

8.3.3 Mutation Unit 

In a standard genetic algorithm the Bit Mutation Rate is the number of bits that will be 

varied as a percentage of the entire chromosome. It is assumed that the possibility of a 

mutation occurring on a chromosome is 100 percent, where a mutation will always 

occur on a set number of bits. In the system used in this hardware genetic algorithm 

there was also a Chromosome Mutation Rate. This was the probability that a mutation 

would occur within the chromosome. Unlike standard genetic algorithms that have a 

100 percent probability of a mutation occurring, this system had a the possibility that a 

mutation would not occur at all. 

Each mutation unit was comprised of four, for-loop structures that inverted a random bit 

in the configuration bit stream. The mutation bit position within the configuration bit 

stream was determined from the random number generator, and the number of bits 

within the configuration bit stream to be mutated could be varied. The mutation unit 

used a large amount of the FPGA resources as loop structures are highly inefficient 

forms of hardware. 

The length of the chromosome required to configure the fixed four-layer virtual FPGA 

was 176 bits per layer. Two extra bits were added to the chromosome to set the rate of 

mutation, giving four possible mutation rates. As the mutation rate was now encoded 

within the chromosome, it was changed by the genetic algorithm.  

Mutation rate 

A hardware random number generator was used to produce four random 10 bit numbers 

ranging from 0 to 1023. These random numbers determined which bit in the 178 bit 
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chromosome would be mutated. It should be noted that as the random number exceeded 

the actual size of the chromosome, there was a possibility that a mutation would not 

occur. The four possible mutation rates, set by the two bits in the chromosome, 

determined whether one, two, three or four mutation points within the 178 bit 

chromosome would be altered. Consequently both the chromosome mutation rate and 

the bit mutation rate could be varied. The possibility of a chromosome actually mutating 

varied with the bit mutation rate. This can be calculated using Equation 8-1 and 

Equation 8-3. 

r

xn
mr =  Equation 8-1 

nl

p mm −=1  Equation 8-2 

r

x
m −=1

 Equation 8-3 

 

where  

mr is the mutation rate 

x is the chromosome length 

r is the length of the random number 

n is the number of mutations 

mp is the mutation probability 

l is the number of layers 

m is the probability that a mutation will not occur 

 

From this equation the possible chromosomes mutation rates, and bit mutation rates for 

the four mutation rates for the complete chromosome of 704 bits can be calculated. 

These are shown in Table 8-2.  

mutation bits  mutation probability maximum bit mutation rate

1 53% 0.56%

2 77% 1.12%

3 90% 1.68%

4 95% 2.24%  

Table 8-2.  Mutation rate settings. 
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8.4 Graphical User Interface 

8.4.1 Overview 

The graphical user interface for the ball-balancing beam controlled by a virtual FPGA, 

as shown in Figure 8-9, was different from the graphical user interface described in 

chapter seven. This was because the data used to show the ball-beam states and 

evolutionary process was obtained from the NIOS processor in the FPGA via an RS232 

serial link. The interface could show:  

• the motion of the ball and beam;  

• the ball and beam states;  

• the generation number and fitness;  

• the control buttons for the hardware genetic algorithm and the simulation.  

When the display of the motion of the beam was enabled, the NIOS processor would 

continuously send the ball and beam states generated by the simulation to the computer. 

This however severely increased the software overheads of the NIOS processor and 

subsequently slowed the evolutionary process; therefore the visual display was normally 

turned off. 
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Figure 8-9.  Graphical user interface used for the fixed layer virtual FPGA controlling the ball-

balancing beam. 

The NIOS processor was programmed to send the current fitness at regular intervals 

which was stored along with the current time. At the end of a successful run, the final 

chromosome was stored. If required, the final five minute run of ball and beam motion 

using the successful chromosome were replayed and stored for later analysis. 

The buttons on the graphical user interface are grouped into:  

• evolution control, start, pause, reset, exit; 

• serial communications, serial setup, serial open, serial close; 

• graphics, on, off; 

• testing, testing the communication between the GUI and NIOS processor, and 

the mutation function; 

• data request, manually reading the current fitness, uploading the chromosome or 

reading the current inputs and outputs of the simulation. 
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8.4.2 Data Communication Protocol 

The communication between the graphical user interface on the computer and the NIOS 

processor on the FPGA was via an RS232 serial port running at 57.6 kbps. A serial 

communications protocol was developed so that data and control information could be 

passed between these two systems. An example of a transmission of four bytes of data 

is shown in Table 8-3 where the instruction (5) and data (10, A4. FF, E4) are sent. The 

header, data packet and end of packet was generated by the transmitter and sent to the 

receiver. The receiver waited until it received: 

• the header byte C4;  

• the number of bytes in the data packet;  

• the instruction;  

• the data packets;  

• the end of packet A4.  

If the end of packet was not found, or the total number of data packets was incorrect, the 

instruction and data packets were discarded. The same protocol was used on the return 

path between the NIOS processor and graphical user interface.  

parameter value

header C4

total number of packets 4

instruction 5

data packet 10

data packet A4

data packet FF

data packet E4

end of packet A4  

Table 8-3.  An example of the serial transmission of four bytes of data. 

The commands for the transmission of data from the graphical user interface to the 

NIOS processor are shown in Table 8-4. These commands are broken into control, data 

request and testing. The control commands required no response from the receiver, 

while data request and test commands did. 
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command value

start genetic algorithm 0

pause genetic algorithm 1

stop genetic algorithm 2

reset genetic algorithm 3

get fitness 4

get chromosome 5

get inputs & outputs 6

graphics on 7

graphics off 8

test communications 9  

Table 8-4.  List of commands used for data transmission from the graphical user interface to the 

NIOS processor. 

The commands from the transmission of data from the NIOS processor to the graphical 

user interface are shown in Table 8-5. The data associated with these commands were 

included in the packet. The genetic algorithm finished command was used to tell the 

computer that the desired fitness had been reached. 

command value

sending fitness 0

sending inputs and outputs 1

sending chromsome 2

sending beam state (graphics on) 3

genetic algorithm finished 4

communications test 5  

Table 8-5.  List of commands used for data transmission from the NIOS processor to the graphical 

user interface. 

8.5 Simulation and Coding Structure 

8.5.1 Simulation on Computer 

Ideally in this experiment the simulation, fitness evaluation, and genetic algorithm 

would be performed on the computer rather than the NIOS processor. This was because 

the computer had a much faster clock speed (3 GHz as opposed to the 50 MHz on the 

NIOS processor), and a more powerful processor architecture with a floating point co-

processor. However the simulation was executed on the NIOS processor because of the 

limited speed at which data could be transferred between the computer and the NIOS 

processor over the serial link. The only computer interface on the Altium FPGA Live 

Design Board used in these experiments was a RS232 serial port with a maximum data 

rate speed of 57.6 kbps. This link made the evolutionary process run extremely slowly 
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as the chromosome and ball beam states were required to be transmitted from the 

computer to the virtual FPGA and simulation. 

If the genetic algorithm was run on the computer then it would need to send a new 

chromosome to the virtual FPGA for each fitness evaluation. The total number of bits to 

send for the complete chromosome (704 bits) is shown in Equation 8-4. With a baud 

rate of 57.6 kbps, it would take 16.ms to send this chromosome from the computer to 

the NIOS processor. If there were 100,000 chromosomes to be tested then the 

transmission time for these chromosomes would be 27 minutes.  

920 � 704��<��=���=>� � 	32�<>�&>�� � 	184��0��0/�0��� Equation 8-4 

However this was not as time intensive as sending the simulation data. The simulation 

needed to send 32 bits for the beam states to the virtual FPGA, which equates to a total 

of 80 bits as shown in Equation 8-5.  

80 � 32��0�0>�� � 	32�<>�&>�� � 	16��0��0/�0��� Equation 8-5 

Similarly the virtual FPGA needed to send the motor speed to the simulation, which 

equates to 50 bits as shown in Equation 8-6. 

50 � 8�=�0��� � 	32�<>�&>�� � 	10��0��0/�0��� Equation 8-6 

Thus 130 bits are sent for each step in the simulation, equating to a transmission time of 

2.26ms. The simulation used the ball-beam states and motor speed in one millisecond 

time steps. Assuming no time was taken for the simulation calculations then the time 

taken to perform a test over a simulated run of 300 seconds is 300,000 data 

transmissions at 2.26ms giving a time of 677 seconds. If we assume the evolutionary 

process required 100,000 individuals to be tested then the time taken to perform the 

complete evolution would be 67.7 million seconds, equating to 2.15 years. Therefore 

although it would seem that the computer was a far better place to run the simulation 

and genetic algorithm it was impractical due to the slow speed serial link between the 

computer and FPGA. 

