

Evolution of Robotic Controllers

Using Genetic Algorithms

Mark Beckerleg

A thesis submitted to AUT University

in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

March 13, 2012

School of Engineering

Primary Supervisor: John Collins

i

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements), nor material which

to a substantial extent has been accepted for the award of any other degree or diploma of

a university or other institution of higher learning.

 Signed………………………………………………………………...

ii

Dedication

I dedicate this thesis to

• My mother Loloma Florence Beckerleg and my father

Brazillia Sturges Beckerleg both of whom would be very

proud of this achievement.

• My family Robyn and Peter Beckerleg.

• My loving partner Sarah Moore.

iii

Acknowledgement

I would like to acknowledge my supervisor John Collins for his support and

encouragement in this thesis; one of the great minds in the school of engineering, my

partner Sarah Moore for her endless patience and superb writing skills and my sister

Robyn Beckerleg.

iv

Abstract

This research investigates evolutionary robotics which uses evolutionary computation to

generate robotic controllers. The majority of research in this field has been primarily

focused on the use of software genetic algorithms to evolve robotic controllers based on

artificial neural networks and fuzzy logic. Investigation into other forms of evolvable

robotic controllers however is less studied, thus the focus of this research was to

investigate and develop new methods of evolving controllers for evolutionary robotics.

This led to the creation of three novel concepts within this field including the evolution

of lookup tables for robotic control, the implementation of the robotic simulation in

hardware for fitness evaluation of individuals, and advances in virtual Field

Programmable Gate Arrays (FPGAs) for robotic control.

The innovative utilization of a lookup table for a robotic controller used multi-

dimensional lookup tables that linked the state of the robot obtained from input sensors

to the required output for the robots actuators in order for the robot to function correctly.

A population of these tables (chromosomes) were evolved using genetic algorithms.

Two multi-dimensional lookup table robotic controllers were successfully evolved using

standard genetic algorithms.

The novel approach of implementing the robotic simulation in hardware rather than

software was performed. The time required for a genetic algorithm to evolve a

successful robotic controller is largely dependent on the fitness evaluation of an

individual. If the robotic simulation could be performed in hardware then there will be a

significant increase in performance. It was shown that hardware robotic simulations

could be constructed with an improvement in evolution completion time of over two

orders of magnitude greater than that of a software simulation.

The use of robotic controllers in the form of two virtual FPGAs were evaluated using

two Cartesian based architectures, a fixed layer and a reducing layer virtual FPGA. The

configuration bit stream which describes the circuits within the virtual FPGA was

evolved by a genetic algorithm implemented in hardware. The input sensors of the robot,

indicating its current state were connected to the inputs of the virtual FPGA, while the

output was connected to the robot actuators. It was found that both architectures could

be evolved to produce robotic controllers.

v

Table of Contents

ATTESTATION OF AUTHORSHIP ... I

DEDICATION ... II

ACKNOWLEDGEMENT.. III

ABSTRACT IV

CHAPTER 1: INTRODUCTION ... 1

1.1 Research Objectives .. 3

1.1.1 Can a lookup table be evolved to function as a robotic controller? 4

1.1.2 Can a virtual FPGA be evolved to function as a robotic controller? 5

1.1.3 Can a simulation used for a genetic algorithm be implemented in

hardware and benefit the evolutionary process? 6

1.2 Publications ... 7

1.2.1 Conference Papers ... 7

1.2.2 Book Chapters ... 7

1.2.3 Journals ... 7

1.3 Thesis Structure .. 8

CHAPTER 2: A REVIEW OF SOFTWARE GENETIC ALGORITHMS AND THEIR USE IN

EVOLUTIONARY ROBOTICS .. 10

2.1 Evolutionary Computation Techniques .. 11

2.1.1 Genetic Algorithms ... 11

2.1.2 Genetic Programming ... 14

2.1.3 Evolutionary Strategies ... 14

2.1.4 Evolutionary Programming ... 15

2.2 Fitness Landscape ... 15

2.3 Genetic Reproduction ... 17

2.3.1 Crossover .. 17

2.3.2 Mutation .. 19

2.4 Genetic Selection .. 21

2.4.1 Selection Schemes ... 22

2.5 Fitness Evaluation ... 26

2.5.1 Simulation ... 26

2.5.2 Simulation Methods .. 27

2.5.3 Types of Simulation .. 28

2.5.4 Continuous Evolution ... 28

2.6 Chromosome Data Types .. 29

2.7 Subsumption ... 30

2.8 Mutation Only Genetic Algorithms .. 31

2.8.1 Software Genetic Algorithms Using Mutation Only 32

2.8.2 Hardware Genetic Algorithm Using Mutation Only 35

2.9 Evolutionary Robotics and Lookup Tables... 37

vi

CHAPTER 3: A REVIEW OF HARDWARE CONTROLLERS AND THEIR USE IN EVOLUTIONARY

ROBOTICS ... 39

3.1 Commercial FPGA and FPAA Architectures ... 39

3.1.1 Field Programmable Gate Array ... 39

3.1.2 Coarse and Fine Grained Architecture .. 41

3.1.3 Field Programmable Analogue Array ... 42

3.2 Overview of Hardware Evolution ... 43

3.3 Problems with Commercial FPGAs and Evolvable Hardware 46

3.3.1 Scalability .. 46

3.3.2 Partial Reconfiguration ... 46

3.3.3 Destructive Architectures .. 46

3.4 Solutions to Commercial FPGA and Evolvable Hardware............................... 47

3.4.1 Genetic Compilers ... 47

3.4.2 Genetic Programming of Hardware Descriptive Languages 49

3.4.3 Virtual FPGA .. 52

3.5 Virtual FPGA Architectures ... 53

3.5.1 Xilinx XC6200 .. 53

3.5.2 S-block .. 54

3.5.3 Gate Level and Functional Level Logic Units 56

3.5.4 Cartesian-Based Virtual FPGA Architecture .. 57

3.6 Chromosome Length Reduction ... 61

3.6.1 L-system mapping ... 62

3.6.2 Variable Length Genetic Algorithms .. 63

3.6.3 Species Adaptation Genetic Algorithms ... 64

3.6.4 Compact Genetic Algorithms .. 65

3.6.5 Morphogenetic Algorithms ... 65

3.6.6 Incremental Learning .. 66

3.7 Hardware-Based Genetic Algorithms ... 66

3.7.1 Mutation Only Hardware Genetic Algorithms 67

3.7.2 Crossover and Mutation .. 68

3.7.3 Pipeline Processing ... 69

3.8 Examples of Robotic Controllers .. 71

CHAPTER 4: A REVIEW OF ARTIFICIAL NEURAL NETWORKS AND FUZZY LOGIC

CONTROLLERS AND THEIR USE IN EVOLUTIONARY ROBOTICS 74

4.1 Evolution of Artificial Neural Networks Robotic Controllers 74

4.1.1 Artificial Neural Network Overview .. 74

4.1.2 Types of Artificial Neural Networks .. 77

4.1.3 Creating Artificial Neural Networks on a FPAA and FPGA 77

4.1.4 Evolving Artificial Neural Networks .. 79

4.2 Evolution of Fuzzy Logic Robotic Controllers ... 85

4.2.1 Fuzzy Logic Controller Overview .. 85

4.2.2 Evolving Fuzzy Logic Controllers .. 87

4.2.3 Examples of Evolving Fuzzy Logic for Robotic Controllers................ 87

vii

CHAPTER 5: A REVIEW OF ROBOTIC CONTROLLERS FOR THE MOBILE INVERTED

PENDULUM AND BALL-BALANCING BEAM... 92

5.1 Mobile Inverted Pendulum ... 92

5.1.1 Non-evolved Robotic Controllers for a Mobile Inverted Pendulum 93

5.1.2 Evolved Robotic Controllers for the Mobile Inverted Pendulum 94

5.2 Ball-Balancing Beam .. 97

5.2.1 Non-evolved Ball-Balancing Beam Controllers 97

5.2.2 Evolved Ball-Balancing Beam Controllers ... 100

CHAPTER 6: SYSTEMS DEVELOPED FOR EXPERIMENTATION .. 102

6.1 Mobile Inverted Pendulum ... 102

6.1.1 Overview of the Mobile Inverted Pendulum 102

6.1.2 Mathematical Model of the Mobile Inverted Pendulum 103

6.2 Ball-Balancing Beam .. 107

6.2.1 Overview of the Ball-Balancing Beam ... 107

6.2.2 Mathematical Model Ball-Balancing Beam .. 108

6.2.3 Ball-balancing beam simulation mathematical model 111

CHAPTER 7: EVOLVING LOOKUP TABLES FOR ROBOTIC CONTROLLERS 113

7.1 Evolving Lookup Tables for the Mobile Inverted Pendulum 115

7.1.1 Graphical User Interface ... 115

7.1.2 Genetic Algorithm ... 117

7.1.3 Simulation and Coding Structure .. 119

7.1.4 Fitness Evaluation ... 120

7.1.5 Results ... 122

7.1.6 Conclusions ... 129

7.2 Evolving Lookup Tables for the Ball-Balancing Beam 130

7.2.1 Graphical User Interface ... 131

7.2.2 Genetic Algorithm ... 132

7.2.3 Simulation and Coding Structure .. 135

7.2.4 Fitness Evaluation ... 136

7.2.5 Results ... 136

7.2.6 Conclusions ... 143

CHAPTER 8: EVOLVING A FIXED LAYER VIRTUAL FPGA FOR ROBOTIC CONTROLLERS 144

8.1 System used in Experimentation ... 145

8.2 Fixed Layer Virtual FPGA.. 148

8.3 Hardware Genetic Algorithm .. 151

8.3.1 Random Number Generator .. 153

8.3.2 Memory Storage .. 153

8.3.3 Mutation Unit .. 154

8.4 Graphical User Interface ... 156

8.4.1 Overview ... 156

8.4.2 Data Communication Protocol .. 158

8.5 Simulation and Coding Structure .. 159

viii

8.5.1 Simulation on Computer ... 159

8.5.2 Simulation on NIOS .. 160

8.6 Fitness Evaluation ... 163

8.7 Results ... 163

8.8 Conclusion .. 166

CHAPTER 9: USING HARDWARE SIMULATION FOR EVOLVING ROBOTIC CONTROLLERS 168

9.1 Overview ... 169

9.2 Hardware Simulation .. 172

9.2.1 Creating a Hardware Simulation ... 172

9.2.2 Hardware Simulation Blocks .. 175

9.2.3 Timing ... 177

9.2.4 Maximum Beam Step Calculations ... 179

9.3 Reducing Layer Virtual FPGA ... 180

9.4 Hardware genetic algorithm .. 184

9.5 Results ... 186

9.5.1 Validation of the Hardware and Software Simulation 187

9.5.2 Behaviour of the ball and beam .. 188

9.5.3 Comparison between the Software and Hardware Simulation 192

9.5.4 Comparison with Hardware Simulation Running at 50MHz 195

9.6 Conclusions ... 197

CHAPTER 10: CONCLUSIONS AND FUTURE RESEARCH ... 198

10.1 Summary ... 198

10.1.1 Thesis Précis ... 198

10.1.2 Lookup Tables ... 199

10.1.3 Virtual FPGA .. 200

10.1.4 Hardware Simulation .. 201

10.2 Future Research .. 201

REFERENCES .. 204

APPENDIX A PUBLISHED PAPERS ... 218

A GA based Controller for a Mobile Inverted Pendulum .. 218

An Analysis of the Chromosome Generated by a Genetic Algorithm Used to Create a

Controller for a Mobile Inverted Pendulum ... 223

Evolving Electronic Circuits For Robotic Control ... 231

Using a Hardware Simulation within a Genetic Algorithm to Evolve Robotic

Controllers .. 236

Evolving a Three Dimensional Lookup Table Controller for a Curved Ball and Beam

System .. 242

Software Evolution of a Hexapod Robot Walking Gait ... 248

APPENDIX B ALTIUM LIVE DESIGN BOARD USED FOR EXPERIMENTATION 254

ix

Table of Figures

Figure 1-1. Software genetic algorithm using a lookup table and software simulation

based in a computer. ... 4

Figure 1-2. System interconnections for the virtual FPGA and a hardware genetic

algorithm located inside a FPGA. .. 5

Figure 1-3. System interconnections for the hardware simulation and a software

simulation running on a NIOS processor both located in an FPGA. 6

Figure 2-1. Flow chart describing the genetic algorithm process. 12

Figure 2-2. Diagrammatical representation of a tree structure in genetic programming.

 .. 14

Figure 2-3. Graphical representation of the fitness landscape. 16

Figure 2-4. Fitness landscape showing the hamming distance from the local maxima. 16

Figure 2-5. The initial chromosome for a travelling salesman ten city journey. 17

Figure 2-6. An example of a chromosome after single point crossover. 18

Figure 2-7. An example of a chromosome after two point crossover. 18

Figure 2-8. An example of a chromosome after multiple point crossover. 19

Figure 2-9. An example of a chromosome after crossover uniform. 19

Figure 2-10. An example of a chromosome after insertion mutation. 20

Figure 2-11. An example of a chromosome after inversion mutation. 20

Figure 2-12. An example of a chromosome after exchange mutation. 20

Figure 2-13. An example of a chromosome after displacement mutation. 20

Figure 2-14. Pie graph showing the operation of roulette wheel and stochastic universal

sampling selection. ... 22

Figure 2-15. Pie graph showing the selection chance in rank based selection. 23

Figure 2-16. Pictorial sequence of operations in microbial selection. 24

Figure 2-17. An example of a binary tree structure. .. 30

Figure 2-18. An example of a chromosome after frame shift mutation. 34

Figure 2-19. An example of a chromosome after translocation mutation...................... 35

Figure 2-20. The lookup table chromosome for the gait of a hexapod robot................. 37

Figure 3-1. The Altera FPGA logic element. ... 40

Figure 3-2. The Altera FPGA logic array block. ... 40

Figure 3-3. The architecture of a FPAA... 42

Figure 3-4. An evolved bitstream with corresponding circuit. 43

Figure 3-5. Block diagram of the extrinsic and intrinsic evolutionary process. 44

x

Figure 3-6. The Xilinx XC6216 logic element. ... 45

Figure 3-7. The Xilinx XC6200 logic element interconnections. 45

Figure 3-8. Block diagram of the evolvable hardware process using the Xilinx genetic

FPGA. ... 47

Figure 3-9. The Virtex configurable logic blocks showing the interconnections of the

lookup tables. ... 48

Figure 3-10. Block diagram of the genetic process using Jbits...................................... 49

Figure 3-11. Genetic programming using parse tree. ... 49

Figure 3-12. Genetic programming using a tree structure of context switchable identity

blocks. .. 50

Figure 3-13. EvolvaWare structure using genetic programming and a parse tree. 51

Figure 3-14. System interconnections using an external genetic algorithm with a virtual

FPGA. ... 52

Figure 3-15. System interconnections using an internal genetic algorithm with a virtual

FPGA. ... 53

Figure 3-16. A virtual FPGA based on the Xilinx XC6200 core. 54

Figure 3-17. The virtual FPGA S-block showing logic unit and the S-block structure. 55

Figure 3-18. An array of S-blocks showing the interconnections between logic elements.

 .. 55

Figure 3-19. The S-block lookup table contents used to rout a signal from east in to east

out. .. 56

Figure 3-20. Schematic representation of gate level evolution. 56

Figure 3-21. Schematic representation of functional level evolution. 57

Figure 3-22. Cartesian architecture showing the functional elements numbers and the

string that describes their interconnections. ... 58

Figure 3-23. Cartesian architecture showing programmable functional units for signal

processing. .. 59

Figure 3-24. Functional listing of the lookup table for a configurable function block. . 59

Figure 3-25. Cartesian architecture showing configurable function blocks for image

processing. .. 60

Figure 3-26. Virtual FPGA architecture used for character recognition. 61

Figure 3-27. An example of a growing structure based on L-system mapping. 62

Figure 3-28. Diagrammatic comparison of the search space for SAGA and a standard

genetic algorithm. ... 64

xi

Figure 3-29. System blocks and their interconnections for a mutation only hardware

genetic algorithm. ... 67

Figure 3-30. System interconnections of a virtual FPGA, a mutation only genetic

algorithm and fitness evaluation. ... 68

Figure 3-31. Hardware crossover using a crossover template two bit multiplexers. 69

Figure 3-32. Hardware mutation using shift registers. ... 69

Figure 3-33. A pipelined hardware genetic algorithm with both crossover and mutation.

 .. 70

Figure 3-34. Block diagram of a mutation only hardware genetic algorithm. 71

Figure 3-35. Example of the tree structure required for obstacle avoidance and light

following. ... 72

Figure 4-1. Diagrammatic representation of an artificial neuron. 75

Figure 4-2. A graphical representation of activation outputs from an artificial neural

networks. .. 75

Figure 4-3. A single layer artificial neural network. .. 76

Figure 4-4. The neural network configured for navigation on a Khepera robot. 80

Figure 4-5. Membership function and degrees of membership for temperature inputs. 85

Figure 4-6. Graphical representation of fuzzy operators AND, OR and NOT. 86

Figure 4-7. The three steps in a fuzzy logic controller. ... 87

Figure 4-8. Chromosome representation of membership functions. 87

Figure 5-1. A neural network with PID for a mobile inverted pendulum. 95

Figure 5-2. Double jointed inverted pendulum. .. 96

Figure 5-3. Block diagram of a fuzzy logic genetic algorithm. 96

Figure 5-4. Beam controlled by magnetic actuators. ... 97

Figure 5-5. Ball-balancing beam on a cart. .. 98

Figure 5-6. System interconnections for a ball-balancing beam using a 68HCS12

microcontroller with in-built fuzzy instructions. .. 99

Figure 5-7. A fuzzy logic controller for the ball-balancing beam. 100

Figure 6-1. The physical and simulated mobile inverted pendulum used to evaluate the

robotic controllers. ... 103

Figure 6-2 Diagrammatic sketch used for the mathematical model of the mobile

inverted pendulum .. 104

Figure 3. Pictorial representation of the torque produced on the wheel. 105

Figure 4. Pictorial representation of the forces on the pendulum. 105

xii

Figure 6-5. The physical ball-balancing beam system and the GUI display that the

simulation controlled. ... 107

Figure 6-6. Diagrammatic representation of the angles θ and Φ in the ball-balancing

beam. .. 109

Figure 6-7. Diagrammatic representation of the three forces applied to the ball on a

slope. .. 109

Figure 7-1. Block diagram of the systems and interconnections for the software genetic

algorithm used to evolve a lookup table. .. 114

Figure 7-2. Graphical user interface used for the mobile inverted pendulum software

genetic algorithm. ... 116

Figure 7-3. Pendulum chromosome in the form of a two dimensional lookup table. .. 117

Figure 7-4. An example of two point crossover on the pendulum chromosome. 118

Figure 7-5. Flow chart of the simulation’s interaction with lookup table. 120

Figure 7-6. Fitness relative to generation for pendulum starting angle ±18
0
 showing the

best individual and population average fitness. 124

Figure 7-7. Fitness relative to generation for pendulum starting angle ±18
0
 showing the

best individual and average fitness for multiple runs. 125

Figure 7-8. Fitness relative to generation for pendulum starting angle ±12
O
 showing the

best individual and the population average. ... 125

Figure 7-9. Fitness relative to generation for pendulum starting angle ±12
0
 showing the

best individual with multiple runs. ... 126

Figure 7-10. Fitness relative to generation for pendulum starting angle ±12
0
 showing

the best individual and population average with multiply runs................ 127

Figure 7-11. Picture of the ball-balancing beam developed in a student project. 131

Figure 7-12. Graphical user interface for the ball-balancing beam controlled by an

evolved lookup table. ... 132

Figure 7-13. Balancing beam chromosome in the form of a three dimensional lookup

table. ... 133

Figure 7-14. An example of reproduction of ball-balancing beam chromosome using

two point crossover. ... 134

Figure 7-15. Fitness relative to generation using two motor speeds with at 8ms pulse

rate showing multiple runs. .. 138

Figure 7-16. Fitness relative to generation using three motor speeds at 8ms pulse rate

showing multiple runs. ... 138

xiii

Figure 7-17. Fitness relative to generation using five motor speeds with at 8ms pulse

rate showing multiple runs. .. 139

Figure 7-18. Fitness relative to generation using eleven motor speeds at 8ms pulse rate

showing multiple runs .. 139

Figure 7-19. Fitness relative to generation for maximum and average fitness, with

eleven motor speeds and at 8ms pulse rate. ... 141

Figure 7-20. Fitness relative to generation for the four motor speeds at 8ms pulse rate.

 .. 142

Figure 7-21. Fitness relative to generation for the four motor speeds at 4ms pulse rate.

 .. 143

Figure 8-1. The physical balancing beam that the simulation was modelled on. 144

Figure 8-2. Overview of the system used to evolve the fixed layer virtual FPGA. 146

Figure 8-3. Interconnections between the three systems within the FPGA for the ball-

balancing beam controller. ... 148

Figure 8-4. The Cartesian architecture for the fixed four layer virtual FPGA. 149

Figure 8-5. A logic element in the first layer of the fixed layer virtual FPGA. 150

Figure 8-6. A logic element in layers two to four of virtual FPGA. 150

Figure 8-7. The NIOS and fixed layer virtual FPGA connections for the hardware

genetic algorithm. ... 152

Figure 8-8. System and interconnections within the hardware genetic algorithm with an

evolving mutation rate. ... 153

Figure 8-9. Graphical user interface used for the fixed layer virtual FPGA controlling

the ball-balancing beam. .. 157

Figure 8-10. Starting position of ball on the beam... 163

Figure 8-11. Fitness relative to generation for a 1ms motor pulse rate. 165

Figure 8-12. Fitness relative to generation for a 2ms motor pulse rate. 165

Figure 8-13. The motion of the ball and beam showing the oscillating pattern which is

keeping the ball in a stable position. .. 166

Figure 9-1. Block diagram of the systems used in the software simulation for the

balancing beam. .. 170

Figure 9-2. Block diagram of the systems used in the hardware simulation for the

balancing beam. .. 171

Figure 9-3. System control and data lines for the hardware simulation. 172

Figure 9-4. Verilog code and register transfer level description for a thirty-two bit

signed multiplier. .. 173

xiv

Figure 9-5. Verilog code and register transfer level description for a thirty-two bit

signed divider. .. 174

Figure 9-6. Control lines and subsystem interconnections for the hardware simulation

unit. ... 175

Figure 9-7. Timing diagram of the software simulation execution time. 178

Figure 9-8. Architecture of the reducing layer virtual FPGA. 180

Figure 9-9. The logic element in layer one of the reducing architecture. 181

Figure 9-10. The logic element in layer two of the reducing architecture. 182

Figure 9-11. The logic element in layer three of the reducing architecture. 183

Figure 9-12. The logic element in layer four of the reducing architecture. 183

Figure 9-13. The logic element in layer one of the reducing architecture. 184

Figure 9-14. Block diagram of the subsystems within the hardware genetic algorithm.

 .. 185

Figure 9-15. Fitness relative to generation for the software simulation. 193

Figure 9-16. Fitness relative to generation for the hardware simulator operating at

5MHz. ... 193

Figure 9-17. Fitness relative to evolutionary time for the software simulation. 194

Figure 9-18. Fitness relative to evolutionary time for the hardware simulation with

5MHz clock. ... 194

Figure 9-19. Architecture for the reducing layer virtual FPGA with no internal clock.

 .. 195

Figure 9-20. Fitness relative to generation for the hardware simulation operating at

50MHz. ... 196

Figure 9-21. Fitness relative to evolutionary time for the hardware simulation operating

at 50MHz. ... 196

Figure 9-22. Comparison of time taken to reach a successful evolution at 35,000

generations for the three simulations. .. 197

xv

Tables

Table 2-1. List of cities and their associated numbers to be visited by the travelling

salesman. .. 13

Table 2-2. An example of a chromosome for the nurse roster. 13

Table 2-3. The relationship between population size and the number of circuits tested

before a successful evolution was achieved. .. 35

Table 6-1. Parameters used in the mathematical model of the mobile inverted pendulum.

 .. 104

Table 6-2. Parameters used in the mathematical model of the ball-balancing beam. .. 108

Table 7-1. An example of an ideal pendulum chromosome. 123

Table 7-2. An example of a pendulum’s evolved chromosome showing the relationship

between angle and angular velocity with the motor speed output. 128

Table 7-3. Balancing beam lookup table search space. ... 133

Table 7-4. Comparison of the average fitness, average number of generations and the

average time taken for a chromosome to evolve. 142

Table 8-1. List of functional operators for the fixed layer virtual FPGA. 151

Table 8-2. Mutation rate settings. .. 155

Table 8-3. An example of the serial transmission of four bytes of data. 158

Table 8-4. List of commands used for data transmission from the graphical user

interface to the NIOS processor. .. 159

Table 8-5. List of commands used for data transmission from the NIOS processor to the

graphical user interface. ... 159

Table 9-1. List of functional operators for the reducing layer virtual FPGA. 182

Table 9-2. Mutation rates for reducing layer virtual FPGA. .. 186

Table 9-3. Comparison of the characteristic of the simulation. 187

Table 9-4. Stage I of the evolutionary process showing the ball and beam motion. ... 189

Table 9-5. Stage II of the evolutionary process showing the ball and beam motion. .. 190

Table 9-6. Stage III of the evolutionary process showing the ball and beam motion. . 191

Table 9-7. Stage IV of the evolutionary process showing the ball and beam motion.. 192

1

Chapter 1

Chapter 1: Introduction

The focus of this research was to investigate and develop new methods of evolving

controllers for evolutionary robotics. Areas that were explored were the use of

evolvable lookup tables and virtual FPGAs for robotic control, and the development of

high speed hardware based simulations for fitness evaluations. As a result, two novel

evolutionary capable robotic controllers, one based in software and the other in

hardware were developed. A further outcome was the creation of a hardware robotic

simulation that outperformed a similar software robotic simulation by two orders of

magnitude.

Within the field of study known as robotics, the term robot is defined in a multitude of

ways. For the purposes of this thesis a ‘robot’ is deemed to be an electro-mechanical

machine which can be programmed to interact with physical objects to perform specific

actions either semi or fully autonomously. In contrast, a machine such as a mechanical

pump has little processing control and achieves its task through a simple mechanical

process. The more an electro-mechanical machine seems to have a purpose of its own,

the more likely it is to be called a robot as it conveys a sense of intent. As such, a clock

with its preset motions and inability to adapt to changes in its environment is not

considered to be a robot, whereas an autonomous car which can sense and react to its

environment is considered to be a robot. Gregory Dudek [1], the director of the Centre

for Intelligent Machines at McGill University in Montreal, sets three criteria for robots:

a) robots need to make measurements of the environment around them, b) they will

follow a program which makes decisions, and c) they will take actions depending on the

environment and the robots programmed decisions.

Robots are utilised for specific purposes within a diverse area of applications such as

industry (car production, packaging, electronics, transportation of goods within

warehouses and container ports), agriculture (fruit harvesting, sowing and fertilizing),

domestic use (vacuuming, lawn mowing and floor polishing), military (unmanned

2

combat air vehicles and unmanned aircraft vehicles), human safety (bomb disposal and

nuclear handling), and within the healthcare sector (pharmaceutical production, mobility

scooters and other such support for disabled and elderly people).

Evolutionary robotics is a sub-field of robotics which uses evolutionary computation to

generate the controller for the robot. It mimics biological evolution to evolve a robotic

controller, thus enabling the robot to interact with its environment without the direct

coding of the robots tasks by human programming instructions. In addition, this enables

fault tolerant controllers which can adapt to environments that change beyond the

programmer’s expectations. Evolutionary robotics applies evolutionary computation to

robotic controllers such as artificial neural networks, fuzzy logic, proportional-integral-

derivative (PID), and evolvable hardware. It can be applied to most robotic systems;

however the majority of research is focused in the area of autonomous robots that work

without human intervention in unstructured environments. There are a range of areas

within evolutionary robotics, such as control of manipulators, path planning, obstacle

avoidance, behaviour based control and morphogenesis.

Evolutionary computation is an optimization process that autonomously searches

through a set of possible solutions to a problem, to find a solution that will adequately

solve the problem. It applies the complex concepts embedded in the theory of biological

evolution developed by Charles Darwin wherein a population of organisms, through the

processes of variation, selection and heredity, evolve and adapt to their environment. In

the case of evolutionary computation, the population is comprised of solutions to a

problem which will evolve. Each solution is evaluated and given a fitness rating, and

the solutions with a higher fitness are retained and used to create new solutions. These

solutions are often referred to as individuals or chromosomes, while a group of

solutions is called a population. Chromosomes can be in many forms depending on the

problem to be solved. Evolutionary computation is used in a diverse range of areas and

not limited to evolutionary robotics. There are several forms of evolutionary

computation, one of which is the genetic algorithm, which is discussed in detail in

chapter two.

The genetic algorithm is a repetitive process with three parts including a) reproduction,

where the genetic operators crossover and mutation are used to generate new individuals

from the surviving population of individuals, b) fitness evaluation, which determines

how well each individual within the population performs, and c) selection, which is the

3

process that determines which individuals within the population (based on their fitness)

will survive to the next generation.

1.1 Research Objectives

The objective of this thesis was to explore new methods that could be used in

evolutionary robotics. This led to the investigation into the improvement of two major

components of evolutionary robotics, these being the robotic controllers themselves and

the genetic algorithms used to evolve them. This research resulted in three significant

developments. These included the creation and evaluation of an evolutionary capable

robotic controller based on a lookup table, an evolutionary capable robotic controller

based on virtual FPGAs and a hardware based high speed simulation used within a

genetic algorithm.

As a result of the above investigations, the following list of research questions arose:

• Can a lookup table be evolved to function as a robotic controller?

• Can a virtual FPGA be evolved to function as a robotic controller?

• Can the genetic algorithm’s simulation be implemented in hardware?

These questions and the systems used to evaluate them are described in the following

section.

4

1.1.1 Can a lookup table be evolved to function as a robotic controller?

The concept of using a lookup table as a robotic controller and configuring their

parameters using a genetic algorithm was evaluated. Software genetic algorithms were

developed to evolve two robotic controllers; the first to evolve a controller for a robotic

mobile inverted pendulum, and the second to evolve a controller for a robotic ball-

balancing beam. In both cases, the heart of the controller was a lookup table. The axes

of the lookup table were linked to the state of each robot. The parameters within each

lookup table were the required motor speed and direction needed to control the robotic

motion.

In the case of the mobile inverted pendulum, the lookup table was a two dimensional

array with one axis relating to the pendulum angle, and the other axis relating to the

pendulum’s angular velocity. The parameters in the lookup table provided the motor

speed and direction required to keep the pendulum in balance. In the case of the ball-

balancing beam, a three dimensional lookup table was evolved with the first axis

relating to the ball position, the second axis relating to the ball speed, and the third axis

relating to the beam position. The parameter at each lookup table location described the

motor speed and direction required to keep the ball balanced on the beam. The genetic

algorithm, robotic simulation, and lookup tables were contained within a computer as

shown in Figure 1-1.

Figure 1-1. Software genetic algorithm using a lookup table and software simulation based in a

computer.

5

1.1.2 Can a virtual FPGA be evolved to function as a robotic controller?

To determine if a robotic controller implemented as a virtual FPGA could be evolved,

both a hardware genetic algorithm and a virtual FPGA were designed and constructed.

The virtual FPGA was used as a robotic controller whose task was to balance a ball on a

beam. The virtual FPGA was evolved by performing a genetic algorithm on its

configuration bit stream. The virtual FPGA was a hardware circuit that was specifically

designed to suit the evolutionary process and could be created within a FPGA. A

hardware genetic algorithm was created which was capable of evolving the

configuration bit stream of the virtual FPGA. The virtual FPGA, hardware GA and

NIOS processor were contained inside a FPGA, with a communication link to a

computer as shown in Figure 1-2. The computer was used for data logging and

graphical display of the ball and beam. The virtual FPGA was custom designed to suit

evolution and replicated an ‘ideal’ FPGA. Due to limited FPGA resources, the hardware

genetic algorithm used the mutation genetic operator without the crossover operator.

The robotic simulation was executed on a NIOS processor located inside the FPGA.

The virtual FPGA was connected to the robotic simulation output states via a 32 bit bus,

sending the desired motor speed to the simulated beam motor. As well as executing the

robotic simulation, the NIOS processor controlled the actions of the hardware genetic

algorithm. The robotic platform that was used to evaluate the virtual FPGA and

hardware genetic algorithm was the ball-balancing beam.

Figure 1-2. System interconnections for the virtual FPGA and a hardware genetic algorithm

located inside a FPGA.

6

1.1.3 Can a simulation used for a genetic algorithm be implemented in hardware

and benefit the evolutionary process?

The process that consumes the most time within a genetic algorithm is fitness evaluation

of individuals within a population. Any increase in speed in this process would

significantly reduce the time taken for a genetic algorithm to reach a suitable solution.

The fitness evaluation is normally performed using a robotic simulation executed on a

computer with the simulation’s mathematical calculations performed sequentially.

Alternatively if the simulation could be implemented in hardware with its associated

parallelism rather than executed in software, the mathematical calculations could be

performed in parallel giving an associated improvement in performance with a large

improvement in the speed of the fitness evaluation. To investigate this question, a

comparison between an integer simulation running on the NIOS processor and a

hardware simulation was performed as shown in Figure 1-3.

FPGAComputer

GUI

Control &

Data

logger

RS232

Virtual

FPGA

control

Hardware

GA

Hardware

Simulation

control

GUI

Interface

Control

NIOS

FPGA

Hardware

GA

Virtual

FPGA

Computer

GUI

Control &

Data

logger

RS232

control

bit stream

GUI

Interface

Control

NIOS

Software

Simulation

input

output

bit stream

Hardware Simulation

Software Simulation

Figure 1-3. System interconnections for the hardware simulation and a software simulation

running on a NIOS processor both located in an FPGA.

7

1.2 Publications

A range of material generated from this thesis has been published in peer reviewed

international conference, book chapters and journal articles:

1.2.1 Conference Papers

• M. Beckerleg, J Collins, "A GA based Controller for a Mobile Inverted
Pendulum," in ICARA The Third International Conference on Autonomous

Robots and Agents Palmerston Nth, New Zealand, 2006. (Contribution MB 80%

JC 20%)

• M. Beckerleg, J Collins, “Evolving Electronic Circuits for Robotic Control” in
Mechatronics and Machine Vision in Practice, 2008. M2VIP 2008. 15th

International Conference on, 2008. (Contribution MB 80% JC 20%)

• J. Currie, M. Beckerleg, and J. Collins, "Software Evolution Of A Hexapod
Robot Walking Gait," in Mechatronics and Machine Vision in Practice, 2008.

M2VIP 2008. 15th International Conference, 2008. pp. 305-310. (Contribution

JC 50% MB 25% JC 25%)

• M. Beckerleg, J. Collins, “Using a Hardware Simulation within a Genetic
Algorithm to evolve Robotic Controllers” in International Conference on

Intelligent Automation and Robotics (ICIAR'11) 2011. (Contribution MB 90%

JC 10%) [Recommended best paper award and journal publication].

• M. Beckerleg, J. Collins, “Evolving a Three Dimensional Look Up Table
Controller for a Curved Ball and Beam System” in International Conference on

Intelligent Automation and Robotics (ICIAR'11) 2011. (Contribution MB 90%

JC 10%) [Recommended best paper award and journal publication].

1.2.2 Book Chapters

• M. Beckerleg, J. Collins, "An Analysis of the Chromosome Generated by a
Genetic Algorithm Used to Create a Controller for a Mobile Inverted

Pendulum," Studies in Computational Intelligence, vol. 76, 2007. (Contribution

MB 80% JC 20%)

1.2.3 Journals

• J. Currie, M. Beckerleg, and J. Collins, "Software Evolution Of A Hexapod
Robot Walking Gait," in International Journal of Intelligent Systems Technology,

2010, pp. 382-394. (Contribution JC 50% MB 25% JC 25%)

8

1.3 Thesis Structure

This thesis is organised as follows:

CHAPTER 1: This chapter explains the motivation for the thesis, the questions that the

thesis explores, and an overview of the systems that were developed to test the

hypotheses.

CHAPTER 2: An introduction to the four areas of evolutionary computation is provided

along with an explanation of the concepts of a genetic algorithm. Genetic reproduction,

selection and fitness evaluation are investigated and the latest research in these areas is

discussed, with a particular emphasis on robotic controllers.

CHAPTER 3: This chapter explains the concepts of hardware evolution, describing its

associated problems and solutions. The use of a virtual FPGA for hardware evolution is

discussed with a focus on their application in robotic controllers.

CHAPTER 4: An overview of artificial neural networks and fuzzy logic is provided,

detailing how they can be adapted for evolution. The evolutionary process is explained

in terms of evolution of the weights in an artificial neural network, and evolution of the

rules and classes in fuzzy logic. Examples of robotic controllers are described in both

cases.

CHAPTER 5: This chapter reviews current research that utilised the mobile inverted

pendulum and the ball-balancing beam, with particular focus on the mathematical

modelling of these devices and the systems used to control them.

CHAPTER 6: This chapter explains common systems that were developed for this

thesis. These include mathematical models of the mobile inverted pendulum and ball-

balancing beam, the implementation of the model in simulation, the graphical user

interfaces for data recording and control, and the data communication protocol between

computer and FPGA.

CHAPTER 7: A description is provided of how two robotic controllers based on lookup

tables were created and evaluated for their evolutionary capabilities. The associated

problems and solutions are described and the results presented.

CHAPTER 8: This chapter explains how a virtual FPGA was designed and evolved for

the controller of the ball-balancing beam. A description is provided about the hardware

9

genetic algorithm and the virtual FPGA that were used in the evolutionary process.

Experimental results are presented.

Chapter 9: A description is provided of how a simulation’s performance could be

increased by moving its mathematical equations from software to hardware. Identical

simulations were created in both software and hardware and their performance

evaluated.

CHAPTER 10: Conclusions are drawn and future research potentials identified.

10

Chapter 2

Chapter 2: A Review of Software Genetic Algorithms and their use in

Evolutionary Robotics

Evolutionary computation is used to solve combinatorial optimization problems. Based

on Charles Darwin’s biological theory of evolution, it utilizes an iterative process

wherein populations of individuals evolve to best suit their environment. Evolutionary

computation is employed to autonomously search through a sequence of possible

solutions to a problem to eventually find a solution that will adequately solve that

problem. It will not however necessarily find the optimum solution.

To briefly summarise the tenets of biological evolution: there exist populations which

are groups of individuals of a species. Each individual possesses a genome which

consists of chromosomes which in turn contain a large number of genes. These genes

encode for, or control, inherited traits. The complete genome for an individual is known

as its genotype; the complete set of observable traits its phenotype. Individuals mate and

reproduce offspring thereby transmitting traits from one generation to the next. During

the process of reproduction specific mechanisms such as natural selection, genetic

mutation, genetic recombination or gene flow enable genetic variation or change. Any

change that enhances the individual’s traits becomes and remains more common in

successive generations of a population. More offspring are produced than the

environment can support and these offspring vary in their ability to survive and

reproduce. As a result, competition for survival and reproduction ensues. Individuals

with favourable traits which are best adapted to their environment possess, in

evolutionary terms, greater ‘fitness’; as such, they are able to survive, reproduce and

transmit their genetic characteristic in increasing numbers to succeeding generations.

Over time, these ‘fitness’ traits become dominant within the population.

This biological process of evolution is replicated in evolutionary computation where the

chromosome may describe engineering or commercial parameters such as an aircraft’s

landing schedule. Changing the chromosome will modify the landing schedule, and by

11

applying an evolutionary process to the chromosome, the landing schedule will evolve.

Evolutionary computation is used in a wide range of commercial applications such as

scheduling, bio-computing, economics, financial market analysis [2],

telecommunications, imaging, integrated circuit design and drug design. Evolutionary

computation consists of four broad areas: genetic algorithms, genetic programming,

evolutionary strategies and evolutionary programming.

2.1 Evolutionary Computation Techniques

2.1.1 Genetic Algorithms

The interest in genetic algorithms began in the 1960’s due to the work of John Holland

[3, 4]. Holland’s principal aim was to increase the understanding of the natural

evolutionary process, and to use these techniques in the design of man made systems.

Genetic algorithms are used to find solutions to a problem using natural selection as a

search engine, for example, the problem could be to create an aircraft landing schedule

at an airport. They act on a population of individuals or chromosomes. Within this

population, these chromosomes are potential candidate solutions to the problem needing

to be solved. Chromosomes are comprised of various forms such as bits, numbers or

parameter sequences, depending on the problem.

The genetic algorithm is iterative and is comprised of three main processes:

reproduction, fitness evaluation and selection.

• Reproduction is the generation of offspring from the surviving population of

individuals or chromosomes. Reproduction uses two genetic operators:

crossover, where chromosomes are exchanged between parents, and mutation,

where parts of the parents’ chromosomes are randomly altered.

• Fitness evaluation determines how well each individual or chromosome in the

population performs as a potential solution to the problem.

• Selection determines which individuals or chromosomes within the population

will survive to the next generation based on their fitness.

The steps in a genetic algorithm are shown in Figure 2-1. Initially, a random population

of chromosomes (candidate solutions) is generated. The population of chromosomes is

then used to produce offspring by combining the chromosomes of the parents using

crossover and mutation (reproduction). Each new chromosome is then evaluated to

12

determine how well it solves the assigned problem, and subsequently a fitness rating

(fitness evaluation) given. The chromosomes with the best fitness are kept (selection)

and used to create new offspring. The processes of reproduction, fitness evaluation and

selection are repeated until the required fitness is reached or a set number of generations

have been completed.

Figure 2-1. Flow chart describing the genetic algorithm process.

Two examples of using a genetic algorithm to create a solution to a problem are

provided. The first example uses the classic Travelling Salesman non-deterministic

polynomial as the problem to be solved. The second example shows how a genetic

algorithm can be used to generate a nurse work roster.

Travelling Salesman

The travelling salesman wishes to visit ten cities in New Zealand as listed in Table 2-1.

The salesman wants to visit each city only once and then return home. The task is to

find the shortest route he can take for his journey. The candidate solutions

(chromosomes) will be a list of numbers with each number representing a city. The

sequence that the numbers appear in the chromosome is the order that the cities will be

visited. One possible chromosome would be [10, 2, 8, 6, 5, 1, 4, 9, 7, 3]. The fitness

level would be judged on which chromosome described the shortest distance that the

salesman would be required to travel.

