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Abstract

Game theoretic techniques have become deliberate with social network analysis. Studies

show that contemporary approach on social network analysis is unable to collectively

evaluate the rationality of individuals and synergies that occur between them. Thus,

game theory has been selected as an alternate approach for social network analysis to

overcome such shortcomings (Narahari, 2011). A field of social network analysis is

to examine the strength of ties within a social group and this is referred to as social

cohesion.

The study of social groups and their tendency to stay in unity is highly correlated

to interpersonal relationships and the benefits one can gain to remain in a group —

whether it be monetary, popularity, social influence or social needs of an individual (Liu

& Wei, 2016). Building upon this foundation, we design a type of coalitional game

where the social influence rating of members is affected based on the affiliated type of

network structure. We first define group cohesion and then assess cohesion on special

classes of graphs via the core stability of a coalition. We then study the core stability of

a special class of weighted graph followed by the implementation of weighted graphs

as a regular expression which can be read by a finite automaton.
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Chapter 1

Introduction

1.1 Introduction

Social networks have become crucial in many aspects of human life. The social

surrounding of a person can influence a person’s choice of purchase, their judgment

towards another person and even the decision for joining a social group. Humans feel the

needs to create social ties with others as due to their desire to feel a sense of belonging

— being in social groups or commercial organizations. The question on how social

groups are bound together has been an ongoing research for sociologists since Durkheim

(Moody & White, 2003). The analysis on the basis of group unity enables sociologists

to clarify important aspects of social unity. These aspects include conformity of groups,

the emergent norms, and social classes (Semin & Fiedler, 1996) (Friedkin & Johnsen,

2011) (Hogg, 1992). A study adapted from Jones (Jones, Livingstone & Manstead,

2011) showed that a good social group identification and strength of bonds within a

group can affect a child’s reaction towards bullying as well as their group emotion

affects the propensity to react towards the actions of bullying.

Formation of a social group occur when ties are developed between members of a

group. The cohesion of a social group refers to the strength of bonds between members
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Chapter 1. Introduction 8

of a group and how they tend to “stick together” as a whole. In a study by Berman

(Berman & Phillips, 2004), social cohesion is referred to as one of the four import-

ant elements of social quality — the other three being socio-economic status, social

inclusion and empowerment. These elements are said to have an inherent correlation

between self-realization and the composition of collective identities. Discussions on

the subject matter of social cohesion can be seen as a complex task. Social cohesion,

as discussed in (Beck, 2001), has significance in the process of formation, preserving

formation or disrupting social groups and the underlying social structures that hold a

social network.

One aspect of social cohesion as defined by sociologist Durkheim (Berman &

Phillips, 2004) is that the key component of social unity is the constant allocation of

diverse tasks. This holds true since groups strive to complete tasks that are given at hand

due to the benefit gained by cooperating since collective expertise and resource findings

usually result in a better outcome. Following this motivation, we want to evaluate how

a person’s goal can be satisfied via the distribution of the accumulated outcomes. Game

theoretic techniques have been selected as alternative approaches for conventional social

network analysis to study such a problem assuming that every person is rational. A

branch of game theory is extended to coalitional games which study stable coalitions

between a group of players such that the collective gain of the group is divided in a way

that satisfies individual needs.

Motivated by those factors mentioned previously, we combine the idea of coalitional

games and social networks, and then define a coalitional game on a set of rational

players that are in the form of social networks where every vertex in the social network

represents a player and an edge represents a type of relationship between two players.

The outcome of a game is dependent on the structure of the social network that should

portray the social needs of an individual (Liu & Wei, 2016). While coalitional game

theory is applicable to such a study, there still are certain aspects that need to be taken
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into consideration when building our model. For instance, coalitional game theory

does not examine cohesion of a group since notions of network structures are not

thought-through even though cohesion directly relates to stability.

We now consider the notion of social influence and relate this to network formations.

Naturally, humans form networks based on a simple decision: whether to become

friends or to create a family. A study from Christakis and Fowler (Fowler & Christakis,

2008) shows that the decision to form networks is much more complicated than it is,

that is, multiple decisions on forming networks lead to much more complex variations

of networks. In their study, they have found that a person can influence another to

study for a test, gain weight or even start to abuse alcohol. Thus a person would form a

friendship or join a social group if they are able to “impact” — regardless an impact is

positive or negative, and regardless an impact is on a social group or an individual.

Subsequently, we define payoffs following the notions of social influence: People

will only stay in groups where they feel of importance and that they are able to impact

an individual or a group. That is, the payoff of any player in a subnetwork should

provide information of an individual’s positional advantage. Here we only consider

those concepts of positional properties that contribute as factors that affect a person’s

positional advantage. We view social influence rating as an index of measurement for

inter-relational bonds and likings amongst people. Consequently, the higher the rating

is, the more important and influential the person is in a group. We measure the level of

influence by adopting the idea of degree centrality as proposed in (Liu & Wei, 2016),

that is, payoffs are measured in terms of the degree of a vertex.

We now provide an overview of our main contributions in this thesis. Our first result

proposes an influence game on a social network and describes cohesion in terms of the

solution concepts of a coalitional game. In particular, we associate cohesion with the

core stable concept which is one of the main solution concepts in the study of coalitional

game theory. Building upon this, our second result is to implement the notion of core
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stability of our game and its consistency on special classes of social network structures.

We then apply theoretic concepts to a class of graphs known as the weighted graphs.

In this study we only consider weighted paths. Lastly we show that we are able to

implement such paths as an automaton.

The motivation of this thesis is a result of the developing research in the area of

social network based games. In (Galeotti, Goyal, Jackson & Vega-Redondo, 2009)

and (Jackson & Zenou, 2014), Galeotti and Jackson’s aim was to study how a person’s

behavior and payoff are affected by the type of social network structure. Their focus

was on the behavior of the surrounding neighbors of a player and the affects they have

on the payoff gained, but our focus here is that players are not affected by surrounding

neighbors and are considerate of themselves being better off. Furthermore, Saad et

al. (Saad, Han, Debbah, Hjorungnes & Basar, 2009) discuss three types of coalitional

games namely: canonical coalitional games, coalitional formation games and coalitional

graph games. In each of these games, Saad et al. differentiate each game by their

respective payoff functions and latter show the applications on network analysis tailored

for network engineers. We adopt the coalitional formation games in our study. This

thesis extends to the study in (Liu & Wei, 2016), where the game is defined under

popularity and we review a few special classes of networks that have been assessed in

the paper then investigate classes that have not yet been studied. Also, we extend the

study to the class of weighted path graphs, following the idea in (Brown & Housman,

1988), and show how it provides a much more complex situation when strength of ties

is taken into consideration for a social network structure.



Chapter 2

Preliminaries

In this chapter, Section 2.1 consists of preliminaries on both Cooperative Game Theory

and Graph Theory. Here we address important fundamentals that will be utilized

throughout the study. Section 2.2 then assesses the core stability of several classes of

(unweighted) graphs each of which represents a form of social network structure.

2.1 Fundamental Concepts

2.1.1 Cooperative Game Theory

Game theory provides a formal language and analytical structure for interdependent

decision making amongst rational players in competitive environments. There have

been many applications of game theory to a variety of situations where players’ choices

of interactions influence the outcome. One branch of game theory studies the behavior

of rational players when they cooperate with one another under the condition that

each player is guaranteed an advantage. This branch of game theory is known as the

Cooperative Game Theory.

Under the branch of cooperative games, there are two main categories, one in which

11
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players are able to compare and transfer utility (transferable utility games or TU games),

and one in which it is not possible for players to compare utility (non-transferable

utility games or NTU games). In the context of TU games, often the total worth of the

coalition is associated with a real quantifiable value and this value is distributed between

the coalition members with no restrictions imposed. NTU games however define the

worth of the coalition as a “consequence” in a way that the outcome (payoff) of a player

in the coalition is dependent on the collective actions of members in the coalition.

One crucial part of cooperative game theory is to determine the payoff distributions

for the players within different collaboration scenarios. TU games were introduced

by Neuman and Morgenstern (Neumann & Morgensterni, 1972) to model payoff dis-

tributions whereby utilities are freely transferable. As for the latter where utility is

non-transferable, Aumann and Peleg (Aumann & Peleg, 1960) formalized this scenario

and specified that the games are, instead of having one worth, described by classifying

all potential payoffs for each member of the coalition.

In this thesis we strictly put our focus on games with transferable utilities. A formal

definition of cooperative TU games is given as follows:

Definition 2.1.1 A cooperative game with transferable utility (TU game) is a pair

(N,v) where N is a (finite) set of players, and v(⋅) ∶ 2N Ð→ R is a characteristic

function such that v(∅) = 0.

A coalition is a non-empty subset S of N and the grand coalition is the set N as

a whole. A coalition structure C = {C1, . . . ,Cl}, is defined as a partition of N , that

is, ∀i ≠ j ⇒ Ci ∩Cj = ∅, and ⋃li=1Ci = N . The value of a coalition S ∈ C is given by

vC (S).

