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Abstract

Commercially released cross-platform video games often feature graphical defects, which negatively

impact on the reputations of developers and publishers, as well as on the experience of the players.

Game industry testing practices often rely on human testers to assure the quality of a game prior to

release.

This thesis investigates the question of whether the testing and validation of computer graphics

implementations for cross-platform game development can be automated to reduce the burden on hu-

man testers, accelerate the testing phase, and improve the quality of games. Using Design Science

Research methods and patterns, iterative development and evaluation is undertaken to construct ar-

tefacts, drawing upon prior research and industrial works in related fields such as film and television,

as well as proprietary game development insight. Elements of existing automated testing systems and

image comparison techniques are combined with industry standard cross-platform development tools

and methods to create a reusable and generalisable model of an automated test system, featuring image

comparison methods, and record and playback techniques for cross-platform game implementations.

In conclusion, this thesis shows that it is possible to create a novel system that is able to detect

graphical defects in output from a cross-platform game implementation.
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Chapter 1

Introduction

“No game is 100% bug free.”

John Hight and Jeannie Novak,

Game Development Essentials:

Game Project Management

(Hight & Novak, 2008, p. 171)

1.1 Overview

The game development industry has been described as operating at the “bleeding edge of technical

complexity” (Lewis & Whitehead, 2011b, p. 2). It is a global industry comprised of large, multi-billion

dollar companies, as well as small, independent studios (Scacchi & Cooper, 2015). Modern video game

development is creative, often team-based and multidisciplinary, where specialised game development

roles collaboratively contribute to the creation of a video game (Kanode & Haddad, 2009). The deve-

lopment team is primarily composed of programmers, designers, artists and producers, but can include

other supporting roles. These roles are dependent on each other to create the overall game experience

(Murphy-Hill, Zimmermann, & Nagappan, 2014) and work in parallel during development (Kanode

& Haddad, 2009). There are unique challenges in game development due to its multidisciplinary na-

ture. For example, there can be division within a team which is often reduced to programmers vs.

artists (Kanode & Haddad, 2009; Petrillo, Pimenta, Trindade, & Dietrich, 2008). When contrasted

with general software, games have only one main requirement — that they must be fun (Petrillo et

al., 2008). The concept of fun is subjective and is an artistic achievement (Murphy-Hill et al., 2014).

Game play is about feel — developers aim to design an emotional experience that engages a player

over time (Murphy-Hill et al., 2014).

The overall development process is known as game production, which is generally broken down into
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Alpha, Beta and Gold stages, each with milestone goals which measure the output of the stage (Bethke,

2003). The target of the Alpha milestone is to have a game feature-complete, but not necessarily bug-

free. At the Beta stage, all assets should be permanently in place, and all severe bugs should have

been repaired. The Gold milestone is the finished game that is shipped to the customer (Levy &

Novak, 2010). The production phase is where developers create the majority of the game assets and

source code, but it can also include further pre-production-related activities, as well as testing activities

(Kanode & Haddad, 2009).

An example of a large-scale, big-budget game — commonly known as a Triple-A (AAA) game

— is the commercially released video game, BioShock (2K Boston and 2K Australia, 2007), which

was developed over a three-year period across three continents. The development studio employed 93

in-house developers and 30 contractors. The code base comprised of 758903 lines of C++ code, and

187114 lines of script code. The game’s publisher provided eight on-site testers (Kanode & Haddad,

2009).

A single video game can target multiple hardware platforms, including home game consoles, mobile

devices, such as smartphones and tablets, and personal computers (PC) and laptops (Peddie, 2013;

Scacchi & Cooper, 2015). Platforms have a general purpose central processing unit (CPU), as well as

a graphics processing unit (GPU) (Shirley & Marschner, 2009), and also include an operating system

(OS), such as Microsoft Windows, Apple Mac OS X, or Linux. Shirley and Marschner (2009) define

a platform as the combination of hardware, operating system and application programming interface

(API). The computer graphics API is responsible for providing a set of rendering functionality (Shirley

& Marschner, 2009) and communicates with the graphics device driver, which is software that exposes

the hardware’s capabilities to the API (Peddie, 2013), as can be seen in Figure 1.1. Cross-platform

software is executable on multiple operating systems (Thorn, 2008) and must behave the same way

on different hardware (Goodwin, 2005). In game production terms, each target platform version of a

game is known as a SKU (stock keeping unit) (Irish, 2005).

Current video game platforms range from home consoles, such as the Sony PlayStation 4, Microsoft

Xbox One, and Nintendo Wii U, to mobile handheld devices such as the Nintendo 3DS, Sony PlaySta-

tion Vita, and modern smartphones and tablets, such as the Apple iPhone and iPad and the various

Google Android-capable devices (B. Sutherland, 2013). The PC is also a major game platform.

Game development is often driven by the desire to ship a product in time for Christmas, as this is

the annual period of highest customer demand (Murphy-Hill et al., 2014). The opportunity to have

a commercially successful game relates to when the game is delivered to market and what competing

game products may also be on the market at the same time (Petrillo et al., 2008). For example, if

a game is released two months after a competitor’s, the likelihood of success is minimised, but if a
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This image has been removed for copyright reasons.

Figure 1.1: Target platform block diagram. Adapted from “The History of Visual Magic in Computers:
How Beautiful Images are Made in CAD, 3D, VR, and AR” by J. Peddie, Copyright 2013.

game is released before a competitor’s and contains defects, there could also be a negative commercial

impact (Petrillo et al., 2008). In order to ship games on time and meet their production schedule,

game developers endure crunch time periods. A team could spend months in the lead up to a release

working twelve-hour days, seven days a week (Petrillo et al., 2008) — a practice that is considered

normal within the game development industry.

Advances in video game technology help to drive computer graphics hardware innovation, research

and development (Lewis & Whitehead, 2011b; Petrillo et al., 2008). As hardware has increased in

power, game development times and costs have also increased. The game development industry has to

accommodate new technologies on a regular basis. When a new graphics card is released developers

need to take advantage of the new hardware features, and when new platforms are released developers

need to build their game for the new platform (Kanode & Haddad, 2009). There are risks involved with

utilising new technology and an associated learning curve with the arrival of new hardware (Kanode

& Haddad, 2009; Petrillo et al., 2008). Developers can be unaware of potential problems with new

hardware and a new platform can contain problems that are only discovered by developers creating

launch title game software (Petrillo et al., 2008).

Game developers are often required by publishers to target as many platforms as possible to increase

potential profit (Fahy & Krewer, 2012; Reimer, 2005). Cross-platform games have a wider possible

consumer base (Gregory, 2009; Irish, 2005; Phillips, 2002) and marketing effort and budgets can be

reduced if companies can launch all target platforms at the same time (Demerjian, 2012). This can

be achieved with only a small increase to the overall cost of developing a game (Shirley & Marschner,

2009). A game could be released on multiple platforms timed to coincide with the release of a major film

(Irish, 2005), further increasing potential exposure and, therefore, profit. Cross-platform portability

can also benefit developers, as they can make use of additional debugging strategies provided by
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different platforms to potentially detect bugs earlier in development. It also gives developers the

freedom to change platforms as technology changes (Hook, 2005). Reduced financial risk to game

developers is seen as an advantage of releasing a game on multiple platforms (DeLoura, 2011).

The AAA games Assassin’s Creed IV: Black Flag (Ubisoft Montreal, 2013), Call of Duty: Ghosts

(Infinity Ward, 2013) and Watch Dogs (Ubisoft Montreal, 2014b) each released six SKUs, targeting

Xbox One, Xbox 360, PlayStation 4, PlayStation 3, and Wii U, as well as Windows PC. Lego Marvel

Super Heroes (Traveller’s Tales, 2013) targeted seven SKUs — all of the above, plus Mac OS X. The

game was also released with mobile SKUs, under the title Lego Marvel Super Heroes: Universe in Peril

(TT Fusion, 2013), targeting five platforms — PlayStation Vita, Nintendo 3DS, Nintendo DS, iOS,

and Android; a total of twelve SKUs overall. As well as being cross-platform, these games can also

be considered cross-generational, since they targeted not only the latest iteration of console hardware,

but also the previous generation.

To create video game software for multiple platforms, developers must take account of the variations

between platforms. These differences can include the media the game is stored on, the physical

hardware that executes the game software, the operating system, device driver capabilities, the style

of input system and sound capabilities (B. Sutherland, 2013). There is also a variety of computer

graphics systems available to game developers, with a range of hardware devices, GPUs, graphics

drivers and APIs (Zioma & Pranckevicius, 2012). Specialised low-level systems must be developed for

each platform and this hinders developers wishing to target multiple platforms (Fahy & Krewer, 2012).

Reliable computer graphics implementations across all target platforms are important to ensure

customers experience a video game the same way on each platform. A game needs to look good to

the consumer on low-end, as well as high-end hardware, and perform as expected (Hardwidge, 2009;

Petrillo, Pimenta, Trindade, & Dietrich, 2009). Games can achieve fame or notoriety based upon the

foundations of their software and consumer expectations have risen as video games have become more

complex (Kanode & Haddad, 2009). A game must be able to run on different configurations of PCs

and the number of PC hardware combinations is a hindrance to game developers testing multi-platform

games (Hardwidge, 2009). Large game companies have testing centres that contain a wide variety of

hardware combinations that can be used, allowing for combinations of CPU, RAM, graphics cards and

drivers to be tested to ensure games are fault-free on a variety of hardware setups (Murphy-Hill et al.,

2014).

During development, game developers use different build configurations to control the build process.

Different configurations have different purposes for development. For example, the Release build

configuration generates an executable intended to be the consumer version of a game; the Debug build

configuration helps with the development and debugging of a game, but is not as efficient as the Release

4



build due to the inclusion of the additional debugging features; and, the Profile build configuration is

used to measure the runtime performance of the game software (Gregory, 2009; McShaffry & Graham,

2013). Each build configuration results in a different executable and hence creates additional versions

of the game that need testing for bugs (Rabin, 2010). To further complicate development, each target

platform will have different build configurations. Even a game with only two target platforms, can

have many build configurations to test, as seen with Thief: Deadly Shadows (Ion Storm Austin, 2004),

a game built for Windows PC and Xbox. With the inclusion of an Editor build, and a Debug, Profile

and Release configuration for this build, as well as the two target platforms, the game had a total

of nine executable versions that potentially required testing (McShaffry & Graham, 2013). In the

examples cited previously, where games were developed for up to 12 target platforms, there could have

been up to 36 executable versions to test, with the potential for bugs to exist in any one version.

1.2 Research Motivation

Detailed knowledge of internal processes and development is not readily shared between rival game

developers (Petrillo et al., 2008; Scacchi & Cooper, 2015). It is therefore difficult to pinpoint what

valuable areas for research exist in games due to the blackbox nature of the industry and the prevalence

of non-disclosure agreements (NDA), as well as the existence of proprietary source code (Lewis &

Whitehead, 2011b).

Kanode and Haddad (2009) suggest that the majority of problems occur during the production

phase. Problems are often caused when new functional requirements are added to the game during

this phase, a phenomenon known as feature creep. Feature creep occurs due to the non-linear nature of

the game development process and because of optimistic initial scoping. Early in the development cycle,

game developers may spend considerable time writing code that is considered expendable, due to early

creative and development efforts being focused on exploring various game design ideas, the subjective

nature of the game’s requirements and trying to narrow in on the fun aspects of the game (Murphy-Hill

et al., 2014). Because of the tension between creative aspirations and technical constraints, Murphy-

Hill et al. (2014) suggest that the game development industry is resistant to formal processes that

may restrict the creative process, and instead adopts a cowboy coding approach to development that

rejects any formal methodological approach. Scope issues can cause games to exceed their proposed

budgets and to contain defects, as developers try to balance cost and quality with releasing a game

on time (Petrillo et al., 2008; Scacchi & Cooper, 2015). Post-mortem documents contain reflective

summaries of the development process, and describe reasons for failed projects, such as feature set

change or substantial feature reduction occurring during development (Petrillo et al., 2008, 2009).
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Changes to the game design requirements can occur to allow the game to remain on budget and within

the projected time-frame, for example, by removing or halting development for one or more target

platforms early in the production process (Petrillo et al., 2009).

The early detection of game-breaking bugs is an area for research (Murphy-Hill et al., 2014).

Scacchi and Cooper (2015) state there are many areas of software testing to explore that can support

the development of video games, such as that formal software architectural design may help facilitate

automated testing, while Murphy-Hill et al. (2014) found that there is significantly less automated

testing conducted in game development when compared with general software development. Petrillo

et al. (2008) support the need to develop specific techniques to improve verification of the requirements

in game development.

1.2.1 Graphical Bugs

This image has been removed for copyright reasons.

Figure 1.2: Assassin’s Creed Unity (Ubisoft Montreal, 2014a) screen capture featuring a graphical
defect where the character’s face is incorrectly rendered ([Assassin’s Creed Unity image screen capture],
n.d.).

Computer graphics rendering errors are often present in commercially released games. Recent AAA

titles such as Mafia II (2K Czech, 2010), Fallout: New Vegas (Obsidian Entertainment, 2010), Call of

Duty: Modern Warfare 3 (Infinity Ward, 2011), Assassin’s Creed IV: Black Flag (Ubisoft Montreal,

2013), and Assassin’s Creed Unity (Ubisoft Montreal, 2014a), have been released containing a variety

of graphics defects (Asif, 2013; Hartel, 2011; Iftikhar, 2010; Yezpitelok, Cantrell, & Rio, 2012). An

example of a graphical defect, or bug, in the game Assassin’s Creed Unity (Ubisoft Montreal, 2014a)

can be seen in Figure 1.2, where the in-game character’s face is incorrectly rendered with potentially

hilarious and terrifying results. Finding images like this in news articles and community game forums
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led me to want to investigate further, as it is clear that these types of graphical bugs have an impact

on the way consumers view particular games, franchises, publishers and developers. While initially

garnering laughs from the gaming community, there is a more serious undertone to their criticisms,

and these types of bugs do have a negative impact on game play, reviews, sales, and therefore stock

values for the companies involved in releasing these games to market (Bell, 2013; Thier, 2014). For

example, Ubisoft’s share prices dropped 9.12% after the launch of Assassin’s Creed Unity (Ubisoft

Montreal, 2014a) (Cullinane, 2014) and Battlefield 4 (EA Digital Illusions CE, 2013) launch bugs led

to the filing of a class action suit against Electronic Arts (Bell, 2013).

Defects in game software can arise from traditional computer programming mistakes, such as flaws

in source code (Kanode & Haddad, 2009). Defects can also arise from changes in game content

and related assets (Murphy-Hill et al., 2014), and the difference between development and consumer

hardware can lead to bugs appearing on one hardware instance of a device and not another (Rabin,

2010). A potential cause of graphical bugs is the graphics device driver, which can be unreliable

(Abrash, 1997). For example, game developers attributed graphical issues present in Rage (id Software,

2011) to specific graphics cards drivers (Sharke, 2011).

On one hand, it is understandable that games could be released with these types of graphical bugs

present, since finding errors in the graphical user interface (GUI) of a software application is difficult

because it is labour intensive (Myers, Badgett, & Sandler, 2012), and computer graphics systems rely

on humans to interpret graphical results (Hunt & Thomas, 2000). The finding and repairing of defects

is considered to be the most time consuming and expensive aspect of software development (Petrillo

et al., 2009). Testing is difficult due to the unpredictability of non-deterministic aspects of games,

such as randomness, artificial intelligence, and multi-threaded algorithms (Bourg & Seemann, 2004;

Hunt & Thomas, 2000; Murphy-Hill et al., 2014). Currently, it is common in the game development

industry to utilise manual testing techniques, hiring up to hundreds of human testers to play builds of

the game to inspect for defects (Kanode & Haddad, 2009; Lewis & Whitehead, 2011b; Murphy-Hill et

al., 2014). This includes testing the game under usual playing conditions and also stress testing it to

its limits (Kanode & Haddad, 2009). It is difficult for a tester to explore an entire game world, or to

sometimes even identify what is considered to be correct behaviour (Hunt & Thomas, 2000; Murphy-

Hill et al., 2014). A project’s bug count can reduce slowly since fixing one bug can cause other defects

to occur (Petrillo et al., 2009). The developers of the game Tom Clancy’s Rainbow Six (Red Storm

Entertainment, 1998) were still finding new crash bugs the week before its Gold milestone and in the

development of Draconus: Cult of the Wyrm (Treyarch, 2000) over 3000 bugs were identified. Black

& White (Lionhead Studios, 2001) also contained more than 3000 bugs that had to be fixed within a

six-week timeframe (Petrillo et al., 2009). Further background on game industry testing practices can
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be found in Appendix A.

Patton (2001) describes speed, efficiency, accuracy, precision and relentlessness as benefits of auto-

mated testing tools and David Price, Test Lead at THQ, Inc., stated in an interview with Levy and

Novak (2010) that automated testing will become essential in verifying the functionality and visual

appearance of games. However, though Carucci (2009), Technical Director at game developer Crytek,

also suggested that future development of higher-level functional testing is necessary, he highlighted

an observed resistance by the game industry to the adoption of automated testing.

With these things in mind, it seemed clear to me that further investigation into testing was war-

ranted, and that there might be a way to create an automated testing system with a focus specifically

on detecting graphical errors before the commercial release of a game. In this research project, I in-

vestigate and create a system for the automation of testing and validation of cross-platform computer

graphics systems for video game development. In conducting research, the proposed research problem

must be worthy of investigation (Zobel, 2004). The resulting knowledge from my research could change

industry practice, encouraging automated testing of computer graphics systems to improve quality as-

surance (QA) when developing game software simultaneously across multiple platforms. This system

could be utilised by independent development studios, as well as AAA developers. This will help

to create robust cross-platform game software, potentially reduce development costs, maximise cross-

platform market opportunity, increase the likelihood of a game being delivered on time, and improve

the game players’ experience.

1.3 Research Questions

In this research project, I ask can testing and validation of computer graphics implementations for

cross-platform game development be automated?

To answer the core research question, I have broken it down into the following sub-questions:

• What technological developments have led to the current state of video games?

• What examples of graphical defects exist in commercial video game software?

• What testing practices are currently used in the development of video games?

• What technology and techniques are used to develop cross-platform video games?

• How can manual quality assurance testing for visual defects in cross-platform video games be

automated?

Section 1.5 addresses the technological developments that have led to the current state of video

games and related computer graphics. Chapter 2 provides insight into game development processes,
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related academic works, and game industry testing practices. Chapter 3 addresses the research methods

employed. Technology and techniques for development of cross-platform video games are addressed

and the automation of quality assurance for visual defects in cross-platform video games is realised

through the creation and evaluation of artefacts in Chapter 4 and Chapter 5. Finally, Chapter 6

summarises concluding thoughts and proposed future works.

1.4 Research Method

To investigate this research question, I use Design Science Research Methods and Patterns as described

by Vaishnavi and Kuechler (2008). This provides a framework for conducting research through iterative

design, creation and evaluation of artefacts — “exploring by building” (Vaishnavi & Kuechler, 2008,

p.2) — which further inform the nature of the problem under investigation. Problem Selection Patterns,

such as Research Domain Identification, emphasise personal interest as a core reason for the selection

of a research domain. Additionally, the pattern Leveraging Expertise, states that research should

be based on the current strengths of the researcher, giving the project the best chance of success.

My personal and professional interests are in the area of video game development, particularly cross-

platform development techniques, and the construction of high-quality video game software and tools,

and my research question has grown out of these interests, as well as my strengths and experience in

this domain.

1.5 A Brief History of Computer Graphics and Video Game

Technology

This section provides a selected overview of the background and historical elements leading to the

development of the modern computer graphics systems that are used in video game development today.

Modern computer graphics has a variety of applications beyond video games, such as information

visualisation, medical imaging, computer-aided design (CAD), simulation, visual effects, and animated

films and television (Peddie, 2013; Shirley & Marschner, 2009). The history and development is

multifaceted, happening across a combination of hardware manufacturers, software developers and

end-user market demands (Peddie, 2013). Historical innovation occurred in a competitive environment

and a significant number of early computer graphics manufacturers and developers no longer exist.

At a high level, video game consoles and modern mobile game devices share internal similarities,

such as a CPU and GPU. But they each have differing display capabilities, input systems, and sound

capabilities (B. Sutherland, 2013). On a modern target platform, a video game’s computational wor-
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kload is shared between the CPU and the GPU (Akenine-Moller, Haines, & Hoffman, 2008; Peddie,

2013) and the work done by both processors, in combination, results in games featuring 3D character

animation, artificial intelligence, and dynamic physics simulations, including projectiles and particle

effects, among other features (Peddie, 2013). Computer graphics can be compared to a computational

“black hole” (Peddie, 2013, p. 122) because its complexity is such that no matter how much processing

power is made available, programmers will continue to utilise all of it.

Video game console hardware and graphical abilities are fixed by design, ensuring that performance

is consistent across devices of the same type. Exact specifications of game console hardware are often

secret, and developers are only given access to the behind-the-scenes knowledge once they sign a non-

disclosure agreement which prohibits them from publicly discussing technology used in development

(Irish, 2005). Home consoles prior to the mid-1990s mainly featured 2D graphics capabilities, evolving

to support 3D graphics during the mid-1990s and beyond. In contrast to home consoles, there is a

large variety of consumer hardware available for PCs, such as dedicated graphics cards, which can be

configured in a number of ways. This creates the potential for varied graphical performance across the

PC platform (Shirley & Marschner, 2009). However, differences can exist within a specific console type

also, for example, where the development hardware utilised by developers is preliminary and continues

to develop up until the final consumer release of the console. This can lead to the appearance of bugs

on one hardware instance of a device, but not another (Rabin, 2010).

1.5.1 Computer Graphics APIs

A variety of graphics libraries and standards exist (Fahy & Krewer, 2012). Graphics libraries for

programming languages, also known as computer graphics APIs (CG API), allow developers to author

video game software using languages such as C++, and hence create graphical output on the hardware

through calls to the CG API. Over time, APIs are updated to add functionality for features supported

by newer hardware (Zerbst & Duvel, 2004). In the past, software standards were utilised in computer

graphics with the aim of aiding the creation of graphical software that was portable, allowing graphical

software to be utilised with a variety of hardware without the need to completely rewrite programs

(Hearn & Baker, 2003). Historical graphical programming libraries include Graphics Library (GL) and

Virtual Reality Modeling Language (VRML).

Today, the main graphics hardware manufacturers are Nvidia, AMD and Intel. In the late-1990s

and early-2000s, ATI was the number two supplier of graphics chips behind Nvidia. It had acquired

Tseng Labs in 1997 and ArtX in 2000, the company responsible for the graphics chip used in the

Nintendo GameCube home console. In 2006, AMD purchased ATI, expanding from CPU manufacture

and development into GPU manufacture, and becoming a major innovator in 3D graphics for games
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(Peddie, 2013). This cannibalisation of companies is illustrative of the competitiveness in the hardware

market. Many of AMD’s innovations have been integrated into the DirectX API (Peddie, 2013), which

along with OpenGL is one of the main APIs currently used in computer graphics (Sherrod, 2008).

Interactive computer graphics was pioneered by Ivan Sutherland with his 1963 seminal doctoral

work (Foley, van Dam, Feiner, & Hughes, 1997), Sketchpad (I. E. Sutherland, 1963). Early evolution

throughout the 1970s resulted in Plot10 and CORE, before the emergence of Graphical Kernal System

(GKS) in 1984, the first ISO standard for low-level computer graphics (Peddie, 2013). GKS was initially

a 2D graphics software standard, but was enhanced to become a 3D-capable standard. Sutherland’s

work influenced the development of Programmer’s Hierarchical Interactive Graphics Standard (PHIGS)

(Foley et al., 1997), also an extension of GKS, which introduced hierarchical object modelling, and

was extended upon to create the 3D-capable PHIGS+ (Carson, van Dam, Puk, & Henderson, 1998).

Computer graphics further evolved with Silicon Graphics (SGI), who developed Integrated Raster

Imaging System Graphics Library (IRIS GL) in 1982 (Peddie, 2013). IRIS GL was a proprietary API

for the company’s graphical workstations, however in 1991, SGI started to license IRIS GL, which made

an industry-wide 3D graphics standard possible. Internally, SGI began development on what would

become OpenGL. After removing their proprietary code, SGI teamed up with Microsoft to further

develop OpenGL, releasing version 1.0 in mid-1992 through the Architecture Review Board (ARB), an

organisation comprised of the industry leaders at the time (Hearn & Baker, 2003; Peddie, 2013; Segal

& Akeley, 1994).

During the 1990s, computer graphics processor manufacturers, such as SGI and Nvidia, looked to

the console and arcade-gaming manufacturers to offset the development costs of new graphics chipsets

(Peddie, 2013). Prior to the mid-1990s, graphics processor manufacturers had their own APIs. In 1995,

Microsoft released version 1.0 of DirectX, which became the standard for graphics development in the

Windows OS environment (Peddie, 2013). Following the release of DirectX 1.0, Microsoft purchased

RenderMorphics, which allowed them to implement a 3D graphics engine for Windows 95. Direct3D

shipped with DirectX 2.0 and DirectX 3.0 (Peddie, 2013). This was the beginning of a trend where

new versions of DirectX are generally released with new versions of the Windows OS. In the mid-1990s,

Apple also developed their own API, QuickDraw 3D (QD3D) for Macintosh computers. However, by

1999 Apple announced that OpenGL would be used by Mac OS X instead of their proprietary API

(Peddie, 2013). Also in the mid-1990s, 3dfx Interactive developed the Glide API for the PC. Other

proprietary APIs of the time include: Hierarchical Object-Oriented Programming System (HOOPS),

VESA Advanced Graphics Interface (VAGI), 3DRender (3DR), WinG and Java 3D (Peddie, 2013).

The number of graphics processor manufacturers began to decline throughout the mid-1990s and into

the 2000s, however consumer demand continued to increase (Peddie, 2013).
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At this time, DirectX and OpenGL both used the fixed-function graphics pipeline (FFP). The FFP

allowed programmers to configure the rendering pipeline by setting their desired render states, but

the stages in the graphics pipeline were not flexible (Akenine-Moller et al., 2008; Sherrod, 2008). In

1999, the DirectX 7.0 API was released, which added hardware transformation and lighting support

via GPU hardware acceleration. The mobile console, Sony PlayStation Portable — released in 2004

— had a fixed-function graphics pipeline, and a proprietary low-level graphics API, known as Geman

(Schertenleib & Hirani, 2009). The most recent home game console to utilise the FFP was the Nintendo

Wii, which contained an ATI GPU and was released in 2006 (Akenine-Moller et al., 2008; McShaffry

& Graham, 2013).

As GPUs continued to develop, OpenGL and DirectX implemented support for shaders. These are

small programs that control the programmable graphics pipeline. A variety of shader programming

languages exist, and these have evolved as graphics hardware has advanced. In contrast with the FFP,

programmable shaders allow the programmer to choose exactly what operations are conducted at

each stage of the rendering pipeline, by implementing their own algorithms as shader program source

code. As such, programmers have greater flexibility to utilise the underlying graphics hardware with

a programmable graphics pipeline than when using the FFP (Akenine-Moller et al., 2008; Sherrod,

2008). Early shader languages include the low-level ARB assembly language and Nvidia’s high-level Cg

(C for Graphics), supporting vertex and pixel shaders. DirectX 8.0 introduced programmable vertex

and pixel shaders using assembly code (Peddie, 2013). Microsoft released their first console in 2001 —

the Xbox — which had a graphics API similar to DirectX 8.0.

DirectX 9.0 featured fixed-function and programmable shaders, and throughout its releases intro-

duced Shader Models 1.0, 2.0 and 3.0, adding support for High-level Shader Language (HLSL). The

OpenGL equivalent, OpenGL 2.0, also added high-level shader support through the OpenGL Shading

Language (GLSL). Microsoft’s Xbox 360, first released in 2005, contained the PowerPC Xenon CPU,

with three cores, and an ATI GPU (McShaffry & Graham, 2013) with a variant of the DirectX 9.0

API (Sherrod & Jones, 2012), and had a unified shader architecture (where all shaders have the same

rendering capabilities) supporting Shader Model 3.0 (Akenine-Moller et al., 2008). The Sony PlaySta-

tion 3, released in 2006, utilised the Cell Broadband Engine CPU and an Nvidia GPU, known as the

RSX (Akenine-Moller et al., 2008; McShaffry & Graham, 2013), which had a full shader pipeline, and

a proprietary low-level graphics API, known as Libgcm (Gregory, 2009; Schertenleib & Hirani, 2009).

The shader pipeline continued to expand to include geometry and tessellation shaders. For Windows

PC, DirectX 10.0 introduced Shader Model 4.0, featuring unified shaders (Peddie, 2013), and fully

removed the FFP, only supporting programmable shaders (Sherrod & Jones, 2012). DirectX 11.0

saw the introduction of Shader Model 5.0 (Sherrod & Jones, 2012) and was backwards compatible,
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working with DirectX 11.0- and DirectX 10.0-class hardware. OpenGL 4.0 was equivalent feature-wise

to DirectX 11.0 (Sherrod & Jones, 2012).

Meanwhile, OpenGL ES (Embedded Systems) was developed for mobile devices. This started with

FFP support in version 1.1, while version 2.0 included support for programmable shaders. Due to

the large variety of mobile devices in the market, with varying quality of hardware, both FFP and

programmable shader versions of OpenGL ES are used by developers (B. Sutherland, 2013).

Modern OpenGL on Windows OS, Mac OS X, Linux, and mobile devices such as iPad and iPhone,

allows native device creation which differs from platform to platform, however the API is considered

platform independent (Sherrod & Jones, 2012). OpenGL provides C++ API interface bindings (Hearn

& Baker, 2003).

New graphics libraries and APIs continue to be developed, such as Almost Native Graphics Layer

Engine (ANGLE), which converts OpenGL ES API calls into DirectX API calls on Windows PCs

(Fahy & Krewer, 2012). In the mid-2010s, CG APIs have also evolved, with a recent focus on new

low-level graphics APIs, which target enhanced performance by reducing architectural overheads. The

Sony PlayStation 4 has a proprietary low-level graphics API, known as GNM, which is similar to

DirectX and OpenGL, and utilises the platform-specific shader language PlayStation Shader Language

(PSSL) (Schertenleib, 2013). Apple have also developed the low-level Metal CG API for their iOS

platform and Microsoft have developed DirectX 12.0, which was released for the Windows 10 OS in

2015 and is in development for the Xbox One home game console. The Khronos Group released the

low-level Vulkan CG API in 2016.

1.5.2 Middleware and Game Engines

As the complexity of developing video games increased, the need for source code reuse also increased.