13

Auckland 1 Rotorua 6

Hamilton 2 Tauranga 7

Wellington 3 Whangarei 8

Christchurch 4 New Plymouth 9

Dunedin 5 Invercargill 10

Table 2-1. List of cities and their associated numbers to be visited by the travelling salesman.

This problem is referred to as a non-deterministic polynomial as it is difficult to know if

the best solution is found since the number of possible solutions is so large. The number

of possible solutions to this problem is the factorial of the number of cities. This number

will rapidly increase as the number of cities visited by the salesman also increases. The

number of possible solutions or chromosome permutations is referred to as the search

space. In this example, the search space is factorial 10 which gives approximately 3.6

million solutions. If 50 cities were visited, the search space would expand to 3x10
64
.

Due to the reproduction process of crossover and mutation, it is possible that the new

offspring will be damaged as the chromosome may contain the same city twice, or it

might not include all the cities. Thus, after each reproduction cycle, the new

chromosome needs to be checked and repaired if found to be damaged.

Nurse Roster

The second example uses a genetic algorithm to generate a nursing roster for nurses

working twelve hour shifts at a hospital. The two variables involved are the nurses

themselves and the times that they are required to work. The chromosome would be a

sequence of letters where the letter represents the nurse, while the order within the

sequence indicates the time they are required to work. In this example, there are five

nurses, Sarah (S), Mark (M), Bronwyn (B) Ricky (R) and Terry (T). The times that the

nurses are required to work are shown in Table 2-2. A possible chromosome would

appear as [B, R, S, M, T, B, R, S, M, T, B, R, S, M].

Position in 0 1 2 3 ……………… 12 13

chromosome

Time Monday Monday Tuesday Tuesday ……………… Sunday Sunday

7am-7pm 7pm-7am 7am-7pm 7pm-7am 7am-7pm 7pm-7am

Table 2-2. An example of a chromosome for the nurse roster.

The fitness evaluation would be determined by how well the chromosome met the roster

criteria. This criteria would depend on the rostering requirements, for example, a nurse

could not work more than one 12 hour shift in a day, a nurse could not work more than

14

three shifts per week, and it would be preferred that the nurses work three day shifts or

three night shifts in a row. A more advanced fitness evaluation would allow nurses to

request days or weeks off for scheduled holidays. In this case, although a chromosome

might be poor, no newly generated offspring would be illegal, and thus chromosome

repair would never be required.

2.1.2 Genetic Programming

Genetic programming was initially developed by John Koza [5]. This process is similar

to a genetic algorithm except the chromosome is a computer program rather than a

possible solution as used in a genetic algorithm. Thus genetic programming is used to

evolve a computer program. The program is represented as a tree structure with the

branches of the tree representing the functions of the program, while the leaves on the

branches represent the variables and constants. It is this tree structure that is altered by

the evolutionary process. The fitness is evaluated by running the program to see how

well it performs.

Figure 2-2 shows how an original program ((x+1)(y+1)) + ((x-2) + (y-2)) can be

represented in a tree structure. The variables and constants are listed on the bottom of

the tree with the arithmetic operators in the branches. In this example x and one are

added together, y and one are added together then these two branches are multiplied to

give (x+1)(y+1). Similarly, 2 is subtracted from x and 2 is subtracted from y. These two

branches are added to give (x-2) + (y-2). It is this tree structure that is evolved

producing a new program for each generation.

Figure 2-2. Diagrammatical representation of a tree structure in genetic programming.

2.1.3 Evolutionary Strategies

Evolutionary strategy was developed by Rechenberg [6, 7] and Schwefel [8] at the

Technical Institute of Berlin. It is designed to solve technical optimization problems

15

(initially wind tunnel experiments) where the individuals represent the phenotype

(characteristics) of the object to be optimised. These individuals are real numbers and

are evolved using the same operators as a genetic algorithm (crossover and selection).

The amount of mutation is however determined by a Gaussian distributed random value.

In general, evolutionary strategies use an adaptive mutation rate, where the mutation

rate was part of the chromosome and has a possibility of changing after each generation.

If the offspring has a better fitness it will replace the parents.

2.1.4 Evolutionary Programming

Evolutionary programming was developed by Fogel et al. in the early 1960’s [9, 10]

primarily as a way of achieving artificial intelligence through evolution, but has since

been used for optimization problems. The term evolutionary programming came from

initial experiments where a population of finite state machines were evolved to describe

the behaviour of a software program. Later, these individuals were extended to real

problem domains such as real-value vectors, ordered lists, trees or finite state machines.

The evolutionary process uses only the mutation operator as the crossover operator is

not normally used.

2.2 Fitness Landscape

The fitness landscape is a graphical representation showing the fitness of all possible

combinations of chromosomes. It is a two dimensional graph with the fitness

represented on the Y-axis and all possible chromosomes represented on the X-axis as

shown in Figure 2-3. The size of the fitness landscape is proportional to the size of the

chromosome, with a larger chromosome having a larger fitness landscape.

Possible solutions or successful chromosomes are known as maxima on the graph. Most

problems will have multiple maxima. The fitness of chromosomes between maxima is

non linear, thus the fitness landscape becomes a succession of peaks and troughs. As the

chromosomes evolve, they will move up the fitness landscape towards a maximum.

However, they will often move to peaks known as local maxima, where an

improvement in fitness is found, but not a final solution. The evolution may come to a

halt at local maxima, unless the selection and reproduction process can move the

chromosome into the adjacent trough and up to the next peak.

16

In Figure 2-3, points A and B are local maxima with C being the optimum solution. The

arrows indicate the evolutionary direction as the population moves from a very low

fitness value to the top of a peak. In order for a chromosome to move beyond the local

maxima at A, a large diversity in the population is required which is dependent on the

type of selection process used, and a mutation rate high enough to allow the

chromosomes to move down the trough and up the adjacent peak.

Figure 2-3. Graphical representation of the fitness landscape.

Figure 2-4 shows how the selection process retains the chromosomes with the higher

fitness, thus the fitness moves up the fitness landscape. The function of the mutation

process is to prevent the chromosomes from becoming trapped at local maxima. The

level of mutation required to move the chromosome beyond local maxima can be

calculated from the hamming distance. The hamming distance describes the minimum

number of changes required within the chromosome to move from the peak of the local

maxima to the adjacent trough.

F
it
n
e
s
s

S
e
le
ct
io
n

M
u
ta
tio
n

Figure 2-4. Fitness landscape showing the hamming distance from the local maxima.

17

2.3 Genetic Reproduction

The genetic algorithm has three processes: reproduction, fitness evaluation, and

selection. The reproduction techniques crossover and mutation are used to alter the

chromosome as demonstrated in this section. The following examples relate to the

travelling salesman problem where the chromosome is configured for ten cities. The

initial parents are shown in Figure 2-5.

Figure 2-5. The initial chromosome for a travelling salesman ten city journey.

2.3.1 Crossover

Crossover is a method that is used to split and “recombine” the chromosomes from two

or more parents into one offspring. The standard crossover algorithms are described

below.

Single-point crossover: A point at random in one parent’s chromosome is chosen and

the parameters in the chromosome after this point are swapped with the parameters of

the other parent’s chromosome. This process creates an offspring with a combination of

both parents’ chromosomes as shown in Figure 2-6. Note in this case the resultant

chromosome (child) is invalid as the same city (9) occurs twice within it. This

chromosome will need to be repaired (repaired child), so that it becomes valid. The

disadvantage to single point crossover is that both the beginning and end of one parent’s

chromosome may contain good properties but cannot both be passed to one offspring

because only the first or last part of any parent will be transferred to the offspring.

18

Figure 2-6. An example of a chromosome after single point crossover.

Two-point crossover: Two points in the chromosome are randomly chosen and the

chromosomes inside these two points are swapped between the two parents’

chromosomes, as shown in Figure 2-7. This is considered to be a better technique than

single-point crossover as it overcomes the problem that the single-point crossover has in

not being able to transfer the first and last part of its chromosome.

Figure 2-7. An example of a chromosome after two point crossover.

Multiple-point crossover: Multiple points are chosen at random and the chromosomes

between these points are exchanged as shown in Figure 2-8. The advantage of this

technique is that the search space can be more thoroughly explored; however, sequences

or building blocks within the chromosome may be destroyed as good sequences within

the chromosome may be split.

19

Figure 2-8. An example of a chromosome after multiple point crossover.

Uniform crossover: Each parameter within the parents’ chromosome will have a 50%

probability of being passed to the offspring as shown in Figure 2-9. Although it can be

disruptive, to the chromosome uniform crossover has a strong bias towards exploration

of the search space. This method is particularly useful if the population size is small as

it produces a high variation between parents and offspring, due to the chromosome

being altered across its complete range.

Figure 2-9. An example of a chromosome after crossover uniform.

There are many other methods of crossover such as a) arithmetic, where an arithmetic

crossover operator is applied to the two parents to form an offspring, b) heuristic

multiple parents using diagonal crossover and scanning crossover [11], and c) multiple

parents using polynomial and lognormal distribution[12].

2.3.2 Mutation

Mutation is a reproduction method that operates on a single chromosome. It is a random

process and has a low probability of occurring which is typically between 0.1 to 2

percent. Its purpose is to increase the diversity of the population. There are many

mutation techniques, some of which are described in this section.

20

Insertion Mutation: A random point within the parent’s chromosome is selected and

randomly altered. A variation of insertion mutation is creep mutation, where the

parameter that is to be mutated will be replaced with a value that is within a percentage

range of the original parameter rather than with a random value.

Figure 2-10. An example of a chromosome after insertion mutation.

Inversion Mutation: Two random points are selected in the parent’s chromosome and

the parameters between the selected points are inverted. This mimics a naturally

occurring biological mutation.

Figure 2-11. An example of a chromosome after inversion mutation.

Exchange Mutation: Two random points are selected in the parent chromosome and

the parameters at that point are swapped.

Figure 2-12. An example of a chromosome after exchange mutation.

Displacement Mutation: Two random points are selected, and the parameters between

these points are moved to a randomly selected part of the chromosome.

Figure 2-13. An example of a chromosome after displacement mutation.

21

In general it has been found that the mutation rate should be high to begin with but then

should be reduced as the evolution approaches a high fitness. Muhlenbein [13] studied

bit-string chromosomes and found that as more bits within the chromosome string were

correct, the probability of a mutation producing a better offspring decreased. Conversely,

when more bits within the chromosome string were correct, the probability of crossover

producing a better offspring increased. It was found that if a constant mutation rate was

used, then the optimum mutation rate was 1/L where L was the bit string length. The

use of the mutation operator has normally been performed in conjunction with the

crossover operator. However, there are algorithms which use the mutation operator only.

2.4 Genetic Selection

Genetic selection is the method used to select which offspring will be kept to become

parents for the next generation. Its purpose is to move the population to a higher fitness

level. Genetic selection uses the fitness value of each offspring to determine if it will be

retained. Each offspring is evaluated and given a fitness, which is used by the selection

process. The selection pressure is an important parameter in genetic selection. The

selection operator has a high selective pressure if it severely reduces the difference

between individuals or a low selective pressure if it allows many different individuals to

survive. A low selection pressure will have a slow rate of convergence to the optimum

solution and can possibly stagnate, whereas a selection pressure that is too high may get

trapped at local maxima due to loss of diversity. The choice of which selection method

to use is dependent on what type of problem is to be solved. For instance, proportional

selection, linear ranking and tournament selection have a comparative selection pressure

that increases in the order listed [14]. Genetic selection depends on a range of variables

such as selection pressure, loss of diversity, bias, selection variance, selection intensity,

and takeover time.

• Selective pressure: is the ratio of the probability of the best individual being

selected, to the average probability of selection in all individuals within the

population. It indicates the population diversity after the selection process. If the

selective pressure is too small, then little or no improvement in the population

fitness may occur; if the selective pressure is too high, it is possible to get

premature convergence with the individuals centred on a local maximum.

• Bias: is the probability that an individual with a relatively high fitness will be

retained after selection.

22

• Loss of diversity: reflects the reduction of diversity of the individuals within the

population due to the selection process.

• Selection intensity: defines the population’s expected average fitness after the

selection process has been applied. A sign of loss in diversity in a population is

when the population has a high average fitness.

• Selection variance: reflects the change in the population’s fitness distribution

compared to the normalized Gaussian distribution after the selection process.

• Take over time: is the time taken for the complete population to be replicated

with the best individual.

2.4.1 Selection Schemes

There are many different selection methods each with its own advantages and

disadvantages in both selection pressure, and maintenance of diversity. Some of these

schemes are described in the next section.

Fitness proportionate selection

This is a probability based selection method where the chance of an individual being

selected is dependent on its fitness divided by the average fitness of all individuals. An

individual with a higher fitness therefore has a higher chance of being selected. This

method of selection can be illustrated by spinning a roulette wheel or turning a

stochastic universal sampling wheel as shown in Figure 2-14. Although individuals with

a higher fitness have more numbers on the roulette wheel and thus have a better

opportunity to be selected, poor individuals still retain a chance of being selected.

Roulette Wheel

wheel spun five times

Roulette Wheel

wheel spun five times Stochastic Universal Sampling

wheel spun once

Stochastic Universal Sampling

wheel spun once

Figure 2-14. Pie graph showing the operation of roulette wheel and stochastic universal sampling

selection.

23

In the roulette wheel sampling technique, the wheel is spun repeatedly, and an

individual is chosen on each spin until the required number of offspring is achieved. In

contrast, stochastic universal sampling requires only one spin of the wheel, with

multiple selection points evenly spaced, with the starting point being selected at random.

Fitness-proportionate selection over several generations maintains diversity in its

population and produces a fast increase in fitness of the best individuals although the

average fitness is slower to increase.

Rank-based selection

Rank-based selection uses a process similar to the roulette wheel; however, each

individual is given a fitness rating that is dependent on its rank within the population

rather than its absolute fitness. After ranking, the fitness will range from one to the

population size.

All individuals will have a different rank, even if they have the same fitness level,

therefore every individual will have a different probability of selection. This effectively

introduces a uniform scaling, and controls selective pressures, i.e. selection pressures

are reduced when the fitness variation is high and increased when the fitness variation is

low, thus preventing one individual from dominating the selection process.

Rank-based selection can be linear or exponential [15]. Rank-based selection provides a

simple way of controlling the selective pressure. In the pie graphs shown in Figure 2-15,

one individual dominates with fitness at 50%; however after ranking, this individual has

only a slightly better chance of being selected than the second or third ranked individual.

Figure 2-15. Pie graph showing the selection chance in rank based selection.

24

Tournament selection

This selection process divides the individuals within the population into subgroups, and

within every generation the best individual in each subgroup is retained. The subgroups

can vary in size from two or more individuals. The larger the subgroup size, the greater

the selection pressure. With this method, the individuals with the highest fitness are

generally selected; however, some low fitness individuals will also be retained

maintaining diversity in the gene pool. Tournament selection is a favoured technique for

hardware evolution as it is efficient, easy to implement and capable of parallelization.

Microbial Genetic Algorithms

Microbial genetic algorithms [16] is a specialized form of tournament-based selection

which seeks to improve the efficiency of a standard tournament selection. Instead of

generating and evaluating a new population in one step, a microbial genetic algorithm

selects two individuals in a population at random. These two individuals are used to

generate a new offspring which will replace one of the least fit parents within the

population, as shown in Figure 2-16. This is known as a steady state, rather than a

generational population.

Figure 2-16. Pictorial sequence of operations in microbial selection.

This algorithm is useful for evolvable hardware as it is simple to implement. An

example of its implementation was the evolution of a hardware controller by Okura et

[17] for a Kephera robot for obstacle avoidance using a microbial genetic algorithm

which acted on the configuration bit stream of a Xilinx XC6216 FPGA.

25

Elitist selection

Elitist selection allows a limited number of the fittest individuals to go through to the

next generation without modification by the crossover and mutation operators. This

ensures that the maximum fitness is never lost by the destruction of the best individuals.

However, a high number of elite individuals will cause a loss in population diversity.

Elitism is often used in conjunction with other selection schemes.

Scaling selection

Scaling selection changes its selective pressure of the population as it evolves. Initially,

the selection pressure is low allowing a wide range of individuals to survive to the next

generation, but as average fitness increases, the selection pressure increases reducing

the number of individuals who will survive. Thus, as the average fitness of the

population increases, the selection pressure increases. Scaling selection initially has a

low selection pressure but as the fitness of the individuals reaches an advanced level,

the selection process becomes more discriminating. This method can be used as part of

the fitness proportionate schemes previously discussed, changing their selection

pressure from a constant to a scaling factor. If the selection pressure is too high to start

with, convergence is faster; however the population diversity is quickly lost and the

process may be trapped at a local maximum. Several methods are able to determine the

scaling: linear scaling, sigma scaling, windowing [18] and relative fitness [19].

Generational selection

Generational selection mimics a real life situation where no parents are retained and the

best offspring are passed on to the next generation.

Steady state selection

In this process, a large percentage of the existing population will be kept after the

selection process. Only a few of the best new offspring are retained to replace a small

number of the worst existing population.

Hierarchical selection

Selection occurs multiple times within each generation; the first selections are simple

and fast, eliminating many of the weaker offspring. The selection process then becomes

more complex as the offspring numbers are reduced. This speeds up the overall

selection process as the initial selection process takes less time.

26

Fitness Uniform Selection

Fitness uniform selection [20, 21] has a selection pressure that favours individuals in

sparsely populated fitness regions, rather than directly selecting an individual with high

fitness. The selection method finds the highest (fmax) and lowest (fmin) fitness in the

population. A random value is generated from a uniform distribution between the values

of fmax and fmin and the individual with the fitness nearest this value is selected. Fitness

uniform selection will have a higher selection pressure with a population of average

poor fitness, and a lower selection pressure with a population of average high fitness.

The norm being a population with only a few fit individuals, however, only one fit

individual is required and there is a high diversity kept in the population.

Island Model

This model is suited for parallel applications typically found in FPGA’s where multiple

genetic algorithms can be run simultaneously. It uses subpopulations on separate islands

which are evolving in parallel, on parallel genetic algorithm machines. Periodic

migration occurs where individuals are exchanged between subpopulations from the

different islands. Thus, if the total population was Ttotal, and the number of islands was

Iisland the subpopulation of each island is Isubpopulation = Ttotal / Iisland, where the total

population is divided equally between islands. Two important parameters in the island

model are migration size, which is the number of individuals that will be transferred

when migration occurs, and migration interval, which is the number of generations that

occur between migration [22].

2.5 Fitness Evaluation

2.5.1 Simulation

Using a genetic algorithm to evolve a robot controller is difficult due to the complexity

of the robot’s actions and how it interacts with its environment. The robotic controllers

used for this process have a large search space which the genetic algorithm needs to

explore and thus large numbers of generations are required before a suitable controller

can be evolved. This is time consuming if performed in real time on an actual robot, and

potentially damaging to the robot and its environment. To overcome this problem,

evolutionary robotic genetic algorithms are normally performed using software

simulation of the robot. Once a suitable solution is found, it can be transferred to the

actual robot. Simulation allows a rapid increase in the speed of evolution, however,

27

creating a simulation for a robot means modelling the real world which can never be

entirely accurate, thus the final solution will carry with it the flaws in the simulation.

2.5.2 Simulation Methods

There is a sequence of steps that are required in order to create a simulation of a robot.

These are described below;

Create the simulation from the robot itself: Record empirical data of the sensors and

actuators of the robot in real parts of its working environment to refine the model of the

simulation. For example, Lund and Miglino [23] created a simulation of a Kephera

robot by moving it through a maze, noting the activation of its sensors and also the

motor settings and how they affected the actual motors. By using this simulation, a 98%

reduction in time was achieved against a real life adaption. When the evolved controller

was transferred to the real environment, no drop in fitness was noted.

Introduce noise into the simulation: Once the initial simulation is developed, noise

can be introduced into its inputs (sensors) and outputs (actuators) to more accurately

represent a real life environment. The difficulties matching a simulation to the real

world are numerous. Real-world sensors often do not give accurate readings, have

uncertain responses and will vary between sensors themselves, whereas actuators do not

react precisely to their input signals, have response times, and other physical traits such

as friction, inertia and wear. Some of these can be included in the mathematical models,

however, not all discrepancies can be accounted for. Some of these discrepancies can be

overcome by adding noise to the robot properties. Jakobi et al. [24] demonstrated that

when the noise level in the simulation was similar to the noise level in reality, an

evolved controller was more likely to work.

Validate the simulation: After the simulation has been completed, it must be tested

and its responses compared to that of the real robot for validation [25]. The simulation

should receive only the information that the real robot receives.

Methods to overcome the inaccuracies of simulations can be used. These include

carefully modelling the parameters of the robot, taking empirical data of the input

sensors and characteristics of the activators, and taking into account noise on the inputs.

The problem is that a simulator can create an environment that is too clean.

28

There needs to be final adaptation or evolution in the real world; thus transferring the

controllers to physical robots is a major challenge.

2.5.3 Types of Simulation

Simulation of robotic actions: A robot simulation can be based on a set sequence of

actions that the robot must perform to obtain the desired outcomes, for instance, moving

an arm to a weld joint and then activating the welder is a task a robot in a car

manufacturing plant would perform.

Simulation of robotic behaviours: The robot simulation can be based on a set of

behaviours which the robot may display, with a range of abilities ranging from low to

high behaviour. Low level behaviours may be simple movements such as move forward,

turn or move backward. These are represented as behaviours and these behaviours are

evolved. A high level behaviour will involve purpose, such as interaction with the

environment such as moving out of the path of an obstacle. Three processes for

evolution of behaviour are: a) the primitive phase, which uses mutation to create a wide

range of behaviours; b) breeding, which uses crossover to refine behaviour; and c)

competition, which tests behaviours in the real world. These processes are then repeated

[26].

2.5.4 Continuous Evolution

Continuous evolution is also referred to as life long adaption or punctuated anytime

learning. Continuous evolution has two stages, the initial evolution stage where a

controller is evolved in simulation, and a lifelong adaption stage where the controller

continuously evolves as the robot is being operated. This allows the robot to adapt to a

change in its environment, such as wear in an actuator. This method requires the

evolution process to operate relatively quickly so that a new solution can quickly be

found if a fault suddenly occurs. Although the physical robot is using the best

chromosome, it still contains a population of chromosomes. The simulation and genetic

algorithm are continuously running inside the actual robot modifying the chromosomes

in the population. The evolution can be paused at anytime and a new best solution

uploaded to the robotic controller. As long as the population continues to improve, it is

possible to improve the model of the simulation. This is achieved by dynamically

updating the simulation itself based on the environment and current state of the robot.

29

Thus, if some damage occurs to the robot, it can model this in the simulation and evolve

a controller that best suits this change in the environment [27-30].

2.6 Chromosome Data Types

Robotic controller’s chromosomes have a wide range of data types that a genetic

algorithm can be executed on. Some of these are listed below:

• Evolution of coefficients within a formula: Capi et al. [31] evolved a

controller that was used to provide trajectory information for a prismatic joint.

They did this by generating specific X, Y co-ordinates that the robot’s foot

would travel through and to. The formula contained real number coefficients

which were the chromosomes that were evolved.

• Evolution of a lookup table: This was used by the author, Beckerleg et al. [32-

34], where a lookup table was evolved for a robotic controller designed to

balance an inverted mobile pendulum.

• Evolution of behaviours: Thomaz et al. [35] used a chromosome comprised of

a group of behaviours for the navigation of a robot. These behaviours were basic

robotic actions such as forward, backward, left or right. The evolved controller

was not locked into one environment i.e. it was able to adapt to a new obstacle

course. The robot’s behaviours were influenced by its current location which

was determined by its infrared proximity sensors and its desired direction

towards its goal.

• Evolution of artificial neural networks: The weighting coefficients of an

artificial neural network can be evolved for robotic control. These are described

in chapter four.

• Evolution of a binary tree: This is often used for robotic path planning [36]. In

this case, the path is represented as a set of angles which are stored in a binary

tree, with each node in the tree representing the angle that two path segments

can take. Note a binary tree is a data structure where each node has a maximum

of two possible branches. The tree itself is represented as an array of angles,

with the array indices relating to the position on the binary tree as shown in

Figure 2-17.

30

Figure 2-17. An example of a binary tree structure.

• Evolution of integer numbers: Ahuactzin et al. [37] used a population of

individuals comprised of two eight-bit variables concatenated together into an

integer to create a path plan for a robot so that it could move an arm with two

degrees of freedom around obstacles. The two eight-bit variables described a

particular configuration of the arm, while the sequence of these variables within

the chromosome described the path that the robot was to follow.

• Evolution of lists: This has been used in robotic path planning [38] where each

list or chromosome represents a path, beginning at the starting point and

describing the path to the final point. The chromosome represents the path and

obstacles location of the map that the robot is to transverse.

2.7 Subsumption

This type of robotics based on behaviour was first introduced by Brooks [39, 40]. It is a

method of reducing complex behaviours into simpler layers of behaviour. Each layer

can use the preceding layers, thus we can start with simple layers of a control system,

and add a new layer on top in order to move to a more complex control system. Brooks

started by building a complete robot controller that could achieve basic tasks (layer

zero). He then built a second layer, the control layer (layer one) which could write and

read data from layer zero. Layer zero ran unaware of layer one but layer one was now

able to provide more complexity to the designated tasks. The same process could be

repeated as the complexity increases. The interaction between layers in subsumption

was either by way of passing messages, or by using suppression or inhibition methods.

Brooks used the subsumption architecture in order to navigate a robot through a maze.

Layer zero was designed so that the robot would not come in contact with an obstacle. If

an object was in its path, the robot would move out of the way and then halt. Layer one

was designed to wander around the environment, setting a new direction every 10

seconds. It is linked to Layer zero to avoid any obstacle in its path. Layer two was

31

designed to explore the environment using vision to find things of interest; it was linked

to layer one to give new directions, and to layer zero to avoid obstacles.

Brooks expanded this research to control a six legged walking robot [41]. He used

augmented finite state machines (AFSM) with registers and timers as the basis for each

layer. The AFSM lower layers are connected directly to robot hardware, whereas the

upper layers could write to the control registers of the AFSM below. Brooks then added

levels of behaviours such as standing up, simple walking where all six legs were

controlled for motion, force balancing when on uneven terrain, leg lifting to walk over

obstacles, utilisation of whiskers for obstacle sensing, prowling and steered prowling for

intelligent roaming.

Subsumption can be seen at a very high level such as artificial intelligence. Brooks [42]

describes how this behaviour-based approach can be used to create human behaviours in

robots. These human behaviours are built upon layers: 1) bodily form, where the robot

morphology is in human form; 2) motivation, why the robot should react; 3) coherence,

how the robot switches between tasks; and 4) self adaptation, how the robot changes its

behaviour with a changing environment.

2.8 Mutation Only Genetic Algorithms

The main reproduction operator in a genetic algorithm has historically been the

crossover operator, with the mutation operator used as a means of maintaining diversity

in a converging population. As the chromosome is altered mostly by the crossover

operator, both the mutation rate and the mutation probability are kept at a low level. In

contrast, other evolutionary computational techniques such as evolutionary strategies

and evolutionary programming have mutation as the driving force, thus the mutation

rate and the mutation probability are at a high level.

An alternative to a genetic algorithm with both crossover and mutation is the use of a

genetic algorithm with mutation only. Mutation only genetic algorithms have been used

in both software and hardware genetic algorithms. The main advantage of using a

mutation only genetic algorithm in hardware-based genetic algorithms is the reduction

in the hardware resources of the device that implements the genetic algorithm. This is

because the crossover operator is hardware intensive.

32

2.8.1 Software Genetic Algorithms Using Mutation Only

Siva et al. [43] used a mutation only genetic algorithm to evolve an image recognition

algorithm that could identify images such as faces and chess pieces. They developed a

compact genetic algorithm where only one individual was used, based on a probability

vector rather than a population of individuals (compact genetic algorithms are described

in chapter three). These researchers used elitism for the selection method. After fitness

evaluation and selection, only one individual was kept and mutated to create new off-

spring. Siva et al. [44] compared this genetic algorithm with other compact genetic

algorithms which used both crossover and mutation on standard mathematical problems

and found that the mutation only algorithm had a better quality of solutions and

convergence speed with a smaller population base.

Zhang and Szeto [45, 46] used a mutation only genetic algorithm based on a matrix to

solve the classic knapsack problem. There are several variations to this problem, with

one being that there are a number of objects with a specific weight and value that we

wish to place into a knapsack that is capable of carrying a maximum weight. We need to

determine which objects to place in the knapsack to maximize the value that the

knapsack will contain. To solve this problem, Zhang et al. used a two dimensional (N x

L) matrix to store a population of individuals. The fitness and locus were also

incorporated into the matrix. The matrix population was divided into three groups:

parents, children and randomly generated chromosomes for population diversity.

Alongside this was a mutation matrix (N x L) giving the probability for mutation. This

probability could be varied depending on the fitness of the individual, with a high

fitness having a smaller probability of mutation than that of a low fitness. The actual

mutation rate was derived from the fitness distribution of the population, making it

independent of the specific problem the genetic algorithm was solving. This evolution

compared favourably with standard methods. Zhang labelled the method a ‘mutation

only genetic algorithm’ (MOGA).

Shiu and Szeto [47] used a mutation only genetic algorithm to optimise the airport

capacity of Beijing International airport. The mutation rate was varied depending on the

fitness of the individual. A chromosome with a high fitness required a low mutation rate

and was considered to be in an exploitation mode, in which a fit chromosome was

exploited to optimize its performance. A chromosome with a low fitness required a high

mutation rate and was in an exploration mode, where the high mutation rate allowed a

33

rapid examination in other areas of the search space. By making use of the locus

statistics, the worst genes had a higher probability to mutate, thus the mutation rate was

self adaptive.

Xia et al. [48] used a mutation only genetic algorithm to search for successful

investment strategies in a stock market, using the yield of the investment over a fixed

period to determine the fitness. The chromosome was a set of rules about whether to

buy, sell, hold or swap a stock relative to the moving averages of that stock quoted in

the stock market. Historic data from the NASDAQ was used to evaluate the outcome of

the investment. It was found that the genetic algorithm gave a higher overall return,

bench marked against investing in one stock.

Aguirre and Tanaka [49] investigated the effects of selection mutation and drift on

genetic algorithms on NK fitness landscapes, where N is the number of genes and K

reflects the interactions between genes. The NK fitness landscape relates the

interdependency of the genes within the chromosome to the chromosome fitness level.

The researchers found, under certain values of K, that a mutation only reproductive

operator performed similarly or better than standard genetic algorithms with crossover.

Bäck [50] investigated the evolution of bit strings with a mutation only algorithm for a

range of coding problems. This researcher found that a constant mutation rate of 1/L

(where L is the bit string length), was sufficient for unimodal functions with only one

maxima. However, when the function became multimodal with multiple local maxima,

a variable mutation rate produced a better result.

Schaffer et al. [51] developed an evolutionary process based on mutation only called

Naïve Evolution. They compared this algorithm with that of a full genetic algorithm

which incorporated crossover and mutation, using mathematical functions as a testbed.

Although the performance of the mutation only genetic algorithm was not as good as

that achieved by a full genetic algorithm, it did perform well.

Lau and Tsang [52] created a mutation only genetic algorithm to solve a processor

network configuration problem. The task was to network a group of computers each

with a limited number of communication channels. The fitness criteria were based on

the chromosome which had the shortest maximum distance between processors. The

crossover operator was not used as it was likely to damage the chromosome with an

incorrect routing which would have to be repaired at every reproduction stage, and it

34

would also significantly increase the time taken for the genetic algorithm to operate.

However the mutation only algorithm was designed so that no genetic damage would

occur. A comparison of the mutation only and a full genetic algorithm was made, and it

was found that the speed of the evolution process matched that of a conventional genetic

algorithm process.

Falco et al. [53] investigated mutation only reproduction operators, focusing on two

nature based mutations, frame-shift and translocation. These were considered to be

more powerful than normal point mutation operators. The frame-shift operator was

based on the actual biological mutation of the nucleotides in a DNA sequence. The

mutation modified a block of the chromosome and can operate in two modes, delete-

first or insert-first. The operation is explained with the aid of an eight bit parent

11001001 as shown in Figure 2-18.

.

Figure 2-18. An example of a chromosome after frame shift mutation.

In this example, a random point in the parent chromosome is picked (bit 2), and a

randomly chosen block size of three (bits 3-5) is also selected. In the delete-first mode,

bits 0-1 are directly copied to the offspring (child), and the parent bits 3-5 are copied to

offspring bits 2-4. Bit 5 of the offspring is filled with a random value (1), and bits 6-7 of

the offspring are copied directly from the parents. The end result of this process is an

offspring consisting of 11100101. In the insert-first mode, bits 0-1 are directly copied to

the offspring, while bit 2 is given a random value, for example 1. Bits 2-4 of the parent

are then inserted into bits 3-5 of the offspring and bits 6-7 are directly copied giving an

offspring 11010102.

The translocation operator divides the chromosome into blocks and transposes a

segment of a block with that of a second segment and block as shown in Figure 2-19.

35

Figure 2-19. An example of a chromosome after translocation mutation.

Falco et al. tested these two mutation forms on a wide range of classical functions and

found that although mutation only was not as strong as a classical genetic algorithm

with crossover and mutation, it still produced significantly good results.

2.8.2 Hardware Genetic Algorithm Using Mutation Only

Nadav et al. [54] repeated the classic tone discrimination experiment undertaken by

Thompson et al. [55], using a FPGA with a fine grained architecture for comparative

studies of various genetic algorithm parameters. They compared the standard genetic

algorithm using crossover and mutation, with a mutation only reproduction operator.

They argued that crossover was important in the first stages of evolution when the

chromosome were more widely spread, but less important as the population diversity

diminished. The population size was varied ranging from 500, 50, 5 and 1 with the

results shown in Table 2-3. With a population size of only one individual, the selection

process still allowed the fitness to evolve. It was noted that the fitness showed most

improvement in the later stages of the evolutionary process.

Population size Generations Circuits tested

1 68,000 68,000

5 28,000 140,000

50 5,000 250,000

500 fitness not reached 500,000

Table 2-3. The relationship between population size and the number of circuits tested before a

successful evolution was achieved.

From these experiments, the researchers found that the evolution of a population of one

using single-point random mutation alone required the testing of less than half the

circuits used in larger populations with the use of crossover.

Zhu et al. [56] created a hardware genetic algorithm called an optimal monogenetic

algorithm that only required a population of two individuals and used only the mutation

36

operator. They used two interactive search processes to investigate the search space; a

global search using overlapping regions that were capable of searching through the

entire search space, and a local search that would examine an area of interest. To

achieve this, the genetic algorithm selected the best individual within the entire search

space that had been searched by a local search to date. The second individual selected

was the best in the local search currently being performed.

The optimal monogenetic algorithm randomly generates individuals, and evaluates and

records their fitness replacing the individual if their fitness improves. If the fitness has

not changed over n generations, a local search is performed using the local best

individual with a low mutation rate. The local individual will then be replaced if a better

candidate is found. After n generations with no improvement, the local search is stopped,

and the local individual will replace the global individual if the fitness is better. This

process is repeated until there is no variation in the global individual fitness after n

reiterations. This technique performs well in comparison to the compact genetic

algorithm using a hardware roulette system, when tested on algorithms that would

simulate a real world search problem.

Sekanina et al. [57] created two mutation only hardware genetic algorithms. The first

was used to evolve gate level multifunctional combinational circuits such as a

multiplier-sorting network. Multifunctional circuits were designed to alter their

functions depending on non-logic variables such as supply voltage and temperature.

Standard methods of logic synthesis were not designed to include these variables;

however, evolved hardware was affected by variations in voltage and temperature and

thus could be used in the generation of multifunctional circuits. The genetic algorithm

had a population size of fifteen and the mutation operator was bit inversion. A linear

feedback shift register seeded from the computer was used to generate the population.

The selection process was in steady state, which meant that if the mutated offspring had

a better fitness than its parent, then the parent would be replaced by the offspring.

The second mutation only hardware genetic algorithm designed by Sekanina et al. [58]

was used to evolve three bit multipliers, adders, multiplexers and parity encoders. The

genetic algorithm initially generated 1024 random individuals which were evaluated for

fitness with the best four retained to form the starting population. The genetic process

mutated each chromosome within the population, and if the resultant offspring was

better than the parent, the offspring would replace the parent.

37

2.9 Evolutionary Robotics and Lookup Tables

Lookup tables have been used in evolutionary computation in a variety of applications

such as robotic simulation, cellular automata and FPGA functional elements. However,

to the author’s knowledge, not as a robotic controller. In conjunction with this thesis,

the author along with other staff at AUT university investigated the use of evolving

lookup tables for generating walking gaits for a hexapod robot [59]. The hexapod

motion was controlled by eighteen servo motors (three on each leg). A two-dimensional

lookup table (nine by eighteen), as shown in Figure 2-20, described the gait sequence of

the hexapod. There were nine discrete gait stances linked to the rows, with each gait

stance detailing eighteen motor angular positions, one for each servo motor on the

hexapod robot. There were twenty motor angular positions ranging from ±45
0
. A

simulation of the hexapod was performed in Matlab based on a physical robot

constructed from a Lynxmotion kitset with each leg having three degrees of freedom

(pelvic joint, hip joint and knee joint). The fitness was calculated from three conditions:

the robot walking forward in a straight line, the stability of the body of the robot, and

the efficiency of the motion, (using the least number of steps). The genetic algorithm

had a population of 100 lookup tables; the reproduction used two-point crossover with a

mutation rate of 0.31 percent and the selection method was tournament. It was found

that a successful gait was evolved within 700 generations.

Figure 2-20. The lookup table chromosome for the gait of a hexapod robot.

Lund and Hallam [60] evolved a neuro-controller for a Khepera robot which was

required to explore its environment and then return home to a light source. The

simulation of the Khepera robot was implemented as a lookup table of possible sensor

and motor responses. The lookup table was built from experimentation by placing the

38

robot at set positions in its environment and rotating the robot 360 degrees. The

response from the light meter was noted and put into the lookup table. A second

application of using a lookup table as a simulation was performed by Lund et al. [61] to

co-evolve both robotic shapes (morphology), and their associated control systems based

on LEGO robot parts. The simulation of the robot and its parts were included in the

lookup table.

Chavoya et al. [62] used a genetic algorithm to evolve cellular automata which were

used to create predefined two dimensional and three dimensional shapes. The

chromosome evolved by the genetic algorithm was the cellular automata rules which

defined how the cells would grow. These rules were incorporated in a lookup table and

the fitness defined by how well the final structure of the cells represented the desired

shape.

Greenfield [63] used actual DNA sequences from animals and plants which were

converted into control sequences in order to drive a robotic simulation used to draw

motifs. Two lookup tables were used for the chromosome, one that assigned codons (A,

C, T, G) to robot commands, the second to assign codons that served as arguments to

these commands. The fitness of each chromosome was evaluated from the motion of the

simulated robot and the drawings that were produced.

Krohling et al. [64] evolved the lookup table within a FPGA’s functional element. The

FPGA was used to control a Kephera robot for navigation and obstacle avoidance. To

overcome destructive architectures, the routing was kept fixed with only the lookup

table evolved. The researchers used JBits, (a set of JAVA classes), which enabled the

researchers to alter the functional elements lookup table without altering the routing,

thus preventing destructive architectures.

This chapter has summarised the concepts of genetic algorithms, detailing the

algorithmic process and how it can be applied to robotic controllers, in particular, the

use of mutation only genetic algorithms was explored.

39

Chapter 3

Chapter 3: A Review of Hardware Controllers and their use in

Evolutionary Robotics

Hardware controllers and hardware genetic algorithms have been used extensively in

this research. This chapter presents an overview of this topic. Evolutionary computation

for robotic controllers has been used to evolve software controllers, topology and

weightings of artificial neural network controllers, and class structures within fuzzy

logic controllers [65, 66]. It has also been used to evolve digital and analogue circuits

for robotic controllers using field programmable gate arrays (FPGA) [67] and field

programmable analogue array (FPAA) devices [68]. FPGAs began as simple logic

devices used for interfacing between integrated circuits, but now they have sufficient

resources to create complex circuits including processors and high speed switching

circuits. As the configuration of circuits within a FPGA can be easily and quickly

altered, evolutionary computation can be used to modify them and thus the circuit

(hardware) itself evolves. In comparison with software evolution where the

chromosome is a set of control parameters, the chromosome in hardware evolution

(evolvable hardware) is the bit sequence used to configure the FPGA.

3.1 Commercial FPGA and FPAA Architectures

This section details common architectures used inside FPGA and FPAA devices, and

explains the concepts of fine and coarse grained architectures.

3.1.1 Field Programmable Gate Array

A FPGA is a silicon device that can be configured with custom designed digital circuits.

An advanced FPGA consists of several systems, such as logic arrays, memory blocks,

phase-locked-loops and embedded multipliers, with some devices including digital

signal processing (DSP) blocks. These systems are connected together by a

programmable routing system that can be altered to configure the system according to

40

the user circuit requirements. Some FPGAs are hybrids, with a separate processor and a

FPGA included on the same chip.

An overview of the FPGA is provided in the following section based on the Altera

FPGA architecture. The heart of the FPGA is the logic element which is a RAM-based

lookup table as shown in Figure 3-1. The lookup table has four inputs and one output

which can be programmed to provide any logic expression of the four input variables as

well as being used for storage. There are also control, clock and feedback registers

which allow the output of the lookup table to be fed back to the input (d3-fb).

Figure 3-1. The Altera FPGA logic element.

A typical number of sixteen logic elements are grouped together to make a logic array

block as shown in Figure 3-2. Xilinx terminology for this structure is a configurable

logic block. This block has programmable interconnect lines between the logic elements

and control logic within the logic array block.

Figure 3-2. The Altera FPGA logic array block.

41

The logic array blocks themselves are formed into a two dimensional array consisting of

hundreds of blocks. The inputs and outputs of these blocks can be routed to other blocks

to create more complicated designs. These blocks can also be connected to the external

pins of the FPGA device. The function of each logic element, logic array block and the

way in which they are connected to other blocks is defined by a configuration bit stream

that is either downloaded into the FPGA from an external computer, or loaded into the

FPGA from onboard flash memory when the circuit is first powered up.

