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Abstract— The paper introduces a framework and implemen-  this paper. Applied to carefully designed benchmark data,
tation of an integrated connectionist system, where the featuse  containing irrelevant and redundant features of varying in
and the parameters of an evolving spiking neural network — qmaiion quality, the QISNN-based feature selection fed t

are optimised together using a quantum representation of the A
features and a quantum inspired evolutionary algorithm for excellent classification results and an accurate detectfon

optimisation. The proposed model is applied on ecological data '€levant information in the dataset.

modeling problem demonstrating a significantly better classi- This study intends to apply QiSNN on an ecological

fication accuracy than traditional neural network approaches  modeling problem. Meteorological data, such as monthly and

and a more appropriate feature subset selected from a larger go454n5] temperature, rain fall and soil moisture recgedin

initial number of features. Results are compared to a Nave . . . .

Bayesian Classifier. for different geographical sites, were compiled from pub-
lished results. Furthermore for each global site the pisen

I. INTRODUCTION or absence of the Mediterranean fruit-fly (a serious frustpe

ECENTLY spiking neural networks (SNN) [1], [2] have Was de_termin_ed. Motivated by only inadequa_te results [13]-
R been developed as biologically plausible connectionidt->] using a different method, namely the Multi-layer Perce
models, which use trains of spikes for internal informatiofon (MLP), this study aims towards the identification of im-
representation. Today many applications using SNN receiRortant features relevant for predicting the presencefedes
a lot of research attention, some of them demonstrating vefj this insect species. The obtained results may be also of
promising results on solving important real world problemsiMportance to evaluate the risk of invasion of certain sgeci
Based on [3] an evolving spiking neural network was prolnto specific geographical regions.
posed and applied to audio-visual pattern recognition[§], In the following sections we will first present the QiSNN
A similar type of network was later used in the context offamework, explain the experimental setup along with a
a taste recognition task [6]. Other applications incledg. description of the data used, followed by an analysis and
neural based word recognition using liquid states [7], aeurdiscussion of the obtained results.

associative memory [8] and function approximation [9]tjus
to name a few. Il. FRAMEWORK AND IMPLEMENTATION OF QISNN

With encc_)uraging results spiking neural netwqus Were Based on our previous results on eSNN and quantum
presented in .the context of a feat_ur(_a s_electlon . pro*?hspired evolutionary algorithms [3], [5], [12], [16], rewe
lem [10]. In this work a state-of-art optimisation algorfth  propose and explore an integrative quantum inspired featur
namely the Versatile Quantum-inspired Evolutionary Algoselection using the eSNN architecture, tightly couplechwit
rithm (VQEA) [11], was combined with an Evolving Spiking ine learning environment (the data).
Neural Network (eSNN) [4]. Implementing quantum princi-
ples VQEA evolves in parallel a number of independent prolx. eSNN Architecture
ability vectors, which may interact at certain intervalghwi ) ) )
each other, forming a multi-model Estimation of Distriloti ' "® ©SNN architecture uses a computationally very simple
Algorithm (EDAs) [12]. Following the wrapper approach,and .eff|C|ent spiking neural model, |n.wh|ch early spikes,
VQEA was used to identify relevant feature subsets arfgceived by a neuron, are stronger weighted than.later ones.
simultaneously evolve an optimal eSNN parameter setti:%.he mode| was inspired by the neural processing of the
We will refer to this extended architecture as the Quantuniluman eye, which performs a very fast image processing.

inspired SNN (QiSNN) framework during the course ofExperiments have shown that a primate only needs several
hundreds of milliseconds to make reliable decisions about
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Algorithm 1 Training an Evolving Spiking Neural Network
Spikes : : : [ (eSNN)