Third-party libraries, also known as middleware, have distinct purposes — such as rendering, physics

simulation, artificial intelligence, and sound — and provide flexibility and a platform independence

layer (Gregory, 2009; Kanode & Haddad, 2009). Middleware can be utilised to avoid redeveloping

aspects of video game software which have previously been developed, thus potentially decreasing

development time and increasing software reliability (Fahy & Krewer, 2012; Kanode & Haddad, 2009).

Third-party solutions can also be used for faster prototype creation (Kanode & Haddad, 2009). An

example of middleware is the graphical library Simple DirectMedia Layer (SDL), which supports

desktop operating systems such as Windows OS, Mac OS X, and Linux, as well as the mobile platforms

iOS and Android (Fahy & Krewer, 2012).

Games are composed of a significant amount of multimedia assets and resources that make up

the virtual environment (Kanode & Haddad, 2009; Murphy-Hill et al., 2014). The asset pipeline
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converts and prepares the multimedia assets from their authoring format into forms that are able to

be utilised in real-time simulations on the appropriate target platforms (Murphy-Hill et al., 2014). It

is an essential area of game production, and the creation of such a pipeline can be a major software

development project on its own (Kanode & Haddad, 2009; Murphy-Hill et al., 2014).

Instead of writing the source code for each game from scratch, reusable game engines have emerged,

allowing developers to build their video game on top of an existing abstraction (B. Sutherland, 2013).

When using a reusable game engine, the game’s source code is written once and recompiled for each

target platform (Gregory, 2009; Harbour, 2004). Using a game engine can reduce the financial cost of

developing a video game (B. Sutherland, 2013). Console video game developers utilise game engines,

and mobile platforms are also moving in this direction (B. Sutherland, 2013). A game engine could

be responsible for efficient graphics rendering, obtaining user input, providing network connection and

playing sound, as well as managing game data (Zerbst & Duvel, 2004). Game engines support different

target platforms requiring different graphics renderers. For example, the game engine utilised in the

development of The Sims Medieval (The Sims Studio, 2011) supported the DirectX API for Windows

PC and the OpenGL API for Mac OS X (McShaffry & Graham, 2013).

Game development companies create proprietary game engines and sometimes license their engine

to other game developers (Gregory, 2009; B. Sutherland, 2013). Some examples of game engines are:

• CryENGINE (Crytek GmbH, n.d.): a proprietary cross-platform game engine. The third itera-

tion of the engine is compatible with Sony PlayStation 3, Microsoft Xbox 360, and PC. The engine

supports cross-platform development of 2D, 3D and stereoscopic games and features high-end

rendering including real-time editing of multi-platform game environments (Crytek, n.d.).

• PhyreEngine (Sony Computer Entertainment, n.d.): a proprietary game engine developed by

Sony and available to registered developers. PhyreEngine supports the Sony first-party target

platforms PlayStation 4, PlayStation 3, and PlayStation Vita, as well as Windows OS, with

rendering using OpenGL and DirectX 11.0. The developer’s interface to the engine is the same

for all target platforms, making it possible for a developer to target their game for all supported

platforms (Schertenleib, 2013).

• Unity (Unity Technologies, n.d.): a closed-source game engine commercially available as middle-

ware to third-party developers. The engine is capable of supporting 2D and 3D game development

and deployment to multiple platforms. The Unity game engine can deploy to twelve target plat-

forms (Alistar, 2014), and is widely used for Android and iOS game development (B. Sutherland,

2013). Unity uses Cg as the main cross platform graphics shader language, which is then cross-

compiled to generate HLSL, GLSL or GLSL ES shader code depending on the target platform
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(Zioma & Pranckevicius, 2012).

• Unreal Engine (Epic Games, n.d.): supports the development of a variety of game types, including

2D and mobile games, as well as high-end AAA products (Tavakkoli, 2015). Unreal Engine 4’s

entire C++ engine source code is available to developers, and game code written using the engine

is compiled using Microsoft Visual Studio 2013 (Tavakkoli, 2015). In addition to this, the engine

also provides a proprietary visual scripting language, known as Blueprints, in which developers

can program games for Unreal Engine.

Other game engines include: Ubisoft Montreal’s AnvilNext, EA Digital Illusions CE’s Frostbite, id

Software’s id Tech 5, and Ubisoft’s Disrupt Engine.

While middleware can help facilitate the development of a game, it can also have disadvantages.

Technical solutions can impose design constraints and this can lead to the pre-determining of functio-

nality, for example, the types of games developed are influenced and limited by the type of game engine

or middleware utilised in development (Scacchi & Cooper, 2015). Third-party APIs for a platform or

target hardware could fail to meet requirements, or become unsuitable during development, and may

need to be replaced with internal studio-developed solutions (Petrillo et al., 2009).

1.6 Summary

In summary, publishers desire the creation of cross-platform games to increase profitability due to a

wider target audience, and hence developers build them. There are advantages to developers beyond

the financial rewards, as cross-platform development can reduce the costs of development, as well

as the time taken to develop and market games, and help create more robust game software due to

the availability of platform-specific development tools. However, building across platforms enhances

complexity due to the differing underlying hardware and software technologies within each target

platform. Additionally, technology is always evolving, and computer graphics technology changes

quickly, creating further challenges for game developers. Graphical bugs exist for a number of reasons,

and one of the consequences of developing games within this complex environment is that games

are released containing graphical bugs that can affect the gameplay, which in turn affects the user

experience and can damage the reputations of the companies involved. The aim of this research project

is to create a tool that will aid in the automated detection of graphical defects in cross-platform video

games, using the Design Science Research methodology to create and evaluate artefacts to answer the

research question.
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Chapter 2

Literature Review

“Game testing is not something

that can be automated. Period.”

Jerome Strach, QA Manager,

Sony Computer Entertainment

America; Game Development

Essentials: Game QA & Testing

(Levy & Novak, 2010, p.205)

2.1 Structure of the Literature Review

Chapter 1 introduced the scale and complexity of the game development industry today, highlighting

the rapid evolution of computer graphics technologies and providing an overview of cross-platform

game development and its advantages and associated risks to developers, publishers and consumers.

Additionally, the existence of graphical bugs in commercially released video game software was revealed

as the primary motivation for this research project, given the significant impact they have on the game

development industry and its stakeholders. My research question focuses on whether testing for these

graphical defects can be automated.

In this literature review, Section 2.2 will use a taxonomy to define and describe the graphical bugs

detected in a number of commercially released games, along with pictorial examples to illustrate the

problem. Section 2.3 will discuss the use of automated testing in the game industry and present two

industry examples alongside research into the current state of automated testing for game development.

Section 2.4 will look into research in related fields, such as 3D, virtual reality, film and television,

focused on automated testing of computer graphics systems. Finally, Section 2.5 will review the

research presented and summarise common themes.
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2.2 Video Game Graphical Defects

There are a variety of commercially released games which contain graphical defects. These have been

reported by the game consumer community in game industry news articles and video game company

forums. Players can detect the defects, and often developers must then respond and fix them after the

initial release of a game. This can occur in the form of post-release updating (or patching) (Levy &

Novak, 2010), and also through the developer providing additional instructions for players to follow that

can potentially fix issues. Game developer The Creative Assembly, released instructions to customers

to fix graphics bugs which were present in Total War: Rome II (The Creative Assembly, 2013) at

the product’s launch (Younger, 2013) and Ubisoft published a known issues list for Assassin’s Creed

Unity (Ubisoft Montreal, 2014a) to their online forums which outlined issues on target platforms and

included progress updates for the resolution of various issues (Xhane, 2014). Patches released after a

game has shipped require testing, and this post-release testing adds to the overall cost of the game’s

development (Schultz, Bryant, & Langdell, 2005).

Video game testers classify bugs by severity, which relates to priority for repair, and category, which

broadly describes the type of defect (Hight & Novak, 2008; Levy & Novak, 2010). Class A bugs have

the highest priority because they impact a player’s ability to complete a game. Games cannot ship if

they contain Class A bugs. Class B are high priority bugs that affect a player’s experience of a game,

and should be resolved prior to release. Class C bugs are considered medium priority, and generally

cause aesthetic or balance issues in a game, however, no single Class C bug will prevent commercial

release of a game (Hight & Novak, 2008). One of the categories is visual bugs — these are bugs that

affect a video game’s graphical output (Levy & Novak, 2010). The impact of these bugs can be minor,

where the player may not notice the defect, or significant, where the bug hinders the player’s ability to

play the game as the game designer intended (Levy & Novak, 2010). While some bugs might be obvious

errors, such as the graphical defect in Figure 1.2, it can be difficult to ascertain if a game’s behaviour

is a desired outcome without having access to a studio’s internal game design documentation (Lewis,

Whitehead, & Wardrip-Fruin, 2010). Correct classification of bugs is important to avoid causing extra

effort in locating and fixing game defects.

2.2.1 Examples of Graphical Defects in Commercial Games

Lewis et al. (2010) developed a taxonomy of possible failures that can occur in video games to help

guide game designers and enable human testers to be more systematic when trying to discover defects.

Failures are divided into two categories. Temporal failures require knowledge of a previous game

state to enable the identification of game defects, while non-temporal failures can be identified at any
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moment, with no knowledge of previous game state required. The taxonomy could be applied to an

entire game, or to individual game objects, and could be applied to the game production process by

inserting it into the tools used for game development, allowing for the detection and repair of bugs

(Lewis et al., 2010). This would lead to better testing and improved design of video games, ensuring

that they feature fewer defects when released.

The categories of the Lewis et al. (2010) taxonomy that are significant to this research project are:

Invalid Graphical Representation; Invalid Information Access; Lack of Required Information; and,

Implementation Response Issues. These are broad categories that contain a number of sub-categories

of bugs.

I conducted an internet-based search to find examples of graphical bugs in commercially released

cross-platform games and have used the Lewis et al. (2010) taxonomy to group these bugs. Each

category is defined and described alongside pictorial examples that help to illustrate what players have

seen when they have encountered these types of defects.

Invalid Graphical Representation

Invalid Graphical Representation refers to certain aspects of the game world being rendered incorrectly.

Examples of this include:

• Clipping : This occurs when 3D polygons intersect one another, for example, parts of in-game

characters may be able to penetrate the virtual environment that the player would assume to be

solid (Levy & Novak, 2010). NBA 2K13 (Visual Concepts, 2012) featured this type of defect, as

seen in Figure 2.1.

• Z-fighting : This occurs when two polygons of different depths within a 3D scene are rendered

incorrectly due to both being computed as having the same z-buffer value. This can be caused by a

lack of precision in the depth buffer for the desired 3D scene. As a result, the program is unable

to resolve which polygon should be rendered in front (Levy & Novak, 2010). This graphical

defect is examined by Lapidous and Jiao (1999), with an example of a 3D virtual character

whose clothing polygons interpenetrate the polygons of the character’s skin. In Garry’s Mod

(Facepunch Studios, 2004), this type of defect can be found in the game environment, as seen in

Figure 2.2.

• Visible artifact : These bugs occur when elements that should not be in the scene are rendered

(Levy & Novak, 2010). This can be seen in Battlefield 4 (EA Digital Illusions CE, 2013) which

launched with graphical problems that hindered game play. Red spot artifacts were rendered in

the game scene which the player could mistake for a sniper rifle sight, as seen in Figure 2.3 (Staggs,
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This image has been removed for copyright reasons.

This image has been removed for copyright reasons.
Figure 2.1: NBA 2K13 (Visual Concepts, 2012) screen capture featuring a clipping issue where one
character’s forearm penetrates the face of another character ([NBA 2K13 image screen capture], n.d.).
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This image has been removed for copyright reasons.

This image has been removed for copyright reasons.

Figure 2.2: Garry’s Mod (Facepunch Studios, 2004) screen capture of a video demonstrating a z-fighting
issue, where the wall in the centre of the frame flickers from the dark grey texture to a different lighter
grey texture as the player moves (Exho, 2014).
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Figure 2.3: Battlefield 4 (EA Digital Illusions CE, 2013) screen capture featuring a rendering error
where red spots are rendered ([Battlefield 4 image screen capture], n.d.).

2013). Another example of a visible artifact bug occurred in the game Batman: Arkham Knight

(Rocksteady Studios, 2015), as seen in Figure 2.4, and Mafia II (2K Czech, 2010) contained

graphical artifacts which caused black lines to be rendered across game scenes (Iftikhar, 2010).

• Shadows: Mafia II (2K Czech, 2010) contained shadow rendering problems, as shown in Fi-

gure 2.5 (Iftikhar, 2010), and Fallout: New Vegas (Obsidian Entertainment, 2010) also featured

shadow rendering issues (Hartel, 2011).

• Missing head : Grand Theft Auto: San Andreas (Rockstar North, 2004) featured rendering er-

rors where a character’s head was not rendered, as seen in Figure 2.6 (Yezpitelok & Cantrell,

2011). Also, Call of Duty: Modern Warfare 3 (Infinity Ward, 2011) featured rendering problems

where the playable game character’s head was not displayed, as seen in Figure 2.7 (Yezpitelok &

Cantrell, 2011).

• Facial defects: This type of defect can be seen in the PlayStation 2 version of Rocky (Rage

Software, 2002) which exhibited problems rendering a character’s facial features, shown in Fi-

gure 2.8a. Assassin’s Creed Unity also featured significant facial defects, as seen in Figure 1.2.

• Character animation hierarchy defects: The PlayStation 2 version of Rocky (Rage Software,

2002) exhibited graphical problems, with limbs becoming detached from a character’s body,

as shown in Figure 2.8b (Yezpitelok & Cantrell, 2011), and Battlefield 3 (EA Digital Illusions

CE, 2011) featured characters with elongated necks, as seen in Figure 2.9. Fallout: New Vegas
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This image has been removed for copyright reasons.

This image has been removed for copyright reasons.

This image has been removed for copyright reasons.

Figure 2.4: Batman: Arkham Knight (Rocksteady Studios, 2015) screen capture featuring a rendering
error where the in-game character has spherical items rendered around its eyes, as well as artifacts
across the lower third of the frame ([Batman: Arkham Knight image screen capture], n.d.).
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Figure 2.5: Mafia II (2K Czech, 2010) screen capture featuring a rendering error where shadowing is
incorrectly rendered across half the frame ([Mafia II image screen capture], n.d.).

(Obsidian Entertainment, 2010) also featured character animation problems, where character

animations appeared stiff and a character became distorted (Hartel, 2011).

Invalid Information Access

Invalid Information Access occurs when players are able to obtain more information than the game

should allow. Examples of this include:

• Seeing through walls: This bug occurred in Fallout 4 (Bethesda Game Studios, 2015), as seen in

Figure 2.10, where the player was able to see through buildings at times throughout the game.

Call of Duty: World at War (Treyarch, 2008) is another example of a game where this occurred

(Lewis et al., 2010).

• Fog of war glitch: This bug appeared in Age of Wonders III (Triumph Studios, 2014) where

players could gain access to information they should not have about enemy placements due to a

tooltip rendering defect, as seen in Figure 2.11.

• Graphics settings disparity : A disparity between the graphics settings in Overwatch (Blizzard En-

tertainment, 2016) allowed players using a lower graphics setting in the game to see an unobscured

game environment which players using a higher setting were not able to see, as seen in Figure 2.12.

Lack of Required Information

Lack of Required Information occurs when some required graphical information is not presented on

screen. Examples of this include:
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This image has been removed for copyright reasons.

Figure 2.6: Grand Theft Auto: San Andreas (Rockstar North, 2004) screen capture featuring a ren-
dering error where the in-game character on the right is missing its head ([Grand Theft Auto: San
Andreas image screen capture], n.d.).
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This image has been removed for copyright reasons.

Figure 2.7: Call of Duty: Modern Warfare 3 (Infinity Ward, 2011) screen capture featuring a rendering
error where the in-game character is missing its head ([Call of Duty: Modern Warfare 3 image screen
capture], n.d.).

This image has been removed for copyright
reasons.

(a) Game character’s face is incorrectly rendered around
the eyes and mouth ([Rocky, facial defects, image screen
capture], n.d.).

This image has been removed for copyright
reasons.

(b) Game character’s limbs have been rendered detached
from its body ([Rocky, detached limbs, image screen cap-
ture], n.d.).

Figure 2.8: Rocky (Rage Software, 2002) screen captures featuring graphical errors.
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Figure 2.9: Battlefield 3 (EA Digital Illusions CE, 2011) screen capture featuring a rendering error
where the in-game character features an elongated neck ([Battlefield 3 image screen capture], n.d.).

• Visible artifact : These types of bugs can also be seen when an artifact obscures or replaces a

required element. For example, Fallout: New Vegas (Obsidian Entertainment, 2010) featured a

crosshatch artifact that was rendered on the terrain in place of shadows (Hartel, 2011).

• Missing textures: This occurs when required polygon texturing is not displayed and instead a

placeholder texture or flat-shaded polygons are presented (Levy & Novak, 2010). This causes the

scene to lack visual detail that the texture would otherwise contain. The Windows PC version of

Rage (id Software, 2011) suffered from texturing issues on launch, as seen in Figure 2.13. Fallout:

New Vegas (Obsidian Entertainment, 2010) featured textures that would not load correctly

(Hartel, 2011). The Xbox 360 version of The Elder Scrolls V: Skyrim (Bethesda Game Studios,

2011) contained texture scaling issues that required the developer to patch the game after its

initial release (Metro, 2011) and the cross-platform Assassin’s Creed Unity (Ubisoft Montreal,

2014a) featured delays in texture loading that caused graphical bugs (NOWGamer.com, 2014).

• Obscured UI : The Windows PC version of the cross-platform Assassin’s Creed IV: Black Flag

(Ubisoft Montreal, 2013), which was released after the console platforms, featured graphical

problems including the erroneous blurring of user interface (UI) elements, as shown in Figure 2.14

(Asif, 2013).

Implementation Response Issues

Implementation Response Issues refer to bugs that occur when the video game experiences frame rate

fluctuation. Examples of this include:
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This image has been removed for copyright reasons.

Figure 2.10: Fallout 4 (Bethesda Game Studios, 2015) screen capture featuring a rendering error where
the player can see through the building on the left of the frame ([Fallout 4 image screen capture], n.d.).
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This image has been removed for copyright reasons.

Figure 2.11: Age of Wonders III (Triumph Studios, 2014) screen capture featuring a rendering error
where red tooltip text is incorrectly rendered at the top-centre of the frame, revealing the secret
location of an enemy army obscured behind clouds ([Age of Wonders III image screen capture], n.d.).

This image has been removed for copyright
reasons.

(a) Low graphics setting ([Overwatch, low graphics set-
ting, image screen capture], n.d.).

This image has been removed for copyright
reasons.

(b) Higher graphics setting ([Overwatch, higher
graphics setting, image screen capture], n.d.).

Figure 2.12: Overwatch (Blizzard Entertainment, 2016) screenshot comparison of the same scene
rendered on two different graphics settings, showing that a player using a lower graphics setting can
see more of the game environment than a player using a higher graphics setting, due to missing foliage.
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Figure 2.13: Rage (id Software, 2011) screen capture featuring a texturing issue where the game world
exhibits a checkerboard pattern ([Rage image screen capture], n.d.).

• Screen-tearing : This bug is generally performance-related, where the GPU and display system

are not in sync (Levy & Novak, 2010). This causes the display to show portions of two different

frames rendered by the GPU at the same time. Levy and Novak (2010) suggest this bug could be

related to the performance capabilities of a target platform. This occurred in the Windows PC

version of Rage (id Software, 2011) which was released featuring screen-tearing (Sharke, 2011)

and in the Xbox One version of Watch Dogs (Ubisoft Montreal, 2014b) (Usher, 2014).

• Low frame rate: This bug occurs in Tom Clancy’s Rainbow Six: Vegas 2 (Ubisoft Montreal,

2008) (Lewis et al., 2010). Total War: Rome II (The Creative Assembly, 2013) had poor

performance with low frame rates and graphical glitches (Younger, 2013). The PC version of

Watch Dogs (Ubisoft Montreal, 2014b) had frame rate issues and slowdown when played with

an AMD graphics card (Usher, 2014). Assassin’s Creed Unity (Ubisoft Montreal, 2014a) also

featured frame rates lower than 30 frames per second on both PlayStation 4 and Xbox One

(NOWGamer.com, 2014).

Graphical errors in commercial video games are not limited to a single developer, game engine or

platform. Table 2.1 shows the variety of game engines used across the video game examples found in

the internet search, alongside their associated target platforms. This shows that bugs occur on different

platforms, across different developers and on different game engines, some of which are licensed and
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Figure 2.14: Assassin’s Creed IV: Black Flag (Ubisoft Montreal, 2013) screen capture featuring blurred
text in the heads-up-display of the user interface ([Assassin’s Creed IV: Black Flag image screen
capture], n.d.).
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some of which may be proprietary, and therefore cannot be blamed on any one of these individually.

As Hight and Novak (2008) state, Class C bugs that cause aesthetic issues do not prevent the release

of a game. Since these bugs are all graphical in nature, they may have been considered Class C, and

therefore not considered important enough to address prior to release, despite the impact they have

on gameplay, performance, and reputation.
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Published Game Game Engine Target Platforms Visual Defect

Age of Wonders III Creator Engine Windows, Mac OS X, Linux Fog of war glitch

Assassin’s Creed IV: Black Flag AnvilNext Windows, PlayStation 3, PlayStation 4, Wii U, Xbox 360,
Xbox One

Obscured UI

Assassin’s Creed Unity AnvilNext Windows, PlayStation 4, Xbox One Facial defects, Missing textures, Low frame rate

Batman: Arkham Knight Unreal Engine 3 Windows, Mac OS X, PlayStation 4, Xbox One, Linux Visible artifact

Battlefield 3 Frostbite 2 Engine Windows, PlayStation 3, Xbox 360 Character animation hierarchy defects

Battlefield 4 Frostbite 3 Engine Windows, PlayStation 3, PlayStation 4, Xbox 360, Xbox
One

Visible artifact

Call of Duty: Modern Warfare 3 MW3 Engine Windows, Mac OS X, PlayStation 3, Xbox 360, Wii Missing head

Call of Duty: World at War IW 3.0 Windows, Playstation 3, Xbox 360, Wii Seeing through walls

The Elder Scrolls V: Skyrim Creation Engine Windows, PlayStation 3, Xbox 360 Missing textures

Fallout: New Vegas Gamebryo Windows, PlayStation 3, Xbox 360 Shadows, Character animation hierarchy defects, Vi-
sible artifact, Missing textures

Fallout 4 Creation Engine Windows, PlayStation 4, Xbox One Seeing through walls

Garry’s Mod Source Windows, Mac OS X, Linux Z-fighting

Grand Theft Auto: San Andreas RenderWare PlayStation 2, Windows, Xbox, Mac OS X, Xbox 360,
PlayStation 3, iOS, Android, Kindle, Windows Phone,
Fire TV

Missing head

Mafia II Illusion Engine Windows, Mac OS X, PlayStation 3, Xbox 360 Visible artifact, Shadows

NBA 2K13 Windows, PlayStation 3, Xbox 360, Wii U, Wii, PlaySta-
tion Portable, iOS, Android

Clipping

Overwatch Windows, PlayStation 4, Xbox One Graphic settings disparity

Rage id Tech 5 Windows, PlayStation 3 Xbox 360, Mac OS X Screen-tearing, Missing textures

Rocky GameCube, PlayStation 2, Xbox, Game Boy Advance Facial defects, Character animation hierarchy defects

Tom Clancy’s Rainbow Six: Vegas 2 Unreal Engine 3 Windows, PlayStation 3, Xbox 360 Low frame rate

Total War: Rome II Warscape Engine Windows, (Future targets: Mac OS X, Linux) Low frame rate

Watch Dogs Disrupt engine Windows, PlayStation 3, PlayStation 4, Xbox 360, Xbox
One, Wii U

Screen-tearing, Low frame rate

Table 2.1: Summary of example video games with rendering errors, their associated game engine and target platforms.
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2.3 Automated Testing in Games

Finding bugs is repetitive, time consuming and challenging for human testers, and this could cause

testers to overlook defects (Nantes, Brown, & Maire, 2008). Removing the human testers could reduce

the number of hours spent testing. Scholars (Murphy-Hill et al., 2014; Petrillo et al., 2008; Scacchi &

Cooper, 2015) highlight a lack of test automation in game development and suggest that there is some

reluctance in the game industry to adopt automated testing practices. A report by the International

Game Developers Association (IGDA) identified automated testing as best practice (Rees & Fryer,

2003) and Carucci (2009) encouraged AAA game developers to adopt automated testing practices.

Automated testing has been broadly accepted in the software development industry, yet automated

testing practices go against the common practices undertaken by the game development industry. The

excuses used in the game industry to avoid automated testing include: the belief that writing tests

takes time away from the actual development process; automated tests cannot cover everything; source

code is temporary and highly likely to change as development progresses, hence the code does not need

to be tested when written; the process of game development is different to software development, and

automation may not be suitable; and, games are about fun, and capturing fun with an automated test

is not possible (Carucci, 2009).

Automated testing can require the involvement of programmers, who cost more to write code than

testing staff, and the automated testing code may not be bug-free, nor be reusable from one game to

another, or from one platform to another (Rees & Fryer, 2003). Automated testing is also considered

to reduce the agility of development practice (Murphy-Hill et al., 2014). Since almost all games can

be considered emergent, where the execution of the software results in unpredictable game outputs,

they become difficult to test. Testing requires knowledge of the expected output, and emergent games

hinder the ability to predict what is expected (Lewis & Whitehead, 2011b). The IGDA report argued

that automated testing cannot substitute for human testers because humans have an eye for detail

that cannot be replaced. The fragility of automated testing, due to constant changes to a project,

was cited as another reason for the reluctance to adopt automated testing practices, with human

testers considered more resilient. However, there are disadvantages to using human testers to identify

and report upon the discovery of bugs. For example, tester feedback may be influenced by being

observed while playing a game (Schultz et al., 2005). Developers may have issues replicating the

circumstances that discovered the bug, and test automation could enhance bug reproducibility. A

split between human and automated testing is proposed, where automated testing tools are used to

speed up the testing process rather than replace human testers (Rees & Fryer, 2003; Ruskin, 2008).

This multifaceted approach could be used to catch a wider range of defects (Keith, 2010).

The IGDA report also discussed when best in the development cycle for testing to occur, stating
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that testing early in production allows bugs to be caught sooner, but warned that this could be

overwhelming for developers, since a game is likely to contain a large number of defects early in

development (Rees & Fryer, 2003). Kanode and Haddad (2009) suggested that testing should occur

throughout development. A game should be planned to be playable at the end of each development

cycle, allowing testers to check the game for defects at these points while the game is in a playable

state (Kanode & Haddad, 2009; Keith, 2010). Lewis and Whitehead (2011b) suggested that constant

experimentation is required for successful game development, and that this style of development needs

to be kept in mind when creating or adopting testing practices.

Carucci (2009) stated that since game source code is algorithmic in nature, it is easier to test

than GUI source code. Since game source code changes often, there should be more incentive to use

automated testing to ensure that the side effects of changes are avoided. Automated tests can be used

to discover defects and bugs effectively, and hence allow more time for game developers to create the

fun aspects of a video game. They can be small, simple and straightforward in their approach, testing

a single condition, and with the added benefit of being self-documenting and repeatable.

Scripted simulation is used in game testing, suggesting some form of automation, however, regres-

sion testing, which ensures that previously working features are not broken as development continues,

and unit testing, which tests individual procedures, are not utilised to the same degree as in software

development (Hunt & Thomas, 2000; Murphy-Hill et al., 2014; Myers et al., 2012). Carucci (2009)

proposed that the game industry should adopt more test automation by creating high-level testing

frameworks. A strong commitment from game development studio management, alongside entire team

member buy-in, mentoring and training, is required to make test automation within game development

successful (Carucci, 2009).

While it is clear that there is support for automation from the IGDA and industry insiders, such as

Carucci (2009), the competitive nature of the industry and the prevalence of non-disclosure agreements

makes it difficult to find details on the exact kinds of automation that are taking place. There is

academic research available, for example regarding Unity Technologies and Electronic Arts, however

it seems to only scratch the surface of what automated testing is happening and how. Further insight

can be gained from employee blog posts that support the published academic research presented in

the following sections.

2.3.1 Industry Insight: Unity Technologies

In their SIGGRAPH article, Zioma and Pranckevicius (2012) shared their experiences and lessons learnt

in maintaining acceptable quality and performance levels across Unity game engine target platforms,

including multiple mobile devices and operating systems. Unity supports several different mobile
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GPU architectures, each with their own unique characteristics, such as texture compression, API

extensions, performance analysis tools, and different graphical drivers. The authors noted that each

graphical driver has its own set of bugs. They adopted a functional test suite for automated testing

on their target mobile platforms. Zioma and Pranckevicius (2012) did not present any findings of

their activities, however in a related presentation, Zioma (2012) provided more insight into the overall

process, as well as providing some of their results.

The presentation was intended for developers who wish to develop their own technology from

scratch, or who want to obtain insight into the under-the-hood details of the Unity engine (Zioma,

2012). It also provided some insight into automated graphics testing within Unity and highlighted

platform-dependent challenges, such as the different GPU architectures and their associated rendering

strategies, and the large variety of mobile device resolutions and varying performance scales. No

single texture format is supported across all of Unity’s OpenGL ES 2.0 graphics devices. There were

performance variations that reminded the author of developing for graphics devices in the 1990s. Unity

automated testing by executing the same content on different devices, including different operating

system updates (Zioma, 2012). They captured screenshots which were compared on a per-pixel basis

to template images. The test suite featured 238 test scenes, each one a simplified scene that tested a

specific graphics feature. The target devices used were the Nexus One (Adreno 205), Samsung Galaxy

S2 (Mali 400), Nexus S / Galaxy Nexus (SGX 540) and Motorola Xoom (Tegra2). The automated tests

were run automatically upon internal code changes. The author found test results differed from device

to device. Examples of the test scenes were shown — an alpha blending scene, a blend mode scene and

a scene that used ReadPixels to demonstrate particular issues that occurred. These test scene results

were shown for two different hardware devices where the resulting renders were different. Graphics

shader variation was found to produce incorrect results on some targets. Also, some devices simply

crashed on execution of some tests, which Zioma (2012) attributed to driver issues, and connecting

multiple devices to a single host computer caused device connection failures.

