
 

 

Full citation: MacDonell, S. G. (2005) Visualization and analysis of software engineering data using 
self-organizing maps, in Proceedings of the 2005 International Symposium on Empirical Software 
Engineering (ISESE). Queensland, Australia, pp.115-124. 
http://dx.doi.org/10.1109/ISESE.2005.1541820 

Visualization and Analysis of Software Engineering Data Using 
 Self-Organizing Maps 

 
Stephen G. MacDonell  

SERL, School of Computing and Mathematical Sciences, Auckland University of Technology, 
Private Bag 92006, Auckland 1142, New Zealand 

stephen.macdonell@aut.ac.nz 
 

 
Abstract 

 
There is no question that accuracy is an important 

requirement of classification and prediction models used 
in software engineering management. It is, however, just 
one of a number of attributes that contribute to a model 
being ‘useful’. Understandably much research has been 
undertaken with the objective of maximizing model 
accuracy, but this has often occurred with little regard for 
these other model attributes, which might include cost-
effectiveness, credibility and, for want of a better term, 
meaningfulness. The research described in this paper 
addresses both model accuracy and meaningfulness as 
conveyed by self-organizing maps (SOMs). SOMs are 
neural-network based representations of data distributions 
that provide two-dimensional depictions of multi-
dimensional relationships. As such they can enable 
developers and project managers (and researchers) to 
visualize often complex interactions among and between 
software measurement data. We illustrate the effectiveness 
of SOMs here by building on two previous empirical 
studies. Not only are the maps able to portray graphically 
the distributions of variables and their interrelationships, 
they also prove to be effective in terms of classification 
and prediction accuracy. As a result we believe that they 
could be a useful supplementary tool for researchers and 
managers concerned with understanding, modeling and 
controlling complex software projects. 
 
1. INTRODUCTION 
 

Empirical software engineering research has led to the 
development of a large number of models that have been 
said to be or shown to be useful in project management. 
Many have been predictive models, estimating artifact size, 
development effort and phase/project duration in 
particular. Others have used classification methods to 
address issues such as task risk, test coverage and artifact 
reliability. In many instances the objective of the research 

has been to arrive at models that are as accurate as 
possible. This is understandable – while other model 
attributes are possibly desirable, accuracy is generally 
considered to be of primary importance in terms of 
managing projects most effectively. A singular focus on 
accuracy may not be beneficial in a broader sense, 
however, particularly if organizational learning is 
considered valuable alongside accuracy. Other attributes 
then assume some level of importance, attributes such as 
the transparency of the model-building process, model 
robustness with respect to inputs, generalizability over 
novel data, data range coverage, freedom from fixed 
structure, and model understandability, objectivity, 
parsimony, and meaningfulness. 

Model-building methods vary in the degree to which 
they facilitate the delivery of these attributes. For instance, 
algorithmic approaches such as function point analysis 
(FPA) may result in accurate models for systems of a 
certain type or from a specific domain but they may not 
generalize well. Statistical techniques such as regression, 
and machine learning methods including perceptron-based 
artificial neural networks, may similarly produce models 
that are accurate, but they can also be difficult to interpret. 
In this paper we consider another neural network approach 
– the Kohonen self-organizing map (SOM) [8] – as a 
means of building software project management models 
that are both accurate and meaningful. Whereas to date 
SOMs have been used largely as classification tools, we 
here extend this work to perform data prediction. 

Next we discuss previous work addressing the 
visualization of software engineering (SE) data before 
introducing SOMs as a means of doing so. We then 
describe two empirical analyses, each employing a data set 
published previously in the software metrics literature. In 
each case we compare the outputs of the SOM-based 
analysis with the more typical statistical approach 
employed in the previous work. We then conclude the 
paper with a brief discussion of the outcomes and 
implications of our research. 

http://dx.doi.org/10.1109/ISESE.2005.1541820�
mailto:stephen.macdonell@aut.ac.nz�


 

 