8.5.2 Simulation on NIOS 

The simulation operated in one millisecond time steps, using the output of the virtual 

FPGA to move the beam in the appropriate direction. The new ball position, ball speed 

and beam directions were then calculated, and fed back to the virtual FPGA as a 32 bit 
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number. The circuits within the virtual FPGA would then produce a new motor 

direction depending on these new inputs. As the NIOS does not have a floating point 

co-processor, the ball beam states were kept as long integers. These variables were 

converted into a 32 bit output using an if-else structure. 

Code structure 

The coding structure running on the NIOS is shown below, detailing the interfaces to 

the hardware genetic algorithm and the onboard simulation for the fitness evaluation.  

main (){ 

setup_NIOS(); //enable interrupts for the UART receiver 

while (1){ 

if (start_flag) { // set by computer to start the genetic algorithm 

mutate_xsome(); 

generation++; 

current_fitness = get_fitness(); // run the simulation 

if(send_state_flag)  // can request current fitness 

send_fitness(generation, max_fitness); 

if(current_fitness >= max_fitness) { // replace chromosome 

max_fitness = current_fitness; 

replace_xsome(); 

} 

//note computer can request to see dynamic display of ball-beam by 

//setting send_state_flag 

if (max_fitness  reached) { 

start_flag = 0; //stop the simulation 

send_fitness(generation, max_fitness); // send results 

send_xsome(); send the entire chromosome 

send_state_flag = 1; 

get_fitness();              //send the final beam run. 

send_state_flag = 0; 

send_data_to_PC(instruct_new_test,0); // say running new test 

reset_xsome(); 

generation = 0; 

max_fitness = get_fitness(); 

send_fitness(generation, max_fitness); 

} 

else if(!(generation % 250)) //periodically send generation and fitness 

send_fitness(generation, max_fitness);      

} 

} 
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} 

Instructions were sent to the NIOS from the computer via the serial port, and were activated in 

an interrupt function. When a new command was received, the instruction was stored and the 

new_instruction flag was set. The instruction would be executed as illustrated in the 

action_command function shown below.  

 

void action_command(void) { 

switch (instruction) { 

case test_comms:  //echo instruction back to the PC 

send_data_to_PC(test_GA, total_bytes);  break; 

case start_GA: 

start_flag = 1; break; 

 case pause_GA: 

start_flag = 0; break; 

case get_IO_GA: 

send_IO(); break;  

case send_state_on: 

send_state_flag = 1;  break;  

case send_state_off: 

send_state_flag = 0; break;  

case stop_evol_GA: 

start_flag = 0; 

send_fitness(generation, max_fitness); 

send_xsome(); 

send_data_to_PC(instruct_stop,0); 

 reset_xsome();   break;  

case get_xsome_GA: //read the current xsome and send to the PC 

send_xsome(); break; 

case get_fit_gen_GA: //read the current xsome and send to the PC 

send_fitness(generation, max_fitness);  break;  

case reset_GA: 

reset_xsome(); //reset GA, gen random xsome, & send to the VFPGA 

generation = 0; 

max_fitness = get_fitness(); //evaluate a new fitness for xsome 

send_fitness(generation, max_fitness); 

send_xsome(); 

break;  

} 

new_instruction = 0; 

} 
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8.6 Fitness Evaluation  

The beam was evaluated in only one start position as shown in Figure 8-10, with the 

ball positioned at the far left side of the beam, and the beam tilted towards the right, at 

an angle of twenty degrees from the horizontal plane. At this angle the ball would 

naturally move towards the centre of the beam without any movement of the beam itself. 

The fitness was determined by the time taken before the ball hit either end-stop; this 

was the length of time that the beam could balance the ball.  

 

Figure 8-10.  Starting position of ball on the beam. 

8.7 Results 

Once a command for a test run was sent by the graphical user interface on the computer, 

the NIOS processor automatically controlled the evolutionary process interacting with 

the hardware genetic algorithm without further commands from the computer. The 

NIOS processor was programmed to automatically send the generation number and the 

current fitness to the computer every thousand generations. The computer could also 

request the current fitness and current generation at any time. As well the computer 

could request to continuously receive the ball and beam status allowing the motion of 

the ball and beam to be seen dynamically in real time. This feature was normally 

disabled as it severely slowed down the simulation and thus the time taken for genetic 

process to complete. The beam and ball positions could also be recorded for later 

analysis.  

The evolution was set to end when the ball hit an end-stop or when the fitness had 

reached 500 seconds. At the end of the genetic process the final chromosome was stored 

and the last simulation of the successful chromosome repeated, with a step by step 

recording of the beam position, ball position and ball speed sent to the computer. This 
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allowed the motion of the ball in relation to the beam, to be monitored. Two motor 

speeds were evaluated, one set to pulse every one millisecond (giving a beam rotation of 

181.6 degrees per second), the other two milliseconds (giving a beam rotation of 90.8 

degrees per second). 

A typical fitness level for the start of the experiment would be approximately 0 or 600 

milliseconds. An investigation of the motion of the beam at this stage revealed that the 

beam would either not move, or move in the wrong direction. If there was no beam 

movement, the ball would roll down the slope and after 600 milliseconds hit the right 

end-stop. If the beam motion was in the wrong direction, the ball would roll to the left 

and immediately hit the left end-stop. After several generations this behavior would 

change and a movement of the ball to the right would cause the beam to tilt left, 

changing the ball direction from right to left. The ball would then hit the left end-stop. 

As the evolution progressed, the speed of the returning ball was reduced allowing the 

ball to change direction several times; however the ball would not go into a stable state, 

and would eventually gain too much momentum for the beam to correct its motion 

before it reached an end-stop. These unstable ball motion patterns would have a fitness 

level ranging from 10 to 50 seconds.  

Eventually the fitness would jump from this plateau to a successful result. When these 

individuals were analysed, it was found that the ball would spend most of its time near 

one end of the beam, moving between two points in close proximity. This caused the 

beam to rock backwards and forwards trapping the ball in a semi stable state. Eventually 

the ball would gain enough momentum to break away from this position and move 

towards the opposite end of the beam. The beam would then respond by bringing the 

ball back to its semi stable state where it would repeat the process. As this pattern was 

repeated, rapid improvements in the fitness were achieved. 

A graph of the fitness versus generation for a motor pulse rate of one millisecond is 

shown in Figure 8-11. It can be seen that the number of generations taken to evolve to 

500 second fitness for this motor speed ranged from 18,000 to 52,000 generations with 

an average generation of 32,000.  
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Figure 8-11.  Fitness relative to generation for a 1ms motor pulse rate. 

The graph of the fitness versus generation for the motor pulse rate of two milliseconds 

is shown in Figure 8-12. It can be seen that the number of generations taken to evolve to 

500 second fitness for this motor speed ranged from 41,000 to 330,000, with an average 

value of 240,000 generations.  

 

Figure 8-12.  Fitness relative to generation for a 2ms motor pulse rate. 

A recording of the ball and beam jittering motion which the beam used to capture the 

ball in a stable position was recorded and plotted on the graph shown in Figure 8-13. It 

can be seen that the beam is swinging backwards and forwards around two points, 

which moves the ball in alternate directions, keeping it in a relatively stable position. 

This tended to be towards one side of the beam, however eventually the ball would 

break out of this pattern and move towards the opposite side of the beam. At a set point 
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the beam would correct for this and bring the ball back to the two original set points, 

allowing the pattern to repeat indefinitely. 

 

Figure 8-13.  The motion of the ball and beam showing the oscillating pattern which is keeping the 

ball in a stable position. 

8.8 Conclusion 

This chapter has shown how a virtual FPGA acting as a robotic controller can be 

evolved to balance a simulated ball-beam system. A commercially available board with 

an FPGA was used in the experiments to contain a digital electronic circuit in the form 

of a virtual FPGA, a hardware genetic algorithm, and a beam simulation running on a 

NIOS processor. The simulation provided the current ball position, beam position and 

ball speed to the virtual FPGA, while the virtual FPGA provided the appropriate motor 

direction back to the simulation. 

The evolved virtual FPGA could balance the ball on the beam for more than 500 

seconds. An analysis of the ball’s trajectory during a successful run showed the ball 

oscillated between two closely spaced sensor positions in a semi-stable state. When the 

ball moved beyond these points, the beam reacted in a self correcting manner to bring 

the ball back to its semi-stable state. 
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For a motor speed of 181.6 degrees per second it was found that on average, less than 

40,000 generations were required to evolve a circuit able to balance the beam for more 

than five minutes. The faster motor speed required fewer generations to evolve a 

suitable fitness; however both motor speeds performed satisfactorily. 