An Integrated Development Environment (IDE) such as Altera’s Quartus design suite is

used to create the circuit. The IDE allows the use of logic schematics, or a hardware

description language such as Verilog or VHDL, to describe the circuit. The IDE

compiles the designed circuit into a configuration bit stream which is then downloaded

into the FPGA. At this point, the FPGA circuits are configured with the custom

designed digital circuits.

FPGA devices can be broken into two classes, partial and non-partial reconfiguration.

Non-partial reconfiguration will reconfigure all the FPGA logic array blocks within the

FPGA each time it is programmed. This feature is common to all FPGAs. Partial

reconfiguration allows sections of the FPGA logic array blocks to be reconfigured,

while still retaining other logic array block configuration hardware structures. For

example, a processor could be retained while other hardware structures are changed.

This allows dynamic reconfiguration of the FPGA while it is operational.

3.1.2 Coarse and Fine Grained Architecture

The two types of FPGA architectures, fine grained and coarse grained are related to the

granularity of the logic modules. A fine grained architecture has very simple logic

blocks with a great deal of flexibility but requires a large amount of silicon resources

especially in the increased routing requirements. A coarse grained architecture has very

large logic modules with sometimes two or more lookup tables within the one logic

element. While this requires less routing between logic elements and logic array blocks,

it can be less efficient in its use of resources than a fine grained architecture.

More powerful FPGAs have predetermined sections of hardware such as multipliers,

memory, floating point units, digital signal processor blocks and processors. This

architecture is more efficient in power and silicon resources but less flexible. These

more complex blocks are normally included within a fine grained FPGA with a great

42

deal of work involved in the interface between the local array blocks and the fixed

hardware. Yu et al. [69] showed that fine grained and course grained architectures can

also be successfully combined.

3.1.3 Field Programmable Analogue Array

The Field Programmable Analogue Array (FPAA) allows analogue operational

amplifiers to be configured into a range of analogue circuits including amplifiers and

filters. They are often used for analogue filtering as the frequency response of the filter

can be dynamically altered. The FPAA has the same two dimensional array architecture

as the FPGA; however the FPAA contains configurable analogue blocks rather than the

logic array blocks of a FPGA. Both these configurable analogue blocks and the routing

between them are analogue based, as shown in Figure 3-3. The configurable analogue

block has a set of operational amplifiers whose gain and frequency response can be

dynamically altered.

Figure 3-3. The architecture of a FPAA.

There are two types of FPAAs: switched capacitor (discrete time domain) and

transconductor (continuous time domain). The switched capacitor uses the principle of

creating an equivalent variable resistance by altering the frequency of a switched

capacitance. It has the advantages of programmability and insensitivity to resistance of

programming switches but is limited in bandwidth. The transconductor consists of an

operational amplifier and programmable capacitors linked by a transconductor based

array. It has the advantage of greater bandwidth but a reduced programming range for

its parameters. Each configurable analogue block can be configured for different

applications including filtering, addition and multiplication. Once again, the analogue

blocks and routing are configured by a configuration bit stream.

43

3.2 Overview of Hardware Evolution

The FPGA is configured with a configuration bit stream. This configuration bit stream

describes the electronic circuit and required routing that is to be created inside the

FPGA. In comparison with software evolutionary computation where the chromosome

is a possible solution in the form of a parameter, the chromosome in evolvable hardware

is the configuration bit stream and the phenotype of the chromosome is the circuit

described by the configuration bit stream.

Using standard genetic algorithm, the FPGA configuration bit stream can be evolved

and then downloaded into the FPGA as shown in Figure 3-4. The ensuing circuit can be

tested for fitness, with the evolutionary process repeated until a suitable result is

achieved. Thus, the hardware itself evolves. Evolving electronic circuits, often referred

to as evolvable hardware, has advanced from the generation of simple circuits through

to more complex functional systems such as robotic navigation [67, 70].

Figure 3-4. An evolved bitstream with corresponding circuit.

Historically, evolvable hardware has been broken into two methods, extrinsic (off-line)

and intrinsic (on-line) evolution as shown in Figure 3-5. The extrinsic method uses a

circuit simulation to test the fitness of the individual during the evolutionary process.

When the evolutionary process is completed and the solution is found, the resulting best

individual is then downloaded to the FPGA. The intrinsic method does not use circuit

simulation to test the individual; instead the individuals are tested for fitness on the

FPGA in the environment they will run in. This overcomes the problems of matching a

circuit simulation to real life. The evolutionary process is still performed in software by

a genetic algorithm.

44

Figure 3-5. Block diagram of the extrinsic and intrinsic evolutionary process.

The first implementation of evolvable hardware was performed by Thompson [71, 72]

when he created a tone discriminator using evolutionary techniques on a Xilinx XC6216.

Thompson evolved a 1800 bit configuration bit stream using elitism with rank based

selection, and used both crossover and mutation operators. The experiment fed two

tones into the FPGA (1 kHz and 10 kHz) and the evolved circuit was able to

differentiate between the two tones. However, the evolved circuit would cease to

operate if variations in temperature or voltage occurred, or when the FPGA was

replaced. After careful analysis, it was found that the evolved circuit did not take into

effect the timing and propagation delays of the gates within the FPGA. These

characteristics can be affected by changes in the temperature, voltage and device, and

would normally be taken into account if an engineering design approach had been used.

Direct evolution of the Xilinx configuration bitstream was possible because the

architecture of the Xilinx XC6216 FPGA made it impossible for a destructive

configuration of outputs connecting to outputs to occur. As shown in Figure 3-6, the

logic element has connections from the north, south, east and west.

45

N

S

E

W

N4

S4

E4

W4

N

S

E

W

N4

S4

E4

W4

Function

Unit

S E W F

N

S

E

F

N E W F

N

S

W

F

Nout

Eout
SoutWout

X1 X2

X3

F

W

W4

S

E

N4N

E4

S4

Figure 3-6. The Xilinx XC6216 logic element.

This non destructive architecture is more clearly seen in Figure 3-7 where the

interconnection between logic elements is illustrated. The routing is very limited and it

simply connects adjacent logic elements together in a grid like pattern. The connections

between inputs and outputs are fixed, and are not affected by the configuration bit

stream, thus a configuration bit stream modified by the genetic algorithm will not

produce a destructive configuration. This allows the device to be directly used in

evolvable hardware. However, as the XC6216 has been discontinued, it is no longer

used in current research.

Figure 3-7. The Xilinx XC6200 logic element interconnections.

From the initial research of Thompson, and subsequent research of others, three major

problems confronting evolvable hardware were found. These are: a) destructive

configurations, as new FPGA devices allow output to output connections; b) partial

reconfiguration, as not all FPGA devices have partial reconfiguration which is useful for

46

evolvable hardware; and c) a large search space, the evolutionary search space of the

configuration bit level is too large to allow complex circuits to evolve.

3.3 Problems with Commercial FPGAs and Evolvable Hardware

The obstacles to evolvable hardware with modern FPGAs are: a) scalability as the

search space rapidly becomes too large; b) partial configuration, as altering only part of

the FPGA is not fully supported by all FPGA manufacturers; and c) destructive

architectures, as FPGAs have the ability to connect outputs to outputs.

3.3.1 Scalability

Scalability is the ability of the evolutionary process to perform acceptably as the

complexity of the problem increases. A FPGA with a fine grained architecture requires

a large configuration bit stream. Thus, the chromosome which is being used to describe

a complex circuit design will be large, and will have a large search space which limits

the ability for the evolution to find practical solutions. Methods to reduce this search

space and manage the scalability problem are evaluated later in this thesis.

3.3.2 Partial Reconfiguration

Partial reconfiguration is the ability of the FPGA to reconfigure parts of its circuits

while the remaining sections are still running. This process is very important for

hardware evolution as the genetic algorithm itself may reside within the FPGA, and

should not be modified. This feature of partial reconfiguration is not often required by

industry and only a few manufacturers such as Xilinx supply these devices.

3.3.3 Destructive Architectures

Modern FPGAs have complex routing systems that will allow outputs to be connected

to outputs, thus incorrect routing will quickly cause permanent damage to a FPGA. In a

normal development environment using a compiler such as Altera’s Quartus, illegal or

destructive configurations would create errors in the compilation stage, the

configuration bit stream would not be generated, and the compiler would show a list of

illegal operations. However, if the evolutionary process of crossover and mutation is

applied directly to the configuration bit stream, then a circuit may be generated that

connects an output directly to another output, therefore causing damage to the FPGA.

Previously researchers in evolvable hardware used the Xilinx 6200 series which has an

47

internal architecture that makes it impossible for the routing to be programmed into a

destructive state. This series of FPGA, however, has been discontinued.

3.4 Solutions to Commercial FPGA and Evolvable Hardware

Three methods have been developed to overcome the problems described in the

previous section. The first method is to use a genetic compiler that can determine if an

illegal configuration bit stream has been generated during the evolutionary process. The

second method is to use genetic programming rather than genetic algorithms to evolve a

hardware descriptive language (such as VHDL or Verilog) and to then use a compiler to

create the bit stream. The third method is to create a virtual FPGA whose architecture

will not allow output to output connections.

3.4.1 Genetic Compilers

For commercial reasons the two major manufacturers of FPGA devices, Xilinx and

Altera, have not made public the configuration bit stream parameters for their devices.

However two Xilinx employees, Levi and Guccione [73], have created a Java based

program called GeneticFPGA, which can be used for evolvable hardware applications.

As shown in Figure 3-8, this program performs the evolutionary techniques of

reproduction and selection directly on the configuration bit stream, but filters out illegal

or unreliable bit stream parameters generated by evolutionary techniques before

downloading the configuration bit stream to standard Xilinx devices.

Figure 3-8. Block diagram of the evolvable hardware process using the Xilinx genetic FPGA.

48

JBits is a Java-based program (Application Programming Interface) produced by Xilinx,

that allows the user to modify the configuration bit stream generated by the Xilinx

design tools for the Virtex family of devices. This enables the user to dynamically

reconfigure parts of the circuit inside the FPGA while the device is running. JBits

converts the configuration bit stream into a two dimensional array of configurable logic

blocks, and allows the alteration of these blocks as well as the routing between them.

Hollingworth et al. [74] used Jbits to evolve a simple adder by first creating a four by

two array of lookup tables with a fixed feedforward routing between lookup tables as

shown in Figure 3-9. The position of the lookup table within the Virtex configurable

logic block is known, thus JBits can be used with a genetic algorithm to modify these

lookup tables without altering the routing.

Figure 3-9. The Virtex configurable logic blocks showing the interconnections of the lookup tables.

The process for evolution is shown in Figure 3-10. The initial circuit with lookup tables

and routing between them is performed in a hardware description language, then

compiled and fed into the JBits program. The JBits can operate on, and modify,

configuration bit streams either generated by the compiler, or read back from the FPGA.

As the Xilinx FPGA allows for partial reconfiguration, it is possible to modify the

contents of the lookup table without modifying the routing between tables. The genetic

algorithm can then be used on the lookup table to evolve a solution.

49

HDL description

of initial circuit

Xilinx compiler

JBits

FPGA

genetic

algorithm

original bit

stream

evolved bit

stream

fitness

modification of

LUT
`

Figure 3-10. Block diagram of the genetic process using Jbits.

3.4.2 Genetic Programming of Hardware Descriptive Languages

Genetic programming evolves the hardware descriptive language program rather than

the configuration bit-stream as performed by genetic algorithms. Genetic programming

is normally used on a software program and will typically use a tree like structure for its

evolutionary process. This is difficult to implement in a hardware descriptive language

as it is not described in a similar fashion to a software language with a tree like structure.

To overcome this, a parse tree representing the code is used; this is translated into a

hardware descriptive code and then compiled. The parse tree is comprised of branches

and terminating nodes, with the branches performing decision processes relating to the

input state of the system, and the nodes relating to the desired robotic actions as shown

in Figure 3-11. It is the parse tree itself that is evolved by the genetic algorithm.

Figure 3-11. Genetic programming using parse tree.

50

The advantages of genetic programming are portability of the language between

different devices and manufacturers, and scalability for larger problems, giving a

reduced search space as evolution is occurring at a higher function level than the

configuration bit stream. The problem that arises with this method is that the

compilation time for anything other than simple systems can be several minutes, thus

the evolutionary process becomes time consuming and inefficient. In addition, the

encoding of the program so that it can be modified by the genetic program is important.

Several authors as included below have suggested ways to overcome these problems.

Seok et al. [67] used genetic programming to evolve the motion of a robot towards a

light source using a linear chromosome to represent the tree structure of the programme.

This was performed by representing the tree as a binary string, and separating each path

from the root node to the terminal node. The tree itself related the light sensors range

and direction to the robot’s movement, while the terminal nodes represented motor

states such as forward and backward.

Dong-Wook et al. [75] used genetic programming to evolve a robotic controller. Due to

the difficulties of genetic programming on a hardware descriptive language, they instead

modelled the hardware on behaviours, using two sets. The first set was the function set

(decision) for example if-obj, if-goal, the second set was the terminal set (action) such

as move-forward, turn-left then move-forward. Dong-Wook et al. called these

behaviours ‘context switchable identity blocks’, and used them to create a tree like

structure as shown in Figure 3-12.

if obj

if obj1 if goal

if obj2
MF

TR TL

MRMS

Figure 3-12. Genetic programming using a tree structure of context switchable identity blocks.

This tree is suitable for crossover operators. It was found that the tree had to be deep

enough so that all possible input patterns could be obtained. Dong-Wook et al. used this

system to evolve a Kephera robot to move boxes to the edge of an enclosure whilst

avoiding obstacles.

51

Mizoguchi et al. [76] developed a program called production genetic algorithms that

would allow evolution of grammatical language structures such as a hardware

description language. They used production rules to regulate the evolutionary process

and discarded any solutions that would violate these rules enabling the generation of

complex hierarchical structures. The chromosome represented a tree structure making it

possible to replicate grammatically correct offspring. They used standard genetic

operators as well as duplication (copying functional blocks within the chromosome) and

insertion (copying functional blocks from another chromosome). In this way, the

chromosome could grow larger and create more complex circuits. The researchers used

this technique to evolve an artificial ant that would follow a trail.

Montana et al. [77] used genetic programming to evolve edge detection in image

processing which was coded using VHDL. They created a system called EvolvaWare as

shown in Figure 3-13, which represented the hardware descriptive language using a

parse tree as previously described. To overcome the time problems of compiling for

each generation, the parse tree was evaluated by a software algorithm that could

simulate the actual code. Only when a suitable solution was found, was the FPGA

actually programmed.

Figure 3-13. EvolvaWare structure using genetic programming and a parse tree.

Further work has been performed on Cartesian genetic programming which is a subset

of genetic programming. Cartesian genetic programming was developed by Miller et al.

[78, 79] where the electronic circuit can be represented as a tree-like structure and thus

allows genetic programming to be used. Cartesian relates to the Cartesian co-ordinate

52

graph system where a specific point on a plane can be represented by a pair of

numerical co-ordinates. In this case, Cartesian genetic programming uses a linear string

of integers as an indexed graph to represent the program tree. In Cartesian genetic

programming, the program or circuit is seen as a two dimensional array of nodes (where

the node is either a programming construct or an electronic function). All the inputs and

outputs to these nodes are sequentially indexed. The circuit can therefore be expressed

by a genotype that shows the connections between the nodes and the functions of the

nodes.

3.4.3 Virtual FPGA

The concept of a virtual FPGA is to create an ‘ideal FPGA’ that would reside inside a

commercial FPGA. An ideal evolutionary capable FPGA would have limited routing to

reduce the search space and be designed so that destructive configurations cannot occur.

In addition it would have a high level or function level abstraction. Current FPGAs do

not support this and are therefore unsuitable for genetic processes. However, it is

possible to create a virtual FPGA with the desired features and download it into a

standard commercial FPGA.

The virtual FPGA configuration bit stream which has been evolved by the genetic

algorithm can be loaded in two separate ways. The virtual FPGA is created using the

hardware descriptive language constructs and downloaded into the FPGA using the

standard FPGA configuration bit stream interface. The virtual FPGA configuration bit

stream is connected to a computer via a serial port such as a RS232 or USB serial input

output system, as shown in Figure 3-14. The computer runs the genetic algorithm and

fitness evaluation, downloading the new virtual FPGA configuration for each test.

Figure 3-14. System interconnections using an external genetic algorithm with a virtual FPGA.

53

Alternatively, the genetic algorithm and virtual FPGA both reside in the FPGA as

shown in Figure 3-15. The computer is only used for the generation of the FPGA

systems, and control and monitoring of the evolutionary process. Once the virtual

FPGA, genetic algorithm, and simulation are loaded into the FPGA, the evolutionary

process will begin with only control and monitoring occurring on the computer. Note

the genetic algorithm and simulation can be run in software on a processor inside the

FPGA, or these systems themselves can be implemented in hardware.

Figure 3-15. System interconnections using an internal genetic algorithm with a virtual FPGA.

3.5 Virtual FPGA Architectures

There have been several architectures suggested for this process with some researchers

mimicking the Xilinx 6200 series. Other researchers have created new architectures that

have a high level of abstraction and a reduction in the routing requirements making the

evolvable hardware process more efficient.

3.5.1 Xilinx XC6200

The first attempt at creating a virtual FPGA was the implementation of the architecture

of the original Xilinx XC6200 FPGA as shown in Figure 3-16.

54

LUT FF LUT

N

S

W

E

clk

F

function unit

function

unit

N

S

E

F East

out

S E W F

North

outWest

out
N

S

E

F

N E W F

South

out

F

single cell

Figure 3-16. A virtual FPGA based on the Xilinx XC6200 core.

Hollingworth et al. [80] evolved digital circuits using an array of XC6200-like cells in

the Xilinx Virtex. They modified the architecture so that the routing requirements were

reduced, and used Jbits, (Xilinx hardware interface) to program the Virtex device. They

evolved two systems: firstly, a routing puzzle where a simple connection pathway

between inputs and outputs was evolved, and secondly, an oscillator puzzle, where a

55.5 kHz oscillator was evolved.

3.5.2 S-block

One of the problems in evolvable hardware on a fine grained FPGA is the large search

space due to the length of the configuration bit stream that is required for the logic and

routing. To help reduce this problem Haddow and Tufte [81, 82] proposed a virtual

FPGA architecture that reduced the configuration bit stream by combining the logic and

routing as part of the lookup table. This architecture is called the S-Block, and was

designed so that it could fit into one slice of the Xilinx configurable logic block,

minimizing the FPGA resources.

Inside each S-block are a lookup table and an input/output wiring structure on each side

as shown in Figure 3-17. The lookup table has five inputs: one input from each of its

sides (north, east, west and south), and one input feedback from its output. The output is

clocked to prevent parasitic oscillations and is fed to each side of the block. Each S-

block can be configured for either logic or routing. The S-block structure avoids

destructive configurations as it only allows the outputs to be connected to the inputs,

and vice versa.

55

Figure 3-17. The virtual FPGA S-block showing logic unit and the S-block structure.

The S-block is laid out in a grid pattern with each block connected to the blocks

adjacent to it as shown in Figure 3-18.

Figure 3-18. An array of S-blocks showing the interconnections between logic elements.

An example of how the S-block can be used for routing is shown in Figure 3-19. In this

example a signal is fed into S-block2 from the east and then fed back out of S-block1 to

the east. The lookup table in S-block2 is configured to read the input from the east, and

feed this input to all its outputs. The S-block1 lookup table is configured to read the

input from the south (the output of S-block2) and feed this signal to all its outputs, thus

the two S-blocks are acting as a router. Other S-blocks can be configured as logic

functions.

56

Figure 3-19. The S-block lookup table contents used to rout a signal from east in to east out.

3.5.3 Gate Level and Functional Level Logic Units

Higuchi et al. [83] and Vassilev and Millar [84] showed how the functional level rather

than the gate level evolution performed better by reducing the search space and thus

decreasing the time taken to evolve. A gate-level evolutionary process evolves simple

gates such as AND or OR gates to generate a high level circuit, as shown in Figure 3-20.

This is the basic logic unit of a normal FPGA, and it allows only simple circuits to be

evolved as the search space is too large for more complex circuits.

Figure 3-20. Schematic representation of gate level evolution.

However, if the circuits are comprised of higher elements or functions, more complex

circuits can be evolved, as shown in Figure 3-21. The higher level functions can be

arithmetic functions such as adders, subtractors, multipliers and dividers. More complex

functions such as sine cosine generators, or programming structures such as if else

switches can be used.

57

Figure 3-21. Schematic representation of functional level evolution.

3.5.4 Cartesian-Based Virtual FPGA Architecture

This type of architecture is based on Cartesian genetic programming which has

previously been described. The circuit architecture consists of a two dimensional array

of nodes linked via a Cartesian co-ordinate system, with the data flow moving from left

to right. The circuit can therefore be expressed by a configuration bit stream that

describes the connections between the nodes, and the functions of the nodes. To

overcome destructive architectures, only feedforward connections between nodes are

allowed. In general, Cartesian genetic programming cells would have multiple inputs

and outputs, and feedback would be allowed.

A Cartesian based architecture is shown in Figure 3-22. The inputs and outputs of the

FPGA, as well as the outputs of the nodes and the nodes themselves are numbered. The

function of the node is linked to the number (in this example, 11 is an AND gate

whereas 12 is OR gate). The chromosome is a one dimensional array which represents

both the routing and node function for the complete circuit. In the example circuit

provided, each node and input connections are represented by four numbers. The first

three numbers describe how the node inputs are connected, and the fourth number

describes the function of the node. This sequence is repeated in the array until the full

virtual FPGA is described. Note all connections are feedforward, as no feedback

connections are allowed. After reproduction, any damaged chromosome will be required

to be repaired.

58

In this example, the first AND gate is implemented as a two-input gate connected to A

and C (note the third input is always held high). The first OR gate is implemented as a

two input gate (note the third input is always held low) connected to the outputs of the

preceding two AND gates. In this way the one dimensional array can describe the

connections of the circuit, and it is this array that can have genetic algorithms performed

on it.

Figure 3-22. Cartesian architecture showing the functional elements numbers and the string that

describes their interconnections.

Several examples of virtual FPGA based on the Cartesian programming architecture

have been used to evolve digital circuits. Higuchi et al. [85] used this approach to

generate two high level applications, an adaptive equaliser and a lossy data

compression. The researcher used a two dimensional array of ‘Programmable Function

Units’ as shown in Figure 3-23. The programmable function units were capable of

adding, subtracting, if-then, sine generator, cosine generator, multiplying or dividing.

These programmable function units and the routing between them were controlled by

the configuration bit stream. The unit was comprised of one hundred nodes or

programmable function units in an array of twenty columns by five rows. Each column

could access the data from the previous column, or directly from the inputs. There were

two inputs with the output fed back to the input. The data was a floating point number.

59

Figure 3-23. Cartesian architecture showing programmable functional units for signal processing.

Sekanina [86] used a virtual FPGA based on Cartesian programming for image

processing. In his original studies he found evolving at the gate level virtually

impossible for complex circuits due to the large search space, whereas good results

could be produced by evolving higher level configurable functional blocks. In his

research, Sekanina created a configurable function block that had two eight-bit inputs

and one eight-bit output. The functions within this logic block are shown in Figure 3-24.

Figure 3-24. Functional listing of the lookup table for a configurable function block.

The configurable function blocks were laid out in a two dimensional grid of seven

columns by four rows, with a final block on the output, as shown in Figure 3-25.

60

Figure 3-25. Cartesian architecture showing configurable function blocks for image processing.

The configuration bit stream controls the routing between the configurable function

blocks as well as the function within the block. In order to reduce the routing overheads,

connections between blocks were limited. The circuit was evolved to minimize the

difference between a corrupted image and the uncorrupted original. In comparison to

conventional filters, it was found that the evolved circuit produced a better quality

picture and in some cases, more efficient use of resources.

Sekanina [87] has also investigated evolvable intellectual property cores. He proposed

that these cores should be able to be reused in a similar fashion to standard intellectual

property cores, and that they can perform autonomous evolution of their internal circuits.

The cores will be made available as hardware descriptive language modules, comprised

of a virtual reconfigurable circuit and a genetic unit controller which can be synthesised

into any reconfigurable device. The evolvable intellectual property will be stored in a

standard component library and downloaded to the FPGA, however, when running they

will evolve their circuit autonomously. These cores can be reused in a similar way to

intellectual property, for example an evolvable digital filter. The genetic controller will

perform genetic operators, such as crossover, mutation, and reproduction, and will have

memory storage for fitness, although it does not perform fitness testing as this is a

specific task. Note that the evolutionary intellectual property does not have to reside in a

partial reconfigurable FPGA.

Moreno Arostegui et al. [88] suggested a FPGA architecture that simplifies the routing

requirements inside the FPGA. Currently, FPGAs are designed with a high degree of

flexibility which requires a complex routing system. This routing system demands a

large search space which makes it difficult to evolve a complex system. They proposed

61

a hierarchical layered organization of a regular two-dimensional array of cells whose

routing strategies are part of the hierarchical layer allowing incremental routing paths

amongst the functional cells. This allows the addition of more functional units without

having to calculate complex routing strategies and is better suited towards evolvable

hardware.

Wang et al. [89] used a Cartesian based virtual FPGA with a hardware genetic

algorithm to evolve a character recognition FPGA circuit. The virtual FPGA had 30

inputs which were connected to the 5x6 pixel array. (Note in their experiment they used

a lookup table with the character pixels rather than an actual camera.) These pixels were

then passed through a four layer functional block array as shown in Figure 3-26. The

blocks had simple logic functions, and selection. The virtual FPGA had sixteen outputs

that were associated with a character ranging from A to P.

Figure 3-26. Virtual FPGA architecture used for character recognition.

3.6 Chromosome Length Reduction

The most task orientated process is fitness evaluation; however, this is linked to the size

of the genetic algorithm and the search space that needs to be explored. If the

chromosome length can be reduced, then the search space and the corresponding time

taken to evolve is shortened. The difficulty with a standard genetic algorithm is that as

the complexity of the problem increases, so too does the possible permutations and the

time required to evolve.

The chromosome used to describe a circuit can be large and impractical to evolve.

Proposals for using a virtual FPGA with limited routing and function level blocks in

order to reduce the chromosome length have been previously discussed. Alternative

62

methods are to alter the one to one mapping between the genotype and the phenotype

and thus the length of the chromosome. In biological terms the genotype is the gene

inside the chromosome and the phenotype is the expression of that gene. For example, a

gene determines eye colour, whereas the phenotype is the actual eye colour the gene

produces. For example, blue or green or brown is the phenotype or expression of that

gene.

The genotype-phenotype map relates to how a genotype will be expressed as a physical

trait. The genotype represents the exact genetic makeup, for example, the bit or number

sequence that is being manipulated by the genetic algorithm. The phenotype represents

the actual physical properties, for example, what type of gate or function is expressed.

The way that the genotype affects the phenotype is called the genotype-phenotype map.

Evolvable hardware could be made more efficient if the genotype-phenotype mapping

were made more complex, allowing the genotype to be reduced in size. A good example

of a genotype-phenotype map is to imagine you are building a paper plane using a list of

instructions on where to fold paper (A – Z). The genotype could be GABKJAAND; the

phenotype would be the expression of the genotype, which is the shape of the paper

plane. Reducing the genotype moves the complexity to the genotype-phenotype

mapping.

3.6.1 L-system mapping

The L-system was originally used in biology to predict how simple multi-cellular

systems will grow. It is a mathematical system that uses a rule-based system to show

how the structure would grow from a particular starting point. For instance, if the rules

were X changes to a Y, Y changes to X, Y then the following pattern would occur as

shown in Figure 3-27.

Figure 3-27. An example of a growing structure based on L-system mapping.

63

In genetic programming, the set of rules is the genotype and what they produce is the

phenotype. To use L-system mapping with evolution, the rules themselves are the

chromosome and these are evolved. Thus, we evolve a population of rules, where the

chromosome stays fixed while the phenotype can vary in length depending on what the

rule produces.

Haddow et al. [90] used this method to implement a routing structure in a grid array of

S-blocks. He had two modes, change, (where the chromosome stayed the same size but

changed the S-block operation), and growth (where the chromosome increased in size

and included more S-blocks). Thus, the chromosome would increase in size as the

complexity of the circuit increased. Note this system does not have a one to one

mapping between the genotype and the phenotype, therefore it has less search space.

Schaefer [91] used genetic programming using the L-system for path planning in robots.

An example of an evolved rule was A → < f b - s f +> where f is forward one step, b is

back one step, s is stop, + is turn right, and – is turn left. He used this chromosome to

evolve a controller whose objective was to drive the robot towards a light whilst

avoiding obstacles.

3.6.2 Variable Length Genetic Algorithms

A normal genetic algorithm uses a chromosome with a fixed length that describes the

solution to the problem. A variable length genetic algorithm is similar to the normal

genetic algorithm, except that it is able to increase or decrease the length of its

chromosome. This makes it capable of increasing its complexity as it evolves for more

difficult tasks.

Kajitani et al. [92] used a variable length genetic algorithm for hardware evolution by

initially reducing the chromosome, by not incorporating all possible permutations of the

programmable logic device switching elements. As the circuit evolved, the chromosome

was increased to include more switching elements to allow more complexity in the

circuits.

Iwata et al. [93] also used a variable length genetic algorithm to evolve a programmable

logic device for pattern recognition. The chromosome consisted of the location and

connection types of the fuse array that configures the programmable logic device.

Initially, the chromosome was small, limiting the number of input connections that the

64

pattern recognition could use. However this chromosome could be increased in size,

connecting more resources as required. It was found that the average evolved variable

length genetic algorithm chromosome had a chromosome length of 187.6 bits as

compared to a standard genetic algorithm chromosome length of 840 bits.

3.6.3 Species Adaptation Genetic Algorithms

Thompson et al. [94] used variable length chromosomes in his use of species adaptation

genetic algorithms (SAGA). Standard genetic algorithms are not suitable for cognitive

structures as these require a slow rather than abrupt change. Robotic controllers need to

be able to move from simple to more complex architectures which suit the use of a

variable length genetic algorithm. Thompson et al. investigated the use of species

adaptation where similar individuals are likened to a species. He used a method of hill

crawling, balancing the need for exploitation (maximizing the fitness locally) with

exploration (finding new fitness maxima). Thompson et al. considered tournament as

the best method of selection because of its ability to adapt to high mutation rates while

maintaining hill crawling features.

Figure 3-28. Diagrammatic comparison of the search space for SAGA and a standard genetic

algorithm.

A standard genetic algorithm chromosome will start with a random distribution within

the search space and narrow down to a high fitness individual (goal) as the evolution

progresses, as shown in Figure 3-28. In comparison, SAGA has a chromosome that is

capable of increasing in length, and is associated with the evolution of a species or

homogenic groups of individuals within the population. This gives the possibility of the

chromosome splitting into separate species, or extinction of species.

65

3.6.4 Compact Genetic Algorithms

Gallagher et al. [95] investigated using compact genetic algorithms for evolvable

hardware to reduce the size of the chromosome and subsequent decrease in the search

space. Rather than having a population of numerous chromosomes, the compact genetic

algorithm has only one chromosome. Each parameter in the chromosome has a

probability ranging from one to zero. This chromosome is used to generate offspring

where the probability parameter for each bit is used to determine if the associated bit in

the offspring will be a one or zero. At the start of the evolution, all the probabilities

within the chromosome are set to 50%, thus the offspring will have a random bit pattern.

After each generation, the bit pattern of the better individuals will alter the probabilities

in the parent chromosome. As the evolution progresses, these probabilities move

towards 0% or 100%.

3.6.5 Morphogenetic Algorithms

In nature a separation between the genotype and phenotype allows complex organisms

to evolve. The genotype (bit pattern) and the phenotype (generated circuit) is separate,

with the phenotype being generated from the genotype. If the genome expressed is a

growth process (morphogenesis), rather than an explicit configuration of a circuit, then

complex forms can be created from a simplified genome. Natural evolution evolves

simple structures which go on to evolve into more complex systems. Biology maps

genotype to phenotype through regulated gene expression. Mapping can be performed

by using a set of production or grammar rules, thus the evolutionary process can work

on the grammar rather than that of a program modifying system. A common production

rule is the Lindenmayer system (L-system) which was originally used to model the

growth in plants. The parallel nature of this system suits evolvable hardware.

Lee and Sittle [96] used a cell based morphogenetic model for hardware evolution. The

mapping of the genome was via the Xilinx JBits application programming interface.

The cell structure was closely based on the Xilinx Virtex architecture, with each cell

stored within a configurable logic block slice. These researchers created and packaged a

chromosome that represented the chromosomes from nature, using a variable length

chromosome with base-4 encoding. This chromosome imitated the structure of a

biological cell.

66

Gordon and Bentley [97] modelled a circuit based on a cellular structure where the

chromosome and proteins control the function of the cell. The proteins were binary state

variables that were present, not present or don’t care. The chromosome was a set of

rules based on the L-system which would affect the cell and its proteins, either creating

more proteins or altering the function of the cell. The cell was modelled as a functional

unit which incorporated input/output, protein detector/generator and a function

generator.

3.6.6 Incremental Learning

Incremental learning, or increased complexity evolution, is used to overcome the

problem of long configuration bit streams. Evolution occurs discretely on small units

such as logic gates and functional blocks. These evolved blocks are then used in a

second stage evolutionary process to create more complex circuits or systems. This

design can be likened to a bottom up process. The fitness function can either be a subset

of the complete fitness function, or it can be designed for individual tasks which are

combined to create a global fitness function.

Torresen [98, 99] used incremental learning to create a road image recognition system.

The image system had several processing stages including noise removal, thinning, and

recognition. The information was to be used for autonomous driving using the road

markers as a reference. This system was too complex for a one step evolution. Torresen

based the architecture on an array of logic gates, using the Xilinx 6200 FPGA. The

inputs to this architecture was a 4x8 pixel image, and the output was turn right, turn left,

move straight ahead. A comparison was made between evolving the system directly,

and using subsystems, with each subsystem having a limited amount of outputs. There

was a substantial reduction in the number of generations required for a successful

evolution when incremental learning using subsystems was used.

3.7 Hardware-Based Genetic Algorithms

An important feature of FPGAs is their parallel nature. The hardware descriptive

language produces digital circuits that execute simultaneously, rather than a computer

program that executes instructions in a sequence. This technique can be implemented in

evolvable hardware to speed up the evolutionary process. The hardware genetic

algorithm can be split into three functions: reproduction, selection and fitness

67

assessment. These can be performed in either hardware, software or a mixture of the

two.

3.7.1 Mutation Only Hardware Genetic Algorithms

The genetic unit can comprise either a mutation unit alone, or a mutation unit with

crossover. There has been research into using these two operators independently or

together. When used together, the crossover is used to select the best trait within the

population, and mutation is used to provide diversity as the population converges on

local maxima. However, research has also investigated mutation only genetic

algorithms which do not use crossover. This has been described in chapter two.

Wang et al. [89] created a hardware genetic algorithm as shown in Figure 3-29 that had

five basic systems. These are: a) a random number generator; b) population memory; c)

best chromosome; d) a mutation block; and e) a mutation rate selector. The mutation

rate was part of the chromosome and was able to be varied each time a new individual

was created. The hardware genetic algorithm had a population memory of four, which

were evaluated and the best one was then used to generate a further four offspring. The

hardware genetic algorithm used mutation only as the reproductive operator. The

mutation rate varied between 0.2 to 1.6 %. This hardware genetic algorithm was used in

conjunction with a virtual FPGA to implement a character recognition circuit.

Figure 3-29. System blocks and their interconnections for a mutation only hardware genetic

algorithm.

Sekanina et al. [57, 58] created a hardware genetic algorithm using mutation only as the

genetic operator as shown in Figure 3-30. The virtual FPGA used functional blocks

grouped in a Cartesian genetic programming array. A population of individuals was

generated using a random number generator, and mutation was performed on the

68

reproduction of the new off-spring. A hardware fitness unit was also used which

compared the outputs of the virtual FPGA with the desired or wanted outputs. The

fitness was the sum of the correct outputs relative to the inputs. Simple circuits such as

multiplexers, adders and parity encoders were generated.

Figure 3-30. System interconnections of a virtual FPGA, a mutation only genetic algorithm and

fitness evaluation.

3.7.2 Crossover and Mutation

Shackleford et al. [100] created a hardware genetic algorithm using both crossover and

mutation operators. Two parents were loaded into the crossover system, with each bit of

the parent connected to two-bit multiplexers as shown in Figure 3-31. A crossover

template was used to select which point in the chromosome would be cut, depending on

the input pattern of the crossover template shift register. This allowed a range of cut

points ranging from single point, to multipoint, to crossover uniform. The crossover

pattern was generated by comparing a randomly generated number to a threshold value,

producing a one or zero which is serially fed into the crossover template. Increasing the

threshold value increased the number of cut points.

69

Figure 3-31. Hardware crossover using a crossover template two bit multiplexers.

Shackleford et al. also used a template for the mutation operator as shown in Figure

3-32. A mutation will occur when two ‘ones’ occur simultaneously in the shift register

bit positions giving a logic one after the AND gate, and inverting the bit after the

Exclusive OR. To increase the efficiency of the hardware they used a steady state

genetic algorithm model rather than a generational genetic algorithm.

Figure 3-32. Hardware mutation using shift registers.

3.7.3 Pipeline Processing

Maruyama et al. [101] used the pipelining and parallelism features of a FPGA to speed

up the evolutionary process and applied this to solve the classic knapsack problem.

They used two FPGAs, one for the hardware genetic algorithm including crossover,

selection and mutation, and the other for the fitness testing. As shown in Figure 3-33,

the individuals are serially clocked into the genetic algorithm. The blocks inside the

genetic algorithm are the randomization block used to change the order of the

population, and the selection block which uses tournament selection between two

adjacent individuals. After passing through these two blocks, the population is then

70

randomized again. The crossover block is performed with counters and switches, with

the counters incrementing to a random number and then flipping the switch between the

two individuals being crossed over. Finally the chromosome passes through the

mutation block which randomly inverts a bit. The resulting offspring was sent to the

second FPGA for fitness evaluation. The researchers incorporated several of these

pipelined genetic algorithms using the island model selection process.

Figure 3-33. A pipelined hardware genetic algorithm with both crossover and mutation.

Yang et al. [102] used a hardware genetic algorithm as shown in Figure 3-34, to evolve

a functional digital circuit that would implement high performance digital image filters.

They used a virtual FPGA modelled on a Cartesian-based array of functional logic

blocks. The genetic algorithm was created in hardware with mutation only; it used

elitism for its selection operator and had a fixed population of sixteen individuals. Only

one individual was kept after each generation, and this was mutated to provide fifteen

offspring to replace the population. The operation was as follows: a) the image was

passed to the input buffer and then to the virtual FPGA; b) the virtual FPGA was

configured by the individual sent from the internal memory and its fitness accessed; c)

the selection process determined which individual had the best fitness and notified the

interface memory; d) the best individual was kept and sent to the mutation unit to

generate fifteen more individuals; then e) the process was repeated until the required

fitness was reached. Adaptive mutation was implemented with the mutation rate being

inversely proportional to the fitness. The fitness was derived from the mean difference

per pixel, which was the difference between the original and filtered image. The results

of this study found that the hardware implemented genetic algorithm was faster than a

similar software algorithm by two orders of magnitude.

71

Figure 3-34. Block diagram of a mutation only hardware genetic algorithm.

3.8 Examples of Robotic Controllers

There are several examples of evolvable hardware being used to control a robot using

either the Xilinx 6200 series of non-destructive FPGAs, or virtual FPGAs.

As previously discussed, Krohling et al. [64, 103] used evolvable hardware to control

the motion of a Khepera robot for obstacle avoidance. In a similar fashion, Tan et al.

[104] used evolvable hardware with the Khepera robot to successfully follow a light

source whilst avoiding obstacles in real time. Tan et al. also investigated how the effects

of a traction fault were overcome by the evolutionary hardware, as a fault like this could

not be taken into account with normal software. These researchers used a turret that

contained a Xilinx 6216 FPGA which could be attached to the Khepera robot. The

infrared sensors from the robot were sent to the FPGA, and the output from the FPGA

was sent to the robot’s motors. Intrinsic evolution using the Khepera robot’s internal

Motorola 68331 microprocessor was performed to evolve the Xilinx FPGA

configuration bit stream. The fitness was determined by the response of the robot to the

light source.

Okura et al. [105] evolved a hardware controller for a Khepera robot for obstacle

avoidance using the Xilinx XC6216 turret. The FPGA was configured by the Khepera

robot microcontroller using C functions. These functions could initialise and disable the

FPGAs ports, set communication between FPGA and microprocessor, and configure the

cells within the FPGA. This last function was important as each cell could be

specifically altered allowing a reduction in the chromosome length, as redundant bits

72

were not included. The fitness was determined from the distance travelled before an

obstacle was hit, as well as how many paths the robot took, (preventing a simple

forward backward motion from having a high fitness). Okura et al. also compared a

microbial and standard genetic algorithm finding that while both algorithms could

successfully evolve controllers, the microbial could outperform the standard.

Seok et al. [67] used genetic programming to evolve a robot controller that could move

towards a light whilst avoiding obstacles. An example of the tree structure based on the

robot path for this problem is shown in Figure 3-35, where the desired path is to avoid

obstacles while continuing to move towards a light. If an obstacle is found, it will move

down the sub-tree depending on the direction of the light source and obstacles until

reaching the bottom layer nodes which specify the motor action. The direct

implementation of this tree in hardware is difficult as it is inefficient in both hardware

and routing resources, and the crossover operator is difficult to perform. To overcome

these problems, Seok et al. created a linear representation of the tree which expressed as

binary strings with each path illustrated from the top node to a bottom node.

Figure 3-35. Example of the tree structure required for obstacle avoidance and light following.

Lund et al. [106] investigated evolving the body of the robot as well as evolving the

robot controller. The controller was simulated on a specific hardware configuration

where the hardware was able to include the circuit on which the controller was

implemented, as well as at a more advanced level, the motors, sensors and physical

structure of the robot. For example, a small wheel might have been useful for a fast

turning robot whereas a large wheel was more useful for a slow turning robot. To

evolve the robot, Lund et al. used part of the chromosome to determine its body shape

as well as the robot controller. This chromosome was used to configure the robot’s body

73

and its actions in simulation. The researchers used Lego parts for the evolution so that

the robot could be easily built. They then went on to develop ears for a Khepera robot

which could follow a sound source much like a cricket would when finding a mate.