In a personal website blog post, Pranckevicius (2007) provided further insight into the automated

graphics testing conducted at Unity Technologies. Although the automation setup took time, it was

beneficial, as it highlighted the differences between hardware devices, device drivers, and the potential

problems that can arise as a result of different behaviour on various hardware targets, or code behaviour

based upon hardware and driver combinations. The author highlighted the need for the right hardware

to conduct testing on and suggested this could initially be conducted with a couple of graphics cards

that can be swapped in and out of a computer. Unity Technologies’ setup involved buying a variety of

test machines, with integrated graphics cards that were of interest, but also allowed discrete graphics

cards to be utilised with the same test hardware. This resulted in shelves of graphics cards, including
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legacy hardware such as the ATI Rage, Matrox G45 and S3 ProSavage (Pranckevicius, 2007).

Functional tests were created based upon small test scenes that featured a variety of possible

rendering scenarios. Examples of these were: do all blend modes work; do light cookies work; does

automatic texture generation work; do texture transforms work; does the rendering of particles work;

does glow image post processing work; does mesh skinning work; and, do shadows based on a point

light work. This resulted in many tests, each of which was small and isolated. Tests were loaded into

the Unity engine in succession, and a screenshot taken of each resulting scene. When simulation was

required, such as in an animation or particle test, time was updated at a fixed rate. Screenshots were

taken on the fifth frame of the simulation to give the test scene a chance to warm up (Pranckevicius,

2007). When new graphics card hardware, drivers, or operating systems were released, the tests were

run and obvious errors could be found quickly by a human tester who compared the screenshots. When

changes in the rendering code occurred, tests were rerun to check if any graphics features had become

defective.

Further automation occurred via scripts which produced a suite of test images for current hardware,

and another where all tests were executed and the results compared with a known set of correct images.

The stored correct images were different for each graphics card due to the capabilities of the individual

hardware. The automated tests could be run for various driver versions on every graphics card in the

test suite. If a test failed the defective screenshot was copied alongside the correct image, and these

were uploaded to a wiki which logged the test results. Overall, this automated system was considered

helpful to the development of the Unity game engine, specifically when the developers implemented the

Direct3D renderer, and in the discovery of techniques to work around graphics card- and driver-related

issues (Pranckevicius, 2007). Pranckevicius (2007) noted that automated testing could be extended to

all driver versions. A test could install one driver in silent mode, reboot the test machine, rerun the

graphics test scenes script, and then move onto the next version of the driver.

From the initial work undertaken in 2007, Unity Technologies continued to evolve their automated

testing practices. In a blog post on the Unity Technologies website, Dunnett (2010) discussed regression

testing of games in Unity’s web player. The goal of the regression testing was to ensure that the web

player was able to play back content identically in all its published versions, so that engine customer’s

games were not broken by new versions. The development team built a dedicated test system which

was composed of a server, and seven PC and two Mac client machines. During execution of a game,

the client machines took a screenshot every second which was then forwarded to the test server. A

human tester played the game on the regression system, which captured all the input and stored it.

This created a golden set of screenshot images based upon the input, which became the known set of

images that the game should generate. The regression system could compare images from the game
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playback using the daily development build of the web player against the golden images. Developers

were alerted when a mismatch occurred (Dunnett, 2010).

In 2011, Pranckevicius (2011) revisited his 2007 blog post with a follow up post which discussed

regression testing of games developed with the Unity engine, showing more automation development

and providing more behind-the-scenes details. Graphics programmers, who care whether features

developed actually work or if changes to the code base caused a feature to break, utilise the types

of small functional tests described earlier (Pranckevicius, 2011). The post noted that a graphics

programmer was responsible for creating the tests which validated the graphics features they created.

Further example screenshots of the system were shown for two cases — a fog-handling test scene and

a deferred lighting test scene. Engine features were also tested by QA and a beta testing group. When

QA discovered a fault that did not yet have a test, a test could be added to check for that particular

situation, and then retained for use in future automated testing. TeamCity, a third-party continuous

integration and build management system, was utilised for the build and test farm where several build

machines were set up as graphics test agents (Pranckevicius, 2011). These agents ran graphics test

configurations on all branches of the engine automatically. Daily graphics tests were also run for each

branch. Any branch with high levels of activity in the graphics code had tests run more frequently

than daily. Tests could also be run manually at the click of a button. Pranckevicius (2011) summarised

that the overall approach was to run test scenes for a fixed number of frames and take a screenshot

at the end of each fixed time-step. Screenshots were then compared against known good images and

any difference was considered a failed test result. On some platforms a tolerance for some number of

wrong pixels was allowable. The test controller was a C# application that listened on a socket, fetched

the screenshots and compared them with the known good images. Failed tests were reported with an

expected image, a failed image, and a difference image with increased contrast.

In 2012, a further Unity Technologies blog post highlighted the introduction of a testing team

and significant resource being directed towards test automation. Petersen (2012) stated that there

was a QA team of seventeen, comprised of software engineers and students, and the company was

hiring more. The roles were broken into different categories. Firstly, Software Engineers in Test,

who were responsible for developing tools, frameworks and automation that would improve the overall

development work flow. Secondly, Software Test Engineers, who were manual testers that became

the first users of newly developed engine features and produced feedback for developers. Finally, the

student workers, who looked at the bugs submitted by the Unity user community and then tried to

reproduce them in the engine, before forwarding them onto the engine’s developers. Petersen (2012)

stated that Unity was one of the most highly tested products he had ever worked on. The strategy

for testing required automation due to the lifespan of the features the engine contained. Repeated
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manual testing of features which could have a lifespan of years did not make sense, and so automation

was needed. The infrastructure required to run the test automation was small and the core part of

Unity required only a single install on a single machine. In a regular test run, all target platforms were

covered by the testing. Bug reports detailed specific platform, operating system and graphics card

specifications. Writing automated tests was extremely difficult, and required developers who knew

about testing techniques, infrastructure, and the product in development, and were programmers who

could write solid code (Petersen, 2012).

Andersen (2013) also provided insight into the Toolsmith Team at Unity Technologies. This team

consisted of six developers responsible for working on tools, frameworks infrastructure, and testing

Unity. The team was additional to the team categories described by Petersen (2012). Andersen

(2013) identified challenges of testing Unity, such as how to break the product down into logical

components and the more than ten target platforms that the engine ran on. This made the testing

matrix extremely complex due to different platform-specific areas and features. The post provided

insight into the runtime API test framework where platforms were treated separately from engine

features. The framework consisted of different modules: automation; players; frameworks; runner;

and, runtime test cases. A test was written once and the framework would ensure it ran on each

target. This framework was supported on all Unity target platforms and the build system was able to

execute tests on multiple platforms in parallel. There were more than 750 unique runtime API test

cases and more than 9000 test cases executed in a single automated test build verification. However,

average execution time for the entire test suite was less than 30 minutes, with half of this time spent

setting up the environment and the other half conducting the tests. Test cases were written in C# and

executed in either milliseconds or in under a few seconds, and individual test cases could be disabled

or could be platform-specific. The back-end of the testing system had close to real-time monitoring

of key test metrics. In a single day, more than 150000 API tests were executed. This post from 2013,

highlights the growth of multiple testing teams within Unity Technologies, and reveals, to some extent,

the scale of automated testing within the company. In 2012, Zioma (2012) stated that there were 238

graphics test scenes, and now there were over 9000 automated test cases for the engine.

Alistar (2014) discussed why it is critical to have a team of expert developers focused on testing

the Unity engine. Unity Technologies employed 450 people, across 27 locations and had 2.5 million

registered developers using the Unity engine. The engine supported twelve major platforms, as well

as some smaller platforms. The engine’s codebase grew fast, with 2.2 million lines of source code at

the time of writing, and the developers needed to ensure that the engine performed well with each

new release. The team placed great emphasis on automation. 7000 files and 400000 lines of code

were dedicated to the testing of runtime, graphics, integration, unit, UI, and performance. There were
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Figure 2.15: Unity graphics test result example ([Unity reference image, test result image, difference
image], n.d.).

more than 13000 test cases in a single automated build verification suite, up from 9000 test cases the

previous year (Andersen, 2013). The team could be working in 100 development branches at the same

time, with half a million test points executed on the build farm every day. Automation-based work

was not tied to any single release of the Unity engine. The Software Development Engineers in Test

(SDET) wrote, maintained, optimised and improved the tests on a daily basis. The SDET team was

formed in 2012, as mentioned in the Petersen (2012) blog post, as the few testing frameworks that

existed were not owned, maintained or improved by any particular development team members. They

cleaned up, documented and optimised all existing tests, and ensured that all developers knew how to

utilise the frameworks, as well as create new tests. The SDET were required to be strong collaborators

as they worked with other teams in QA and research and development. They had to be knowledgable

in programming, object-oriented design, unit testing, test driven development, high-level testing and

test automation.

Bay (2016) revealed further details about Unity Technologies’ automated graphics testing in a 2016

blog post on the company website. The system has grown to over 13700 graphics tests over 33 build

configurations, again highlighting that different platforms, device models and graphics cards produced

slightly different results. Graphics test scenes have been created which run on all supported devices

and render a resulting image, which is then compared with an approved reference image. When a test

fails, a difference image is created and then a human needs to verify why this failure has occurred.

An example of a test scene and its corresponding failed result and difference images can be seen in

Figure 2.15. Overall results are displayed on a webpage, an example of which can be seen in Figure 2.16.

The tool allows toggling between reference image, test result image and difference image to help the

human identify the graphics issue. There are a number of steps required of the operator in validating

test results and updating reference images. Running the tests and waiting for the results can be time

consuming, however, overall, the test system has helped reduce manual overhead when dealing with

graphics issues.
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Figure 2.16: Unity Graphics Tests Tool screenshot ([Unity Graphics Tests Tool image], n.d.).
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Automated testing has helped keep the quality of the Unity game engine high, by ensuring that

known bugs are resolved and never reoccur (Alistar, 2014). Though the literature contains minimal

detail on how automated testing is implemented within Unity Technologies, a broad picture can be

formed from employee insight. The works show how quickly automated testing has grown in scale

and complexity within the Unity game engine, and highlight the continued growth and dedication of

significant human and technological resources to this area. It is important to note that the automated

testing undertaken by Unity Technologies is only for their own engine and is not open and transferrable

to competitors’ engines. Nor do they make games, and so do not have to focus resources on content

development. However, it is an excellent example of the automated testing that could be used industry-

wide if game development studios are prepared to direct human, technological and financial resources

to this area. Through the growth of their testing staff and technology, Unity Technologies demonstrate

what is possible when there is buy-in from management, as championed by Carucci (2009).

2.3.2 Industry Insight: Electronic Arts

In conference proceedings, Buhl and Gareeboo (2012) presented a case study and lessons learnt from

the application of automated testing during game development at EA Tiburon, an Electronic Arts (EA)

development studio. Automated testing was identified as a key factor in improving the development

of the NCAA Football game franchise created by the studio. In the case study, the Alpha phase of

development was problematic, as significant QA resources were allocated to testing the game, while

the game development team focused on fixing identified bugs (Buhl & Gareeboo, 2012). The team

had a ratio of five software developers to one QA staff member. Developers found it was difficult to

see how stable the game was and game features that were not used for weeks would instantly crash

when executed. Developers were left with no detail as to when or how defects were introduced to the

game. The high number of defects caused an increase in work hours for the development team, which

could have led to staff burnout and higher staff turnover, and hence could have impacted the next

game the studio developed (Buhl & Gareeboo, 2012). Buhl and Gareeboo (2012) identified the need

to introduce new processes to development during production to reduce the number of defects in a

game prior to the Alpha milestone. QA staff were used during development to test the game prior to

repository check-in, however it was argued that this practice would not scale to larger teams.

To implement automated testing, the development team’s project manager took responsibility

for championing the idea and obtaining buy-in from senior management (Buhl & Gareeboo, 2012).

The project manager also prioritised the investment of time and resource into automation. Initially,

a reporting dashboard was created to track the automation project, with green tick and red cross

status feedback. This provided a simple, visual way of checking whether features were broken or not.

41



Over time, more symbols were added to identify different issues: orange triangles denoted initialization

issues, exclamation marks denoted missing script issues and red diamonds were used for assert failures.

The EA Tiburon studio had access to previous work created by the EA Central Test Engineering

Group, which contained a foundation for proprietary automated game testing. They went on to create

an automated testing infrastructure that obtained every new build of a game, copied the build to target

consoles, ran a series of test scripts and then reported the results to a dashboard that was accessible

to the whole team. Automated bots ran every night, where AI scripts played the game continuously

over a set period of time. These results were also reported to the dashboard. Software engineers could

use a simple, non-time consuming process to execute tests from their desks. A critical path test for

entering and exiting each game mode in under ten minutes was also created; this was convenient for

engineers to run and it avoided interference with the general work flow. A team member, who was

recognised by the development team as an individual who consistently made stable updates to the

game, noted that the critical path testing saved time, as the individual had previously conducted this

style of test manually prior to each of their code check-ins. Buhl and Gareeboo (2012) note that by

keeping tests in sync with the current version of the game and by running the tests prior to check-in,

previous issues with automated testing were avoided.

As a result of their system, the longest period of time where NCAA Football 12 (EA Tiburon and

EA Canada, 2011) went without a passing build was three weeks, compared to NCAA Football 11 (EA

Tiburon and EA Canada, 2010), which went five months without a passing build (Buhl & Gareeboo,

2012). Automation improved the product quality, and the authors noted the positive impact of three

weeks compared to five months on the development time, cost and team member morale. They also

found that automated bots were stable earlier in the development cycle and the extra hours required

by the development team were reduced during the Alpha stage of development. There was a major

reduction in the Class A bugs found compared to the previous release of the game, which allowed QA

more time to discover low severity bugs. Buhl and Gareeboo (2012) noted that automated testing

would not have been possible without management buy-in. The associated presentation by Buhl and

Gareeboo (n.d.) provided examples of the dashboard output, testing result graphs and identified NCAA

Football 08 (EA Tiburon, 2007) as having a particularly bad Alpha. This indicates that there were a

number of yearly releases of the NCAA Football game franchise before significant work was undertaken

to improve the automated testing process.

Donat, Husain, and Coatta (2014) discussed the potential for automated QA testing and provi-

ded further insight into automated testing conducted at EA. The automation of testing was initially

explored for FIFA 10 (EA Canada, 2009). The developers were motivated by the cost of manual

testing which had become significant due to the complexity of the game, highlighting the expense of
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code changes that require manual retesting. Automated testing had the benefit of allowing testers

to refocus on the authenticity and fun of the game, rather than spending time testing for stability.

Testing required 22 humans to play the game. Therefore, to test two simultaneous matches, over 40

human testers were required. This required the organisation and coordination of the human testers,

and test scenarios would be hindered when the testing group encountered a trivial bug that caused a

fault at the beginning of a match. During testing the budget had to be increased, which prompted the

studio to seek ways to avoid this happening in the future and provided the motivation for automated

testing.

A time-based script was utilised, which sent commands to 20 test consoles, stepping through the

initial match setup phases of the game (Donat et al., 2014). The timing of this script was critical; if it

was not perfect, the setup routine would fail. The developers analysed 300 crash bugs from a QA cycle

and found that more than half the bugs occurred during the initial screen transitions. This helped

them realise testing was required in both the front-end and the back-end of the game.

The initial developers of the FIFA 10 automated test framework needed the test program to be

aware of where it was on a console and then to move forward in an error-correctable way. The capability

to do this was developed, but was neglected, and by the time the development team of FIFA 11 (EA

Canada, 2010) needed the testing feature for the next version of the game, it did not exist in a usable

form. The development team of FIFA 11 added an auto-assist feature, where automation could be

left to run the game. This reduced the number of human testers required from over 40, to just one or

two. The work conducted on FIFA 11 helped to convince EA that there were benefits to automated

testing. However, Donat et al. (2014) also highlighted that a dedicated software engineer was required

to maintain the automated test script, as it was fragile. The implementation developed was also

described as too specific, and it was suggested that a higher-level abstraction should be developed.

Testing logic using the view layer of the game was identified as error-prone, as it relied on waiting

for buttons to load and the simulation of mouse clicks and keyboard event messages, which can break

easily (Donat et al., 2014). Automated systems need to be separated from the data they require,

and development strategies need to be employed where the game software utilises observer pattern

behaviour and the Model-view-viewmodel (MVVM) architectural pattern. This would allow events to

be fired, and listened for, when interesting events occur in-game. Donat et al. (2014) identified that

software engineers must be convinced to change their approach to development.

Development of the FIFA game franchise is undertaken worldwide, and Donat et al. (2014) high-

lighted that the savings attributed to the adoption of automated testing were hard to quantify. They

warned that adoption may require moving resources from one type of testing to another and the cost of

developing automated testing systems could be significant due to the need for expensive programming
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staff. They advised that it would be important to find a balance between the work conducted by

low-cost human testers and high-cost specialists. However, it is noted that even though they may be

expensive, specialised developers utilising the right set of tools, languages, frameworks and paradigms,

could provide great benefit (Donat et al., 2014).

The literature provides insight into automated testing conducted at various EA studios and across

two game franchises which feature yearly releases. Automation reduced the burden on both developers

and human testers, however it could have introduced added cost to game production, and it required

programmers with a specialised focus on automated testing. Benefits existed, as later games in the

NCAA Football franchise were more stable earlier in the production cycle, and in the FIFA franchise,

they were able to reduce the number of human testers required to test the games. While the literature

does not provide specific detail as to how the automated testing was implemented in either case, nor

is it specific about whether the testing focused on graphical defects, it does show that automation can

be beneficial to the game industry.

2.3.3 Games-related Testing Automation Research

The previous sections provided insight into the large-scale testing occurring within industry. Unity

Technologies conducts graphics testing for its proprietary game engine, using an internally developed

automated testing solution. EA demonstrates that automated testing is possible within game studios,

however there are EA studios all over the world and despite the existence of a central testing framework,

there is no evidence that the same levels of automated testing, if any, are applied in all EA studios for

all games. Further knowledge can be gained from other examples of research into automated testing

in games. These studies are limited in scope, testing only one or two features, and not necessarily

graphics-related nor cross-platform, but they offer valuable insight into automated testing techniques

and their applications in game development.

Ostrowski and Aroudj (2013) proposed a testing model designed to create and execute fully auto-

mated regression tests for game GUI elements. Their model combined record-and-playback techniques

with tests written in a game-specific scripting language to help testers create tests using basic pro-

gramming skills and a GUI. User interactions, such as a tester’s mouse and keyboard events, were

recorded. Screenshots were generated to represent the current state of the game, then compared to

existing picture templates which represented previous user interactions. A network server was created,

which accepted connections from the game being tested, then delivered messages that documented the

game’s state. This testing model was utilised during the development of Anno 2070 - Deep Ocean

(Blue Byte & Related Designs, 2012). Every build of the game caused the test suite to execute and the

results were emailed to its developers. The test model was then utilised in the production of Might and
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Magic Heroes Online (Blue Byte & Related Designs, 2014). It allowed testers without programming

experience to create, execute and maintain automated tests from a GUI. Additionally, in Might and

Magic Heroes Online several tests replaced the human player with artificial intelligence, allowing for

automated battles to be played.

Varvaressos, Lavoie, Massé, Gaboury, and Hallé (2014) presented a runtime monitoring system as

an alternative to traditional testing. Runtime verification can observe the sequence of events generated,

and compare the resulting events to a formal specification to detect potential violations. The authors

showed that this method could speed up the testing phase of a video game under development by

automating the testing of bugs when the game was being played. To implement their system, the game

loop source code was modified to add instrumentation and generated events based upon the game’s

internal state. The monitor was implemented as a separate application process to the game. The

authors reported they successfully instrumented and effectively monitored various temporal properties

over the game’s execution. Manual testers were still used to play the game and as the game was

executed, snapshots of game state were produced.

Lewis and Whitehead (2011a) described Mayet, a system for monitoring game software at runtime

using instrumentation, which evaluates the state of a program as it executes, checking for invalid states.

If Mayet detects an erroneous state, it instructs the game to repair itself. When the system does not

behave as expected, a failure occurs. The authors provided an example from the game Crysis (Crytek,

2007), where a player fell through the floor of the virtual world, attempted to return to the starting

point to continue playing the level, however, found the path blocked by an in-game object. It was

unclear why this failure occurred in the game, and the player had to reload a previously saved game

to continue playing. Instead of trying to find the cause of the failure, Lewis and Whitehead (2011a)

focused on trying to solve the problem another way. They stated that problems in emergent software

had more possible causes than potential solutions and therefore it could be easier to focus on fixing

the problem than trying to discover the cause. The Mayet architecture facilitates this detection and

repair.

Using Mayet, a game being tested must be modified to include instrumentation for monitoring

game events, in a similar way to how a programmer would use debug statements to trace program flow.

Instrumented game events are sent to a separate, asynchronous program, which has a rule engine that

evaluates the messages to see if they break human-authored game integrity rules. Similar to writing

unit tests, an experienced programmer is needed to write the rules that identify game failure scenarios.

The programmer also defines how the scenarios can be repaired. The authors kept the instrumented

game separate from the rule engine to decouple game implementation from testing implementation,

as this guarantees language, implementation, and execution independence. The authors demonstrated

45



testing with Mayet using a game of their own creation in which they instrumented the source code

and added intentional game faults. In their game, a bug was created to cause a game character to

fall off the screen. They instrumented the game by sending the character’s location to Mayet once

per second. Mayet then performed boundary checks, and if the character was deemed to be outside

the virtual world boundary, Mayet sent a character kill message to the game. To conduct repairs, the

game was also modified to listen for Mayet messages as part of its game loop and was able to choose

when a repair should occur. The authors identified that as Mayet focuses on repairing game state, its

architecture is limited (Lewis & Whitehead, 2011a). Mayet is not capable of detecting or repairing

graphical pipeline bugs and Lewis and Whitehead (2011a) suggested the need for further work in this

area.

Ostrowski and Aroudj (2013) focused on automated GUI testing, with tests written and executed

by non-programmers, in contrast with the broader range of automated testing at Unity Technologies

and EA which required highly-skilled programmers to write and maintain tests. Lewis and Whitehead

(2011a) and Varvaressos et al. (2014) both explored runtime monitoring systems which required the

instrumentation of game source code. Neither runtime system focused on graphics-related defect

detection, and the GUI-related work was limited to the testing of graphical user interface elements.

However, the techniques used in these studies can be used to inform future work, and demonstrate some

cross-over with techniques, including the use of record-and-playback systems and image comparison,

being utilised on a larger scale at Unity Technologies and EA. The proprietary Sony PlayStation 4

development environment also has the ability to capture controller input and then replay the events

(Schertenleib, 2013). Dickinson (2001) described the design of an instant replay system for game engine

development, which allows bugs to be reproduced by isolating all sources of data input into the game

engine, capturing these inputs and replaying them in the same sequence. Building the core of a game

engine in this way would benefit automated testing of graphics, allowing real-time testing scenarios to

be captured and replayed.

Nantes et al. (2008) proposed a general software framework that could inspect a video game using

a combination of artificial intelligence and computer vision to support a game testing team by accele-

rating and improving the testing process by visually detecting bugs using perception similar to that of

a human player. The proposed testing system was abstract and independent from the game software

that it would need to test. The authors presented a limited prototype which could detect one graphical

defect — shadow-aliasing artifact issues — to support the effectiveness of the framework. The pro-

totype removed all non-shadow objects from an image prior to a computer vision algorithm processing

the image, only allowing the algorithm access to evaluate potentially defective shadows. The results

showed that it was possible for the algorithm to detect jagged shadow edges in the images. Nantes et
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al. (2008) suggested that future work could include the development of automated regression testing

tools that integrate debugging features, monitoring of user activity and replication of user behaviour

in subsequent tests.

2.4 Automated Testing in Related Fields

While there is limited availability of details of automated testing for computer graphics within the

game industry, and games-related research investigating automated testing in non-graphical scenarios

is narrow in scope, it is possible to draw further insight into automated testing from studies in computer

graphics-related domains.

Graphical Kernel System (GKS) was designed for low-level computer graphics drawing, providing

basic 2D vector graphics rendering capability. Pfaff (1984) introduced an early example of computer

graphics testing with a scheme for the conformance testing of GKS implementations based upon

functional blackbox testing, where a GKS implementation could be checked to ensure that it produced

suitable picture output on a graphical device. The GKS interface defined around 200 functions, which

had complex effects on internal data structures in environment-dependent ways. The author identified

that most data output by the graphics system was not accessible by the client application through

the graphics interface, and hence it could not be tested from within program source code. GKS

output could be observed in the form of rendered pictures, data files or interaction sequences. The

combination of blackbox interface and the number of functions, made verifying the correctness of a

GKS implementation difficult.

Pfaff (1984) proposed a comparison model, using a suite of test programs that could be utilised

with an implementation under test. Firstly, the test suite was executed with a reference system to

generate known reference results, which were then sent to the comparator. The implementation being

tested produced output results that were also sent to the comparator to check for conformance with

the reference results. The author’s comparator operation was conducted by a human operator. This

technique was error-prone, as the human operator had to evaluate the results using their subjective

impression of comparison, they potentially lacked the ability to check the preciseness of the graphical

images visually, and they could be overloaded with large amounts of data to compare. In contrast

to using a human comparator, Pfaff (1984) presented a defined data format that described picture

elements which were produced each time a visual output occurred on a graphics device, and a compa-

rator that was designed to accept these picture element descriptions. Test programs were run on two

implementations of the GKS system using the same graphics device, and the reference results were

compared with the results produced. Since GKS produced basic 2D vector graphics output it would
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have been feasible to compare image output using textual picture element descriptions.

At SIGGRAPH 96, the Virtual Reality Modeling Language (VRML) community met with staff

of the National Institute of Standards and Technology (NIST) to discuss approaches to testing the

VRML standard (Brady et al., 1999). VRML virtual worlds had to be compliant with this standard,

regardless of the hardware or software platforms used. Following the discussion, NIST developed tools

to support the VRML testing process.

Stone (1999) noted that making VRML worlds look the same on all target platforms was difficult

due to different software and hardware systems, and identified colouring and shading as one of the

greatest challenges. This was attributed to variation in the implementation of lighting and shading

models, as well as triangulation and interpolation algorithms. These algorithms were not implemented

by the VRML platform, but were instead implemented by APIs, such as OpenGL and Direct3D, which

were utilised by VRML to render the virtual environment (Stone, 1999). VRML browsers were tested

using a group of conformance files known as the VRML Test Suite (VTS), where firstly a parser was

used to check VRML files for validity, then conformance tests, using VRML test worlds, were run.

These tests were known as the VTS Method (Brady et al., 1999). Brady et al. (1999) stated that test

cases needed to be defined to test combinations of features. For example, to create adequate coverage of

a lighting model, a test utilised a combination of unlit, greyscale, RGB, and RGB-and-Alpha properties

that were applied to the test world.

Expected results were captured as JPEG for static scenes, and MPEG for animated scenes. Links

to the original VRML scenes were retained, with the ability to do a side-by-side comparison of the

test case and the expected result (Brady et al., 1999). In testing, three different browsers successfully

passed 90% of the tests. This information was then shared with the developers of the browsers, allowing

for further bugs to be uncovered and fixed. This created an increased level of confidence that a VRML

world could be rendered similarly across various hardware and software platforms, resulting in positive

user experiences. The author’s testing results also uncovered conditions where various implementations

differed, which led to the development of explicit tests that focused on those particular differences.

Overall, this served as a way to raise awareness in the VRML community and helped to refine the

VRML standard specification.

Lorensen and Miller (2001) described automated testing of the Visualization Toolkit (VTK), an

open source C++ library for visualisation and imaging algorithms. Development was started in 1993,

and targeted the Unix, Linux and Windows platforms. The developers recognised the need for re-

gression testing to identify changes in the software that affected its output. VTK regression testing

compared images generated by VTK with developer-validated baseline images. The image comparison

routine was able to control how well the images matched, noting that for example, OpenGL output
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did not need to match pixel for pixel, whereas the imaging algorithms had to strictly match. Until

1998, regression tests were run manually and adhoc prior to a major release of VTK. As this testing

was infrequent, it was difficult to determine which of the hundreds of development changes had caused

the differences between generated and baseline images. The development team then increased the

number of regression tests, and introduced more frequent, and automated, testing. Test scripts were

run nightly on eleven different configurations of operating system and hardware. The combinations of

operating systems and compilers helped to ensure VTK remained portable every day. Test results were

logged for each platform, and for each failed test, a JPEG was generated alongside the expected image

and a difference image of the two. The tests were also timed on each platform, and a summary of faster

or slower tests showed variation in timing over the last ten days and the last twelve weeks. An HTML

dashboard summarised the results. A programming style-checker was also run, and documentation

was generated from the C++ header files. A downloadable installation executable was created for

each of the target platforms. As developers added new code to the library, they were expected to add

new tests to the regression suite to cover their new code additions (Lorensen & Miller, 2001).

The VTK development team conducted meetings at the start of each day to review the nightly

dashboard report, and simple errors were identified and fixed immediately. More complex problems

were assigned to developers to fix. The automated nightly tests allowed the continued rapid deve-

lopment of VTK, while maintaining a high quality, robust toolkit. In 1999, a continuous build and

test system was added. This system monitored the source code repository for changes, and upon a

change, compiled VTK on one combination of hardware and operating system. It then ran four smoke

tests that conducted minimal functionality testing and test failure notifications were emailed to the

developers. This resulted in defects being uncovered as soon as they were introduced. Lorensen and

Miller (2001) noted that there was a significant limitation to the VTK automation environment as

it was highly coupled to VTK, and therefore difficult to replicate outside of the VTK development

environment.

The GKS, VRML and VTK examples demonstrate the benefits of the application of automated

testing techniques to computer graphics testing. Image comparison methods are used to uncover

defects introduced through development changes in cross-platform development targets. In GKS,

image comparison required a human to conduct result comparison and this was found to be error-

prone. However, the low complexity of the GKS renders allowed for textual descriptions to be generated

and compared. The use of VRML test worlds showed that defects could be detected across various

implementations, much like the test scenes used in the Unity engine’s automated testing, while VTK’s

description of how difference images can be used for enhanced comparison and defect detection is

similar to the work shown by Bay (2016) at Unity Technologies. Both VTK and Unity are systems
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highly coupled to their specific technological implementations.

Fell (2001) proposed a theoretical embedded graphical application to explore the principles of

automated regression testing of interactive graphical software. The graphical application’s main output

would be node-based graphs, which the user could interact with in real-time to change the layout of the

nodes. The application would be run in full-screen mode and would feature an event loop where data

was input into the program via a network connection. Importantly, testing would require simulated

user input, and the screen output would have to be checked for correctness. He proposed that the

application be developed on workstations and that the portability layer be implemented for Unix and

Windows, which would allow the application and its user interface to be tested on the more powerful

workstations rather than the target embedded platforms. Failures in the application’s design could

occur if a developer incorrectly implemented the portability layer or if there were faults in the tool

chain or hardware. The cross-platform targets and the interactive style of the application meant there

would be no clear end point. Interactive debugging could be performed through a network connection

using a server embedded within the application and a command line interpreter would be used to

dispatch messages which would allow user input events to be inserted into the portability layer of the

application. The application would require human operator verification.