 
2. VISUALIZING SE DATA USING SOM 
CLUSTERS 
 

A well-constructed image can convey more or different 
information to that available from simple text or tabular 
depictions. Prior research investigating the visualization of 
software engineering (SE) data has tended to focus on this 
as an almost separate aim to that of achieving accurate 
predictive or classification models (e.g. see [3]).  Several 
papers, however, present a combined approach to 
visualization and analysis of data across domains including 
software engineering. Lee et al. [9,10] discuss the use of 
colour-coded starfield plots (adapted from scatter plots) to 
consider conversion patterns in website ecommerce 
metrics. Noble [12,13] presents a screen overlay-based 
approach to help developers assess the usability of their 
user interfaces, employing metrics that represent task 
concordance, layout uniformity, and coherence. Most 
relevant here is the work of Irwin and Churcher [6] who 
developed a formally defined grammar for software 
metrics, with a focus on aspects of object-oriented (OO) 
structure. One of the benefits of such a grammar is the 
ability to objectively and automatically parse the 
constructs, resulting in data that can be visualized in a form 
configurable by the user. Irwin and Churcher [6] use a 3D 
virtual representation to illustrate the number and strength 
of connections among software components. 

In research concerned with developing models for 
classification and prediction, simple visualisations are 
dominant. The more commonly used methods are scatter 
and regression plots, histograms and frequency 
distributions, normal probability plots, and box and 
whisker plots. Less commonly used depictions include 
Kiviat diagrams, employed by Fioravanti and Nesi [4] to 
visualize OO metrics, and input-output dependence graphs 
(IODGs), used by Kang and Bieman [7] to depict aspects 
of module cohesion. The latter authors contend that using 
visual representations of structure enhances decision-
making on software reorganization. Visual analysis can in 
turn be aided by tabular data [1], showing the outcomes of 
tests of independence, correlation, variable significance 
and so on.  

There is some merit in using simple depictions. Most 
are easy to build and such an approach ensures that the 
focus is on the models and their accuracy rather than on 
how they are depicted. However, the more simple methods 
by their nature may not be effective in conveying the 
complex relationships that exist when there are multiple 
independent variables, which are perhaps in themselves 
related. In these circumstances model interpretation 
becomes more difficult. 

Kohonen’s self-organizing maps (SOMs) were 
developed to address these sorts of challenges [8]. They 
offer a means of data clustering and visualization that 
projects multiple dimensions into 2D (or perhaps 3D) 
space based on object similarity while retaining the original 

topology of the data. The structure of a SOM is often 
characterized as a sheet-like array of cells (or nodes), each 
of which is tuned according to patterns that occur in the 
input space. The map learns in an unsupervised manner; 
the network is not trained (as is the case in 
backpropagation-based networks) and no ‘correct’ learning 
outcomes are specified. Rather, input vectors are compared 
with those already in the map and clusters are created or 
augmented to minimize the distance between similar 
vectors (and conversely to maximize the distance between 
different vectors). As in other clustering approaches, the 
measure of distance can be one of many. Because of its 
simplicity, Euclidian distance is most commonly employed 
[17].  

As an unsupervised method, some user input is required 
to produce a relevant and appropriately structured map. 
The user must decide on the number of nodes (or cells) in 
the map to give the desired level of granularity, and the 
number of clusters that makes analytical sense. Choice of 
the number of clusters is in the first instance automated by 
the implementation of an objective function that maximizes 
similarity within clusters and distinction between clusters. 
The user can also specify the learning rate, the extent to 
which neuron connections are adjusted as clusters are 
formed. Finally the user must also specify a stopping 
condition – normally either the number of learning 
iterations or a learning threshold, reflecting no further 
significant changes in the distribution of nodes. (As this 
paper is primarily concerned with the effective application 
of SOMs, the inclusion of formal definitions of the map 
construction process and associated parameters are not 
included here. Such definitions may be found in [8]). 

The positive characteristics of SOMs that are 
particularly relevant here are their visual power and their 
richness of content in illustrating relationships. This is in 
contrast to the rather sparse output of commonly employed 
statistical modeling methods (and the black box nature of 
perceptron-based neural networks). The sometimes 
complex models built using techniques such as regression, 
while accurate, can also be cumbersome in structure, 
particularly if they include intercorrelated factors, 
interaction terms, dummy variables, and so on. This makes 
them challenging to interpret and to act upon in order to 
improve practice. Correlation statistics are undoubtedly 
useful but for reasons of understandability we tend to use 
bivariate analyses – comparing one variable with another in 
isolation of other effects. Important multivariate 
relationships can therefore be overlooked. Standard 
classification methods can also produce apparently 
arbitrary outcomes especially for artifacts that fall close to 
fixed class boundaries. Sound use of SOMs can enable 
more graduated boundaries to be used in classification, 
while taking into account highly non-linear relationships 
among multiple variables. 

