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The motivation

R. Wijsman and D. Burkholder, Optimum properties and
admissibility of sequential tests, Ann. Math. Statist. 34 (1963),
1-17.

Problem

An, A closed convex in R2; x is in none of the An nor in A.
Consider the supporting lines through x of An and of A.

If An
?
→ A, is the same true for the supporting lines?

The solution was published in:
R. Wijsman, Convergence of sequences of convex sets, cones
and functions II, Trans. Amer. Math. Soc. 123 (1966), 32-45.
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Definition

Call An
Wijsman
−→ A, if d(An, x) → d(A, x) for every x ∈ R2, where

d(A, x) = inf{d(a, x) : a ∈ A}.

This can be extended to the setting of a metric space.

Legendre-Fenchel transformation

X is real normed linear, f : X → R ∪ {+∞} is nontrivial. Then
f ∗ : X ∗ → R ∪ {+∞} defined by

∀p ∈ X ∗, f ∗(p) = sup
x∈X

[〈p, x〉 − f (x)]

is called the convex conjugate of f , and F : f 7→ f ∗ is called the
Legendre-Frenchel transformation.
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Epigraph

The epigraph of f : X → R ∪ {+∞} is defined by

epi(f ) = {(x , α) : x ∈ X , α ∈ R and α ≥ f (x)}.

1 f is l.s.c. if and only if epi(f ) is closed in X × R.
2 f is convex if and only if epi(f ) is convex in X × R.

Wijsman’s Theorem; 1966

On Rn, for nontrivial l.s.c. convex functions,

epi(fn)
Wijsman
−→ epi(f ) if, and only if epi(f ∗n )

Wijsman
−→ epi(f ∗).
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Wijsman topologies

Definition

CL(X ) = the set of nonempty closed sets of (X , d). Under

A ↔ d(A, ·) : X → R,

CL(X ) →֒ RX . The Wijsman topology τw(d) on CL(X ) is just the
subspace topology.

Facts
1 The Legedere-Fenchel transformation is continuous w.r.t.

Wijsman topologies.
2 τw(d) is the weakest topology such that d(·, x) is continuous

for all x ∈ X . It is Tychonoff, and is not metric invariant.
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A brief summary

1 Investigating properties of the Wijsman topology.
2 Extending Wijsman’s theorem to infinite dimensions?
3 Determine relations of Wijsman convergence with others.
4 Using graphical approach to study function spaces.

References
1 G. Beer, Wijsman convergence: a survey, Set-Valued Anal.

2 (1994), 77-94.
2 J. Borwein and J. Vanderwerff, A survey on renorming and

set convergence, Topol. Methods Nonlinear Anal. 5
(1995), 211-228.

3 G. Di Maio and E. Meccariello, Wjisman topology, Recent
progress in function spaces, 55–91, Quad. Mat. 3, Dept.
Math., Seconda Univ. Napoli, Caserta, 1998.
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Two classical results

Lechicki-Levi Theorem; 1987

Let (X , d) be a metric space. Then (X , d) is separable if, and
only if

(

CL(X ), τw(d)

)

is metrizable.

For any dense subset {xn : n ∈ N} ⊆ X ,

̺d (A, B) =
∞

∑

n=1

|d(xn, A) − d(xn, B)| ∧ 1
2n

defines a compatible metric.

Beer-Costantini Theorem; 1990s

X is a Polish space if, and only if
(

CL(X ), τw(d)

)

is Polish for
any compatible metric d on X.
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Three problems we concerned

Motivated by two classical results just mentioned, we are
considering the following three problems.

Three problems

1 Is complete metrizability of (X , d) equivalent to some
completeness properties of

(

CL(X ), τw(d)

)

?
2 When is

(

CL(X ), τw(d)

)

a Baire space?
3 When is

(

CL(X ), τw(d)

)

a normal space?

Problem 1 was an oral question by Beer. Zsilinszky started to
study Problem 2 in 1996. Problem 3 is closely related to an
open question posed by Di Maio and Meccariello in 1998.
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Problem 1: Čech completeness

Čech completeness is a natural candidate for Problem 1.

Example (Costantini, 1998)

Take X to be the real line R with the discrete topology. In 1998,
Costantini constructed a three-valued metric d on X such that
(CL(X ), τw(d)) is not Čech complete.

This example tells that Čech completeness is unfortunately not
a good candidate for Problem 1.