The author suggested the following test result states: Never, meaning the test has never been

performed; passed, no fault was found; failed, one or more faults found; and, broken, the test could

not be performed. Each test would have a unique integer identifier and name and a database could

be used to store a record of test results, where entries would include when the test was first added,

last passed, and last failed. The test harness would have core functionality such as: initialise, register,

report, test, retire and verify. Nightly regression testing would be executed, and the results of failed

and broken tests would be emailed to the development and QA teams. As new features were added to

the application during development, new tests would also be added (Fell, 2001). Basic testing would

involve sending data to the application, then checking to see if the application had computed and

presented the output. Network debugging would allow the current screen to be captured to file. A

human operator, such as an experienced programmer, would then examine the graphical output and

judge the results. Subsequent executions of tests would generate new screen captures to be compared

against previous captures. If the results were the same, the test would succeed; if different, the test

would fail. A human operator would again be required to conduct this comparison. If the new result

was determined to be correct, the reference screen image would be updated to this new result (Fell,

2001).

Bierbaum, Hartling, and Cruz-Neira (2003) described a technique for supporting the automated

testing of the interactive aspects of virtual reality applications. They argued that there is no common
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pattern for this kind of testing. The authors proposed a test architecture which would allow develo-

pers to test an entire code base rapidly and reliably, and presented an implementation that allowed

virtual reality developers to use automated testing techniques. They stated that to test high-level user

interaction of a virtual reality application is difficult, as there is no way to directly test the interaction

code. Automated testing utilised in desktop GUI interaction cannot be used because the virtual reality

application directly handles a user interacting with a virtual environment, and it may not be possible

to programmatically deliver this input to the application. The authors suggested that to automate the

testing of virtual reality applications, test cases must be able to test the interaction code.

In the proposed test architecture, the application state can be tested for correctness only once

all input has been processed by the interaction code. This method of testing requires the state of

input processing to be monitored. The virtual reality test monitor must wait for a checkpoint to

be reached, then it can verify that the application is in the correct state. To automate testing, the

application must be provided with input simulation which mimics direct user interaction. Input is

recorded during an application usage scenario, with user-definable checkpoints. During testing, the

application is controlled by the prerecorded input data and when a checkpoint is reached, the test case

verifies that the state of the application matches the previously recorded state. The initial state of the

application must be guaranteed at the start of the test. Checkpoints are arrived at sequentially, and

states can build on each other in sequence. The test runner is responsible for tracking the results and

if a match is incorrect, a failure is identified (Bierbaum et al., 2003).

Similar to the testing frameworks investigated by Varvaressos et al. (2014) and Lewis and Whitehead

(2011a), Fell (2001) and Bierbaum et al. (2003) proposed theoretical testing applications that utilised

event generation and record-and-playback techniques, and again, image comparison is utilised to verify

the correctness of test results.

Yee and Newman (2004) described an image comparison process that can help to decide if images

appear visually identical, even when they contain differences. They stated that this had been useful

in the testing of rendering software for motion picture production. The movie production pipeline

depends on software that functions correctly, is stable and bug-free and this means that rigourous

software testing is required. The pipeline used in the authors’ studio had a proprietary renderer,

with many graphics shaders that were written in C and C++, and testing was conducted by nightly

automated batch processing. Tests required the re-rendering of test scenes to ensure that no bugs

had been introduced during development, and images from the test scenes were then compared with

previously generated reference images. The authors stated that pixel-by-pixel comparison between

reference and test images did not always work. Source code changes to the rendering software could

result in pixel intensity changes that produced pixels that were not numerically identical, however
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there could be no visible difference between the images. Yee and Newman (2004) identified sampling

as a major source of this issue, but also identified anti-aliasing and shadowing as potential causes.

By using a perceptually-based error metric, false positives could be avoided when using the test

suite. This error metric attempted to mimic the human visual system when analysing images, and only

alerted to failures that could be identified by the human eye. As the authors dealt with the comparison

of thousands of film-resolution images during testing, they utilised an abridged version of a Visible

Differences Predictor (VDP) to increase the overall speed of the algorithm (Yee & Newman, 2004). An

example test case rendered a scene with a basic object with various lighting conditions and a reference

image was created from the rendered frame. If there were any source code changes in the renderer, a

new test scene image was generated which was then compared against the known reference image. This

process allowed the authors to discover many bugs. They found that in the continued development of

shaders to create faster optimisation techniques, subsequent tests would produce images that were not

pixel-identical with the reference image, but would still be considered correct. The perceptual metric

allowed these code changes to occur without alerting to a failure in the automated testing process.

The testing suite produced a mosaic of difference images for every test that failed. The QA group was

able to quickly identify problems using this overview image.

Yee and Newman (2004) provided production of the film Shrek 2 (Warner, A. & Williams, J. &

Lipman, D. (Producers) & Adamson, A. & Asbury, K. & Vernon, C. (Directors), 2004) as an example,

where a new compiler was introduced to the tool chain. Applying the perceptual metric with their

automated test suite helped the film-makers identify shaders that had become broken by the tool chain

update. This testing was essential in helping them switch to the new compiler, and it assured the team

that their existing film shots would not break. Another example was when the film studio switched to

a new operating system and the test suite contributed to the identification of existing tools that had

either become inoperable, or behaved differently, on the new platform.

Yee and Newman (2004) highlight an important consideration when using image comparison to

compare test images in automated testing. While a human comparator is slower, the advantage is

that they can make judgements as to whether an image passes or fails. When this comparison is

automated, pixel-by-pixel comparison can be considered too strict, as it will fail images that have

any pixel differences, even if these are not visible to the human eye. By using an image comparison

technique that mimics the human visual system, these false positives can be avoided, and only images

with visible differences will be flagged as failed results.

Grønbæk and Horn (2008) investigated the elements needed for an automated testing tool for

virtual environments used in military simulations, networked scenarios, game engines, and scene graph

technology. As the correctness of the graphically simulated environments is verified using manual tests
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with human testers, the authors identified the need for cheaper, faster and more accurate testing and

suggested that there was a lack of testing culture in simulation development.

They discussed image matching, scene graph matching, and video matching as possible graphical

testing techniques. They identified that one of the difficulties in graphical testing is that it is unclear

what scenes should be collected as references. Additionally, in the case of games, non-deterministic and

random aspects which impact graphical simulation, such as weather effects, make it hard to perform

comparisons against known references. User interaction is also non-deterministic. They therefore

suggested that reference scenes should only be coupled to deterministic behaviour and that non-

deterministic behaviour and user interaction should be avoided (Grønbæk & Horn, 2008). The study

concluded that in order to realise a fully automated testing tool it is necessary to implement a working

prototype. They noted that virtual environments can be very large, and it may be impossible to cover

the whole environment with graphical tests to discover defects. They proposed using regression testing,

where first, a human tester could locate a defect and report it to the development team to repair and

then a test case would be created to ensure that the bug does not reoccur.

Grønbæk and Horn (2009) later presented a process for testing graphical virtual environments.

They designed and implemented a test tool to confirm the validity of the proposed process. Tests

were conducted on a selection of sample applications developed using the third-party Delta3D engine,

however they designed their system for use in any graphical environment. The testing process was

evaluated based upon these test results and focused on three core areas. First, the project implemented

image processing and analysis methods to compare test scene outputs, and evaluated the value of image

comparison methods when used to compare 3D scenes. Second, an evaluation of the feasibility of scene

graph comparison in the context of graphical regression testing was conducted. Finally, a set of tools

for automation of graphical regression testing was designed and implemented, and combined with

existing automated testing tools.

Their testing procedure was as follows:

• Generate test input : human testers create test cases by interacting with the application, low-level

input to the application captured and stored;

• Generate test output : screenshots from the applications captured and stored;

• Test case selection: from a list of tests;

• Test case execution: a replay is performed using the selected test case, repeating the previously

captured user interaction sequence;

• Comparison of outputs: a tool presents the generated output images side by side in an HTML

document, and a human tester makes the comparison;
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• Failure identification: an image tool is used to help identify the differences between the two

images, as well as reporting related image metrics.

This resulted in the creation of a collection of test support tools, including a semi-automated image

collector which required human intervention to capture scene frames. The image collector relied on

the judgement of a human tester to determine whether captured frames matched the reference and an

image analyser analysed scenes for degree of similarity, using pixel-by-pixel comparison. A test reporter

then showed the collected and reference images. The system was tested with a Delta3D application

called HoverTank. The resulting image comparison was not completely identical in terms of pixel-by-

pixel comparison and this was attributed to inaccuracies in the replay timing, and z-buffer fighting.

Grønbæk and Horn (2009) noted that human inspection would have considered these images to be

identical. They also noted that the length of time taken to generate the test capture corresponded

to the length of time taken to re-run the replay when executing the test. The authors believed

that the comparison based upon images collected from rendered scenes was not the best approach, as

information was lost in the process of projecting a virtual 3D world into a 2D representation. However,

they decided not to pursue a scene graph matching technique due to the use of proprietary and closed

formats that were incompatible with the middleware they used.

They created a separate tool using the Image Processing Library 98 (IPL98), which features C++

image container classes and image processing algorithms. Additional image metric algorithms were

implemented to compute image comparisons using the following methods: Mean Square, Root Mean

Square, Structure Content, Cross Correlation, Angle Moment, and Czenakowski Distance (Grønbæk

& Horn, 2009). Five tests were conducted, based upon a 3D scene with an animated walking soldier

in different configurations. The scene was tested with and without the soldier’s weapon, helmet, and

the soldier. Simulations were run, and the resulting screenshots were compared with the tool, as well

as a generated difference image, which was a subtraction of the two images. They concluded from

these tests and the resulting metrics that a programmer or tester would find it difficult to tell if a

test should pass or fail based upon the metric calculations alone. The authors suggested that more

testing was required to fully evaluate the image analyser tool. Grønbæk and Horn (2009) identified

that advancements were required in the image matching method for the image analyser, and that there

should be a reduction in the amount of manual work performed, especially when human judgement

is required. Like Yee and Newman (2004), Grønbæk and Horn (2009) suggested that metrics which

take the human visual system into account should be utilised. The reporting tool should include a test

history feature, image scaling, test comparisons and thresholds, as well as better textual descriptions.

Timofeitchik and Nagy (2012) presented a conceptual model for automating the testing of real-

time graphics systems for television. The purpose was to increase the probability of finding defects by
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making verification more efficient and reliable. They utilised the Structural Similarity Index (SSIM)

for image comparison in the creation of their automated testing tool, known as the Runtime Graphics

Verification Framework (RUGVEF). SSIM was developed by Wang, Bovik, Sheikh, and Simoncelli

(2004) as an image quality assessment framework that corresponds to the human visual system. Other

algorithms such as Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are simple to

calculate and have a clear meaning, but SSIM is more aligned with human perceived visual quality,

and was found to exhibit better consistency with qualitative visual appearance than the other models

(Wang et al., 2004).

In agreement with Grønbæk and Horn (2008), Timofeitchik and Nagy (2012) stated that traditional

testing techniques were insufficient for real-time graphics testing and identified that non-deterministic

behaviour and time-based execution make errors difficult to detect and reproduce. Unit testing did not

take into account platform characteristics such as the underlying hardware, operating system, device

drivers and external graphics APIs, and this could mean that graphical issues were not detected during

development (Timofeitchik & Nagy, 2012). They noted that human visual inspection is commonly used

to detect errors in real-time graphical software and this makes regression testing impractical and error-

prone, as it relies upon human subjectivity. This led to the author’s development of their automated

testing tool. Their research was conducted using the Design Science Research Method, with the purpose

of creating an information technology artefact to address an important organisational problem. The

artefact was evaluated in the context of a case study.

RUGVEF determined the correctness of graphical output through continuous analysis during the

execution of video playing software. Objective comparisons were made against existing reference

images by a monitor application that ran in parallel to the video player. The testing framework was

implemented during the live development of CasparCG (casparcg.com, n.d.), a tool used to create real-

time television overlay graphics. CasparCG was incrementally developed and tested fortnightly with

code reviews and human visual inspections (Timofeitchik & Nagy, 2012). The authors identified that

the CasparCG developers rarely used regression testing, which limited refactoring and the ability to test

software fixes. Bug reports from prior public releases of CasparCG detailed the late discovery of defects

in the software. RUGVEF added overhead which could reduce overall system performance and affect

time-sensitive systems, so to counteract this they investigated image quality assessment methods. They

noted that pixel-by-pixel comparison did not take into account the human visual system and there was

a possibility that small differences in images could be acceptable. Because of SSIM’s focus on modelling

human perception, it was selected as the comparison method for RUGVEF. The authors optimised the

implementation of SSIM to allow the algorithm to operate in real-time to analyse full high-definition

video output. Improvements to the algorithm included using Single Instruction, Multiple Data (SIMD)
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instructions, as well as cache-friendly optimisations. Multi-core architecture was also applied to the

algorithm, and the chrominance information from the SSIM calculation was discarded so that only

luminance information was utilised. These optimisations allowed the modified algorithm to operate in

real-time on consumer-level hardware.

The results of the case study showed that their software was able to detect five previously unknown

defects within CasparCG (Timofeitchik & Nagy, 2012). These included minor pixel errors, as well

as missing or skipped frames, tinted colours due to incorrect colour transformations, and artifacts

that occurred due to rounding errors with alpha blending. The software was also able to detect six

out of sixteen known defects which had been deliberately inserted back into RUGVEF. This showed

that the automated system could augment manual testing techniques to help discover contextual and

temporal defects which could lead to earlier detection and improved development outcomes. The

authors identified that the testing of real-time graphics for games remains unexplored, suggesting

future research in the field of computer graphics in games.

2.5 Findings of Literature Review

The Lewis et al. (2010) taxonomy demonstrates that there is awareness of the existence of graphical

defects in commercially released games. There is a demonstrated lack of automated testing in games,

and a reluctance to adopt this practice, despite the reported advantages. However, there is also support

in the game industry for change. While Bierbaum et al. (2003) argued that there was no clear pattern

for automated testing, the literature shows the emergence of common practices, such as the use of small

test scenes that demonstrate different graphical features, and screenshot capture and comparison to

known reference images. Practice has evolved to use image comparison methods such as pixel-by-pixel

comparison and later studies have investigated comparison methods that better mimic the human

visual system, in order to increase the speed and efficiency of comparison and avoid false positives.

In game scenarios, an input capture and replay system can aid in test reproducibility, as it records

the user inputs to show what the user was doing when the defect occurred. However, this requires

access to the game’s source code to add additional instructions to accommodate record-and-playback

functionality. Randomness and non-deterministic behaviour in games must also be taken into account,

since to automate testing requires some knowledge of the expected output, and tests may execute

differently each time a testcase is run.

Cross-platform development issues occur when the OS, GPU, device driver, compiler, API and

graphics shaders combine to create complexity. This can create a complex testing matrix. Systems

have been developed that can cope with the added complexity of cross-platform development, though
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there is no evidence of this in the literature related to graphics defect detection in game development.

Many of the systems described are highly coupled to their target application and therefore are not

transposable to other development scenarios or applications. Developing a system that is abstract is

key to widening the availability and adoption of automated graphics testing in the game industry.

Due to the competitive nature of the game industry, it is difficult to ascertain to what extent

automated testing is used, and if so, how it is implemented and for what kinds of testing. Research

into automated testing in related computer graphics fields has yielded interesting details of testing

frameworks that could be applied to testing in game development. Despite the evidence for a common

pattern of successfully implemented automated testing techniques, there is no evidence of a system that

is able to automate the testing and validation of computer graphics implementations for cross-platform

game development. This supports the need for research in this area, and in the following chapters I

will discuss the exploration of my research question through the construction and evaluation of several

artefacts.
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Chapter 3

Methodological Approach

“Research is a creative process”

Vijay K. Vaishnavi and William

Kuechler Jr., Design Science

Research Methods and Patterns

Innovating Information and

Communication Technology

(Vaishnavi & Kuechler, 2008, p.

121)

3.1 Introduction

The term methodology refers to a framework used to conduct research and the term methodological

design refers to the plan for conducting the research, including the methodology, methods and tools

(O’Leary, 2004). The important prerequisites in selection of the methodological design are to ensure

that firstly, the design addresses the research question, secondly, the design suits the researcher, and

finally, the research task is achievable though adequate provision of time, resources, and ethical con-

siderations (O’Leary, 2004). This chapter addresses the selection of the research methodology, and

the associated methodological design utilised in conducting this research project. I will discuss why

Design Science Research was selected and outline the key components of this methodology, including

the process steps and the patterns that were applied at each phase. I will then discuss the development

tools utilised in the creation of artefacts and the limitations that were considered in the design of the

research methods and the undertaking of the research project.
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3.2 Methodology: Design Science Research

With its origins in engineering and the sciences of the artificial (compared to natural sciences), Design

Science Research methodology (DSR) is considered a problem solving paradigm, where important

unsolved problems can be addressed in unique or innovative ways, or solved problems can be revisited

to find more efficient solutions (Hevner, March, Park, & Ram, 2004; Wieringa, 2014). Vaishnavi and

Kuechler (2008, 2013) describe DSR as a way to learn through building, hence providing the framework

for a research project that creates an artefact to solve a problem and create new knowledge. Artefact

construction allows design to be used as a research method (Vaishnavi & Kuechler, 2013). A key

consideration is that where research is described as an activity that contributes to the understanding

of a phenomenon, with DSR, all or part of the phenomenon may be created. Design refers to the

creation of something that does not yet exist, and so DSR contributes to a body of knowledge about

artificial, human-made phenomena and artefacts that have been designed to achieve particular goals

(Vaishnavi & Kuechler, 2008). Artefacts include, but are not limited to, processes, human-computer

interfaces, algorithms, system design methodologies and languages (Vaishnavi & Kuechler, 2013).

Resulting constructs, techniques and methods can contribute new knowledge, or fill gaps in existing

knowledge (Vaishnavi & Kuechler, 2013). The creation, design and evaluation of artefacts is an iterative

process, whereby the researcher attempts to answer technological problems that are important to an

organisation or research community (Hevner et al., 2004; Vaishnavi & Kuechler, 2008; Wieringa, 2014).

DSR researchers must analyse the use and performance of artefacts, evaluating and reflecting upon

results that can then be incorporated into further iterations (Vaishnavi & Kuechler, 2013).

DSR differs from design, as it produces new knowledge and requires intellectual risk to solve “we

don’t know how to do this yet” problems (Vaishnavi & Kuechler, 2008, p.26). There are often a

number of unknowns in the design of a proposed solution to a DSR problem, and the researcher can

be unaware of what the final outcome will be (Vaishnavi & Kuechler, 2013). As such, technological

advances can be the result of creative and innovative DSR processes (Hevner et al., 2004). The creation

of theoretical knowledge does not necessarily occur in a single DSR project, it can instead be created

through many cycles of research and development and often includes active industry participation

(Vaishnavi & Kuechler, 2013). An activity framework for DSR can be seen in Figure 3.1.

March and Smith (1995) suggest there are two processes and four outputs for DSR. The two

processes are build and evaluate, and the outputs are summarised as:

• Constructs: Constructs are the vocabulary of the problem/solution domain. They can arise

during the conceptualisation of the problem and are refined during the design cycle. Hevner

et al. (2004) states that vocabulary and symbols provide the language with which to describe
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This image has been removed for copyright reasons.

Figure 3.1: Activity framework for Design Science Research. Adapted from “On theory development
in design science research: Anatomy of a research project” by B. Kuechler and V. Vaishnavi, Euro-
pean Journal of Information Systems, Volume 17, Issue 5, pp. 489-504. Copyright 2008 by Palgrave
Macmillan.

problems and solutions;

• Models: Models can be described as constructs used to represent a real world situation (Hevner

et al., 2004), and are proposals for how things are, presented in terms of what the model does;

• Methods: Methods are a set of steps used to perform tasks. These can be algorithms and practices

that define the processes needed to realise a model (Hevner et al., 2004);

• Instantiations: Instantiations are the realisation of the artefact in an environment, including

implemented systems and prototypes (Hevner et al., 2004). This output can come before the

articulation of models and methods.

March and Smith (1995) define DSR as an attempt to create technology-oriented artefacts for

human-defined purposes, and therefore the products of DSR projects should be evaluated against two

criteria, value and utility — “does it work?” and “is it an improvement?” (March & Smith, 1995,

p.253)

Hevner et al. (2004, p.75) state, “knowledge and understanding of a problem domain and its solution

are achieved in the building and application of the designed artifact” and hence derive and propose

seven guidelines for DSR:

1. Design as an artefact : An innovative and purposeful artefact is created;

2. Problem relevance: The artefact is relevant for a specific problem domain;

3. Design evaluation: The artefact is thoroughly evaluated;
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4. Research contributions: An unsolved problem is solved, or a solved problem is solved in a more

effective way;

5. Research rigour : The artefact is rigorously designed and formally presented;

6. Design as a search process: The process by which the artefact is created provides an effective

solution;

7. Communication of research: The results are communicated effectively.

This image has been removed for copyright reasons.

Figure 3.2: Design Science Research Process Model. Adapted from “Design science research in infor-
mation sciences” by V. Vaishnavi and B. Kuechler, Copyright 2013.

Vaishnavi and Kuechler (2008) further develop the work of March and Smith (1995) and Hevner et

al. (2004) into the DSR methodology used in this research project. The methodology consists of phases,

as seen in Figure 3.2: Awareness of Problem, Suggestion, Development, Evaluation and Conclusion.

These phases map to the research proposal, literature review, data collection, analysis, and publication

stages of a research project. The research approach is iterative, allowing for cyclic research activity to

occur through circumscription, and for the refinement of the research questions to occur as part of the

knowledge discovery process.

DSR was an appropriate choice of methodology for this research project. Artefact construction is

part of the computer science research community paradigm, and the knowledge base has been built over

time through the construction and evaluation of artefacts (Vaishnavi & Kuechler, 2008). Engineering

disciplines also consider design as a valid research methodology, as the community’s research culture

61



values “incrementally effective applicable problem solutions” (Peffers, Tuunanen, Rothenberger, &

Chatterjee, 2007, p.1) and the practical application of these research outcomes. Hevner et al. (2004)

aligns DSR processes with industrial practice, and suggests they can be utilised for collaborative

industrial and academic research projects. DSR project results can be used to inform technology-

focused organisations and the management of these organisations, and to develop technology-based

solutions to business problems.

In this research project, there were many components that needed to be brought together, and the-

refore the methodology needed to be flexible enough to allow for experimentation and the construction

of multiple artefacts to test these different components. It was not clear if the research question could

be answered, introducing uncertainty to the project. Hevner et al. (2004) states that it is exactly these

types of problems, characterised by unstable requirements or constraints, or with complex interactions

between subcomponents, that DSR is suited to, since its inherent flexibility allows the design process

or artefacts to change during the development and evaluation phases, and there is a need for creativity

to produce an effective solution. Prior related research by Timofeitchik and Nagy (2012), as discussed

in Section 2.4, is an example of the DSR methodology being used to create an artefact which could

automate graphics testing for broadcast television video systems.

DSR also maps to general software development methodologies, as highlighted by March and Smith

(1995), who state that a software product is dynamic and is developed incrementally, with functionality

able to be added as needed. Game development industry methodologies are similar, being iterative and

incremental, as well as agile. For game developers, iteration refers to the practice of creating a version

of source code or artwork, for example, examining or evaluating it, and then revising it until it is

sufficiently improved (Keith, 2010). These iterative methodologies are proactive rather than reactive,

and allow time for planning, as well as the flexibility to change course during development if necessary.

The fundamental idea is to develop for a set period of time to accomplish predetermined goals, get

the game into an acceptable state, and then start a new development phase to add new features

(Rabin, 2010). These multiple production cycles can be mapped to the DSR phases. Preproduction

is the Awareness of Problem and Suggestion phases, production equates to Development, testing to

Evaluation and wrap-up to the Conclusion phase. When a cycle concludes, the development team

moves on to the next cycle: first playable prototype, Alpha version, Beta version, and Gold (Chandler,

2014). The difference between DSR and game development agile methodologies is the knowledge

creation; DSR seeks to create new knowledge through artefact creation and evaluation, while game

development methodologies seek to create a fun, playable game.
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3.2.1 Patterns

Vaishnavi and Kuechler (2008) describe patterns that can be applied to each phase of a DSR pro-

ject. These patterns are a formalised way of recording experiences. Problems will be encountered

during a research project, and the purpose of the patterns is to aid the researcher in focusing their

thoughts so that the issues can be overcome (Vaishnavi & Kuechler, 2008). The patterns can be

used to communicate contextually rich information common to fields such as computer and software

engineering.

Ahmed and Sundaram (2011) highlight the concerns of many scholars who question the validity of

DSR and the evaluation of artefacts generated because of a lack of rigour in the evaluation process.

However, using the evaluation patterns suggested by Vaishnavi and Kuechler (2008) will enhance the

validity of the DSR evaluation process. Evaluation is an important step in analysing whether or not

artefacts are fit for purpose and allows a researcher to establish how well the research has addressed

the problem it intended to solve (Ahmed & Sundaram, 2011). Unlike traditional research approaches,

where the end product is evaluated, DSR integrates evaluation at each step of the research process

(Ahmed & Sundaram, 2011).

The patterns for each phase will be discussed in more detail in the following section.

3.3 Method: Research Project Design

This section describes the application of the DSR phases in this research project, along with the

associated patterns utilised during each phase.

3.3.1 Awareness of Problem

In this phase, the problem is identified and defined. Awareness of Problem can come from multiple

sources, including new developments in industry (Vaishnavi & Kuechler, 2013) or professional literature

(Wieringa, 2014). The problem can be identified through a literature review, through experience in

practice or from a simple conversation about industry (Vaishnavi & Kuechler, 2008). A literature

review can determine whether the problem has already been solved and if any previous related research

has been undertaken, as well as determining how widespread the problem is, and if the solution will

be interesting to the research community (Vaishnavi & Kuechler, 2008). The output of this phase is

the proposal for new research (Vaishnavi & Kuechler, 2008, 2013).

Problem selection and development patterns can be applied in this phase, including Research Dom-

ain Identification, Problem Area Identification, Problem Formulation, Leveraging Expertise and Being

Visionary (Vaishnavi & Kuechler, 2008). These patterns suggest that interest should be the primary
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motivation for choosing the domain, and that the selected problem should utilise the researcher’s

strength and expertise or build on it. The researcher should have some understanding of the research

community, and an awareness of practice and industry. These can be built through a literature search.

Being Visionary requires the researcher to imagine an improvement to a situation or problem, even

though the current solution might be acceptable to the industry or research community. By identi-

fying the key features of the present situation and envisioning how the situation could be improved,

the researcher is able to review the gap between the present solution and their vision for improvement

(Vaishnavi & Kuechler, 2008).

The beginnings of the Awareness of Problem phase in this research project occurred through expo-

sure to the current state of the game development industry. Online media articles detailed the release

of new cross-platform AAA video game titles which featured game-breaking bugs upon launch. These

articles discussed the occurrences of computer graphics problems within the game titles. This phase

was discussed in more detail in Section 1.2, which outlined the motivation for this research project.

Though the idea began with the internet search and discovery of numerous graphical bugs, the lite-

rature review confirmed that there was an existing problem with testing for graphical bugs, and that

there was no current publicly available automated cross-platform solution.

This was developed into the research question and sub-questions found in Section 1.3 and the

research proposal.

3.3.2 Suggestion

The Suggestion phase is closely related to the Awareness of Problem phase, and it is in this phase

that a tentative design for solving the problem is proposed. This design can be based upon new and

or existing elements and can be drawn from existing knowledge, such as academic or professional

literature (Vaishnavi & Kuechler, 2008, 2013). It is a creative phase, where the researcher must

formulate inventive potential solutions to the problem. It may be necessary to decompose the problem

into smaller or simpler subproblems in order to begin to envision how the problem could be solved. This

simplification may represent a starting point without having a significant impact on practice (Hevner

et al., 2004). This could mean starting with simple technological simulations in idealised conditions,

to test if something is even possible, with the aim of generating knowledge that is applicable in the

real world (Wieringa, 2014).

Suggestion patterns utilised in this phase include literature search patterns, such as Industry

Practice and Awareness where the researcher can become familiar with industry practice and aca-

demic research and Framework Development, which prompts the researcher to organise the literature

by theme to enable the identification of knowledge gaps and the analysis of key ideas and concepts
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(Vaishnavi & Kuechler, 2008). Problem Space Tools and Techniques and Research Community Tools

and Techniques allow an analysis of how the research or industry community solves similar problems,

along with identification of the tools and techniques applicable in the selected domain. Using Human

Roles is another pattern that can be applied to generate ideas and concepts. This involves defining the

activity that the research is targeting for automation, observing how the human tasks for performing

this activity are undertaken, and then analysing the performance of the task to develop potential so-

lutions. Creativity patterns, such as Wild Combinations, Brain Storming and Stimulating Creativity

can also be applied in the Suggestion phase (Vaishnavi & Kuechler, 2008).

In this research project a tentative design was formed based upon the Awareness of Problem phase.

After an initial literature search and review was undertaken and detailed in the research proposal,

further literature review (see Chapter 2) occurred post-proposal and this also informed the tentative

design. The initial suggestion was the creative imagining of an automated testing system where

captures of simulated graphical video game scenes from each target platform could be made and then

compared. Selection of the DSR methodology for the research project further informed the Suggestion

phase, as this introduced a framework of artefact construction that could be used to explore the

development of an automated testing tool.

In this project, as in the development of the Lewis et al. (2010) taxonomy, the focus is not on

discovering why the graphical bugs occur and solving this problem, but was instead on how they could

be identified for repair before the release of a cross-platform game. This led to the review of literature

related to game industry testing practices (see Appendix A), and the specific application of the Using

Human Roles pattern to discover and analyse current testing practices using humans, in order to

formulate a solution to the problem of automating these roles.

The proposed tentative design was to create a computer graphics abstraction artefact with ca-

pability for supporting a simple game product, and to establish model test cases for the graphics

features, such as primitive rendering, alpha blending, colour blend modes and render-target size. The

abstraction would be implemented on two initial desktop platforms, Microsoft Windows and Apple

OS X. The automated testing artefact created would be capable of graphics output comparison and a

results reporting mechanism.