A conference paper was produced for this section on evolving electronic circuits for 

robotic control (see chapter 1). The Verilog code, C code and graphical user interface 

can be found in the CD accompanying this thesis. 
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Chapter 9 

Chapter 9: Using Hardware Simulation for Evolving Robotic 

Controllers 

This chapter investigates the implementation of a genetic algorithm using a hardware 

simulation rather than a software simulation, for the evaluation of each chromosome’s 

fitness within the population. The chromosome describes the control system for the 

robot, detailing how the robot will react to events within the robotic environment. A 

simulation is required by the genetic algorithm to model the actions of the robot and its 

environment in order to evaluate how well each chromosome performs as a controller. 

Typically the simulation is written in software and executed sequentially on a processor. 

However if the simulation could be written in a hardware description language, then it 

could be implemented as a digital circuit within a FPGA, giving a significant 

improvement in speed. To test this proposal, two identical genetic algorithms (except 

for the simulation) were developed, one using a software simulation, the other a 

hardware simulation. These two systems were implemented and a comparison 

performed. 

The full simulation of the beam used in chapter eight was modified to a simpler model 

with the removal of code that was used to refine the position of the ball. This simulation 

was generated in both software and hardware and a measurement of the characteristic of 

both simulations was performed to ensure they were similar in nature. The simulations 

were then evaluated on identical genetic algorithms so that a valid comparison could be 

performed between the two simulations. 

This chapter also presents a more advanced virtual FPGA architecture than that used in 

chapter eight, incorporating more powerful functions within the lookup table, and a 

reducing layer architecture requiring fewer configuration bits and therefore a smaller 

search space than the flat layer architecture. 

In the first experiments it was found that the hardware simulation evolved a successful 

digital circuit in a time period that was approximately seventy times faster than the 
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software simulation. In this experiment the hardware simulation’s speed was limited to 

5MHz, matching the speed limitation of the virtual FPGA with its internal clock delays. 

A second experiment was performed with the delays removed from the virtual FPGA 

allowing the hardware simulation to operate at 50MHz. This enabled the hardware 

simulation to run at a speed approximately 700 times faster than the software simulation. 

This chapter explains how the simulation and fitness calculations were shifted from 

software to hardware with their associated control systems. It details the systems used in 

the genetic algorithm process, explaining their operation and control, and describes the 

reducing layer virtual FPGA architecture. Finally the results are presented with 

comparison between the hardware and software simulation. 

9.1 Overview 

A genetic algorithm is an iterative process that repeats three tasks: reproduction, fitness 

evaluation, and selection. The time taken for a population to evolve is split between 

these three processes, with the reproduction and selection taking comparatively little 

time compared to the fitness evaluation. This is because all the individuals within the 

population must be evaluated on a simulation of the robot and its environment to 

determine each individual’s fitness. This fitness is used by the selection process to 

select which individuals will be retained for the next generation. The time taken for the 

simulation to test each individual increases as the evolution progresses, due to the 

increasing average fitness of the population. The simulation for a robotic controller is a 

computer model of the robot and its interactions with its environment. This simulation 

may include floating point and trigonometry calculations. If the simulation process can 

be sped up, then a large improvement in the time taken for the evolutionary process to 

produce a successful individual will result. 

The software coding for a simulation algorithm using floating point arithmetic and 

trigonometric calculations on a computer is relatively straight forward, as the computer 

has a floating point co-processor specifically designed to perform these calculations. 

However because of the computer’s sequential coding and processor hardware structure, 

each calculation must be executed sequentially. If the calculations within the simulation 

could be performed in hardware, then many of the calculations could be performed 

concurrently resulting in an improvement in speed. 
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Software simulation 

The block diagram of the system used to evaluate the software simulation is shown in 

Figure 9-1, illustrating how the software simulation was contained within the NIOS 

processor. The simulation interfaced to the virtual FPGA via the input and output lines 

of the NIOS processor. The virtual FPGA and genetic algorithm were implemented in 

hardware. In previous experiments within this thesis a full robotic simulation of the 

beam was used; in this experiment the simulation was modified to a simpler model 

using integers. Note the NIOS processor used a 50MHz clock, with the hardware 

multiplier and divider enabled. It should be noted that the software simulation was not 

executed on the computer with its higher clock speed and more powerful processor; as 

the amount of time required to transfer the simulation parameters for each step of the 

simulation between the computer and virtual FPGA is prohibitive. This is explained in 

more detail in chapter eight. 

 

Figure 9-1.  Block diagram of the systems used in the software simulation for the balancing beam. 

Hardware simulation 

The block diagram of the hardware simulation is shown in Figure 9-2. The simulation is 

constructed in hardware with the simulation’s mathematical functions and fitness 

evaluation embedded within it. In this case the NIOS processor is only used for 

interfacing to the computer graphical user interface and reading the status of the genetic 

algorithm. 
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Figure 9-2.  Block diagram of the systems used in the hardware simulation for the balancing beam. 

System block diagram 

The complete system employed for the hardware simulation shown in Figure 9-3 

contained five blocks:  

• the computer, used for system commands and data logging; 

• the NIOS processor, used for interfacing to the computer and control of the 

systems within the FPGA;  

• the hardware genetic algorithm, which contained the genetic operators necessary 

for the evolutionary process;  

• the virtual FPGA, used to control the motion of the beam;  

• the hardware simulation, which modelled the characteristics of the beam and ball. 

These blocks are described in the next section.  
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Figure 9-3.  System control and data lines for the hardware simulation. 

9.2 Hardware Simulation 

9.2.1 Creating a Hardware Simulation 

The main difficulty with creating a hardware simulation inside a FPGA is that unlike a 

computer, there is no arithmetic logic unit. All arithmetic formula written in a hardware 

description language will generate individual circuits to implement the arithmetic 

function, thus every occurrence of an arithmetic operator such as addition, 

multiplication or division, will be expressed as a complex digital circuit. In the case of 

floating point operations, a large amount of the FPGA logic element resources are 

required for each calculation due to the complexity of dealing with variables containing 

sign, mantissa and exponent parts. As there are typically many floating point 

calculations in a simulation, it becomes impractical to use this technique. 

An alternative to floating point calculations is the use of integer arithmetic within the 

FPGA, which reduces the logic element resources required to implement the circuit 

within the FPGA. An integer arithmetic operation requires less FGPA resources than a 

floating point calculation, and thus the logic resources required for each arithmetic 

operation of the simulation within the FPGA is significantly reduced. Trigonometric 
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functions will also need to be implemented as an arithmetic approximation or a lookup 

table. 

The first task to create a hardware simulation was to transform the floating point 

simulation model into an integer model. This process was straight forward although 

precision was lost, making the integer model less accurate than the floating point model. 

The algorithms needed to be checked to make sure that no arithmetic overflow occurred 

as the numbers were confined to 32 bits, which is a value between ± 2 x 10
9
. It was also 

important to make sure that the timing between the arithmetic calculations and other 

systems was correct. The hardware simulation then had to be integrated to the virtual 

FPGA and the genetic algorithm. 

To implement the simulation in hardware, the integer arithmetic calculations can be 

directly coded in Verilog (a hardware description language) using the standard multiply 

(*) and divide (/) syntax. The IEEE standard for Verilog 1995 allowed the use of 

multiplication and division for unsigned variables. This was altered by the IEEE 

standard for Verilog 2001 which allowed the use of signed multiplication and division 

within the language. The standard also introduced the ability to use signed registers 

(note the default value of an integer is a signed 32 bit number). Page forty-five of the 

Verilog 2001 standard [160] shows how signed division and multiplication can be 

performed. Examples of the multiplication and division Verilog code and the resultant 

register transfer level generated by Quartus are shown in Figure 9-4 and Figure 9-5. 

 

Figure 9-4.  Verilog code and register transfer level description for a thirty-two bit signed 

multiplier. 
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Figure 9-5.  Verilog code and register transfer level description for a thirty-two bit signed divider. 

The mathematical equations for the integer simulation shown in Equation 9-1 and 

Equation 9-2 were derived experimentally using the sensors to measure the ball position 

as it fell (as detailed in chapter 6). From these equations the acceleration of the ball 

could be found. The equations used for both the software and hardware simulation were 

in integer form which reduced the accuracy of the calculations but allowed the use of 

high-speed simulations in both software and hardware applications. The integer 

simulation was run on two systems, software and hardware. 

�./� � � � 1049-
2 7 � 101� � 24)

2 8  Equation 9-1 

-./� � - � 786� � 184)
2;4  Equation 9-2 

Note the values chosen for the divisor were carefully chosen to equate to a number 

which was a power of 2. This enabled the Quartus synthesis to divide using left shifting 

or other minimization techniques, rather than a divide function. The RTL viewer in 

Quartus allowed the user to see a schematic of the hardware simulation that was 

generated by Quartus. It was interesting to note that the circuit was comprised of 

multiplexers, comparators and five signed multipliers; no dividers were used. 