Definition 2.1.2 The characteristic function is said to be superadditive if for all

C1,C2 ⊆ N and C1 ∩C2 = ∅, we have
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v(C1 ∪C2) ≥ v(C1) + v(C2).

The concept of superadditivity argues that by cooperating (forming large coalitions

out of smaller disjoint coalitions), the value is at least that of the value obtained from

forming smaller disjoint coalitions. In a superadditive game, coalition guarantees a

higher (if not equal) worth. For further readings on the types of characteristic functions

of cooperative games, the reader is referred to (Airiau, 2013) and (Branzei, Dimitrov &

Tijs, 2008).

The characteristic function v quantifies the worth of a coalition in a game such that

for every coalition S ⊆ N , v(S) is the generated worth to be shared amongst members

of S. For any coalition S, the cardinality ∣S∣ denotes the number of players in the

coalition. The total utility is distributed to players with a rule that constitutes fairness

(a rule of equal proportions). The vector x ∈ R∣S∣ with each element xi representing

the utility gained (payoff) for player i ∈ S describes how the worth is shared between

members of coalition S and this vector x is the payoff distribution. We also use the

notation x(S) = ∑i∈S xi to represent the total payoff of coalition S.

A solution concept for cooperative games is to assign a set of outcomes (payoff

distributions) to each game. Each solution concept represents the consequences of the

players for the coalition formation and this should provide a set of agreed terms that are

stable in some sense. The stability requirement is that there should be no incentive for

players to form coalitions on their own. The most relevant set of solution concepts that

can be found in Osborne and Rubinstein (Osborne & Rubinstein, 2007) are the core,

the Shapley value, the kernel, the nucleolus and the bargaining set. For simplicity, we

restrict our study to only the core.

The concept of core was introduced by Gillies (Gillies, 1953). This solution concept

corresponds to the idea of Nash equilibrium of noncooperative games, that is, if there

is no incentive for players to breach the current coalition to obtain an outcome that is
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better for all the members of the coalition, then the outcome is stable. Extending this

concept to TU games, a payoff is stable with the condition that no coalition can obtain a

payoff that is greater than the all members’ payoffs combined.

Before formally introducing the definition of the core, we first define an outcome

for a TU game as follows.

Definition 2.1.3 An outcome of a game is a payoff distribution that is both efficient

and individually rational for all players whereby

Efficiency: The payoff distribution for each player is the division of the worth of

the grand coalition x(N) = v(N), i.e., there is no loss of utility with the vastness of the

population.

Individual rationality: A player i only decides to join a coalition if xi ≥ v({i}), i.e.,

a player is better off by joining a coalition than being on its own, (Airiau, 2013).

For any coalition S ⊆ N , a payoff vector x ∈ R∣S∣ is S-feasible if x(S) ≤ v(S). We

extend this notion to define an objection. Let (N,v) be a cooperative TU game and

take a coalition structure C .

Definition 2.1.4 Let y ∈ R∣N ∣ be an outcome, and S ⊆ N be a coalition. We say that S

is an objection to y if there is an S-feasible payoff vector x ∈ R∣S∣ such that xk > yk

for any k ∈ S. Alternatively, we say that S blocks y through x.

In other words, a player k is better off joining a coalition S.

Definition 2.1.5 The core of a TU game is the set of all outcomes y such that there

are no objections by means of any set S ⊆ N .

We associate the notation of core with “stability” since no members of a coalition

will receive a better payoff by leaving the former coalition. Though the core may seem

to be a much more enticing and preferred way of studying stability, the core of a TU

game may be non-existent in some cases, that is, the core can be empty. However, for
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the purpose of this study we assume that the TU game is supperadditive and the core is

non-empty.

2.1.2 Graph Theory

In 1736, Swiss mathematician Leonhard Paul Euler solved the Königsberg Bridge

Problem using graph theory and thenceforth known as the inventor of graph theory

(Biggs, Loyds & Wilson, 2006). The very first book on graph theory was written in

1936 (after a good 200 years) by Dénes König (König, 1950) and since then graph

theory has expanded into a prominent branch of mathematics.

Graph theory is now considered one of the primary mathematical research tools

due to it’s wide range of applications in a variety of fields including computer science,

electrical engineering, sociology, marketing, business studies and so on (Bondy &

Murty, 2002). Networks, being social, technological, biological or informatics, form

one of the major areas that relates to graph theory. Typically, connected networks can

be expressed in the form of graphs (Acemoglu & Ozdaglar, 2009),(Zafarani, Abbasi

& Liu, 2014) where a set of people (or objects) are represented by a set of nodes, also

commonly known as vertices, while the connections between them are known as the set

of edges.

Following this notion, we formally introduce some basics and common notations

used in graphs.

Definition 2.1.6 A graph G consists of a (finite) vertex set V and a (finite) edge set E

which consists of 2-element subsets of V . The elements in the set V are called vertices

(or nodes) of G and the elements in the set E are called the edges of G.

We write G = (V,E) where G is a graph with vertex set V and edge set E. V (G) and

E(G) are often used to denote the vertex and edge sets of G respectively rather than

writing V and E. If there is an edge joining vertices u and v, we write e = {u, v}.
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Figure 2.1: A drawing of a graph G

Definition 2.1.7 A loop is an edge that joins a vertex to itself. Two or more edges

that are connected to the same pair of vertices are known as parallel edges. A graph

containing no loops or parallel edges is called a simple graph.

Note that if there is a loop at a vertex u, then we write e = {u,u} instead of e = {u}.
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Figure 2.2: A drawing of a simple connected graph H

Figure 2.2 shows an example of a simple graph. Simple graphs are undoubtedly

more commonly used to model networks (Kleinberg & Easley, 2010) under the study

of network analysis based on the belief that there is at most one link between any two

people or objects.

Definition 2.1.8 A vertex u is said to be adjacent to vertex v in a graph G if e = {u, v}

is an edge of G. In this case, e is called incident with u and v.
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Example 2.1 In Fig. 2.1, edge e7 is a loop, while edges e1 and e2 are parallel. The

edge e3 is incident with vertex u and vertex w, thus u and w are adjacent.

Definition 2.1.9 The degree (or valency) of a vertex v, denoted d(v), is defined as the

number of edges incident with v.

A loop that is incident with vertex v adds 2 to the degree of v. A vertex v of degree

0 is known as an isolated vertex. In any graph G, an edge {u, v} represents a certain

relation between the two vertices u and v.

Definition 2.1.10 A path from a vertex u to vertex v is a finite alternating sequence of

vertices and edges such that no vertex (and thus no edge) appears more than once.

Example 2.2 Fig. 2.2 shows an example of a simple connected graph. There exists a

path from u to v such that

ue9ze4we5xe7ye6v

and no vertices or edges appear twice.

Definition 2.1.11 In a graph G, vertices u and v are connected if there exists a path

from u to v. A graph G is said to be connected if every pair of vertices in G are

connected.

Example 2.3 Fig. 2.2 shows a connected graph H since for every pair of vertices in

graph H there exists a path.

For any vertex v of graph G, we let the set of vertices that are connected to v be

ς(v). An induced subgraph of G by the set ς(v) is defined to be the graph having the

vertex set ς(v) and those edges that are connected to v in G. For further readings on

graph theory readers are referred to (Clark & Holton, 2005).
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2.2 Influence Games and Core Stable Coalitions

In this section we review some of the definitions and results from (Liu & Wei, 2016),

expanding some of the details for more elaborate results. In Section 2.2.1 we introduce

a coalitional game that merges both literatures and then present some new notations that

will be used in this study. The latter presents and analyses the effects of various social

network formations on the solution of the coalitional game, the core. Our focus here is

to study which special classes of graphs belong in the core, i.e. contain no objections.

2.2.1 Groundwork and Notations

A social network can be regarded as an undirected graph G = (V,E) where V denotes

the set of vertices and E the set of (undirected) edges. We define a coalitional game

on G whereby the set of vertices V denotes a set of rational players. The edges in the

set E represents a form of social relation between two players u and v, being friends,

colleagues, acquaintances or a consanguinity.

Definition 2.2.1 A coalitional game (TU game) is a pair (V,ϕ), where V is the set of

rational players and ϕ(⋅ ) ∶ 2V → R is a characteristic function.

A coalition structure C is a partition of the set of players V , i.e., a collection of

coalitions, C = {C1,⋯,Ck} such that ⋃1≤i≤kCi = V and for ∀i ≠ j,Ci ∩Cj = ∅. The

value of a coalition S ∈ C is given by ϕC (S). The grand coalition structure is the set

of V itself, such that CG = {V }.

Let (V,ϕ) be a TU game. For any coalition S ⊆ V , we adopt the same notation as

for a payoff distribution x ∈ R∣S∣ such that each component xi is the utility of player

i ∈ S. A coalition structure is stable provided that no players will benefit from joining a

new coalition. Let z ∈ R∣V ∣ be a payoff distribution. Recall that a set of players S ⊆ V
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is an objection to z if there exist a S-feasible payoff distribution x such that ∀u ∈ S,

xu > zu.

Definition 2.2.2 A coalition structure C corresponding to a coalitional game

Γ = (V,ϕ) is core stable if it contains no objections.