To date SOMs have not been used to any significant 
extent in empirical software engineering. Hong and Wu [5] 
assessed the efficacy of SOM-based prediction using 



 

 

simulated data, but found them to be less useful than 
multilayer perceptron neural networks for their purposes. 
More recently, Zhong et al. [21] reported encouraging 
results from their use of a self-organizing method similar to 
that used in SOMs (NeuralGas). The most active proponent 
of SOMs in this domain, however, is Pedrycz, who 
highlighted their potential in 1998 [16] and who illustrated 
their use with SE data in several subsequent papers [e.g. 
17-19]. He has also provided support more generally for 
the use of other self-organizing approaches but with a 
greater focus on accuracy as opposed to visualization 
[14,15]. We here augment the work of Pedrycz and others 
by: 

(i) comparing the effectiveness of SOMs against more 
traditional statistical analyses of two publicly 
available data sets; and 

(ii) using a SOM to perform predictive modelling over 
a hold-out sample so that its effectiveness can be 
assessed in an unbiased manner. 

 
There is a risk that this is a(nother) ‘solution looking for 

a problem’ – this claim would be valid if no gains were 
made. That said, we need to empirically assess the 
effectiveness of any method if we are to have a sound basis 
for using or discarding it. The next sections of the paper 
therefore assess the effectiveness of SOMS in two specific 
sets of tasks: classification and model fitting, and hold-out 
sample based prediction.  We leave utility in practice to a 
later study.  

 
3. SOMS IN CLASSIFICATION AND 
MODEL FITTING 
 

The extent to which a software artifact falls into a 
particular category of interest can be assessed using 
metrics, the term commonly used to denote measured 
characteristics of the object under scrutiny. Assuming that 
the chosen metric constructs are valid and useful – that is, 
they measure what they purport to measure and the 
resulting data is of some practical use in software 
management – then evaluation of metric values enables us 
to classify artifacts as being, for instance, large or small, 
high-risk or low-risk, and so on. 

To assess how well SOMs classify software artifacts we 
based this part of our work on a study reported by 
Cartwright and Shepperd [2]. They analyzed “…an 
industrial object-oriented (OO) system comprised of 
133,000 lines of C++. The system was a subsystem of a 
telecommunications product and was developed using the 
Shlaer-Mellor method.” [2, p.786]. Their study evaluated 
the relationships between nine class-based measures and 
two external variables: class size (in C++ lines of code 
(LOC)) and the count of defects per class, for the 32 
classes in the system. Two of the tables from [2] are 
aggregated here as Table 1, listing the variables collected 
and the summary statistics for those variables. 

As in [2] we first addressed the task of defect analysis. 
To illustrate the visualization capabilities of SOMs we 
constructed a map using the entire data set. Figure 1, built 
using 500 cells, depicts the clustering of the data. We used 
seven clusters – areas representing similar vectors in the 
source data set. This gave us sufficient differentiation 
without being too fine-grained to be impractical. In 
particular, aggregated groupings of classes with Very 
low/Low, Medium and Very high defect counts are 
evident. These clusters can be interrogated to reveal 
descriptive statistics for each, or to identify specific system 
classes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Overall cluster map for defect classification data 
 
Perhaps more informative are the component maps 

(Figure 2) that depict the distribution of vectors for one 
variable per map. Each depicts the local average value at 
each cell in a particular colour, with the scale below 
showing the mapping between colour and value. This 
depiction enables the user to consider relationships among 
‘predictor’ variables as well as between these and a 
dependent variable. In this case we can see that for several 
variables (ATTRIB, EVN, READ, STATE, WRITE, 
RWD) the higher value artifacts are clustered together in 
the bottom left-hand corner of the map. In contrast, the 
grouping based on inheritance tree depth (DIT) is quite 
different, suggesting that it represents a separate dimension 
to that embodied in other variables. 

We now turn our attention to building a classification 
model for defects. In order to maximize comparability of 
our results with those of [2] we built models using the same 
(small sets of) variables as they did. In the original study 
the count of defects per class (DEFEC) was modeled by a 
linear regression equation comprising a constant term, the 
count of events per class in the state model (EVN) and a 
dummy variable (Inherits), to reflect whether class 
inheritance had an impact on the number of defects found. 
A map comprising seven clusters was generated from the 
data set (Figure 3). The labels are annotations that we have 
added to characterize the defect count in each cluster. 