A comparison of the resource usage within the FPGA for integer and floating point 

calculations was performed. The entire simulation implemented as integers used 15% 

(1,900 logic elements) of the Cyclone EP1C12F324C8 FPGA resources. In comparison, 

one floating point calculation took 9% (1,140 logic elements) of the FPGA resources. 

Note Quartus does not support the IEEE 2001 Verilog real numbering system, thus 

floating point calculations must be performed using Quartus megafunctions. 
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9.2.2 Hardware Simulation Blocks 

The hardware simulation, shown in Figure 9-6, was comprised of four units; the 

mathematical simulation unit, the fitness calculation unit, the simulation complete unit 

and the clock speed unit.  

 

Figure 9-6.  Control lines and subsystem interconnections for the hardware simulation unit. 

Mathematical simulation unit 

The mathematical simulation unit contained the simulation’s mathematical equations 

implemented in hardware, with control lines connected to the NIOS processor, and the 

simulation input-output connected to the virtual FPGA.  

The control lines were: 

• reset simulation, used to reset the simulation’s ball and beam parameters to the 

start state, and to clear the fitness level; 

• clock, used to trigger the simulation. All the simulation calculations would 

execute simultaneously on every clock pulse, which was equivalent to one 

millisecond in real time; 

• beam states, there were thirty-two bit outputs describing the new ball speed, ball 

position and beam position derived from the simulation. These were fed to the 

inputs of the virtual FPGA; 

• motor direction, the new motor direction from the virtual FPGA, resulting from 

the previous beam states that had been fed into the virtual FPGA. 
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When the simulation reset was activated, the parameters inside the simulation were reset, 

placing the ball on the left side of the beam with the beam set to an angle of twenty 

degrees to the left above the horizontal plane. When not reset, the simulation would 

operate in the following manner:  

• on each clock pulse the simulation would read the motor direction input from the 

virtual FPGA and correspondingly shift the integer value of the beam to the left 

or right one motor step; 

• the new integer values for the ball speed and ball position were calculated; 

• these new values along with the new beam position were converted into a thirty 

two bit binary format representing the new ball-beam state and passed to the 

inputs of the virtual FPGA.  

The mathematical equations for the simulation were designed to calculate a new ball 

and beam state every millisecond. This meant that every clock pulse that triggered the 

simulation was equivalent to a one millisecond time period within the simulation. Thus 

a 5MHz clock pulse would give a simulation speed 5000 times faster than the real time 

event. The simulation had an output control line to show when the simulation had 

finished. This was set when the individual had failed the test and the ball position 

reached either of the two beam end-stops. 

Clock speed unit 

The clock speed unit allowed the simulation to run at high speed from a 5MHz clock or 

at a slow speed from a clock driven by a control line from the NIOS processor. This 

slow clock speed allowed the graphical user interface to run in graphical mode, where 

after each simulation step, the beam and ball states could be read and sent back to the 

graphical user interface running on the computer so that the motion of the ball and beam 

could be displayed on the computer screen. It also enabled the simulation to be paused 

at any stage. A clock select line from the NIOS processor was used to switch the clock 

from low speed to high speed. The lines used to control the operation of the clock speed 

unit were:  

• clock select, a control line from the NIOS processor to switch between the high 

speed system clock or the low speed NIOS controlled clock; 

• system clock, initially at 5MHz, then increased to 50MHz; 

• NIOS clock, software generated clock from the NIOS processor; 
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• clock out, the clock source fed for the simulation and fitness unit.  

Fitness calculation unit 

The fitness calculation unit measured the time that the simulation ran before the 

individual failed. It did this by counting the number of clock pulses fed into the 

simulation during the evaluation of the current individual, with each clock pulse 

equivalent to one millisecond in real time. The fitness unit had a thirty two bit counter 

that was incremented on every simulation clock pulse, provided the simulation complete 

line was clear. The fitness counter could be read by the NIOS processor at any time, 

with the value of the fitness counter being the time in milliseconds that the ball had 

stayed balanced. The simulation finished line was also connected to the NIOS processor 

so that the fitness counter could be read at the end of a simulation. The lines used to 

control the operation of the fitness unit were:  

• reset simulation, which set the fitness counter to zero; 

• clock, the same clock as fed the simulation which the fitness unit counted; 

• fitness, a thirty-two bit value indicating the fitness of the individual under test. 

Simulation complete unit 

This unit told the NIOS when the evaluation of the individual had finished, either when 

the individual failed, or when the fitness counter had reached 300 seconds indicating 

that the individual under test had obtained its maximum vale. The lines used to control 

the operation of the simulation complete unit were:  

• simulation finished, sent from the mathematical simulation unit whenever the 

ball had reached an end-stop; 

• fitness, used to trigger when the fitness had reached 300 seconds; 

• simulation complete, this signalled to the NIOS that the simulation had finished. 

9.2.3 Timing  

A comparison of the time taken for the hardware and software simulation to complete 

one iteration of the mathematical equations in the simulation was performed. 
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Timing for software simulation 

The time taken for the software simulation to calculate the new ball position, ball speed, 

and beam position, and output these as a 32 bit binary format to the virtual FPGA was 

measured. This measurement was taken by toggling an output pin of the FPGA at the 

start and end of each simulation execution as displayed in Figure 9-7. The measured 

time for the execution of the simulation was 16us. This time period would be 

periodically increased when the selection and reproduction process occurred at the end 

of a fitness evaluation. 

 

Figure 9-7.  Timing diagram of the software simulation execution time. 

Timing for the hardware simulation 

The Altium live design board used in these experiments included a 50MHz clock which 

was used as a system clock for the NIOS processor and other hardware systems. This 

clock was also used within the virtual FPGA with each layer’s output held in its past 

state until a clock pulse occurred. As there were five layers within the virtual FPGA, 

five clock cycles were required before a change in the inputs moved from the first layer 

through to the final layer of the virtual FPGA. This equates to a delay time within the 

virtual FPGA of 100ns. To match this, the clock rate chosen for the hardware simulation 

was 5 MHz, which equates to a hardware simulation execution time of 200ns. This 

enabled the virtual FPGA to respond to new values on its inputs within one execution of 

the hardware simulation equations. 
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From these measurements and calculations it can be seen that the software simulation 

was running at a 16us rate, whereas the hardware simulation was running at 200nS. This 

would give an expected speed increase of the hardware over the software simulation of 

approximately 80 times. This theoretical increase in speed may be less in practice due to 

other overheads in the genetic algorithm such as selection and reproduction. 

9.2.4  Maximum Beam Step Calculations 

On experimentation with the physical beam, the stepper motor required 270 pulses to 

move the beam from one end of its range to the other. The full angular range of the 

beam’s motion was 60 degrees, thus one pulse from the motor gave a beam angle 

change of 0.22 degrees. The maximum pulse rate that the motor could operate at was 

eight milliseconds thus the time taken for the beam to move from one extreme to the 

other was 270x8ms = 2.16 seconds. 

The integer value for the change in beam position after a pulse from the motor can be 

calculated in the following way. The maximum number of pulses to move the beam 

from full left to full right is 270. In order to have an integer number with a suitable 

resolution this value is multiplied by 10,000 to give a maximum beam movement of 

2,700,000. This gave the beam a range of ± 1,350,000, with one pulse equating to an 

integer value of 10,000. The maximum pulse rate of the motor is 8ms, however the 

simulation is operating in one millisecond time steps, thus the change in the integer 

value after a motor pulse will be 1250 units. A fragment of the Verilog code for the 

beam motion is shown below. (Note the beam’s maximum tilt angle has been limited as 

under physical experimentation on the beam it was found that once the beam went 

outside these limits the motion of the ball could not be controlled.)  

if (motor_direction) begin 

 if(beamPos < 900_000) 

  beamPos <= beamPos + 1_250; 

end 

else begin 

 if(beamPos > -900_000) 

  beamPos <= beamPos - 1_250; 

end 

 

The physical beam had twenty one ball position sensors; however the virtual FPGA 

input constraints meant that the ball position had to be reduced to nineteen positions. It 
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was decided that two positions towards the middle of the beam would be removed as the 

information that they provided was less important than those in the centre and extremes 

of the beam. An if-else structure within the Verilog code as shown below was used to 

encode the integer value of the ball position to a binary format output. 

if( ballPos < -185_000) 

 ball_pos = 19'b1000000000000000000; //18 

else if( ballPos < -165_000) 

 ball_pos = 19'b0100000000000000000; //17 

else if( ballPos < -140_000) 

 ball_pos = 19'b0010000000000000000; //16 

9.3 Reducing Layer Virtual FPGA 

The fixed layer virtual FPGA employed for the experiments described in chapter eight 

was modified to a reducing layer virtual FPGA architecture as shown in Figure 9-8 with 

logic elements grouped into five layers. These five layers each had a reducing number 

of logic elements. The virtual FPGA had 32 one-bit inputs and 1 three-bit output giving 

8 possible output states which were used to describe the required motor speed and 

motor direction. Note in this experiment only two motor speeds forward and backward 

were used. The number of logic elements in each layer progressively reduced, starting 

from 16 logic elements in the first layer and dropping to 1 logic element in the final 

layer. Each logic element output had 3-bits grouped together. These groups were 

combined with the other logic element outputs within that layer and then fed onto the 

following layer. It should be noted that the original grouping of the 3-bits selected in 

layer one were retained as they were passed through each subsequent layer. 