Lo B 1 Require: m; € (0,1), s €(0,1), ¢ €(0,1), €L
0.8/ | 1: initialize neuron repositony; = {}
psp 0-0 2: for all samplesX () belonging to clas$ do
0.4¢ . (4) order(j)
0.2 8wy (m) ’
0.0 ; ; 1 1 v j( 4|)j pre-syn?p))tic neuron of;
stimulus || [1l] | i NEI T . ¢ w\ order(j)
Time 4. PSPmax — Z(:L;)w_] (ml)
5: 9(1) — ClPSPmam
6: if min(d(w®,w™))>s, w™ € R, then
Fig. 1. Evolution of the PSP of a neural model used in QiSNN fgiven 7 w™ — mergew(i)andw(”)
input stimulus. If the potential reaches threshéld spike is triggered and ’ (n) (i) (n)
the PSP set to 0 for the rest of the simulation, even if the meiscstill 8 0\ — merged'and ¢
stimulated by incoming spike trains. 9: else
10: R, — R U {w(i)}
11:  end if

model was later used by [4], [19] to perform audio-visuali2: end for
face recognition.
Similar to other SNN approaches a specific neural mode’ 5 1 0 1 )

a learning method, a network architecture and an encodii  _ 1.0f & & &< S N
from real values into spike trains needs to be defined in tt %g-g;/ AN N N AN V]
eSNN method. The neural model is given by the dynamic §of4, KN //\\ R ) N i
of the post-synaptic potential (PSP) of a neufon - 8-(2)’ ot L oK ‘,\/f\ L]
e 1.0 = = ‘ ‘ - ]
0 if fired qé 0.8 i
. — B order(j) = 0.6t -— ]
PSFi(t) Z Wyi My else @ g 0.4r| - - Receptive Fields 1
Jlf)<t ic 0.2] === Input Value - ]
0-075 1 2 3 4
wherew,; is the weight of a pre-synaptic neurgnf(j) the Neuron

firing time of j, andm; € (0,1) a parameter of the model,

namely the modulation factor. Functiemder(j) represents Fig. 2. Population encoding based on Gaussian receptiwsfi€or an

the rank of the spike emitted by neurgn For example a [t 7 (K suagttine i op fore) e iesecton pos

rank order(j) = 0 would be assigned, if neurof is the  gpike time delays (lower figure).

first among all pre-synaptic neurons that emits a spike. In

a similar fashion the spikes of all pre-synaptic neurons are

ranked and then used in the computatiodP&fP;. A neuroni  of output neurons it is possible to accumulate knowledge

fires a spike when its potential has reached a certain thiceshas it becomes available. Hence a trained network is able to

0. After emitting a spike the potential is reset 0SSP, = learn new data without the need of re-training already kedrn

0. Each neuron is allowed to emit only a single spike asamples. The procedure is described in detail in Algorithm 1

most. The threshold = ¢ PSP, is set to a fraction Encoding of input values seems to be a critical factor in

¢ € (0,1) of the maximal potentiaPSP,,,, possible by a all SNN approaches. Several encoding mechanisms for SNN

neuron. In Figure 1 the change of the PSP for this neurabve been proposed, such as frequency mappings, Poisson

model is presented, when a series of input spikes (stimuljrocesses and rank order encoding. Another approach is the

are presented to the different synapses of this neuron.  population encoding which distributes a single input value
An evolving neural network architecture using the abovéo multiple neurons and hence may cause the excitation and

model along with a learning algorithm was proposed in [4ffiring of several responding neurons. Our implementation is

[5]. The method successively creates a repository of tcaindased on arrays of receptive fields as described in [&0],

output neurons during the presentation of training samplelSigure 2. Receptive fields allow the encoding of continuous

For each training sample a new neuron is trained and thealues by using a collection of neurons with overlapping

compared to the ones already stored in the repository. Ifsensitivity profiles. Each input variable is encoded indepe

trained neuron is considered to be too similar (in terms afently by a group ofM one dimensional receptive fields.

its weight vector) to the ones in the repository (accordingor a variablen an interval [I, ,I" .] is defined. The

to a specified similarity threshold), the neuron will be Gaussian receptive field of neuranis given by its center

merged with the most similar one. Otherwise the trained, = I, +(2i—3)/2« (I} ,...—I. /(M —2)) and width

neuron is added to the repository as a new output neuron=1/5(1" .. —I". ) /(M —2), with 1 < g < 2. Parameter

The merging is implemented as the (running) average @f directly controls the width of each Gaussian receptive field

the connection weights, and the (running) average of tHgee Figure 2 for an example encoding of a single variable.

two firing threshold. Because of the incremental evolution Such eSNN architecture was applied to taste recognition
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Fig. 3. eSNN architecture — Each input variable is trandlatéo trains of
spikes. The resulting spike sequence invokes a spikingaheetwork and
a repository of output neurons is successively generatedgithe training
process.
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problem [6]. The described method is summarized in Fig- [optimicer | salution ol

ure 3.