 

 

Table 1. Classification task – variables collected and summary statistics (adapted from [2]) 
 

Label Variable Explanation Mean Median Min Max 
ATTRIB Attributes Count of attributes per class from the 

information model 
8.66 4.5 1 32 

STATE States Count of states per class in the state model 18.03 13 0 114 
EVN Events Count of events per class in the state model 20.53 10.5 0 122 
READ Reads Count of all read accesses by a class contained 

in the CASE tool 
16.25 11.5 0 83 

WRITE Writes Count of all write accesses by a class contained 
in the CASE tool 

14.22 8.5 0 56 

DEL Deletes Count of all delete accesses by a class contained 
in the CASE tool 

1.50 1 0 5 

RWD Read/ 
write/ 
delete 

Count of all synchronous accesses (the sum of 
READS, WRITES and DELS) per class 
contained in the CASE tool 

31.97 22 0 131 

DIT Depth of Inheritance 
Tree 

Depth of a class in the inheritance tree where 
the root class is zero 

0.44 0 0 2 

NOC Number of children Number of child classes 0.31 0 0 4 
DEFEC Defects Count of defects per class 8.09 2 0 47 
LOC Lines of Code C++ lines of code per class 4178.50 3524.5 603 20165 
 

Figure 2. Component maps for defect classification data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Component maps for defect classification data 
 

While the clusters appear to be distinct (Figure 3) this 
is somewhat artificial, as their associated values overlap. 
However the clustering does enable us to get a sense of the 
distribution of multidimensional data projected onto a 
more easily viewed 2D space. Greater clarity on the data 
distributions and the relationships among the variables can 
be gained from viewing the component maps, shown in 

Figure 4. In this figure we can see the impact of the Inherits 
dummy variable on the clustering of classes. Furthermore, 
it becomes visually evident that (i) most classes have few 
events; (ii) as the number of events increases so does 
defect count (the shading (colour) moving from dark (blue) 
– low – through light (yellow/green) to dark again (red) – 



 

 

high); and (iii) the degree of inheritance does have an 
additional impact on defect count per class. 

While the clusters appear to be distinct (Figure 3) this 
is somewhat artificial, as their associated values overlap. 
However the clustering does enable us to get a sense of the 
distribution of multidimensional data projected onto a 
more easily viewed 2D space. Greater clarity on the data 
distributions and the relationships among the variables can 
be gained from viewing the component maps, shown in 
Figure 4. In this figure we can see the impact of the Inherits 
dummy variable on the clustering of classes. Furthermore, 
it becomes visually evident that (i) most classes have few 
events; (ii) as the number of events increases so does 
defect count (the shading (colour) moving from dark (blue) 
– low – through light (yellow/green) to dark again (red) – 
high); and (iii) the degree of inheritance does have an 
additional impact on defect count per class. 

 
 
 
 
 
 
 

 
Figure 3. Clusters of DEFECs based on EVN and 

Inherits variables 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Component maps for classification of DEFEC 
based on EVN and Inherits 

 

In terms of model performance, Tables 2 and 3 provide 
some indication of how well the SOM clusters the data. 
Cluster-based recall assigns all 32 classes correctly (Table 
2). In itself the very good performance is not surprising – 
as a neural network it creates a non-linear mapping that fits 
the underlying data very closely (hence the inclusion of an 
unbiased test in Section 4). Such a classification could be 
used to allocate testing resources to those classes that 
contain more defects, or as the basis for informing 
refactoring decisions (if the number of events in a class is 
classed as high). 

 
Table 2. SOM classification of defects – 7 clusters 

 
Cluster  Correct:incor rect 
Zero 9:0 
Zero to two 5:0 
Zero to eleven 6:0 
Three to fifteen 2:0 
Seven to ten 4:0 
Eleven to thirty 4:0 
Twenty-five to fifty 2:0 
Overall 32:0 

 
A comparison of the performance of the SOM and the 

regression model from [2] is shown in Table 3. We use two 
bias measures to indicate the fitness of the two models – 
sum of error and sum of absolute error. The former is the 
sum of the difference between the actual and modeled 
defect count over all 32 classes. If the model over-
estimates the number of defects then the error is a negative 
number; if the model underestimates, the error is positive. 
The errors are totaled over all classes to give the sum of 
error shown. Use of this measure of bias is appropriate 
when it is acceptable to have over- and underestimates that 
balance out to close to 0 over the entire data set. If, 
however, any error is considered unacceptable then the 
sum of the absolute error is a more relevant indicator. 
(Note: in Table 3 we have also included a column for 
‘Adjusted Regression’. As the original regression model 
included a negative constant term several of the classes 
were assigned a value of -1 for the defect count. For these 
cases we changed the count to 0 and recalculated the bias.)  
 