 

Figure 9-8.  Architecture of the reducing layer virtual FPGA. 
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Layer one 

The logic element in the first layer as shown in Figure 9-9 contained 3 multiplexers that 

were used to select which 3 bits of the 32 bit inputs were to be grouped together and fed 

onto the following layer. Each logic element in this layer had a 3-bit output which was 

clocked to provide synchronisation between logic elements. The grouped outputs of 

each of the 16 logic elements within the first layer were then fed onto layer two. Each 

single bit multiplexer required 5 bits to switch between the 32 inputs, and each logic 

element had 3 multiplexers, thus each logic element required 15 configuration bits. The 

total configuration bit stream for all the 16 logic elements in layer one was 240 bits. 

 

Figure 9-9.  The logic element in layer one of the reducing architecture. 

Layer two 

The logic elements for layers two through to layer five are similar apart from the size of 

the input bus which progressively became smaller through the layers. The logic element 

in layer two, as shown in Figure 9-10, was comprised of 2 multiplexers and a function 

table. The 2 multiplexers each selected one of the 16 groups of 3-bits from the previous 

layer and fed these inputs onto the function table (groups A and B). The 3-bit groups 

were from a sequential grouping of the inputs to that layer, for example group one with 

bits 0 to 2, and group two with bits 3 to 5, through to group sixteen with bits 45 to 47. 

The second layer had sixteen grouped inputs, thus each multiplexer required a 4-bit 

selection input and the function table required 3-bits giving a configuration bit stream of 

11-bits per logic element. There were 8 logic elements in this layer, thus a total of 88 
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configuration bits were required for layer two. The output from each logic element was 

one group of 3-bits with eight groups from the complete layer. 

 

Figure 9-10.  The logic element in layer two of the reducing architecture. 

The function table provided simple logic functions as listed in Table 9-1. Boolean 

functions were performed on the two input groups of 3-bits to produce one 3-bit 

grouped output which was then fed to the next layer. 

Select Function Description

000 A only A is selected

001 ~A bitwise one's complement of A taken

010 A + B A and B are added together

011 A and B A and B are bitwise ANDed

100 A or B A and B are bitwise ORed

101 A nand B A and B are bitwise ANDed then one's complement taken

110 A nor B A and B are bitwise ORed then one's complement taken

111 A xor B A and B are bitwise Exclusive ORed  

Table 9-1. List of functional operators for the reducing layer virtual FPGA. 

Layer three 

An example of the logic elements in layer three is shown in Figure 9-11. The logic 

element had eight grouped inputs and one grouped output, with the multiplexing process 

and function table similar to layer two. However because the number of inputs to the 

logic element had reduced, only 3-bits per multiplexer were required to select one of the 

eight 3-bit groupings. The number of configuration bit streams for each logic element 

was 9, and with four logic elements in the layer the total number of configuration bits 

was 36 bits for layer three. There were four grouped outputs for the complete layer. 
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Figure 9-11.  The logic element in layer three of the reducing architecture. 

Layer four 

One of the logic elements in layer four is shown in Figure 9-12. This is similar to the 

previous layer’s logic elements, except that the inputs had dropped to four groups of 3-

bits. Once again fewer bits were required in the multiplexers, thus the configuration bits 

required per logic element was now 7, and with only 2 elements in this layer, the total 

configuration bits for layer four was 14. 

 

Figure 9-12.  The logic element in layer four of the reducing architecture. 

Layer five 

The final layer had only one logic element as shown in Figure 9-13. This layer 

performed Boolean logic on the remaining two groups, and then output the result as a 3-

bit number. The total configuration bit stream for this layer was 5-bits. 
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Figure 9-13.  The logic element in layer one of the reducing architecture. 

Combining all the configuration bit streams for the complete virtual FPGA resulted in a 

total number of 383 bits. This was slightly over half of what was required in the fixed 

layer virtual FPGA. The search space for this chromosome was 2
383 
 which equates to 

3.3x10
63 
as compared to the fixed layer architecture search space of 8.4x10

211
. The 

advantage of this architecture compared to the fixed layer architecture was a reduction 

in the configuration bit length and thus a reduction in the search space leading to a 

reduction in the evolution time. In addition, this architecture had more powerful 

functions, used a three bit result to give a more complex answer, and grouped the inputs  

9.4 Hardware genetic algorithm 

The hardware genetic algorithm used in this experiment as shown in Figure 9-14 was 

similar to that used in chapter eight except: only one unit was used; it was configured 

for a chromosome length of 383 bits; and the mutation rates were determined by the 

current fitness level rather than encoded in the chromosome. The control lines between 

the NIOS processor and the hardware genetic algorithm were: 

• reset the genetic algorithm, which generated a new chromosome and cleared the 

fitness; 

• replace the chromosome, if the offspring was better than the parents then replace 

the parent with the offspring; 

• mutate, which inverted one or more bits of the chromosome; 

• reset the chromosome bit counter, which cleared the chromosome bit counter 

before reading the chromosome into the NIOS processor; 
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• S-clock and S-data, used to serially read the chromosome into the NIOS 

processor, which was then encoded and sent to the computer; 

 

 

Figure 9-14.  Block diagram of the subsystems within the hardware genetic algorithm. 

After the evaluation of the individual was completed by the simulation, the NIOS would 

request the mutation unit save the new chromosome if its fitness was better or equal to 

the existing chromosome. The retained chromosome would then be mutated and used to 

reconfigure the virtual FPGA. The mutation rate was set by the NIOS processor with the 

two bit mutation rate lines. At any stage the chromosome could be read by using the 

serial clock and serial data lines after resetting the chromosome counter.  

Mutation rate  

The mutation rate was selected by two bits controlled by the NIOS processor which 

caused the mutation unit to invert from one to four bits in the chromosome. The 

mutation rate was inversely proportional to the fitness, thus as the fitness level increased, 

the mutation rate decreased. The random number generator produced four random 9-bit 

numbers ranging from 0 and 511; these were used to select which bit in the 383-bit 

chromosome would be mutated. It should be noted that the length of the chromosome 

was smaller than the random number, thus it was possible that a mutation might not 

occur. Thus the mutation produced a mutation rate, as well as a mutation probability as 

described in chapter eight. These values as shown in Table 9-2 were produced using 

Equation 8-1 and Equation 8-2.  
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mutation bits mutation probability maximim mutation rate

1 75% 0.26%

2 94% 0.52%

3 98% 0.78%

4 99.6% 1.04%  

Table 9-2.  Mutation rates for reducing layer virtual FPGA. 

9.5 Results 

Initially two experiments were performed, the first using a software simulation of the 

ball and beam, the second using a hardware simulation of the ball and beam. The fitness 

was determined by the length of time the ball was kept balanced before hitting an end-

stop. At the beginning of each test the ball and beam were placed at their reset positions, 

with the ball starting at rest at the left of the beam, and the beam tilted at an angle of 20 

degrees to the left above the horizontal plane.  

After the initial tests the execution speed of the hardware simulation was improved by 

increasing the hardware simulation clock from 5MHz to 50MHz, and reducing the delay 

times within the virtual FPGA. A third set of tests were performed to evaluate this new 

system. 

The results compare the hardware and software simulation performances. The results 

are described in the following order:  

• validation of the hardware and software simulation;  

• the evolved behaviour of the ball and beam as the evolution progressed;  

• a comparison of the relationship between fitness and the generation number;  

• a comparison of the time taken to evolve successful solutions;  

• the performance of the 50MHz hardware simulation;  

• a comparison of the time taken to evolve a successful solution for the 5 MHz 

and 50MHz hardware simulations and the software simulation. 

In the following tables within this chapter, the numbers relate to the beam states. These 

states are comprised of the ball speed with three values: 0 the ball is moving to the left, 

1 the ball is stopped or slow moving and 2 the ball is moving to the right. The ball 

position had nineteen values: 0 indicating the ball is at the left most position and 18 the 

ball at the right most position. The beam position had ten values: 0 indicating the beam 

was at its maximum right angle, and 9 showing the beam at its maximum left angle. The 
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virtual FPGA had a single binary output which was used to drive the beam. This gave 

the beam motor two speeds, maximum forward and maximum reverse, with 1 indicating 

the motor was driven to the left, and 0 the motor was driven to the right. 