3.3.3 Development

During the Development phase, the tentative design is further developed and implemented into a real

artefact through construction and iterative development (Kuechler & Vaishnavi, 2008). This iterative

approach can result in multiple artefacts or iterations. Data collection occurs throughout the De-

velopment phase. The implementation may be tangible, such as software or hardware development,
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or abstract, resulting in constructs, models or methods. This phase should be an attempt at imple-

menting an artefact according to the tentative design proposed in the Suggestion phase and requires

some creative effort (Vaishnavi & Kuechler, 2008). The novelty can be in the design or construction

of the artefact, or both, and it is appropriate during this Development phase to use state of practice

techniques to develop the solution (Vaishnavi & Kuechler, 2013).

Development patterns used in this phase include Divide and Conquer and Building Blocks, techni-

ques for managing complexity which suggest dividing the research problem into smaller problems, the

solutions to which can be combined to solve the overall problem. Each problem can be solved at the

lowest decomposition, and recursively assembled until the research problem can be solved (Vaishnavi

& Kuechler, 2008). Simulation and Exploration allows the researcher to understand and predict the

behaviour of a system that cannot be built or that it is infeasible to construct. Simulation allows the

creation of objects and environments that imitate real world situations so that observed behaviour can

be used to predict how the system would operate in real life.

In the Development phase of this research project, two artefacts were iteratively developed simul-

taneously, the first of which generated simulated rendering outputs, and the second of which was an

automated tool for the comparison of the rendered output. Development of these artefacts occurred

independently, such that the number of iteration cycles differs for each artefact, however, the develop-

ment and evaluation of each artefact was used to inform the further development of the other. The

development of each artefact used a combination of existing elements, such as image comparison met-

hods, along with industry standard cross-platform game development tools and techniques, to create

a novel result.

3.3.4 Evaluation

Following the Development phase, the artefact goes through an Evaluation phase, which typically re-

sults in information that can be used to further inform another Development, or earlier phases, through

circumscription, or iteration. Evaluation could take place continuously throughout the Development

phase in the form of Micro-evaluations, which can occur whenever a design decision needs to be made

(Vaishnavi & Kuechler, 2013). The DSR process generally cycles between Awareness of Problem,

Suggestion, Development and Evaluation phases, as opposed to traditional Waterfall approach where

a completed phase flows directly onto the next with no opportunity for iteration. This is an impor-

tant difference between DSR and other research methodologies where evaluation usually comes at the

end outcome, rather than throughout the research process (Ahmed & Sundaram, 2011; Kuechler &

Vaishnavi, 2008).

The artefact should be evaluated based on specifications determined in the Awareness of Problem

66



or Suggestion phases (Kuechler & Vaishnavi, 2008), that will determine how well it works in terms of,

for example, functionality, consistency, accuracy, performance or usability (Hevner et al., 2004). The

Evaluation phase should also identify any deviations from expected behaviours or results (Kuechler

& Vaishnavi, 2008). Hevner et al. (2004) describe five kinds of evaluation methods: observational,

analytical, experimental, testing, and descriptive.

The artefact undergoes the Evaluation phase with the application of Evaluation patterns such as

Demonstration, Experimentation and Simulation (Vaishnavi & Kuechler, 2008).

Demonstration is considered a weak form of validation, but can be appropriate when a solution

is new or solves a problem for which no other solution exists. It is generally utilised when it is not

possible to use mathematical proofs to validate a solution, but it is still possible to demonstrate that it

works in certain situations. Demonstration will show that a solution is feasible, but can also highlight

inadequacies (Vaishnavi & Kuechler, 2008).

The Experimentation pattern requires the generation of data from the built artefact and the use

of this data to either validate or reject hypothesised results. There are different experiment types.

Hypothetical or Deductive experimentation uses the results of past experiments and information gat-

hered in the literature review to build and test the system in various environments. In Prototyping,

also known as Hermeneutical or Inductive experimentation, the system and hypothesis are developed

through prototyping, and finally in Case-Based experiments, the prototype is built using an initial

hypothesis, and is modified using newly gained knowledge as the prototyping progresses (Vaishnavi &

Kuechler, 2008). Experiments must be repeatable and reliable, and the results should be generalisable.

The Simulation pattern is used when a complex research problem cannot be explored in a real world

setting, but can be modelled or simulated. The researcher should develop a model of the problem and

solution, including objects and interactions that can be captured for the purpose of performance

evaluation. A suite of test data is then developed that can be used to evaluate the artefact.

In this research project, the Demonstration, Experimentation and Simulation patterns are all used

to evaluate the various artefacts. Micro-evaluations occurred throughout the development phases of

the artefacts, and this informed the further development of both artefacts. Evaluation of the artefacts

at the end of each development cycle also informed the Awareness of Problem, providing additional

areas to explore through Suggestion. Though the artefacts were developed as separate artefacts,

independently of each other, the evaluation of each artefact in turn informed the Suggestion and

Development phases for further iterations of the other artefact.
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3.3.5 Conclusion

The Conclusion phase can be the end of a research cycle, or could be the final outcome at the end

of the research effort. The final results might not answer the research questions in full, but they are

deemed good enough. An artefact is considered complete when it satisfies the requirements of the

problem it was intended to solve (Hevner et al., 2004). The results are then written up, but may not

be considered firm or final, and any loose ends can become the subject of further research (Hevner et

al., 2004; Vaishnavi & Kuechler, 2013). Hevner et al. (2004) state that the research must be presented

to allow practitioners to take advantage of its benefits, also allowing researchers to build upon it

for further extension and evaluation. Though the end result of a DSR project could be difficult to

understand, it could still be considered a successful result, since it could provide a platform for further

research (Hevner et al., 2004). Researchers learn or discover when something works or when it does

not (Vaishnavi & Kuechler, 2008).

Publication patterns can be applied in the conclusion phase of the research project where the

research could be presented to different interested communities.

The conclusion of this research project occurred when it became clear through the multiple ite-

rations that the research question could be adequately answered with the creation of firm knowledge

that would be of interest to the research and industry communities. The knowledge contribution to

industry will be discussed in Section 4.4.7.

3.4 Tools: Artefact Construction

It was identified in the Suggestion phase that Problem Space Tools and Techniques, and Research

Community Tools and Techniques were both patterns that could be applied during this phase to

identify tools and techniques applicable to the problem space domain, and to identify how the research

or industry communities solve similar problems. The research project investigates the automation

of testing for cross-platform games, and therefore it was essential to utilise industry standard cross-

platform tools and techniques in the design and construction of the research artefacts. These tools

and techniques are described in this section.

3.4.1 Industry Tools and Techniques for Cross-Platform Game Develop-

ment

Cross-platform game development is the process of creating games that target a variety of platforms.

Cross-platform executables are created by recompiling source code for each target platform, resulting in

a unique executable file for each target (Thorn, 2008). The variation between different manufacturer’s
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game console hardware can be significant (Irish, 2005). Developing in a multi-platform way is difficult,

as the developer must take into account the variety of scenarios for different hardware configurations

(Shirley & Marschner, 2009), and may require the developer to implement unique solutions for each

target platform. Problems encountered in cross-platform development include developer efficiency,

certification failure, user experience and programming issues (Ruskin, 2008). Portability involves

moving a game’s source code from one OS to another and is a key component of cross-platform

development, since modules must be able to be ported between platforms (Wihlidal, 2006). Game

developers favour developing cross-platform games on PC workstations, as loading and debugging

is faster than on console hardware (Ruskin, 2008). This allows for more rapid iteration during the

development phase.

Abstraction is a useful development practice for multi-platform development (Llopis, 2003). A

common abstract interface provides encapsulation, which hides platform-specific implementation de-

tails (Eberly, 2005) and allows API independence to be achieved (Zerbst & Duvel, 2004). Supporting

the large variety of PC configurations for a single operating system, such as Microsoft Windows, is

also possible through abstraction (Shirley & Marschner, 2009). An abstraction layer allows for the

graphics rendering interface to be utilised by a game developer in a generic way (LaMothe, 2003), for

example, so that a game can be built to execute using either the DirectX or OpenGL CG API (Phillips,

2002). The variety of graphics performance on platforms can be taken into account by changing the

quality of the graphics based upon the platform’s capabilities (Shirley & Marschner, 2009). Other

native platform differences must also be abstracted, such as the platform’s file system (Gregory, 2009).

This is due to the need to hide the native platform’s endianness, also known as byte ordering. File

systems vary between target platforms (Fahy & Krewer, 2012) and loading files in a cross-platform

environment requires the developer to be aware of the target platform’s endianness (Phillips, 2002).

C++

A cross-platform foundation can be built from a common framework of classes and functions (Thorn,

2011). Abstraction and polymorphism can also be utilised to hide platform specific details within

subclass definitions (B. Sutherland, 2014). The common programming language used for high per-

formance commercial game development is C++ (Gregory, 2009; Kelly, 2012; Ostrowski & Aroudj,

2013). C++ is able to be utilised across all major platforms (Fahy & Krewer, 2012) and is platform-

independent, with a compiler for each target platform (Llopis, 2003). The language allows game

developers to undertake high-level programming practices, with support for low-level system access

(Llopis, 2003).

The size in bytes of each primitive type, as well as pointer types, should be the same for all
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target platforms (B. Sutherland, 2014). This can be achieved by using the C++ typedef aliases

to abstract variable types and sizes to ensure consistency in a cross-platform environment (Phillips,

2002). Not taking account of the different sizes of types per platform can be a cause of graphical defects

(B. Sutherland, 2014). sizeof and assert can also be used to ensure that each target platform’s types

match what the developer expects (Goodwin, 2005).

C++ preprocessor macros can be used to accommodate differences between target platforms

(Eberly, 2005; Reddy, 2011; B. Sutherland, 2014). Macros determine which platform the source

code is being compiled for and developers can define unique platform macro symbols (B. Sutherland,

2014).

Implementations of the C++ Standard Template Library (STL) exist for all major game platforms

(Llopis, 2003). STL is a valuable cross-platform asset (Phillips, 2002), however, game developers need

to be aware of STL implementations and behaviours on different platforms and that it may not be

suitable for memory-limited platforms (Gregory, 2009). Available memory is a constraint in game

development, and each platform will offer different sizes and types of random access memory (RAM)

(Irish, 2005). For this reason, developers need to keep track of memory allocations (Ruskin, 2008).

Engines

A game engine must hide dependencies on the OS from the game application source code (Eberly, 2005),

and game logic source code should be separate from reusable engine code (B. Sutherland, 2013). Cross-

platform engines isolate the game implementation from the underlying platform’s hardware (Gregory,

2009). Game engine developers write wrappers around specific platforms’ native APIs to abstract

common behaviour provided by the engine (Gregory, 2009). Wrapping the operating system’s API

allows the game engine to ensure that application behaviours are identical for each target platform

(Gregory, 2009). This is described as the Platform Independence Layer (Gregory, 2009).

Unified Modeling Language

A common method for creating and communicating the design of software, including game software

and tools, is Unified Modeling Language (UML) (Bethke, 2003; Flynt & Salem, 2005; Wihlidal, 2006).

This language provides a visual way to describe how parts of a software’s design fit together (Wihlidal,

2006). UML Class Diagrams describe classes and their relationships, providing a static view of a

system’s design (Flynt & Salem, 2005). Class diagrams can detail the entire system design, or focus

on particular subsystems (Bethke, 2003). Object-oriented design relationships can be shown between

classes, broadly categorised into the is a, has a and knows/uses a relationships.
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Layer 8: Build Configuration’s (Debug/Profile/Release) Output Executable

Layer 7: Cross-Platform Video Game’s Native Source Code (Compiler)

Layer 6: Game Engine (Reusable Framework/Abstraction)

Layer 5: Graphics Application Programming Interface (API)

Layer 4: Graphics Processing Unit Device Driver

Layer 3: Operating System/Kernel

Layer 2: Graphics Card Hardware: GPU

Layer 1: Computer Hardware: CPU

Table 3.1: A target platform’s layered architecture.

3.4.2 Cross-Platform Development: The Layers of a Target Platform

As previously described, the combinations of hardware, operating system, device driver, API, game

engine and build configuration lead to a number of combinations which comprise the target platform

of any single game if it is developed in a cross-platform manner. Therefore, to develop and test

for graphical defects in a cross-platform game all layers of abstraction, as shown Table 3.1, must be

considered.

3.4.3 Image Comparison

Typically, computer graphics rendering output is captured and stored to form a golden truth image

which is subsequently compared to future test outputs. As discussed in Chapter 2, image comparison

techniques are commonly utilised to test these graphical outputs. These range from binary pixel-

by-pixel comparison (Bay, 2016; Grønbæk & Horn, 2009; Yee & Newman, 2004; Zioma, 2012), to

human visual perception methods such as SSIM (Timofeitchik & Nagy, 2012; Wang et al., 2004). It is

possible to include tolerance for a certain number of incorrectly matched pixels when using pixel-by-

pixel comparison (Pranckevicius, 2011).

3.5 Limitations

The scope of the research project is limited, as I was the sole researcher and developer. As discussed

in Chapter 2, Unity Technologies, an industry example of the implementation of automated graphi-

cal testing for a game engine, dedicates entire teams of specialist developers and engineers to the

development and testing of their product. A sole developer is unable to match the scope of a commer-

cial development team with years of development time. Commercial AAA games such as Assassin’s

Creed Unity (Ubisoft Montreal, 2014a) and Bioshock (2K Boston and 2K Australia, 2007), contain
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significantly complex computer graphics renderings which are the result of programming and artistic

development over years of iteration and experimentation. As a sole developer it was not possible to

replicate this scale of graphical complexity.

Target platform availability was another limiting factor in the research project. Console develop-

ment hardware is licensed to game development studios and first-party manufacturers do not make

their software development kits (SDK) available to the public. Specific platform details are protected

by non-disclosure agreements (NDA) and closed proprietary systems. As highlighted in the Chapter 1,

NDAs are also prevalent for the protection of game development industry practices, making it difficult

to ascertain widespread internal studio details regarding development and implementation of testing

for graphical defects in games.

To mitigate these limitations, the project mimicked commercial game development practices by

utilising the same techniques and technologies as employed in a AAA or independent game development

studio. This enables the research findings and the practices developed to be employed in real world

scenarios at the completion of the research project. Small-scale graphical tests scenes were created

across a selection of available target platforms, allowing cross-platform game scenarios to be simulated.

The available target platforms were:

• Desktop: Generic PC, Windows 7, GTX560Ti;

• Laptop: Apple MacBook Air, Mac OS X, Intel HD Graphics 4000;

• Single Board Computer: Raspberry Pi 1 Model B+, Raspbian, VideoCore IV;

• Mobile Phone: iPhone 6 Simulator, iOS 6;

• Tablet: Samsung Galaxy Tab 2 10.1, Android 4.2.2 Jelly Bean.

DSR can require the simplification of a problem, such that it may only represent a subset of the

whole problem (Hevner et al., 2004). This idea is outlined in the Development phase patterns Divide

and Conquer and Building Blocks. Breaking the problem down into smaller blocks might result in an

outcome not realistic enough to have a significant impact on industry practice. However, the results

may form the starting point for future research, leading to more relevant and realistic results (Hevner

et al., 2004).

3.6 Summary

This chapter has detailed the methodological approach utilised in this research project, including

background on the DSR methodology, the methods employed in the design of the research project,
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and the tools utilised in the construction of the artefacts. Limitations are outlined, alongside the

available target platforms used throughout the project.

Section 3.3 provides an overview of the DSR phases of the project. The details of artefact con-

struction and evaluation, the Development phase iterations, are discussed in the next chapter.
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Chapter 4

Artefact Development and

Evaluation

“Learning and investigation

through artifact construction”

Vijay K. Vaishnavi and William

Kuechler Jr., Design Science

Research Methods and Patterns

Innovating Information and

Communication Technology

(Vaishnavi & Kuechler, 2008, p.

187)

4.1 Introduction

This chapter will report the results of each phase of the DSR process, beginning with a recap of the

Awareness of Problem phase, which includes defining the scope of both the problem and the rese-

arch project, before moving on to the Suggestion and Development phases. Throughout the research

project, iteration occurred, whereby the Suggestion and Development phases were revisited after each

Evaluation phase. The iterative approach ended when a good enough solution was reached, which

could answer the overall research question.
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4.2 Awareness of Problem

Prior to developing the initial artefact design in the Suggestion phase of the project, it was important

to define the scope of the problem. This was discussed predominantly in Chapter 1 and Chapter 2.

Section 2.2 outlined the scale of the graphical defect issue, the primary motivation for this research

project. Section 1.5 summarised the environment in which this problem has developed. The technology

utilised in the development of games is various, and changes rapidly. As previously discussed, the game

development industry utilises human testers to detect bugs, however, there is support for the increased

use of automated testing practices.

The scope of the research project was outlined in Section 3.5, which detailed the conditions under

which this research project was conducted. These included the researcher as the sole developer, and a

selection of available target platforms to develop and test with that could be used to simulate a game

development environment. Industry standard cross-platform tools, as described in Section 3.4, were

used to create the artefacts presented in each iteration.

4.3 Suggestion

The Suggestion phase took into account the Divide and Conquer and Building Blocks patterns descri-

bed in Section 3.3.3. These patterns propose that when researching complex problems, it is useful to

start with a minimum viable solution, and to iterate to build on this solution, or to subsequently build

more blocks that in combination can answer the research question. In the context of this research pro-

ject, this approach made sense. The game development industry must accommodate new technology

regularly and this introduces risk (Kanode & Haddad, 2009). It also means that game developers can

be unaware of problems until they are required to develop for a particular platform (Petrillo et al.,

2008). This could have been a problem in this research project and I had to plan to accommodate

any issues that could arise in future iterations. Pranckevicius (2007) further supported the idea of

starting small, stating that initial Unity Technologies test automation could be conducted using only

a single computer and different graphics cards that could be switched out for testing, as discussed in

Section 2.3.1.

The Suggestion phase also had to be designed for the limited number of target platforms available

to the research project, as outlined in Section 3.5. Proprietary consoles were not available, however, a

basic cross-platform graphics simulation could be constructed and tested on the available Generic PC

(running Windows) and MacBook Air (running Mac OS X), with the option to add more platforms

in later iterations. In proposing a minimum viable solution, each layer of the target platforms, as

described in Table 3.1, had to be considered. As OpenGL is one of the main APIs used in CG
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(Sherrod, 2008), it was selected as a starting point for cross-platform development. A cross-platform

abstraction was needed to mimic a simple game engine, which facilitated code reuse between target

platforms, as described in Section 1.5.2. This would allow the same graphical content to be executed

on the different target devices, simulating the work of Zioma (2012) at Unity Technologies.

It was important to decouple the testing tool from the game implementation, a feature also seen

in the work of Lewis and Whitehead (2011a). In order to understand the way in which cross-platform

games need to be developed to utilise automated testing techniques, two initial artefacts were planned

— one to create simple game-like graphical output for testing, where the source code would be instru-

mented to facilitate testing (Lewis & Whitehead, 2011a; Varvaressos et al., 2014), and an automated

tool to test the graphical images for defects. Cross-platform development strategies had to be utilised

in the construction of the output artefact, as discussed in Section 3.4.

Existing research provided a starting point for other features, such as the use of per-pixel comparison

to known template images — something that was identified in Chapter 2 as common to many CG

automated testing systems — and the presentation of a test image, result image and difference image

(Pranckevicius, 2011). It was expected that as described in the DSR methodology, micro-evaluations

would take place during the Development phase, which would allow for rapid refinement of the artefacts

being created.

4.4 Development

As discussed in Section 4.3, the Development phase consisted of the iterative construction of two

artefacts — a Cross-Platform Test Scene Generation artefact, and an Automated Comparison Tool

artefact. An overview of the iterations undertaken during the Development phase for both artefacts

is shown in Figure 4.1. Section 4.3 highlighted the need for decoupling the testing tool and the game

implementation. The cross-platform test scene generation artefact represents a game implementation

which initially produced simple 2D graphical output and in later iterations became more game-like.

The automated comparison tool is the testing tool that sourced the graphical output for comparison

and presented automated test results. These artefacts were iterated on individually after Iteration

1, however, the iterations of the individual artefacts influenced each other. Graphical output from

Iterations 3 and 4 was utilised by Iteration 5 to evaluate and refine the automated comparison tool.

Graphical output from Iteration 7 was tested by the Iteration 5 tool to validate the cross-platform game

implementation and the tool helped to discover cross-platform graphical defects. These Iteration 7

defects were then corrected and the cross-platform implementation was re-tested. The interrelatedness

of the iterations is shown through the dotted arrows in Figure 4.1. Knowledge contribution occurred at
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Figure 4.1: DSR artefact iteration overview.
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Layer Description Target Platform 1 Target Platform 2

Generic PC MacBook Air

Layer 8: Build Target’s (Debug/Release)
Output Executable

Debug Debug

Layer 7: Cross-Platform Video Game’s Na-
tive Source Code (Compiler)

Visual Studio 2012 Xcode 6.3.2

Layer 6: Game Engine (Reusable Frame-
work/Abstraction)

Bespoke C++ Bespoke C++

Layer 5: Graphics Application Program-
ming Interface (API)

OpenGL FFP (GLEW
1.10.0, GLFW 3.0.4)

OpenGL FFP (GLUT)

Layer 4: Graphics Processing Unit Device
Driver

Nvidia 10.18.13.5362 OS dependant

Layer 3: Operating System/Kernel Windows 7 Professio-
nal

OS X Yosemite 10.10.4

Layer 2: Graphics Card Hardware: GPU Nvidia GeForce GTX
560 Ti

Intel HD Graphics
4000 1024 MB

Layer 1: Computer Hardware: CPU 3.30 GHz Intel Core i5
2500K

1.8 GHz Intel Core i5

Table 4.1: Iteration 1: Target platform matrix.

two points during the Development phase — following Iteration 4 and Iteration 7. The work discussed

in each contribution is shown in Figure 4.1 through the use of the dot/dash boxes. The final iteration

— Iteration 8 — unifies the knowledge gained from the development and evaluation of each iteration

into a generalised model which can be used for the construction of a system for the automated testing

and validation of computer graphics implementations for cross-platform game development.

4.4.1 Iteration 1

Two target platforms were selected as a starting point for designing and implementing a 2D cross-

platform rendering artefact. The target platform matrix can be seen in Table 4.1. The rendering

artefact’s design, as seen in Figure 4.2, featured a rendering interface which was implemented using

the fixed-function OpenGL graphics pipeline. This abstraction allowed for the differences between

Layers 1 to 5 (see Table 4.1) of the target platforms to be generalised and for any particular platform

details to be implemented by the derived classes, while allowing computer graphics test scene content

to be generated through the abstract interface. The artefact’s source code was compiled for each

platform, and executed. Two test scenes of fixed height and width were created via cross-platform

C++ source code (Layer 6, see Table 4.1) which was common to both target platforms. These test

scenes were static 2D renders, providing a simulation of cross-platform computer graphics rendering.
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Figure 4.2: Iteration 1: Test scene generation UML design.

(a) Target Platform: Generic PC. (b) Target Platform: MacBook Air.

Figure 4.3: Iteration 1: Test scene outputs: Coloured primitive rendering.

One test scene rendered coloured primitives and another rendered alpha blended coloured primitives.

The rendering artefact was also instrumented to support saving the rendered framebuffer to file. After

each test scene was rendered, the test scene captured the framebuffer to disk as a bitmap image.

The resulting image files were then retrieved from their target platforms and then accessed by the

comparison tool artefact. Sample output from the coloured primitive rendering test scene from the

two target platforms can be seen in Figure 4.3, and from the alpha blended coloured primitive rendering

test scene in Figure 4.4.

The second artefact, the comparison tool, was constructed as a Microsoft Windows executable using

Visual Studio 2012 and C#, the design of which can be seen in Figure 4.5. This tool could load and

compare the resulting test scene image outputs from each target platform. The comparison algorithm

utilised was RGB per-pixel and would report to the user a difference image, the number of pixels that

matched, mismatched, and the percentage considered correct between the two target platform outputs.
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(a) Target Platform: Generic PC. (b) Target Platform: MacBook Air.

Figure 4.4: Iteration 1: Test scene outputs: Alpha blended coloured primitive rendering.

Figure 4.5: Iteration 1: Comparison tool UML design.

The overall pipeline for generation of test scenes and comparison results can be seen in Figure 4.6.

A bug was purposefully introduced to the C++ source code in order to create a simulated flawed

graphical output for one target. The flawed image was compared against one from the other target to

test the comparison tool’s difference image generation and per-pixel comparison reporting. An example

of this can be seen in Figure 4.7. Correct pixels, incorrect pixels, and the percent correct are reported

at the top of the difference image.

Evaluation

The automated comparison tool was able to generate an RGB difference image and report per-pixel

difference results based upon output from the two target platforms. The tool had to be manually

configured to select which test scenes to compare. Cross-platform test scene generation with C++

implementation was possible, and the resulting renders were able to be retrieved from disk. Test

scenes were able to be written once and used on each target. This validated the viability of each

platform’s development tool chain.

As a building block, the two artefacts created for Iteration 1 performed as expected and set a

foundation to further investigate using other image comparison methods, such as SSIM.
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Figure 4.6: Iteration 1: Pipeline overview.
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Figure 4.7: Iteration 1: Comparison tool difference image example.
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4.4.2 Iteration 2

Inspired by the work of Timofeitchik and Nagy (2012), Iteration 2 focused on development of the

C# automated comparison tool and the introduction of SSIM as an image comparison method. This

allowed for a more human-like comparison metric to be generated based upon the images compared.

Per-pixel comparison was retained, as difference image generation from Iteration 1 was able to success-

fully highlight differences between platform rendering outputs. The design of Iteration 2 can be seen

in Figure 4.8.

Figure 4.8: Iteration 2: Comparison tool UML design.

The automated comparison tool was able to load test scene data based upon a directory hierarchy,

where each directory represented a target platform. A combo box was added to allow a human tester

to switch between test scenes. The tool was also expanded to support more than two platforms and

each platform’s test scene output was displayed in separate tabbed panes, allowing a human tester

to view rendering output from all target platforms for a selected test scene. When clicking between

tabs, the tool reported the RGB correct, incorrect and percentage correct metrics for the last two tabs

viewed, as well as the SSIM result. This result was displayed as a number between 0 and 1, as seen in

Figure 4.9. A checkbox allowed toggling of the generation of the RGB difference image, which when

activated was added to another tabbed pane. These features provided a human tester the ability to

toggle between reference images and the difference image, similar to what Bay (2016) reported is part

of the Unity Technologies graphics test tool.

The addition of two sliders allowed first for the test scene renders to be scaled in size, and second

for the RGB difference tolerance to be exaggerated to help a human tester to more easily notice minor

per-pixel differences that might otherwise be difficult to detect.

To test this iteration of the automated comparison tool artefact, renders from the PC version

of AAA game Watch Dogs (Ubisoft Montreal, 2014b) were utilised. These renders were retrieved

from the Burnes (2014) article on Watch Dogs graphics performance. The images were captured at

different graphics settings, resulting in four variations of the same scene: ultra, high, medium, and

low, as seen in Figure 4.10. Each graphics setting could be considered a different target platform,
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This image has been removed for copyright reasons.

Figure 4.9: Iteration 2: Comparison tool output example.
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This image has been removed for copyright reasons.

(a) Low.

This image has been removed for copyright reasons.

(b) Medium.

This image has been removed for copyright reasons.

(c) High.

This image has been removed for copyright reasons.

(d) Ultra.

Figure 4.10: Input data: Watch Dogs (Ubisoft Montreal, 2014b), rendered scene at various graphical
quality settings (Burnes, 2014).
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Figure 4.11: Iteration 2: Comparison tool output example where the selected Compared tab shows
the RGB difference between the High and Ultra graphical quality settings.
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% Pixel Match Medium High Ultra

Low 44.2% 46.6% 32.1%

Medium — 44.4% 34.1%

High — — 34.3%

Table 4.2: Iteration 2: Watch Dogs test scenes RGB per-pixel comparison.

SSIM Medium High Ultra

Low 0.910236 0.809589 0.785479

Medium — 0.888953 0.861518

High — — 0.972973

Table 4.3: Iteration 2: Watch Dogs test scenes SSIM comparison.

where the application could control the quality of its rendering output. This simulated rendering with

different graphics card hardware capabilities. An example of the RGB difference output can be seen

in Figure 4.11, where the high and ultra scenes were compared. In this output, the difference image

has been scaled to focus on a particular area that could be of interest to a developer.

Evaluation

The new features added to the automated comparison tool allowed for multiple test scenes and multiple

platforms to be loaded and compared. The results of comparing each Watch Dogs test scene can be

seen in Table 4.2 and Table 4.3.

When visually inspecting the images in Figure 4.10, they look wholly similar to each other, even

though there are rendering differences. The RGB per-pixel comparison results scored less than 50%

per-pixel matches, suggesting significant difference. However, the SSIM results scored between 0.78

and 0.97, indicating that the images are in fact similar and hence supporting the prior application of

this method in the work of Timofeitchik and Nagy (2012).

4.4.3 Iteration 3

As the game development industry has to deal with many SKUs and build configurations, as well as

platform differences such as hardware, GPU, OS, and drivers (McShaffry & Graham, 2013; B. Su-

therland, 2013; Zioma & Pranckevicius, 2012), Iteration 3 focused on adding more complexity to the

2D cross-platform rendering artefact. In addition, the graphical rendering engine middleware Simple

DirectMedia Layer (SDL) was utilised at Layer 6 (see Table 4.4) to facilitate cross-platform develop-

ment, instead of using OpenGL directly as in Iteration 1. SDL is an open source, C-based API that
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Figure 4.12: Iteration 3: Test scene generation: SDL multi-platform.

Figure 4.13: Iteration 3: Test scene created with C++ and SDL.

supports rendering to multiple target platforms. C++ code can be written and compiled with SDL to

create games. Two recent commercial examples are the cross-platform 2D games FTL: Faster Than

Light (Subset Games, 2012), published on Windows, Mac OS X, Linux and iOS, and N++ (Metanet

Software, 2015), published on Windows, Mac OS X, and PlayStation 4. Both of these games also

featured graphical defects, as can be seen in Figure 4.14 and Figure 4.15. Therefore, I considered SDL

appropriate middleware to utilise for rendering, as it still allowed game-style C++ code to be written

in a cross-platform manner and to further simulate game industry practice. The design of this test

scene generator can be seen in Figure 4.12.

In this iteration the aim was to set up the tool chains for each platform, and to generate more test

scene data across a larger variety of platforms similar to those used commercially. The target platform

matrix can be seen in Table 4.4. This introduced three new hardware targets, and a revised Layer

5 for the two previously used targets. Again, a C++ test scene was developed and deployed to each

target platform. The test scene output renders, an example of which is shown in Figure 4.13, could be

retrieved for use with the automated comparison tool. A demonstration of a test scene executing on

the target platforms can be seen in Figure 4.16.
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This image has been removed for copyright reasons.