This chapter has summarised the concepts of using a genetic algorithm to evolve

hardware. It has shown three main processes, genetic compilers, genetic programming,

and virtual FPGAs. In particular, the use of the virtual FPGA and its application in

robotic control has been examined.

74

Chapter 4

Chapter 4: A Review of Artificial Neural Networks and Fuzzy Logic

Controllers and their use in Evolutionary Robotics

The previous chapters have presented the current research in evolving robotic

controllers using both software programs and hardware circuits. Although not

specifically part of the research presented in this thesis, artificial neural network and

fuzzy logic robot controllers have been widely used in the field of evolutionary robotics.

This chapter identifies and examines the extensive research that has been performed in

the field of evolving artificial neural networks and fuzzy logic robotic controllers.

4.1 Evolution of Artificial Neural Networks Robotic Controllers

4.1.1 Artificial Neural Network Overview

An artificial neural network is a network of interconnected neurons that are modelled on

neural networks found in nature. Each neuron has two or more inputs whose values are

modified by a weighting factor. These weighted inputs are then fed into a summing

input. The output of the neuron will fire when the sum of the inputs exceeds a threshold

value. A model of an artificial neural network is shown in Figure 4-1. The individual

inputs are each multiplied by a weighting factor, (ωkm). This is then passed to a

summing network which has an input bias that is used to adjust the sensitivity of the

neural network. When the summing input reaches a predetermined threshold level, the

activation unit will output a value whose shape is determined by the activation function

Φ().

75

Figure 4-1. Diagrammatic representation of an artificial neuron.

The artificial neural network can be described by mathematical parameters such as the

neuron activation value, the decay rate, the bias term, the firing rate, and the strength of

the synaptic connections from neuron to neuron. The mathematical model of the above

neuron is shown in Equation 4-1.









+= ∑

=

m

j

kjkjk bxwy
0

ϕ Equation 4-1

Where

x is the input,

w is the weighting,

b is the bias,

φ is the activation function,

The activation function sets the type of output of the artificial neural network. There are

many different types including step, sign, linear, sigmoid and tanh as illustrated in

Figure 4-2. The most common output is the sigmoid function.

Figure 4-2. A graphical representation of activation outputs from an artificial neural networks.

An artificial neural network is comprised of layers of neurons where each neuron in one

layer is connected to every neuron on the following layer. The simplest network is the

single layer where the inputs connect to one layer and these then connect to the outputs

as shown in Figure 4-3. More complex artificial neural networks will have layers in

between the input layer and output layer, called hidden layers, which do not connect to

the external world.

76

Figure 4-3. A single layer artificial neural network.

The aim of the artificial neural network is to provide a correct response on its outputs

depending on its inputs. This in turn is dependent on the weightings of the

interconnections to each neuron. Before the network can operate, it must first be trained

by going through a learning phase. In this phase the weight associated with each neuron

interconnection is adjusted so that the network can provide the appropriate response to

its inputs. There are three types of learning including supervised, unsupervised, and

reinforcement.

• Supervised learning: This is where the output pattern of the network is known

for each example of input patterns. The input pattern is presented to the network

and the output recorded. The weightings on the neuron interconnections are then

adjusted to set the output of the network to best match the desired output. The

difference between the required output and the actual output is called the error.

The artificial neural network weights are adjusted to minimize this error, thus

the neurons are trained to either fire or not fire for different input patterns.

• Unsupervised learning: The weight of each interconnection is adjusted on the

basis of the input pattern alone. The network learns by adjusting its weights so

that similar inputs cause similar outputs. This forms the input pattern into a

number of meaningful classes.

• Reinforcement learning: This is a combination of supervised and unsupervised

learning. Although no desired outputs for a given pattern of inputs is provided,

the network is told if it is learning in the right direction.

The learning process can occur either offline, where the neural network is non

operational while it learns, or online, where the neural network learns while it operates.

Normally supervised learning is offline and unsupervised learning is online.

77

When operating the artificial neural network and the input pattern is presented, the

neuron will respond as trained. However if the pattern is not present, then the neuron

will fire depending on the firing rule. An example of a simple firing rule would be to

use the hamming distance, which is a measure of how far the input pattern differs from

the trained pattern.

4.1.2 Types of Artificial Neural Networks

Feed Forward network: The artificial neural network information moves in one

direction only, starting from the input layer, moving forward to the hidden layers and

then to the output layer.

Recurrent network: The artificial neural network information flows in both directions,

making it possible for outputs of one layer to feed back to inputs of previous layers.

This artificial neural network is time dependent as the feedback paths contain the

information from the previous state, allowing a type of pseudo memory. This gives the

artificial neural network the ability to perform sequence prediction tasks. A fully

recurrent network is not layered, as every neuron connects to every other neuron in the

network.

Spiking network: The artificial neural network will replicate typical brain activity

which sends inter-neuron messages in brief spikes of short duration, rather than as a

continuous signal.

Weightless network: The artificial neural network uses only binary values on its inputs

and outputs with no weights on the neuron interconnections. The neuron function is

stored in a RAM lookup table. Learning consists of changing the contents of the lookup

table parameters. The advantages of this type of network are that they can learn in one

shot, or epoch, and they do not require multipliers. Its limitation is that if the number of

inputs is high, then a large amount of memory is required for each neuron.

4.1.3 Creating Artificial Neural Networks on a FPAA and FPGA

Creating an artificial neural network on a FPAA

Artificial neural networks created for software program systems are comprised of a

series of additions and multiplications which are calculated sequentially. These same

artificial neural networks can be created on a FPAA. The advantage of implementing an

78

artificial neural network on a FPAA is that adders and multipliers can be easily

implemented and that computations can take place in parallel and asynchronously,

limited only by propagation delays in the circuit. The disadvantage is that the number of

neurons is limited to the resources within the FPAA device.

Creating an artificial neural network on a FPGA

Artificial neural networks have also been developed on FPGAs, although it is more

difficult than using a FGAA as the extensive use of floating point arithmetic multipliers

and the nonlinear activation function of the neurons is resource intensive for FPGA

applications. Several methods have been developed to overcome the use of floating

point multiplier in FPGAs. A description of some of these is provided below.

Pulse Stream Arithmetic: The floating point number can be encoded as a pulse stream

rather than an integer number. For example, a fractional value such as 7/16 can be

described as 7 pulses in a 16 bit window. The inputs to the neurons are a pulse stream

which can be gated. The addition process can be performed by simply ORing the

separate lines going into the neuron, while multiplication is performed by ANDing these

input lines. Note the signals are derived by synchronous non overlapping clock pulses.

These pulses are then passed through an up/down counter to produce a binary step

function on the output of the neuron. An artificial neural network of this type was

implemented by Lysaght et al. [107].

Power of two arithmetic operations: In order to avoid multipliers, the weighted values

can be limited to powers of two, or sums of the power of two. Thus addition and

multiplication can be performed with the use of shift registers which are easier to

implement in an FPGA. Marchesi [108] implemented this technique to create a neural

network that was used in pattern recognition. The neural network architecture was based

on back-propagation, while the learning phase required real arithmetic and was

performed offline. Once the weights were learnt, the corresponding powers of two were

loaded into the network.

Conversion of real numbers to integers: The reduced complexity of the integer

multiplier requires fewer resources than a floating point multiplier in a digital circuit.

However the use of integers leads to a loss of precision in the final design.

79

Fixed floating point numbers: The binary number is broken into two separate parts:

one for the integer and the second for the fraction. The binary number has less range

than a floating point number. Prieto et al. [109] used a 16 bit sign magnitude binary

format with 6 bits to represent the integer and sign and 10 bits for the fraction. They

created a three layer network and compared this binary network with a decimal network

with successful results.

Stochastic arithmetic: In a similar manner to a pulse stream, stochastic arithmetic uses

values that are represented as a pulse density, where the numeric value is proportional to

the density of the 1’s in a bit stream. This allows addition and multiplication to be

performed with simple digital architecture. Multiplication can be performed by a simple

AND gate, and addition by the use of an OR gate. Bade and Hutchings [110] used this

approach in their implementation of an artificial neural network on a FPGA.

Weightless neural network: This network has been described previously in this

chapter. The advantage of this network is that it does not require multipliers, making it

more efficient for FPGA implementation. Hannan Bin Azhar and Dimond [111]

developed a RAM based weightless neural network on a FPGA for a robot controller

which was used for obstacle avoidance.

4.1.4 Evolving Artificial Neural Networks

As an artificial neural network initially goes through a learning cycle (of either

supervised, unsupervised, or reinforced learning to modify the weights of the artificial

neural network), it is trained to react to its environment in a particular way. Evolution

can also be used to create an artificial neural network by using a genetic algorithm to

evolve either the weight functions of the neurons, the neural network structure, or the

learning rules. Examples of evolved networks for robotic controllers in both software

and hardware (FPAA and FPGA) are described in the next section.

Evolving artificial neural networks in software for robotic controllers

Bianco and Nolfi [65] evolved a neural controller to control a simulated two-finger

robotic arm. The aim of the arm was to grasp objects of different shapes based on the

tactile information coming from the hand sensors, while also dealing with the

constraints of gravity and collisions. They used a two layer network with fifteen

neurons on the input sensors and nine neurons for the motor control. Six of the inputs

80

were contact sensors and nine were proprioceptive sensors which showed the angular

position of the arm and fingers. The outputs went to nine motors controlling the

actuators for each joint. The chromosome held the connection weights and biases of

each neuron in the controller. The population size was 100, with a two percent mutation

rate. Fitness was initially set by the number of times the object was grasped, and then by

the number of objects grasped within a certain time frame.

Mondada and Floreano [112] evolved an artificial neural network for a Khepera robot

for three separate tasks including navigation while avoiding obstacles, homing, and

gripping. The artificial neural network was a multilayer perceptron with recurrent

connections on the hidden layers (except for the navigation task which had no hidden

layers). Sensors were connected to fixed inputs of the neural network and its outputs

were connected to the motors as shown in Figure 4-4. The genetic algorithm used linear

scaling for its selection, with single point crossover and creeping mutation for its

reproduction. The population size was one hundred, with the chromosome showing the

neurons synaptic weights and thresholds encoded as floating point numbers.

Figure 4-4. The neural network configured for navigation on a Khepera robot.

Nelson et al. [113] evolved artificial neural networks that were used for robotic

controllers to play a game called ‘Catch the Flag’. The evolved robotic controller

required 150 inputs to process its video sensor, and produced two drive wheel command

outputs. Several network structures were used including feed forward, and feed back

topologies, with a range of activation functions for each neuron. The chromosome was a

combination of two arrays with the first containing the connectivity and weighting

relationships of the network, and the second containing the neuron type. Thus the

chromosome could describe varying sized networks and their connections. The

evolution of the artificial neural network was in simulation. The fitness was calculated

81

with two weightings, the first selected for minimal competence to successfully complete

the task, and the second based on whether they won or lost.

Kim and Cho [114] evolved artificial neural networks based on cellular automata to

create a robot controller for a simulated Khepera robot using incremental evolution.

Cellular automata were used to create the artificial neural network in ‘CAM-Brain’, a

system based on artificial intelligence that was first developed in Japan. The network

grew to the cellular automata rules. The genetic algorithm was applied to the cellular

automata rules thus altering the structure of the neural network. Initially basic

behaviours were evolved such as move straight, avoid obstacles, and follow a light.

Maes action selection mechanism was then used to determine which evolved basic

behaviour to apply.

Tuci et al. [115] evolved a simulated robotic controller based on the Khepera robot to

move towards a light source. The evolution was performed on a recurrent artificial

neural network that could be configured to any size and connectivity. The network had

ten inputs for the sensors and four outputs for the motors. The researchers employed the

novel technique of keeping the weights of the network constant and modifying the

activation parameters of the neuron. The chromosome detailed the input and output

connections of the neuron and its associated activation threshold and decay values. The

genetic algorithm used elitist selection with a population size of 200. Micro-mutation

was used to randomly alter parameters within the chromosome, while macro-mutation

was used to operate on a complete chromosome (that was to add or delete a complete

chromosome, thereby adding or deleting a neuron).

Leon et al. [116] looked at a discrete-time recurrent artificial neural network with two

variants, plastic artificial neural network and feed forward artificial neural network, to

see how they could be modified by a genetic algorithm for robotic navigation. They

used two classes, recurrent and non-recurrent. The development of an evolved controller

which could navigate towards a light was successfully achieved by evolving the weights

in the artificial neural network.

Abhishek et al. [117] evolved a robot controller for the Khepera robot using a recurrent

neural network configured by a variable length chromosome. The researchers used a

recurrent neural network as it was capable of memory and non reactive behaviour. The

chromosome described the whole network including the number of neurons, the number

82

of inputs and outputs, and the connections, weights, threshold and delay times of each

neuron. The number of layers in the network was kept constant; however the number of

neurons in each layer was variable apart from the input and output layers. Each new

chromosome created by the genetic algorithm was passed to a neural network generator

to create the network which was then tested for its fitness on the robot. Tournament

selection was used, although rather than using crossover which can be disruptive to the

chromosome, they used mutation only as well as a change length operator which could

add or delete neurons. As the chromosome was capable of increasing in size and thus

increasing the search space, the chromosome size was included as part of the fitness

function. A penalty was given to a large size, helping to limit the size of the artificial

neural network. Several controllers were evolved including obstacle avoidance and

garbage collection, where the robot had a gripper that would pick up an object and place

it outside the arena.

Berlanga et al. [118] used evolutionary strategies to evolve an artificial neural network

for a robotic controller. The experiment used a feed forward artificial neural network to

control a simulation of the Khepera robot for navigation and collision avoidance. The

inputs to the artificial neural network were the infrared sensors and wheel encoders,

while the outputs from the artificial neural network were connected to the wheel drivers.

A simulation of the Khepera robot was developed and used to test the process. The

artificial neural network neurons were encoded as a twenty dimensional real-valued

vector which were evolved using evolutionary strategies. Although it was found that the

evolved artificial neural network adjusted its weights rapidly to the training

environment, it did not perform well when tested in an environment that was different to

the one it trained in.

Lund et al. [23] combined a simulated and physical implantation of an evolvable robotic

controller using an artificial neural network to control the navigation of a Khepera robot.

Using its own sensors, the Khepera robot was able to map out its environment which

could be used by the simulation. The artificial neural network was a simple two layer

network connecting the sensors to the motors.

83

Evolving artificial neural networks in hardware (FPAA, FPGA) for robotic

controllers

Gallagher et al. [119] have evolved a continuous time recurrent artificial neural network

on a custom built hardware platform. A recurrent artificial neural network has discrete

sequences due to the feedback occurring within the network allowing each of the

neurons to compute its output simultaneously. In comparison a continuous time

recurrent artificial neural network is a recurrent artificial neural network, where the

inputs and outputs are not steps but a continuous time variable and the neurons have a

temporal response. In the research undertaken by Gallagher et al., the neuron was

implemented in hardware using a row of analog adders for the weighted inputs and

leaky integrator, while an operational amplifier was used for the sigmoidal output from

the activation unit. The experiment used a microcontroller to interface between the

computer performing the genetic algorithm and the artificial neural network. The

microcontroller changed the setting of the digital potentiometers. The neural network

was evolved to control a legged robot.

Berenson et al. [68] used FPAAs to create a two layer artificial neural network that was

used to control both a biped robot and a damaged quadruped mobile robot. Both

controllers were evolved and evaluated on a physical robot without simulation. The

neurons were created using a summing network for the weighted inputs and an

integrator to create the threshold trigger level. The weightings, integration constants,

and polarity of outputs were evolved by evolutionary algorithms. Elitism was used for

selection on the population size of 32 while both crossover and creep mutation were

used for reproduction.

Rocke et al. [120] showed how three neuron models that could be evolved by a genetic

algorithm were implemented in a FPAA. The neuron models implemented were: a) the

McCulloch-Pitts, with a step function on its output; b) the multi-layer-perceptron, where

the threshold function was replaced by either a sigmoid, tanh or Gaussian curve; and c)

the spiking neuron, where the output from the neuron was a spike which gradually

decayed to zero over time.

Manjunath and Gurumurthy [121] investigated fabricating an artificial neural network

on an integrated circuit, using special purpose configurable analog blocks CAB with

differential feedback. They proposed using a pair of transistors for a synapse, with a

current mirror for the signed weights associated with a neural network, and a

84

logarithmic amplifier for the activation function of the neuron to produce a sigmoid

response.

Roggan et al. [122] used a FPGA to create a spiking neural network to control a

Khepera robot for obstacle avoidance. The artificial neural network was comprised of

spiking neurons classified as cells, whose inputs and outputs were spikes from other

cells. The weightings and connectivity (neural pathways) could be dynamically changed

at run-time by the control function input of each cell. This cell function and connectivity

was defined in a genetic chromosome which was evolved using a genetic algorithm. A

NIOS processor was used to control the evolutionary process, program each cell

function, and interface between the sensors, motor control and the spiking neural

network. An array of eight x eight neurons was created and evolved for obstacle

avoidance. The fitness was evaluated on an individual that could maintain maximum

forward speed and distance from an object with minimal rotation of the robot.

Hannan Bin Azhar and Dimond [123] evolved an artificial neural network on a FPGA

for the navigation of a Kephera robot using a RAM base neural network. The genetic

algorithm evolved an artificial neural network chromosome. This chromosome was held

in RAM, determined the size of the neurons, the number of neurons per class, the

number of classes, how the sensors connected, and the speed control for the motors.

Thus the artificial neural network architecture and its behaviour were controlled by the

chromosome. The chromosome also held the robot ID and its fitness evaluation which

was used by the evolutionary process.

Amaral et al. [124] created a neuron on a programmable analog multiplexer array as two

blocks. The first block was a body circuit block, which implemented the synaptic

weights and summation. The second block was the activation function block, which

implemented the activation function. The programmable analog multiplexer used a 128

bit configuration bit string to configure its analog circuits, and it was this bit string

which was evolved using the genetic algorithm. The selection process was steady state,

the population size was 400, and the reproduction used one point crossover with

mutation. Amaral et al. successfully evolved both the body and functional activation.

85

4.2 Evolution of Fuzzy Logic Robotic Controllers

4.2.1 Fuzzy Logic Controller Overview

Fuzzy logic is used in control systems that utilize imprecise input data to determine

what output action to take. The concept of fuzzy logic for control systems was created

by Lofti Zadeh in the mid 1960’s. At that time control systems were developed using

precise (crisp) data of either true or false. Zadeh noted that as humans control systems

using imprecise (fuzzy) data, so too could computer systems.

Boolean logic has only two states, true and false, with no input or output able to occupy

both states at the same time. In comparison, fuzzy logic has a range of conditions

related to the input and output states. For example the crisp data description of the

temperature in a control system would state the input temperature was either hot or cold,

or give a precise temperature such as 42 degrees. Fuzzy data however, would be

imprecise in its description of the temperature, giving a range of conditions such as very

cold, cold, warm, hot, and very hot. This is shown in Figure 4-5.

Figure 4-5. Membership function and degrees of membership for temperature inputs.

The input membership function is the shape illustrated in the above diagram, showing

the magnitude of each input for the input range. The shapes in the above diagram are

trapezoidal and shoulder, however many shapes can be used, such as bell or triangular.

The degree of membership (truth value) is how much the input conforms to each pattern.

In the diagram above, the degrees of membership for a temperature of 42 degrees are

very cold 0.0, cold 0.0, warm 0.0, hot 0.7 and very hot 0.3. The output membership

functions are described in a similar way with the heater element being nearly off, partly

on, and almost fully on. The inputs from the sensors come in as crisp data, for example

the temperature is 42 degrees. This crisp data is then converted to fuzzy data using the

membership sets and the degrees of membership. This conversion is known as

fuzzification of the inputs. In a similar manner the output of the fuzzy logic would be

86

converted from fuzzy data back to crisp data that can then be used by a control system.

This is known as defuzzification.

Fuzzy operators are used to combine the fuzzy inputs into a value that the fuzzy rules

can use. Three common operators are the AND, OR and NOT. These are graphically

shown in Figure 4-6 where max(very cold, cold) acts like an OR of the two inputs,

min(warm, hot) acts like an AND of the two inputs, and NOT(very hot) will invert the

input. There are many other operators that are used to combine the fuzzy data.

Figure 4-6. Graphical representation of fuzzy operators AND, OR and NOT.

Fuzzy logic is based on linguistic behaviours which are defined in the fuzzy rule base

that relates the input sensor states to the desired output action states. Each rule in the

rule base will activate (fire) with a strength proportional to the fuzzified input

antecedent. These fuzzy rules are based on the if-then structure (else is not used as it

will exclude ranges). The fuzzy rules describe what action to take for a range of input

conditions. Rather than using precise measurements, the code could read ‘if the

temperature is cold and getting warmer then turn the heater on slightly’. The general

form is if variable is condition (antecedent) then action (consequent). Note the

antecedent and consequent are not absolute, that is if the antecedent is only partially true

(less than one) then the consequent will have a corresponding degree of truth.

Thus the steps in fuzzy logic are: a) fuzzify the inputs: change the crisp data to fuzzy

data using the membership functions to obtain the degree of truth between zero and one;

b) inference and fuzzy rules: apply fuzzy operators if there are multiple inputs to give

the antecedent a value between zero and one then use the rule base to produce the

corresponding consequent; and d) defuzzify the outputs: pass the consequent through

the output membership functions to produce a crisp output. These steps are shown in

Figure 4-7.

87

Figure 4-7. The three steps in a fuzzy logic controller.

4.2.2 Evolving Fuzzy Logic Controllers

The parameters of a fuzzy logic controller can be grouped into three areas. These are the

fuzzification of the inputs, the fuzzy rules, and the defuzzification of the outputs. These

areas are normally configured by experiment or design; however a genetic algorithm

can be applied to these parameters to evolve the fuzzy logic controller. These

parameters can be represented by a chromosome in several ways. A chromosome for the

membership function is shown in Figure 4-8. The parameters in the chromosome show

the shape descriptor: ls (left shoulder), tp (trapezoid), tr (triangle) and rs (right shoulder).

The parameters immediately after the shape descriptor show the size of the shape giving

the points at which the shape changes relative to zero on the x-axis. The fuzzy rules can

also be encoded either as numerical values or symbols that are translated into linguistic

rules.

Figure 4-8. Chromosome representation of membership functions.

4.2.3 Examples of Evolving Fuzzy Logic for Robotic Controllers

The following section provides examples of evolved fuzzy logic robotic controllers that

have been used in robotic applications.

88

Makaitis [66] used evolutionary strategies to evolve the fuzzy rule base in a fuzzy

controller that was used to control the motion of a lift. The fuzzy rules were encoded

into a chromosome by using integer numbers that represented linguistic terms such as a)

position: including far above, above, same height, below, far below; b) velocity:

including quickly upward, upward, slowly upward, stopped, slowly downward,

downward, quickly downward; and c) acceleration: including high upward, upward,

same speed, downward, high downward. These parameters were defined as real

numbers. These linguistic terms were inserted into a Mamdani type rule such as ‘if the

position is far above, and the velocity is stopped, then set the acceleration to high

downward’. The evolved controllers were tested in simulation, with the fitness

determined by the time taken for the controller to bring the lift to a desired floor while

following boundaries of maximum speed and velocity. It was found that the evolved

controller was superior to custom designed controllers.

Sung Hoe et al. [125] used a genetic algorithm to evolve the fuzzy input and output

membership functions as well as the rule base of a robotic fuzzy logic controller for a

simulated wheeled robot. They used a variable length chromosome which allowed both

the number of membership functions and rules to increase. The evolutionary process

was performed in three stages: 1) the first step was to evolve the elements of the output

membership function and the rule base that connects to them; 2) the removal of

elements and rules that were not required while still retaining the same fitness; and 3)

the input membership functions were evolved.

Jeong and Lee [126] successfully evolved the rules in a fuzzy logic controller that

provided co-operative behaviour between multiple robots playing a predator-prey game

where several robots worked together to capture a prey. This experiment used

distributed artificial intelligence to develop co-operation strategies where the behaviour

of each predator was governed by the fuzzy logic controller with all predators

containing the same rule base. The rule base was a series of if then statements relating

the current heading of the robot, the distance and angle to the prey, and the position of

the other predator robots to the required robot direction. The robots were implemented

in simulation with a fitness test ending after either the prey was captured or a set

number of time steps were completed. The population size was 50, with each

chromosome encoded with a 64 bit binary string, representing five linguistic variables,

and two fuzzy sets for each variable; the selection process was roulette wheel.

89

Doitsidis and Tsourveloudis [127] investigated the role of the fitness function when

applying a genetic algorithm to a fuzzy logic robotic controller with current fitness

functions focused on the robot’s completion of moving to a target with obstacle

avoidance. Three types of fitness function were investigated: 1) aggregate (how well the

robot completed the task without regard to how the task was achieved); 2) behavioural

(how well the robot functions when performing a task); and 3) tailored (which had

aspects of both aggregate and behavioural traits). The aggregate fitness was measured as

to how close the robot moved to a target position. The behavioural fitness measured

whether the robot moved directly to the target, and the tailored fitness measured both

how close and how straight the robot moved to the target. The inputs to the fuzzy logic

controller were the heading error, and the distance from the obstacles derived from two

infrared sensors with the outputs driving the robot’s left and right servo motors. The

input membership functions were trapezoidal, whereas the output membership functions

were triangular. These membership patterns were described in the chromosome. As the

fuzzy rule base was fixed, it was not part of the chromosome. The evolution was

performed on a real robot, with the evolutionary process stopped after 80 generations.

Each generation was limited to 30 seconds of motion. From the researcher’s

experiments, it was determined that tailored fitness function produced the best result.

Gu and Hu [128, 129] evolved a reactive behaviour based fuzzy logic controller for a

Sony legged robot that could play soccer, by evolving the input and output membership

functions with a genetic algorithm. The required behaviour was to move towards the

ball and face the goal. The inputs were the orientation of the robot relative to the ball,

the distance of the robot from the ball, and the orientation of the goal. The output was

discrete commands that could be recognised by the Sony controller. The fitness was a

combination of the final position of the robot, and the least number of steps taken to

move to that position. The population size was fifty, with one individual describing a

complete fuzzy logic controller. The robot was tested in simulation and the evolution

was completed after 300 generations. It was found that a fuzzy controller could be

successfully evolved.

Li et al. [130] created a fuzzy logic controller that could park a simulated car into a

garage. The novel concept was that they implemented the controller on a FPGA. Six

input sensors for car position produced a kinematic model of the car. There were four

stages to the parking process: 1) approach parking space; 2) pass parking space; 3) back

90

into parking space; and 4) final correction of park. Two controllers, one for steering

angle and the other for speed control, were used in this experiment. They used the

relative distances between the front of the car, the front right wheel, the rear right wheel,

the front left wheel, and the rear left wheel as inputs to the fuzzy logic controller.

Wu et al. [131] evolved a fuzzy logic controller for a robot whose task was to navigate

down a pipeline. The pipeline robot used fifteen ultrasonic sensors mounted on its side

and front to determine its environment. Two wheel encoders were used to determine the

robot position from a known starting point, and a speed sensor was used to determine

the robot’s velocity. These inputs were combined into three memberships: 1) distance

from the robot to a wall; 2) the steering angle of the robot to a target; and 3) the robot’s

velocity. The outputs from the controller drove the robot’s wheels. The robot’s direction

was determined by the shape of the pipe it was moving in (which was either straight,

crossroad, t-junction or dead end). The rule base was comprised of linguistic variables

that used six variables for the distance, three for the steering angle, and four for the

velocity, giving 72 control rules which were encoded in the chromosome. In addition,

the chromosome contained another 48 positions to describe the triangular membership

functions. The fitness was comprised of three criteria: 1) the time taken to reach the goal;

2) the number of collisions of walls and obstacles; and 3) where the rules and fuzzy sets

were kept to a minimum. It was found that the evolved fuzzy logic controller could

control a simulated robot that could successfully find a good path.

Chronis et al. [132] used a genetic algorithm to evolve the rule base of a fuzzy logic

controller whose task was to move towards a target while avoiding obstacles. The

membership functions were kept fixed while the antecedents and consequents along

with the number of rules in the rule base were evolved. The rules were of the general

form: if obstacle distance is x, and obstacle direction is y, and target direction is z, then

the robot direction is w. The chromosome that described the rule varied proportionally

to the antecedent value of each variable with distance described in terms such as very-

close, close, far, very-far, and direction described as front, front-right, right, back-right,

back, back-left, left, front-left. The chromosome was divided into parts showing the

total number of rules and the appropriate antecedent and consequent for each rule. The

evolution was performed in simulation and the evolved chromosome was successfully

tested on the real robot.

91

Islam et al. [133] created a fuzzy logic traffic controller that was implemented in

hardware. The behaviours and the finite state machine were implemented in hardware

using a hardware descriptive language. The inputs to the system were traffic volume

This chapter has reviewed both artificial neural networks and fuzzy logic controllers.

The use of genetic algorithms to evolve these controllers has been examined.

92

Chapter 5

Chapter 5: A Review of Robotic Controllers for the Mobile Inverted

Pendulum and Ball-Balancing Beam

Two robots were used to evaluate the robotic controllers that were evolved in this

author’s research. These robots included the mobile inverted pendulum and the ball-

balancing beam. Both were chosen as they had a high degree of instability, making the

control systems more complex. In the case of the ball-balancing beam, the beam was

curved to make the system more unstable. This chapter reviews the current research

associated with both the mobile inverted pendulum and the ball-balancing beam

including their control systems, and control systems created by evolutionary

computation.

5.1 Mobile Inverted Pendulum

Mobile inverted pendulums are of interest to university research due to their high level

of instability and their application to robotics, such as walking gaits for bipedal robots.

The reduction in the cost of gyroscopes and accelerometers has enabled universities and

students to create mobile inverted pendulums in projects and for research. The most

widely known implementation of the mobile inverted pendulum is the Segway used as a

transporter for people and materials.

The Segway has been used in research including NASA’s ‘Robonaut’. Ambrose et al.

[134] who worked for NASA, combined their robonaut upper torso with a Segway

mobile base to give mobility to the robot and to enable human robot interactions such as

following people, and tracking people with flashlights. Other planned uses were

assisting astronauts in space, bomb disposal, and security.

Browning et al. [135] used the Segway robotic mobility platform that could interact

with human players riding Segway transporters, to play a modified form of soccer. The

robot used cameras for visual tracking to identify the ball, and a wireless interface to a

central computer for position and game playing decisions. The referee communicated to

93

the human players via a whistle and verbal instructions, and to the mobile robots via

wireless communications.

5.1.1 Non-evolved Robotic Controllers for a Mobile Inverted Pendulum

This section provides a review of the robotic controllers for the mobile inverted

pendulum developed by other researchers.

Standard control state-space equations for a mobile inverted pendulum were developed

by Grasser et al. [136] in their creation of JOE, the mobile inverted pendulum. JOE had

three degrees of freedom, roll, yaw, and pitch, and was implemented as a non-

autonomous robot. The control system that they constructed was implemented as two

separate state-space controllers, the first acting on the yaw or turning motion, the second

acting on the pitch or balance of the pendulum. The outputs of these systems were

translated into signals for the right and left wheeled motors respectively.

Noh et al. [137] modelled a biped walking robot that used a balancing weight similar to

an inverted pendulum using a linear non-homogeneous second order differential

equation to find the zero moment point at the foot of the robot. Various gaits were

produced in simulation to give the robot a walking motion.

Kim et al. [138] developed a two wheeled inverted pendulum robot that could be used

as a home robot. They gave particular regard to the stability of the robot on inclined

surfaces and turning motion. The researchers performed a detailed mathematical

analysis of the kinematics of the robot on a flat surface and then advanced their models

for inclined surfaces and finally for turning motion. They then used their models on a

real two wheeled inverted pendulum with successful results.

Huang et al. [139] created a fuzzy controller for a two wheeled inverted pendulum using

three fuzzy control units: the first for motionless balance, the second for travelling

forward and backward, and the third for steering using yaw in the pendulum. All three

fuzzy controllers were implemented by a NIOS processor inside a FPGA. The

motionless balance fuzzy rules were based on a range of factors including the pendulum

angle, angular velocity, the wheel angular velocity, the motor speed and the pendulum

position. The travelling fuzzy rules were designed to move the pendulum to an

unbalanced state so that it could move forward or backward, while the steering fuzzy

94

rules were designed to change the yaw of the pendulum so that it could steer left or right.

Both simulation and real life experiments showed that the controller behaved well.

5.1.2 Evolved Robotic Controllers for the Mobile Inverted Pendulum

Anderson [140] described a method of using an artificial neural network to balance a

inverted pendulum using reinforcement and temporal-difference learning. The only

feedback mechanism for learning was a fail due to the pendulum falling over, thus the

artificial neural network had to deal with delayed performance evaluation, as the

pendulum could have a long sequence of actions before it fell over, making it difficult

to determine which action led to the failure. He created two, two layered networks. The

first was an action network with two outputs which drove the cart either left or right.

The second was an evaluation network, which was used to determine which sequence of

actions led to a failure. To overcome the delayed response in learning, the evaluation

network used temporal-difference learning, which learns associations between signals

separated in time, (in this case the states of the pendulum and the failure signals). Thus

the evaluation network would indicate how soon a failure would occur. The output of

the evaluation function was fed into the inputs to the action network along with the

pendulum states. For example a failure would be likely to occur when the pendulum

angle was near its boundary and the angular velocity was high.

Pasero and Perri [141] created a FPGA based neural controller used to balance an

inverted pendulum on a cart, using an offline supervised trained multilayer perceptron.

They used a hidden layer neural network, with five inputs: the pendulum angle, the

pendulum angular velocity, the cart speed, the cart acceleration, and friction. The

network had one output to drive the cart motor forward and backward. The artificial

neural network used SRAM to store the weights, multiplication factors, number of

inputs, number of neurons and activation function for each neuron. As a low resourced

FPGA was used, only one neuron was constructed and time multiplexing was performed

to provide for the number of neurons required.

Jung and Kim [142] used a neural network interfaced to a PID controller as shown in

Figure 5-1, to balance a real mobile inverted pendulum. The neural network had six

inputs, nine hidden layers and six outputs. The inputs to the neural network were the

current and previous states of the pendulum angle θ and its horizontal movement x. The

activation function within the network was the hyperbolic tangent function. The outputs

95

of the neural network were fed into two PID controllers, one to control angle, the other

to control position, which were then combined to drive the two wheels of the motor.

Both the neural network and PID controller were implemented on a TMS320F2812

digital signal processor.

Kpθ

Kdθ

Kiθ

Kpx

Kdx

Kix

Σ

Σ

Σ

Σ

Σ

Σ

Φ1

Φ4

Φ2

Φ3

Φ6

Φ5

Σ

Σ

Σ

S

1

S

S

1

S

Σ

θ

Х

ex

eθ

θd(t)

xd(t)

eθ(t)

eθ(t-1)

eθ(t-2)

ex(t)

ex(t-1)

ex(t-2)

Σ

µθ

µx

µ

Figure 5-1. A neural network with PID for a mobile inverted pendulum.

Noh et al. [143, 144] created two robotic controllers using a similar technique to Jung

and Kim, combining an artificial neural network with PID to create a controller that

could balance the pendulum while it moved in a circular path. They used a radial basis

function neural network with one hidden layer and a nonlinear radial basis activation

function. The inputs to the neural network and connections to the PID controller were

similar to the work performed by Jung and Kim.

Obika et al. [145] evolved a controller for an inverted pendulum with a double jointed

arm as shown in Figure 5-2, which was capable of swinging its arm to an upright

position and then keeping the arm upright. The chromosome was a variable length

chromosome that was comprised of quantised motor speeds for set periods of time. The

fitness evaluation was set by how quickly the pendulum would become upright, and

how little movement there was in the arm once it was balanced. The genetic algorithm

was based on the minimal generation gap model, which used a steady state algorithm

and had a low selection pressure. The population size was ten, with the chromosomes

starting with an initial length of 160 steps giving an eight second length of actions. The

controller was successfully evolved, and compared well to a standard control system

based on the zero dynamics method.

96

Figure 5-2. Double jointed inverted pendulum.

Hoffman [146] evolved a fuzzy logic controller for a pole balancing cart. The input and

output membership functions along with the rule base were encoded into a chromosome

that was evolved using a genetic algorithm. The chromosome was fixed in length, thus

the number of membership functions and rules were fixed. The complete system is

shown in Figure 5-3. The fitness was proportional to the amount of time that the beam

remained balanced. The genetic algorithm used two point crossover with creeping

mutation while the selection process was scalar.

Figure 5-3. Block diagram of a fuzzy logic genetic algorithm.

Shieh et al. [147] used a genetic algorithm to evolve a Sugeno-type fuzzy logic

controller for an inverted pendulum mounted on a cart. The Sugeno-type generates

fewer rules than a standard fuzzy logic controller, making it more suitable for a genetic

algorithm. Four fuzzy rules each having six coefficients were developed relating to the

angle and angular rotation of the pole. The coefficients of the fuzzy rule base were

encoded into the chromosome. The population size was twenty with crossover and a

mutation rate of 0.5%. Two experiments were performed, one where the fitness

97

evaluation was determined by how quickly the pole would balance, the second for the

reduction in overshoot as the pole was brought to balance. Both routines performed well.

Kwon and Lee [148] evolved a fuzzy logic controller that was used to balance an

inverted pendulum mounted on a cart using evolutionary strategies. They used a Takagi-

Sugeno type fuzzy logic controller with a Q-learning algorithm for its fuzzy rules. The

chromosome was a string of real values used to configure the 25 rules in the rule base.

Rank selection was used with two types of crossover, simple and arithmetical.

5.2 Ball-Balancing Beam

The ball balancing beam has been used as a standard laboratory experiment to

demonstrate control systems for many years. It has also been employed as a benchmark

for research into control systems due to its non-linear dynamics and behaviour. Control

systems such as standard control, fuzzy logic, neural networks, and other systems have

used the beam to test their responses.

5.2.1 Non-evolved Ball-Balancing Beam Controllers

Xuerui et al. [149] used a beam driven by two magnetic actuators to study how active

magnetic actuators could be used to drive a tilt mechanism as shown in Figure 5-4. In

particular they wanted to study the use of active magnetic actuators in the application of

artificial blood pumps where the heart pump impeller was suspended in the pumping

tube by magnetic suspension units. The difficulties in the control system were due to the

non linear properties of the magnetic actuators. The objective was to keep the beam

stationary around a nominal point. It was found that using an integral sliding mode

controller with an integrator allowed the beam to reach a stable condition within 0.3

seconds of an external disturbance.

Figure 5-4. Beam controlled by magnetic actuators.

98

Ka and Nan [150] used a ball-balancing beam as a demonstration of optimal and

disturbance accommodating control. To present a more difficult control system, the

researchers used a beam with an arc which was mounted on a cart, as shown in Figure

5-5. The position of the ball was controlled by the horizontal motion of the cart which

could be driven forward and backward by a DC motor; note the beam did not tilt. The

aim of the control system was to keep the ball positioned at the centre of the arc while

keeping the cart positioned at a midway point. They modelled the system using linear

equations of motion, and used a linear quadratic regulator controller to stabilize the ball.

Figure 5-5. Ball-balancing beam on a cart.

Gordillo et al. [151] looked at the ball-balancing beam control system and how it would

respond to transient disturbances. They used an asymptotically stabilizing controller to

keep the ball stable on the bar during the transient conditions. They then created a

controller that would cause the ball to oscillate between two fixed points.

Dadios et al. [152] incorporated camera vision and a fuzzy logic controller to balance

the ball on a flat beam. The camera was used to accurately determine the ball velocity

and distance of the ball from the centre of the beam. The fuzzy controller inputs were

the ball velocity, the distance of the ball from the centre of the beam (taken from the

camera), and the beam angle derived from a rotational sensor. These parameters were

converted to a fuzzy input set and passed to the fuzzy controller inference and rule base.

The output of the fuzzy controller was the motor speed and direction for the beam’s DC

motor. It was found that the beam could stabilize the ball in less than six seconds.

In a similar manner Iqbal et al. [153] created a fuzzy logic controller for the ball-

balancing beam using a 68HCS12 micro-controller which is unique in the fact that it has

inbuilt fuzzy logic instruction sets. A camera was used to determine the position of the

ball using pixel images to determine the ball centre. This information was sent to a

micro-controller and then used to calculate the error in the ball position (distance from

the centre) and the rate of change in the error position. These three components (ball

99

position, ball error, and rate of change of ball error) were fed into the fuzzy inputs of the

68HCS12 where they were compared against membership functions to determine the

degree of membership, and processed by the fuzzy rules. The resulting crisp data output

was fed into a servo motor for beam control. The complete system is shown in Figure

5-6.

Figure 5-6. System interconnections for a ball-balancing beam using a 68HCS12 microcontroller

with in-built fuzzy instructions.

Ng and Trivedi [154] combined a fuzzy logic controller in combination with a neural

network for a ball-balancing beam. The system as shown in Figure 5-7 was comprised

of three sections: 1) a fuzzy membership function, where the three inputs ball velocity,

ball position and beam angle were fuzzified using triangular functions; 2) a rule neural

network which mapped the fuzzy input vectors to fuzzy output vectors; and 3) an output

refinement neural network which was used to drive the motor. Using the neural

networks allowed a reduction in the number of fuzzy if-then rules that were required,

thereby allowing more tolerance in the input parameters and the ability to cope with a

noisier system. Both neural networks were multilayer feedforward with a back

propagation algorithm. The system was able to balance the ball using a range of

different balls and masses.

100

Figure 5-7. A fuzzy logic controller for the ball-balancing beam.

Eaton et al. [155] increased the complexity of the ball-balancing beam system by using

a beam covered with a sticky substance, which gave an uneven response of the ball to

the beam position. This made it difficult to model the system using classical control

techniques. The researchers increased the difficulty to the controller by not using the

ball velocity which is commonly used in other systems. They then developed a recurrent

neural network using truncated back-propagation for the controller. The ball position,

obtained from a single line 512 element CCD camera, and the beam position were fed

into a Kalman filter to update the weights of the network.