9.5.1  Validation of the Hardware and Software Simulation  

In order to confirm that the hardware and software simulation acted in a similar manner, 

a simple test was performed. The simulation was run on both systems starting from the 

normal reset position. The beam was kept stationary whilst the ball ran down the beam 

until it reached the end-stop. A recording of the beam states (ball position, ball speed, 

beam position), was taken whenever a discrete change in one of these states within the 

beam simulation occurred. Concurrently the time at each discrete change in the beam 

state was also recorded. The comparison of the software and hardware simulation 

shown in Table 9-3 indicates that the simulations were identical in nature.  

time

ball ball beam time ball ball beam time between

positn speed positn (ms) positn speed positn (ms) sensors

0 1 9 0 0 1 9 0

0 2 9 184 0 2 9 184

1 2 9 229 1 2 9 229 229

2 2 9 445 2 2 9 445 216

3 2 9 581 3 2 9 581 136

4 2 9 656 4 2 9 656 75

5 2 9 715 5 2 9 715 59

6 2 9 775 6 2 9 775 60

7 2 9 815 7 2 9 815 40

8 2 9 850 8 2 9 850 35

9 2 9 881 9 2 9 881 31

10 2 9 923 10 2 9 923 42

11 2 9 947 11 2 9 947 24

12 2 9 970 12 2 9 970 23

13 2 9 991 13 2 9 991 21

14 2 9 1015 14 2 9 1015 24

15 2 9 1033 15 2 9 1033 18

16 2 9 1050 16 2 9 1050 17

17 2 9 1070 17 2 9 1070 20

18 2 9 1085 18 2 9 1085 15

software simulation hardware simulation 5MHz

 

Table 9-3.  Comparison of the characteristic of the simulation. 

From the recorded data it can be seen that the ball slowly moved to the right increasing 

in speed as the ball progressed down the beam. This can be seen in the column time 

between sensors, showing the reducing amount of time that it took for the ball to pass 

the sensors, starting off slowly and then increasing in speed due to the increased slope 

of the beam and the pull of gravity. Note there was a seemingly incorrect variation in 

time between some of the sensors. This was because the sensors were not evenly spaced, 

for instance the sensors at position one, eight and seventeen had a different spacing than 

the others. 
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9.5.2 Behaviour of the ball and beam 

The evaluation of each individual began with the beam and ball in the reset position. 

The motion and resulting behaviour of the ball and beam were observed and a recording 

of the ball speed, ball position, beam position and time was stored by enabling the 

beam-ball graphics on the graphical user interface. From this observed and recorded 

data it was determined that there were five stages of evolution, each linked to a level of 

fitness. The stages were:  

• a fitness level at one second; 

• a fitness level at two seconds; 

• a fitness level at ten seconds; 

• a fitness level between twenty and fifty seconds; 

• a successful evolution.  

When analysing the beam motion it should be remembered that the beam could not be 

stopped; it had to move either right or left. The following tables show a summary of the 

ball and beam motion, as not all the data can be shown due to the length of data 

recorded. 

First evolution stage 

The first stage of evolution had individuals that either drove the beam continuously to 

the left, causing the ball to roll to the left end-stop within 300ms, or the beam was held 

at its maximum right angle with the ball rolling to the right end-stop within 1 second. 

The recording for this stage are shown in Table 9-4. 
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ball ball beam motor time ball ball beam motor time

positn speed positn drectn (ms) positn speed positn drectn (ms)

0 1 9 1 1 0 1 9 0 2

0 1 8 1 16 0 2 9 0 184

0 0 8 1 157 1 2 9 0 229

0 0 7 1 176 2 2 9 0 445

0 0 7 1 264 3 2 9 0 581

4 2 9 0 656

5 2 9 0 715

6 2 9 0 775

6 2 9 0 776

7 2 9 0 815

8 2 9 0 850

9 2 9 0 881

10 2 9 1 923

11 2 9 0 947

12 2 9 0 970

13 2 9 0 991

14 2 9 0 1015

15 2 9 0 1033

16 2 9 0 1050

17 2 9 0 1070

17 2 9 0 1071

18 2 9 0 1085

18 2 9 0 1096

ball hitting left end-stop ball hitting right end-stop

 

Table 9-4.  Stage I of the evolutionary process showing the ball and beam motion. 

Second evolution stage 

The second stage of evolution showed a jittering of the beam at static beam positions as 

can be seen in Table 9-5. For example, the beam would jitter left then right around the 

nine and eight beam position, or around the beam eight and seven positions. As 

mentioned previously the beam has only two speeds, left and right, and can not be 

stopped thus the evolution is finding a means to slow down the speed and travel of the 

ball by jittering the beam. The virtual FPGA would produce a constant direction in the 

motor until an input was changed, such as the beam position. The first evolved circuits 

thus triggered off two beam positions to alternate the motor direction. The jitter in the 

beam would slow the ball down but it would still quickly reach an end-stop within two 

seconds. 
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ball ball beam motor time ball ball beam motor time

positn speed positn drectn (ms) positn speed positn drectn (ms)

0 1 9 0 1 0 1 9 0 1

1 2 8 1 264 1 2 8 1 566

1 2 9 1 497 2 1 7 0 738

2 2 8 1 566 2 2 7 1 1042

2 2 7 1 681 3 2 8 0 1307

3 2 8 1 1631 4 2 9 1 1508

4 2 6 0 1765 5 2 8 1 1596

4 2 7 1 1914 6 2 8 0 1676

4 1 5 0 2077 7 2 8 1 1727

4 0 6 1 2098 8 2 8 1 1772

4 0 5 0 2137 9 2 8 0 1810

4 0 5 0 2181 10 2 8 0 1861

4 0 6 1 2182 11 2 8 1 1891

3 0 6 0 2192 12 2 8 1 1917

2 0 6 1 2193 13 2 8 1 1942

1 0 6 1 2307 14 2 8 1 1970

1 0 5 0 2433 15 2 8 1 1991

0 0 6 1 2458 16 2 7 1 2012

0 0 5 0 2479 17 2 7 1 2033

0 0 6 1 2492 18 2 7 0 2050

ball hitting left end-stop ball hitting right end-stop

 

Table 9-5.  Stage II of the evolutionary process showing the ball and beam motion. 

Third evolution stage 

The next significant improvement was the third evolution stage, where the ball would 

be slowed down by the beam jittering around several different beam positions 

depending on the current position of the ball. The beam would begin to follow the balls 

motion, thus increasing the amount of time that the ball would spend slowly moving or 

stopped. This can be seen in Table 9-6 where the beam is jittering around positions nine 

to eight, then eight to seven, then seven to six. The virtual FPGA was now beginning to 

include the ball position data as well as the beam position data as part of its output 

determination. However eventually control of the ball would be lost and the movement 

of the beam would not be enough to prevent the ball from hitting an end-stop. The 

fitness level for this stage was between two and ten seconds. 
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ball ball beam motor time ball ball beam motor time

positn speed positn drectn (ms) positn speed positn drectn (ms)

0 2 9 1 184 0 2 9 1 184

1 1 9 0 497 1 1 8 0 380

2 1 7 0 738 2 2 8 1 681

2 2 7 1 1042 2 1 8 0 1181

3 2 8 1 1307 3 2 7 1 1370

3 1 7 0 1500 3 1 8 0 1631

4 2 6 1 1874 4 2 6 1 1874

5 2 7 1 2218 4 2 7 1 2088

5 1 7 0 2437 5 1 6 0 2335

6 2 6 1 2764 5 2 7 1 2521

7 2 5 1 3217 6 1 6 0 2787

7 2 5 1 3552 6 2 5 1 3152

8 2 5 1 3966 7 1 6 0 3319

9 2 5 1 4422 7 2 5 1 3552

9 2 3 1 4720 8 1 5 0 3710

10 1 5 0 4887 8 2 5 1 3966

10 2 3 1 5168 9 1 4 0 4205

11 2 4 1 5490 9 2 5 1 4422

12 2 2 0 5792 9 2 3 1 4720

12 2 4 1 6009 10 2 5 1 4947

13 2 2 0 6278 10 2 3 1 5168

13 1 2 1 6555 11 2 4 1 5490

11 0 1 0 6832 12 2 3 0 5688

6 0 2 1 7109 13 2 4 0 5899

1 0 2 1 7235 17 2 4 1 6171

0 0 2 1 7253 18 2 4 1 6205

ball hitting left end-stop ball hitting right end-stop

 

Table 9-6.  Stage III of the evolutionary process showing the ball and beam motion. 