This image has been removed for copyright reasons.

(a) Blocky text on the left side of the frame (Bast, 2012).

This image has been removed for copyright reasons.

This image has been removed for copyright reasons.

(b) In-game characters are rendered incorrectly, overlapping other game elements (19acomst, 2014).

Figure 4.14: Screen captures of FTL: Faster Than Light (Subset Games, 2012) showing two different
graphical bugs.
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This image has been removed for copyright reasons.

(a) Correctly rendered game level (Pyrarson, 2016).

This image has been removed for copyright reasons.

(b) Game level incorrectly rendered with missing game elements (Razor Volare, 2016).

Figure 4.15: Screen captures of N++ (Metanet Software, 2015) contrasting a correctly rendered game
level with an incorrectly rendered game level.
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Target Platform 3 Target Platform 4 Target Platform 5 Target Platform 6 Target Platform 7

Generic PC MacBook Air Raspberry Pi iOS Android

Layer 8: Debug Debug Debug Debug Debug

Layer 7: Visual Studio 2012 Xcode 6.3.2 gcc 4.6.3 Xcode 6.3.2 Android Native Deve-
lopment Kit (NDK)
r10

Layer 6: Bespoke C++ Bespoke C++ Bespoke C++ Bespoke C++ Bespoke C++

Layer 5: SDL 2.0.3 OpenGL 2.0 SDL 2.0.3 OpenGL 2.0 SDL 2.0.3 OpenGL 2.0 SDL 2.0.3 OpenGL 2.0 SDL 2.0.3 OpenGL 2.0

Layer 4: Nvidia 10.18.13.5362 OS dependant OS dependant OS dependant OS dependant

Layer 3: Windows 7 Professio-
nal

OS X Yosemite 10.10.4 Raspbian GNU/Linux
7 (Wheezy)

iOS 6 Android 4.2.2 Jelly
Bean

Layer 2: Nvidia GeForce GTX
560 Ti

Intel HD Graphics
4000 1024 MB

Broadcom VideoCore
IV 250 MHz

iOS 6 Simulator PowerVR SGX540

Layer 1: 3.30 GHz Intel Core i5
2500K

1.8 GHz Intel Core i5 700 MHz single-core
ARM 1176JZF-S

iOS 6 Simulator Dual-core 1.0 GHz
Cortex-A9

Table 4.4: Iteration 3: Target platform matrix.
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Figure 4.16: Iteration 3: Test scene executing on four of five target platforms.

Evaluation

C++ test scenes were able to be created and executed successfully on four of the five target platforms

— Generic PC, MacBook Air, Raspberry Pi and iOS. Framebuffer captures were able to be retrieved

from each of these targets, however extracting the render output files from the iOS simulator proved

troublesome, as each time the simulator was executed the application was sandboxed in a different

directory. This made locating the output files difficult when compared to the Windows, Mac OS X,

and Linux targets, which were all relatively simple to retrieve output files from.

The Android target, which was built with the Android NDK, did not successfully execute on the

target hardware — a Galaxy Tab 2 10.1 — so no test scene output was generated for this platform.

The Android executable was also unable to be successfully executed in the NDK’s simulator. These

difficulties highlighted that while the C++ implementation may work for the majority of platforms,

further work would need to be undertaken to discover the causes of the Android failure. In this research

project, committing resources to diagnosing and solving this problem would take time away from work

towards the core research question.

The differences between file systems, and the difficulty in retrieving output files, inspired a future

suggestion to build a tool for the network transfer of test scene output from the native game application

to a server that listened for test results, rather than saving them directly to a platform’s file system.

Test outputs could then be accessed by the automated comparison tool.
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4.4.4 Iteration 4

Figure 4.17: Iteration 4: Test scene generation: 3D mesh with procedural animation.

To further explore aspects of cross-platform game development, a cross-platform 3D rendering ar-

tefact was designed and built. This artefact targeted the Generic PC and MacBook Air platforms

used in Iteration 3 (see Table 4.4), with 3D rendering using OpenGL 2.0 built on top of SDL. This

iteration reduced the number of target platforms to the minimum viable solution, therefore simplifying

the test scene output collection and allowing the focus to be on the added complexity of the 3D ren-

dering implementation without the distraction of additional tool chains used in the previous iteration.

This created a building block which could be extended in further iterations. A C++ abstraction was

developed to generate 3D test scenes, as seen in Figure 4.17. This abstraction implemented the setup

of a graphics device capable of rendering 3D content, as well as the loading of 3D mesh data from

.OBJ model files, the fixed-function rendering of loaded meshes, and the creation of lights that could

be added to the 3D test scene. Cross-platform C++ source code was added to the test scene, where

a fixed-rate time update, inspired by the work of Pranckevicius (2007), created simple 3D procedural

animation. Whereas previous iterations used static 2D programmer-driven test scenes, Iteration 4

allowed art-focused content to form the basis of the test scenes. This simulated a game development

scenario where artist-created game assets would be exported into a game engine format and could then

be loaded by a game application for rendering.

The 3D rendering artefact could be configured at compile-time, within the C++ source code, to

capture rendered scene output at a fixed rate. These test scenes featured an animated 3D model

with local y-axis rotation. Figure 4.18 shows an example of one capture from a sequence of captures

that took place once every 100 frames. The output generated by each target platform could be run

through the automated comparison tool from Iteration 2 (see Section 4.4.2), with example results seen

in Figure 4.18 and Figure 4.19.

Evaluation

This iteration validated that 3D assets could be loaded and rendered on each target platform using

a cross-platform implementation. Test scenes featuring procedural animation and lighting were able
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(a) MacBook Air output. (b) Generic PC output. (c) Comparison difference.

Figure 4.18: Iteration 4: Test scene 3D procedural animation capture, frame 200 example results.

(a) MacBook Air output. (b) Generic PC output. (c) Comparison difference.

Figure 4.19: Iteration 4: Test scene 3D procedural animation capture, frame 300 example results.
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Generic PC vs MacBook Air Frame 200 Frame 300

Per-Pixel Percent Correct 98.7% 97.5%

SSIM 0.999974 0.999943

Table 4.5: Iteration 4: Example comparison output results.

to be simulated, and fixed-time step framebuffer captures could be captured from each target. These

results could then be compared by the automated comparison tool.

The 3D output from both target platforms looked identical to the human eye, and the SSIM results

verified this. In these examples, the per-pixel results also indicated a high level of similarity but

indicated that the output images were not completely identical (see Table 4.5). While Figure 4.18a and

Figure 4.18b appear identical, Figure 4.18c reveals that there are differences between the output from

the two target platforms. With the difference slider used to exaggerate the differences, Figure 4.18c

shows pixel differences highlighted in yellow and blue, allowing the human eye to detect the non-

matching pixels, particularly when the difference is very small. These appear to be at the hard edges

of the polygons that make up the 3D model. The same result can be seen in Figure 4.19.

Knowledge Contribution

Following Iteration 4, I presented the research work to date in an AUT Software Engineering Research

Laboratory (SERL) Seminar (see Appendix C). This allowed me to present the proposal and research

problem, followed by the artefact iterations built thus far, and rendering and test comparison output

from these artefacts. Researchers interested in computer graphics, software engineering, and automated

testing attended the seminar which included a question and answer session. Fellow researchers were

able to critique the work, and offer insights that could support the future direction of the project.

The seminar was a platform for the validation of the progress of the research project to date as I was

provided with an opportunity to justify the decisions I had made about the project so far, including the

choice of research methodology and the selection of target platforms. There was also an opportunity to

discuss the potential research contributions the project could make to the field, and seminar attendees

were able to confirm that the project was moving in an encouraging direction.

4.4.5 Iteration 5

In Iteration 5 the automated testing tool was further developed to allow output from any number of

target platforms to be compared against each other in all possible combinations. Whereas the previous

iteration of the tool (see Section 4.4.2) would only compare the last two platform output tabs clicked,

the new version of the tool provided a matrix displaying platform versus platform results for each type
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of test. All tests were run at the launch of the automated tool. Each test type — RGB correct, RGB

incorrect, and SSIM — was presented in a separate tab, inside of which each test scene was presented

in its own tab, allowing the tester to select a test type and test scene to view a comparison matrix of

results for all target platforms for the selected combination. SSIM results were presented as both a

value between 0 and 1, and the equivalent percentage. When clicking on an individual result within

the results matrix, the tool would present the related target platforms’ graphical output side-by-side.

Examples of this can be seen in Figure 4.20 and Figure 4.21.

As with the previous iteration of the tool, a difference image was generated for the selected test

type, in this case by clicking on the RGB Diff button (see Figure 4.22). An Overlay/Flip button

was added to the automated comparison tool to give the tester the ability to view overlaid platform

outputs and toggle between them. This can be seen in Figure 4.23. Buttons were also added that

allowed image scaling, providing the tester with the ability to zoom in and out on a test scene’s output

to further inspect defects detected by the automated tool.

Evaluation

Iteration 5 successfully allowed any number of test scene outputs from multiple target platforms to be

loaded and compared. Result matrices presented an overview of comparisons across all platforms in

a single view. Any results that appeared anomalous could be identified and then visually inspected

by clicking on the corresponding cell in the results matrix. The tester could toggle between test scene

results, as well as test types, however this still had to be conducted manually. With a small number of

test scenes the user would be able to select each test scene to review the results, however with a large

number of test scenes this would become time-consuming. A future suggestion would be for the tool

to be able to automatically highlight the tabs containing test scenes with results of potential interest,

reducing the burden on a human tester.

The addition of the Overlay/Flip button helped to identify disparities between platform outputs.

While any graphical disparity would be highlighted by the difference image, when combined with the

Overly/Flip function it further aids in the identification of mismatched output by helping to train the

eye on the defect. For example, a single pixel mismatch would be difficult to detect in the test scene

output, but the difference image would detect the single pixel, and toggling the overlaid images would

further highlight its location in the original test scene outputs by appearing to flash in and out of the

images. The tester could then zoom in on the images to identify the exact location of any difference.

A future suggestion would be for further automation to highlight the areas of difference on the test

scene output images to remove the need for a human tester to toggle the images. For example, test

scene outputs could be augmented with additional graphical elements to pinpoint potential areas of
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Figure 4.20: Iteration 5: Example of test results for cross-platform output generated by the Iteration
3 artefact.
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Figure 4.21: Iteration 5: Example of test results for cross-platform output generated by the Iteration
4 artefact.
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Figure 4.22: Iteration 5: Example of the difference image for cross-platform output generated by the
Iteration 4 artefact.
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Figure 4.23: Iteration 5: Example of the Overlay/Flip feature for cross-platform output generated by
the Iteration 4 artefact.
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difference.

As the number of platforms and test scenes increased, the time to execute the comparison tests

also increased. This was a reasonable amount of time for a small number of platforms and test scenes,

but if more types of tests, target platforms or test scenes were added, then the time to execute could

consume a significant amount of time.

4.4.6 Iteration 6

The evaluation of Iteration 4 led me towards two possible further iterations. From this iteration,

it would be possible to further develop the 3D capabilities of the 3D rendering artefact, adding, for

example, texturing, alpha blending, character animation and physics simulation, which would further

simulate complex 3D game features, as would be expected from a AAA game. Alternatively, it would

be possible to develop more game-like scenarios in 2D, to explore the deterministic aspects of cross-

platform game scenarios and simulations. I decided to concentrate on the 2D pathway to avoid a

disproportionate focus on artistic requirements, such as creating 3D assets. Potential knowledge gained

from further 2D work could then still be applied to 3D game development.

Iteration 6 targeted the Generic PC, MacBook Air and Raspberry Pi platforms used in Iteration

3 (see Table 4.4). To simulate cross-platform, game-like 2D rendering, as seen in FTL: Faster Than

Light (Subset Games, 2012) and N++ (Metanet Software, 2015), a C++ abstraction of the SDL

middleware was further developed. This rendering abstraction (see Figure 4.24) was constructed to

feature a line-based rendering system, known as TurtleWorld, and a sprite-based rendering system,

known as RobotWorld. RobotWorld assets (Skene, 2014) can be seen in Figure B.1 in Appendix B. The

rendering artefact supported texture loading, alpha blending and transparency, procedural animation,

and text rendering which could be used to trace the state of the simulation as it executed. Both

worlds could be driven by hardcoded C++ program code to create animated test scene simulations,

which could then be played back on each target platform. A fixed time-step was used for animation.

The rendering artefact developed in this iteration simulated a more complete feature-set than previous

iterations, equivalent to the graphics rendering capabilities of a commercial cross-platform, 2D game.

As the artefact executed on the target platform, test scene output was generated for each fixed

time-step, capturing every frame of animation. This differed from the test scene output in Iteration 4,

where captures were taken every 100 frames. The framebuffer output captured each animation state

change to file, which could then be retrieved for each platform. Examples of the test scene output can

be seen in Figure 4.25 and Figure 4.26.
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Figure 4.24: Iteration 6: Test scene generation: TurtleWorld and RobotWorld.
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Figure 4.25: Iteration 6: Example of cross-platform output from the line-based TurtleWorld, with
state tracing text rendering.

Figure 4.26: Iteration 6: Example of cross-platform output from the sprite-based RobotWorld, with
state tracing text rendering.
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Evaluation

The cross-platform rendering artefact was able to generate a large number of procedurally animated

test scenes on multiple platforms. This output data could be utilised by the automated comparison

tool artefact. Iteration 6 demonstrated that adding 2D rendering features, similar to a commercial

game, was feasible using SDL and the three target platforms. It was possible to have all graphics

features successfully render on each target.

Developing using the SDL middleware on the Raspberry Pi Linux-based target was significantly

slower than the Generic PC and MacBook Air targets. When compiling the SDL middleware, a

rebuild on the Raspberry Pi would take in excess of 30 minutes. This meant that configuration of SDL

for this Linux platform was time-consuming when compared to the other platforms, and it is therefore

not a suitable platform for primary development. Retrieval of test scene output from the Raspberry

Pi was achieved via USB memory stick transfer. As discussed for Iteration 3, the manual retrieval of

this data could be automated through a network-based system.

The success of the hardcoded C++ procedural animation system led directly to the development

of Iteration 7, which included a real-time game loop, whereby dynamic game scenarios with user input

further simulated 2D game scenarios.

4.4.7 Iteration 7

In Iteration 7, a clone of the game Space Invaders (Taito Corporation, 1978) was designed and develo-

ped. This created a cross-platform, dynamic, real-time 2D game capable of executing on the Generic

PC and MacBook Air target platforms (see Table 4.4). The Raspberry Pi target was eliminated in

this iteration due to the time-consuming nature of development on the platform, as highlighted by

Iteration 6. Additional C++ classes were developed to encapsulate aspects of the game. The Game

class managed the real-time game loop, including the algorithms which controlled input handling,

game simulation processing and world updating, and 2D scene rendering. Texture assets were able

to be loaded from file and managed in memory by a resource manager class, the TextureManager,

which interacted with the 2D renderer. An object hierarchy of game entities was created to simulate

the desired gameplay features, including a human playable spaceship capable of shooting projectiles,

enemy spaceship objects that had basic AI routines that reacted to collisions with player bullets, and

explosion animations featuring alpha blending. An overview of the design can be seen in Figure 4.27.

The Game class was instrumented to capture framebuffer output from the game application at

fixed-rate, one-second intervals. The rate of framebuffer capture was able to be configured in the

C++ source code. Drawing from the prior works of Dunnett (2010), Grønbæk and Horn (2009)

and Ostrowski and Aroudj (2013), and inspired by the Dickinson (2001) game engine replay system,
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Figure 4.27: Iteration 7: Game clone with replay system.
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(a) Capture 4. (b) Capture 7.

(c) Capture 10. (d) Capture 13.

(e) Capture 16. (f) Capture 19.

(g) Capture 22. (h) Capture 25.

Figure 4.28: Iteration 7: Example replay captures, showing every third, one-second framebuffer capture
from the Generic PC build target.
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Iteration 6 also included a replay system, where the user’s input could be recorded to system memory

during gameplay, and subsequently saved to a file on disk. All player events, such as move left, move

right, and fire projectile, were instrumented in the game’s C++ source code to facilitate the recording

functionality. Each instrumented event was time-stamped as it occurred. Pseudo-Random Number

Generator (PRNG) seed values were also stored to disk, allowing for the same deterministic simulation

to be re-run on subsequent replays.

Upon execution of the game, if a captured replay data file was found on disk, the game application

would load the list of replay events into system memory. The manual player input system would be

disabled and the game loop would then use the replay event list to trigger in-game player events based

upon the time-stamped information for each event. A replay file generated on one platform could be

loaded by the other cross-platform target, effectively replaying the previously saved playthrough, and

ensuring that the same events occurred at precisely the same frames on both platforms. Example

replay system output can be seen in Figure 4.28. Output was then loaded into the tool from Iteration

5.

Evaluation

The Iteration 7 artefact allowed a human tester to play the game once and have the player events

recorded. This meant that the game did not need to be played multiple times to generate test scene

output for each target platform, and ensured consistency, since the same user events were executed on

each platform. Framebuffer captures were collected at regular intervals, and could then be run through

the automated comparison tool. This removed the human variable, showing that the type of human

play testing described by Dunnett (2010) could be automated, reducing the reliance on human testers

for each target platform.

In testing the initial implementation of Iteration 7 with the Iteration 5 automated comparison

tool, a graphical defect was discovered (see Figure 4.29). When viewing the SSIM test results, it

became apparent that the graphical output from the two platforms was not the same. While the RGB

correctness test results showed a very high percentage of correct pixels, the SSIM results showed a

more substantial difference of around 4% between the two target platforms. These results are shown

in Table 4.6.

Using a combination of the Overlay/Flip feature and difference images it was possible to visually

detect that the stars in the background were not the same on both target platforms (see Figure 4.30).

RGB correct and incorrect results showed the images were almost identical because the stars were

small when considered in the context of the entire scene. The SSIM results showed a 4% difference

between the platforms, highlighting that there were structural differences — the stars were in different
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Figure 4.29: Iteration 7: Example of cross-platform output featuring detection of graphical defect.
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Generic PC vs MacBook Air RGB Correct RGB Incorrect SSIM

Test Scene 01 99.9625% 0.0375% 96.420%

Test Scene 02 99.96271% 0.03729167% 96.435%

Test Scene 03 99.96271% 0.03729167% 96.430%

Test Scene 04 99.96083% 0.03916667% 96.436%

Test Scene 05 99.9625% 0.0375% 96.386%

Test Scene 06 99.96188% 0.038125% 96.376%

Test Scene 07 99.96021% 0.03979167% 96.189%

Test Scene 08 99.93604% 0.06395833% 96.186%

Test Scene 09 99.96083% 0.03916667% 96.192%

Test Scene 10 99.96062% 0.039375% 96.182%

Test Scene 11 99.95729% 0.04270833% 96.207%

Test Scene 12 99.96% 0.04% 96.192%

Test Scene 13 99.96062% 0.039375% 96.165%

Test Scene 14 99.95937% 0.040625% 96.191%

Test Scene 15 99.95979% 0.04020833% 96.159%

Test Scene 16 99.95896% 0.04104167% 96.115%

Test Scene 17 99.96% 0.04% 96.068%

Test Scene 18 99.96021% 0.03979167% 96.091%

Table 4.6: Iteration 7: Automated comparison tool results.
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Figure 4.30: Iteration 7: Example of cross-platform output difference image, highlighting the difference
between star placements in the two target platforms.

places.

This led to the debugging of the game artefact to discover that the implementations of the C++

Standard Library rand() function behaved differently on the two target platforms. While the seed

provided to the srand() function was identical (based upon the seed being saved to disk) for both the

initial playthrough and the replay, the sequence of PRNG results returned from rand() was different,

which resulted in different star placements.

To repair this defect, a different PRNG algorithm was utilised — the C++ 11 implementation of

the Mersenne Twister — which was implemented consistently across both target platforms. The replay

was then re-run and test scene output recaptured across both target platforms. This output was then

run through the Iteration 5 automated comparison tool, which confirmed each target platform was

producing the same output (see Figure 4.31). All SSIM test scene results then reported 100% matches,

with the exception of test scene 11 (see Table 4.7).

Again utilising a combination of the Overlay/Flip feature and difference image, it was possible

to detect a small difference in the rendering of the explosion animation alpha blending between the

two platforms. The difference image and the Overlay/Flip comparison are shown in Figure 4.32 and

Figure 4.33.

Through using the automated comparison tool to detect the defect in Iteration 7, it became apparent

that while it was good to have the results presented in a matrix, it could be beneficial to visualise
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Figure 4.31: Iteration 7: Example of corrected cross-platform output, showing 100% SSIM result.
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Generic PC vs MacBook Air RGB Correct RGB Incorrect SSIM

Test Scene 01 100% 0% 100%

Test Scene 02 100% 0% 100%

Test Scene 03 100% 0% 100%

Test Scene 04 99.99854% 0.001458333% 100%

Test Scene 05 100% 0% 100%

Test Scene 06 100% 0% 100%

Test Scene 07 99.99958% 0.0004166667% 100%

Test Scene 08 99.97542% 0.02458333% 100%

Test Scene 09 100% 0% 100%

Test Scene 10 100% 0% 100%

Test Scene 11 99.99667% 0.003333333% 99.99998%

Test Scene 12 99.99937% 0.000625% 100%

Test Scene 13 100% 0% 100%

Test Scene 14 99.99875% 0.00125% 100%

Test Scene 15 99.99937% 0.000625% 100%

Test Scene 16 99.99854% 0.001458333% 100%

Test Scene 17 99.99958% 0.0004166667% 100%

Test Scene 18 99.99979% 0.0002083333% 100%

Table 4.7: Iteration 7: Automated comparison tool results, following defect repair.

Figure 4.32: Iteration 7: Example of cross-platform output difference image for test scene 11.
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Figure 4.33: Iteration 7: Example of cross-platform output Overlay/Flip comparison for test scene 11.

the results graphically, showing the test results per scene in a graph which would highlight significant

deviation between test scenes. The tool would then be able to highlight the affected tabs for quicker

verification by a human taster.

Knowledge Contribution

Following the completion of Iteration 7, I presented the research project to date at the PikPok Deve-

lopers’ Conference as an invited guest speaker (see Appendix D). PikPok is a Wellington-based game

development studio, established in 1997, and the audience consisted of game development industry

professionals. The presentation was followed by a question and answer session and discussion with

PikPok developers, who were particularly interested in the issues I had encountered with deterministic

behaviour and the replay system, as well as sharing their own experiences of cross-platform testing

issues where UI elements appeared differently on different device resolutions. These interactions, along

with the critique and feedback from industry professionals, indicated that I had reached a good enough

DSR solution and could stop iterating and write up the research project results.

4.4.8 Iteration 8

The knowledge gained from the iterative construction of the two artefacts allowed me to create a

generalised model of a complete automated testing system, which could be applied to any cross-platform

game development scenario, and shows not only the components necessary for the construction of such
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Figure 4.34: Iteration 8: Model: Automated testing and validation of computer graphics implementa-
tions for cross-platform game development.
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a system, but the importance of the relationship between the two artefacts and how this contributes

to the success of the automated test system for the verification of cross-platform computer graphics

implementations. While the two artefacts are necessarily decoupled, to ensure consistency across all

platforms, it is necessary to design and instrument the game implementation to facilitate automated

testing. The model is shown in Figure 4.34.

4.5 Summary of Artefact Development and Evaluation

This chapter has detailed the DSR process undertaken in the iterative construction of two artefacts,

and the corresponding results of the Development and Evaluation phases. A cross-platform test scene

generation artefact was iteratively developed alongside an automated comparison tool artefact. Output

from the test scene generation artefact at various iterations was able to be tested using the automated

comparison tool, which was also iteratively developed throughout the research project. The combi-

nation of these building blocks and the various simulations led to an effective automated testing tool

that was able to detect graphical defects. Finally, a model of a complete automated testing system

was presented, based upon the knowledge gained through the DSR process. The following Discussion

and Conclusion chapters map to the final Evaluation and Conclusion phases of the DSR project.
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Chapter 5

Discussion

“It’s too risky to not do

automated testing on a AAA

game”

Francesco Carucci, AAA

Automated Testing... For AAA

Games (Carucci, 2009)

5.1 Overview

This chapter will present the major findings of the research project, summarising the results and

contextualising them in relation to industry needs and related prior works. Limitations of the research

project will then be discussed.

5.2 Summary of Results

The research project shows that the testing and validation of computer graphics implementations

for cross-platform game development can be automated. Technological developments leading to the

current state of video games are outlined in Section 1.5 and Section 2.2 provides examples of graphical

defects in commercial video game software, highlighting the scale of the problem within the industry.

Testing practices within industry are explored in Section 2.3 and further detailed in Appendix A.

Technologies and techniques used to develop cross-platform games are discussed in Section 3.4 and

are applied in the construction of the artefacts described in Chapter 4. Finally, the automation of

quality assurance of visual defects in cross-platform video games is achieved through the DSR process,

culminating in a generalised model, as described in Section 4.4.8.
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The research project combines aspects of prior research and mimics testing techniques being utilised

in the development of game engines and AAA games. The aspects existed as single elements in prior

research, outlined in Chapter 2, however they were not combined or used in a cross-platform manner.

The artefacts developed in this project feature game event instrumentation for record and playback,

test scene generation and output capture, and SSIM and RGB per-pixel comparison methods, with

a bespoke tool for reporting automated test results. The artefacts are able to successfully generate

simulated cross-platform game output which can be tested to ensure correct implementation exists

across all target platforms — the game plays the same no matter what the underlying architecture.

This verifies that it is possible to build such a complete system, on a small scale, with limited resources.

To be successful, not only does image comparison need to be utilised, but a game must be designed

to allow for deterministic, and hence replayable, functionality to be instrumented. The automated

comparison tool would not function without appropriate output from each target platform to test for

correctness.

The resulting model is reusable and can be applied to any game scenario. This contrasts with

systems such as those used at Unity Technologies and the VTK system, that are highly coupled to

their implementations and therefore not easily transferable or reusable. The model could be integrated

early in the game production cycle, for example well before the completion of the Alpha phase, allowing

a cross-platform game to be thoroughly tested without needing to utilise a large number of human

testers for multiple platforms. This could reduce development time and the necessity for crunch

time, supporting the conclusions of Buhl and Gareeboo (2012) and Donat et al. (2014). Whereas

Unity Technologies use small, isolated test scenes for different graphics features within their engine

(Pranckevicius, 2007), this model allows a game scenario to be tested without the need to individualise

particular graphics features, such as alpha blending, shadows or particles.

The nature of the automated test replay allows for regression testing to occur. Previously generated

replays can be re-run on any target platform and the resulting outputs captured and compared. Again,

this ensures that the game implementation continues to function as expected, despite further work

being undertaken during game production. This is similar to the experiences of Yee and Newman

(2004), who reported that automated testing of graphical output in film production helped ensure

the quality of their product was not compromised as their development environment was upgraded

with OS and tool chain changes. Using the model, the same can be applied to cross-platform game

development, including changes to not only the tool chain, but also API, graphics driver and OS. Since

the game industry must accommodate new and emerging technologies on a regular basis, it would

therefore be less risky to develop for new platforms, integrate new graphics hardware or develop cross-

generational games, since the system model would allow for the verification of target platform output.
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A consideration when undertaking a research project of this type is that updates to the OS, drivers,

APIs and tool chains on test target platforms may impact on the development environment. It is

therefore important to consider turning auto-updates off to ensure the integrity of the test environment

until the completion of the research project.

The results of the research project agree with Petersen (2012) and Andersen (2013), who both stated

that testing across multiple platforms increases complexity. The need to set up unique tool chains for

each target platform, and to debug platform-specific problems, adds to the overall complexity of a

computer graphics implementation for game scenarios.

While a human tester is still required to initially play through the game under test on the pri-

mary target, subsequent playthroughs can be automated using the system described. Iteration 7 (see

Section 4.4.7) shows that this is possible for cross-platform games. The human tester validates that

the game works as expected on the primary target, and the automated playback captures output to

test that it works on other targets. As the human plays, they are able to check that the fun aspects of

the game are present. It is not possible to automate this aspect of testing. However, while the human

tester is playing, they are able to decide that the game is behaving as intended, selecting the golden

truth images by approving their playback scenario for testing. Because the replay system can be used

on all targets, the human effort to find errors in cross-platform output is reduced. The reporting from

the automated comparison tool can then aid developers in discovering defects within the cross-platform

target implementations. Developers are able to easily recreate issues during the replay, without the

need for the tester to communicate how an issue arose or what was happening during the game when it

occurred — the developer can see this themselves in the replay. Automation can help to identify areas

to look at, potential problems, and graphical defects. These issues might otherwise be unnoticeable to

the human eye, but the tool has an unrelenting eye for detail.

In agreement with Grønbæk and Horn (2009), comparison metric results in isolation may be difficult

to interpret. In some cases, a small deviation in SSIM result could be significant, while in others it may

not be. Results presented over time can help to show deviations from the norm. Currently this has

to be manually tabulated, however as discussed in the evaluation of Iteration 7, the tool could graph

this information in a visual way, and alert to anomalous results by identifying affected test scene tabs.

The results of testing using the automated comparison tool do not clearly indicate what constitutes a

failed test — individual fine-tuning of the comparison method tolerances would be required to more

accurately identify a definite fail or pass. This may be unique to particular graphic styles and would

need to be calibrated depending on the type of game implementation being tested.
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5.3 Limitations

I acknowledge that there are limitations to the research project. The DSR process simulates aspects

of game development, however this does not cover the entirety of developing a commercial game, AAA

or otherwise. The replayable game is limited to 2D, rather than 3D, on target platforms available

to me as sole researcher, and does not include common commercial game target platforms, such as

home consoles. This is due to these proprietary consoles only being available under non-disclosure

agreements to registered commercial developers. Graphical rendering is limited to the fixed-function

pipeline (FFP), which is quick to develop, but does not reflect the additional complexity in the use

of the programmable shader pipeline in current generation graphics implementations. Each iteration

of the test scene generation artefact renders output to a framebuffer that is the same size for each

target platform. However, cross-platform games may not necessarily use the same sized framebuffer for

all targets due to different device capabilities, a challenge also highlighted by Zioma (2012) at Unity

Technologies.

To generate test scene output, the game implementation must be instrumented to capture events of

interest, ensuring the replay occurs the same on subsequent playthroughs. This means that the game

must be built in a deterministic manner to ensure the replay system functions correctly. The coverage

provided by a test replay is only as good as the initial playthrough — not all aspects of the game may

be utilised, and there may be hidden bugs not encountered by the tester.