Definition 2.2.3 Let C be a coalition structure corresponding to a coalitional game

Γ = (V,ϕ). We say that a member S of C blocks C if S is an objection to some outcome

y ∈ R∣N ∣.

It is clear that if a coalition structure is blocked by any of its members then it is not

core stable.

A person’s decision to affiliate oneself to a social group partially depends on whether

one could have an impact (or influence) on members of the group, being negative (e.g.

smoking, alcohol abuse) or positive (e.g. exercise, eating healthy etc.) social impacts.

Following this intuition, we propose a type of coalitional game that reveals a person’s

level of influence, also referred to as the social influence rating. Studies from preceding

years in the area of social networks have been highly associated with centrality which

measures the level of “importance” of a person (Zafarani et al., 2014).

A centrality measure, whether it is KATZ, degree, betweenness, or eigenvector etc.,

provides information on a person’s strategical advantage (Liu & Wei, 2016). In the study

of social networking, we often think of people with the highest number of connections

to be important. The idea of degree centrality uses this underlying concept and puts it

into measure. In other words, the degree centrality of a vertex u ∈ V is the degree of

vertex u which we denote as d(u). In this thesis, we denote the degree of a player u in

a coalition S with dS(u).

We apply the notion of degree centrality and relate it to a person’s influential status

which is vital in terms of a person’s social need or commercial affairs (Freeman, 1978),
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(Gruman, Schneider & Coutts, 2007). Psychological studies indicate that a person’s

level of influence highly correlates to social group formations, decision making in

business engagements, group tasks handling etc. (Guimond, 2006), (Christakis &

Fowler, 2009).

Definition 2.2.4 The social influence rating of a vertex u in a subset S ⊆ V is meas-

ured by χS(u) = dS(u)
∣S∣ .

Consequently, an isolated vertex (singleton) has social influence rating χ{u}(u) = 0

for every vertex u. For simplicity, we will reinstate the term social influence rating with

the term influence level.

Let U be a nonempty subset of the vertex set V of G. A subgraph H of G, induced

by U , is a graph such that the vertex set of H is U and the edges of H are those edges

of G whose ends are contained in U . If t ∈ H is connected to every vertex in H , then

t has the highest level of influence in H where χH(t) = ∣H ∣−1
∣H ∣ . Thus the range of the

influence level of any player is 0 ≤ χ < 1.

Definition 2.2.5 The influence game on G = (V,E) is a coalition game

Γ(G) = (V,ϕ) such that ϕ ∶ V × 2V → [0,1) is described by ϕ(u,S) = χS(u).

The set of outcomes of the influence game Γ(G) represents a form of settlement that

bonds the set of players in such a way that no player receives an incentive by disrupting

the formation.

Lemma 2.2.6 (Euler’s Handshaking Lemma) (Goodaire & Parmenter, 2002) For any

graph G = (V,E), the sum of the degrees of the vertices is twice the number of edges;

that is

∑
v∈V

d(v) = 2∣E∣.
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Let S ⊆ V be a coalition. We use E(S) to denote the set of edges whose ends in are in

S. The total utility of S is described by taking the average degree in S; that is

∑u∈S ds(u)
∣S∣ = ∑u∈S χS(u) = ∑u∈S ϕ(u,S).

Applying Euler’s lemma, we obtain

∑u∈S dS(u)
∣S∣ = 2∣E(S)∣

∣S∣ .

The total utility is regarded as the synergy between players within the set S.

Social cohesion has been defined as the tendency of a group to remain in unity to

satisfy members in terms of social needs (Liu & Wei, 2016). We adopt the notation of

social cohesion and use core stability of the influence game Γ(G) to express cohesion

of a group. In particular, if a coalition structure C is not core stable, there must be a set

S of players whose coalition will allow every agent to receive a gain more than their

former coalition C .

Definition 2.2.7 If the grand coalition structure CG of a social network G = (V,E)

corresponding to the influence game Γ(G) is core stable, then G is cohesive.

Based on the definition above, all members in the grand coalition structure CG will

find no incentive to leave the formation and join another coalition.

Theorem 2.2.8 (Connectivity). If a coalition structure C of G is core stable then any

induced subgraph in S ∈ C is connected. Thus a network G is cohesive only if it is

connected.

Proof: Suppose T and W are two non-empty sets and there are no edges between any

pair of vertices between T and W . Take S = T ∪W . Thus we have for any v ∈W :

χW (v) = dW (v)
∣W ∣ > dS(v)∣S∣ = χS(v).
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Thus W blocks the coalition structure C . ◻

If there exists no path in G then no two players will benefit by forming a coalition

by Theorem 2.2.7.

Definition 2.2.9 A set S ⊆ V is known as a social party ofG if the subnetwork induced

on S is connected. Then a party structure is a coalition structure that only contains

social parties.

In (Dunbar, 1993), evolutionary anthropologist Robin Dunbar claims that every

person has a limited capacity in his/her social circle. According to Dunbar, the number

of people whom a person can maintain a meaningful relationship is approximately 150,

known as Dunbar Number nowadays. Based on this idea, we provide the next theorem

that signifies cohesion to be a property of small networks.

Theorem 2.2.10 Suppose the maximum degree of a graph G = (V,E) is denoted as

δ(G). Then G is cohesive only when ∣V ∣ ≤ 2δ(G) and ∣V ∣ ≠ 1.

Proof: It is trivial that G is not cohesive when ∣V ∣ = 1. We assume cohesion for

∣V ∣ > 2δ(G). By Theorem 2.2.7, G is not cohesive if G is disconnected. So G must be

connected and we pick two vertices u, v ∈ V and let an edge e ∈ E be incident to u and

v. Thus

sup{d(u), d(v)} ≤ δ(G) < ∣V ∣2

and so we have

sup{χV (u), χV (v)} < 1
2 .

Therefore the edge e blocks G, making G not cohesive. ◻
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2.2.2 Core Stable Graph Classes

In this section, we assess core stability of some special classes of graphs corresponding

to the influence game Γ(G). A few classes have been investigated in (Liu & Wei, 2016)

namely the complete graph, the star graph and the complete bipartite graph. In this

study, we review these three classes of graphs and also present some classes that have

not yet been assessed in (Liu & Wei, 2016).

Complete Graphs. A complete graph G = (V,E) is a simple graph where every

distinct pair of vertices is adjacent. A complete graph with n vertices is denoted by Kn.

This type of graphs represent a very compact and sturdy network since every association

is mutual.

w

v

u

y

t

Figure 2.3: A Complete Graph K5

Theorem 2.2.11 Let Kn be a complete network on G = (V,E). Then G is cohesive

since only the grand coalition is core stable.

Proof: Suppose we take a subnetwork S of a complete network Kn and let u ∈ S.

Since we know that S is also a complete network, it follows that

ϕS(u) = ∣S∣−1∣S∣ < ∣V ∣−1
∣V ∣ = ϕV (u)
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since ∣S∣ < ∣V ∣. Thus in the grand coalition the players level of influence is maximal. ◻

Star Graphs. A star graph S̨n with n vertices v1, v2,⋯, vn has single edges join-

ing one (center) vertex v1 to vi (branches) for 2 ≤ i ≤ n. Thus v1 is said to have b = n− 1

branches. This formation represents a typical social network where one is associated to

many others where no mutual interaction exists. In a star graph, the central person v1

would like to be connected to as many people as possible.

v2v3

v1

v4

v5

v6

Figure 2.4: A Star Graph S̨6

Theorem 2.2.12 Let S̨n be a star network. Suppose there is a party structure C of S̨n.

Then C is core stable if and only if the central vertex is adjacent to at least half the

number of vertices. Hence any star network S̨n is cohesive.

Proof: Suppose we take any party structure C . Let a social party be S with the center

player v1 that is adjacent to m other players, i.e. v1 has m branches. For any player that

does not belong in S has influence level of 0 since there are no interactions between

other players apart from v1. Furthermore, χS(v1) = m
m+1 and χS(vi) = 1

m+1 for any

vi ∈ S.

● We first look at the case where m ≥ b
2 . Let T be a social party in C such that

T ≠ S and T contains the center player v1. If ∣T ∣ ≤ ∣S∣, then χT (v1) ≤ χS(v1). If
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∣T ∣ > ∣S∣, then there consists of some branch t ∈ T ∩ S where χT (t) < χS(t). Therefore

T will not block C in any way. So C is core stable.

● Now for case m < b
2 . Suppose the set of branches not in S is denoted by S′. Since

∣S′∣ >m, then in this case for the center player v1, χS(v1) < χS′∪{v1} if center player v1

joins S′ instead. Hence S′ ∪ {v1} blocks C .