. . . . . Fig. 5. The QiSNN framework of tightly coupled feature seftettand
B. Versatile Quantum-lnsplred EVOIUt'Onary Algorlthm parameter optimisation of eSNN, integrated with the datagus@EA.

In this study eSNN was used to address feature subset
selection (FSS) problems following the well known wrap-
per approach. A wrapper contains a general optimisatidhe fithess function was identified to be a crucial step for the
algorithm interacting with an induction method (classjfier successful application of such an embedded approach. In the
alsocf. Figure 5. The optimisation task consists in a propeearly phase of the optimisation the parameter configurstion
identification of an optimal feature subset, which maximsizeare selected randomly. As a result it is very likely that
the classification accuracy determined by the inductor. The setting is selected for which the classifier is unable to
eSNN architecture operates as the induction method in thisspond to any input presented, which corresponds to flat
paper. Due to its interesting properties in terms of solutioareas in the fitness landscape. Hence a configuration tHat wil
quality and convergence speed we decided for the pralow the network to fire (even if not correctly) represents
viously proposed Versatile Quantum-inspired Evolutignara huge (local) attractor in the search space, which could
Algorithm (VQEA) [11] as the optimisation algorithm. The be difficult to escape in later iterations of the search. In
method evolves in parallel a number of independent probab[R1] a linear combination of several sub-criteria was used
ity vectors, which interact at certain intervals with eatihes, to avoid a too rugged fitness landscape. Nevertheless we can
forming a multi-model Estimation of Distribution Algorith  not confirm, that the use of much simpler fitness functions led
(EDA) [12]. The use of a multiple probabilistic model isto any problems in our experiments. Using the classification
the main characteristic of VQEA, allowing a dynamicalaccuracy on testing samples seemed to work well as it
adaptation of the learning speed, which leads to a smooih presented later in this paper. All parameters modulation
convergence behavior. Furthermore it was shown that thiactorm;, similarity thresholds;, PSP fraction;, VI € L of
multi-model works as a buffer against a finite humber 0€SNN were included in the search space of vVQEA. Due to its
decision errors. In previous work VQEA has been compardanary nature vVQEA requires the conversion of bit strings in
to Genetic Algorithms and a number of first level EDAs orreal values. As we will see later in the experimental analgsi
several benchmark problems [11]. It has been shown thatall number of Grey-coded bits is sufficient to approximate
this approach performs well on epistatic problems, is versneaningful parameter configurations of the eSNN method. In
robust to noise, and needs only minimal fine-tuning of it&igure 4 the structure of a chromosome as it is used in vVQEA
parameters. In fact the standard setting for vQEA is swgtabhpplied on eSNN is depicted.
for a large range of different problem sizes and classes. The complete QiSNN framework used in this study is
Finally vVQEA is a binary optimiser and fits well to the featuresummarized in Figure 5.
selection problem we want to apply it on.

C. Integrated Parameter Optimisation IIl. A CASE STUDY FROM ECOLOGICAL MODELING

Manual fine-tuning the neuronal parameters can quickly Here we illustrate the inherent suitability of the QiSNN
become a challenging task [19]. To solve this problem thizamework from Figure 5 to obtain better solutions of ecelog
idea of the simultaneous optimisation of the two combinatdeal problems characterised by large and changing data sets
rial search problems of FSS and learning of parameters flarge number of variables, and inadequate results obtamed
the induction algorithm was proposed [21]. The selection aate [13]-[15].