Fourth evolution stage  

The fourth stage ranging from ten to fifty seconds had the beam moving in such a 

manner as to quickly bring the ball to a slow speed, with the beam position following 

the ball position as shown in Table 9-7. The beam aligned itself with the ball such that 

the ball was roughly balanced, remaining relatively stationary for longer periods of time. 

Eventually the ball would move from this static point to another position on the beam. 

When this occurred the beam would rapidly track the ball’s motion, slowing it down 

and bringing the ball once again to a relatively stationary state. This pattern would 

repeat for long periods of time until the ball would move closer to an end-stop. In this 

position any movement towards the end-stop could not be immediately countered by the 

beam so the ball would touch the end-stop and the fitness evaluation would end.  
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ball ball beam motor time ball ball beam motor time

positn speed positn drectn (ms) positn speed positn drectn (ms)

0 1 9 0 2 0 1 9 0 2

4 2 6 1 1874 2 2 8 1 896

8 1 5 0 3710 3 1 8 0 1631

8 1 6 1 3869 5 1 7 0 2437

11 1 2 0 5670 7 2 5 1 3217

10 2 3 1 7570 8 2 4 0 4094

10 1 3 0 9738 9 2 5 1 4813

14 2 2 0 11394 11 1 2 0 5670

17 0 1 0 13248 8 1 5 0 6420

18 2 0 1 15015 9 1 5 0 7287

17 1 1 0 16872 11 1 2 0 8078

17 2 0 1 18800 10 2 3 1 9674

17 2 0 1 20671 12 2 4 1 10554

16 1 2 1 24299 14 2 3 1 11305

17 1 1 0 26324 17 1 1 0 12040

16 0 2 0 28223 17 2 0 1 13788

17 0 1 0 30075 17 1 1 0 14629

17 1 2 1 31816 18 1 0 1 15150

17 0 1 0 33764 16 1 1 0 16147

17 0 1 0 36285 17 2 1 1 16958

17 1 2 1 37500 18 0 0 1 17597

17 2 1 1 39393 17 2 1 1 18527

18 0 0 1 41151 18 0 0 1 19504

17 1 2 1 43296 16 1 1 0 20021

17 1 0 0 45117 16 1 2 1 20100

18 1 0 1 45887 18 2 2 0 21726  

Table 9-7.  Stage IV of the evolutionary process showing the ball and beam motion. 

Fifth evolution stage 

The fifth stage showed a sudden step change to the maximum fitness. The traits for this 

stage had the ball slowly moving around a section of the jittering beam away from 

either end-stop. The ball would stay in this position for a long period of time before it 

gained enough momentum to move towards the opposite side of the beam. The beam 

would move to counteract this motion and bring it back to its original position. This 

pattern would repeat itself without the ball reaching an end-stop until the maximum 

fitness value was reached giving a successful evolution. 

9.5.3 Comparison between the Software and Hardware Simulation  

Comparison of improvement in fitness level with the number of generations 

The graphs of the fitness level relative to the number of generations for both the 

software simulation and hardware simulation are shown in Figure 9-15 and Figure 9-16 

respectively. These graphs show that the evolution process is similar in both methods, 

with an average number of generations to a successful evolution of approximately 
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100,000 generations. These graphs show the step characteristics of the evolutionary 

process as the individuals evolve through the various evolutionary stages. 

 

Figure 9-15.  Fitness relative to generation for the software simulation. 

 

 

Figure 9-16.  Fitness relative to generation for the hardware simulator operating at 5MHz. 

Comparison of improvement in fitness level with evolutionary time 

The graphs relating the fitness level to the evolutionary process time for both the 

software and hardware simulation are shown in Figure 9-17 and Figure 9-18 
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respectively. It can be seen that the average time for a successful evolution using the 

software simulation is approximately 50,000 seconds or 14 hours, whereas the hardware 

simulation average time for a successful evolution was approximately 750 seconds or 

13 minutes. The hardware simulation had a speed improvement over the software 

simulation of approximately 70 times. 

 

Figure 9-17.  Fitness relative to evolutionary time for the software simulation. 

 

 

Figure 9-18.  Fitness relative to evolutionary time for the hardware simulation with 5MHz clock. 
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9.5.4 Comparison with Hardware Simulation Running at 50MHz 

The maximum speed of the hardware simulation was limited to 5MHz, due to the 100ns 

delay time within the virtual FPGA rather than the execution of the hardware simulation 

itself. In previous experiments using a software simulation, a delay of 100ns between 

the inputs and outputs of the virtual FPGA was not important as the delays in the 

software simulation were far in excess of that figure. However the speed improvement 

of the hardware simulation now meant that the virtual FPGA was the limiting factor. In 

order to increase the speed of the hardware simulation, the internal clocking of the 

virtual FPGA was removed as shown in Figure 9-19, and the clock speed of the 

hardware simulation increased to 50MHz. In theory this should give a speed 

improvement of one order of magnitude over the 5MHz hardware. This improvement 

could be slightly reduced as the time taken to perform the selection and reproduction 

tasks of the genetic algorithm were not changed. 

 

Figure 9-19.  Architecture for the reducing layer virtual FPGA with no internal clock. 

The graph of the fitness relative to the number of generations is shown in Figure 9-20. It 

can be seen that the simulation was working in a similar manner as the software and 

5MHz simulations with the step change in fitness, and the average number of 

generations required to reach a successful evolution at approximately 100,000 

generations.  
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Figure 9-20.  Fitness relative to generation for the hardware simulation operating at 50MHz. 

The graph relating fitness level to time is shown in Figure 9-21. The time taken for a 

successful individual to evolve was 110 seconds; this was 700 times faster than the 

software simulation.  

 

Figure 9-21.  Fitness relative to evolutionary time for the hardware simulation operating at 50MHz. 

A comparison of the time required to reach a successful solution at approximately 

35,000 generations for each of the three types of simulation is shown in Figure 9-22. It 

can be seen that the hardware simulation running at 50MHz was the fastest at 11 

seconds, the hardware simulation running at 5 MHz was 110 seconds and the software 

simulation was 8,000 seconds 
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Figure 9-22.  Comparison of time taken to reach a successful evolution at 35,000 generations for the 

three simulations. 

9.6 Conclusions 

It can be seen that a simulation can be designed to run in hardware using standard 

Verilog coding commands. The simulation needs to be modified so that floating point 

arithmetic and trigonometric functions are removed. The timing of the simulation must 

be carefully designed to interface with the genetic algorithm, and the fitness evaluation. 

A hardware simulation replicating a balancing beam has been successfully implemented. 

This simulation has been used in a hardware genetic algorithm to evolve a virtual FPGA 

that was capable of balancing the ball on the beam for more than five minutes. A 

comparison between identical software and hardware simulations was performed with 

both systems behaving in an identical manner. However it was found that the hardware 

simulation could evolve successful circuits over 700 times faster than the software 

simulation. 

A conference paper was accepted for this section with recommendation for best paper 

award, and journal publication. The Verilog code, C code and graphical user interface 

can be found in the CD accompanying this thesis. 
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Chapter 10 

Chapter 10:  Conclusions and Future Research  

10.1 Summary 

This thesis has added to the body of knowledge in the field of evolutionary robotics by 

developing the novel concept of using evolutionary capable lookup tables as robotic 

controllers. The lookup table links the current state of the robot to a desired robotic 

action for that state. The lookup table is suitable for evolution as shown in two 

examples using firstly a mobile inverted pendulum, and secondly a ball-balancing beam. 

Advancements in knowledge have also been performed in the subfield of evolvable 

hardware using both fixed layer and reducing layer architectures for an evolved virtual 

FPGA used as a robotic controller for a ball-balancing beam. In this case the current 

state of the robot was connected to the input of the virtual FPGA, and the evolved 

circuits produced an output to control the robot. Finally the concept of moving the 

simulation used for fitness evaluation of individuals from software to hardware has been 

performed with a corresponding decrease in evolution completion time of 

approximately 700 times. The following sections summarise these points. 

10.1.1 Thesis Précis  

Chapter one introduced the subject area of evolutionary robotic controllers. A list of 

research questions this thesis answers was stated, with a brief explanation of how they 

would be answered. Chapter two described the techniques employed in genetic 

algorithms including reproduction, selection, fitness evaluation, and the application of 

lookup tables. Chapter three explained the requirements for evolving hardware using 

techniques such as genetic compilers, genetic programming and Cartesian based virtual 

FPGAs to overcome the problems associated with evolvable hardware. Chapter four 

reviewed the area of major research in evolutionary robotics using artificial neural 

networks and fuzzy logic controllers. Basic concepts and their adaption for evolutionary 

robotics were also explained. Chapter five summarised recent research in the two 

systems that were evaluated in this thesis, including the mobile inverted pendulum and 
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the ball-balancing beam. Chapter six provided the derivation of the mathematical 

models and simulations for the mobile inverted pendulum and ball-balancing beam. 