Table 3. Model error comparison for defect count 
 

 Regression Adjusted 
Regression 

SOM 

Sum of error -1 -13 0 
Sum of 
absolute error 

92 85 3 

 
The results presented in Table 3 indicate that both the 

regression and SOM models fit the data well in terms of 
the sum of error. A difference in performance is more 
evident, however, when the absolute errors are taken into 
account. Overall the regression models are out by 92 and 



 

 

85 defects, whereas the SOM model is out by just three 
defects. 

We then undertook model fitting of class size. This is 
not strictly a prediction exercise as again all of the data 
were used in the construction of the model (as in [2]). The 
overall multidimensional cluster map for this data is shown 
in Figure 5 and the associated component maps in Figure 6. 
The seven clusters enable us to identify similar classes in 
terms of their size and the underlying factors that may 
determine (or are at least related to) class size. In this case 
the strong relationships among the variables EVN, READ, 
STATE, WRITE and RWD are visually evident. The fact 
that these variables are also likely to be positively related 
to class size (in LOC) is also apparent. 

 

 
 

Figure 5. Overall cluster map for size classification data 
 

 
Figure 6. Component maps for size classification data 

 
The original linear regression model [2] fitted a single 

independent variable – the count of states per class 
(STATE) – to size in LOC. We built a map using the same 
variable, again employing seven clusters as this produced a 
manageable number of groupings but with sufficient 
differentiation between them. The resulting cluster map is 
shown in Figure 7. The component maps underlying these 
clusters are shown in Figure 8. While the correlation 
coefficient can tell us something of the relationship 
strength between STATE and LOC (at 0.97) evidence of 
this very strong relationship can be seen more graphically 
in the map. We could use such a clustering, for instance, to 

allocate programming tasks among novice and experienced 
personnel on the basis that, other factors aside, the larger 
classes are going to be more challenging to develop, 
review and test. We again assess SOM performance based 
on classification robustness and compare its modelling 
accuracy to that of the regression equation (shown in 
Tables 4 and 5).  

The classification results reported in Table 4 indicate 
that for all but one class the SOM proved effective. For one 
class (of 2699 LOC) the map assigned it to the Very small 
cluster (700-2400 LOC) whereas it should have been 
categorized as Small. Overall performance, however, is 



 

 

very positive. Our comparison of model error in this case 
(Table 5) reveals a similar outcome to the defect count 
case, in that both models perform well as measured by the 
sum of error but the SOM provides a better fit to the data if 
absolute error is taken as the accuracy criterion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Clusters of LOC based on STATE 
 

Table 4. SOM classification of LOC –  7 clusters 
 

Cluster  Correct:incor rect 
Very small (700-2400) 13:1 
Small (2200-5200) 4:0 
Quite small (3400-5000) 3:0 
Quite small (3400-6000) 5:0 
Small to medium 
(3700-8200) 

3:0 

Medium (6700-7000) 1:0 
Medium to large; Very 
large (8000-33000) 

2:0 

Overall 31:1 
 

Table 5. Model error comparison for LOC 
 

 Regression SOM 
Sum of error -6 1 
Sum of absolute error 18926 1611 

 
The results of these two analyses indicate that SOMs 

can be effective classifiers in terms of both accuracy and 
meaning, the latter being due to the graphical nature of the 
maps, enabling relationships to be depicted with more 
information content than a simple boxplot or correlation 
coefficient. 

 
4. SOM-BASED PREDICTION 
 

We now turn our attention to the use of SOMs in 
unbiased prediction. In this case we evaluate SOM 

effectiveness on a data set we analyzed in a previous study 
using linear regression methods [11]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Component maps for classification of LOC 
based on STATE 

 
The data set comprised more than seventy small-scale 

systems built using a common process and the same toolset 
– a data modeling tool and a 4GL. The systems “…were 
built over a period of five years by groups of senior 
students in the Department of Information Science at the 
University of Otago. Every system was built to satisfy the 
real requirements of an external client, normally a small 
business or a department in a larger organisation… Each 
system addressed transaction processing, data retrieval and 
reporting, and file maintenance activities performed by the 
organisation.” [11, p.100]. The objective of the study was 
to examine whether a system’s size (in source statements) 
could be predicted using a variety of measures taken from 
that system’s specification. The variables and summary 
statistics relevant to this study are shown in Table 6. 