A. Data but untrained eSNN and a feature subset. The created eSNN

For many invertebrate species little is known about theﬁnc each individu_al was then independently trained aﬂd deste
response to environmental variables over large spatigsca O (€ appropriate data subsets. For the computation of the

That knowledge is important so that locations where a Speciglass?ﬁcztion er:or we(;jert]ermm?d thet)ratlofbeanaen cdyrelc
that has potential to cause great environmental harm aﬁ&}ss'f'z sampltlas and the tota numf e;]o test:ng samhp es.
might establish a new damaging population can be predicte%. n order to allow a comparison of the results we have

The usual approach to determine the importance of a range®FC @Pplied a traditional classification method on the same
environmental variables that explain the global distimit J2t@set by exchanging the eSNN classifier for the classical

of a species is to train or fit a model to its known distri-Valve Bayesian Classifier (NBC). Using NBC in the wrapper

bution using environmental parameters measured in are%gpr_oach is very common and was exp_lored _by many authors
Eewously,e.g. [23]. Apart from the discretization of the

where the species is present and where it is absent. In t hich i . for NBG. all
study, meteorological data that comprised 68 monthly argft@set, which is a requirement for » all parameters as
the training ratio and classification error metric were kept

seasonal temperature, rainfall and soil moisture varsafie )
206 global geographic sites were compiled from puinsheHnChanged' qu VQEA the Iearnm_g rate was adapted to be
records. These variables were correlated to global chwtio‘9 = /100, which we found to be n favou_r for the overall
where the Mediterranean fruit-flyCeratitis capitatg, a seri- performance of the feature selection using NEC and the
ous invasive species and fruit pest, were recorded at thee tiionvergence speed.

of the study, as either present or absent [22]. The datasetgds Results

balanced having equal number of samples for each of the|, Figure 6a and 6b the evolution through VQEA of the

two classes. Previous use of MLP on the data results in ferage best feature subset in every generation is prelsente
classification accuracy of approximately 71% [14]. using eSNN and NBC respectively as classifiers. The color of
a point in this diagram reflects how often a specific feature
was selected at a certain generation. The lighter the color
In the proposed framework a number of parameter choic@se more often the corresponding feature was selected at the
have to be made. For VQEA we chose a population structugg/en generation. It can clearly be seen that a large nunfber o
of ten individuals organized in a single group, which iseatures have been discarded during the evolutionary gsoce
globally synchronized every generation. This setting waslany features have been identified to be irrelevant by both
reported to be generally superior for a number of differerdigorithms, although also significant differences betwiben
benchmark problems [12]. The learning rate was set t@yolved feature subsets can be noticed.
¢ = 7/200 and the algorithm was allowed to evolve over The eSNN classifier appears to be rather consistent in
a total number of4000 generations. In order to guaranteediscarding features, since most of the 30 independent runs
statistical relevance30 independent runs were performed,have agreed at least about the irrelevant features, hence
using a different random seed for each of them. many black columns appear in the diagram. The situation
Additional to the feature space, VQEA was used to optis different for features, that have been identified as eslev
mise the parameter space of the eSNN architecture. For eaghmost of the runs. In a small number of runs exactly these
class! ¢ L three parameters exist: The modulation factofeatures were considered to be irrelevant, as reflectedeoy th
my, the similarity thresholds;, and the proportion factat;.  light gray columns in Figure 6a. For these features several
Since the data represents a two-class problem, six paresmeteypothesis can be derived. We emphasize that the features
are involved in the eSNN structure. The binary character ¢ér which the classifiers are undecided may be not important,
VQEA requires the conversion of bit strings into real valuesut also not misleading during the evolutionary search.dden
In the experiments we found four bits per variable enougthey are randomly included in the final feature subset by any
to offer sufficient flexibility for the parameter space. Foet of the runs performed. It is also likely that some features ar
conversion itself a Grey code was used. equally relevant (redundant features), so at least oneeofi th
In terms of the population encoding for eSNN we foundyill be selected as a representative of these features by the
that especially the number of receptive fields needs carefalgorithm. Different runs will most likely select a differe
consideration, since it affects the resolution for distiishing feature, thus the final subset is varying. We also believe tha
between different input variables. After some preliminarssome features are present conditional to the presencafabse
experiments we decided fdi0 receptive fields, the centers of others. Hence the average evolved feature subset can not
uniformly distributed over the intervédl, 1], and the variance be consistent in all runs and the ecological analysis of the
controlling parametep = 1.5. feature subset should include all features that have been
In every generation the 206 samples of the dataset weselected more frequent than a certain percentage in all runs
randomly shuffled and divided into a training and testing seperformed.
according to a ratio of 75% (154 training and 52 testing sam- In case of NBC a rather opposite situation can be observed.
ples). The chromosome of each individual in the populatioBome features are clearly found to be relevant in all 30
was translated into the corresponding parameter and &atuuns, which is in contrast to the results obtained by eSNN.
space, resulting in the generation of a fully parameterize®ut for many other features no definite decision can be