Chapter seven detailed how lookup tables could be evolved for robotic controllers. This 

chapter provided two examples of how they could be implemented; firstly by using a 

two-dimensional array to control a mobile inverted pendulum, and secondly by using a 

three-dimensional array to control a ball-balancing beam. Chapter eight presented the 

fixed layer virtual FPGA that was evolved using a hardware genetic algorithm to control 

the ball-balancing beam. Chapter nine illustrated how the robotic simulation could be 

moved from hardware to software, with a large improvement in the evolutionary 

completion time. This chapter also presented the reducing layer virtual FPGA with a 

reduced chromosome length and more powerful functionality than the fixed layer virtual 

FPGA. 

10.1.2 Lookup Tables 

Can a lookup table be evolved to function as a robotic controller? 

Two systems were developed to evaluate the use of evolved lookup tables for robotic 

controllers. The first evolved a two dimensional lookup table that was used to control a 

mobile inverted pendulum. The axes of the lookup table were related to the pendulum’s 

angle and angular velocity, while the parameters within the lookup table provided the 

motor torque and direction that would maintain the pendulum in balance. The software 

genetic algorithm used tournament selection, full crossover and creeping mutation. A 

simulation of the mobile inverted pendulum was produced for the evaluation of fitness. 

How the individual was evaluated was important as it determined the final behaviour of 

the pendulum. The fitness level was dependant on how long the individual could 

maintain the pendulum in balance while keeping within ±0.5 meters of its starting 

position. Multiple starting angles were used when testing each individual. The 

pendulum evolved a behaviour that would swiftly bring the pendulum upright from an 

initial lean, and then oscillate around a fixed angular and horizontal position. It was 

found that a successful evolved lookup table could keep the pendulum balanced for 

more than 250 seconds. 

The second system was a three-dimensional lookup table used as a controller for a ball-

balancing beam which was evolved using a similar software genetic algorithm as that 

used for the mobile inverted pendulum described above (except for mutation rates). The 



200 

three axes of the lookup table were related to the beam position, ball position and ball 

speed. The parameters inside the lookup table gave the required motor speed and 

direction such that the beam would move in a motion that would keep the ball in 

balance. A simulation of the beam was used to evaluate the fitness of each individual in 

the population. The fitness level was dependent on how long the ball would remain in 

balance before hitting an end-stop. Multiple starting points were used when evaluating 

each individual. Several experiments were performed using a different number of motor 

speeds ranging from two (forward and backward), to eleven (five forward, five 

backward and one stopped). The motion of the ball and beam for a successful individual 

was recorded showing the ball had been captured in one place by the beam oscillating 

around two fixed positions. It was found that the evolved lookup table controller could 

keep the ball balanced for more than five minutes. All the experiments with a range of 

motor speeds and different maximum motor speeds evolved successful controllers; 

however those with a higher maximum motor speed and limited range of set speeds had 

a faster evolution time. 

10.1.3 Virtual FPGA 

Can a virtual FPGA be evolved to function as a robotic controller? 

An evolutionary capable fixed layer virtual FPGA was constructed to act as a controller 

for the ball-balancing beam. The virtual FPGA had thirty-two inputs to read the ball 

beam states of ball position (nineteen), ball speed (three), and beam position (ten). It 

had one output which was used to select a forward or reverse motor speed to drive the 

beam. The virtual FPGA was based on a Cartesian architecture with a four column by 

sixteen row, two-dimensional array of logic elements The genetic algorithm was 

constructed in hardware using mutation only, and was used to evolve the virtual FPGA 

by modifying its configuration bit stream. This genetic algorithm was chosen so that it 

could be used in a FPGA with limited resources, and although not as powerful as a full 

genetic algorithm incorporating crossover, it was still able to evolve controllers. A 

graphical user interface was constructed to give a visual representation of the motion of 

the ball and beam, and to provide control and data logging. It was found that an evolved 

virtual FPGA circuit could control the motion of the beam to maintain the ball in 

balance for more than five minutes. The fitness improved in large steps with a final 

jump in fitness to a successful solution. An analysis of the ball and beam motion found 
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that once the ball had been slowed down from its initial starting roll, it could be brought 

to balance by the beam oscillating between two points placing the ball in a stable state. 

10.1.4 Hardware Simulation 

Can the genetic algorithm’s simulation be implemented in hardware and benefit the 

evolutionary process? 

The time required for the evolutionary process to find a successful individual is largely 

dependent on the time taken for the fitness evaluation of an individual. This is normally 

performed in software; however if it could be implemented in hardware then a large 

improvement in the evolutionary process would occur. The mathematical model of the 

ball-balancing beam was converted to integer values so that it could be created as a 

hardware circuit implemented in a resource limited FPGA. Two simulations using this 

model were created; the first was a software simulation and the second a hardware 

simulation. The hardware simulation included a simulation unit which contained the 

simulation equations in hardware as well as a fitness calculation unit that could 

determine how long the ball had remained balanced. The controller used for the 

experiment was a reducing layer virtual FPGA which had a reduced configuration bit 

stream, and more powerful function operators than the fixed layer virtual FPGA used in 

previous experiments. The reducing layer virtual FPGA was based on a Cartesian 

architecture two-dimensional array of logic elements. There were five columns of logic 

elements with each column having a reducing number of rows reducing from sixteen 

elements in the first column to one in the fifth column. The interface between the 

simulation and virtual FPGA was carefully designed to ensure the timing between these 

two systems was correct. Tests carried out on the software and hardware simulations 

showed that they performed identically; however the hardware simulation had a 700 

times speed improvement over the software simulation. The evolutionary process of the 

ball and beam motion was carefully studied, showing five stages of evolutionary 

learning, as the beam evolved to balance the ball. The result of these experiments 

showed that a genetic algorithm’s simulation could be executed in hardware with a 

significant improvement in evolutionary completion time.  

10.2 Future Research 

The thesis has investigated three significant questions in the field of evolutionary 

robotics. The answers to these questions have been discussed, however these answers 
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lead to more questions that can be investigated in the future. These questions are 

explained next. 

How does a lookup table compare with virtual FPGA? 

The performance of a lookup table and a virtual FPGA for an evolved robotic controller 

will be compared using a simulation of the ball-balancing beam, and the hardware 

genetic algorithm for the genetic process. The lookup table will be generated in RAM 

with the RAM address linked to the ball position, ball speed and beam position while 

the data at each address will relate to the desired motor speed. A chromosome will be 

the contents of the RAM table with the hardware genetic algorithm modifying the 

contents of the data within the RAM. The data size of the RAM can be modified from 

one to three bits to give a range of speeds. 

How does a chromosome evolved on a simulation of the beam perform on a real beam? 

The physical beam developed by students at AUT University was never fully completed 

as there were problems with the ball position sensors, and the motor drivers. Also the 

beam controller was an Atmel Mega128 microcontroller, rather than a FPGA device. 

The construction of a new curved ball-balancing beam is now in the planning stage by 

technicians at the University using: the Terasic FPGA DE0-Nano board as the controller; 

a high torque DC motor with over 360
0
 per second angular velocity; and a magnetic and 

resistive ball position sensor. When this is completed, the simulations will be modified 

for the new system and the evolution run again. The evolved virtual FPGA will be able 

to be directly downloaded to the DE0-Nano board FPGA for an evaluation between the 

simulation and physical beam.  

How does the fixed layer virtual FPGA compare with the reducing layer virtual FPGA? 

The fixed layer virtual FPGA and the reducing layer FPGA have both been used 

successfully in different experiments; however their performances have not been 

directly compared. An evaluation of each system will be made using the simulation for 

the balancing beam and the hardware genetic algorithm. The virtual FPGAs will be 

evaluated on how quickly they can be evolved, and how well they control the motion of 

the ball and beam. 
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How does a software genetic algorithm compare with a hardware genetic algorithm? 

A hardware genetic algorithm has been used to evolve the virtual FPGAs used for 

robotic controllers. A software genetic algorithm running on the NIOS processor will be 

created and compared with the hardware genetic algorithm using the simulation for the 

ball-balancing beam and a virtual FPGA. The two genetic algorithms will be evaluated 

on how quickly they can produce a successful individual, and how well they control the 

ball and beam.  

Can a software model of the virtual FPGA be created and how will it compare with a 

lookup table? 

The virtual FPGA has been constructed in hardware and has been shown to be able to 

be evolved to create a robotic controller. A software model of the hardware virtual 

FPGA will be created and its ability to be evolved for a robotic controller will be 

evaluated against that of a lookup table. 
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Appendix B  Altium Live Design Board used for Experimentation 
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