 
 
 



 

 

Table 6. Prediction task – variables collected and summary statistics (adapted from [11]) 
 

Mnemonic Variable Explanation Mean Median Min Max 
ENT Entities Count of entities depicted in the entity-relationship 

diagram (ERD) 
11.6 11.0 4 26 

RSHIP Relationships Count of relationships depicted in the ERD 10.2 9.0 3 25 
ATTRIB Attributes Count of attributes associated with the ERD 64.5 59.5 25 141 
MENU Menus Count of menu screens depicted in the Functional 

Decomposition Chart (FDC) 
5.6 5.0 4 14 

EDIT Entry/Edit Count of data entry/edit screens depicted in the FDC 12.0 11.0 4 27 
REPORT Reports Count of reports depicted in the FDC 6.8 6.0 1 17 
NONMENU Non-menu 

functions 
Count of non-menu functions depicted in the FDC 18.8 17.5 10 39 

FDCSIZE FDC Size Count of all functions depicted in the FDC 24.4 22.0 14 45 
SIZE System Size Count of all non-comment source statements in the 

implemented system 
1106.0 993.5 309 2605 

 
As in the model-fitting cases in the previous section the 

original analysis in this study utilized a very simple 
regression model, predicting system size based on the 
count of non-menu functions (NONMENU) depicted in the 
system Functional Decomposition Chart (FDC). 

To perform an unbiased assessment of model 
performance we split the data set at random into training 
and testing subsets. From the total of seventy vectors we 
placed around two-thirds (47) into a training data subset, 
the remaining one-third (23) comprising the testing set. In 
order to reduce the likelihood of obtaining results that were 
a function of the particular data split rather than a more 
general outcome [20] we repeated this process five times. 
In each of five runs a SOM was then constructed using 
only the training data subset. We could then ‘recall’ the 
cluster membership of the vectors in the testing subset 
against the map, also producing a predicted value for 
system size. To illustrate this process, the maps and outputs 
produced for run 1 of this analysis are shown in Figures 9 
(cluster map) and 10 (component maps) and in Table 7. 

 

 
 

Figure 9. Clusters of SIZE based on NONMENU – run 1 
 

Although four distinct clusters are evident in the cluster 
map for run 1 we were able to annotate the map with an 
extra ‘cluster’ representing those systems with medium-
high counts of lines of code.  This structure was the most 
effective in terms of the balance between cluster 
differentiation and the number of clusters. Clearly the 
larger the number of clusters the more precise the 
classification becomes; however, there are two negative 
consequences: 1. the clusters begin to overfit the training 

data reducing the map’s general applicability; 2. it becomes 
impractical to act on such a highly fragmented 
classification in terms of adopting management strategies 
for different clusters. 
 

 
 

Figure 10. Component maps for classification of SIZE 
based on NONMENU – run 1 

 
The component maps for run 1 illustrate the strong 

relationship between NONMENU and SIZE, with the two 
distributions following a similar pattern – systems with low 
counts are to the right and those with higher counts are to 
the left. While the correlation statistic (Pearson’s rho = 
0.87) also indicates this strong positive association it does 
not provide any indication of the dispersion of vectors 
underlying this relationship, something that the SOM 
representation is able to do. (Admittedly a scatter plot may 
also provide this sort of insight, but only for bivariate 
relationships.) 

Predictive effectiveness over the testing data subset for 
run 1 is shown in Table 7 and in the first line of Tables 8 
and 9. The results in Table 7 show the number of systems 
classified correctly or incorrectly when ‘shown’ to the 



 

 

independently trained map. We note that performance for 
all but the Medium cluster is very good. The system 
incorrectly classified as Med-low comprised 1573 lines of 
code (so should have been classed as Medium) and the two 
systems wrongly classed as Medium were made up of 1192 
(Med-low) and 1831 (Med-high) lines of code respectively. 

 
Table 7. SOM prediction of SIZE – 4 clusters, run 1 

 
Cluster  Correct:incor rect 
Low (300-1050) 11:0 
Med-low (700-1500) 6:1 
Medium (1250-1750) 2:2 
Med-high; High (1750-2700) 1:0 
Overall 20:3 

 
We show the comparative results for predictive 

accuracy using SOMs and linear regression across all five 
runs in Table 8, based on the sum of error, and Table 9, 
based on the sum of absolute error. In Table 9 we also 
show the number of clusters used in the SOM and the 
aggregated classification performance. 