Benbrahim et al. [156] used reinforcement learning on a connectionist actor-critic neural

network to balance the ball. This type of neural network has two networks, the actor

(action) network that controls the beam motor and the critic (value) neural network that

provides reinforcement learning to the actor network. The four inputs to the neural

network were ball position, ball velocity, beam position and beam angular velocity,

while the output from the neural network provided the DC motor speed and direction.

5.2.2 Evolved Ball-Balancing Beam Controllers

Tettamanzi [157] evolved a ball-balancing beam fuzzy logic controller based on the

SGS-Thomson fuzzy controller processor. The processor contained a weight associative

rule processor, up to 16 inputs membership functions of any shape, up to 256 rules

containing up to four antecedents and one consequent clause and 128 output

membership functions. Five beam states were input to the fuzzy controller: ball position,

ball velocity, ball acceleration, beam angle and beam angular velocity. The controller

101

had one output that was used to drive the beam motor. The chromosome for the neural

network was the variables used to configure the SGS-Thomson fuzzy controller

processor which were the input and output membership functions and the rule sets. As

there were specific requirements for the set up of the processor, hand written

chromosomes were used for the initial population and chromosome repair was required

after the reproduction process. The evolution went through three stages, keeping the ball

on the beam, keeping the ball in the centre of the beam, and finally moving quickly

towards the beam centre and stability.

Yi and Xiuxia [158] used a genetic algorithm to successfully evolve a PID ball-

balancing beam controller where the chromosome was a double float real number

comprised of the three PID: constants, proportional gain, the integral constant and the

differential constant. They used a modified form of genetic algorithm called the chaos

genetic algorithm which mimics chaos theory where very small differences in an initial

variable (termed the chaotic variable) causes large differences in long term behaviour.

The aim of the chaos genetic algorithm is to help reduce premature convergence and

reduce the number of iterations required to find a solution. The genetic algorithm used

the island selection model with the population divided into separate groups.

This chapter has reviewed the use of mobile inverted pendulums and ball-balancing

beams using non-evolved and evolved control systems.

102

Chapter 6

Chapter 6: Systems Developed for Experimentation

This chapter describes the common systems that were developed for the

experimentation performed in this research. It is broken into sections:

• the mathematical models required for the simulations of the mobile inverted

pendulum and the ball-balancing beam;

• the conversion of the mathematical model into simulation;

• the graphical user interfaces that were used for control, monitoring and data

recording;

• the data command protocols used to connect the graphical user interface on the

computer to the NIOS processor on the FPGA and then to the evolving virtual

FPGA and hardware simulation.

The research presented in this thesis created two novel evolutionary capable robotic

controllers and a hardware based simulation. The first evolutionary capable robotic

controller was based on a lookup table; the second on a virtual FPGA. In order to

evaluate these controllers and hardware simulation, two robotic platforms were chosen,

both based on student projects performed at AUT University. The first was a mobile

inverted pendulum; the second was a ball-balancing beam. These two robotic platforms

are described in the next two sections.

6.1 Mobile Inverted Pendulum

6.1.1 Overview of the Mobile Inverted Pendulum

An undergraduate student project performed at AUT University was the design and

construction of a non-autonomous mobile inverted pendulum which was capable of

balancing upright and controlled motion using PID control software. The hardware was

comprised of an Atmel 8-bit microcontroller which interfaced to a digital gyroscope, a

three axis accelerometer, wheel encoders and a RF receiver. The microcontroller

103

calculated the beam roll tilt and yaw parameters by applying a Kalman filter to the data

received from the gyroscope and accelerometers. These values, along with the

pendulum planar positions determined from the wheel encoders, were used to balance

the pendulum in its inverted state. The pendulum was also capable of motion by

adjusting its tilt and yaw until it was off balance, allowing a horizontal movement to

take place for compensation. The mobile inverted pendulum was successfully built and

tested, as shown in Figure 6-1, and became the platform used for the evolvable

controller.

Figure 6-1. The physical and simulated mobile inverted pendulum used to evaluate the robotic

controllers.

6.1.2 Mathematical Model of the Mobile Inverted Pendulum

The pendulum is a non-holonomic robot with three degrees of freedom (DOF), two

planar motions and one tilt-angular motion, but with direct control of the pendulum in

only the planar motions driven by the two wheels. Thus the control of the planar motion

must work in such a way as to control the angular motion of the pendulum. As shown in

Figure 6-2, the pendulum can rotate around the z axis (tilt); this is described by its angle

θp and its angular velocity ωp. The pendulum can move on its x axis described by its

position x and its velocity υ.

104

The parameters used for the mathematical model are shown in Table 6-1.

g gravitational acceleration (m/s
2
)

θp angle of the pendulum relative to the vertical axis (rad)

Mp mass of the pendulum (kg)

Mw mass of the wheel (kg)

Ø angle of the wheel (rad)

Ip inertia of the pendulum (kgm
2
)

Iw inertia of the wheel (kgm
2
)

r radius of the wheel (m)

x horizontal displacement (m)

l length from the axis to the centre of mass (m)

T motor torque (Nm)

F friction force (N)

H horizontal force (N)

V vertical force (n)

p x coordinate of pendulum centre of mass

q y coordinate of pendulum centre of mass

Table 6-1. Parameters used in the mathematical model of the mobile inverted pendulum.

Figure 6-2 Diagrammatic sketch used for the mathematical model of the mobile inverted pendulum

To simplify the evolutionary process, the pendulum was constrained to only one planar

axis x by driving the two wheels together so there would be no yaw. The pendulum was

105

on a flat surface so there would be no roll, therefore yaw and roll would not be

implemented in the mathematical model. The important parameters were the

pendulum’s angle, angular velocity and the linear displacement along the x-axis.

Wheel

Figure 3. Pictorial representation of the torque produced on the wheel.

The motion of the wheel is described in Equation 6-1 (horizontal motion), and Equation

6-2 (rotational motion). The vertical motion is not used thus the ground reaction force in

not needed.

���� � � � �
Equation 6-1

	�∅� � � � ��		 � 		 	� ��� 			���	� � �∅�
Equation 6-2

Body

Figure 4. Pictorial representation of the forces on the pendulum.

106

The motion of the wheel is described in Equation 6-3 (horizontal motion), Equation 6-4

(vertical motion) and Equation 6-5 (rotational motion)

���� � 2�
Equation 6-3

���� � 2� �	��� Equation 6-4

	��� � 2������� � 2������� � 2�
Equation 6-5

Also

� � � � ������ Equation 6-6

� � ������	 Equation 6-7

From the above equations the motion of the pendulums angle, angular velocity and

linear displacement along the x axis can be described by Equation 6-8 and Equation 6-9.

��� � 2�� � 2	�
� ! �� � ����������� � 2�

� ������" ����� Equation 6-8

#	����� $��� ����������� � ��������� � 2�
Equation 6-9

107

6.2 Ball-Balancing Beam

6.2.1 Overview of the Ball-Balancing Beam

The second robotic platform was a ball-balancing beam where the beam was curved, as

shown in Figure 6-5. The ball-balancing beam was created by AUT students over

several sequential final year projects. The beam was designed to demonstrate general

control principals, such as a PID control. A stepper motor was used to alter the beam

angle via a three to one right angled gear drive. The curved beam and the frame for the

motor were hand built.

Figure 6-5. The physical ball-balancing beam system and the GUI display that the simulation

controlled.

An Atmel mega128 microcontroller was used to control the motion of the beam, using a

daughter board for the microcontroller and a mother board for the signal conditioning of

the inputs and outputs of the beam. The position of the ball was determined by twenty

one ball position sensors which used modulated infrared LED transmitters and

photodiode receivers. It was possible to have two sensors activated at the same time,

when the ball was between two sensors thus doubling the resolution of the ball position.

Two limit switches mounted on the motor frame indicated when the beam was at either

end of its travel. The original stepper motor had a maximum pulse rate of 8ms (125Hz)

with each pulse producing a 0.22
0
 shift in the beam, giving a maximum angular beam

motion of 27.5
0
/s. The maximum travel of the beam was 60

0
 (30

0
 to the left and 30

0
 to

the right), thus it took 2.2 seconds to move the beam from the maximum left position to

the maximum right position.

108

Using standard proportional-integral-derivative control techniques, it was found that the

motor was not powerful enough to move the beam quickly enough to balance the ball on

the beam. Steps to overcome this problem would be to use a more powerful stepper

motor, or to reduce the curvature of the beam itself.

6.2.2 Mathematical Model Ball-Balancing Beam

The parameters used in the mathematical model are shown in Table 6-2.

g gravitational acceleration (m/s
2
)

R radius of curvature of the beam (rad)

m mass of the ball (kg)

r radius of the ball (rad)

I rotational inertia of the ball (kgm
2
)

θ ball position (angle from the centre) (rad)

Ø beam position (angle from horizontal) (rad)

F frictional force (N)

P reaction force (N)

W weight force (N)

x distance of the ball from the beam centre (m)

v velocity of the ball along the tangent m/s

a acceleration of the ball along the tangent m/s
2

ω angular velocity of the rolling ball (rad/s)

T torque on ball (Nm)

Table 6-2. Parameters used in the mathematical model of the ball-balancing beam.

In the model of the beam as shown in Figure 6-6, the beam position was measured as an

angle φ (phi) from horizontal, and the ball position was measured as an angle θ (theta)

from the centre of the beam.

109

Figure 6-6. Diagrammatic representation of the angles θ and Φ in the ball-balancing beam.

In the free body diagram of the ball as shown in Figure 6-7, the ball is shown on the

tangent to the beam. The three forces on the ball are its weight force W, the reaction

force P of the beam on the ball and the friction force F. The direction of the friction

force assumes the ball was travelling to the right, moving down the beam.

Figure 6-7. Diagrammatic representation of the three forces applied to the ball on a slope.

From Newton’s second law of motion, the resolving forces parallel to the tangent gave

the ball acceleration:

)sin(θφ ++−= WFma
Equation 6-10

The forces perpendicular to the tangent are not used in this analysis. Assuming the ball

was rolling, the rotational motion of the ball is given by:

110

 Equation 6-11

The relationship between the ball’s linear and rotational motion is:

ω&ra = Equation 6-12

Eliminating F and ω& and replacing W by mg:

)sin(
2

θφ ++−= mg
r

Ia
ma Equation 6-13

The relationship between the ball’s distance from the centre of the beam and its angle

from the centre is:

θRx = Equation 6-14

so that

θ&&&& Rxa == Equation 6-15

Eliminating a between 4 and 5:

)sin(
2

θφθ ++=






 + mgR
r

I
m && Equation 6-16

Hence

)sin(

1
2

θφθ +








 +
=

mr

I
R

g
&&

Equation 6-17

This can be written as

)sin(θφθ += A&& Equation 6-18

where








 +
=

2
1

mr

I
R

g
A

Equation 6-19

Note that A is a positive constant. When ∅ � � is greater than zero the ball accelerates
to the right and when	∅ � � is less than zero, the ball accelerates to the left. This shows
the inherent instability in the beam with the inverted curve.

FrI =ω&

111

If the angles θ and φ are small then

)(θφθ += A&& Equation 6-20

The stepper motor can directly control the rate of change of the beam angle (φ&) which

indirectly controlled the beam angle (φ).

For the actual beam % was found experimentally by rolling the ball down a stationary
beam. % was found to be twelve.

6.2.3 Ball-balancing beam simulation mathematical model

To simplify the simulation calculations, Equation 6-20 was converted to the following

units, corresponding to the parameters actually measured by the sensors on the beam.

Where

x - ball position from the position sensors (-19 to +19)

b – beam position from horizontal in units of the stepper motor pulses (-135 to

+135)

v – ball speed = �" 		(-1 to +1)
d – distance between ball sensors

δ - change of beam angle for a single pulse.

� � &�
' Equation 6-21

∅ � () Equation 6-22

&��
' � %�() � &

' �� Equation 6-23

�� � %� � %('
&) Equation 6-24

�� � � � 12� � 2.8) Equation 6-25

The simulation calculates

-./� � - � �0 Equation 6-26

112

�./� � � � -0 � �0
2 Equation 6-27

Substituting in the value for acceleration from Equation 6-25 and using a time period of

1ms

�./� � � � -
102 �

12� � 2.8)
2x104 Equation 6-28

Changing to integer with divisors to the power of 2

�./� � � � 1049-
2 7 � 101� � 24)

2 8 Equation 6-29

Thus we can find the new ball position.

The ball velocity can be found from its current velocity plus its acceleration. Replacing

acceleration with empirical data and using a time step of 1ms

-./� � - � 12� � 2.8)
102 Equation 6-30

Changing so divisor is a multiple of 2

-./� � - � 786� � 184)
2;4 Equation 6-31

Note the simulation’s values chosen for the divide where carefully chosen to represent a

number equating to a power of 2, this meant that the hardware description language

synthesis could use left shifting or other minimization techniques, rather than a divide

function. The RTL viewer in Quartus allows the user to see a schematic of the internal

structure of the design net-list. An investigation of the hardware simulation that was

generated by Quartus showed that no dividers where used in the circuit, and only five

signed multipliers where used. The rest of the circuit was comprised of multiplexers and

comparators.

113

Chapter 7

Chapter 7: Evolving Lookup Tables for Robotic Controllers

This chapter presents a novel approach of using a genetic algorithm to evolve a lookup

table which was used as a controller for robotic applications. Experimentation was

performed on two robotic platforms, the mobile inverted pendulum and the ball-

balancing beam.

In chapter five, a literature review of the mobile inverted pendulum and the ball-

balancing beam was carried out. This review described current research on the actual

modelling of these systems and the control systems used to balance them. These control

systems included PID, fuzzy logic and artificial neural networks. In the past, most of the

research that used genetic algorithms to evolve the control systems for robotic

applications was performed on evolving either an artificial neural network or a fuzzy

logic controller. With regard to artificial neural networks, the genetic algorithm was

used to evolve the weightings and neural pathways. In the case of a fuzzy logic

controller, the genetic algorithm had been applied to the input and output membership

functions and the fuzzy rules base.

As an alternative to using PID, artificial neural networks or fuzzy logic controllers for

robotic control, the author of this research has taken the unusual approach of basing the

controller on a multidimensional lookup table. The axes of the lookup table were

connected to the robot’s input sensors providing the current state of the robot, such as

its position or speed. The parameter at each position within the lookup table gave the

desired action that the robot should take, and this parameter was sent to the robot’s

actuators (for example a motor). In this way the lookup table could be used to provide

an output which controlled the actions of the robot dependent on its input states.

If used in a conventional way, the use of a lookup table for a robotic controller would

require the initialization of the lookup table with the appropriate parameters before use.

These parameters could be derived from standard mathematical models and control

algorithms, such as PID control for the robot. However in this application the lookup

114

table was initially loaded with random values and a genetic algorithm was used to

evolve the appropriate lookup table parameters for the system to function.

Two robotic controllers, the mobile inverted pendulum and the ball-balancing beam,

were evolved using a software genetic algorithm applied to a lookup table. A block

diagram of the complete system is shown in Figure 7-1. The system contained a

graphical user interface for a dynamic visual representation of the robot, control of the

evolutionary process, and data logging to record the evolutionary steps. The outputs of

the simulation presenting the current states of the robot were connected to the axis of

the multidimensional lookup table. The parameters at the specified position within the

lookup table were sent to the inputs of the simulation to control the actions of the

simulated robot. The software genetic algorithm used the lookup table itself as a

chromosome, and evolved a population of these lookup tables until a solution was found.

Figure 7-1. Block diagram of the systems and interconnections for the software genetic algorithm

used to evolve a lookup table.

115

7.1 Evolving Lookup Tables for the Mobile Inverted Pendulum

The main difficulties in the field of evolutionary robotics are that:

• initial chromosomes can be destructive to the robot and its environment;

• initial chromosome populations have very little selective pressure as they all

perform poorly making the beginning phase of the evolutionary process slow

(this is known as the bootstrap problem [159]);

• robotic tasks are complex, creating a large search space and subsequently a large

amount of time is required to evolve a controller.

Robotic simulation is used to overcome the first two issues of destruction and selective

pressure. The problem of a large search space can be diminished by either using coding

methods to reduce the chromosome size and thus the search space, or by using

subsumption architecture where individual behaviours of the robot are evolved

independently of each other before being combined together. In this application

subsumption architecture was employed with balancing the first behaviour to evolve.

Future behaviours such as navigation or autonomy could then be independently evolved.

This experiment used a genetic algorithm to evolve a controller for a mobile inverted

pendulum. The experiment used subsumption behaviours, where layers of behaviour

were evolved separately and then combined to create more complex behaviours. The

first evolved behaviour was to keep the pendulum balanced while moving only on the x

axis. This was achieved by keeping the drive to each wheel the same value, thus

removing the yaw, and it was operated on a flat surface so the roll had been removed.

The mathematical model of the mobile inverted pendulum moving on the x axis has

been described in chapter six. The pendulum states that were used, were the pendulum

angle θp, angular velocity ωp, and horizontal position x. The following sections detail

the graphical user interface, chromosome and genetic algorithm used to evolve the

robotic controller.

7.1.1 Graphical User Interface

The graphical user interface shown in Figure 7-2 presents a diagrammatic representation

of the pendulum and numerical displays of the pendulum’s current state. The

evolutionary processes such as current generation, individual number, average fitness

and maximum fitness were also displayed. These parameters were automatically saved

116

to a file for later analysis. When enabled, the motion of the pendulum could be

displayed in real time, although this slowed down the evolutionary process and was

normally turned off. In a similar manner the pendulum and evolutionary parameters

could also be displayed in real time. Both the best individual’s fitness and average

population fitness were automatically recorded at the end of every generation. In

addition, the best individual chromosome and the motion of the pendulum could also be

recorded. This motion showed the pendulum’s angle and angular velocity, giving the

positions in the lookup table that the individual stepped through as its fitness was

evaluated. This data allowed the lookup table (chromosome) to be monitored as the

chromosome was evolving, to see: a) what parts of the lookup table the individual

passed through as it was evaluated; b) where it spent most of its time; and c) what

caused the individual to fail the evaluation.

Figure 7-2. Graphical user interface used for the mobile inverted pendulum software genetic

algorithm.

117

7.1.2 Genetic Algorithm

Chromosome

A chromosome is a possible solution to a problem. In regard to the pendulum, the

chromosome was a two dimensional lookup table as shown in Figure 7-3, which related

the angle and angular velocity of the pendulum to the required motor direction and

torque. The columns represent the pendulum’s current angle ranging ±18 degrees from

vertical with a step size of 3 degrees. The rows represent the pendulum’s current

angular velocity ranging ±30 degrees per second with a step size of 5 degrees per

second.

Figure 7-3. Pendulum chromosome in the form of a two dimensional lookup table.

The simulated pendulum’s output states of angle and angular velocity were linked to the

two dimensional arrays column and row selections. The parameters inside the lookup

table, which showed the required motor direction and speeds for a given angle and

angular velocity, were connected to the simulated drive motor of the pendulum. The

motor driver for the actual pendulum was an H-bridge driver controlled by an eight bit

number. This number was a linear representation of the motor direction and torque, with

0 representing the maximum reverse torque, 125 representing the motor stopped and

250 representing the maximum forward torque. These values were mimicked in the

chromosome. The step size was 25, allowing a maximum of 11 possible motor torque

settings, 5 forward, 5 reverse and 1 stopped.

118

The search space for this chromosome can be calculated by Equation 7-1. This equation

relates the number of positions in the lookup table (169 positions), with the number of

possible speeds (eleven speeds), giving a total search space of 11
169
 = 9.9 x 10

175
.

positionstableofnumberspeedsofnumberspacesearch ______ = Equation 7-1

Reproduction

The chromosome reproduction used a two point crossover scheme where two points

within the parent’s chromosome were randomly chosen and the gene code of the two

parents between these two points swapped to create two offspring as shown in Figure

7-4.

Figure 7-4. An example of two point crossover on the pendulum chromosome.

To generate two point crossover, four points were selected. These were the column and

row at the start of the crossover, and the column and row at the end of the crossover. To

find the first starting points, two random numbers between the values of one and

119

thirteen were generated. To find the two end points, two random numbers between the

starting points and thirteen (the number of rows and columns) were generated. Creeping

mutation was then applied to the newly generated offspring to maintain population

diversity. Creeping mutation is a mutation technique where the gene is replaced with a

value within a limited range of the original non-mutated value. On each generation after

crossover was performed, five of the hundred individuals were chosen for mutation. A

mutation of ten randomly positioned genes within the individual chromosome was

performed.

Selection

The selection process used was tournament selection. This process divides the

population into subgroups of individuals, and after fitness evaluation, only the fittest

individual within that subgroup is retained. The selection pressure in tournament

selection is dependent on the subgroup size. If the subgroup size is large then only a few

individuals in the total population will be retained after each generation, thus the

selection pressure will be high. However with a high selection pressure over time, there

will be a corresponding drop in chromosome diversity, increasing the possibility of the

evolutionary process becoming trapped in local maxima. As the size of the subgroup

decreases, more of the total population of individuals will be retained. Thus the

selection pressure will decrease, while the population diversity will be maintained. The

selection process in this experiment had a subgroup size of two, giving low selection

intensity while maintaining a diverse chromosome pool.

The genetic algorithm stepped through the population of individuals, selecting two

individuals that were adjacent to each other and removing the individual with the lower

fitness. When the selection process was completed the order of population was shuffled,

allowing reproduction to occur from different parents after each generation.

7.1.3 Simulation and Coding Structure

The simulation used floating point numbers for the pendulum angle and angular

velocity. These numbers were required to be converted to the x-y coordinates of the

lookup table (zero to twelve). A flow chart illustrating the interaction between the

simulation and the lookup table is shown in Figure 7-5. The simulation ran until an

angle or angular velocity boundary was reached. The simulation then gave the current

floating point values for the pendulum’s angle and angular velocity to a subroutine,

120

which converted these parameters to the lookup table axis, to provide a new motor

speed. A new angle and angular velocity boundary was generated and passed to the

simulation.

Figure 7-5. Flow chart of the simulation’s interaction with lookup table.

The basic coding structure showing the iteration of reproduction, fitness evaluation and

selection that is performed by the genetic algorithm is provided below.

main()

{

initialise_population();

record_parameters(); // store the maximum and average fitness, and generation

do

{

procreate(); // perform crossover and mutation

terminated = find_fitness(); // run simulation over a range of start conditions

 // can also record the pendulum motion

best_fitness = selectiont(); // perform tournament selection

if(generation%5 == 0)

record_parameters(); // store the max & av fitness, and generation

if (store_chromosome)

 record_chromosome() ; //store the chromosome population

if(store_motion)

 record_motion(); // store the motion of the pendulum

generation++;

} while (generation <= 500 && !terminated); //

record_parameters(); // store the maximum and average fitness, and generation

}

7.1.4 Fitness Evaluation

The main component of the fitness evaluation was the length of time that the pendulum

remained upright within a set angle. However after initial experiments, other fitness

evaluation criteria were included, allowing the evolutionary process to produce an

121

increased performance of the pendulum with a more robust robotic controller. The final

fitness was determined by the length of time that the pendulum remained within a

vertical angle ranging from ±18 degrees and within a horizontal position ranging from

±0.5 meters of its start position.

Two experiments were performed, each with a different range of pendulum starting

angles. The first had a pendulum starting angle ranging from ±18 degrees, with 12

starting angles each spaced 3 degrees apart. The beam was not tested at the vertical

position as starting an ideal simulation of a pendulum at zero degrees and zero angular

velocity with zero motor speed would give this starting position a perfect score. In real

life this could not occur as there would always be a slight pendulum angle or angular

velocity. The second experiment had a pendulum starting angle ranging from ±12

degrees with eight start angles each spaced 3 degrees apart. Once again no test was run

with a pendulum starting angle of zero degrees.

The fitness evaluation of each individual was stopped after 300 seconds if the pendulum

had not moved outside either the maximum vertical or horizontal range within this time.

A time of 300 seconds (five minutes) was considered to be a thorough assessment,

giving a high probability that the pendulum would remain balanced indefinitely. Each

individual was tested twelve times from twelve different start angles; these times were

summed and then divided by twelve to give the average time that the pendulum had

remained balanced. This was performed in a similar manner for the experiments with

eight starting angles ranging from ±12 degrees.

The process of determining the fitness criteria was modified during experimentation to

improve the behaviour of the evolved pendulum. This fitness criteria were modified in

the following manner. The original genetic algorithm had the pendulum starting from

only one angle. An investigation on the evolved chromosome found that only a limited

part of the lookup table would evolve. This occurred as the pendulum would learn to

balance from its initial offset starting angle. However the pendulum did not learn how to

balance from other initial start conditions. To prevent this from happening, the same

individual was evaluated over 12 starting angles, ranging from ±18 degrees with a step

size of 3 degrees. The starting angular velocity was 0.

After modification of the original fitness evaluation criteria, experimentation began

again. A further study of the pendulum’s horizontal motion found that the pendulum

122

would remain upright, however it would develop a constant forward or backward

momentum, i.e. the pendulum would maintain a fixed balance point that required a

constant horizontal motion moving the pendulum away from its starting position. It was

determined that this was a poor characteristic and it was penalized by terminating the

experiment when the pendulum moved beyond ± 0.5 meters from the initial horizontal

starting position. Thus the fitness for each individual was now determined by both its

ability to balance the pendulum and to remain stationary.

Further experimentation found that some fitness evaluations would last an indefinite

period of time. This was a good result for one individual at one starting point, however

the fitness evaluation would never end and the evolution process would stop. To

overcome this, all fitness evaluations were terminated after a 300 second interval, thus

the maximum fitness that the controller could achieve would be five minutes.

A final investigation of the lookup table found that the parameters at the extreme

positions of the table did not evolve to the value expected from the mathematical model;

with a motor speed at a maximum forward or reverse torque. An investigation of the

pendulum’s motion found that at the ranges of ±18 degrees the motor, even at maximum

torque, did not have enough power to bring the pendulum upright. Thus the extremities

of the lookup table would not evolve as there were no values that would offer a

significant difference in fitness.

7.1.5 Results

Idealised lookup table

An ideal chromosome was derived from a standard control system algorithm with a

linear progression of motor torque values dependent on the angle and angular velocity.

When the pendulum angle and angular velocity was zero, then the motor would be

stopped, with a motor parameter of 125. As the pendulum angle moved towards -18

degrees, the motor parameter moved towards 200 (nearly full left). As the pendulum

angle moved towards +18 degrees, the motor parameter moved towards 50 (nearly full

right). In both cases the motor was being driven in a direction that would return the

angle of the pendulum to zero. A corresponding pattern occurred with the angular

velocity. It was expected that the evolved chromosome would look like the ideal lookup

table as shown in Table 7-1.

123

Angular Velocity (degrees/second)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

-18 225 200 200 200 200 200 200 175 175 175 175 175 150

-15 200 200 200 200 175 175 175 175 175 175 150 150 150

-12 200 200 175 175 175 175 175 150 150 150 150 150 150

-9 175 175 175 175 175 150 150 150 150 150 150 125 125

-6 175 175 175 150 150 150 150 150 125 125 125 125 125

-3 175 150 150 150 150 150 125 125 125 125 125 125 100

0 150 150 150 150 125 125 125 125 125 100 100 100 100

3 150 125 125 125 125 125 125 100 100 100 100 100 75

6 125 125 125 125 125 100 100 100 100 100 75 75 75

9 125 125 100 100 100 100 100 100 75 75 75 75 75

12 100 100 100 100 100 100 75 75 75 75 75 50 50

15 100 100 100 75 75 75 75 75 75 50 50 50 50

18 100 75 75 75 75 75 50 50 50 50 50 50 25

A
n
g
le

(d
e
g
re
e
s
)

Table 7-1. An example of an ideal pendulum chromosome.

This ideal chromosome was run on the simulation, but when assessed it performed

poorly, failing the test after less than one second. A review of the recorded pendulum’s

motion showed the reason for failure was that even though the pendulum moved to an

upright position and could achieve balance, it did not become vertical quickly enough to

avoid a horizontal drift within the required ±0.5 meter distance from starting. From this

it could be seen that a successful chromosome would require motor torque settings that

quickly moved the pendulum to a vertical position, and maintained that vertical position

while keeping the pendulum within the horizontal boundary. Further investigation found

that the motor torque was not strong enough to pull the pendulum upright within the

±0.5 meter boundary from start angles of ±18 and ±15.

Two groups of experiments were performed: one with a pendulum starting angle

ranging from ±18 degrees, the second with a starting angle ranging from ±12 degrees.

The population size was 100 with the starting population randomly generated. During

the evolutionary process three events were recorded and analysed. These were:

• the fitness and chromosome of the best individual within the population;

• the average fitness of the population;

• the pendulum motion.

124

Results starting angle from ± 18 degrees

A typical result is shown in Figure 7-6 with an initial large gap between the best and

average fitness, and then a convergence between these values with each generation. The

best fitness increased in large jumps as there was a step change in the best individual

within the large population. However the average fitness of the population gradually

improved until the complete population had approximately the same fitness. It was

thought at this point that the population had converged and diversity had been lost, with

only mutation producing new variations in offspring. However an investigation of the

population’s chromosomes found that diversity still existed with different patterns of

pendulum motion still being performed.

F
it
n
e
s
s
 (
s
)

Figure 7-6. Fitness relative to generation for pendulum starting angle ±18
0
 showing the best

individual and population average fitness.

The best individual fitness and average population fitness of several successful runs are

shown in Figure 7-7. It can be seen that the evolutionary process was similar over a

number of experiments with the beam able to balance for 100 seconds within 40

generations, making steady improvement after that with the best individual eventually

capable of balancing for 200 seconds. The upper limit for fitness was 300 seconds,

although this was not reached because the pendulum could not start at an angle less than

±12 degrees without moving outside its ±0.5 horizontal position before it could become

stable. This resulted in four of the test results behaving poorly, giving a maximum

overall possible fitness of 208 seconds.

125

Figure 7-7. Fitness relative to generation for pendulum starting angle ±18
0
 showing the best

individual and average fitness for multiple runs.

Results starting angle from ± 12 degrees

The experiments were repeated with the starting pendulum angle ranging from ±12

degrees. The fitness step response of the best individual and gradual improvement of

fitness for the population average was similar to the ±18 degree experiments as shown

in Figure 7-8. The difference between the two was the maximum fitness that could be

reached, changing from a maximum of 200 seconds to 262 seconds due to the reduced

extreme starting angles of the second range of experiments.

Figure 7-8. Fitness relative to generation for pendulum starting angle ±12
O
 showing the best

individual and the population average.

126

Figure 7-9 shows the best individual fitness over several runs. It can be seen that the

population has distinct stages to its evolution. The initial stage has a rapid increase in

levels up to a balance period of 50 seconds and then step changes after that point. Then

a plateau occurs at 150, 180, 220 and 262 seconds. These plateau are explained by the

starting angles that are nearest to 0 degrees can be easily evolved, while the starting

angles further away from the upright position require a large initial response to avoid

the ±0.5 meter penalty. These are then evolved separately which are indicated by the

large steps at these points.

Figure 7-9. Fitness relative to generation for pendulum starting angle ±12
0
 showing the best

individual with multiple runs.

Figure 7-10 shows the best individual fitness and associated average fitness of the

population over several runs. It can be seen that the best individual and average

population fitness converge over 50 generations, then a resultant better fitness is found

and there is a divergence in the best and average fitness. These eventually come

together until the next leap in best fitness. An examination of the chromosomes

indicated that the diversity was maintained, with a range of possible solutions being

presented with different motions of the pendulum for each chromosome.

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500

F
it
n
e
s
s
 (
s
)

Generation

127

Figure 7-10. Fitness relative to generation for pendulum starting angle ±12
0
 showing the best

individual and population average with multiply runs.

Pendulum motion

The graphical user interface could record the motion of the pendulum during the

simulation. This allowed the pendulum’s access of the lookup table to be investigated

showing the pendulum angle, pendulum angular velocity, and the corresponding motor

parameters of direction and speed. The pendulum motion was analysed using a

successful chromosome so the characteristics of the pendulum motion in relation to its

chromosome could be observed.

The characteristics of a successful chromosome were that the pendulum would quickly

be brought to an upright position, which prevented the pendulum from moving out of its

±0.5 meter horizontal limit. Two different characteristics of the pendulum motion were

seen. Firstly, the pendulum would jitter around a static horizontal position so that

horizontal drift was eliminated. Secondly, the pendulum would have a slow horizontal

drift in one direction and then kick back to the start to begin the slow horizontal drift

once again. It was noted that the pendulum did not use the entire lookup table; instead it

would move through a set path which would be endlessly repeated. It was also observed

that successful chromosomes differed from each other as there were many different

possible means of successfully balancing the pendulum.

Interestingly the pendulum did not fail a test by exceeding its angular limit. Instead the

termination of a test run was due to either the pendulum running to the time limit, or the

128

pendulum accumulating a small horizontal drift that over a long period of time would

take the pendulum outside the ±0.5 meter horizontal limit.

A successful chromosome is shown in Table 7-2. An investigation of the parameters

within the lookup table showed that at an angular velocity of zero, the motor was driven

harder to the left as the angle moved towards -18 degrees, and harder to the right as the

angle moved towards +18 degrees. This was the initial kick that the pendulum got at the

beginning of its test.

The evolved chromosome had a non-linear progression between cells, thus the path that

the pendulum took through the chromosome was highly convoluted. Some of the cells

would seem to have incorrect values according to their angle and angular velocity;

however adjacent cells compensated for the incorrect settings. It was this erratic

sequence of motor torques that created the jitter and corresponding horizontal stability.

Angular Velocity

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

-18 50 100 225 0 50 175 25 100 50 150 200 50 125

-15 25 250 25 125 0 0 50 125 75 175 250 225 100

-12 175 150 25 25 25 225 75 75 0 175 25 100 75

-9 250 25 25 25 150 0 100 75 0 200 50 50 100

-6 25 125 150 75 150 175 75 25 125 0 100 50 0

-3 100 175 0 150 25 50 0 25 25 0 100 25 225

0 225 100 100 150 25 250 75 150 200 50 100 200 100

3 225 75 75 125 100 250 225 100 225 100 250 0 100

6 200 225 200 175 225 225 0 200 175 100 0 150 25

9 250 150 200 100 175 0 225 125 200 25 175 150 100

12 225 225 175 200 225 125 225 225 150 200 25 225 150

15 250 250 250 225 125 250 200 225 125 125 225 250 250

18 50 250 50 50 75 150 250 250 100 0 175 200 200

A
n
g
le

Table 7-2. An example of a pendulum’s evolved chromosome showing the relationship between

angle and angular velocity with the motor speed output.

The best chromosomes from several evolutionary runs were compared and it was found

that the chromosomes differed even though they had a similar fitness. This was due to

the random initial chromosomes and the many possible successful solutions that could

be evolved.

129

7.1.6 Conclusions

This first experiment has described a novel method in which a lookup table based

robotic controller for a simulation of a mobile inverted pendulum controller could be

evolved to a point where an acceptable level of balance was achieved. It was found that

the genetic algorithm produced a controller capable of balancing the pendulum for 200

seconds within 200 generations (starting angle ranging from ±18
0
) and for 262 seconds

(starting angle ranging from ±12
0
). The fitness evaluation was an important parameter

of the evolutionary process as it determined the final behaviour of the pendulum. In the

case of the mobile inverted pendulum, without a fitness penalty the pendulum would

remain balanced but have an unwanted continuous horizontal motion. It was found that

the population of individuals, though having the same fitness level had not lost diversity;

instead multiple paths to obtaining a balanced pendulum were found.

A conference paper and a book chapter were published on using a lookup table to

evolve a controller for the pendulum (see chapter 1). The simulation and graphical user

interface can be found in the CD accompanying this thesis.

130

7.2 Evolving Lookup Tables for the Ball-Balancing Beam

The second experiment investigated the use of a genetic algorithm to evolve a ball-

balancing beam controller by evolving a population of three dimensional lookup tables

used to control the beam motor. The beam position, ball position and ball speed states of

the beam were used to determine which parameter within the lookup table would be

used to give the required motor speed and direction that would move the beam in a

motion that would balance the ball. The genetic algorithm was similar to that used by

the mobile inverted pendulum; however the search space was far larger due to the larger

size of the ball-balancing beam lookup table. A graphical user interface was developed

to record the beam and ball states, the chromosomes within the population, and the

genetic algorithm parameters such as best fitness within the population and the average

fitness of the entire population.

Historically a straight beam has been used for the ball-balancing beam, as it simplifies

the control system algorithms that are required to balance the ball. However in this

research the beam was curved, as this provided a more complex simulation model and

algorithm, and also meant that the ball would never reach a static stable state with the

motor stopped. The simulation was modeled around a ball-balancing beam that was

developed at AUT University for a student project, as shown in Figure 7-11. The

physical beam was curved; it had twenty-one infrared detectors to determine the

position of the ball; and a stepper motor to control the angle of the beam. The angular

velocity of the beam was controlled by the number of pulses fed into the stepper motor

per second. The maximum angular velocity was determined by the maximum pulse rate

that the stepper motor could respond to (125 pulses per second). The angular movement

of 0.22 degrees per pulse gave a maximum angular velocity of the beam as 27.5 degrees

per second.

The mathematical analysis for the ball-balancing beam has been described in chapter six.

This analysis was converted into a simulation model that employed fixed integers that

was used in the following chapters.

Figure 7-11. Picture of

7.2.1 Graphical User Interface

The graphical user interface is shown in

current ball position, ball speed, beam position, and th

remained balanced. A dynamic visual representation of the ball and beam in motion

could also be turned on

responding at various stages of

normally turned off as when

Evolutionary control buttons were used to start, pause, and terminate the evolutionary

process. The evolutionary parameters of generation number,

test, average fitness of the population

provided. A text display show

speed, the maximum fitness, average

taken for the evolutionary process. These

Picture of the ball-balancing beam developed in a student project.

Graphical User Interface

The graphical user interface is shown in Figure 7-12. This interface

position, ball speed, beam position, and the current time that the bal

A dynamic visual representation of the ball and beam in motion

also be turned on or off, allowing the user to see how the ball and beam

responding at various stages of the evolutionary process. The visual representation

normally turned off as when it was on, the evolutionary process was slowed to real time.

Evolutionary control buttons were used to start, pause, and terminate the evolutionary

. The evolutionary parameters of generation number, current

average fitness of the population, and maximum fitness that has been reached was

A text display showed the number of speed settings, the

speed, the maximum fitness, average population fitness, generation number and time

taken for the evolutionary process. These values were stored for later analysis

131

balancing beam developed in a student project.

interface displayed the

e current time that the ball had

A dynamic visual representation of the ball and beam in motion

off, allowing the user to see how the ball and beam were

. The visual representation was

the evolutionary process was slowed to real time.

Evolutionary control buttons were used to start, pause, and terminate the evolutionary

current individual under

maximum fitness that has been reached was

, the maximum beam

fitness, generation number and time

for later analysis.

132

Figure 7-12. Graphical user interface for the ball-balancing beam controlled by an evolved lookup

table.

7.2.2 Genetic Algorithm

Chromosome

The heart of the controller was a three dimensional lookup table as shown in Figure

7-13. The lookup table contained the desired motor speed and direction required to drive

the motor in such a way as to balance the ball. The three dimensions of the lookup table

were linked to the ball and beam states. These were, ball position (nineteen inputs),

beam position (ten inputs), and ball speed (three inputs). Several lookup tables were

evaluated with a range of motor speeds varying from two to eleven. The elements of the

array were defined as char variables initialized with a randomly generated number

quantised into 11 discrete steps ranging from 0 to 250. This enabled each location in the

array to describe a motor speed with five left speeds, five right speeds and one stopped.

133

The speed range was reduced when evaluating different speeds by adjusting the

threshold so that the motor had limited speeds. For example with a two speed range,

values below 125 would drive the motor hard left, while values above 125 would drive

the motor hard right.

Figure 7-13. Balancing beam chromosome in the form of a three dimensional lookup table.

The search space for the range of motor speeds that were tested is shown in Table 7-3.

These figures were derived from Equation 7-1, with the number of positions in the table

set at 570 (10x3x19). The search space for the beam with its three dimensional array far

exceeded the search space that was used for the pendulum.

speeds search space

2 3.9 x 10
171

3 9.1 x 10
271

5 2.6 x 10
398

11 3.9 x 10
593

Table 7-3. Balancing beam lookup table search space.

b
a
ll
p
o
s
it
io
n

134

Reproduction

Two point crossover was used using the x-axis (ball position) and y-axis (beam position)

of the array as the positions within the array to be cut. The first cut points of the

crossover were determined by randomly choosing points between 0-18 and 0-9. The end

cut points of the crossover were determined by randomly choosing points between the

first cut points and the end of the array, 18 or 9. The chromosomes between these two

parents were swapped as shown in Figure 7-14. A mutation rate of two percent was

chosen, with every individual in the population being mutated after crossover occurred.

Figure 7-14. An example of reproduction of ball-balancing beam chromosome using two point

crossover.

Selection

The selection process used was similar to that of the mobile inverted pendulum. The

selection process was tournament with a group size of two, giving a moderately low

selection pressure but maintaining a higher diversity in the population after selection.

The selection process stepped through the population sequentially and compared the

fitness of two adjacent parents, keeping the parent with the higher fitness. After the

selection process was finished, the population was shuffled so that future selection

processes acted on different groupings of parents.

135

7.2.3 Simulation and Coding Structure

The simulation used the equations as shown in Equation 7-2 and Equation 7-3. The

derivation of these equations is described in chapter six. These equations were

configured for a one millisecond time period, with a new ball position and speed

calculated on each time step. Correspondingly the distance at which the beam moved

was set for the same time period. The maximum beam movement was calculated from

the real beam system, using two maximum motor speeds of 125 and 250 pulses per

second, or a beam angular velocity of 22.7 and 45.4 degrees per second. The simulation

used the motor speed and direction to calculate the new beam position. From this the

new ball speed and position was calculated for the next millisecond and then fed back to

the lookup table. The actual time that the ball was in motion was calculated from the

number of times the simulation was called using the one millisecond time period as a

reference.