It shows that C is core stable iff m ≥ b
2 . ◻

Complete Bipartite Graph. A bipartite graph is a simple graph whose vertex set

can be partitioned into two non-empty sets X and Y with cardinality m and n respect-

ively such that each edge of the graph is incident with a vertex in X and with a vertex

in Y . A complete bipartite graph Km,n is where each vertex in X is adjacent to each

vertex in Y . Suppose m ≥ n and let C be a party structure of G. For a social party

S ∈ C , let S = S1 ∪ S2 such that S1 ⊆ X and S2 ⊆ Y . We denote the cardinalities ∣S1∣

and ∣S2∣ as LS and RS respectively.

u1 u2 u3 u4

v1 v2 v3

Figure 2.5: A Complete Bipartite Graph K4,3

Lemma 2.2.13 The party structure C is core stable only if LS ≥ RS for any S ∈ C .

Proof: Let there be a social party S ∈ C with LS < RS . As we have m ≥ n, then

suppose there is a T ∈ C where T = T1 ∪ T2 with T1 ⊆ X and T2 ⊆ Y . Also LT = ∣T1∣

and RT = ∣T2∣ and let LT > RT . Pick two players u ∈ S2 and v ∈ T1. Thus
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χS(u) =
RS

LS +RS

< 1

2
, and χT (v) =

LT
LT +RT

< 1

2

Hence if u and v form a party H , then

χH(u) = χH(v) = 1
2 .

Thus H blocks C . ◻

u1 u2 u3

v1 v2 v3

Figure 2.6: A Complete Bipartite Graph K3,3

We now look into complete bipartite graphs Kn,n where n > 0. This particular

structure is core stable only if each of the vertices in X is linked to distinct vertices in

Y . This situation is known as a perfect matching of Kn,n.

Theorem 2.2.14 For any social party S ∈ C , a party structure C of Kn,n is core stable

if and only if LS = RS .

Proof: Lemma 2.2.12 implies that for any party structure C with social party S ∈ C ,

if LS = RS , then for any player u, v ∈ S,

χS(u) = χS(v) = 1
2 .

Therefore C is core stable since for any set T ⊆ V there contain some players that have

influence level of at most 1
2 , thus giving players no incentive to break the party structure.

◻
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Following the review on the core stability of complete networks, star networks and

complete bipartite networks as shown in (Liu & Wei, 2016), we now present the results

on core stability of path, cycles and wheel networks.

Path Graphs. A path graph Pn of n vertices is a graph where the vertices can be

arranged in order v1, v2,⋯, vn such that the edges are {vi, vi+1} and i = 1,2,⋯, n − 1.

Subsequently, a path with n vertices will have two terminal vertices of degree 1 and the

other non-terminal n − 2 vertices of degree 2. We let a terminal vertex correspond to a

minor player. A path with a single vertex v is called a singleton (isolated vertex) such

that the χPn(u) = 0. Naturally, any player u would not want to be on its own and would

be connected to at least one other player, so that χPn(u) = 1
2 .

v1 v2 v3 v4 v5 v6

Figure 2.7: A Path Graph P6

Theorem 2.2.15 Let Pn be a path network on G = (V,E). A party structure C of Pn

is core stable only if 2 ≤ n ≤ 4.

Proof: Assume core stability on a party structure C with n > 4. Let S be a social

party of C with n > 4 which contains a player u. Suppose u is a minor player, then

χS(u) = 1
n but if u is not a minor then χS(u) = 2

n . Take any set S′ ≠ S that contains u.

Suppose ∣S′∣ ≤ ∣S∣. If u is a minor we have

χS′(u) = 1
∣S′∣ ≥ 1

∣S∣ = χS(u).

Similarly, if u is not a minor then

χS′(u) = 2
∣S′∣ ≥ 2

∣S∣ = χS(u).
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Then suppose ∣S′∣ > ∣S∣, then there is a v ∈ S′ ∩ S such that if v is a minor we have

χS′(v) = 1
∣S′∣ < 1

∣S∣ = χS(v),

and also

χS′(v) = 2
∣S′∣ < 2

∣S∣ = χS(v)

if v is not a minor. Either way, S′ blocks C . Hence C is not core stable when n > 4. ◻

Recall that a coalition structure C is a collection of coalitions such C = {C1,⋯,Ck}

such that ∀i ≠ j, Ci ∩Cj = ∅ and ⋃1≤i≤kCi = V . We now turn our attention to coalition

structures of path graphs Pn. From Theorem 2.2.14, we have established that a path

with n ≤ 4 is core stable. Here we define forbidden structures as coalition structures that

are not core stable: e.g. if the sets S1 and S2 are in a coalition structure C , members

from either set receive an incentive by forming a new coalition. We study the forbidden

structures in terms of the length of paths with maximum length 4 in a coalition and let

φ(∣S1∣, ∣S2∣) denote a structural pattern.

Theorem 2.2.16 The following structural patterns are forbidden structures:

φ(1,1), φ(1,3), φ(1,4), φ(3,3), φ(3,4) and φ(4,4).

Proof: Let C be a coalition structure and let S1 and S2 be represent two different

coalitions in C . We will prove each case individually.

(i) Suppose we have φ(1,1). This structure represents a set of two singletons where

u ∈ S1 and v ∈ S2. Recall that for a singleton u ∈ C , χC (u) = 0. Then if

S1 ∪ S2 = T where ∣T ∣ = 2, and for u ∈ T ,

χT (u) = 1
2 > 0 = χC (u).
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Hence T blocks C .

(ii) Suppose we have φ(1,3). Here we have a singleton u ∈ S1 and a path consisting

of 3 vertices. Pick a terminal vertex v ∈ S2. Then χC (v) = 1
3 . If S1 ∪ {v} = T ,

such that ∣T ∣ = 2 and

χT (v) = 1
2 > 1

3 = χC (v).

Again, T blocks C .

(iii) Suppose we have φ(1,4). Now we have a singleton u ∈ S1 and a path consisting

of 4 vertices. Pick a terminal vertex v ∈ S2. Then χC (v) = 1
4 . If S1 ∪ {v} = T ,

such that ∣T ∣ = 2 and

χT (v) = 1
2 > 1

4 = χC (v).

Hence T blocks C

(iv) Suppose we have φ(3,3). For this structure, we have two paths consisting of 3

vertices each. Pick any terminal vertex from both coalitions such that u ∈ S1 and

v ∈ S2 with

χC (v) = χC (u) = 1
3 .

Suppose {u} ∪ {v} = T so that ∣T ∣ = 2, then

χT (v) = χT (u) = 1
2 > 1

3 = χC (u) = χC (v)

For obvious reasons, both terminal vertices will form a coalition T and so T

blocks C .

(v) Suppose we have φ(3,4). Now we look at a path of 3 vertices with a path of 4

vertices. Again we pick any terminal vertex from both coalitions u ∈ S1 and v ∈ S2

with χC (v) = 1
3 and χC (u) = 1

4 . If {u} ∪ {v} = T so that ∣T ∣ = 2. Then now



Chapter 2. Preliminaries 30

χT (u) = 1
2 > 1

3 = χC (v)

and

χT (v) = 1
2 > 1

4 = χC (v).

Both terminal vertices have an incentive to disrupt their former coalition, hence T

blocks C .

(vi) Suppose we have φ(4,4). Here we have two paths of length 4. Let u ∈ S1 and

v ∈ S2 be the terminal vertices and

χC (v) = χC (u) = 1
4 .

If {u} ∪ {v} = T such that ∣T ∣ = 2, then

χT (v) = χT (u) = 1
2 > 1

4 = χC (u) = χC (v)

Again we show that both terminal vertices receives a higher gain when joining

forces, hence T blocks C .

Thus any coalitional structure C containing such forbidden structures are not core stable.

◻

Circuit Graphs. The circuit graph C̨n has n vertices (v1, v2,⋯, vn) where single

edges join vi to vi+1 for 1 ≤ i ≤ n and each subscript i is congruent modulo n, i.e. vertex

vn is then joined to v1 to complete the circuit. This graph is of a form of a circle such

that every vertex is in C̨n is of degree 2.
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v1v2

v3

v4
v5

v6

Figure 2.8: A Circuit Graph C̨6

Theorem 2.2.17 Let C̨n be a circuit network on G = (V,E). A party structure C of

C̨n with at most n = 4 vertices is core stable.

Proof: Let us assume core stability for n > 4. Take a party structure C . Since the

degree for every player u ∈ C is 2, we have χC (u) = 2
n . Any subnetwork S of a circuit

graph C̨n is a path network and Theorem 2.2.14 shows that for any path network with

2 ≤ n ≤ 4 players is core stable. Consequently, suppose we have a social party S ∈ C

with at least 2 players, then

χS(u) = 1
2 > 2

n = χC (u)

for n > 4 in C . Thus S blocks C and so C is core stable only if n is at most 4. ◻

Wheel Graphs. A wheel graph Wn with n ≥ 4 vertices (v1, v2,⋯, vn) has only single

edges joining v1 (positioned in the inner center of the graph) to vi and only single edges

joining vi to vi+1 for 2 ≤ i ≤ n while vn joins back to v2, forming an outer circuit. It

follows that the vertices placed “outside” the center vertex has degree 3 and the center

vertex is always of degree n − 1. This type of graph is combination of a star graph S̨n

and a circuit graph C̨n.
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Figure 2.9: A Wheel Graph W6

Theorem 2.2.18 A party structure C of a wheel network Wn is core stable only if

n ≤ 6.