The automated comparison tool utilises RGB per-pixel and SSIM comparison methods. There

are other methods that could be used which may also be useful for image comparison and testing for

graphical defects. These include, but are not limited to, MSE (Mean Squared Error), PSNR (Peak

Signal-to-Noise Ratio) (Wang et al., 2004), SSIM variants, such as MS-SSIM (Multiscale SSIM ) and

IW-SSIM (Information Content Weighted SSIM ) (Wang & Li, 2011; Whittle, Jones, & Mantiuk, 2017)

and other bespoke techniques that could be used for detecting rendering errors (Amann, Chajdas, &

Westermann, 2012).

The number of test cases generated throughout the research project is small in comparison to

the scale of commercial testing at Unity Technologies. Similarly, the number of build configurations

and target platforms used by Unity Technologies significantly outnumbers the target platforms I had

available to build and test with.

Network transfer of test scene output is not implemented and therefore not tested, but theoretically

it makes sense that this feature would simplify data transfer from target platforms. I acknowledge

that the addition of this feature may introduce new issues with network connectivity and performance.

However, automating this aspect is necessary to enhance the overall automation of the test system,

and it is therefore deemed a significant feature to be included in the model.
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Chapter 6

Conclusion

“Milestones are significant points

in development marked by the

completion of a certain amount of

work (a deliverable).”

Charles Schultz, Robert Bryant,

Tim Langdell, Game Testing All

in One (Schultz et al., 2005, p.

94)

In this thesis I have shown that it is possible to automate the testing and validation of computer

graphics implementations for cross-platform game development. I have presented an overview of the

game development industry and the industrial problem of graphical defects occurring in commercially

released games, alongside a brief history of the technological developments that have shaped the

industry. Examples of graphical defects from commercially released games were shown, highlighting

the scale and severity of the issue, and industry insight from companies such as Unity Technologies

and Electorial Arts was presented along with prior academic research into the automation of testing

for graphics in related fields.

Using the Design Science Research methodology, an initial suggestion was proposed based upon

the awareness of the problem. This led to the iterative construction of artefacts creating building

blocks and simulations to investigate and ultimately solve the core research question. Two artefacts

were constructed and seven development iterations undertaken using industry-relevant cross-platform

development tools — one for the generation of cross-platform graphical test scenes and one for the

automated comparison testing of these outputs. Knowledge generated throughout the research project

was shared with both research and game industry communities, and feedback integrated into subse-
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quent iterations. The eighth and final iteration presented a generalised model of a complete system

for the automation of testing and validation of computer graphics implementations for cross-platform

game development. Such a system could be applied in industrial settings to aid in the detection of

graphical defects within games prior to their commercial release.

6.1 Future Work

Future research could build upon the foundations set out by the results of this research project.

Instrumentation of an existing cross-platform game could be undertaken using an open source project

to generate graphical output for use with the automated comparison tool. Further graphical testing of

2D as well as 3D output, could be undertaken, as commercial games have a large variety of graphical

styles and visual effects. This would allow a researcher to uncover further knowledge regarding the

complexity of cross-platform graphical output and the game simulations they represent, as well as

enable a researcher to enhance the comparison capabilities of the automated tool to account for the

added complexity of output from a feature-complete game. Testing could be undertaken at other layers

within the layered architecture of a cross-platform game, such as swapping just driver implementation

while keeping other layers the same, potentially allowing developers to discover a wider range of

graphical defects that they could then provide support or resolution for prior to the release of a

game. More tool chains and platforms could be utilised in the testing of such a system. This could

include older console systems that are past their commercial viability and therefore more available to

researchers for use in development.

The model could be applied to real world industrial settings to explore its effectiveness in a live

production environment, including whether it has benefits in a team development scenario. This

could include applying the model to the day to day developer workflow, which makes use of version

control and continuous integration. The test system could be set up to execute each time a continuous

integration build is created, with automated test results then reported back to developers for analysis.

Finally, research into the automated testing of graphical output for virtual reality and augmented

reality systems should be explored, as this is an emerging area of technology and development within

the game industry.
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Glossary

2D Two-dimensional.

3D Three-dimensional.

3DR 3DRender.

AAA Triple-A.

ANGLE Almost Native Graphics Layer Engine.

API Application programming interface.

ARB Architecture Review Board.

AUT Auckland University of Technology.

CAD Computer-aided design.

CG Computer graphics.

Cg C for Graphics.

CG API Computer graphics API.

CPU Central processing unit.

DSR Design science research.

EA Electronic Arts.

FFP Fixed-function graphics pipeline.

GKS Graphical Kernal System.

GL Graphics Library.

GLEW OpenGL Extension Wrangler Library.

GLFW OpenGL Framework.
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GLSL OpenGL Shading Language.

GLSL ES OpenGL Shading Language Embedded Systems.

GLUT OpenGL Utility Toolkit.

GPU Graphics processing unit.

GUI Graphical user interface.

HLSL High-level Shader Language.

HOOPS Hierarchical Object-Oriented Programming System.

IGDA International Game Developers Association.

IPL98 Image Processing Library 98.

IRIS GL Integrated Raster Imaging System Graphics Library.

IW SSIM Information Content Weighted SSIM.

MS SSIM Multiscale SSIM.

MSE Mean Squared Error.

MVVM Model-view-viewmodel.

NDA Non-disclosure agreement.

NDK Android Native Development Kit.

NIST National Institute of Standards and Technology.

OpenGL ES OpenGL Embedded Systems.

OS Operating system.

PC Personal computer.

PHIGS Programmer’s Hierarchical Interactive Graphics Standard.

PRNG Pseudo-Random Number Generator.

PSNR Peak Signal-to-Noise Ratio.

PSSL PlayStation Shader Language.

QA Quality assurance.

QD3D QuickDraw 3D.
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RAM Random access memory.

RGB Red-green-blue.

RUGVEF Runtime Graphics Verification Framework.

SDET Software Development Engineers in Test.

SDK Software development kit.

SDL Simple DirectMedia Layer.

SERL AUT Software Engineering Research Laboratory.

SGI Silicon Graphics.

SIGGRAPH ACM Special Interest Group on Computer Graphics and Interactive Techniques.

SIMD Single instruction, multiple data.

SKU Stock keeping unit.

SSIM Structural Similarity Index.

STL C++ Standard Template Library.

UI User interface.

UML Unified Modeling Language.

USB Universal serial bus.

VAGI VESA Advanced Graphics Interface.

VDP Visible differences predictor.

VESA Video Electronics Standards Association.

VRML Virtual Reality Modeling Language.

VTK Visualization Toolkit.

VTS VRML Test Suite.
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Appendix A

Game Industry Testing

The terms test and quality assurance are used interchangeably in the video game industry (Schultz et

al., 2005). Publishers provide quality assurance (QA) services to developers, and large development

studios may have an internal QA department (Hight & Novak, 2008). The International Game De-

velopers Association (IGDA) Business Committee issued a report summarising best practices in QA

and testing (Rees & Fryer, 2003), the aim of which was to share best practice knowledge in the hope

of improving game development practices. Testing was defined as overall quality assurance, which in-

cludes functionality, playability, and compatibility, while QA was defined as the process of finding and

reporting bugs in games. The report highlighted testing as a time consuming and resource intensive

activity, but one that helps to ship games that are bug-free.

Due to the costs associated with QA, smaller developers can choose to outsource QA activities.

Testing is an entry-level job, and small companies may be unable to afford a full time testing depart-

ment. As such, external companies provide game testing services to meet the need for QA testing

(Bates, 2003). A downside to outsourcing is that external testers may be unfamiliar with console or

publisher standards. Developers may also have internal staff that act as core testers. QA is essential

if companies want to compete for consumers and testing is a critical component of the development

cycle (Rees & Fryer, 2003).

Game developers can utilise specialised graphics debuggers to analyse complex rendering (Garney

& Preisz, 2011). Some examples of graphics debugging tools are (Garney & Preisz, 2011; McShaffry

& Graham, 2013; Nantes et al., 2008):

• PIX (Microsoft, 2008): used for DirectX, this tool allows capture of a single frame and viewing

of API calls made to the graphics pipeline;

• GLIntercept (Trebilco, 2014): an open-source OpenGL function call interceptor;

• Nsight (nVidia, 2016): nVidia’s tool for graphics debugging and profiling;
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• GPU PerfStudio (AMD, 2016): used for AMD graphics cards, this tool supports both DirectX

and OpenGL.

These sorts of development tools enable a developer to capture rendering output, and to step

through the events that created the rendered scene, hence assisting with debugging, but not with

initial defect detection. Therefore, these tools provide little assistance for high-level testing of game

environment and entertainment value (Nantes et al., 2008).

A.1 Types of Testing

There are two broad categories of testing:

• Whitebox Testing takes an internal perspective to game testing, and source code and multimedia

assets can be tested in isolation for functional compliance (Keith, 2010). Programmers can write

unit tests to test modules of source code (Myers et al., 2012; Schultz et al., 2005), and artists

can conduct asset validation, such as checking for polygon count budgets (Keith, 2010). For

this reason, whitebox testing requires technical skill and experience within the respective game

development disciplines (Keith, 2010). Testing with only whitebox testing is difficult since it does

not account for the complexity introduced by the player feedback loop (Schultz et al., 2005).

• Blackbox Testing refers to testing conducted from the user’s perspective, with testers required to

think and act like players (Keith, 2010; Schultz et al., 2005). This type of testing can be unstruc-

tured, but allows for the discovery of bugs not found in whitebox testing since it is conducted

from the player’s perspective (Bethke, 2003). Testers can be given lists of expected behaviours

and the inputs required to ensure they occur (Keith, 2010), however, there is a degree of random-

ness introduced to the testing since the player and game react to each, creating a feedback loop

(Schultz et al., 2005). Testers must adapt their input based on what is happening in a game, and

player reactions can be unpredictable (Schultz et al., 2005). A blackbox testing approach can

require long hours and be frustrating for the tester (Bethke, 2003; Keith, 2010).

Game programmers do not fully test their own games (Schultz et al., 2005). Developers can overlook

defects since they work closely with a game on a daily basis (Keith, 2010). Manual testing is common

within the game industry with human testers hired to find, replicate and report on bugs that could

negatively impact the consumer’s experience of the game (Keith, 2010; Levy & Novak, 2010; Lewis &

Whitehead, 2011b; Murphy-Hill et al., 2014). Game testers undertake many different types of testing

(Chandler, 2014; Hight & Novak, 2008; Keith, 2010; Levy & Novak, 2010; Schultz et al., 2005):

• Quality Assurance Testing : Experienced testers, independent of the development team, find and
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classify bugs;

• Smoke Testing : Ensures that a build will run, and that the game loads and starts on a target

platform without any crashes;

• Regression Testing : Conducted by the QA team to ensure old defects have not resurfaced;

• Play Testing : Focuses on testing the game to make sure it includes fun;

• Focus Testing : Conducted by marketing using a broader audience to find the game’s appeal;

• Balance Testing : Ensures that game play is not too easy or too difficult and that any AI characters

are of reasonable strength when compared to the human player;

• Compatibility Testing : Exclusive to the PC platform, it ensures that a game works on different

hardware configurations;

• Compliance Testing : A certification process conducted by console manufacturers;

• Localisation Testing : Ensures the translation into local languages is correct for global target

markets;

• Usability Testing : Tests for intuitive human interaction with a game.

A.2 Compliance Testing for Certification

Console manufacturers control the quality of the games released on their platforms by restricting access

to the proprietary development kits which developers must pay licensing fees to obtain (Manton &

Wilson, n.d.). They also have standards for content verification and conduct compliance testing to

enforce that these standards are met (Manton & Wilson, n.d.; KiranKumar & Sundaresasubramanian,

n.d.). The quality control standards include a focus on video, graphics and user interface elements,

however, the specifics are protected by NDA (Kenwright, 2014; Ruskin, 2008). Ruskin (2008) states

that console manufacturer certification processes must be met otherwise a game will no be allowed to

ship on a target platform. This compliance testing is known by different terminology depending on the

manufacturer, for example, LotCheck (Nintendo), Technical Certification Requirements (Microsoft),

and Technical Requirements Checklist (Sony) (Levy & Novak, 2010; Schultz et al., 2005). Manton and

Wilson (n.d.) note that Microsoft split the process into two stages: Compliance Testing, which deals

with the consistency and security of the user experience; and, Functional Testing, which deals with

game play issues. As console technology has improved, the number of test cases has also increased

(Manton & Wilson, n.d.). Specialised game console testing hardware, where a console’s memory

footprint can be retrieved for debugging purposes, may be utilised by developers and publishers to

help with compliance (Kenwright, 2014).
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Examples of certification test cases include (Kenwright, 2014; Levy & Novak, 2010; Manton &

Wilson, n.d.):

• Splash screen logos must be displayed for at least two seconds, and the player should not be able

to click through before the timer expires;

• In-game text must fit within the screen safe (or guard band) area;

• Naming of functionality and console specific features must be consistent and adhere to manufac-

turer naming conventions;

• If a game is paused for more than five seconds, it must present an on-screen animation, ensuring

that the player realises the game has not crashed;

• Warnings must be displayed when dealing with external storage or data corruption;

• When a controller is unplugged the game must pause;

• Overall game performance must ensure robustness and the game must be playable without suffe-

ring memory-related crashes.

Test cases are also created to suit the features of the game under test. Results from Microsoft’s

game play testing are collated in the forms of: issues of note; standard reporting issues; and, conditions

of resubmission. Manton and Wilson (n.d.) state that 46% of Xbox 360 games are rejected at least

once during certification testing, and as such console manufacturers offer pre-submission testing to

developers as a paid optional extra. Kenwright (2014) highlights that certification testing does not

focus on finding bugs in video games, but on ensuring that the game software functions correctly within

platform-specific constraints.

A.3 Industry Insight: Testing

To gain insight into testing in the game industry, Starr (2007) worked as a tester at a video game

testing outsource company, and reported on her experiences. Her first experience was testing an

Xbox360 update that Microsoft had outsourced to the company. Testers were paid minimum wage

to check that the update could be installed and used without the system freezing or crashing. The

testers performed tasks repeatedly with different hardware variations, as different regions of the world

have different versions of the console. The author observed that the process seemed “grueling and ...

ineffectual” (Starr, 2007), and that the industry seemed to prefer testers who love games or are video

game addicts. This supports KiranKumar and Sundaresasubramanian (n.d.) who stated that human

testers are used to experience the game from the player’s perspective and are expected to have prior

gaming experience.
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Starr (2007) moved on to spend two weeks working for Volt, another independent video game

testing company that hires hundreds of testers for large companies such as Microsoft and Nintendo,

but also for small game development studios. Testing at Volt was conducted in secure labs and testers

had to sign an NDA. Cameras recorded the testers and cellphones were not allowed in the testing

labs. This high level of security and secrecy reinforces the description of the industry as blackbox

and highly competitive (Lewis & Whitehead, 2011b). A tester who breaches an NDA by posting

pictures or video online, for example, could be prosecuted (Levy & Novak, 2010). Testers playtested

for eight-hour work days and needed to be articulate, as they had to report crashes and major errors

discovered as they played. Part of the reporting included detailing the specific steps, no matter how

minor, that would allow a game developer to reproduce the situation that led to the discovery of the

bug — the more accurate the report, the easier it is for a developer to reproduce the bug (McShaffry

& Graham, 2013). Starr (2007) noted that the lead tester did not care how well the testers played

the game, only that it was stable enough to be played, in this case, at the same time as a movie

was downloaded to the console. Testers could use documentation that describes the desired flow of

testing and manually verify the game step-by-step, or alternatively, they could use their own intuition

(KiranKumar & Sundaresasubramanian, n.d.; Schultz et al., 2005). They could also have access to

game design documentation to help them determine whether a perceived defect is an actual defect

(Lewis et al., 2010). Testers check that there is sufficient challenge in a game, as well as how long is

spent playing a given level (KiranKumar & Sundaresasubramanian, n.d.). There are times when games

undergo manufacturer submission testing and testers were required to undertake 24-hour shifts (Starr,

2007). Starr (2007) noted that there was high staff turnover and that QA roles in game development

were paid less than in general software development.

Despite the low pay, there is a high cost to employing adequate numbers of human testers to ensure

a game is of a high enough quality for release (Nantes et al., 2008). When a reduction in spending is

required, the game industry executives who control production budgets cut quality assurance first to

save money (Starr, 2007).
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Appendix B

Iteration 6: RobotWorld Assets

B.1 Graphical Assets

(a)
North
facing
robot.

(b)
East
facing
robot.

(c)
South
facing
robot.

(d)
West
facing
robot.

(e)
North
facing
dead
robot.

(f)
East
facing
dead
robot.

(g)
South
facing
dead
robot.

(h)
West
facing
dead
robot.

(i)
Wall.

(j)
Floor.

(k)
Bee-
per.

Figure B.1: Iteration 6: RobotWorld sprite assets (Skene, 2014).
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SERL Seminar

Steffan Hooper

9 December 2014

Primary Supervisor: Stefan Marks

Secondary Supervisor: Anne Philpott

Introduction

• Steffan Hooper

– BSc(CompSci), GradDip(GameDev)

– School of Computer and Mathematical Sciences

– AUT University

– Currently: Master of Philosophy

• Research Topic: Automated testing and validation of 
computer graphics implementations for cross-platform game 
development.

• Primary Supervisor: Stefan Marks, CoLab

• Secondary Supervisor: Anne Philpott, SCMS

What is the Problem?

Assassin’s Creed Unity (Ubisoft Montreal, 2014) [Xbox One, PlayStation 4, Windows PC]

Image retrieved from: http://static2.gamespot.com/uploads/scale_super/1544/15443861/2732028-289650_screenshots_2014-11-11_00007.jpg 

Graphical 

Defect!

This image has been removed for copyright reasons.

What is the Problem?

• Rocky (Rage Software, 2002):

– Defects (Yezpitelok & Cantrell, 2011):

• Character’s facial features.

• Character’s limbs detached from their bodies.

Images retrieved from: http://www.cracked.com/article_19507_the-8-creepiest-glitches-hidden-in-popular-video-games_p2.html

Graphical 

Defects!This image has been removed for 

copyright reasons.

This image has been removed for 

copyright reasons.

What is the Problem?

• Grand Theft Auto: San Andreas (Rockstar

North, 2004):

– Defects (Yezpitelok, Cantrell & Rio, 2012):

• In-game character’s head not displayed.

Image retrieved from: http://www.cracked.com/article_20125_the-6-creepiest-glitches-in-famous-video-games-part-2_p2.html

Graphical 

Defect!

This image has been removed for 

copyright reasons.

What is the Problem?

• Mafia II (2K Czech, 2010):

– Defects (Iftikhar, 2010):

• Black lines rendered across game scenes.

• Lighting/shadow rendering problems.

Image retrieved from: http://steamcommunity.com/app/50130/discussions/0/864959336668098818/

Graphical 

Defect!
This image has been removed for copyright reasons.

Figure C.1: SERL Seminar (slide set 1 of 11).
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What is the Problem?

• Fallout: New Vegas (Obsidian Entertainment, 

2010):

– Defects (Hartel, 2011):

• Character animation problems.

• Texture loading issues.

• Shadow rendering issues.

Image retrieved from: http://www.cracked.com/article_20125_the-6-creepiest-glitches-in-famous-video-games-part-2.html

Graphical 

Defect!
This image has been removed 

for copyright reasons.

What is the Problem?

• Call of Duty: Modern Warfare 3 (Infinity Ward, 

2011):

– Defects (Yezpitelok, Cantrell & Rio, 2012):

• Playable character’s head not displayed.

Image retrieved from: http://www.cracked.com/article_20125_the-6-creepiest-glitches-in-famous-video-games-part-2_p2.html

Graphical 

Defect!

This image has been 

removed for copyright 

reasons.

• Battlefield 3 (EA Digital Illusions CE, 2011)

– Defects (Morris, 2014):

• In-game characters exhibit long necks.

What is the Problem?

Image retrieved from: http://bf4central.com/wp-content/uploads/2013/10/bf3-neck.jpg

Graphical 

Defect!

This image has been removed for copyright reasons.

What is the Problem?

• Rage (id Software, 2011)

– Defects (Sharkey, 2011):

• Screen tearing.

• Texture issues.

Image retrieved from: http://kotaku.com/5847761/why-was-the-pc-launch-of-rage-such-a-cluster

Graphical 

Defect!

This image has been removed for copyright 

reasons.

What is the Problem?

• Battlefield 4 (EA Digital Illusions CE, 2013)

– Defects (Staggs, 2013):

• Graphical problems hinder game play.

– “Laser Pointer”-style red spots rendered...

• World geometry stops being rendered when the 

player’s viewing angle changes in game...

Image retrieved from: https://www.youtube.com/watch?v=cSmc8B1xZlk

Graphical 

Defects!

This image has been removed for 

copyright reasons.

• Watch Dogs (Ubisoft Montreal, 2014):

– Defects (Cristea, 2014):

• Anti-aliasing setting caused rendering issues.

What is the Problem?

Image retrieved from:  https://www.youtube.com/watch?v=kUdGucGP4Uw

Graphical 

Defect!

This image has been removed for copyright 

reasons.

Figure C.2: SERL Seminar (slide set 2 of 11).
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• Assassin’s Creed Unity (Ubisoft Montreal, 

2014):

– Defects (NOWGamer.com, 2014):

• Delays in texture loading.

• Low frame rate issues (< 30fps).

What is the Problem?

Image retrieved from: http://static2.gamespot.com/uploads/scale_super/1544/15443861/2732031-289650_screenshots_2014-11-11_00014.jpg 

Graphical 

Defect!

This image has been removed for 

copyright reasons.

What is the Problem?

Published Video Game Game Engine Target Platforms

Assassin’s Creed IV: Black Flag AnvilNext Win, PS3, PS4, WiiU, 360, XB1

Assassin’s Creed Unity AnvilNext Win, PS4, XB1

Battlefield 4 Frostbite 3 Engine Win, PS3, PS4, 360, XB1

Call of Duty: Modern Warfare 3 MW3 Engine Win, OSX, PS3, 360, Wii

Fallout: New Vegas Gamebryo Win, PS3, 360

Grand Theft Auto: San Andreas RenderWare Win, PS2, Xbox, OSX, PS3, iOS, 

Android, Kindle, Windows 

Phone, Fire TV

The Elder Scrolls V: Skyrim Creation Engine Win, PS3, 360

Mafia II Illusion Engine Win, OSX, PS3, 360

Rage id Tech 5 Win, OSX, PS3, 360 

Rocky - GCN, PS2, Xbox, GBA

Watch Dogs Disrupt Engine Win, PS3, PS4, 360, XB1, WiiU

What is the Problem?

• Commercially released video games can 

contain graphical defects...

– Defects can:

• Hinder game play or player experience.

– Range: Humorous? Unplayable?

• Impact portions of the game’s target platforms.

– Platform parity...

• Influence the commercial success.

– Poor critical reviews... Free DLC compensation...

• Require post-release bug-fixing and patching.

– Additional development costs...

What is the Problem?

• How can testing and validation of computer 

graphics implementations for cross-platform 

game development be automated?

– Testing: obtain information about the product.

– Validation: Checking and testing the real product. 

Is the right product being built?

– Cross-Platform: Product can run identically on 

different platforms.

– Automated: Automatic operation.

Motivation and Goals

• Game Developers Target Multiple Platforms:

– Commercial viability (Irish, 2005):

• Wider consumer base.

• Film tie-in – cross promotion.

– Development risk reduction (Hook, 2005):

• Commercial success.

• Robust software – platform development tool variety.

• Adaptable to technology changes.

– Reduced marketing effort and budget (Demerjian, 

2012).

Motivation and Goals

• Issues:

– Finding errors in the presentation layer of an 

application is labour intensive (Myers, Badgett & 

Sandler, 2012).

• Research Project Goals: 

– Increase video game software reliability.

– Detect graphics problems before commercial 

release.

– Reduce human testing burden.

Figure C.3: SERL Seminar (slide set 3 of 11).
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Existing Research

• Timofeitchik, A., & Nagy, R. (2012). Verification 

of real time graphics systems. 

– Real-time broadcast television overlay graphics 

defect detection.

• Detected previously unknown defects.

– Structural Similarity Index (SSIM):

• Perceived change in structural information...

• Optimised SSIM implementation.

– Future work identified: video game industry...

• Dynamic video output... Regression testing...

Existing Research

• Zioma, R., & Pranckevicius, A. (2012). Unity: 

ios and android: cross platform challenges and 

solutions.

This image has been removed for copyright reasons.

Existing Research

• Zioma, R., & Pranckevicius, A. (2012). Unity: 

ios and android: cross platform challenges and 

solutions.

– Unity (Unity Technologies, 2013):

• Proprietary game engine, closed-source.

– 238 test scenes.

– Capture and compare screenshots...

• Per-pixel comparison.

– Issues: Device Crashes, Graphics Shader Variants...

This image has 

been removed for 

copyright reasons.

Unity logo.

Relevant State of the Art

• Current Testing in the Video Game Industry:

– Testing game software is difficult to automate, 

humans conduct the majority of testing (Pedriana, 

2007).

• Visual inspections, human resource required...

– Technical Director of video game developer Crytek

suggests future development of automated 

testing to save money and gain a competitive 

advantage (Carucci, 2009).

• Commercial viability...

Relevant State of the Art

• Current Testing in the Video Game Industry:

– Test Lead at THQ, Inc. states automated testing 

will be essential in the future for verifying visual 

appearance in games (Levy & Novak, 2010).

• Automation need...

– Sony (SCEE Research and Development) provide 

conformance, regression and functional testing for 

the PlayStation 4 (Schertenleib, 2013).

• Proprietary, licensed technology... 

• Graphics systems? Not cross-platform...

Relevant State of the Art

• Unreal Engine 4 (Epic Games, 2014):

– Licensed subscription model.

– Automated Systems:

• Unit Testing: API tests...

• Feature Testing: 

– Verify systems work...

• Content Stress Testing

– Thorough testing of systems... Load all content...

• Screenshot comparison:

– QA comparison of screenshots for rendering issues...

This image has been 

removed for copyright 

reasons.

Unreal Engine 4 logo.

Figure C.4: SERL Seminar (slide set 4 of 11).
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Methodology

• Design Science Research:

– Create an artefact to solve a problem (Vaishnaivi & 

Kuechler, 2008).

• DSR Phases – Iterative Research Activity:

– Awareness of a problem

– Suggestion

– Development (with Micro-Evaluations)

– Evaluation (with Patterns)

– Conclusion

Methodology

• Design Science Research Methods and 

Patterns (Vaishnaivi & Kuechler, 2008)

• Applying Patterns:

– Suggestion and 

Development:
• Simulation and Exploration

– Evaluation and 

Validation:
• Simulation

• Demonstration

• Benchmarking

Activity framework for Design Science Research. Adapted from “On theory 

development in design science research: anatomy of a research project,” by B. 

Kuechler and V. Vaishnavi, European Journal of Information Systems, Volume 

17, Issue 5, pp. 489-504. Copyright 2008 by Palgrave Macmillan. Adapted with 

permission.

This image has been removed for 

copyright reasons.

Problem Scope

• Commercial Target Variety:

– Desktop + Current-Gen Console + Next-Gen 
Console:

• Windows, OS X, PlayStation 4, PlayStation 3, Xbox One, 
Xbox 360, Wii U

– Mobile (Portable + Dedicated):

• iOS, Android, Windows Phone, Fire TV, Kindle 

• PlayStation Vita, Nintendo 3DS

– Consoles: Proprietary, closed source systems...

• Require third-party developer licensing... 

Architecture: Graphics Layers

Layer Technology Stack

Target Exe: Build Target’s (Debug / Release) 

Output Executable

Software: Cross-Platform Video Game’s 

Native Source Code

Game Engine: Game Engine

(Reusable Framework / Abstraction)

API: Graphics Application 

Programming Interface (API)

Driver: Graphics Processing Unit Device Driver

OS: Operating System / Kernel

Hardware 

GPU:

Video Card Hardware:

Graphical Processing Unit

Hardware 

CPU:

Computer Hardware: 

Central Processing Unit

Hardware Vendors

Game Developers

Graphics Vendors

Architecture: Graphics Technology

Layer Win OS X PS4 PS3 XB1 360 Wii U iOS

High-

level

API:

DirectX 

9/10/11

OpenGL

OpenGL GNMX LibGCM DirectX 

11.1

DirectX 

9+

GX2 OpenGLES

Low-

level 

API:

Mantle

DirectX12

GNM - - - Metal

Driver: Various Various None

OS: Windows 

...

Mac OS 

X ...

Orbis

OS

CellOS Xbox 

OS

... System

Software

iOS ...

GPU: Various Various AMD 

GCN 

Radeon

Nvidia/

SCEI 

RSX

AMD 

GCN 

Radeon

ATI 

Xenos

AMD 

Radeon

Latte

Various

CPU: Various Various 8-core

AMD 

x86-64 

Jaguar

Cell BE

(1 PPE,

7 SPEs)

8-core

AMD 

APU

Jaguar

PowerP

C Tri-

Core

Xenon

Tri-Core 

IBM 

PowerPC 

Espresso

Various

Problem Scope

• Research Project Scope:

– Available targets:

• Windows, OS X, iOS, Android, Raspberry PI

• Still great variety!

– GPUs, Drivers, Low-level APIs, High-level APIs...

– Cross-platform approach applicable to proprietary 

consoles...

– Ever-expanding growth of potential graphics 

features... And hence possible defects!

• One developer/researcher, start with a small feature 

set...

Figure C.5: SERL Seminar (slide set 5 of 11).
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Methodology

• Design Science Research:

– Awareness of a problem (Research proposal)

– Suggestion (Research proposal, literature review)

– Development (Research project to date...)

• Iteration 1:

– Tentative Design, Simulation and Exploration, Micro-eval...

• Iteration 2:

– Simulation and Exploration, Artefact, Micro-evaluation... 

• Iteration 3:

– Simulation and Exploration, Artefact, Micro-evaluation... 

Iteration 1: Tentative Design

• Cross Platform Development Strategies:

– Commercial Game Development in C++ (Kelly, 

2012).

– C++ is platform independent, supports low-level 

system access (Llopis, 2003).

– Cross-platform foundations can be built from 

common framework of classes and functions 

(Thorn, 2011).

– Abstraction for multiple platforms (Llopis, 2003).

Iteration 1: Tentative Design

• Two Target Platforms:

– C++ rendering abstraction...

– Graphics implementations for:

• Windows 7 (32bit), Open GL (GLEW 1.10.0, GLFW 3.0.4)

• Mac OS X (32bit), Open GL (GLUT)

– Common/shared cross-platform test scenes

• Automated Comparison Tool:

– RGB Difference Per Pixel, SSIM Comparison.

– Windows, C#.