�./� � � � 1049-
2 7 � 101� � 24)

2 8 Equation 7-2

-./� � - � 786� � 184)
2;4 	 Equation 7-3

The simulation kept the ball and beam parameters as a 32-bit integer number, which

needed to be converted to a value the lookup table could use. These values were

nineteen ball positions, ten beam positions and three ball speeds. Therefore a series of

if-else statements were used to convert the simulation integer numbers to the lookup

table requirements. In a similar manner, the motor speeds from the lookup table were

converted into a simulation value that was added to or subtracted from, the current beam

position to give a new beam position after one millisecond had passed.

136

Coding structure

main()

{

open data files and print number of speeds and motor speed

do

{

setup(); //create a randomized population and set the time

do

{

reproduce(); //perform crossover and mutation

find_fitness(); // call simulation to find the fitness all the individuals

selection(); //perform tournament selection

generation++;

if (!(generation %5))

store(); //store maximum fitness, average fitness, runtime

if (record_pop && (!(generation%50)))

record_population(); // store the population

} while(max_fitness < 300000); //repeat test until maximum fitness is reached

if (record_last_run)

record(); //store the chromosome of the best individual and replay it

repeat_test++;

} while (wanted_tests != repeat_test); // repeat evolutionary process

}

7.2.4 Fitness Evaluation

The individual’s fitness was determined by how long the ball remained balanced on the

beam before hitting either end-stop. At the start of each test, the beam was placed in the

horizontal position and the ball was at rest. The simulation was then run until either the

ball hit an end-stop or 60 seconds had passed. Each individual was tested seven times

with the ball positioned at seven different locations on the beam, giving a combined

total maximum fitness for each individual of 420 seconds.

7.2.5 Results

Initial experiments employed a two dimensional lookup table which used only the beam

and ball positions. It was found that this information alone was not enough to provide a

successful evolution, so the lookup table was modified to provide for a third parameter

incorporating speed.

137

Two ranges of experiments were performed with two maximum stepper motor pulse

rates. The first used 125 pulses per second which equated to a maximum beam angular

velocity of 22.7 degrees per second. This was the speed of the actual beam motor and

was at the limit at which the beam could control the ball. The second experiment used

250 pulses per second which equated to a maximum beam angular velocity of 45.4

degrees per second. For each experiment, four ranges of motor speeds (two, three, five

and eleven speeds) were evaluated.

The first experiments used eleven start positions ranging from ±18 degrees relative to

the top of the beam. Initial experiments showed that the fitness level never reached the

maximum fitness. Under investigation it was found that the motor could not move the

beam quickly enough to prevent those balls starting at the extreme angles from

immediately hitting an end-stop. The experiment was changed to seven ball starting

positions ranging from ±12 degrees relative to the top of the beam, with each individual

tested seven times. A run was successful when the ball was balanced for 60 seconds,

giving a combined total maximum fitness for each individual of 420 seconds.

Evolutionary stages

The graphs for these runs are presented in Figure 7-15 through to Figure 7-18. They

show the relationship between the fitness of the best individual within the population

and the number of generations for the four ranges of motor speeds. The graphs show

step changes in the fitness level as the evolution progresses. These step changes

occurred at fitness levels in the region of 180, 240, 300, and 360 seconds. These values

were linked to the number of starting positions of each test and the 60 seconds that each

test was performed. For every start position the beam evolved a behaviour that would

bring the ball to a stable state before it reaches and end-stop. It was a simpler task to

bring the ball to a stable state when the ball was started near the center of the beam, and

therefore these evolved solutions were found first. The latter solutions with the ball

started further from the center of the beam were harder to find, causing the fitness to

plateau at these levels.

It can be seen from the graphs that the experiments with only two motor speeds evolved

to successful solutions in less generations and time than the other speeds. This was

partly due to the fact that the two speed chromosome required a reduced search space,

as well as only using the motor at a maximum speed.

138

Figure 7-15. Fitness relative to generation using two motor speeds with at 8ms pulse rate showing

multiple runs.

Figure 7-16. Fitness relative to generation using three motor speeds at 8ms pulse rate showing

multiple runs.

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

F
it

n
e

ss
 (

s)

Generation

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

F
it

n
e

ss
 (

s)

Generation

139

Figure 7-17. Fitness relative to generation using five motor speeds with at 8ms pulse rate showing

multiple runs.

Figure 7-18. Fitness relative to generation using eleven motor speeds at 8ms pulse rate showing

multiple runs

The motion of the ball and beam was observed in different stages of the evolutionary

process using the graphical display. The stages were shown as:

• the ball would roll towards the beam end-stops with little or no beam motion;

• the beam would react to the ball movement, reversing the motion of the ball,

however the ball would then roll to the opposite end-stop;

• the beam moved in an oscillating pattern, causing the ball to stay balanced in

between two points (however after five to ten seconds the ball would break free

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

Fi
tn

e
ss

 (
s)

Generation

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

Fi
tn

e
ss

 (
s)

Generation

140

and gather too much speed for the beam to prevent the ball from hitting an end-

stop);

• in the final stage of evolution, the beam was able to keep the ball trapped

between two points for the full sixty seconds.

This characteristic oscillation of the beam was seen in all motor speed ranges. With only

two speeds, the beam moved in rapid oscillations to keep the ball steady. However with

a larger number of speeds, the beam would move at a slower pace. Eventually the beam

evolved to keep the ball rocking between two points for all seven start positions, using

an oscillating motion of the beam.

It can be seen from the graphs that there were two main plateaus in the fitness level near

320 and 360 seconds. These plateaus can be explained by the two start positions at the

furthest point from the center of the beam. These were the most difficult points at which

to bring the ball to a stable oscillating condition, as the ball tended to gather a high

speed and was difficult to capture. This plateau was more noticeable when the

experiment used five and eleven motor speeds.

For the five and eleven motor speed range, the ball would not be balanced in the middle

of the beam. Instead it would be gently moved to either end of the beam and kept

centered around that point. This trait can be explained by the way the ball position was

determined. The position of the ball was determined by the ball sensors, and as the

position of the ball is able to be determined between sensors as well as across a sensor,

there are far more ball positions than the nineteen required for the lookup table. Thus

the ball position is determined over a range of sensors. This range was unevenly spaced

with the spacing placed closer together at the ends of the beam and further apart in the

middle of the beam. This was done because it was thought that determining the ball’s

position and speed was more critical near the beam ends. Unintentionally however, this

gave the evolved controller the best location of the ball and its speed near either end of

the beam. Subsequently the evolved controller used the end locations to balance the ball.

This characteristic was not seen with the two and three motor speeds experiments.

As a simulation was used, when a test was started with the ball motionless in the center

of the upright beam, the evolved solution kept the motor off, so the ball stayed perfectly

balanced for the duration of the test. This trait was not seen for the two speed range as

the motor could not be stopped, instead the beam would move the ball to a stable

position.

141

Evolved chromosome

An investigation of successfully evolved chromosomes and the corresponding sequence

of beam and ball motions showed different patterns for each evolved chromosome. This

was due to there being multiple ways of successfully balancing a ball. A successful

evolution did not use a large part of the parameters in the lookup table, especially at the

extreme values of beam and ball positions. The ball simply tracked to a position on the

beam, and beam oscillations around that point kept it in place.

A comparison of the maximum and average fitness showed the maximum fitness

increased in steps with the average fitness converging when the maximum fitness

reached a plateau. At each plateau it was thought that as all the population had the same

fitness, the population diversity had been lost. However an investigation of each

chromosome revealed that this was not the case. This was confirmed by observation of

the beam and ball motion at the plateau points. The evolution produced multiple

solutions, although no individual chromosome had found a solution that would balance

the ball when started in either, or both, its first and last start position. Eventually this

solution was found and the evolution was completed.

Figure 7-19. Fitness relative to generation for maximum and average fitness, with eleven motor

speeds and at 8ms pulse rate.

Several hundred experiments were performed on both maximum motor pulse rates and

speed ranges. Table 7-4 provides a comparison of these results showing the average

fitness, number of generations, and time the evolution was in progress at the end of a

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

F
it

n
e

ss
 (

s)

Generation

Maximum Fitness

Average Fitness

142

successful evolution. From this table it can be seen that the faster motor and minimum

number of motor speeds had the best results in terms of the number of generations and

the time taken to come to a successful evolution. It was noted that the time taken for the

five and eleven motor speeds to successfully evolve was also acceptable despite the

much larger search space. The reason for this was because the actual search space was

reduced by: a) the ball did not travel on all places on the beam, learning to quickly come

to a stable position; and b) not all the possible speeds were used, with a tendency to use

the higher motor speeds.

speed range generation av fitness time (s) generation av fitness time (s)

2 118 347726 197 42 268456 35

3 268 364240 592 56 327891 76

5 398 357240 3624 98 351811 297

11 861 359427 25794 103 349563 467

8ms stepper motor pulse rate 4ms stepper motor pulse rate

Table 7-4. Comparison of the average fitness, average number of generations and the average time

taken for a chromosome to evolve.

A comparison of the four motor speeds for the 8ms and 4ms maximum motor pulse

rates are shown in Figure 7-20 and Figure 7-21. From these graphs it can be seen that

doubling the motor pulse rate had a significant improvement on the ability of the system

to evolve, especially at the five and eleven speed range. The fitness plateau at 320 and

360 seconds is clearly illustrated. All the solutions had difficulty with one or both of the

extreme starting points.

Figure 7-20. Fitness relative to generation for the four motor speeds at 8ms pulse rate.

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

F
it

n
e

ss
 (

s)

Generation

2 Speeds

3 speeds

5 speeds

11 speeds

143

Figure 7-21. Fitness relative to generation for the four motor speeds at 4ms pulse rate.

7.2.6 Conclusions

It has been demonstrated that a robotic controller for a ball and beam system based on a

three dimensional lookup table can be successfully evolved. While both motor pulse

rates and all motor speed ranges were capable of being evolved to keep a ball balanced

for a combined time of more than five minutes, the best evolutionary performance was

achieved using a limited number of motor speeds and a higher motor pulse rate. The

average time taken to evolve the circuit was dependant on the maximum speed of the

motor and the number of speeds that were used. The evolution found the most difficult

point of balance was when the ball was started at the angles furthest from the beam

centre. This was mainly due to the slow beam motor and correspondingly slow beam

angular velocity, making it difficult to stop the motion of the ball before it hit an end-

stop.

A conference paper was accepted for this section on evolving a lookup table robotic

controller for a ball-balancing beam with a recommendation for best paper award, and

recommendation of journal publication (see chapter 1). The simulation and graphical

user interface can be found in the CD accompanying this thesis.

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

Fi
tn

e
ss

 (
s)

Generation

2 speed

3 speed

5 speed

11 speed

144

Chapter 8

Chapter 8: Evolving a Fixed Layer Virtual FPGA for Robotic

Controllers

This chapter describes how a hardware genetic algorithm was used to evolve a virtual

FPGA based controller that controlled the motion of a simulated ball-balancing beam.

The virtual FPGA was structured on a Cartesian architecture, with a two dimensional

array of logic elements layered in four columns. The functionality of these logic

elements and the routing between them was defined by a configuration bit stream. A

hardware genetic algorithm was developed to evolve the virtual FPGA’s configuration

bit stream. It was found that after an average of 40,000 generations, the virtual FPGA

could be evolved to balance the ball on the beam for more than five minutes. The

simulation was modelled on a physical beam as described in chapter six and shown in

Figure 8-1. The concepts of hardware genetic algorithms and virtual FPGAs have

previously been discussed in chapter three.

Figure 8-1. The physical balancing beam that the simulation was modelled on.

Programmable logic devices such as a FPGA are programmed with a configuration bit

stream which describes the digital circuit that is to be implemented inside the FPGA. As

145

it is programmable, the FPGA is able to contain any digital circuit design providing

there are enough FPGA resources. The FPGA is comprised of two main parts: an array

of logic elements each containing a lookup table which can implement any logical

function, and routing which interconnects the logic elements. Both the function of the

logic element and the routing are configured by the configuration bit stream that

describes the circuit to be implemented. The digital circuits within the FPGA can be

evolved by a process called evolvable hardware which is a subset of evolutionary

computation. In contrast to evolutionary computation where the chromosome is a

possible solution, the chromosome in evolvable hardware is a possible circuit described

by the configuration bit stream. This bit stream can be modified by a standard genetic

algorithm and then downloaded into the FPGA. The ensuing circuit is tested for fitness,

which is used in the selection process to determine which chromosomes are kept. The

retained chromosomes are used to generate new offspring. This process is then repeated

until a suitable result is achieved, thus the hardware itself evolves.

As explained in chapter three, there are difficulties with directly evolving the FPGA

configuration bit stream. To avoid these problems a virtual FPGA was designed; this

mimicked a FPGA, was suited to evolution, and could be downloaded into a normal

FPGA. The FPGA contained both non-evolutionary circuits such as a processor or

hardware genetic algorithm and evolutionary circuits such as the virtual FPGA. The

virtual FPGA function was modified by its configuration bit stream which could be

downloaded either externally from a computer via an external FPGA pin, or internally

via an internal processor or hardware genetic algorithm.

The FPGA used for this experiment was the Altera cyclone EP1C12F324C8 FPGA

which was incorporated on the Altium Live Design Board (refer Appendix B).

8.1 System used in Experimentation

The aim of this experiment was to evolve a robotic controller based on a virtual FPGA

to balance a ball on a beam. The states of the simulated ball-balancing beam were

connected to the input of the virtual FPGA. The virtual FPGA used these inputs to

generate an output that was then used to control the simulated beam motor. A hardware

genetic algorithm was used to modify the configuration bit stream and thus evolve the

virtual FPGA. The complete system is illustrated in Figure 8-2 showing the NIOS

processor, the virtual FPGA and the hardware genetic algorithm. An RS232 serial

146

interface was used to connect a graphical user interface to the NIOS processor allowing

for control and monitoring of the evolutionary process.

Figure 8-2. Overview of the system used to evolve the fixed layer virtual FPGA.

The system within the FPGA was comprised of three major subsystems. These were:

• NIOS processor, which provided the robotic simulation, fitness evaluation,

control of the evolutionary process and data transfer of the results to the

graphical user interface.

• Virtual FPGA, which was an evolutionary capable digital circuit using a four

layer Cartesian based architecture with a programmable logic element at each

node.

• Hardware genetic algorithm, comprised of memory storage, random number

generation and chromosome mutation capabilities, which was used to evolve the

configuration bit stream of the virtual FPGA.

The calculations for the simulation of the ball-balancing beam based on the model are

provided in chapter six. The simulation had thirty-two outputs to match the thirty-two

inputs of the virtual FPGA. These outputs were divided into nineteen ball positions, ten

beam positions and three ball speeds. They were connected to the virtual FPGA as a bit

sequence, in a similar manner as the actual physical beam would have supplied. For

example the ball positions used sensors that were only active when the beam was

broken, thus only one sensor was on at any one time. Subsequently only one bit of the

nineteen ball positions provided by the simulation was active at any moment in time.

This was duplicated for the ball speed and beam position bits, thus the thirty-two bit

output from the virtual FPGA only had three bits active at any point in time. The virtual

147

FPGA would pass these thirty-two bits through its configured logic elements and

routing, to provide a one bit signal to give a motor speed of either forward or backward

which was sent to the simulation.

The simulation was executed on the NIOS processor, running in one millisecond time

steps. On every time step it would read the direction of the motor speed from the virtual

FPGA, calculate the new ball position, ball speed and beam position, and send these

states back to the virtual FPGA. These steps were then repeated, allowing the virtual

FPGA to control the motion of the beam and ball. The hardware genetic algorithm used

only mutation to evolve the virtual FPGA configuration bit stream, utilizing the fitness

derived from the NIOS processor to determine which individuals in the population were

to be kept.

The interconnections between the four systems are shown in Figure 8-3. These were:

• the connection between the Quartus compiler and the Altera FPGA;

• the RS232 interface (57.6 kbps) between the NIOS processor and the graphical

user interface;

• the interface between the NIOS processor and the hardware genetic algorithm;

• the link between the simulation on the NIOS and the virtual FPGA;

• the configuration bit stream sent from the hardware genetic algorithm and the

virtual FPGA.

The NIOS processor ran the simulation of the balancing beam, and controlled the

process of the genetic algorithm via the control lines. It could also serially read out the

chromosome of the best individual using the reset chromosome counter, serial data, and

serial clock lines. The hardware genetic algorithm was configured as four units to match

the four layers of the virtual FPGA.

148

FPGA

hardware

genetic

algorithm

virtual

FPGA

computer

FPGA

IDE &

programmer

FPGA

configuration

GUI

control &

data logger

RS232

NIOS

processor

control

simulation 32 bits Beam State

4

4

serial data

serial clock

reset

replace xsome

reset xsome counter

mutate

motor control

config’n bit stream

Figure 8-3. Interconnections between the three systems within the FPGA for the ball-balancing

beam controller.

8.2 Fixed Layer Virtual FPGA

Initially the virtual FPGA was designed with sixteen inputs, using only the beam

position and ball position from the virtual FPGA. These sixteen inputs were broken into

fifteen beam positions and one input to indicate direction of ball motion (left or right).

When this system was evaluated it was found that the virtual FPGA could not be

evolved to balance the ball. An analysis of the results revealed that not only ball

position and ball direction were required, but also that the beam position and ball speed

were important components. The number of inputs to the virtual FPGA was increased.

These were split into ten inputs for the beam position, nineteen inputs for the ball

position and three inputs for the ball speed (indicating left, almost stopped or right). For

each of the three parameters only one of the inputs was active at any one time. To

accommodate the increased number of inputs, the first layer of the virtual FPGA was

expanded from sixteen to thirty-two inputs.

The virtual FPGA architecture used in the experiment is shown in Figure 8-4, with

thirty-two inputs and sixteen outputs. The outputs of the virtual FPGA were combined

into a one bit output using an exclusive OR gate giving only two possible speeds to the

beam motor: full forward or full reverse. The virtual FPGA was comprised of sixty-four

logic elements which were grouped into a two dimensional array structure. This array

was implemented as four layers of sixteen logic elements, with the connections moving

in only the forward direction from layer one through to layer four. The layers were

149

connected in a feed-forward Cartesian based architecture, with each logic element

within the layer able to access any two bits from the previous layer. The logic element

was programmed to perform a logical operation on these two bits, and then output the

one bit result to the following layer.

Figure 8-4. The Cartesian architecture for the fixed four layer virtual FPGA.

Logic elements

The logic elements in the second, third and fourth layers had identical architectures,

however the logic element in the first layer was different to accommodate the 32 inputs.

A block diagram of the logic element in the first layer is shown in Figure 8-5. The first

layer had 16 logic elements each with 32 inputs that were connected to the inputs of the

virtual FPGA. These 32 inputs were fed into two 1-bit multiplexers (multiplexer A and

B), where each multiplexer could select any one bit from the 32 bit inputs. The 1-bit

output from each multiplier was then fed into a function table which could select

between two functional operators. These were select source A and source !B. The

output of the logic element was 1-bit which was combined with the other 15 logic

elements in the first layer to present 16 bits to the following layer (layer two). The

number of configuration bits for each element was 11, 5 for each multiplexer, and 1 for

the function table. With 16 elements in each layer, a total of 176 configuration bits were

required for the routing and logic elements in the first layer.

150

Figure 8-5. A logic element in the first layer of the fixed layer virtual FPGA.

The second, third and fourth layers each had 16 logic elements with each logic element

connected to the 16 outputs from the previous column. The logic elements were the

same for each of these layers, as shown in Figure 8-6. The two, one bit multiplexers

could select any two bits from the previous layer and feed these into the function table.

Figure 8-6. A logic element in layers two to four of virtual FPGA.

The function table had eight logic operations as shown in Table 8-1. The two inputs to

the function operator were selected by the two multiplexers, the one bit output from the

function operator was sent to the next layer.

151

selection function

000 A

001 !A

010 B

011 !B

100 AND

101 OR

110 NAND

111 NOR

Table 8-1. List of functional operators for the fixed layer virtual FPGA.

The main difference between the first and the subsequent layers is that the first layer

had 32 inputs, requiring 10 configuration bits for the multiplexers, leaving only 1 bit for

the functional table, whereas the following layers had 16 inputs requiring 8

configuration bits for the multiplexers, leaving 3 bits for the function table, enabling it

to have a greater range of function operators. Once again each logic element had only a

1 bit output; this was combined with the logic elements on that layer to provide a 16 bit

output to the following layer. The final output from layer four was sixteen bits, which

was reduced to 1 bit with the addition of an exclusive OR circuit giving two motor

states, forward and backward.

The control of the multiplexers and which function was to be used in the function table

was set by the configuration bit stream. A total of 11 bits were required to configure

each logic element, thus with 16 elements per layer a total of 176 bits were required to

configure each layer, giving a total of 704 bits for the four layers of the whole virtual

FPGA. The search space of this chromosome can be derived from Equation 7-1 giving a

value of 2
704
. This equates to a search space of 8.4 x 10

211
.

The configuration bit stream was kept as four separate entities (one for each layer), and

it was this bit stream that was evolved by the four hardware genetic algorithms.

8.3 Hardware Genetic Algorithm

The hardware genetic algorithm was implemented as four duplicate sections working in

parallel which interfaced to the configuration bits stream of the four layers of the virtual

FPGA as shown in Figure 8-7. The total configuration bits required for the complete

virtual FPGA were 704 bits (176 bits per layer). Two extra configuration bits were used

on each layer to set the mutation rate. Each hardware genetic algorithm stored the

chromosome for its associated layer and worked independently from the other layers.

152

Figure 8-7. The NIOS and fixed layer virtual FPGA connections for the hardware genetic

algorithm.

The operation of the hardware genetic algorithm was controlled from the NIOS

processor with the aid of six control lines and one serial data output. These were

• reset, which generated a new chromosome from the random number generator;

• replace chromosome, which replaced the parent chromosome with the mutated

offspring;

• mutate, which generated a new off-spring from the parent using mutation;

• system clock, which was used for the random number generator and system

synchronization; and

• serial clock, serial data, and reset chromosome counter, which were used to send

the best chromosome to the graphical user interface for display and storage.

The hardware genetic algorithm was based on a paper produced by Wang [89] with

modifications to the population size and mutation rate. The genetic algorithm used only

mutation in its reproduction of new offspring. By not implementing the crossover

operator the number of logic elements required by the FPGA was reduced. This allowed

the genetic algorithm to be implemented within a relatively small FPGA. The FPGA

153

that was used in the experiments in this research was the Altera Cyclone

EP1C12F324C8 which had a capacity of 12,000 logic elements. The final circuit

including the NIOS processor, virtual FPGA, and hardware genetic algorithm, used 86%

(10,543 logic elements) of the Cyclone EP1C12F324C8 FPGA resources. In

comparison a high end Cyclone IV has over 100,000 logic elements, and a high end

Stratix V has over a 1,000,000 logic elements.

Each hardware genetic algorithm was comprised of three main sections as shown in

Figure 8-8. These were a random number generator, storage for the best chromosome,

and a mutation unit. The configuration bit stream was connected in parallel to the virtual

FPGA. This parallelisation increased the routing resources within the FPGA, but greatly

reduced the time taken to load the configuration bit stream, in comparison to a serial bit

stream.

Figure 8-8. System and interconnections within the hardware genetic algorithm with an evolving

mutation rate.

8.3.1 Random Number Generator

The random number generator used a linear feedback shift register to generate both the

initial 178-bit starting chromosome (2 bits for mutation), and four 10-bit random

mutation points that were used to mutate random bits within the configuration bit stream.

8.3.2 Memory Storage

The best chromosome memory stored the current chromosome under review. If the

fitness level of the offspring chromosome generated by the mutation unit was equal or

154

better than the parent chromosome, then the parent chromosome would be replaced. It

was found under test conditions that replacement of the individual at a fitness level

equal to or above the fitness level of the parent (rather than only above), had a greater

chance of evolutionary success as it allowed the individual to move more easily through

the adjacent search space, reducing the possibility of stagnation at local maxima. This

genetic algorithm had a lack of diversity with its limited population and therefore did

not exhibit a strong selection process; however it was shown that it did work as a

hardware genetic algorithm for a virtual FPGA. At any stage the best chromosome

could be read back to the graphical user interface via the NIOS processor.

8.3.3 Mutation Unit

In a standard genetic algorithm the Bit Mutation Rate is the number of bits that will be

varied as a percentage of the entire chromosome. It is assumed that the possibility of a

mutation occurring on a chromosome is 100 percent, where a mutation will always

occur on a set number of bits. In the system used in this hardware genetic algorithm

there was also a Chromosome Mutation Rate. This was the probability that a mutation

would occur within the chromosome. Unlike standard genetic algorithms that have a

100 percent probability of a mutation occurring, this system had a the possibility that a

mutation would not occur at all.

Each mutation unit was comprised of four, for-loop structures that inverted a random bit

in the configuration bit stream. The mutation bit position within the configuration bit

stream was determined from the random number generator, and the number of bits

within the configuration bit stream to be mutated could be varied. The mutation unit

used a large amount of the FPGA resources as loop structures are highly inefficient

forms of hardware.

The length of the chromosome required to configure the fixed four-layer virtual FPGA

was 176 bits per layer. Two extra bits were added to the chromosome to set the rate of

mutation, giving four possible mutation rates. As the mutation rate was now encoded

within the chromosome, it was changed by the genetic algorithm.

Mutation rate

A hardware random number generator was used to produce four random 10 bit numbers

ranging from 0 to 1023. These random numbers determined which bit in the 178 bit

155

chromosome would be mutated. It should be noted that as the random number exceeded

the actual size of the chromosome, there was a possibility that a mutation would not

occur. The four possible mutation rates, set by the two bits in the chromosome,

determined whether one, two, three or four mutation points within the 178 bit

chromosome would be altered. Consequently both the chromosome mutation rate and

the bit mutation rate could be varied. The possibility of a chromosome actually mutating

varied with the bit mutation rate. This can be calculated using Equation 8-1 and

Equation 8-3.

r

xn
mr = Equation 8-1

nl

p mm −=1 Equation 8-2

r

x
m −=1

 Equation 8-3

where

mr is the mutation rate

x is the chromosome length

r is the length of the random number

n is the number of mutations

mp is the mutation probability

l is the number of layers

m is the probability that a mutation will not occur

From this equation the possible chromosomes mutation rates, and bit mutation rates for

the four mutation rates for the complete chromosome of 704 bits can be calculated.

These are shown in Table 8-2.

mutation bits mutation probability maximum bit mutation rate

1 53% 0.56%

2 77% 1.12%

3 90% 1.68%

4 95% 2.24%

Table 8-2. Mutation rate settings.

156

8.4 Graphical User Interface

8.4.1 Overview

The graphical user interface for the ball-balancing beam controlled by a virtual FPGA,

as shown in Figure 8-9, was different from the graphical user interface described in

chapter seven. This was because the data used to show the ball-beam states and

evolutionary process was obtained from the NIOS processor in the FPGA via an RS232

serial link. The interface could show:

• the motion of the ball and beam;

• the ball and beam states;

• the generation number and fitness;

• the control buttons for the hardware genetic algorithm and the simulation.

When the display of the motion of the beam was enabled, the NIOS processor would

continuously send the ball and beam states generated by the simulation to the computer.

This however severely increased the software overheads of the NIOS processor and

subsequently slowed the evolutionary process; therefore the visual display was normally

turned off.

157

Figure 8-9. Graphical user interface used for the fixed layer virtual FPGA controlling the ball-

balancing beam.

The NIOS processor was programmed to send the current fitness at regular intervals

which was stored along with the current time. At the end of a successful run, the final

chromosome was stored. If required, the final five minute run of ball and beam motion

using the successful chromosome were replayed and stored for later analysis.

The buttons on the graphical user interface are grouped into:

• evolution control, start, pause, reset, exit;

• serial communications, serial setup, serial open, serial close;

• graphics, on, off;

• testing, testing the communication between the GUI and NIOS processor, and

the mutation function;

• data request, manually reading the current fitness, uploading the chromosome or

reading the current inputs and outputs of the simulation.

158

8.4.2 Data Communication Protocol

The communication between the graphical user interface on the computer and the NIOS

processor on the FPGA was via an RS232 serial port running at 57.6 kbps. A serial

communications protocol was developed so that data and control information could be

passed between these two systems. An example of a transmission of four bytes of data

is shown in Table 8-3 where the instruction (5) and data (10, A4. FF, E4) are sent. The

header, data packet and end of packet was generated by the transmitter and sent to the

receiver. The receiver waited until it received:

• the header byte C4;

• the number of bytes in the data packet;

• the instruction;

• the data packets;

• the end of packet A4.

If the end of packet was not found, or the total number of data packets was incorrect, the

instruction and data packets were discarded. The same protocol was used on the return

path between the NIOS processor and graphical user interface.

parameter value

header C4

total number of packets 4

instruction 5

data packet 10

data packet A4

data packet FF

data packet E4

end of packet A4

Table 8-3. An example of the serial transmission of four bytes of data.

The commands for the transmission of data from the graphical user interface to the

NIOS processor are shown in Table 8-4. These commands are broken into control, data

request and testing. The control commands required no response from the receiver,

while data request and test commands did.

159

command value

start genetic algorithm 0

pause genetic algorithm 1

stop genetic algorithm 2

reset genetic algorithm 3

get fitness 4

get chromosome 5

get inputs & outputs 6

graphics on 7

graphics off 8

test communications 9

Table 8-4. List of commands used for data transmission from the graphical user interface to the

NIOS processor.

The commands from the transmission of data from the NIOS processor to the graphical

user interface are shown in Table 8-5. The data associated with these commands were

included in the packet. The genetic algorithm finished command was used to tell the

computer that the desired fitness had been reached.

command value

sending fitness 0

sending inputs and outputs 1

sending chromsome 2

sending beam state (graphics on) 3

genetic algorithm finished 4

communications test 5

Table 8-5. List of commands used for data transmission from the NIOS processor to the graphical

user interface.

8.5 Simulation and Coding Structure

8.5.1 Simulation on Computer

Ideally in this experiment the simulation, fitness evaluation, and genetic algorithm

would be performed on the computer rather than the NIOS processor. This was because

the computer had a much faster clock speed (3 GHz as opposed to the 50 MHz on the

NIOS processor), and a more powerful processor architecture with a floating point co-

processor. However the simulation was executed on the NIOS processor because of the

limited speed at which data could be transferred between the computer and the NIOS

processor over the serial link. The only computer interface on the Altium FPGA Live

Design Board used in these experiments was a RS232 serial port with a maximum data

rate speed of 57.6 kbps. This link made the evolutionary process run extremely slowly

160

as the chromosome and ball beam states were required to be transmitted from the

computer to the virtual FPGA and simulation.

If the genetic algorithm was run on the computer then it would need to send a new

chromosome to the virtual FPGA for each fitness evaluation. The total number of bits to

send for the complete chromosome (704 bits) is shown in Equation 8-4. With a baud

rate of 57.6 kbps, it would take 16.ms to send this chromosome from the computer to

the NIOS processor. If there were 100,000 chromosomes to be tested then the

transmission time for these chromosomes would be 27 minutes.

920 � 704��<��=���=>� � 	32�<>�&>�� � 	184��0��0/�0��� Equation 8-4

However this was not as time intensive as sending the simulation data. The simulation

needed to send 32 bits for the beam states to the virtual FPGA, which equates to a total

of 80 bits as shown in Equation 8-5.

80 � 32��0�0>�� � 	32�<>�&>�� � 	16��0��0/�0��� Equation 8-5

Similarly the virtual FPGA needed to send the motor speed to the simulation, which

equates to 50 bits as shown in Equation 8-6.

50 � 8�=�0��� � 	32�<>�&>�� � 	10��0��0/�0��� Equation 8-6

Thus 130 bits are sent for each step in the simulation, equating to a transmission time of

2.26ms. The simulation used the ball-beam states and motor speed in one millisecond

time steps. Assuming no time was taken for the simulation calculations then the time

taken to perform a test over a simulated run of 300 seconds is 300,000 data

transmissions at 2.26ms giving a time of 677 seconds. If we assume the evolutionary

process required 100,000 individuals to be tested then the time taken to perform the

complete evolution would be 67.7 million seconds, equating to 2.15 years. Therefore

although it would seem that the computer was a far better place to run the simulation

and genetic algorithm it was impractical due to the slow speed serial link between the

computer and FPGA.

8.5.2 Simulation on NIOS

The simulation operated in one millisecond time steps, using the output of the virtual

FPGA to move the beam in the appropriate direction. The new ball position, ball speed

and beam directions were then calculated, and fed back to the virtual FPGA as a 32 bit

161

number. The circuits within the virtual FPGA would then produce a new motor

direction depending on these new inputs. As the NIOS does not have a floating point

co-processor, the ball beam states were kept as long integers. These variables were

converted into a 32 bit output using an if-else structure.

Code structure

The coding structure running on the NIOS is shown below, detailing the interfaces to

the hardware genetic algorithm and the onboard simulation for the fitness evaluation.

main (){

setup_NIOS(); //enable interrupts for the UART receiver

while (1){

if (start_flag) { // set by computer to start the genetic algorithm

mutate_xsome();

generation++;

current_fitness = get_fitness(); // run the simulation

if(send_state_flag) // can request current fitness

send_fitness(generation, max_fitness);

if(current_fitness >= max_fitness) { // replace chromosome

max_fitness = current_fitness;

replace_xsome();

}

//note computer can request to see dynamic display of ball-beam by

//setting send_state_flag

if (max_fitness reached) {

start_flag = 0; //stop the simulation

send_fitness(generation, max_fitness); // send results

send_xsome(); send the entire chromosome

send_state_flag = 1;

get_fitness(); //send the final beam run.

send_state_flag = 0;

send_data_to_PC(instruct_new_test,0); // say running new test

reset_xsome();

generation = 0;

max_fitness = get_fitness();

send_fitness(generation, max_fitness);

}

else if(!(generation % 250)) //periodically send generation and fitness

send_fitness(generation, max_fitness);

}

}

162

}

Instructions were sent to the NIOS from the computer via the serial port, and were activated in

an interrupt function. When a new command was received, the instruction was stored and the

new_instruction flag was set. The instruction would be executed as illustrated in the

action_command function shown below.

void action_command(void) {

switch (instruction) {

case test_comms: //echo instruction back to the PC

send_data_to_PC(test_GA, total_bytes); break;

case start_GA:

start_flag = 1; break;

 case pause_GA:

start_flag = 0; break;

case get_IO_GA:

send_IO(); break;

case send_state_on:

send_state_flag = 1; break;

case send_state_off:

send_state_flag = 0; break;

case stop_evol_GA:

start_flag = 0;

send_fitness(generation, max_fitness);

send_xsome();

send_data_to_PC(instruct_stop,0);

 reset_xsome(); break;

case get_xsome_GA: //read the current xsome and send to the PC

send_xsome(); break;

case get_fit_gen_GA: //read the current xsome and send to the PC

send_fitness(generation, max_fitness); break;

case reset_GA:

reset_xsome(); //reset GA, gen random xsome, & send to the VFPGA

generation = 0;

max_fitness = get_fitness(); //evaluate a new fitness for xsome

send_fitness(generation, max_fitness);

send_xsome();

break;

}

new_instruction = 0;

}

163

8.6 Fitness Evaluation

The beam was evaluated in only one start position as shown in Figure 8-10, with the

ball positioned at the far left side of the beam, and the beam tilted towards the right, at

an angle of twenty degrees from the horizontal plane. At this angle the ball would

naturally move towards the centre of the beam without any movement of the beam itself.

The fitness was determined by the time taken before the ball hit either end-stop; this

was the length of time that the beam could balance the ball.

Figure 8-10. Starting position of ball on the beam.

8.7 Results

Once a command for a test run was sent by the graphical user interface on the computer,

the NIOS processor automatically controlled the evolutionary process interacting with

the hardware genetic algorithm without further commands from the computer. The

NIOS processor was programmed to automatically send the generation number and the

current fitness to the computer every thousand generations. The computer could also

request the current fitness and current generation at any time. As well the computer

could request to continuously receive the ball and beam status allowing the motion of

the ball and beam to be seen dynamically in real time. This feature was normally

disabled as it severely slowed down the simulation and thus the time taken for genetic

process to complete. The beam and ball positions could also be recorded for later

analysis.

The evolution was set to end when the ball hit an end-stop or when the fitness had

reached 500 seconds. At the end of the genetic process the final chromosome was stored

and the last simulation of the successful chromosome repeated, with a step by step

recording of the beam position, ball position and ball speed sent to the computer. This

164

allowed the motion of the ball in relation to the beam, to be monitored. Two motor

speeds were evaluated, one set to pulse every one millisecond (giving a beam rotation of

181.6 degrees per second), the other two milliseconds (giving a beam rotation of 90.8

degrees per second).

A typical fitness level for the start of the experiment would be approximately 0 or 600

milliseconds. An investigation of the motion of the beam at this stage revealed that the

beam would either not move, or move in the wrong direction. If there was no beam

movement, the ball would roll down the slope and after 600 milliseconds hit the right

end-stop. If the beam motion was in the wrong direction, the ball would roll to the left

and immediately hit the left end-stop. After several generations this behavior would

change and a movement of the ball to the right would cause the beam to tilt left,

changing the ball direction from right to left. The ball would then hit the left end-stop.

As the evolution progressed, the speed of the returning ball was reduced allowing the

ball to change direction several times; however the ball would not go into a stable state,

and would eventually gain too much momentum for the beam to correct its motion

before it reached an end-stop. These unstable ball motion patterns would have a fitness

level ranging from 10 to 50 seconds.

Eventually the fitness would jump from this plateau to a successful result. When these

individuals were analysed, it was found that the ball would spend most of its time near

one end of the beam, moving between two points in close proximity. This caused the

beam to rock backwards and forwards trapping the ball in a semi stable state. Eventually

the ball would gain enough momentum to break away from this position and move

towards the opposite end of the beam. The beam would then respond by bringing the

ball back to its semi stable state where it would repeat the process. As this pattern was

repeated, rapid improvements in the fitness were achieved.

A graph of the fitness versus generation for a motor pulse rate of one millisecond is

shown in Figure 8-11. It can be seen that the number of generations taken to evolve to

500 second fitness for this motor speed ranged from 18,000 to 52,000 generations with

an average generation of 32,000.

165

Figure 8-11. Fitness relative to generation for a 1ms motor pulse rate.

The graph of the fitness versus generation for the motor pulse rate of two milliseconds

is shown in Figure 8-12. It can be seen that the number of generations taken to evolve to

500 second fitness for this motor speed ranged from 41,000 to 330,000, with an average

value of 240,000 generations.

Figure 8-12. Fitness relative to generation for a 2ms motor pulse rate.

A recording of the ball and beam jittering motion which the beam used to capture the

ball in a stable position was recorded and plotted on the graph shown in Figure 8-13. It

can be seen that the beam is swinging backwards and forwards around two points,

which moves the ball in alternate directions, keeping it in a relatively stable position.

This tended to be towards one side of the beam, however eventually the ball would

break out of this pattern and move towards the opposite side of the beam. At a set point

0

100

200

300

400

500

0 10 20 30 40 50 60

fi
tn
e
s
s
 (
s
)

generation (1000)

0

100

200

300

400

500

0 50 100 150 200 250 300 350

F
it
n
e
s
s
 (
s
)

Generation (1000)

166

the beam would correct for this and bring the ball back to the two original set points,

allowing the pattern to repeat indefinitely.

Figure 8-13. The motion of the ball and beam showing the oscillating pattern which is keeping the

ball in a stable position.

8.8 Conclusion

This chapter has shown how a virtual FPGA acting as a robotic controller can be

evolved to balance a simulated ball-beam system. A commercially available board with

an FPGA was used in the experiments to contain a digital electronic circuit in the form

of a virtual FPGA, a hardware genetic algorithm, and a beam simulation running on a

NIOS processor. The simulation provided the current ball position, beam position and

ball speed to the virtual FPGA, while the virtual FPGA provided the appropriate motor

direction back to the simulation.

The evolved virtual FPGA could balance the ball on the beam for more than 500

seconds. An analysis of the ball’s trajectory during a successful run showed the ball

oscillated between two closely spaced sensor positions in a semi-stable state. When the

ball moved beyond these points, the beam reacted in a self correcting manner to bring

the ball back to its semi-stable state.

Ball & Beam Position

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000ms

B
a
ll
 &
 B
e
a
m

Ball position

Beam position

167

For a motor speed of 181.6 degrees per second it was found that on average, less than

40,000 generations were required to evolve a circuit able to balance the beam for more

than five minutes. The faster motor speed required fewer generations to evolve a

suitable fitness; however both motor speeds performed satisfactorily.

A conference paper was produced for this section on evolving electronic circuits for

robotic control (see chapter 1). The Verilog code, C code and graphical user interface

can be found in the CD accompanying this thesis.

168

Chapter 9

Chapter 9: Using Hardware Simulation for Evolving Robotic

Controllers

This chapter investigates the implementation of a genetic algorithm using a hardware

simulation rather than a software simulation, for the evaluation of each chromosome’s

fitness within the population. The chromosome describes the control system for the

robot, detailing how the robot will react to events within the robotic environment. A

simulation is required by the genetic algorithm to model the actions of the robot and its

environment in order to evaluate how well each chromosome performs as a controller.

Typically the simulation is written in software and executed sequentially on a processor.

However if the simulation could be written in a hardware description language, then it

could be implemented as a digital circuit within a FPGA, giving a significant

improvement in speed. To test this proposal, two identical genetic algorithms (except

for the simulation) were developed, one using a software simulation, the other a

hardware simulation. These two systems were implemented and a comparison

performed.

The full simulation of the beam used in chapter eight was modified to a simpler model

with the removal of code that was used to refine the position of the ball. This simulation

was generated in both software and hardware and a measurement of the characteristic of

both simulations was performed to ensure they were similar in nature. The simulations

were then evaluated on identical genetic algorithms so that a valid comparison could be

performed between the two simulations.

This chapter also presents a more advanced virtual FPGA architecture than that used in

chapter eight, incorporating more powerful functions within the lookup table, and a

reducing layer architecture requiring fewer configuration bits and therefore a smaller

search space than the flat layer architecture.

In the first experiments it was found that the hardware simulation evolved a successful

digital circuit in a time period that was approximately seventy times faster than the

169

software simulation. In this experiment the hardware simulation’s speed was limited to

5MHz, matching the speed limitation of the virtual FPGA with its internal clock delays.

A second experiment was performed with the delays removed from the virtual FPGA

allowing the hardware simulation to operate at 50MHz. This enabled the hardware

simulation to run at a speed approximately 700 times faster than the software simulation.