Proof: Assume core stability for n > 6. Take any party structure C and suppose we

take non-center players u and v in C . If players u and v form a party S, then

χC (u) = χC (v) = 3
n < 1

2 = χS(v) = χS(u)

for any ∣C ∣ > 6. Hence S blocks C . Thus C is not core stable for n > 6. ◻



Chapter 3

Weighted Paths and Automata

In this chapter, we turn our attention to a path graph Pn with weighted edges and we

denote this type of graphs as weighted paths. We will assess core stability on this type

of graphs and subsequently implement our weighted edges as a regular expression

that can be read by an automaton. Section 3.1 gives a brief introduction to Automata

Theory, and Section 3.2 presents results on core stability of weighted paths together

with automaton implementation.

3.1 Background

An automaton can be seen as an abstract computing device or “machine”. In 1930’s,

before computers were invented, Alan Turing studied an abstract machine that contained

properties and computational capabilities (at least to a certain extent) of computers

being used today. Turing introduced an abstract machine known as Turing machines

where his aim was to illustrate the limit of a computing machine which also applies to

modern day machines.

Simpler types of machines, also called “finite automata,” were then studied by

various researchers in the 1940’s and 1950’s. These automata turned out to have many

33
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other applications instead of the original purpose of just modeling brain functions. The

study of “grammars” began in the late 1950’s by linguist Noam Chomsky where his

study then proposed that grammars have close relationships to abstract automata. Now,

grammars provide a foundation for certain important software components (Hopcroft,

Motwani & Ullman, 2001).

In computer science, finite automata and formal grammars provide some type of

concepts that are used in the production of important kinds of software. Turing machines

on the other hand provide other concepts that allows users to understand the limitations

of the software. We first provide fundamentals of automata theory and then we will

look into ideas that permeate automata theory: alphabets, strings, languages and regular

expressions.

3.1.1 Automata Theory

An automaton has a system to scan and interpret input, where an input is a string over a

set of symbols known as the alphabet. This input is inscribed as an “input file”, where

an automaton is able to scan and interpret the input but is not able to change the input.

An input file is divided into cells where each cell holds one symbol. The automaton

contains a temporary “storage unit” that contains infinite number of cells where it is

able to modify the contents of the cells. The automaton contains a finite set of internal

states where states can be changed under certain rules.

Example 3.1 We follow the simple example of a finite automaton from (Hopcroft et al.,

2001).

Figure 3.1 shows a simple finite automaton that models an on/off switch such that state

q0 represents “off” state and q1 represents the “on” state. This machine allows users

to press a button and obtain a different effect which depends on the state of the switch

at the moment of time, that is, the machine is able to remember whether it is in the on
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q0start q1

press

press

Figure 3.1: A simple finite automaton model

state or off state. For instance, if the switch is in the off state, then it changes to off state

when the user presses the button and vice versa.

For any finite automata, each state is represented by circles and the arcs between states

are designated a set of “inputs” which represent external impacts on the automata

system. In the set of states, there is one state that is the start state q0 where this is

placed at the beginning of the system. Often there are one or more states that are final

or accepting states {q1,⋯, qn} where ∀n ∈ N.

There are two types of automata; deterministic finite automata (DFA) and non-

deterministic finite automata (NFA). Before providing formal definitions for both DFA

and NFA, we first look at the central concepts of automata theory. These concepts

include a set of symbols called alphabets, a sequence of symbols from an alphabet

called strings and a set of strings from the same alphabet called a language.

Definition 3.1.1 An alphabet is a finite set Σ consisting of elements called symbols.

Example 3.2 Common alphabets include

1. Σ1 = {a, b, c,⋯, y, z} — set of all lower-case letters of the English language.

2. Σ2 = {0,1} — the binary numbers.

3. Σ3 = {0,1,2,⋯,9} — the set of decimal digits.

We can describe any set as an alphabet as long as it is a finite set.
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Definition 3.1.2 A string (or word) w is a finite sequence of symbols constructed from

an alphabet Σ.

A string is a permutation of symbols chosen from an alphabet and a string w is of the

form w = a1a2⋯an with each ai ∈ Σ. For the alphabet Σ2 from the example above,

we have 01001 and 110 that are strings from the alphabet Σ2. There is a string that is

considered for any set of alphabets, called the empty string. This string is denoted by ε

and contains no symbols whatsoever. Subsequently the reverse string wR is written as

wR = anan−1⋯a1. The length of a string w is a number of symbols that are in the string

and this is denoted as ∣w∣. For instance, 01001 has length 5 and ε has length 0.

Definition 3.1.3 Given an alphabet Σ, the set of all strings of a certain length k is

denoted by Σk.

Example 3.3 With any given alphabet Σ, note that Σ0 = {ε}. Suppose we take an

alphabet Σ1 = {a, b}, thus, Σ1
1 = {a, b}, Σ2

1 = {aa, ab, ba, bb},

Σ3
1 = {aaa, aab, aba, abb, baa, bab, bba, bbb}

and so on.

Some may be confused with both Σ1 and Σ1
1 as they contain the same set of

elements. The first Σ1 is an alphabet, where a and b are symbols. However Σ1
1 is

a set of strings of length 1 such that a and b are strings from the alphabet. The set

of all strings over an alphabet Σ is denoted Σ∗. In particular, if Σ1 = {a, b} thus

Σ∗

1 = {ε, a, b, aa, ab, ba, bb,⋯}. Simply put, Σ∗ can be rewritten as

Σ∗ = Σ0 ∪Σ1 ∪Σ2 ∪Σ3⋯∪Σk

Also note that the set of all strings of an alphabet Σ excluding the empty string is

denoted as Σ+, that is, Σ+ = Σ1 ∪Σ1 ∪Σ2 ∪⋯.
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Definition 3.1.4 Let w and y be strings from an alphabet Σ. The concatenation of w

and y is the string formed by joining the strings end-to-head and we denote this wy.

Example 3.4 Note that for any string w and an empty string ε, we have εw = wε = w.

That is, ε is the concatentation identity. Now suppose w = abaa and y = baba then we

have wy = abaababa and yw = babaabaa.

For any string w = a1a2⋯ai of length i and a string y = b1b2⋯bj of length j, then by

concatenating both strings we obtain a string of length i + j ∶ wy = a1a2⋯aib1b2⋯bj .

Definition 3.1.5 A language L over an alphabet Σ is a set of strings over Σ, that is,

L ⊆ Σ∗.

Any language L over Σ does not necessarily include strings that contains every symbol

in Σ. For instance, English is a collection of a set of strings over the alphabet that

contains all the letters.

Example 3.5 Some simple examples of languages over an alphabet Σ = {0,1} are as

follows:

1. L1 = {w ∈ Σ∗ ∶ w has odd lengths of 0’s and equal lengths of 1’s}

2. L2 = {w ∈ Σ∗ ∶ ∣w∣ = 3}

3. L3 = {w ∈ Σ∗ ∶ the sum of the symbols is a prime}

Note that the only restriction for any language L, the string over any alphabet must

be finite. Since languages are merely set of strings, new languages could possibly be

generated by applying standard operations on sets or string operations like concatenation.

For instance, if L1 and L2 are languages over Σ then L1L2, L1 ∩ L2, L1 ∪ L2 etc. are

also languages over Σ. The complement L′ of L is just L′ = Σ∗ −L.
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Following the intuition that new languages can be constructed from existing lan-

guages by performing set or string operations, here we will look at how new languages

are constructed by using the three operations on languages — kleene star (∗), union

(+) and concatenation (⋅). Any combination of the three operations on languages, is

called a regular language. The term regular expressions is then used to describe reg-

ular languages using specific formulas consisting of the three operators mentioned

previously.

Definition 3.1.6 A regular expression over the alphabet Σ is defined as follows:

1. If {a} ∈ Σ∗, a is a regular expression corresponding to the language {a} ∈ Σ∗.

2. ε is a regular expression corresponding to {ε}

3. For an empty language ∅, the corresponding regular expression is ∅.

4. If r and s are regular expressions over Σ corresponding to languages Lr and Ls

respectively, then

(a) (rs) is also a regular expression corresponding to LrLs

(b) (r + s) is also a regular expression corresponding to Lr ∪Ls

(c) s∗ is also a regular expression corresponding to L∗s

5. Regular expressions can only be built up by finitely many applications of the opera-

tions mentioned in rule 1-4.

Thus, a regular language over an alphabet Σ is a language that has some regular

expression over Σ corresponding to it (Chakraborty, 2003). Note that there is an

operator precedence where (∗) binds tighter than (⋅) which binds tighter than (+), thus

(∗) > (⋅) > (+).

Example 3.6 A few examples of simple regular expressions are as follows:
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1. L(a ⋅ b) = {ab}.

2. L(b∗) = {ε, b, bb, bbb,⋯}.

3. L((a + b ⋅ a) ∗ (ε + b))= all strings of a’s and b’s where no two b’s are next to

each other.

Following the central concepts of a finite automaton, we are now able to discuss how a

deterministic finite automaton (DFA) is able to recognize a given language. For instance,

given a language L and an input string w, we are able to design a machine ML that will

either accept the string if w ∈ L or reject it otherwise.