B. Experiments
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Fig. 6. Results on the ecological data set averaged overrgusing different random seeds for the optimisation allgori{a), (b) The lighter the color
of a point in the diagram, the more often a specific feature wiextsel at the given generation. Each point is the averag® aficeependent runs. Many
of these runs have identified similar relevant feature ssbset indicated by a large number of either very dark or verghbpoints, but only very few
gray ones(c) In both algorithms the number of features decreases withasorg generations, eSNN being noticeably faster than NBCOn the same
time the eSNN classifier delivers a good estimate of the qualfithe presented feature subset, while the trend of improeedracy is less obvious using
NBC. Continuing the evolutionary process beyond 4000 gatimers suggests further improvements in the classificatiauracy, but also a decrease of
the feature number.



made, since some of the runs reported a given feature
be relevant, but on the same time an almost equal numt
of runs reported the exact opposite (reflected by the gr:
columns in Figure 6b). The explanations given earlier abol
redundant and conditional features are true for NBC, too.

The average number of features selected decreases stea A Paramter m, m,
in later generations, but the trend in Figure 6¢c suggests tl 0% TN
evolution for both algorithms is not completely finishedt.ye 2
After 4000 generations on average 14 features have be
identified to be relevant using eSNN, 18 in the case of NBC
We will analyze these features from an ecological point c
view in the next section.

The average accuracy reported by the best individu.
in the population after the evolution of 4000 generations 205550 1000
was constantly abovg80% for both tested classifiers, NBC
displaying a slightly higher variance during the evolution
run compared to eSNN. It has to be noted that there is 8: 8 Along with the features, the parameters of the eSNN inade

. . optimised. Each parameter displays a rather smooth evolutidicating
difference about the way NBC and eSNN classify a tesge presence of careful control.
sample: While NBC always reports an answer (either class
0 or class 1), eSNN is also able to deny classification (either
class 0, class 1 anndecidedl The latter case is consideredin an evolutionary algorithm.
to be a miss-classification of the presented sample. HenceFigure 8 presents the evolution of the parameters of the
the classification accuracy of NBC is at a very high levebSNN architecture. All three pairs display a steady trerdl an
at the beginning of the evolutionary run, since a randorgvolve constantly towards a certain optimum, not reporting
classification would already correspond to an accuracy @o much variability. We take this as an indicator that VQEA
approx. 50%. While eSNN denies to report an answendeed controlled these parameters carefully.
for most presented test samples at the early stage of the
optimisation, its classification accuracy starts at a mudB. Ecological Point of View
lower level than NBC. In later generati_ons the accuracies Using the eSNN classifier on average only 14 features
of both algorithms can be compared fairly. Once more thgere selected in a particular evolutionary run, but sinee th
overall trend suggests that the evolutionary optimisatiogyolved feature subsets were not identical in all of the runs
could have been continued, expecting further improvemeghq the presence/absence of features is also to be expected
of classification accuracy. This is especially obvious f® t :onditional to the presence/absence of other features, we
eSNN based feature selection, but also in the case of NBzye decided to include all features into the ecological
a small positive trend is noticeable. analysis, that have been selected by at least 20% of the 30

We were interested how strong the classification accuragydependent runs. Thus in the case of eSNN the analysis
is dependent on the feature number for each of the tested idicates 25 variables that were considered as being iedolv
gorithms. In Figure 7 this dependence is investigated ftin boin the determination of the classification outcome after the
classifiers. Each point in the diagram corresponds to a tupdgolution of 4000 generations.