Iteration 1: Graphics Layers

Layer Technology Stack

Target Exe: Build Target’s (Debug / Release) 

Output Executable

Software: Cross-Platform Video Game’s 

Native Source Code

Game Engine: Game Engine

(Reusable Framework / Abstraction)

API: Graphics Application 

Programming Interface (API)

Driver: Graphics Processing Unit Device Driver

OS: Operating System / Kernel

Hardware 

GPU:

Video Card Hardware:

Graphical Processing Unit

Hardware 

CPU:

Computer Hardware: 

Central Processing Unit

C++, Debug Target, 

Bespoke Engine / 

Rendering 

Framework

Iteration 1: Artefacts

• Build and Test Automation Pipeline:

Cross Platform Native Code (*.cpp / *.h)

Target Platform’s Build 

Chain (Compiler/Linker)

Windows 7 

Executable

Target Platform’s Build 

Chain (Compiler/Linker)

Mac OS X 

Executable

Test Scene 

Output

Test Scene 

Output

Platform 

Output 

Repository

Comparison Tool Processing

Test Result 

Reporting

Iteraition 1: Artefact Output

• Graphical Test Scene Output (Mac OS X):

Figure C.6: SERL Seminar (slide set 6 of 11).
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Iteration 1: Artefact Output

• Graphical Test Scene Output (Windows 7):

Iteration 1: Artefact

• Automation Tool Results Output:

Iteration 1: Test Data

• Watch Dogs (Ubisoft, 2014) [Windows, 

PlayStation 3, PlayStation 4, Xbox 360, Xbox 

One, Wii U]

Image retrieved from: http://static9.cdn.ubi.com/resource/en-US/game/watchdogs/watchdogs/uplay_boxarray_145587.png

This image has been removed for copyright reasons.

Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: Low

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

This image has been removed for copyright reasons.

Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: Medium

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

This image has been removed for copyright reasons.

Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: High

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

This image has been removed for copyright reasons.

Figure C.7: SERL Seminar (slide set 7 of 11).
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Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: Ultra

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

This image has been removed for copyright reasons.

Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: Spliced...

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

Low Medium High Ultra

This image 

has been 

removed for 

copyright 

reasons.

This image 

has been 

removed for 

copyright 

reasons.

This image 

has been 

removed for 

copyright 

reasons.

This image 

has been 

removed for 

copyright 

reasons.

• Watch Dogs [Windows PC]: SSIM comparison

Iteration 1: Artefact

SSIM Medium High Ultra

Low 0.910236 0.809589 0.785479

Medium - 0.888953 0.861518

High - - 0.972973

Four Graphics 

Quality Levels for 

comparison 

SSIM comparison result

A SSIM result of 1 

means the two 

images are 

identical.

This image has been 

removed for copyright 

reasons.

• Watch Dogs [Windows PC]: RGB Difference

Iteration 1: Artefact

RGB Difference: 

% Pixel Match

RGB Difference: 

Visual Output 

% Pixel

Match

Medium High Ultra

Low 44.2% 46.6% 32.1%

Medium - 44.4% 34.1%

High - - 34.3%

Iteration 1: Micro-Evaluations

• DSR Suggestion Revisited:

– RGB Difference may not be enough for image 

comparison...

• Low percent of similar pixels...

• Yet different rendered scenes do look similar...

– SSIM comparisons results are promising...

• Further types of comparison to be explored...

– Cross-platform graphics abstractions...

• Limited target platforms...

• Perhaps use a third-party cross-platform abstraction...

Iteration 2: Artefact

• Five Target Platforms

– Graphics Abstraction: Simple DirectMedia Layer

• SDL2.0.3: C based, commercially used in video games.

– Targets:

• Windows 7 

• Mac OS X

• iOS, iPhone 6 Simulator

• Raspberry Pi

• Android

– C++ Cross-Platform Test Scene
Example Test Scene

Figure C.8: SERL Seminar (slide set 8 of 11).
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Iteration 2: Artefact

• x

Windows

Build

Raspberry PI Build

iPhone 6

Build

Mac OS X

Build

Non-functional Android Build…

Iteration 2: Micro-Evaluations

• DSR Suggestion Revisited:

– SDL2.0.3’s 2D rendering is cross-platform...

• But 3D requires direct calls to the Graphics API.

– Output scene data file locations:

• Windows & OS X: Easy file system access...

• iOS: Applications are sandboxed...

• Raspberry Pi: Unsure...

• Possibly send outputs via a network connection.

– Android tool chain and debugging difficulty:

• Build crashes in simulators, and on hardware device...

Iteration 3: Artefact

• Two Target Platforms

– Graphics Abstraction: 

• Simple DirectMedia Layer (SDL 2.0.3)

– C based. Commercially used in video games.

– Targets:

• Windows 7 (SDL2.0.3 – OpenGL 2.0)

• Mac OS X (SDL2.0.3 – OpenGL 2.0)

– C++ Cross-Platform Test Scene

• 3D mesh loading, rendering with procedural animation

• Fixed function pipeline, with light

Iteration 3: Artefact

• Graphical Test Scene 1 (Mac OS X vs Win PC):

Mac OS X Output Windows PC Output Automated Tool Results

RGB Difference: 

98.7% Pixel Match

SSIM: 0.999974

Iteration 3: Artefact

• Graphical Test Scene 2 (Mac OS X vs Win PC):

Mac OS X Output Windows PC Output Automated Tool Results

RGB Difference: 

97.4% Pixel Match

SSIM: 0.999943

Iteration 3: Micro-Evaluations

• DSR Suggestion Revisited:

– Further test scenes to be added:

• Texturing, Blending, Alphing.

• Character animation, Physics simulation.

– Graphics abstraction:

• OpenGL (Desktop) vs OpenGL ES (Mobile).

• Iteration 1 style abstraction for 3D scenes...

– Replay system:

• Deterministic game simulation.

• Replay saved game state on multiple platforms.

Figure C.9: SERL Seminar (slide set 9 of 11).
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Why is this approach good?

• Cross-platform outputs can be automatically 
compared:

– Platform results are machine process.

– Output differences can be reported.

• Automation process is open:

– Not tied to a proprietary system or game engine... 

– Applicable to multiple targets: mobile/console/PC

• Further iterations can apply regression testing:

– Hence further automation...

Further Research Activities...

• Alternate Image Comparison:

– Difference methods...

• Real-Time Game Framework:

– Video game scenarios...

– Deterministic simulation...

– Multi-platform replay system...

• Automation Test Result Reporting:

– Output transmitted via a network connection...

– Test feedback for human game developers...

Further Research Activities...

• Wider Graphical Feature Scope / Test Cases:

– Scene rendering... 

– Character animation...

– Physics simulation...

• Frame Buffer Resolution:

– Accommodate device screen differences...

• Additional Tests at Different Layers:

– Drivers...

– Game engines...

Questions?

• Questions....
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Introduction

• Steffan Hooper

– BSc(CompSci)

– GradDipGameDev(GameProg)

– AUT University: Lecturer and Co-Director of PIGsty

• School of Engineering, Computer and Mathematical Sciences

– Currently: Master of Philosophy

• Research Topic: Automated testing and validation of computer 

graphics implementations for cross-platform game development.

• Primary Supervisor: Stefan Marks, CoLab, AUT

• Secondary Supervisor: Anne Philpott, SECMS, AUT

What is the Problem?

Assassin’s Creed Unity (Ubisoft Montreal, 2014) [Xbox One, PlayStation 4, Windows PC]

Image retrieved from: http://static2.gamespot.com/uploads/scale_super/1544/15443861/2732028-289650_screenshots_2014-11-11_00007.jpg 

Graphical 

Defect!

This image has been removed for copyright reasons.

What is the Problem?

• Rocky (Rage Software, 2002):

– Defects (Yezpitelok & Cantrell, 2011):

• Character’s facial features.

• Character’s limbs detached from their bodies.

Images retrieved from: http://www.cracked.com/article_19507_the-8-creepiest-glitches-hidden-in-popular-video-games_p2.html

Graphical 

Defects! This image has been removed 

for copyright reasons.

This image has been removed for 

copyright reasons.

What is the Problem?

• Grand Theft Auto: San Andreas (Rockstar

North, 2004):

– Defects (Yezpitelok, Cantrell & Rio, 2012):

• In-game character’s head not displayed.

Image retrieved from: http://www.cracked.com/article_20125_the-6-creepiest-glitches-in-famous-video-games-part-2_p2.html

Graphical 

Defect!

This image has been removed for 

copyright reasons.

What is the Problem?

• Mafia II (2K Czech, 2010):

– Defects (Iftikhar, 2010):

• Black lines rendered across game scenes.

• Lighting/shadow rendering problems.

Image retrieved from: http://steamcommunity.com/app/50130/discussions/0/864959336668098818/

Graphical 

Defect!
This image has been removed for copyright reasons.

Figure D.1: PikPok Developers’ Conference (slide set 1 of 21).
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What is the Problem?

• Fallout: New Vegas (Obsidian Entertainment, 

2010):

– Defects (Hartel, 2011):

• Character animation problems.

• Texture loading issues.

• Shadow rendering issues.

Image retrieved from: http://www.cracked.com/article_20125_the-6-creepiest-glitches-in-famous-video-games-part-2.html

Graphical 

Defect!
This image has been removed 

for copyright reasons.

What is the Problem?

• Call of Duty: Modern Warfare 3 (Infinity Ward, 

2011):

– Defects (Yezpitelok, Cantrell & Rio, 2012):

• Playable character’s head not displayed.

Image retrieved from: http://www.cracked.com/article_20125_the-6-creepiest-glitches-in-famous-video-games-part-2_p2.html

Graphical 

Defect!

This image has been 

removed for copyright 

reasons.

• Battlefield 3 (EA Digital Illusions CE, 2011)

– Defects (Morris, 2014):

• In-game characters exhibit long necks.

What is the Problem?

Image retrieved from: http://bf4central.com/wp-content/uploads/2013/10/bf3-neck.jpg

Graphical 

Defect!

This image has been removed for copyright reasons.

What is the Problem?

• Rage (id Software, 2011)

– Defects (Sharkey, 2011):

• Screen tearing.

• Texture issues.

Image retrieved from: http://kotaku.com/5847761/why-was-the-pc-launch-of-rage-such-a-cluster

Graphical 

Defect!

This image has been removed for 

copyright reasons.

What is the Problem?

• Battlefield 4 (EA Digital Illusions CE, 2013)

– Defects (Staggs, 2013):

• Graphical problems hinder game play.

– “Laser Pointer”-style red spots rendered...

• World geometry stops being rendered when the 

player’s viewing angle changes in game...

Image retrieved from: https://www.youtube.com/watch?v=cSmc8B1xZlk

Graphical 

Defects!

This image has been removed for 

copyright reasons.

• Watch Dogs (Ubisoft Montreal, 2014):

– Defects (Cristea, 2014):

• Anti-aliasing setting caused rendering issues.

What is the Problem?

Image retrieved from:  https://www.youtube.com/watch?v=kUdGucGP4Uw

Graphical 

Defect!

This image has been removed for copyright 

reasons.

Figure D.2: PikPok Developers’ Conference (slide set 2 of 21).
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• Assassin’s Creed Unity (Ubisoft Montreal, 

2014):

– Defects (NOWGamer.com, 2014):

• Delays in texture loading.

• Low frame rate issues (< 30fps).

What is the Problem?

Image retrieved from: http://static2.gamespot.com/uploads/scale_super/1544/15443861/2732031-289650_screenshots_2014-11-11_00014.jpg 

Graphical 

Defect!

This image has been removed for 

copyright reasons.

• Batman: Arkham Knight (Rocksteady Studio, 

2015):

– Defects (Lawler, 2015):

• Low quality textures and glitches...

What is the Problem?

Image retrieved from: http://imgur.com/a/k6xBb

Graphical 

Defects!
This image has been removed for copyright 

reasons.

What is the Problem?

Published Video Game Game Engine Target Platforms

Assassin’s Creed IV: Black Flag AnvilNext Win, PS3, PS4, WiiU, 360, XB1

Assassin’s Creed Unity AnvilNext Win, PS4, XB1

Batman: Arkham Knight Unreal Engine Win, OSX, PS4, XB1, Linux

Battlefield 4 Frostbite 3 

Engine

Win, PS3, PS4, 360, XB1

Call of Duty: Modern Warfare 3 MW3 Engine Win, OSX, PS3, 360, Wii

Fallout: New Vegas Gamebryo Win, PS3, 360

Grand Theft Auto: San Andreas RenderWare Win, PS2, Xbox, OSX, PS3, iOS, Android, 

Kindle, Windows Phone, Fire TV

The Elder Scrolls V: Skyrim Creation Engine Win, PS3, 360

Mafia II Illusion Engine Win, OSX, PS3, 360

Rage id Tech 5 Win, OSX, PS3, 360 

Rocky - GCN, PS2, Xbox, GBA

Watch Dogs Disrupt Engine Win, PS3, PS4, 360, XB1, WiiU

What is the Problem?

• Commercially released video games can 

contain graphical defects...

– Defects can:

• Hinder game play or player experience.

– Range: Humorous? Unplayable?

• Impact portions of the game’s target platforms.

– Platform parity...

• Influence the commercial success.

– Poor critical reviews... Free DLC compensation...

• Require post-release bug-fixing and patching.

– Additional development costs...

What is the Problem?

• How can testing and validation of computer 

graphics implementations for cross-platform 

game development be automated?

– Testing: obtain information about the product.

– Validation: Checking and testing the real product. 

Is the right product being built?

– Cross-Platform: Product can run identically on 

different platforms.

– Automated: Automatic operation.

Motivation and Goals

• Game Developers Target Multiple Platforms:

– Commercial viability (Irish, 2005):

• Wider consumer base.

• Film tie-in – cross promotion.

– Development risk reduction (Hook, 2005):

• Commercial success.

• Robust software – platform development tool variety.

• Adaptable to technology changes.

– Reduced marketing effort and budget (Demerjian, 

2012).

Figure D.3: PikPok Developers’ Conference (slide set 3 of 21).
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Motivation and Goals

• Issues:

– Finding errors in the presentation layer of an 

application is labour intensive (Myers, Badgett & 

Sandler, 2012).

• Research Project Goals: 

– Increase video game software reliability.

– Detect graphics problems before commercial 

release.

– Reduce human testing burden.

Existing Research

• Timofeitchik, A., & Nagy, R. (2012). Verification 

of real time graphics systems. 

– Real-time broadcast television overlay graphics 

defect detection.

• Detected previously unknown defects.

– Structural Similarity Index (SSIM):

• Perceived change in structural information...

• Optimised SSIM implementation.

– Future work identified: video game industry...

• Dynamic video output... Regression testing...

Existing Research

• Zioma, R., & Pranckevicius, A. (2012). Unity: 

ios and android: cross platform challenges and 

solutions.

This image has been removed for copyright reasons.

Existing Research

• Zioma, R., & Pranckevicius, A. (2012). Unity: 

ios and android: cross platform challenges and 

solutions.

– Unity (Unity Technologies, 2013):

• Proprietary game engine, closed-source.

– 238 test scenes.

– Capture and compare screenshots...

• Per-pixel comparison.

– Issues: Device Crashes, Graphics Shader Variants...

This image has 

been removed for 

copyright reasons.

Unity logo.

Relevant State of the Art

• Current Testing in the Video Game Industry:

– Testing game software is difficult to automate, 

humans conduct the majority of testing (Pedriana, 

2007).

• Visual inspections, human resource required...

– Technical Director of video game developer Crytek

suggests future development of automated 

testing to save money and gain a competitive 

advantage (Carucci, 2009).

• Commercial viability...

Relevant State of the Art

• Current Testing in the Video Game Industry:

– Test Lead at THQ, Inc. states automated testing 

will be essential in the future for verifying visual 

appearance in games (Levy & Novak, 2010).

• Automation need...

– Sony (SCEE Research and Development) provide 

conformance, regression and functional testing for 

the PlayStation 4 (Schertenleib, 2013).

• Proprietary, licensed technology... 

• Graphics systems? Not cross-platform...

Figure D.4: PikPok Developers’ Conference (slide set 4 of 21).
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Relevant State of the Art

• Unreal Engine 4 (Epic Games, 2014):

– Licensed subscription model.

– Automated Systems:

• Unit Testing: API tests...

• Feature Testing: 

– Verify systems work...

• Content Stress Testing

– Thorough testing of systems... Load all content...

• Screenshot comparison:

– QA comparison of screenshots for rendering issues...

This image has been 

removed for copyright 

reasons.

Unreal Engine 4 logo.

Methodology

• Design Science Research:

– Create an artefact to solve a problem (Vaishnaivi & 

Kuechler, 2008).

• DSR Phases – Iterative Research Activity:

– Awareness of a problem

– Suggestion

– Development (with Micro-Evaluations)

– Evaluation (with Patterns)

– Conclusion

Methodology

• Design Science Research Methods and 

Patterns (Vaishnaivi & Kuechler, 2008)

• Applying Patterns:

– Suggestion and 

Development:
• Simulation and Exploration

– Evaluation and 

Validation:
• Simulation

• Demonstration

• Benchmarking

Activity framework for Design Science Research. Adapted from “On theory 

development in design science research: anatomy of a research project,” by B. 

Kuechler and V. Vaishnavi, European Journal of Information Systems, Volume 

17, Issue 5, pp. 489-504. Copyright 2008 by Palgrave Macmillan. Adapted with 

permission.

This image has been removed for 

copyright reasons.

Problem Scope

• Commercial Target Variety:

– Desktop + Current-Gen Console + Next-Gen 
Console:

• Windows, OS X, PlayStation 4, PlayStation 3, Xbox One, 
Xbox 360, Wii U

– Mobile (Portable + Dedicated):

• iOS, Android, Windows Phone, Fire TV, Kindle 

• PlayStation Vita, Nintendo 3DS

– Consoles: Proprietary, closed source systems...

• Require third-party developer licensing... 

Architecture: Graphics Layers

Layer Technology Stack

Target Exe: Build Target’s (Debug / Release) 

Output Executable

Software: Cross-Platform Video Game’s 

Native Source Code

Game Engine: Game Engine

(Reusable Framework / Abstraction)

API: Graphics Application 

Programming Interface (API)

Driver: Graphics Processing Unit Device Driver

OS: Operating System / Kernel

Hardware 

GPU:

Video Card Hardware:

Graphical Processing Unit

Hardware 

CPU:

Computer Hardware: 

Central Processing Unit

Hardware Vendors

Game Developers

Graphics Vendors

Architecture: Graphics Technology

Layer Win OS X PS4 PS3 XB1 360 Wii U iOS

High-

level

API:

DirectX 

9/10/11

OpenGL

OpenGL GNMX LibGCM DirectX 

11.1

DirectX 

9+

GX2 OpenGLES

Low-

level 

API:

Mantle

DirectX12

GNM - - - Metal

Driver: Various Various None

OS: Windows 

...

Mac OS 

X ...

Orbis

OS

CellOS Xbox 

OS

... System

Software

iOS ...

GPU: Various Various AMD 

GCN 

Radeon

Nvidia/

SCEI 

RSX

AMD 

GCN 

Radeon

ATI 

Xenos

AMD 

Radeon

Latte

Various

CPU: Various Various 8-core

AMD 

x86-64 

Jaguar

Cell BE

(1 PPE,

7 SPEs)

8-core

AMD 

APU

Jaguar

PowerP

C Tri-

Core

Xenon

Tri-Core 

IBM 

PowerPC 

Espresso

Various
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Problem Scope

• Research Project Scope:

– Available targets:

• Windows, OS X, iOS, Android, Raspberry PI

• Still great variety!

– GPUs, Drivers, Low-level APIs, High-level APIs...

– Cross-platform approach applicable to proprietary 

consoles...

– Ever-expanding growth of potential graphics 

features... And hence possible defects!

• One developer/researcher, start with a small feature 

set...

Methodology

• Design Science Research:

– Awareness of a problem (Research proposal)

– Suggestion (Research proposal, literature review)

– Development (Research project to date...)

• Iteration 1:

– Tentative Design, Simulation and Exploration, Micro-eval...

• Iterations 2, 3, 4 and 5:

– Simulation and Exploration, Artefact, Micro-evaluation... 

– Evaluation and Validation (Research thesis...)

– Conclusion (Research thesis...)

Iteration 1: Tentative Design

• Cross Platform Development Strategies:

– Commercial Game Development in C++ (Kelly, 

2012).

– C++ is platform independent, supports low-level 

system access (Llopis, 2003).

– Cross-platform foundations can be built from 

common framework of classes and functions 

(Thorn, 2011).

– Abstraction for multiple platforms (Llopis, 2003).

Iteration 1: Tentative Design

• Two Target Platforms:

– C++ rendering abstraction...

– Graphics implementations for:

• Windows 7 (32bit), Open GL (GLEW 1.10.0, GLFW 3.0.4)

• Mac OS X (32bit), Open GL (GLUT)

– Common/shared cross-platform test scenes

• Automated Comparison Tool:

– RGB Difference Per Pixel, SSIM Comparison.

– Windows, C#.

Iteration 1: Graphics Layers

Layer Technology Stack

Target Exe: Build Target’s (Debug / Release) 

Output Executable

Software: Cross-Platform Video Game’s 

Native Source Code

Game Engine: Game Engine

(Reusable Framework / Abstraction)

API: Graphics Application 

Programming Interface (API)

Driver: Graphics Processing Unit Device Driver

OS: Operating System / Kernel

Hardware 

GPU:

Video Card Hardware:

Graphical Processing Unit

Hardware 

CPU:

Computer Hardware: 

Central Processing Unit

C++, Debug Target, 

Bespoke Engine / 

Rendering 

Framework

Iteration 1: Artefacts

• Build and Test Automation Pipeline:

Cross Platform Native Code (*.cpp / *.h)

Target Platform’s Build 

Chain (Compiler/Linker)

Windows 7 

Executable

Target Platform’s Build 

Chain (Compiler/Linker)

Mac OS X 

Executable

Test Scene 

Output

Test Scene 

Output

Platform 

Output 

Repository

Comparison Tool Processing

Test Result 

Reporting

Figure D.6: PikPok Developers’ Conference (slide set 6 of 21).
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Iteraition 1: Artefact Output

• Graphical Test Scene Output (Mac OS X):

Iteration 1: Artefact Output

• Graphical Test Scene Output (Windows 7):

Simulated 

Defect!

Iteration 1: Artefact

• Automation Tool Results Output:

Iteration 1: Test Data

• Watch Dogs (Ubisoft, 2014) [Windows, 

PlayStation 3, PlayStation 4, Xbox 360, Xbox 

One, Wii U]

Image retrieved from: http://static9.cdn.ubi.com/resource/en-US/game/watchdogs/watchdogs/uplay_boxarray_145587.png

This image has been removed for copyright reasons.

Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: Low

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

This image has been removed for copyright reasons.

Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: Medium

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

This image has been removed for copyright reasons.

Figure D.7: PikPok Developers’ Conference (slide set 7 of 21).
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Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: High

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

This image has been removed for copyright reasons.

Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: Ultra

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

This image has been removed for copyright reasons.

Iteration 1: Artefact

• Watch Dogs [Windows PC]: SSIM comparison

– Graphics Quality Level Setting: Spliced...

Image retrieved from: http://www.geforce.com/whats-new/guides/watch-dogs-graphics-performance-and-tweaking-guide

Low Medium High Ultra

This image 

has been 

removed for 

copyright 

reasons.

This image 

has been 

removed for 

copyright 

reasons.

This image 

has been 

removed for 

copyright 

reasons.

This image 

has been 

removed for 

copyright 

reasons.

• Watch Dogs [Windows PC]: SSIM comparison

Iteration 1: Artefact

SSIM Medium High Ultra

Low 0.910236 0.809589 0.785479

Medium - 0.888953 0.861518

High - - 0.972973

Four Graphics 

Quality Levels for 

comparison 

SSIM comparison result

A SSIM result of 1 

means the two 

images are 

identical.

This image has been 

removed for copyright 

reasons.

• Watch Dogs [Windows PC]: RGB Difference

Iteration 1: Artefact

RGB Difference: 

% Pixel Match

RGB Difference: 

Visual Output 

% Pixel

Match

Medium High Ultra

Low 44.2% 46.6% 32.1%

Medium - 44.4% 34.1%

High - - 34.3%

Iteration 1: Micro-Evaluations

• DSR Suggestion Revisited:

– RGB Difference may not be enough for image 

comparison...

• Low percent of similar pixels...

• Yet different rendered scenes do look similar...

– SSIM comparisons results are promising...

• Further types of comparison to be explored...

– Cross-platform graphics abstractions...

• Limited target platforms...

• Perhaps use a third-party cross-platform abstraction...

Figure D.8: PikPok Developers’ Conference (slide set 8 of 21).
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Iteration 2: Artefact

• Five Target Platforms

– Graphics Abstraction: Simple DirectMedia Layer

• SDL2.0.3: C based, commercially used in video games.

– Targets:

• Windows 7 

• Mac OS X

• iOS, iPhone 6 Simulator

• Linux, Raspberry Pi 

• Android

– C++ Cross-Platform Test Scene
Example Test Scene

Iteration 2: Artefact

• x

Windows 7

Build

Raspberry PI Linux Build

iPhone 6

iOS Build

Mac OS X

Build

Non-functional Android Build…

Iteration 2: Micro-Evaluations

• DSR Suggestion Revisited:

– SDL2.0.3’s 2D rendering is cross-platform...

• But 3D requires direct calls to the Graphics API.

– Output scene data file locations:

• Windows & OS X: Easy file system access...

• iOS: Applications are sandboxed...

• Raspberry Pi: Linux file system...

• Possibly send outputs via a network connection.

– Android tool chain and debugging difficulty:

• Build crashes in simulators, and on hardware device...

Iteration 3: Artefact

• Two Target Platforms

– Graphics Abstraction: 

• Simple DirectMedia Layer (SDL 2.0.3)

– C based. Commercially used in video games.

– Targets:

• Windows 7 (SDL2.0.3 – OpenGL 2.0)

• Mac OS X (SDL2.0.3 – OpenGL 2.0)

– C++ Cross-Platform Test Scene:

• 3D mesh loading, rendering with procedural animation

• Fixed function pipeline, with light

Iteration 3: Artefact

• Graphical Test Scene 1 (Mac OS X vs Win PC):

Mac OS X Output Windows PC Output Automated Tool Results

RGB Difference: 

98.7% Pixel Match

SSIM: 0.999974

Iteration 3: Artefact

• Graphical Test Scene 2 (Mac OS X vs Win PC):

Mac OS X Output Windows PC Output Automated Tool Results

RGB Difference: 

97.4% Pixel Match

SSIM: 0.999943

Figure D.9: PikPok Developers’ Conference (slide set 9 of 21).
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Iteration 3: Micro-Evaluations

• DSR Suggestion Revisited:

– Further test scenes to be added, more test data:

• Texturing, Alpha Blending.

• Character animation, Physics simulation.

– Graphics abstraction:

• OpenGL (Desktop) vs OpenGL ES (Mobile).

• Iteration 1 style abstraction for 3D scenes...

– Replay system:

• Deterministic game simulation.

• Replay saved game state on multiple platforms.

Iteration 4: Artefact

• Three Target Platforms

– Targets:

• Windows 7 (SDL 2.0.3 – OpenGL 2.0)

• Mac OS X (SDL 2.0.3 – OpenGL 2.0)

• Raspbian (SDL 2.0.3 – OpenGL) 

• Programmable C++ Animated Test Scenes:

– Re-useable C++ test scene interfaces…

• Turtle Graphics and Robot World

– Utilised to generate more test scene data… 

• Animations, texturing, alpha blending…

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics example:

int main()
{

for (int k = 0; k < 3; ++k)
{

pen_colour(NEXT);

for (int i = 0; i < 3; ++i)
{

forward(100);
turn(360/3);

}

turn(360/3);
}

}

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Figure D.10: PikPok Developers’ Conference (slide set 10 of 21).
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Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Figure D.11: PikPok Developers’ Conference (slide set 11 of 21).
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Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Figure D.12: PikPok Developers’ Conference (slide set 12 of 21).
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Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Figure D.13: PikPok Developers’ Conference (slide set 13 of 21).

167



14

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Turtle Graphics World

Figure D.14: PikPok Developers’ Conference (slide set 14 of 21).
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Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World example:

int main()
{

// Setup Test Scene Robot World, then...
create_robot();

for (int step = 0; step < 4; ++step)
{

move_robot_forwards();
turn_robot_left();
move_robot_forwards();
turn_robot_right();

}
}

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Figure D.15: PikPok Developers’ Conference (slide set 15 of 21).
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Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Figure D.16: PikPok Developers’ Conference (slide set 16 of 21).
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Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Figure D.17: PikPok Developers’ Conference (slide set 17 of 21).
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Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Figure D.18: PikPok Developers’ Conference (slide set 18 of 21).
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Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Artefact

• Programmable C++ Animated Test Scenes:

– Robot World

Iteration 4: Micro-Evaluations

• DSR Suggestion Revisited:

– Fixed time step animated test scene captures:

• Iterate towards real-time game captures...

– Multiple cross-platform project setups:

• Platform build times:

– SDL2.0.3 configuration on the Raspbian...

» Primary development target: Mac OS X.

– Playable real-time game implemenation:

• Dynamic real-time input via human user…

• Automated scene captures… 

Iteration 5: Artefact

• Two Target Platforms

– Targets:

• Windows 7 (SDL 2.0.3)

• Mac OS X (SDL 2.0.3)

– C++ Cross-Platform Real-Time Game Simulation 

Framework:

• Space Invaders (Taito Corporation, 1978) clone.

– Test Scene Replay System:

• Deterministic game simulation.

• Replay saved game state on multiple platforms.

Iteration 5: Artefact

• Test Scene Replay System:

– Record in-game events...

– Generates a binary replay 

save file...

• Platform independent...

• Replay file is reloadable 

on either target platform...

– Simulated real-time 

playback...

• Deterministic time steps...

Figure D.19: PikPok Developers’ Conference (slide set 19 of 21).
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Why is this approach good?

• Cross-platform game simulations can be ouput 

and automatically compared:

– Platform's test scene results are machine processed.

– Output differences can be reported.

• Automation process is open:

– Not tied to a proprietary system or game engine... 

– Applicable to multiple targets: mobile/console/PC

• Further iterations can apply regression testing:

– Hence further automation...

Further Research Activities...

• Alternate Image Comparison:

– Current framework abstracts testing methods...

• Automation Test Result Reporting:

– Output transmitted via a network connection...

– Test feedback for human game developers...

• Wider Graphical Feature Scope / Test Cases:

– More 3D Scenes: rendering, character animation... 

– Frame buffer resolution...

– Execute tests at different layers...

Questions?

• Questions…
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