Definition 3.1.7 A Determinisitc Finite Automaton (DFA) is a 5-tupleM = (Q,ΣM , q0, δ, F )

where

Q = Finite set of states

ΣM = Finite set of input symbols

q0 ∈ Q = Intial state

δ ∶ Q ×ΣM → Q = Transition function

F ⊆ Q = Set of accepting states

The term deterministic indicates that for each input, the automaton can transit it

from its current state to only one other state. On the other hand, a non-deterministic

finite automaton is able to transit it to several states at once.

Definition 3.1.8 A Non-Deterministic Finite Automaton (NFA) is a 5-tuple
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M = (Q,ΣM , q0, δ, F ) where

Q = Finite set of states

ΣM = Finite set of input symbols

q0 ∈ Q = Intial state

δ ∶ Q ×ΣM → 2Q = Transition function

F ⊆ Q = Set of accepting states

The notation 2Q denotes the powerset of Q, that is the set of all possible subsets of Q.

Both definitions above show that NFA and DFA are exactly the same except for their

respective transition functions δ. In the case of DFA, we are able to further expand the

definition of δ to δ∗ such that it accepts a string of symbols. In particular, if we have a

string w ∈ Σ∗, a symbol a ∈ Σ and a state qi ∈ Q, δ(qi,wa) = δ(δ∗(qi,w), a).

NFA’s can be generalized further by introducing a transition ε, that is, a transition

between states only require the empty string ε as input. We next define an NFA with

transition varepsilon, written as ε-NFA, the same as a regular NFA but has a different

transition function δ∗ ∶ Q × (Σ∗ ∪ {ε}) → 2Q.

Definition 3.1.9 An ε-NFA is defined as a 5-tuple M = (Q,ΣM , q0, δ, F ). The ε-NFA

M is an NFA except for the transition function that is given by δ ∶ Q × (Σ ∪ {ε}) → 2Q.

For a subset T of Q, the ε-closure of T denoted ε(T ) is a subset of Q such that

1. Every element of T is an element of ε(T ).

2. For p ∈ ε(T ), every element of δ(p, ε) is also an element of ε(T ).

3. Only elements of Q that are results of rules 1 and 2 above that can be elements in

ε(T ).
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Thus the ε-closure of a set T is the set of states that the elements are able to reach

by using only the transition ε. If two mechanisms are able to accept the same group

of languages then these two mechanisms are said to be equivalent (Gopalakrishnan,

2006). In particular, one is able to turn a regular expression into an equivalent DFA

with two steps: (i) convert a regular expression to an NFA via Thompson’s algorithm

or McNaughton and Yamada’s method (Chang & Paige, 1997), (ii) latter convert an

NFA to a DFA using subset construction of Rabin and Scott(Singh, 2014). Note that a

DFA is considered to be a unique class of an NFA and an NFA is also considered to be

a unique class of ε-NFA. Therefore, any language that is recognized by a DFA can be

recognized by an NFA which also can be recognized by a ε-NFA and the converses also

hold(Ginzburg, 1968).

3.2 Automaton Formations

In this chapter, we first define a category of graphs having weights or numbers associated

with each edge namely weighted graphs. We then assess the core stability of a path

graph with weighted edges and implement the set of “weights” as a regular expression

which can be read by an automaton.

3.2.1 Weighted Graphs

The edges (or links) in many networks are not solely in binaries — either there exists

an edge or there is no edge, but have some number k known as weight that is associated

with each edge which displays the strength of ties between one another.

Definition 3.2.1 A weighted graph is defined as a triple G = (V,E,$) where $

denotes the weight function $ ∶ E → R.

Weighted graphs appear to have been used to model numerous problems where
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objects or places (cities, people in groups, computers, etc.) are connected with one

another with links of different weights (Newman, 2004). These weights represent

various informations, being distance between two places, strength of ties between two

people, cost of reaching an objection, the capacity of water flow in a pipe, etc. Note

that we now need to consider the edge weights when examining the payoff of a player.

For instance, suppose v ∈ G is incident with three edges of weights m, l and k, thus

d(v) = m+l+k
n where n is the total number of vertices in G and d(v) ∈ R. We describe

the coalitional game on weighted graphs as follows:

Definition 3.2.2 The influence game on G = (V,E,$) is a coalition game

Γ$(G) = (V,ϕ) such that ϕ$ ∶ V × 2V → R is described by ϕ$(u,S) = χS(u).

v1

v2

v3

v4

v5

v6

v7

v8
50

60

100

200
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95

130

55

85

105

Figure 3.2: A drawing of a Weighted Graph G.

We draw our attention to a category of weighted graph called weighted paths. Recall

that a path graph Pn is a sequence of vertices vi ∈ V such that the edges are {vi, vi+1}

and i = 1,2,⋯, n − 1. We now denote a weighted path as ρn = (V,E,$) where the

weight $(e) represents a form of social tie between two players vi, vi+1 ∈ V that are
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incident to e. We maintain the concept of degree centrality to study the influence level

of a player vi in a weighted path network. Let $`(vi) denote the weight of the edge

incident to vi−1 and vi and let $r(vi) denote the weight of the edge incident to vi and

vi+1. Thus the influence level of a player vi is now

χρn(u) =
$`(vi) +$r(vi)

n

for weighted path graph ρn on n vertices. Following the proof on core stability of

an unweighted path network Pn, we have established that a party structure of a path

network is stable if 2 ≤ n ≤ 4. This differs to the case of weighted graphs. We assess

core stability of weighted path graphs as follows:

Theorem 3.2.3 The core of a party structure C on a weighted path network ρn with

maximum edge weight $ =m is non-empty only if 2 ≤ n ≤ 4.

Proof: Assume that the core is non-empty for n > 4. Take any party structure C and

let the max weight for an edge be m. The maximum possible influence level of a player

is m
2 and the least possible influence level for any player is 1

n . Assume also that any two

players will only form a new coalition if both strictly benefit (gain a higher influence

level). Since the party structure is core stable, then the influence level for any player

vi ∈ C has to be either χC (vi) ≥ $`(vi)
2 , or χC (vi) ≥ $r(vi)

2 so that no player will form a

party with either adjacent players. Suppose we pick a player v4 that is incident to an

v1 v2 v3 v4 v5 v6 vn

h j k m l . . .

Figure 3.3: Party structure C on n > 6 vertices and maximum edge weight m.

edge with maximum weight m. We look into two cases for player v4, where player v4

chooses to form a new coalition with either {v4} ∪ {v3} = S1 or {v4} ∪ {v5} = S2 forms.

Note that since n > 4, we consider the lower bound on n such that ⌊n⌋ = 5.
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Case 1 for S1:

χC (v4) =
k +m
n

≥ k
2
= χS1(v4) and χC (v3) =

k + j
n

≥ k
2
= χS1(v3)

2k + 2m ≥ kn 2k + 2j ≥ kn

2m ≥ k(n − 2) 2j ≥ k(n − 2)

m ≥ k(n − 2)
2

j ≥ k(n − 2)
2

Applying lower bound on n gives

m ≥ ⌊3k

2
⌋ j ≥ ⌊3k

2
⌋

or

Case 2 for S2:

χC (v4) =
k +m
n

≥ m
2
= χS2(v4) and χC (v5) =

l +m
n

≥ m
2
= χS2(v5)

2k + 2m ≥mn 2l + 2m ≥mn

2k ≥m(n − 2) 2l ≥m(n − 2)

k ≥ m(n − 2)
2

l ≥ m(n − 2)
2

Applying lower bound on n gives

k ≥ ⌊3m

2
⌋ l ≥ ⌊3m

2
⌋

As can be seen from case 2 for the coalition S2 that k, l ≥ ⌊3m2 ⌋ and this is not possible

based on the fact that m is the maximum weight of the path ρn. Since S2 blocks C ,

thus this contradicts our assumption that the party structure C with n > 3 is core stable.
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Hence C is not core stable if n > 4. ◻

Following Theorem 3.2.3, we specifically look at the case where n = 4 and assess

which party structure C is core stable.

Theorem 3.2.4 Let C be a party structure on a weighted path network ρn, with n ≥ 2.

Assume any one of the following conditions holds:

1. The weights on the edges are strictly of ascending or descending order.

2. The weights for n − 2 consecutive edges are equal and strictly greater than the

other weights.

3. All consecutive edges are of equal weights.

Then C is core stable only if n ≤ 4.

Proof: Assume core stability for n > 4 on a party structure C and suppose the

maximum weight is m. We need to consider three cases such that: (i) C has n > 4

vertices where the weights are strictly of ascending or descending order; (ii) C has n > 4

vertices with n − 2 consecutive edges are of equal weights; (iii) C has n > 4 vertices

with all consecutive weights being equal. Note that the maximum influence level of a

player is m
2 . Take any non-minor player vi ∈ C . We shall assess each case as follows:

(i.) Case 1: C has n > 4 with weights of strictly in ascending or descending order.