 
Table 8. Model error comparison for SIZE – Sum of error 

 
 Regression SOM No. of 

clusters 
Correct: 
incorrect 

Run 1 -526 615 4 20:3 
Run 2 -1965 439 3 21:2 
Run 3 -5078 35 4 21:2 
Run 4 235 -8 5 22:1 
Run 5 2171 498 4 20:3 
Mean -1033 316   
Median -526 439   

 
Table 9. Model error comparison for SIZE – Sum of 

absolute error 
 Regression SOM 
Run 1 6849 1367 
Run 2 6221 1663 
Run 3 5951 1113 
Run 4 4941 892 
Run 5 6520 1092 
Mean 6096 1225 
Median 6221 1113 
 
We can see that in all but the first run the SOM 

outperformed the regression model in terms of the 
magnitude of the sum of error. It is also of interest to note 
that the SOM tended to overestimate SIZE, evident in four 
of the five runs, whereas the regression model 
underestimated SIZE in three of the five runs. 
Classification effectiveness over all five runs was strong, 
the two worst runs classifying three of the twenty-three 
systems incorrectly. The comparison of performance in 
terms of the sum of absolute error criterion is even more 

favorable for the SOM solutions. In all five runs the SOM 
led to substantially lower error totals than its regression 
counterpart. 

 
5. DISCUSSION AND CONCLUSIONS 
 

In this paper we have described the empirical analysis 
of self-organizing maps when applied to three software 
engineering problems, comparing them to benchmark 
regression models. There are three findings: 
1. the visualization capabilities of SOMs can reveal useful 

information relating to dispersion of artifacts/vectors 
and the interrelationships among and between factors 

2. SOMs appear to perform favourably in classification 
and when compared to ‘equivalent’ benchmark 
regression models 

3. SOMs also appear to perform favourably in unbiased 
prediction and when compared to ‘equivalent’ 
benchmark regression models. 
In all three of our analyses – defect classification, size 

classification and size prediction – we found the SOM 
method to be very effective in terms of accuracy. In all but 
one run of the size prediction exercise the SOM 
outperformed the matching regression model. 
Classification of individual vectors to clusters was also 
very positive. In particular, the strong showing in the 
prediction exercise is encouraging as this represents an 
unbiased assessment of SOM efficacy. 

Furthermore, because of the structural simplicity of the 
SOMs these were challenging comparative tests. That is, 
given the strong linear relationships evident in the 
correlations for each analysis (between EVN and DEFEC, 
STATE and LOC, and NONMENU and SIZE respectively) 
we could have expected linear regression to perform very 
well. While it did, it was outperformed by the SOM in 
almost every case. Given that SOMs are also able to deal 
with nonlinearity and colinearity we suspect that they will 
prove to be just as effective for more complex models. 
This will form part of our future work, along with an 
assessment of the utility of the method in project 
management practice. 

Even though the models were simple it was still an 
advantage to be able to visualize the relationships, both in 
aggregated cluster and component map forms. This 
enabled us to gain a sense of the overall distribution of 
artifacts in multidimensional space. Such a capability may 
enable users to manage artifacts more effectively e.g. by 
allocating testing resources according to likely defect 
counts, or by considering refactoring options for artifacts 
that are likely to become very large. The influence of 
factors both separately and together can be quantified and 
visualized using the maps. In returning to a question posed 
earlier, is this a solution looking for a problem? Perhaps. 
However the visualization capabilities offer an additional 
dimension to that afforded by other more commonly used 
methods that, in conjunction with good model accuracy, 
should encourage further consideration of the approach. 



 

 

6. ACKNOWLEDGMENTS 
 

We are grateful to the authors of the paper used in the 
classification case study [2] for publishing their raw data, 
enabling us to mirror their work. 
 
7. REFERENCES 
 
[1] Bril, R.J. and Postma, A. (2001) An architectural 
connectivity metric and its support for incremental re-
architecting of large legacy systems. In Proc. 9th Intl 
Workshop on Program Comprehension, Toronto, Canada, 
pp.269-280. 