This chapter explains how the simulation and fitness calculations were shifted from

software to hardware with their associated control systems. It details the systems used in

the genetic algorithm process, explaining their operation and control, and describes the

reducing layer virtual FPGA architecture. Finally the results are presented with

comparison between the hardware and software simulation.

9.1 Overview

A genetic algorithm is an iterative process that repeats three tasks: reproduction, fitness

evaluation, and selection. The time taken for a population to evolve is split between

these three processes, with the reproduction and selection taking comparatively little

time compared to the fitness evaluation. This is because all the individuals within the

population must be evaluated on a simulation of the robot and its environment to

determine each individual’s fitness. This fitness is used by the selection process to

select which individuals will be retained for the next generation. The time taken for the

simulation to test each individual increases as the evolution progresses, due to the

increasing average fitness of the population. The simulation for a robotic controller is a

computer model of the robot and its interactions with its environment. This simulation

may include floating point and trigonometry calculations. If the simulation process can

be sped up, then a large improvement in the time taken for the evolutionary process to

produce a successful individual will result.

The software coding for a simulation algorithm using floating point arithmetic and

trigonometric calculations on a computer is relatively straight forward, as the computer

has a floating point co-processor specifically designed to perform these calculations.

However because of the computer’s sequential coding and processor hardware structure,

each calculation must be executed sequentially. If the calculations within the simulation

could be performed in hardware, then many of the calculations could be performed

concurrently resulting in an improvement in speed.

170

Software simulation

The block diagram of the system used to evaluate the software simulation is shown in

Figure 9-1, illustrating how the software simulation was contained within the NIOS

processor. The simulation interfaced to the virtual FPGA via the input and output lines

of the NIOS processor. The virtual FPGA and genetic algorithm were implemented in

hardware. In previous experiments within this thesis a full robotic simulation of the

beam was used; in this experiment the simulation was modified to a simpler model

using integers. Note the NIOS processor used a 50MHz clock, with the hardware

multiplier and divider enabled. It should be noted that the software simulation was not

executed on the computer with its higher clock speed and more powerful processor; as

the amount of time required to transfer the simulation parameters for each step of the

simulation between the computer and virtual FPGA is prohibitive. This is explained in

more detail in chapter eight.

Figure 9-1. Block diagram of the systems used in the software simulation for the balancing beam.

Hardware simulation

The block diagram of the hardware simulation is shown in Figure 9-2. The simulation is

constructed in hardware with the simulation’s mathematical functions and fitness

evaluation embedded within it. In this case the NIOS processor is only used for

interfacing to the computer graphical user interface and reading the status of the genetic

algorithm.

171

FPGAcomputer

GUI

control &

data

logger

RS232

configuration

virtual

FPGA

control

hardware

genetic

algorithm

hardware

simulation

control

GUI

Interface

control

NIOS

Figure 9-2. Block diagram of the systems used in the hardware simulation for the balancing beam.

System block diagram

The complete system employed for the hardware simulation shown in Figure 9-3

contained five blocks:

• the computer, used for system commands and data logging;

• the NIOS processor, used for interfacing to the computer and control of the

systems within the FPGA;

• the hardware genetic algorithm, which contained the genetic operators necessary

for the evolutionary process;

• the virtual FPGA, used to control the motion of the beam;

• the hardware simulation, which modelled the characteristics of the beam and ball.

These blocks are described in the next section.

172

Figure 9-3. System control and data lines for the hardware simulation.

9.2 Hardware Simulation

9.2.1 Creating a Hardware Simulation

The main difficulty with creating a hardware simulation inside a FPGA is that unlike a

computer, there is no arithmetic logic unit. All arithmetic formula written in a hardware

description language will generate individual circuits to implement the arithmetic

function, thus every occurrence of an arithmetic operator such as addition,

multiplication or division, will be expressed as a complex digital circuit. In the case of

floating point operations, a large amount of the FPGA logic element resources are

required for each calculation due to the complexity of dealing with variables containing

sign, mantissa and exponent parts. As there are typically many floating point

calculations in a simulation, it becomes impractical to use this technique.

An alternative to floating point calculations is the use of integer arithmetic within the

FPGA, which reduces the logic element resources required to implement the circuit

within the FPGA. An integer arithmetic operation requires less FGPA resources than a

floating point calculation, and thus the logic resources required for each arithmetic

operation of the simulation within the FPGA is significantly reduced. Trigonometric

173

functions will also need to be implemented as an arithmetic approximation or a lookup

table.

The first task to create a hardware simulation was to transform the floating point

simulation model into an integer model. This process was straight forward although

precision was lost, making the integer model less accurate than the floating point model.

The algorithms needed to be checked to make sure that no arithmetic overflow occurred

as the numbers were confined to 32 bits, which is a value between ± 2 x 10
9
. It was also

important to make sure that the timing between the arithmetic calculations and other

systems was correct. The hardware simulation then had to be integrated to the virtual

FPGA and the genetic algorithm.

To implement the simulation in hardware, the integer arithmetic calculations can be

directly coded in Verilog (a hardware description language) using the standard multiply

(*) and divide (/) syntax. The IEEE standard for Verilog 1995 allowed the use of

multiplication and division for unsigned variables. This was altered by the IEEE

standard for Verilog 2001 which allowed the use of signed multiplication and division

within the language. The standard also introduced the ability to use signed registers

(note the default value of an integer is a signed 32 bit number). Page forty-five of the

Verilog 2001 standard [160] shows how signed division and multiplication can be

performed. Examples of the multiplication and division Verilog code and the resultant

register transfer level generated by Quartus are shown in Figure 9-4 and Figure 9-5.

Figure 9-4. Verilog code and register transfer level description for a thirty-two bit signed

multiplier.

174

Figure 9-5. Verilog code and register transfer level description for a thirty-two bit signed divider.

The mathematical equations for the integer simulation shown in Equation 9-1 and

Equation 9-2 were derived experimentally using the sensors to measure the ball position

as it fell (as detailed in chapter 6). From these equations the acceleration of the ball

could be found. The equations used for both the software and hardware simulation were

in integer form which reduced the accuracy of the calculations but allowed the use of

high-speed simulations in both software and hardware applications. The integer

simulation was run on two systems, software and hardware.

�./� � � � 1049-
2 7 � 101� � 24)

2 8 Equation 9-1

-./� � - � 786� � 184)
2;4 Equation 9-2

Note the values chosen for the divisor were carefully chosen to equate to a number

which was a power of 2. This enabled the Quartus synthesis to divide using left shifting

or other minimization techniques, rather than a divide function. The RTL viewer in

Quartus allowed the user to see a schematic of the hardware simulation that was

generated by Quartus. It was interesting to note that the circuit was comprised of

multiplexers, comparators and five signed multipliers; no dividers were used.

A comparison of the resource usage within the FPGA for integer and floating point

calculations was performed. The entire simulation implemented as integers used 15%

(1,900 logic elements) of the Cyclone EP1C12F324C8 FPGA resources. In comparison,

one floating point calculation took 9% (1,140 logic elements) of the FPGA resources.

Note Quartus does not support the IEEE 2001 Verilog real numbering system, thus

floating point calculations must be performed using Quartus megafunctions.

175

9.2.2 Hardware Simulation Blocks

The hardware simulation, shown in Figure 9-6, was comprised of four units; the

mathematical simulation unit, the fitness calculation unit, the simulation complete unit

and the clock speed unit.

Figure 9-6. Control lines and subsystem interconnections for the hardware simulation unit.

Mathematical simulation unit

The mathematical simulation unit contained the simulation’s mathematical equations

implemented in hardware, with control lines connected to the NIOS processor, and the

simulation input-output connected to the virtual FPGA.

The control lines were:

• reset simulation, used to reset the simulation’s ball and beam parameters to the

start state, and to clear the fitness level;

• clock, used to trigger the simulation. All the simulation calculations would

execute simultaneously on every clock pulse, which was equivalent to one

millisecond in real time;

• beam states, there were thirty-two bit outputs describing the new ball speed, ball

position and beam position derived from the simulation. These were fed to the

inputs of the virtual FPGA;

• motor direction, the new motor direction from the virtual FPGA, resulting from

the previous beam states that had been fed into the virtual FPGA.

176

When the simulation reset was activated, the parameters inside the simulation were reset,

placing the ball on the left side of the beam with the beam set to an angle of twenty

degrees to the left above the horizontal plane. When not reset, the simulation would

operate in the following manner:

• on each clock pulse the simulation would read the motor direction input from the

virtual FPGA and correspondingly shift the integer value of the beam to the left

or right one motor step;

• the new integer values for the ball speed and ball position were calculated;

• these new values along with the new beam position were converted into a thirty

two bit binary format representing the new ball-beam state and passed to the

inputs of the virtual FPGA.

The mathematical equations for the simulation were designed to calculate a new ball

and beam state every millisecond. This meant that every clock pulse that triggered the

simulation was equivalent to a one millisecond time period within the simulation. Thus

a 5MHz clock pulse would give a simulation speed 5000 times faster than the real time

event. The simulation had an output control line to show when the simulation had

finished. This was set when the individual had failed the test and the ball position

reached either of the two beam end-stops.

Clock speed unit

The clock speed unit allowed the simulation to run at high speed from a 5MHz clock or

at a slow speed from a clock driven by a control line from the NIOS processor. This

slow clock speed allowed the graphical user interface to run in graphical mode, where

after each simulation step, the beam and ball states could be read and sent back to the

graphical user interface running on the computer so that the motion of the ball and beam

could be displayed on the computer screen. It also enabled the simulation to be paused

at any stage. A clock select line from the NIOS processor was used to switch the clock

from low speed to high speed. The lines used to control the operation of the clock speed

unit were:

• clock select, a control line from the NIOS processor to switch between the high

speed system clock or the low speed NIOS controlled clock;

• system clock, initially at 5MHz, then increased to 50MHz;

• NIOS clock, software generated clock from the NIOS processor;

177

• clock out, the clock source fed for the simulation and fitness unit.

Fitness calculation unit

The fitness calculation unit measured the time that the simulation ran before the

individual failed. It did this by counting the number of clock pulses fed into the

simulation during the evaluation of the current individual, with each clock pulse

equivalent to one millisecond in real time. The fitness unit had a thirty two bit counter

that was incremented on every simulation clock pulse, provided the simulation complete

line was clear. The fitness counter could be read by the NIOS processor at any time,

with the value of the fitness counter being the time in milliseconds that the ball had

stayed balanced. The simulation finished line was also connected to the NIOS processor

so that the fitness counter could be read at the end of a simulation. The lines used to

control the operation of the fitness unit were:

• reset simulation, which set the fitness counter to zero;

• clock, the same clock as fed the simulation which the fitness unit counted;

• fitness, a thirty-two bit value indicating the fitness of the individual under test.

Simulation complete unit

This unit told the NIOS when the evaluation of the individual had finished, either when

the individual failed, or when the fitness counter had reached 300 seconds indicating

that the individual under test had obtained its maximum vale. The lines used to control

the operation of the simulation complete unit were:

• simulation finished, sent from the mathematical simulation unit whenever the

ball had reached an end-stop;

• fitness, used to trigger when the fitness had reached 300 seconds;

• simulation complete, this signalled to the NIOS that the simulation had finished.

9.2.3 Timing

A comparison of the time taken for the hardware and software simulation to complete

one iteration of the mathematical equations in the simulation was performed.

178

Timing for software simulation

The time taken for the software simulation to calculate the new ball position, ball speed,

and beam position, and output these as a 32 bit binary format to the virtual FPGA was

measured. This measurement was taken by toggling an output pin of the FPGA at the

start and end of each simulation execution as displayed in Figure 9-7. The measured

time for the execution of the simulation was 16us. This time period would be

periodically increased when the selection and reproduction process occurred at the end

of a fitness evaluation.

Figure 9-7. Timing diagram of the software simulation execution time.

Timing for the hardware simulation

The Altium live design board used in these experiments included a 50MHz clock which

was used as a system clock for the NIOS processor and other hardware systems. This

clock was also used within the virtual FPGA with each layer’s output held in its past

state until a clock pulse occurred. As there were five layers within the virtual FPGA,

five clock cycles were required before a change in the inputs moved from the first layer

through to the final layer of the virtual FPGA. This equates to a delay time within the

virtual FPGA of 100ns. To match this, the clock rate chosen for the hardware simulation

was 5 MHz, which equates to a hardware simulation execution time of 200ns. This

enabled the virtual FPGA to respond to new values on its inputs within one execution of

the hardware simulation equations.

179

From these measurements and calculations it can be seen that the software simulation

was running at a 16us rate, whereas the hardware simulation was running at 200nS. This

would give an expected speed increase of the hardware over the software simulation of

approximately 80 times. This theoretical increase in speed may be less in practice due to

other overheads in the genetic algorithm such as selection and reproduction.

9.2.4 Maximum Beam Step Calculations

On experimentation with the physical beam, the stepper motor required 270 pulses to

move the beam from one end of its range to the other. The full angular range of the

beam’s motion was 60 degrees, thus one pulse from the motor gave a beam angle

change of 0.22 degrees. The maximum pulse rate that the motor could operate at was

eight milliseconds thus the time taken for the beam to move from one extreme to the

other was 270x8ms = 2.16 seconds.

The integer value for the change in beam position after a pulse from the motor can be

calculated in the following way. The maximum number of pulses to move the beam

from full left to full right is 270. In order to have an integer number with a suitable

resolution this value is multiplied by 10,000 to give a maximum beam movement of

2,700,000. This gave the beam a range of ± 1,350,000, with one pulse equating to an

integer value of 10,000. The maximum pulse rate of the motor is 8ms, however the

simulation is operating in one millisecond time steps, thus the change in the integer

value after a motor pulse will be 1250 units. A fragment of the Verilog code for the

beam motion is shown below. (Note the beam’s maximum tilt angle has been limited as

under physical experimentation on the beam it was found that once the beam went

outside these limits the motion of the ball could not be controlled.)

if (motor_direction) begin

 if(beamPos < 900_000)

 beamPos <= beamPos + 1_250;

end

else begin

 if(beamPos > -900_000)

 beamPos <= beamPos - 1_250;

end

The physical beam had twenty one ball position sensors; however the virtual FPGA

input constraints meant that the ball position had to be reduced to nineteen positions. It

180

was decided that two positions towards the middle of the beam would be removed as the

information that they provided was less important than those in the centre and extremes

of the beam. An if-else structure within the Verilog code as shown below was used to

encode the integer value of the ball position to a binary format output.

if(ballPos < -185_000)

 ball_pos = 19'b1000000000000000000; //18

else if(ballPos < -165_000)

 ball_pos = 19'b0100000000000000000; //17

else if(ballPos < -140_000)

 ball_pos = 19'b0010000000000000000; //16

9.3 Reducing Layer Virtual FPGA

The fixed layer virtual FPGA employed for the experiments described in chapter eight

was modified to a reducing layer virtual FPGA architecture as shown in Figure 9-8 with

logic elements grouped into five layers. These five layers each had a reducing number

of logic elements. The virtual FPGA had 32 one-bit inputs and 1 three-bit output giving

8 possible output states which were used to describe the required motor speed and

motor direction. Note in this experiment only two motor speeds forward and backward

were used. The number of logic elements in each layer progressively reduced, starting

from 16 logic elements in the first layer and dropping to 1 logic element in the final

layer. Each logic element output had 3-bits grouped together. These groups were

combined with the other logic element outputs within that layer and then fed onto the

following layer. It should be noted that the original grouping of the 3-bits selected in

layer one were retained as they were passed through each subsequent layer.

Figure 9-8. Architecture of the reducing layer virtual FPGA.

181

Layer one

The logic element in the first layer as shown in Figure 9-9 contained 3 multiplexers that

were used to select which 3 bits of the 32 bit inputs were to be grouped together and fed

onto the following layer. Each logic element in this layer had a 3-bit output which was

clocked to provide synchronisation between logic elements. The grouped outputs of

each of the 16 logic elements within the first layer were then fed onto layer two. Each

single bit multiplexer required 5 bits to switch between the 32 inputs, and each logic

element had 3 multiplexers, thus each logic element required 15 configuration bits. The

total configuration bit stream for all the 16 logic elements in layer one was 240 bits.

Figure 9-9. The logic element in layer one of the reducing architecture.

Layer two

The logic elements for layers two through to layer five are similar apart from the size of

the input bus which progressively became smaller through the layers. The logic element

in layer two, as shown in Figure 9-10, was comprised of 2 multiplexers and a function

table. The 2 multiplexers each selected one of the 16 groups of 3-bits from the previous

layer and fed these inputs onto the function table (groups A and B). The 3-bit groups

were from a sequential grouping of the inputs to that layer, for example group one with

bits 0 to 2, and group two with bits 3 to 5, through to group sixteen with bits 45 to 47.

The second layer had sixteen grouped inputs, thus each multiplexer required a 4-bit

selection input and the function table required 3-bits giving a configuration bit stream of

11-bits per logic element. There were 8 logic elements in this layer, thus a total of 88

182

configuration bits were required for layer two. The output from each logic element was

one group of 3-bits with eight groups from the complete layer.

Figure 9-10. The logic element in layer two of the reducing architecture.

The function table provided simple logic functions as listed in Table 9-1. Boolean

functions were performed on the two input groups of 3-bits to produce one 3-bit

grouped output which was then fed to the next layer.

Select Function Description

000 A only A is selected

001 ~A bitwise one's complement of A taken

010 A + B A and B are added together

011 A and B A and B are bitwise ANDed

100 A or B A and B are bitwise ORed

101 A nand B A and B are bitwise ANDed then one's complement taken

110 A nor B A and B are bitwise ORed then one's complement taken

111 A xor B A and B are bitwise Exclusive ORed

Table 9-1. List of functional operators for the reducing layer virtual FPGA.

Layer three

An example of the logic elements in layer three is shown in Figure 9-11. The logic

element had eight grouped inputs and one grouped output, with the multiplexing process

and function table similar to layer two. However because the number of inputs to the

logic element had reduced, only 3-bits per multiplexer were required to select one of the

eight 3-bit groupings. The number of configuration bit streams for each logic element

was 9, and with four logic elements in the layer the total number of configuration bits

was 36 bits for layer three. There were four grouped outputs for the complete layer.

183

Figure 9-11. The logic element in layer three of the reducing architecture.

Layer four

One of the logic elements in layer four is shown in Figure 9-12. This is similar to the

previous layer’s logic elements, except that the inputs had dropped to four groups of 3-

bits. Once again fewer bits were required in the multiplexers, thus the configuration bits

required per logic element was now 7, and with only 2 elements in this layer, the total

configuration bits for layer four was 14.

Figure 9-12. The logic element in layer four of the reducing architecture.

Layer five

The final layer had only one logic element as shown in Figure 9-13. This layer

performed Boolean logic on the remaining two groups, and then output the result as a 3-

bit number. The total configuration bit stream for this layer was 5-bits.

184

Figure 9-13. The logic element in layer one of the reducing architecture.

Combining all the configuration bit streams for the complete virtual FPGA resulted in a

total number of 383 bits. This was slightly over half of what was required in the fixed

layer virtual FPGA. The search space for this chromosome was 2
383
 which equates to

3.3x10
63
as compared to the fixed layer architecture search space of 8.4x10

211
. The

advantage of this architecture compared to the fixed layer architecture was a reduction

in the configuration bit length and thus a reduction in the search space leading to a

reduction in the evolution time. In addition, this architecture had more powerful

functions, used a three bit result to give a more complex answer, and grouped the inputs

9.4 Hardware genetic algorithm

The hardware genetic algorithm used in this experiment as shown in Figure 9-14 was

similar to that used in chapter eight except: only one unit was used; it was configured

for a chromosome length of 383 bits; and the mutation rates were determined by the

current fitness level rather than encoded in the chromosome. The control lines between

the NIOS processor and the hardware genetic algorithm were:

• reset the genetic algorithm, which generated a new chromosome and cleared the

fitness;

• replace the chromosome, if the offspring was better than the parents then replace

the parent with the offspring;

• mutate, which inverted one or more bits of the chromosome;

• reset the chromosome bit counter, which cleared the chromosome bit counter

before reading the chromosome into the NIOS processor;

185

• S-clock and S-data, used to serially read the chromosome into the NIOS

processor, which was then encoded and sent to the computer;

Figure 9-14. Block diagram of the subsystems within the hardware genetic algorithm.

After the evaluation of the individual was completed by the simulation, the NIOS would

request the mutation unit save the new chromosome if its fitness was better or equal to

the existing chromosome. The retained chromosome would then be mutated and used to

reconfigure the virtual FPGA. The mutation rate was set by the NIOS processor with the

two bit mutation rate lines. At any stage the chromosome could be read by using the

serial clock and serial data lines after resetting the chromosome counter.

Mutation rate

The mutation rate was selected by two bits controlled by the NIOS processor which

caused the mutation unit to invert from one to four bits in the chromosome. The

mutation rate was inversely proportional to the fitness, thus as the fitness level increased,

the mutation rate decreased. The random number generator produced four random 9-bit

numbers ranging from 0 and 511; these were used to select which bit in the 383-bit

chromosome would be mutated. It should be noted that the length of the chromosome

was smaller than the random number, thus it was possible that a mutation might not

occur. Thus the mutation produced a mutation rate, as well as a mutation probability as

described in chapter eight. These values as shown in Table 9-2 were produced using

Equation 8-1 and Equation 8-2.

186

mutation bits mutation probability maximim mutation rate

1 75% 0.26%

2 94% 0.52%

3 98% 0.78%

4 99.6% 1.04%

Table 9-2. Mutation rates for reducing layer virtual FPGA.

9.5 Results

Initially two experiments were performed, the first using a software simulation of the

ball and beam, the second using a hardware simulation of the ball and beam. The fitness

was determined by the length of time the ball was kept balanced before hitting an end-

stop. At the beginning of each test the ball and beam were placed at their reset positions,

with the ball starting at rest at the left of the beam, and the beam tilted at an angle of 20

degrees to the left above the horizontal plane.

After the initial tests the execution speed of the hardware simulation was improved by

increasing the hardware simulation clock from 5MHz to 50MHz, and reducing the delay

times within the virtual FPGA. A third set of tests were performed to evaluate this new

system.

The results compare the hardware and software simulation performances. The results

are described in the following order:

• validation of the hardware and software simulation;

• the evolved behaviour of the ball and beam as the evolution progressed;

• a comparison of the relationship between fitness and the generation number;

• a comparison of the time taken to evolve successful solutions;

• the performance of the 50MHz hardware simulation;

• a comparison of the time taken to evolve a successful solution for the 5 MHz

and 50MHz hardware simulations and the software simulation.

In the following tables within this chapter, the numbers relate to the beam states. These

states are comprised of the ball speed with three values: 0 the ball is moving to the left,

1 the ball is stopped or slow moving and 2 the ball is moving to the right. The ball

position had nineteen values: 0 indicating the ball is at the left most position and 18 the

ball at the right most position. The beam position had ten values: 0 indicating the beam

was at its maximum right angle, and 9 showing the beam at its maximum left angle. The

187

virtual FPGA had a single binary output which was used to drive the beam. This gave

the beam motor two speeds, maximum forward and maximum reverse, with 1 indicating

the motor was driven to the left, and 0 the motor was driven to the right.

9.5.1 Validation of the Hardware and Software Simulation

In order to confirm that the hardware and software simulation acted in a similar manner,

a simple test was performed. The simulation was run on both systems starting from the

normal reset position. The beam was kept stationary whilst the ball ran down the beam

until it reached the end-stop. A recording of the beam states (ball position, ball speed,

beam position), was taken whenever a discrete change in one of these states within the

beam simulation occurred. Concurrently the time at each discrete change in the beam

state was also recorded. The comparison of the software and hardware simulation

shown in Table 9-3 indicates that the simulations were identical in nature.

time

ball ball beam time ball ball beam time between

positn speed positn (ms) positn speed positn (ms) sensors

0 1 9 0 0 1 9 0

0 2 9 184 0 2 9 184

1 2 9 229 1 2 9 229 229

2 2 9 445 2 2 9 445 216

3 2 9 581 3 2 9 581 136

4 2 9 656 4 2 9 656 75

5 2 9 715 5 2 9 715 59

6 2 9 775 6 2 9 775 60

7 2 9 815 7 2 9 815 40

8 2 9 850 8 2 9 850 35

9 2 9 881 9 2 9 881 31

10 2 9 923 10 2 9 923 42

11 2 9 947 11 2 9 947 24

12 2 9 970 12 2 9 970 23

13 2 9 991 13 2 9 991 21

14 2 9 1015 14 2 9 1015 24

15 2 9 1033 15 2 9 1033 18

16 2 9 1050 16 2 9 1050 17

17 2 9 1070 17 2 9 1070 20

18 2 9 1085 18 2 9 1085 15

software simulation hardware simulation 5MHz

Table 9-3. Comparison of the characteristic of the simulation.

From the recorded data it can be seen that the ball slowly moved to the right increasing

in speed as the ball progressed down the beam. This can be seen in the column time

between sensors, showing the reducing amount of time that it took for the ball to pass

the sensors, starting off slowly and then increasing in speed due to the increased slope

of the beam and the pull of gravity. Note there was a seemingly incorrect variation in

time between some of the sensors. This was because the sensors were not evenly spaced,

for instance the sensors at position one, eight and seventeen had a different spacing than

the others.

188

9.5.2 Behaviour of the ball and beam

The evaluation of each individual began with the beam and ball in the reset position.

The motion and resulting behaviour of the ball and beam were observed and a recording

of the ball speed, ball position, beam position and time was stored by enabling the

beam-ball graphics on the graphical user interface. From this observed and recorded

data it was determined that there were five stages of evolution, each linked to a level of

fitness. The stages were:

• a fitness level at one second;

• a fitness level at two seconds;

• a fitness level at ten seconds;

• a fitness level between twenty and fifty seconds;

• a successful evolution.

When analysing the beam motion it should be remembered that the beam could not be

stopped; it had to move either right or left. The following tables show a summary of the

ball and beam motion, as not all the data can be shown due to the length of data

recorded.

First evolution stage

The first stage of evolution had individuals that either drove the beam continuously to

the left, causing the ball to roll to the left end-stop within 300ms, or the beam was held

at its maximum right angle with the ball rolling to the right end-stop within 1 second.

The recording for this stage are shown in Table 9-4.

189

ball ball beam motor time ball ball beam motor time

positn speed positn drectn (ms) positn speed positn drectn (ms)

0 1 9 1 1 0 1 9 0 2

0 1 8 1 16 0 2 9 0 184

0 0 8 1 157 1 2 9 0 229

0 0 7 1 176 2 2 9 0 445

0 0 7 1 264 3 2 9 0 581

4 2 9 0 656

5 2 9 0 715

6 2 9 0 775

6 2 9 0 776

7 2 9 0 815

8 2 9 0 850

9 2 9 0 881

10 2 9 1 923

11 2 9 0 947

12 2 9 0 970

13 2 9 0 991

14 2 9 0 1015

15 2 9 0 1033

16 2 9 0 1050

17 2 9 0 1070

17 2 9 0 1071

18 2 9 0 1085

18 2 9 0 1096

ball hitting left end-stop ball hitting right end-stop

Table 9-4. Stage I of the evolutionary process showing the ball and beam motion.

Second evolution stage

The second stage of evolution showed a jittering of the beam at static beam positions as

can be seen in Table 9-5. For example, the beam would jitter left then right around the

nine and eight beam position, or around the beam eight and seven positions. As

mentioned previously the beam has only two speeds, left and right, and can not be

stopped thus the evolution is finding a means to slow down the speed and travel of the

ball by jittering the beam. The virtual FPGA would produce a constant direction in the

motor until an input was changed, such as the beam position. The first evolved circuits

thus triggered off two beam positions to alternate the motor direction. The jitter in the

beam would slow the ball down but it would still quickly reach an end-stop within two

seconds.

190

ball ball beam motor time ball ball beam motor time

positn speed positn drectn (ms) positn speed positn drectn (ms)

0 1 9 0 1 0 1 9 0 1

1 2 8 1 264 1 2 8 1 566

1 2 9 1 497 2 1 7 0 738

2 2 8 1 566 2 2 7 1 1042

2 2 7 1 681 3 2 8 0 1307

3 2 8 1 1631 4 2 9 1 1508

4 2 6 0 1765 5 2 8 1 1596

4 2 7 1 1914 6 2 8 0 1676

4 1 5 0 2077 7 2 8 1 1727

4 0 6 1 2098 8 2 8 1 1772

4 0 5 0 2137 9 2 8 0 1810

4 0 5 0 2181 10 2 8 0 1861

4 0 6 1 2182 11 2 8 1 1891

3 0 6 0 2192 12 2 8 1 1917

2 0 6 1 2193 13 2 8 1 1942

1 0 6 1 2307 14 2 8 1 1970

1 0 5 0 2433 15 2 8 1 1991

0 0 6 1 2458 16 2 7 1 2012

0 0 5 0 2479 17 2 7 1 2033

0 0 6 1 2492 18 2 7 0 2050

ball hitting left end-stop ball hitting right end-stop

Table 9-5. Stage II of the evolutionary process showing the ball and beam motion.

Third evolution stage

The next significant improvement was the third evolution stage, where the ball would

be slowed down by the beam jittering around several different beam positions

depending on the current position of the ball. The beam would begin to follow the balls

motion, thus increasing the amount of time that the ball would spend slowly moving or

stopped. This can be seen in Table 9-6 where the beam is jittering around positions nine

to eight, then eight to seven, then seven to six. The virtual FPGA was now beginning to

include the ball position data as well as the beam position data as part of its output

determination. However eventually control of the ball would be lost and the movement

of the beam would not be enough to prevent the ball from hitting an end-stop. The

fitness level for this stage was between two and ten seconds.

191

ball ball beam motor time ball ball beam motor time

positn speed positn drectn (ms) positn speed positn drectn (ms)

0 2 9 1 184 0 2 9 1 184

1 1 9 0 497 1 1 8 0 380

2 1 7 0 738 2 2 8 1 681

2 2 7 1 1042 2 1 8 0 1181

3 2 8 1 1307 3 2 7 1 1370

3 1 7 0 1500 3 1 8 0 1631

4 2 6 1 1874 4 2 6 1 1874

5 2 7 1 2218 4 2 7 1 2088

5 1 7 0 2437 5 1 6 0 2335

6 2 6 1 2764 5 2 7 1 2521

7 2 5 1 3217 6 1 6 0 2787

7 2 5 1 3552 6 2 5 1 3152

8 2 5 1 3966 7 1 6 0 3319

9 2 5 1 4422 7 2 5 1 3552

9 2 3 1 4720 8 1 5 0 3710

10 1 5 0 4887 8 2 5 1 3966

10 2 3 1 5168 9 1 4 0 4205

11 2 4 1 5490 9 2 5 1 4422

12 2 2 0 5792 9 2 3 1 4720

12 2 4 1 6009 10 2 5 1 4947

13 2 2 0 6278 10 2 3 1 5168

13 1 2 1 6555 11 2 4 1 5490

11 0 1 0 6832 12 2 3 0 5688

6 0 2 1 7109 13 2 4 0 5899

1 0 2 1 7235 17 2 4 1 6171

0 0 2 1 7253 18 2 4 1 6205

ball hitting left end-stop ball hitting right end-stop

Table 9-6. Stage III of the evolutionary process showing the ball and beam motion.

Fourth evolution stage

The fourth stage ranging from ten to fifty seconds had the beam moving in such a

manner as to quickly bring the ball to a slow speed, with the beam position following

the ball position as shown in Table 9-7. The beam aligned itself with the ball such that

the ball was roughly balanced, remaining relatively stationary for longer periods of time.

Eventually the ball would move from this static point to another position on the beam.

When this occurred the beam would rapidly track the ball’s motion, slowing it down

and bringing the ball once again to a relatively stationary state. This pattern would

repeat for long periods of time until the ball would move closer to an end-stop. In this

position any movement towards the end-stop could not be immediately countered by the

beam so the ball would touch the end-stop and the fitness evaluation would end.

192

ball ball beam motor time ball ball beam motor time

positn speed positn drectn (ms) positn speed positn drectn (ms)

0 1 9 0 2 0 1 9 0 2

4 2 6 1 1874 2 2 8 1 896

8 1 5 0 3710 3 1 8 0 1631

8 1 6 1 3869 5 1 7 0 2437

11 1 2 0 5670 7 2 5 1 3217

10 2 3 1 7570 8 2 4 0 4094

10 1 3 0 9738 9 2 5 1 4813

14 2 2 0 11394 11 1 2 0 5670

17 0 1 0 13248 8 1 5 0 6420

18 2 0 1 15015 9 1 5 0 7287

17 1 1 0 16872 11 1 2 0 8078

17 2 0 1 18800 10 2 3 1 9674

17 2 0 1 20671 12 2 4 1 10554

16 1 2 1 24299 14 2 3 1 11305

17 1 1 0 26324 17 1 1 0 12040

16 0 2 0 28223 17 2 0 1 13788

17 0 1 0 30075 17 1 1 0 14629

17 1 2 1 31816 18 1 0 1 15150

17 0 1 0 33764 16 1 1 0 16147

17 0 1 0 36285 17 2 1 1 16958

17 1 2 1 37500 18 0 0 1 17597

17 2 1 1 39393 17 2 1 1 18527

18 0 0 1 41151 18 0 0 1 19504

17 1 2 1 43296 16 1 1 0 20021

17 1 0 0 45117 16 1 2 1 20100

18 1 0 1 45887 18 2 2 0 21726

Table 9-7. Stage IV of the evolutionary process showing the ball and beam motion.

Fifth evolution stage

The fifth stage showed a sudden step change to the maximum fitness. The traits for this

stage had the ball slowly moving around a section of the jittering beam away from

either end-stop. The ball would stay in this position for a long period of time before it

gained enough momentum to move towards the opposite side of the beam. The beam

would move to counteract this motion and bring it back to its original position. This

pattern would repeat itself without the ball reaching an end-stop until the maximum

fitness value was reached giving a successful evolution.

9.5.3 Comparison between the Software and Hardware Simulation

Comparison of improvement in fitness level with the number of generations

The graphs of the fitness level relative to the number of generations for both the

software simulation and hardware simulation are shown in Figure 9-15 and Figure 9-16

respectively. These graphs show that the evolution process is similar in both methods,

with an average number of generations to a successful evolution of approximately

193

100,000 generations. These graphs show the step characteristics of the evolutionary

process as the individuals evolve through the various evolutionary stages.

Figure 9-15. Fitness relative to generation for the software simulation.

Figure 9-16. Fitness relative to generation for the hardware simulator operating at 5MHz.

Comparison of improvement in fitness level with evolutionary time

The graphs relating the fitness level to the evolutionary process time for both the

software and hardware simulation are shown in Figure 9-17 and Figure 9-18

0

50

100

150

200

250

300

1 10 100 1000 10000

F
it

n
e

ss
 (

s)

generation (1000)

0

50

100

150

200

250

300

1 10 100 1000 10000

F
it

n
e

ss
 (

s)

Generations

194

respectively. It can be seen that the average time for a successful evolution using the

software simulation is approximately 50,000 seconds or 14 hours, whereas the hardware

simulation average time for a successful evolution was approximately 750 seconds or

13 minutes. The hardware simulation had a speed improvement over the software

simulation of approximately 70 times.

Figure 9-17. Fitness relative to evolutionary time for the software simulation.

Figure 9-18. Fitness relative to evolutionary time for the hardware simulation with 5MHz clock.

0

50

100

150

200

250

300

1 10 100 1000 10000 100000 1000000

F
it

n
e

ss
 (

s)

Time (seconds)

0

50

100

150

200

250

300

1 10 100 1000 10000 100000 1000000

F
it

n
e

ss
 (

s)

Time (seconds)

195

9.5.4 Comparison with Hardware Simulation Running at 50MHz

The maximum speed of the hardware simulation was limited to 5MHz, due to the 100ns

delay time within the virtual FPGA rather than the execution of the hardware simulation

itself. In previous experiments using a software simulation, a delay of 100ns between

the inputs and outputs of the virtual FPGA was not important as the delays in the

software simulation were far in excess of that figure. However the speed improvement

of the hardware simulation now meant that the virtual FPGA was the limiting factor. In

order to increase the speed of the hardware simulation, the internal clocking of the

virtual FPGA was removed as shown in Figure 9-19, and the clock speed of the

hardware simulation increased to 50MHz. In theory this should give a speed

improvement of one order of magnitude over the 5MHz hardware. This improvement

could be slightly reduced as the time taken to perform the selection and reproduction

tasks of the genetic algorithm were not changed.

Figure 9-19. Architecture for the reducing layer virtual FPGA with no internal clock.

The graph of the fitness relative to the number of generations is shown in Figure 9-20. It

can be seen that the simulation was working in a similar manner as the software and

5MHz simulations with the step change in fitness, and the average number of

generations required to reach a successful evolution at approximately 100,000

generations.

196

Figure 9-20. Fitness relative to generation for the hardware simulation operating at 50MHz.

The graph relating fitness level to time is shown in Figure 9-21. The time taken for a

successful individual to evolve was 110 seconds; this was 700 times faster than the

software simulation.

Figure 9-21. Fitness relative to evolutionary time for the hardware simulation operating at 50MHz.

A comparison of the time required to reach a successful solution at approximately

35,000 generations for each of the three types of simulation is shown in Figure 9-22. It

can be seen that the hardware simulation running at 50MHz was the fastest at 11

seconds, the hardware simulation running at 5 MHz was 110 seconds and the software

simulation was 8,000 seconds

0

50

100

150

200

250

300

1 10 100 1000 10000

F
it

n
e

ss

(s
)

Generations (1000)

0

50

100

150

200

250

300

1 10 100 1000 10000 100000 1000000

F
it

n
e

ss

(s
)

Time (seconds)

197

Figure 9-22. Comparison of time taken to reach a successful evolution at 35,000 generations for the

three simulations.

9.6 Conclusions

It can be seen that a simulation can be designed to run in hardware using standard

Verilog coding commands. The simulation needs to be modified so that floating point

arithmetic and trigonometric functions are removed. The timing of the simulation must

be carefully designed to interface with the genetic algorithm, and the fitness evaluation.

A hardware simulation replicating a balancing beam has been successfully implemented.

This simulation has been used in a hardware genetic algorithm to evolve a virtual FPGA

that was capable of balancing the ball on the beam for more than five minutes. A

comparison between identical software and hardware simulations was performed with

both systems behaving in an identical manner. However it was found that the hardware

simulation could evolve successful circuits over 700 times faster than the software

simulation.

A conference paper was accepted for this section with recommendation for best paper

award, and journal publication. The Verilog code, C code and graphical user interface

can be found in the CD accompanying this thesis.

0

50

100

150

200

250

300

1 10 100 1000 10000 100000 1000000

F
it

n
e

ss
 (

s)

Time (seconds)

Hardware

50MHz

Hardware

5MHz

Software

198

Chapter 10

Chapter 10: Conclusions and Future Research

10.1 Summary

This thesis has added to the body of knowledge in the field of evolutionary robotics by

developing the novel concept of using evolutionary capable lookup tables as robotic

controllers. The lookup table links the current state of the robot to a desired robotic

action for that state. The lookup table is suitable for evolution as shown in two

examples using firstly a mobile inverted pendulum, and secondly a ball-balancing beam.

Advancements in knowledge have also been performed in the subfield of evolvable

hardware using both fixed layer and reducing layer architectures for an evolved virtual

FPGA used as a robotic controller for a ball-balancing beam. In this case the current

state of the robot was connected to the input of the virtual FPGA, and the evolved

circuits produced an output to control the robot. Finally the concept of moving the

simulation used for fitness evaluation of individuals from software to hardware has been

performed with a corresponding decrease in evolution completion time of

approximately 700 times. The following sections summarise these points.

10.1.1 Thesis Précis

Chapter one introduced the subject area of evolutionary robotic controllers. A list of

research questions this thesis answers was stated, with a brief explanation of how they

would be answered. Chapter two described the techniques employed in genetic

algorithms including reproduction, selection, fitness evaluation, and the application of

lookup tables. Chapter three explained the requirements for evolving hardware using

techniques such as genetic compilers, genetic programming and Cartesian based virtual

FPGAs to overcome the problems associated with evolvable hardware. Chapter four

reviewed the area of major research in evolutionary robotics using artificial neural

networks and fuzzy logic controllers. Basic concepts and their adaption for evolutionary

robotics were also explained. Chapter five summarised recent research in the two

systems that were evaluated in this thesis, including the mobile inverted pendulum and

199

the ball-balancing beam. Chapter six provided the derivation of the mathematical

models and simulations for the mobile inverted pendulum and ball-balancing beam.

Chapter seven detailed how lookup tables could be evolved for robotic controllers. This

chapter provided two examples of how they could be implemented; firstly by using a

two-dimensional array to control a mobile inverted pendulum, and secondly by using a

three-dimensional array to control a ball-balancing beam. Chapter eight presented the

fixed layer virtual FPGA that was evolved using a hardware genetic algorithm to control

the ball-balancing beam. Chapter nine illustrated how the robotic simulation could be

moved from hardware to software, with a large improvement in the evolutionary

completion time. This chapter also presented the reducing layer virtual FPGA with a

reduced chromosome length and more powerful functionality than the fixed layer virtual

FPGA.

10.1.2 Lookup Tables

Can a lookup table be evolved to function as a robotic controller?

Two systems were developed to evaluate the use of evolved lookup tables for robotic

controllers. The first evolved a two dimensional lookup table that was used to control a

mobile inverted pendulum. The axes of the lookup table were related to the pendulum’s

angle and angular velocity, while the parameters within the lookup table provided the

motor torque and direction that would maintain the pendulum in balance. The software

genetic algorithm used tournament selection, full crossover and creeping mutation. A

simulation of the mobile inverted pendulum was produced for the evaluation of fitness.

How the individual was evaluated was important as it determined the final behaviour of

the pendulum. The fitness level was dependant on how long the individual could

maintain the pendulum in balance while keeping within ±0.5 meters of its starting

position. Multiple starting angles were used when testing each individual. The

pendulum evolved a behaviour that would swiftly bring the pendulum upright from an

initial lean, and then oscillate around a fixed angular and horizontal position. It was

found that a successful evolved lookup table could keep the pendulum balanced for

more than 250 seconds.