Since the sequence is in order and a path is symmetrical, we need only prove

one way. Here we will only look at a sequence of weights strictly in descending

order. Suppose we pick a player v2 and let the sequence of edge weights be

m > l > k > j > ⋯ > 1. Suppose we take {v2} ∪ {v1} = S1. Then
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v1 v2 v3 v4 v5 vn

m l k j
. . .

Figure 3.4: Party structure C with edge weights strictly in descending order.

χC (v2) =
l +m
n

≥ m
2
= χS1(v2) and χC (v1) =

m

n
≥ m

2
= χS1(v1)

2l + 2m ≥mn 2m ≥mn
2l + 2m

m
≥ n 2 ≥ n

Solving both equations to obtain

2l + 2m ≥ 2m when 2 ≥ n

2l ≥ 0

l ≥ 0

Suppose now we take {v2} ∪ {v3} = S2. Then

χC (v2) =
l +m
n

≥ l

2
= χS2(v2) and χC (v3) =

l + k
n

≥ l

2
= χS2(v3)

2l + 2m ≥ ln 2l + 2k ≥ ln
2l + 2m

n
≥ l 2l + 2k

n
≥ l

Taking the lower bound on n > 4 where ⌊n⌋ = 5 and solving both equations yield

2l + 2m ≥ 5l and 2l + 2k ≥ 5l

2m ≥ 3l 2k ≥ 3l

m ≥ 3l

2
k ≥ 3l

2
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Since the sequence is in descending order, the result where k ≥ 3l
2 can not hold.

Thus, S1 and S2 blocks C .

(ii.) Case 2: C has n > 4 with n − 2 consecutive edges that are of equal weights

strictly greater than the other weights. Suppose v2 is adjacent to a minor player

v1 of weight l <m and a non-minor player v3 of weight m that is also adjacent to

another player v4 of edge weight m. Now suppose {v2} ∪ {v3} = S2. Then

v1 v2 v3 v4 v5 vn

l m m m . . .

Figure 3.5: Party structure C on n > 4 players n − 2 consecutive edge weights m.

χC (v2) =
l +m
n

≥ m
2
= χS2(v2) and χC (v3) =

2m

n
≥ m

2
= χS2(v3)

2l + 2m ≥mn 4m ≥mn
2l + 2m

m
≥ n 4 ≥ n

Solving both equations gives

2l + 2m ≥ 4m when 4 ≥ n

2l ≥ 2m

l ≥m

This case is not valid as m is the maximum weight and l can not be greater than

m and simultaneously it contradicts with our assumption that n > 4.

(iii.) Case 3: C has n > 4 with all edges are of equal weight m. Suppose v2 is adjacent

to a minor player v1 and a non-minor player v3.
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v1 v2 v3 v4 v5 vn

m m m m . . .

Figure 3.6: Party structure C on n > 4 players with equal edge weights m.

(a) Suppose {v2} ∪ {v3} = S2. Then

χC (v2) = χC (v3) =
2m

n
≥ m

2
= χS2(v3) = χS2(v2)

4m ≥mn

4 ≥ n

(b) Now suppose {v2} ∪ {v1} = S1. Then

χC (v1) =
m

n
≥ m

2
= χS1(v1) and χC (v2) =

2m

n
≥ m

2
= χS1(v2)

2m ≥mn 4m ≥mn

2 ≥ n 4 ≥ n

Thus, both inequalities can not hold simultaneously, and this again contradicts

with our assumption for n > 4

All three cases above clearly show that either S1 or S2 blocks C . Therefore, C with

n = 4 is only core stable if there is at least one of the three rules above hold. ◻

Now we look at the core stable party structures C for the case where n = 3.

Theorem 3.2.5 Let ρn be a weighted path network with maximum edge weight $ =m.

A party structure C with n = 3 is core stable only if either of the following holds:

1. All consecutive edges are of equal weights.

2. Any edge with weight $ > 2 must not be adjacent to any edge with weight 1.
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Proof: Let C be a party structure and let $ =m be the maximum edge weight of ρn.

We shall assess both cases separately.

(i.) Case 1. The first case is trivial following the proof from Theorem 3.2.3 for equal

consecutive weights for n = 4. The proof holds for any n ≤ 4.

(ii.) Case 2. Let C be a party structure. Suppose we pick a non-minor player v2 that

is adjacent to a minor player v1 of edge weight 1 and another minor player v3 of

edge weight k such that 2 ≤ k ≤m. Assume this structure is core stable. Thus,

v1 v2 v3

1 k

Figure 3.7: A party structure C with n = 3.

χC (v2) =
1 + k

3
≥ k

2
= χ{v2}∪{v3}(v2) and χC (v3) =

k

3
≥ k

2
= χ{v2}∪{v3}(v3)

2 + 2k ≥ 3k 2k ≥ 3k

2 ≥ k 2 ≥ 3

The last two inequalities can not hold since 2 ≱ 3 is impossible and our assumption

was that k > 2. It shows that if {v2} ∪ {v3}, then the union will block C .

Thus C is only core stable if either one of the two cases hold. ◻

3.2.2 Regular Expressions and Automaton Implementation

From Theorem 3.2.3, we have established that a party structure C of a weighted path

network ρn of at most 4 players contains a non-empty core. The core stable weight

structures for n = 4 and n = 3 have been identified through Theorem 3.2.4 and Theorem

3.2.5. As for the case of n = 2, this is trivial since no players want to be on their own —

there contains no singletons.
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Following the results above, we now examine how we are able to implement each

core stable weight structure as a regular expression that is recognizable by a finite

automaton. To do this we will first need to identify the alphabet, set of strings and

define the languages constructed over the alphabet.

Alphabet, Strings and Language. Suppose we denote the weights $ of any weighted

path ρn as an alphabet Σ such that

Σ = {1,2,3,⋯,m, 1̂, 2̂, 3̂,⋯, m̂} where m ∈ Z+.

Note that each â ∈ Σ represents a “break” of an edge: i.e. a player leaves the coalition to

join another, causing the “removal” of the link between the player and another member

of the coalition. We denote î as a hat symbol and observe that

1 = 1̂ < 2 = 2̂ < ⋯ <m = m̂

where m denotes the maximum weight. A string over Σ represents a sequence of

weights along the path ρn. The strings that we will be assessing here are of maximum

length 3 over Σ+ where Σ+ = Σ∗ − {ε}, since the path of maximum 4 vertices and 3

edges has a non-empty core. We represent the possible strings of lengths 1,2 and 3 with

a, ab and abc respectively, where a, b, c ∈ Σ. Note that a = â, b = b̂ and c = ĉ as defined

above. Now we are able to present the languages over Σ as follows:

1. L1 = {p∣p ∈ Σ+ ∶ ∣p∣ = 1,p consists of non-hat symbols a}.

2. L2 = {q∣q ∈ Σ+ ∶ ∣q∣ = 2,q has consecutive non-hat symbols ab and a, b > 1}.

3. L3 = {r∣r ∈ Σ+ ∶ ∣r∣ = 2,r is the string that starts or ends with 1̂ and a > 2}.

4. L4 = {s∣s ∈ Σ+ ∶ ∣s∣ = 3,s is the string abc or cba and c > b > a}.

5. L5 = {w∣w ∈ Σ+ ∶ ∣w∣ = 3,w is the string abb or bba and b > a}.
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6. L6 = {x∣x ∈ Σ+ ∶ ∣x∣ ≤ 3,x is the string consisting of the same symbols}.

7. L7 = {y∣y ∈ Σ+ ∶ ∣y∣ = 3,y is the string ab̂c and b < a, c}.

8. L8 = {z∣z ∈ Σ+ ∶ ∣z∣ = 3,z is the string âbc or abĉ or âbĉ and b > a, c}.

Recall that operations on languages over the alphabet Σ create a new language over the

alphabet Σ.

Regular Expressions. We now describe the regular expression representing each

language as defined previously. Subsequently, we will apply simple operations (i.e.

concatenation, union, and kleene star) on the regular expressions defined to obtain

another regular expression.

Language Corresponding Regular Expression

{a} a

{ab} ab

{a1̂, 1̂a} a1̂ + 1̂a

{abc, cba} abc + cba

{abb, bba} abb + bba

{a, aa, aaa} a + aa + aaa

{ab̂c} ab̂c

{âbc, abĉ, âbĉ} âbc + abĉ + âbĉ

We are only interested in sequences of symbols that are not permitted, that is, strings

that are not recognizable by an automaton, namely the forbidden strings. We associate

these strings with certain structures that “ruin” coalition or social groups in such a way

that these “disruptions” can not happen. We shall examine forbidden strings as follows:
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Theorem 3.2.6 A forbidden string is a string that contains any of the following se-

quence:

1. â or âb̂ or âb̂ĉ,

2. ab̂ where a < 2b,

3. âb where a > b
2 ,

4. âbc where b > a, c,

5. âbc, abĉ or âbĉ where b < a, c,

6. âb̂c or ab̂ĉ.

Proof: We shall prove for each case as follows.

(i.) The case where the string is â or âb̂ or âb̂ĉ is trivial since no player wants to be

alone, i.e., no singletons.

v1 v2 v3

b̂â

Figure 3.8: The string sequence that “breaks” the structure into singletons.