[2] Cartwright, M. and Shepperd, M. (2000) an empirical 
investigation of an object-oriented software system. IEEE 
Trans. Softw. Eng. 26(8), pp.786-796. 

[3] David, A. (2002) Tulip. Lecture Notes in Comp. Sci. 
2265, pp.435-437. 

[4] Fioravanti, F. and Nesi, P. (2000) A method and tool 
for assessing object-oriented projects and metrics 
management. Jnl Sys. Softw. 53, pp.111-136. 

[5] Hong, E.-S. and Wu, C.-S. (1997) Criticality prediction 
models using SDL metrics set. In Proc. 4th Asia Pac. 
Softw. Eng. Conf./4th Intl Comp. Sci. Conf., Hong Kong, 
pp.23-30. 

[6] Irwin, W. and Churcher, N. (2003) Object oriented 
metrics: precision tools and configurable visualizations. In 
Proc. 9th Intl Softw. Metrics Symp., Sydney, Australia, 
pp.112-123. 

[7] Kang, B.-K. and Bieman, J.M. (1998) Using design 
abstractions to visualize, quantify, and restructure software. 
Jnl Sys. Softw. 42, pp.175-187. 

[8] Kohonen, T. (1995) Self-organizing Maps. Springer, 
Berlin. 

[9] Lee, J., Podlaseck, M., Schonberg, E., Hoch, R. and 
Gomory, S. (2000) Analysis and visualization of metrics 
for online merchandising. Lecture Notes in Artif. Intell. 
1836, pp.126-141. 

[10] Lee, J., Podlaseck, M., Schonberg, E. and Hoch, R. 
(2001) Visualization and analysis of clickstream data of 
online stores for understanding web merchandising. Data 
Mining and Knowl. Discov. 5, pp.59-84. 

[11] MacDonell, S.G., Shepperd, M.J. and Sallis, P.J. 
(1997) Metrics for database systems: an empirical study. In 
Proc. 4th Intl Softw. Metrics Symp. Albuquerque, USA, 
pp.99-107. 

[12] Noble, J. (1998) Integrating metric visualisation into a 
commercial user interface builder. In Proc. Australian 
Conf. Comp.-Human Interact., Adelaide, Australia. 

[13] Noble, J. and Constantine, L.L. (1996) Interactive 
design metric visualization: visual metric support for user 

interface design. In Proc. Australian Conf. Comp.-Human 
Interact., Hamilton, New Zealand, pp.213-220. 

[14] Oh, S.-K., Pedrycz, W. and Park, H.-S. (2002) Self-
organising networks in modelling experimental data in 
software engineering. IEE Proceedings – Computers & 
Digital Techniques 149(3), pp.61-78. 

[15] Oh, S.-K., Pedrycz, W. and Park, B.J. (2004) Self-
organizing neurofuzzy networks in modeling software data. 
Fuzzy Sets and Sys. 145, pp.165-181. 

[16] Pedrycz, W. and Peters, J.F. (1998) Computational 
Intelligence in Software Engineering. World Sci., 
Singapore. 

[17] Pedrycz, W., Succi, G., Musílek, P. and Bai, X. 
(2001) Using self-organizing maps to analyse object-
oriented software measures. Jnl Sys. Softw. 59, pp.65-82. 

[18] Pedrycz, W. (2002) Computational intelligence as an 
emerging paradigm of software engineering. In Proc. 14th 
Intl Conf. Softw. Eng. Knowl.Eng. (SEKE’02), Ischia, Italy, 
pp.7-14. 

[19] Reformat, M., Pedrycz, W. and Pizzi, N.J. (2002) 
Software quality analysis with the use of computational 
intelligence. In Proc. 2002 IEEE Intl Conf. Fuzzy Sys, 
Honolulu, USA, pp.1156-1161. 

[20] Shepperd, M. and Kadoda, G. (2001) Comparing 
software prediction techniques using simulation. IEEE 
Trans. Softw. Eng. 27(11), pp.1014-1022. 

[21] Zhong, S., Khoshgoftaar, T.M. and Seliya, N. (2004) 
Unsupervised learning for expert-based software quality 
estimation. In Proc. 8th IEEE Intl Symp. on High 
Assurance Sys. Eng., Tempa, USA, pp.149-155. 

 


	1. Introduction
	2. Visualizing SE data using SOM clusters
	3. SOMs in classification and model fitting
	4. SOM-based prediction
	5. Discussion and conclusions
	6. Acknowledgments
	7. References