(accuracy, feature number) obtained from the generationalTable | summarizes the final feature subsets obtained by
best individual of every generation. The color indicates theach of the classification methods. A feature is marked
generation itself, the lighter the color the later the gatien  as rejected when at least 20% of all performed runs have
in which a given tuple was obtained. In the case of eSNRljiscarded this feature at the end of the evolutionary run.
(cf. Figure 7a) a strong relationship between feature numbgra feature was selected in 80% or more of all runs, it is
and accuracy can be observed. Even for small decreasfisrked as selected. Otherwise features have been labeled
of the feature number significant accuracy improvementss “undecided” in the table. As mentioned earlier the table
are reported. Since the evolutionary search is driven by theflects the fact that eSNN is more consistent in rejecting
classification accuracy only, solutions having a small nemb features than NBC. For this reason we have concentrated
of features represent a strong attractor in the search spacgur ecological analysis on the results of eSNN only. The

In the case of NBCdf. Figure 7b) smaller feature subsetsfeatures included in this analysis are presented by the two
are also rewarded by higher classification accuracy. Nesert columns (“Undecided” and “Select”) corresponding to the
less this award is less obvious compared to the one obsene8NN method in Table I.
in eSNN. Thus the fitness landscape (in terms of feature Winter (TWIN2, TWIN3, TWINTER) and early spring
number) represented by NBC appears to be more flat th@hiSPR1) temperatures, and early summer rainfall (RSUMR1)
the one represented by eSNN. It is noteworthy that flat fithesgere particularly strong features along with the degregsda
landscapes are an undesired property of any fitness functiidD5 and DD15). Degree-days are the accumulated number
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Fig. 7. The diagrams show the accuracy as a function of thereatumber for eSNN and Mz Bayesian classifier. The different gray levels correspo
to the generation in which a given data point was obtainee:. lighter the color the later the generation. For eSNN their@ay is highly dependent on
the feature number, which is in strong contrast to NBC.

of degrees of temperature above a threshold temperattire (ower numbers of features receive only little fitness reward
and15° in this case) over time (in this dataset over the wholeSNN reported a clear correlation between classification
year). It would be expected that the latter two variablesldiou accuracy and feature number. As a result eSNN was capable
be closely correlated. These results correspond to othef decreasing the feature number not only faster than NBC,
analysis where more conventional statistical and machir®it was also more consistent in excluding features from the
learning methods were used to identify the contribution odptimisation process. NBC on the other hand appeared to be
environmental variables t€. capitatapresence or absence more consistent in selecting features, while being less con
[24]. While there is no indication from this analysis whethesistent in rejecting them. The obtained feature subsetse wer
the features have a negative or positive effect on the distidnalyzed by an ecological expert and found to be coherent
bution of the species, it is known th@t capitatais limited with current knowledge in this area. In a previous analysis i
by the severity of temperatures in the winter and early gprinwvhich conventional statistical methods were applied oa thi
and extremes of wet or dry conditions in the summer [25]dataset without performing any feature selection befardha
The accuracy of the resulting model on the test sef worse classification accuracy was reported.
however, is not only higher than that for the model using Further development of the QiSNN framework is planned,
the full feature set, but also higher than that found by [24lvhere the presence/absence of spikes at a given time in a
using a range of conventional models. The clear potential f@QiSNN will also be represented probabilistically with the
further improvement of classification accuracy with modelise of quantum-inspired representation as suggested jn [26
refinement, as well as automatic optimisation of parametef27]. Also the rather strong disagreement of the investigat
makes this an extremely useful approach for the analysis aaffjorithms will be part of the future work.

modelling of complex, noisy ecological data.
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