Any two singletons are better off by forming a coalition since

χ{v1}(v1) = 0 < a
2 = χ{v1}∪{v2}(v1).

Thus it shows that a string containing a consecutive sequence of hat symbols

â ∈ Σ is a forbidden string.

(ii.) Case for ab̂ where a < 2b. Let C be a party structure. Suppose we assume that

such a string is acceptable and let v2 denote the non-minor player in the structure

that is connected to two minor players v1 and v3.
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v1 v2 v3

b̂a

Figure 3.9: The string sequence ab̂.

Therefore it implies that the disruption of the formation is agreeable as players

are strictly better off such that

χC (v2) =
a + b

3
< a

2
= χ{v1}∪{v2}(v2) and χC (v1) =

a

3
< a

2
= χ{v1}∪{v2}(v1)

2a + 2b < 3a 2a < 3a

2b < a 2 < 3

The last inequality contradicts with our assumption that a < 2b. Thus ab̂ with

a < 2b is a forbidden string.

(iii.) Case for âb where a > b
2 . Let C be a party structure. Again we assume that the

string is acceptable and pick player v2 that is adjacent to v1 and v3.

v1 v2 v3

â b

Figure 3.10: The string sequence âb.

Thus we have

χC (v2) =
a + b

3
< b

2
= χ{v3}∪{v2}(v3) and χC (v3) =

b

3
< b

2
= χ{v3}∪{v2}(v3)

2a + 2b < 3b 2b < 3b

2a < b 2 < 3

Again, the last inequality contradicts with our assumption that 2a > b. Hence, 1̂b

with a > b
2 is a forbidden string.
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(iv.) Case for ab̂c where b > a, c. Let C be a party structure. Suppose we assume that

the string is accepted on b > a, c and pick non minor players v2 and v3 as shown

below.

v1 v2 v3 v4

a b̂ c

Figure 3.11: The string sequence ab̂c.

Take {v1} ∪ {v2} = S1 and {v3} ∪ {v4} = S2. Thus

χC (v1) =
a

4
< a

2
= χS1(v1) and χC (v2) =

a + b
4

< a
2
= χS1(v2)

2a < 4a 2a + 2b < 4a

2 < 4 2b < 2a

also

χC (v3) =
b + c

4
< c

2
= χS2(v3) and χC (v3) =

c

4
< c

2
= χS2(v4)

2b + 2c < 4c 2c < 4c

2b < 2c 2 < 4

Either of inequalities b < a or b < c does not hold as this contradicts with our

assumption that b > a, c. Therefore, the string ab̂c with b > a, c is a forbidden

string.

(v.) Case for âbc, abĉ or âbĉ where b < a, c. Let C be a party structure. Assume that

the string is accepted on b < a, c and we let v2 be a non minor player. We will

prove each cases separately.
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v1 v2 v3 v4

bâ c

Figure 3.12: The string sequence âbc.

Case âbc. Take {v2} ∪ {v3} ∪ {v4} = S1.

χC (v2) =
a + b

4
< b

3
= χS1(v2) and χC (v3) =

b + c
4

< b + c
3

= χS1(v3)

3a + 3b < 4b 3b + 3c < 4b + 4c

3a < b −c < b

also

χC (v4) =
c

4
< c

3
= χS1(v4)

3c < 4c

3 < 4

The inequalities 3a < b and −c < b contradict with our assumption that b < a, c.

Thus, the string is a forbidden.

v1 v2 v3 v4

b ĉa

Figure 3.13: The string sequence abĉ.

Case abĉ. Take {v1} ∪ {v2} ∪ {v3} = S2.

χC (v1) =
a

4
< a

3
= χS2(v1) and χC (v2) =

a + b
4

< a + b
3

= χS2(v2)

3a < 4a 3a + 3b < 4a + 4b

3 < 4 −a < b
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also

χC (v3) =
b + c

4
< b

3
= χS2(v4)

3b + 3c < 4b

3c < b

Again, the inequality −a < b and 3c < b contradicts our assumption that b < a, c

and thus this string is forbidden.

v1 v2 v3 v4

â ĉb

Figure 3.14: The string sequence âbĉ.

Case âbĉ. Take {v2} ∪ {v3} = S3.

χC (v2) =
a + b

4
< b

2
= χS3(v2) and χC (v3) =

b + c
4

< b
2
= χS3(v3)

2a + 2b < 4b 2b + 2c < 4b

2a < 2b 2c < 2b

a < b c < b

Clearly, the two inequalities contradict our assumption that b < a, c. Therefore

âbĉ with b < a, c is also a forbidden string.

(vi.) Case for âb̂c or ab̂ĉ. Similar to the first case, this is also trivial since the structure

partitions players into singletons. Thus the singletons v1 and v2 benefit if they

v1 v2 v3 v4

b̂â c

Figure 3.15: String Sequence
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form a party such that

χ{v1}(v1) = 0 < a
2 = χ{v1}∪{v2}(v1).

This also proves for the case ab̂ĉ. Thus, any structure that creates more than one

singleton is not permitted and we conclude that âb̂c and ab̂ĉ are forbidden strings.

This completes the proof for Theorem 3.2.6. ◻

The proof has shown that a string with any of the above structure is not recognizable

by any automaton.

Example 3.7 We demonstrate how we are able to convert the regular expression

abc + cba as presented above to an NFA using the Thompson-McNaughton-Yamada

NFA.

q0start

q1

q2

q3

q4

q5

q6

q7

q8

q9

ε

ε

a

c

b

b

c

a

ε

ε

Figure 3.16: Visualization for the regular expression abc + cba as an NFA.

Recall that every automaton has a single initial state represented as q0 in Figure

3.16 and an NFA will have only one accepting state represented as q9. Since we are

creating an NFA, we are able to begin with the empty expression ε that can be matched

by an automaton which has an initial state q0, by using a transition ε to the accepting

state rather than a symbol from the alphabet Σ.
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Here we have a choice between the expressions abc and cba. We can construct the

NFA for abc + cba by creating an initial state with transition ε to the respective initial

states of abc and cba automata, and followed by an accepting state also with transition

ε from their respective accepting states. Figure 3.16 shows how the expression abc+ cba

is read by an NFA. For the expression abc, we start with an empty expression ε and

transit to state q1. If the automaton reads the symbol a, it will then transit to the next

state q3, followed by the symbols b and c until it reaches the accepting state q9.

The above construction can be applied to other regular expressions as described

previously. We are able construct a DFA from the NFA in Example 3.7 by using the

Rabin and Scott’s subset construction. Recall that any language that is recognized by a

DFA is also recognized by an NFA. For further details on converting regular expressions

to NFAs or DFAs, readers are referred to (Xavier, 2005),(Sipser, 2006),(Chang & Paige,

1997).
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Conclusions and Future Work

The study of social networks is considerably complex. Thus, it is not surprised that

there are immense studies on this topic in the literature. Recent empirical work suggests

that there is a link between social network structures, human behavior and economic

outcomes. The principal motivation of this thesis is to describe the connections between

social network structures with coalitioanal games and it’s effects on human behavior.

In particular, we focus on the simple facets of networks, the number of interpersonal

ties (degree of connections) and presume that each player in the network has complete

information in regards to the number of ties of other players (special classes of graphs).

This enables the formulation of a general framework for the type of games played on so-

cial networks. With this framework, we are able to capture the characteristics displayed

by real world networks such as the cohesiveness of networks formed correlating to the

degree of neighbors.

In this thesis, we have described a type of coalitional games that reflect a player’s

influence level in terms of a payoff function using degree centrality. Through game

theoretic approaches, we are also able to discuss the notion of cohesion of groups based

on payoff functions associated with each network structure as discussed in Section 2.1.2.

Following the results on special classes of graphs, we can see that all types of (fixed)

59
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social network structures have a core stable formation. Through this literature, players

are able to improve their strategies to increase their influence in a group setting. We

also show how the strength of ties (represented as the weight of an edge) between two

players impacts on the core stability of the weighted path networks. Furthermore, we

have implemented the set of weights as a regular expression which is recognizable by a

finite automaton.

Due to the nature and time limit of this study, only a selection of graph classes has

been studied and the only weighted graphs that have been assessed are the weighted

path graphs. There have been a few future research directions that have emerged from

this study. It would be of great interests to examine the other issues that have been

identified through this study — can core stability of tree graphs and random graphs be

examined using the same approach? Is an incomplete bipartite graph Kn,n core stable?

What happens when each vertex is weighted? What about the other solution concepts

of coalitional games (e.g.Shapley value, kernel, nucleolus or stable set)?

Since payoff functions can be associated with various centrality measures, future

work could include looking into applying other centrality measures (e.g. KATZ, close-

ness, betweenness or eigenvector centralities), considering different forms of graphs (e.g.

directed, weighted vertices) and even study the core stability on much more complex

graphs such as trees and random graphs. Furthermore, one could also explore gener-

ating automatons (DFA or NFA) for different networks and study the computational

complexity of each scenario.
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