The second system was a three-dimensional lookup table used as a controller for a ball-

balancing beam which was evolved using a similar software genetic algorithm as that

used for the mobile inverted pendulum described above (except for mutation rates). The

200

three axes of the lookup table were related to the beam position, ball position and ball

speed. The parameters inside the lookup table gave the required motor speed and

direction such that the beam would move in a motion that would keep the ball in

balance. A simulation of the beam was used to evaluate the fitness of each individual in

the population. The fitness level was dependent on how long the ball would remain in

balance before hitting an end-stop. Multiple starting points were used when evaluating

each individual. Several experiments were performed using a different number of motor

speeds ranging from two (forward and backward), to eleven (five forward, five

backward and one stopped). The motion of the ball and beam for a successful individual

was recorded showing the ball had been captured in one place by the beam oscillating

around two fixed positions. It was found that the evolved lookup table controller could

keep the ball balanced for more than five minutes. All the experiments with a range of

motor speeds and different maximum motor speeds evolved successful controllers;

however those with a higher maximum motor speed and limited range of set speeds had

a faster evolution time.

10.1.3 Virtual FPGA

Can a virtual FPGA be evolved to function as a robotic controller?

An evolutionary capable fixed layer virtual FPGA was constructed to act as a controller

for the ball-balancing beam. The virtual FPGA had thirty-two inputs to read the ball

beam states of ball position (nineteen), ball speed (three), and beam position (ten). It

had one output which was used to select a forward or reverse motor speed to drive the

beam. The virtual FPGA was based on a Cartesian architecture with a four column by

sixteen row, two-dimensional array of logic elements The genetic algorithm was

constructed in hardware using mutation only, and was used to evolve the virtual FPGA

by modifying its configuration bit stream. This genetic algorithm was chosen so that it

could be used in a FPGA with limited resources, and although not as powerful as a full

genetic algorithm incorporating crossover, it was still able to evolve controllers. A

graphical user interface was constructed to give a visual representation of the motion of

the ball and beam, and to provide control and data logging. It was found that an evolved

virtual FPGA circuit could control the motion of the beam to maintain the ball in

balance for more than five minutes. The fitness improved in large steps with a final

jump in fitness to a successful solution. An analysis of the ball and beam motion found

201

that once the ball had been slowed down from its initial starting roll, it could be brought

to balance by the beam oscillating between two points placing the ball in a stable state.

10.1.4 Hardware Simulation

Can the genetic algorithm’s simulation be implemented in hardware and benefit the

evolutionary process?

The time required for the evolutionary process to find a successful individual is largely

dependent on the time taken for the fitness evaluation of an individual. This is normally

performed in software; however if it could be implemented in hardware then a large

improvement in the evolutionary process would occur. The mathematical model of the

ball-balancing beam was converted to integer values so that it could be created as a

hardware circuit implemented in a resource limited FPGA. Two simulations using this

model were created; the first was a software simulation and the second a hardware

simulation. The hardware simulation included a simulation unit which contained the

simulation equations in hardware as well as a fitness calculation unit that could

determine how long the ball had remained balanced. The controller used for the

experiment was a reducing layer virtual FPGA which had a reduced configuration bit

stream, and more powerful function operators than the fixed layer virtual FPGA used in

previous experiments. The reducing layer virtual FPGA was based on a Cartesian

architecture two-dimensional array of logic elements. There were five columns of logic

elements with each column having a reducing number of rows reducing from sixteen

elements in the first column to one in the fifth column. The interface between the

simulation and virtual FPGA was carefully designed to ensure the timing between these

two systems was correct. Tests carried out on the software and hardware simulations

showed that they performed identically; however the hardware simulation had a 700

times speed improvement over the software simulation. The evolutionary process of the

ball and beam motion was carefully studied, showing five stages of evolutionary

learning, as the beam evolved to balance the ball. The result of these experiments

showed that a genetic algorithm’s simulation could be executed in hardware with a

significant improvement in evolutionary completion time.

10.2 Future Research

The thesis has investigated three significant questions in the field of evolutionary

robotics. The answers to these questions have been discussed, however these answers

202

lead to more questions that can be investigated in the future. These questions are

explained next.

How does a lookup table compare with virtual FPGA?

The performance of a lookup table and a virtual FPGA for an evolved robotic controller

will be compared using a simulation of the ball-balancing beam, and the hardware

genetic algorithm for the genetic process. The lookup table will be generated in RAM

with the RAM address linked to the ball position, ball speed and beam position while

the data at each address will relate to the desired motor speed. A chromosome will be

the contents of the RAM table with the hardware genetic algorithm modifying the

contents of the data within the RAM. The data size of the RAM can be modified from

one to three bits to give a range of speeds.

How does a chromosome evolved on a simulation of the beam perform on a real beam?

The physical beam developed by students at AUT University was never fully completed

as there were problems with the ball position sensors, and the motor drivers. Also the

beam controller was an Atmel Mega128 microcontroller, rather than a FPGA device.

The construction of a new curved ball-balancing beam is now in the planning stage by

technicians at the University using: the Terasic FPGA DE0-Nano board as the controller;

a high torque DC motor with over 360
0
 per second angular velocity; and a magnetic and

resistive ball position sensor. When this is completed, the simulations will be modified

for the new system and the evolution run again. The evolved virtual FPGA will be able

to be directly downloaded to the DE0-Nano board FPGA for an evaluation between the

simulation and physical beam.

How does the fixed layer virtual FPGA compare with the reducing layer virtual FPGA?

The fixed layer virtual FPGA and the reducing layer FPGA have both been used

successfully in different experiments; however their performances have not been

directly compared. An evaluation of each system will be made using the simulation for

the balancing beam and the hardware genetic algorithm. The virtual FPGAs will be

evaluated on how quickly they can be evolved, and how well they control the motion of

the ball and beam.

203

How does a software genetic algorithm compare with a hardware genetic algorithm?

A hardware genetic algorithm has been used to evolve the virtual FPGAs used for

robotic controllers. A software genetic algorithm running on the NIOS processor will be

created and compared with the hardware genetic algorithm using the simulation for the

ball-balancing beam and a virtual FPGA. The two genetic algorithms will be evaluated

on how quickly they can produce a successful individual, and how well they control the

ball and beam.

Can a software model of the virtual FPGA be created and how will it compare with a

lookup table?

The virtual FPGA has been constructed in hardware and has been shown to be able to

be evolved to create a robotic controller. A software model of the hardware virtual

FPGA will be created and its ability to be evolved for a robotic controller will be

evaluated against that of a lookup table.

204

References

[1] G. Dudek. (2011). What is a robot. Available: http://aaai.org/AITopics/Robots

[2] M. Mitchell and C. E. Taylor, "Evolutionary Compuation: An Overview,"

Annual Review of Ecological Systems, vol. 30, pp. 595-616, 1999.

[3] J. Holland, Adaption in Natural and Artifical Systems: MIT Press, 1975.

[4] J. Holland, Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence: The

MIT Press, , 1992.

[5] J. R. Koza, Genetic Programming: on the programming of computers by means

of natural selection: The MIT Press, 1992.

[6] I. Rechenberg, "Cybernetic solution path of an experimental problem," Royal

Aircraft Establishment (UK), Ministry of Aviation, Farnborough1965.

[7] I. Rechenberg, Evolutionsstrategie; Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution: Frommann-Holzboog, 1973.

[8] H.-P. Schwefel, Numerische Optimierung von Computor-Modellen mittels der

Evolutionsstrategie: Mit einer vergleichenden Einführung in die Hill-Climbing-

und Zufallsstrategie: Birkhäuser; 1. Aufl edition, 1977.

[9] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artifical Intelligence Through

Simulated Evolution. New York: Wiley Publishing, 1966.

[10] L. J. Fogel, Intelligence Through Simulated Evolution: Forty Years of

Evolutionary Programming: Wiley-Interscience 1999.

[11] A. E. Eiben and C. H. M. van Kemende, "Diagonal crossover in genetic

algorithms for numerical optimization," Control and Cybernetics, vol. 26, pp.

447-65, 1997.

[12] P. Rahila and M. M. Raghuwanshi, "Multi-Objective Optimization Using Multi

Parent Crossover Operators," Emerging Trends in Computing and Information

Sciences, vol. 2, pp. 99-105 2011.

[13] H. Mühlenbein, "How genetic algorithms really work: I.Mutation and hill-

climbing," in Proceedings of the Second Conference on Parallel Problem

Solving from nature, Brussels 1992, pp. 15-26.

[14] T. Back, "Selective pressure in evolutionary algorithms: a characterization of

selection mechanisms," in Evolutionary Computation, 1994. IEEE World

205

Congress on Computational Intelligence., Proceedings of the First IEEE

Conference on, 1994, pp. 57-62 vol.1.

[15] B. A. Julstrom, "It's all the same to me: revisiting rank-based probabilities and

tournaments," in Evolutionary Computation, 1999. CEC 99. Proceedings of the

1999 Congress on, 1999, p. 1505 Vol. 2.

[16] I. Harvey, "Artificial Evolution: A Continuing SAGA," in Evolutionary

robotics : from intelligent robotics to artificial life ER 2001 : evolutionary

robotics. International symposium, , Tokyo , JAPAN,, 2001, pp. 94-109.

[17] M. Okura, H. Matsumoto, A. Ikeda, and K. Murase, "Artifical evolution of

FPGA that controls a Miniature Mobile Robot Khepera," in SICE Annual

Conference in Fukui, Fukui University, Japan, 2003.

[18] P. J. Hancock, "An Empirical Comparison of Selection Methods in Evolutionary

Algorithms," Selected Papers From AISB Workshop on Evolutionary Computing,

SpringerVerlag, pp. 865: 80-94., 1994.

[19] S. Gupta, "Relative Fitness Scaling for Improving Efficiency of Proportionate

Selection in Genetic Algorithms," presented at the GECCO Genetic and

Evolutionary Computation Conference, Montreal Canada, 2009.

[20] S. Legg, M. Hutter, and A. Kumar, "Tournament versus fitness uniform

selection," in Evolutionary Computation, CEC2004. Congress on, 2004, pp.

2144-2151 Vol.2.

[21] M. Hutter, "Fitness uniform selection to preserve genetic diversity," in

Evolutionary Computation, CEC '02. Proceedings of the Congress on, 2002, pp.

783-788.

[22] D. Whitley, S. Rana, and R. Heckendorn, "Island model genetic algorithms and

linearly separable problems," in Evolutionary Computing, ed, 1997, pp. 109-125.

[23] H. H. Lund and O. Miglino, "From simulated to real robots," in Evolutionary

Computation, Proceedings of IEEE International Conference on, 1996, pp. 362-

365.

[24] N. Jakobi, P. Husbands, and I. Harvey, "Noise and the reality gap: The use of

simulation in evolutionary robotics," presented at the Third European

Conference on Artificial Life, ECAL '95, Granada, Spain in 1995.

[25] M. Orazio, H. H. Lund, and S. Nolfi, "Evolving Mobile Robots in Simulated and

Real Environments," Artificial Life and Robotics, vol. 2, pp. 417--434, 1996.

[26] M. S. Wilson, C. M. King, and J. E. Hunt, "Evolving hierarchical robot

behaviours " Robotics and Autonomous Systems, vol. 22, pp. 215-230, 1997.

206

[27] T. Dean and M. Boddy, "An analysis of time-dependent planning," presented at

the In Proceedings of Association for the Advancement of Artificial Intelligence,

St. Paul, Minnesota, 1988.

[28] J. J. Grefenstette and C. L. Ramsey, "An Approach to Anytime Learning,"

Proceedings of the Ninth Int. Machine Learning Workshop, pp. 189-195, 1992.

[29] J. Walker and M. Wilson, "Lifelong evolution for adaptive robots," in Intelligent

Robots and Systems, IEEE/RSJ International Conference on, 2002, pp. 984-989

vol.1.

[30] G. B. Parker and G. E. Fedynyshyn, "Enhancing embodied evolution with

punctuated anytime learning," in Systems, Man and Cybernetics, 2007. ISIC.

IEEE International Conference on, 2007, pp. 190-195.

[31] G. Capi, S. Kaneko, K. Mitobe, L. Barolli, and Y. Nasu, "Optimal trajectory

generation for a prismatic joint biped robot using genetic algorithms," Robotics

and Autonomous Systems, vol. 38, pp. 119-128, 2002.

[32] M. Beckerleg and J. Collins, "An Analysis of the Chromosome Generated by a

Genetic Algorithm Used to Create a Controller for a Mobile Inverted

Pendulum," Studies in Computational Intelligence, vol. 76, 2007.

[33] J. Currie, M. Beckerleg, and J. Collins, "Software Evolution of a Hexapod Robot

Walking Gait," in Mechatronics and Machine Vision in Practice, M2VIP 2008.

15th International Conference on, 2008, pp. 305-310.

[34] M. Beckerleg and J. Collins, "A GA based Controller for a Mobile Inverted

Pendulum," presented at the ICARA The Third Internatoinal Conference on

Autonomous Robots and Agents, Palmerston Nth, New Zealand, 2006.

[35] C. E. Thomaz, M. A. C. Pacheco, and M. M. Vellasco, "Mobile robot path

planning using genetic algorithms," Lecture Notes in Computer Science, 1999.

[36] O. Castillo, L. Trujillo, and P. Melin, "Multiple Objective Genetic Algorithms

for Path-planning Optimization in Autonomous Mobile Robots," Soft Computing

- A Fusion of Foundations, Methodologies and Applications, vol. 11, pp. 269-

279, 2007.

[37] J. Ahuactzin, P. Talbi, P. Bessière, and E. Mazer, "Using genetic algorithms for

robot motion planning " Lecture Notes in Computer Science, vol. 708, pp. 84-93,

1993.

[38] Y. Xuesong, W. Qinghua, Y. Jia, and K. Lishan, "A Fast Evolutionary

Algorithm for Robot Path Planning," in Control and Automation, ICCA2007.

IEEE International Conference on, 2007, pp. 84-87.

207

[39] R. Brooks, "A robust layered control system for a mobile robot," Robotics and

Automation, IEEE Journal of vol. 2, pp. 14-23, 1986.

[40] R. A. Brooks, "Elephants Don't Play Chess," P. Maes, ed. 'Designing

Autonomous Agents: Theory and Practise from Biology to Engineering and

Back', pp. 3-15, 1990.

[41] R. A. Brooks, "A robot that walks; emergent behaviors from a carefully evolved

network," in Robotics and Automation, IEEE International Conference on, 1989,

pp. 692-4.

[42] R. A. Brooks, "Behavior-based humanoid robotics," in Intelligent Robots and

Systems, IROS 96, Proceedings of the IEEE/RSJ International Conference, 1996,

pp. 1-8 vol.1.

[43] R. Silva, H. Lopes, and C. Erig Lima, "A Compact Genetic Algorithm with

Elitism and Mutation Applied to Image Recognition," in Advanced Intelligent

Computing Theories and Applications. With Aspects of Artificial Intelligence, ed,

2008, pp. 1109-1116.

[44] R. Silva, H. Lopes, and C. Erig Lima, "A New Mutation Operator for the

Elitism-Based Compact Genetic Algorithm," in Adaptive and Natural

Computing Algorithms, ed, 2007, pp. 159-166.

[45] J. Zhang and K. Y. Szeto, "Mutation Matrix in Evolutionary Computation: An

Application to Resource Allocation Problem," in Advances in Natural

Computation, ed, 2005, pp. 112-119.

[46] K. Szeto and J. Zhang, "Adaptive Genetic Algorithm and Quasi-parallel Genetic

Algorithm: Application to Knapsack Problem," in Large-Scale Scientific

Computing, ed, 2006, pp. 189-196.

[47] K. Shiu and K. Szeto, "Self-adaptive Mutation Only Genetic Algorithm: An

Application on the Optimization of Airport Capacity Utilization," in Intelligent

Data Engineering and Automated Learning ed, 2008, pp. 428-435.

[48] P. Xia, Z. Jian, and K. Y. Szeto, "Application of Mutation Only Genetic

Algorithm for the Extraction of Investment Strategy in Financial Time Series,"

in Neural Networks and Brain, ICNN&B'05. International Conference, 2005,

pp. 1682-1686.

[49] H. Aguirre and K. Tanaka, "Genetic Algorithms on NK-Landscapes: Effects of

Selection, Drift, Mutation, and Recombination," in Applications of Evolutionary

Computing, ed, 2003, pp. 131-142.

[50] T. Back, "Optimal Mutation Rates in Genetic Search," presented at the

Proceedings of the 5th International Conference on Genetic Algorithms, 1993.

208

[51] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das, "A study of control

parameters affecting online performance of genetic algorithms for function

optimization," presented at the Proceedings of the Third International

Conference on Genetic Algorithms, George Mason University, United States,

1989.

[52] T. L. Lau and E. P. Tsang, "Applying a mutation-based genetic algorithm to

processor configuration problems," in Tools with Artificial Intelligence,

Proceedings Eighth IEEE International Conference, 1996, pp. 17-24.

[53] I. De Falco, A. Della Cioppa, and E. Tarantino, "Mutation-based genetic

algorithm: performance evaluation," Applied Soft Computing, vol. 1, pp. 285-

299, 2002.

[54] N. Raichman, R. Segev, and E. Ben-Jacob, "Evolvable hardware: genetic search

in a physical realm," Physica A: Statistical Mechanics and its Applications, vol.

326, pp. 265-285, 2003.

[55] A. Thompson, P. Layzell, and R. S. Zebulum, "Explorations in design space:

unconventional electronics design through artificial evolution," Evolutionary

Computation, IEEE Transactions on, vol. 3, pp. 167-196, 1999.

[56] Z. Zhu, D. J. Mulvaney, and V. A. Chouliaras, "Hardware implementation of a

novel genetic algorithm," Neurocomputing, vol. 71, pp. 95-106, 2007.

[57] L. Sekanina, T. Martinek, and Z. Gajda, "Extrinsic and Intrinsic Evolution of

Multifunctional Combinational Modules," in Evolutionary Computation,

CEC2006. IEEE Congress, 2006, pp. 2771-2778.

[58] L. Sekanina and S. Friedl, "An Evolvable Combinational Unit for FPGAS,"

Computing and Informatic, vol. 23, pp. 461-486, 2004.

[59] J. Currie, M. Beckerleg, and J. Collins, "Software evolution of a hexapod robot

walking gait," Int. J. Intell. Syst. Technol. Appl., pp. 382-394, 2010.

[60] H. H. Lund and J. Hallam, "Evolving sufficient robot controllers," in

Evolutionary Computation, IEEE International Conference, 1997, pp. 495-499.

[61] H. H. Lund, "Co-evolving Control and Morphology with LEGO Robots," in

Proceedings of Workshop on Morpho-functional Machines, 2001.

[62] A. Chavoya and Y. Duthen, "Using a genetic algorithm to evolve cellular

automata for 2D/3D computational development," presented at the Proceedings

of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle,

Washington, USA, 2006.

209

[63] G. Greenfield, "Evolved Look-Up Tables for Simulated DNA Controlled

Robots," presented at the Proceedings of the 7th International Conference on

Simulated Evolution and Learning, Melbourne, Australia, 2008.

[64] R. Y. Z., A. Krohling, Y. Zhou, and A. Tyrrell, "Evolving FPGA-based robot

controllers using an evolutionary algorithm," presented at the First International

Conference on Artificial Immune Systems, 2002.

[65] R. Bianco and S. Nolfi, Evolving the Neural Controller for a Robotic Arm Able

to Grasp Objects on the Basis of Tactile Sensors, 2829 ed., 2003.

[66] D. Makaitis, "Evolving fuzzy controllers through evolutionary programming," in

Fuzzy Information Processing Society, NAFIPS . 22nd International Conference

2003, pp. 50-54.

[67] H. Seok, K. Lee, J. Joung, and B. Zhang, "An On-Line Learning Method for

Object-Locating Robots using Genetic Programming on Evolvable Hardware,"

International Symposium on Artificial Life and Robotics, pp. 321--324, 2000.

[68] D. Berenson, N. Estevez, and H. Lipson, "Hardware evolution of analog circuits

for in-situ robotic fault-recovery," in Evolvable Hardware, Proceedings

NASA/DoD Conference, 2005, pp. 12-19.

[69] C. W. Yu, J. Lamoureux, S. J. E. Wilton, P. H. W. Leong, and W. Luk, "The

Coarse-Grained/Fine-Grained Logic Interface in FPGAs with Embedded

Floating-Point Arithmetic Units," International Journal of Reconfigurable

Computing, 2008.

[70] D. Lee, C. Ban, K. Sim, H. Seok, K. Lee, and B. Zhang, "Behavior evolution of

autonomous mobile robot using genetic programming based on evolvable

hardware," presented at the Systems, Man, and Cybernetics, IEEE International

Conference, 2000.

[71] A. Thompson, "On the Automatic Design of Robust Electronics Through

Artificial Evolution," in Proceedings on the 2nd International Conference on

Evolvable Systems ICES, 1998, pp. 13-24.

[72] A. Thompson, "An evolved circuit, intrinsic in silicon, entwined with physics,"

in Proceedings of the. 1st International Conference on Evolvable Systems

(ICES'96), 1997, pp. 390-405.

[73] D. Levi and S. A. Guccione, "GeneticFPGA: evolving stable circuits on

mainstream FPGA devices," in Evolvable Hardware, Proceedings of the First

NASA/DoD Workshop, 1999, pp. 12-17.

[74] G. Hollingworth, S. Smith, and A. Tyrrell, "The Intrinsic Evolution of Virtex

Devices Through Internet Reconfigurable Logic " Lecture Notes in Computer

Science, vol. 1801, pp. 72-79, 2000.

210

[75] L. Dong-Wook, B. Chang-Bong, S. Kwee-Bo, S. Ho-Sik, L. Kwang-Ju, and Z.

Byoung-Tak, "Behavior evolution of autonomous mobile robot using genetic

programming based on evolvable hardware," in Systems, Man, and Cybernetics,

2000 IEEE International Conference on, 2000, pp. 3835-3840 vol.5.

[76] J. Mizoguchi, H. Hemmi, and K. Shimohara, "Production genetic algorithms for

automated hardware design through an evolutionary process," in Evolutionary

Computation, IEEE World Congress on Computational Intelligence.,

Proceedings of the First IEEE Conference, 1994, pp. 661-664 vol.2.

[77] D. Montana, R. Popp, S. Iyer, and G. Vidaver, "EvolvaWare: Genetic

Programming for Optimal Design of Hardware-Based Algorithms": Morgan

Kaufmann, 1998.

[78] M. J. F., D. Job, and V. K. Vassilev, "Principles in the Evolutionary Design of

Digital Circuits—Part I " Genetic Programming and Evolvable Machines, vol. 1,

pp. 7-35, 2000.

[79] J. F. Miller and P. Thomson, Cartesian Genetic Programming, 1802 ed., 2000.

[80] G. Hollingworth, S. Smith, and A. Tyrrell, "Safe intrinsic evolution of Virtex

devices," in Evolvable Hardware, Proceedings. The Second NASA/DoD

Workshop, 2000, pp. 195-202.

[81] P. C. Haddow and G. Tufte, "An evolvable hardware FPGA for adaptive

hardware," in Evolutionary Computation, Proceedings of the 2000 Congress,

2000, pp. 553-560 vol.1.

[82] P. C. Haddow and G. Tufte, "Bridging the genotype-phenotype mapping for

digital FPGAs," in Evolvable Hardware, Proceedings. The Third NASA/DoD

Workshop, 2001, pp. 109-115.

[83] T. Higuchi, M. Iwata, I. Kajitani, H. Yamada, B. Manderick, Y. Hirao, M.

Murakawa, S. Yoshizawa, and T. Furuya, "Evolvable hardware with genetic

learning," in Circuits and Systems, ISCAS'96., 'Connecting the World', 1996

IEEE International Symposium, 1996, pp. 29-32 vol.4.

[84] V. K. Vassilev and J. E. Miller, "Scalability problems of digital circuit evolution

evolvability and efficient designs," in Evolvable Hardware, Proceedings. The

Second NASA/DoD Workshop, 2000, pp. 55-64.

[85] T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, L. Weixin, and M. Salami,

"Evolvable hardware at function level," in Evolutionary Computation, , IEEE

International Conference, 1997, pp. 187-192.

[86] L. Sekanina, Virtual Reconfigurable Circuits for Real-World Applications of

Evolvable Hardware, 2606 ed., 2003.

211

[87] L. Sekanina, "Towards evolvable IP cores for FPGAs," in Evolvable Hardware,

2003. Proceedings. NASA/DoD Conference, 2003, pp. 145-154.

[88] J. M. Moreno, E. Sanchez, and J. Cabestany, "An in-system routing strategy for

evolvable hardware programmable platforms," in Evolvable Hardware,

Proceedings. The Third NASA/DoD Workshop, 2001, pp. 157-166.

[89] J. Wang, C. H. Piao, and C. H. Lee, "FPGA Implementation of Evolvable

Characters Recognizer with Self-adaptive Mutation Rates," in International

Conference on Adaptive and Natural Computing Algorithms ICANNGA'07,

Warsaw, Poland, 2007, pp. 286-295.

[90] P. C. Haddow, G. Tufte, and P. van Remortel, "Shrinking the genotype: L-

systems for Evolvable Hardware," Lecture Notes in Computer Science, vol. 2210,

2001.

[91] C. G. Schaefer, Jr., "Morphogenesis of path plan sequences through genetic

synthesis of L-system productions," in Evolutionary Computation, CEC 99.

Proceedings of the 1999 Congress, 1999, p. 365 Vol. 1.

[92] I. Kajitani, T. Hoshino, M. Iwata, and T. Higuchi, "Variable length chromosome

GA for evolvable hardware," in Evolutionary Computation, Proceedings of

IEEE International Conference, 1996, pp. 443-447.

[93] M. Iwata, I. Kajitani, H. Yamada, H. Iba, and T. Higuchi, "A Pattern

Recognition System Using Evolvable Hardware," Lecture Notes In Computer

Science, vol. 1141, pp. 761-770, 1996.

[94] A. Thompson, I. Harvey, and P. Husbands, "The natural way to evolve

hardware," in Circuits and Systems, ISCAS'96., 'Connecting the World', 1996

IEEE International Symposium, 1996, pp. 37-40 vol.4.

[95] J. C. Gallagher, S. Vigraham, and G. Kramer, "A family of compact genetic

algorithms for intrinsic evolvable hardware," Evolutionary Computation, IEEE

Transactions on, vol. 8, pp. 111-126, 2004.

[96] J. Lee and J. Sitte, Designing a Morphogenetic System for Evolvable Hardware,

3339 ed., 2004.

[97] T. G. W. Gordon and P. J. Bentley, "Towards development in evolvable

hardware," in Evolvable Hardware, Proceedings. NASA/DoD Conference, 2002,

pp. 241-250.

[98] J. Torresen, "Scalable evolvable hardware applied to road image recognition," in

Evolvable Hardware, Proceedings. The Second NASA/DoD Workshop 2000, pp.

245-252.

212

[99] J. Torresen, "An Evolvable Hardware Tutorial," Lecture Notes in Computer

Science, pp. 821-830, 2004.

[100] B. Shackleford, G. Snider, R. J. Carter, E. Okushi, M. Yasuda, S. K., and H.

Yasuura, "A High-Performance, Pipelined, FPGA-Based Genetic Algorithm

Machine " Genetic Programming and Evolvable Machines, vol. 2, pp. 33-60,

2004.

[101] T. Maruyama, T. Funatsu, and T. Hoshino, A Field-Programmable Gate-Array

System for Evolutionary Computation, 1482 ed., 1998.

[102] Z. Yang, S. L. Smith, and A. M. Tyrrell, "Digital circuit design using intrinsic

evolvable hardware," in Evolvable Hardware, Proceedings. 2004 NASA/DoD

Conference, 2004, pp. 55-62.

[103] A. M. Tyrrell, R. A. Krohling, and Y. Zhou, "Evolutionary algorithm for the

promotion of evolvable hardware," Computers and Digital Techniques, IEE

Proceedings, vol. 151, pp. 267-275, 2004.

[104] K. C. Tan, C. M. Chew, K. K. Tan, L. F. Wang, and Y. J. Chen, "Autonomous

robot navigation via intrinsic evolution," in Evolutionary Computation,CEC '02.

Proceedings of the 2002 Congress, 2002, pp. 1272-1277.

[105] A. M. M.Okura, H.Ikeda, and K.Murase, "Artifical evolution of FPGA thta

controls a Miniature Mobile Robot Khepera," in SICE Annual Conference in

Fukui, Fukui University, Japan, 2003.

[106] H. H. Lund, J. Hallam, and W.-P. Lee, "Evolving robot morphology," in

Evolutionary Computation, 1997., IEEE International Conference, 1997, pp.

197-202.

[107] P. Lysaght, J. Stockwood, J. Law, and D. Girma, Artificial neural network

implementation on a fine-grained FPGA, 849 ed., 1994.

[108] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, "Fast neural networks

without multipliers," Neural Networks, IEEE Transactions on, vol. 4, pp. 53-62,

1993.

[109] B. Prieto, J. de Lope, and D. o. Maravall, Reconfigurable Hardware

Implementation of Neural Networks for Humanoid Locomotion, 3562 ed., 2005.

[110] S. L. Bade and B. L. Hutchings, "FPGA-based stochastic neural networks-

implementation," in FPGAs for Custom Computing Machines, 1994.

Proceedings. IEEE Workshop on, 1994, pp. 189-198.

[111] M. A. Hannan Bin Azhar and K. R. Dimond, "Design of an FPGA based

adaptive neural controller for intelligent robot navigation," in Digital System

Design, Proceedings. Euromicro Symposium, 2002, pp. 283-290.

213

[112] F. Mondada and D. Floreano, "Evolution of neural control structures: some

experiments on mobile robots," Laboratory of Microcomputing (LAMI), Swiss

Federal Institute of Technology, Lausanne, Switzerland.

[113] A. L. Nelson, E. Grant, and G. Lee, "Developing evolutionary neural controllers

for teams of mobile robots playing a complex game," in Information Reuse and

Integration, IRI IEEE International Conference, 2003, pp. 212-218.

[114] K.-J. Kim and S.-B. Cho, "Dynamic selection of evolved neural controllers for

higher behaviors of mobile robot," in Computational Intelligence in Robotics

and Automation, 2001. Proceedings 2001 IEEE International Symposium on,

2001, pp. 467-472.

[115] E. Tuci, M. Quinn, and I. Harvey, "Evolving fixed-weight networks for learning

robots," in Evolutionary Computation, CEC'02. Proceedings of the Congress,

2002, pp. 1970-1975.

[116] J. Fernandes-Leon, M. Tosini, and G. G. Acosta, "Evolutionary reactive

behavior for mobile robots navigation," in Cybernetics and Intelligent Systems,

IEEE Conference 2004, pp. 532-537 vol.1.

[117] V. Abhishek, A. Mukerjee, and H. Karnick, "Artificial ontogenesis of controllers

for robotic behavior using VLG GA," in Systems, Man and Cybernetics, IEEE

International Conference, 2003, pp. 3376-3383 vol.4.

[118] A. Berlanga, P. Isasi, A. Sanchis, and J. M. Molina, "Neural networks robot

controller trained with evolution strategies," in Evolutionary Computation, 1999.

CEC 99. Proceedings of the Congress 1999, p. 419 Vol. 1.

[119] J. C. Gallagher, S. K. Boddhu, and S. Vigraham, "A reconfigurable continuous

time recurrent neural network for evolvable hardware applications," in

Evolutionary Computation, The IEEE Congress, 2005, pp. 2461-2468

[120] P. Rocke, J. Maher, and F. Morgan, "Platform for Intrinsic Evolution of

Analogue Neural Networks," in Reconfigurable Computing and FPGAs, 2005.

ReConFig 2005. International Conference on, 2005, p. 11.

[121] R. Manjunath and K. S. Gurumurthy, "Artificial neural networks as building

blocks of mixed signal FPGA," in Field-Programmable Technology (FPT),

Proceedings. IEEE International Conference, 2003, pp. 375-378.

[122] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano, "Hardware spiking neural

network with run-time reconfigurable connectivity in an autonomous robot," in

Evolvable Hardware, Proceedings. NASA/DoD Conference, 2003, pp. 189-198.

[123] M. A. Hannan Bin Azhar and K. R. Dimond, Hardware Implementation of a

Genetic Controller and Effects of Training on Evolution, 2606 ed., 2003.

214

[124] J. F. M. Amaral, C. Santini, R. Tanscheit, M. Vellasco, and M. Pacheco,

"Towards evolvable analog artificial neural networks controllers," in Evolvable

Hardware, Proceedings. 2004 NASA/DoD Conference, 2004, pp. 46-52.

[125] K. Sung Hoe, P. Chongkug, and F. Harashima, "A self-organized fuzzy

controller for wheeled mobile robot using an evolutionary algorithm," Industrial

Electronics, IEEE Transactions, vol. 48, pp. 467-474, 2001.

[126] I.-K. Jeong and J.-J. Lee, "Evolving fuzzy logic controllers for multiple mobile

robots solving a continuous pursuit problem," in Fuzzy Systems Conference

Proceedings, FUZZ-IEEE '99. IEEE International, 1999, pp. 685-690 vol.2.

[127] L. Doitsidis and N. C. Tsourveloudis, "An Empirical Study for Fitness Function

Selection in Fuzzy Logic Controllers for Mobile Robot Navigation," in IEEE

Industrial Electronics, IECON 32nd Annual Conference, 2006, pp. 3868-3873.

[128] D. Gu and H. Hu, "Evolving Fuzzy Logic Controllers for Sony Legged Robots

RoboCup 2001: Robot Soccer World Cup V." vol. 2377, A. Birk, S. Coradeschi,

and S. Tadokoro, Eds., ed: Springer Berlin / Heidelberg, 2002, pp. 5-11.

[129] D. Gu, H. Hu, J. Reynolds, and E. Tsang, "GA-based learning in behaviour

based robotics," in Computational Intelligence in Robotics and Automation,

Proceedings IEEE International Symposium 2003, pp. 1521-1526 vol.3.

[130] T.-H. s. Li, S.-J. Chang , and Y.-X. Chen "Implementation of human-like driving

skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile

robot," Industrial Electronics, IEEE Transactions on, vol. 50, pp. 867-880, 2003.

[131] S. Wu, Q. Li, E. Zhu, J. Xie, and G. Zhichao, "Fuzzy controller of pipeline robot

navigation optimized by genetic algorithm," in Control and Decision

Conference, CCDC Chinese, 2008, pp. 904-908.

[132] G. Chronis, J. Keller, and M. Skubic, "Learning fuzzy rules by evolution for

mobile agent control," in Computational Intelligence in Robotics and

Automation,CIRA'99. Proceedings IEEE International Symposium, 1999, pp.

70-76.

[133] M. S. Islam, M. S. Bhuyan, M. A. Azim, L. K. Teng, and M. Othman,

"Hardware Implementation of Traffic Controller using Fuzzy Expert System," in

Evolving Fuzzy Systems, International Symposium, 2006, pp. 325-330.

[134] R. O. Ambrose, R. T. Savely, S. M. Goza, P. Strawser, M. A. Diftler, I. Spain,

and N. Radford, "Mobile manipulation using NASA's Robonaut," in Robotics

and Automation, Proceedings. ICRA '04. IEEE International Conference 2004,

pp. 2104-2109 Vol.2.

[135] B. Browning, P. E. Rybski, J. Searock, and M. M. Veloso, "Development of a

soccer-playing dynamically-balancing mobile robot," in IEEE International

215

Conference on Robotics and Automation, New Orleans, LA, USA, 2004, pp.

1752-7.

[136] F. Grasser, A. D'Arrigo, S. Colombi, and A. C. Rufer, "JOE: a mobile, inverted

pendulum," Industrial Electronics, IEEE Transactions on, vol. 49, pp. 107-114,

2002.

[137] K. K. Noh, J. G. Kim, and U. Y. Huh, "Stability experiment of a biped walking

robot with inverted pendulum," in Industrial Electronics Society, 2004. IECON

2004. 30th Annual Conference of IEEE, 2004, pp. 2475-2479 Vol. 3.

[138] Y. Kim, S. Kim, and Y. Kwak, "Dynamic Analysis of a Nonholonomic Two-

Wheeled Inverted Pendulum Robot," Journal of Intelligent and Robotic Systems,

vol. 44, pp. 25-46, 2005.

[139] C. Huang, W. Wang, and C. Chiu, "Design and Implementation of Fuzzy

Control on a Two-Wheel Inverted Pendulum," Industrial Electronics, IEEE

Transactions on, vol. PP, pp. 1-1.

[140] C. W. Anderson, "Learning to control an inverted pendulum using neural

networks," Control Systems Magazine, IEEE, vol. 9, pp. 31-37, 1989.

[141] E. Pasero and M. Perri, "Hw-Sw codesign of a flexible neural controller through

a FPGA-based neural network programmed in VHDL," in Neural Networks,

Proceedings. IEEE International Joint Conference 2004, pp. 3161-3165 vol.4.

[142] S. Jung and S. S. Kim, "Control Experiment of a Wheel-Driven Mobile Inverted

Pendulum Using Neural Network," Control Systems Technology, IEEE

Transactions on, vol. 16, pp. 297-303, 2008.

[143] J. N. Seok, G. H. Lee, H. J. Choi, and S. Jung, "Robust control of a mobile

inverted pendulum robot using a RBF neural network controller," in Robotics

and Biomimetics, ROBIO IEEE International Conference on, 2008, pp. 1932-

1937.

[144] J. S. Noh, G. H. Lee, and S. Jung, "Motion control of a mobile pendulum system

using neural network," in Advanced Motion Control, AMC '08. 10th IEEE

International Workshop 2008, pp. 450-454.

[145] M. Obika, K. Kawada, S. Fujisawa, T. Yamamoto, and Y. Suita, "The creation

of the motion pattern attended with emergence using evolutional computation,"

in SICE Annual Conference, 2003, pp. 3283-3287

[146] F. Hoffmann, "Evolutionary algorithms for fuzzy control system design,"

Proceedings of the IEEE, vol. 89, pp. 1318-1333, 2001.

[147] M. Y. Shieh, C. W. Huang, and T. H. S. Li, "A GA-based Sugeno-type fuzzy

logic controller for the cart-pole system," in Industrial Electronics, Control and

216

Instrumentation, IECON97. 23rd International Conference, 1997, pp. 1028-

1033 vol.3.

[148] K. Min-Soeng and L. Ju-Jang, "Constructing a fuzzy logic controller using

evolutionary Q-learning," in Industrial Electronics Society, . IECON 26th

Annual Confjerence of the IEEE, 2000, pp. 1785-1790 vol.3.

[149] Z. Xuerui, T. Gang, L. Junho, and P. Allaire, "Control implementation for a

balance beam with magnetic bearings," in American Control Conference,.

Proceedings of the 2000, pp. 3069-3070 vol.5.

[150] C. Ka and L. Nan, "A ball balancing demonstration of optimal and disturbance-

accomodating control," Control Systems Magazine, IEEE, vol. 7, pp. 54-57,

1987.

[151] F. Gordillo, F. Gómez-Estern, R. Ortega, and J. Aracil, "On the ball and beam

problem: regulation with guaranteed transient performance and tracking periodic

orbits," presented at the Proc of the International Symposium on Mathematical

Theory of Networks and Systems, University of Notre Dame, IN, USA, 2002.

[152] E. P. Dadios, R. Baylon, R. De Guzman, A. Florentino, R. M. Lee, and Z.

Zulueta, "Vision guided ball-beam balancing system using fuzzy logic," in

Industrial Electronics Society, IECON . 26th Annual Confjerence of the IEEE,

2000, pp. 1973-1978 vol.3.

[153] J. Iqbal, M. A. Khan, S. Tarar, M. Khan, and Z. Sabahat, "Implementing ball

balancing beam using digital image processing and fuzzy logic," in Electrical

and Computer Engineering, Canadian Conference 2005, pp. 2241-2244.

[154] K. C. Ng and M. M. Trivedi, "Neural integrated fuzzy controller (NiF-T) and

real-time implementation of a ball balancing beam (BBB)," in Robotics and

Automation, Proceedings IEEE International Conference on, 1996, pp. 1590-

1595 vol.2.

[155] P. H. Eaton, D. V. Prokhorov, and D. C. Wunsch, II, "Neurocontroller

alternatives for fuzzy ball-and-beam systems with nonuniform nonlinear

friction," Neural Networks, IEEE Transactions, vol. 11, pp. 423-435, 2000.

[156] H. Benbrahim, J. S. Doleac, J. A. Franklin, and O. G. Selfridge, "Real-time

learning: a ball on a beam," in Neural Networks, IJCNN, International Joint

Conference on, 1992, pp. 98-103 vol.1.

[157] A. G. B. Tettamanzi, "An evolutionary algorithm for fuzzy controller synthesis

and optimization," in Systems, Man and Cybernetics, Intelligent Systems for the

21st Century, IEEE International Conference on, 1995, pp. 4021-4026

217

[158] Z. Yi and Y. Xiuxia, "Design for beam-balanced system controller based on

chaos genetic algorithm," in Information Acquisition, Proceedings.

International Conference 2004, pp. 448-451.

[159] A. L. Nelson and E. Grant, "Developmental Analysis in Evolutionary Robotics,"

in Adaptive and Learning Systems,IEEE Mountain Workshop 2006, pp. 201-206.

[160] IEEE Standards: IEE Standard Verilog Hardware Description Language, IEEE

Std 1364-2001 ed.: The Institute of Electrical and Electronics Engineers, Inc.,

2001.

218

Appendix A Published Papers

 A GA based Controller for a Mobile Inverted Pendulum

219

220

221

222

223

 An Analysis of the Chromosome Generated by a Genetic Algorithm Used to

Create a Controller for a Mobile Inverted Pendulum

224

225

226

227

228

229

230

231

Evolving Electronic Circuits For Robotic Control

232

233

234

235

236

Using a Hardware Simulation within a Genetic Algorithm to Evolve Robotic

Controllers

237

238

239

240

241

242

Evolving a Three Dimensional Lookup Table Controller for a Curved Ball

and Beam System

243

244

245

246

247

248

Software Evolution of a Hexapod Robot Walking Gait

249

250

251

252

253

254

Appendix B Altium Live Design Board used for Experimentation

255