Hence, we have to turn our attentions to other completeness
properties such as Amsterdam properties, or some
completeness properties defined by topological games.
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Problem 2: Amsterdam properties

Base compact spaces

A space X is (resp. countably) base compact with respect to an
open base B if X is regular such that

⋂

F∈F
F 6= ∅ for each

(resp. countable) centered family F ⊆ B.

Subcompact spaces

A space X is (resp. countably) subcompact with respect to an
open base B if X is regular such that

⋂

F∈F
F 6= ∅ for each

(resp. countable) regular filterbase F ⊆ B.

If “regular” is replaced by “quasi-regular” and “base” is replaced
by “π-base”, the resulting spaces are called almost base
compact, almost countably base compact, almost subcompact,
almost countably subcompact, respectively.
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Amsterdam properties: non-separable case

For metrizable spaces, (countable) subcompactness is
equivalent to complete metrizability [de Groot; 1963].

Example (Cao & Junnila; 2010)

There is a metric space (X , d) of the first category such that
(CL(X ), τw(d)) is countably base compact.

Sketch of the example

Give a cardinal κ ≥ ω1, consider the Baire metric dκ on κω

dκ(x , y) =

{

0, if x = y ;
2−n, if x 6= y and n is the least with x(n) 6= y(n).

Let X := (κω)0 be the set of (κω, dκ) consisting of elements
which are eventually zero, and d be the relative metric on X .
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Give a cardinal κ ≥ ω1, consider the Baire metric dκ on κω

dκ(x , y) =

{

0, if x = y ;
2−n, if x 6= y and n is the least with x(n) 6= y(n).

Let X := (κω)0 be the set of (κω, dκ) consisting of elements
which are eventually zero, and d be the relative metric on X .
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For each n < ω, put

Fn = {x ∈ X : x(i) = 0 when i ≥ n}.

Then, Fn is a nowhere dense subspace of (X , d) and
X =

⋃

n<ω
Fn. Thus, (X , d) is of the first category.

Let E the family of all open balls, and B be the collection
consisting of all sets GF ,A ⊆ CL(X ) of the form

GF ,A =
(

X r
⋃

F
)+

∩
⋂

E∈A

E−,

where F and A are finite subfamilies of E . It can be verified that
(CL(X ), τw(d)) is a countably base-compact space with respect
to B.
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Amsterdam properties: separable case

Example (Cao & Junnila; 2010)

There is a separable metric space (Y , ρ) of the first category
such that (CL(Y ), τw(ρ)) is almost countably subcompact.

Y = (ωω)0 × ωω with the box metric ρ. Then, Y is separable, of
the first category. It can be shown that

(

CL(Y ), τw(ρ)

)

is almost
countably subcompact with some π-base B. .

Remarks

The construction of the π-base B in the previous example is
somehow tedious. Recently, Piatkiewicz and Zsilinszky
observed that

(

CL(Y ), τw(ρ)

)

is in fact almost countably base
compact via an indirect approach.

Jiling Cao Wijsman Convergence: Topological Properties and Embedding



What is Wijsman convergence?
Topological properties: a brief review
Recent progress and open questions

Amsterdam and other properties
The Baire property
Normality and embedding

Amsterdam properties: separable case

Example (Cao & Junnila; 2010)

There is a separable metric space (Y , ρ) of the first category
such that (CL(Y ), τw(ρ)) is almost countably subcompact.

Y = (ωω)0 × ωω with the box metric ρ. Then, Y is separable, of
the first category. It can be shown that

(

CL(Y ), τw(ρ)

)

is almost
countably subcompact with some π-base B. .

Remarks

The construction of the π-base B in the previous example is
somehow tedious. Recently, Piatkiewicz and Zsilinszky
observed that

(

CL(Y ), τw(ρ)

)

is in fact almost countably base
compact via an indirect approach.

Jiling Cao Wijsman Convergence: Topological Properties and Embedding



What is Wijsman convergence?
Topological properties: a brief review
Recent progress and open questions

Amsterdam and other properties
The Baire property
Normality and embedding

Amsterdam properties: separable case

Example (Cao & Junnila; 2010)

There is a separable metric space (Y , ρ) of the first category
such that (CL(Y ), τw(ρ)) is almost countably subcompact.

Y = (ωω)0 × ωω with the box metric ρ. Then, Y is separable, of
the first category. It can be shown that

(

CL(Y ), τw(ρ)

)

is almost
countably subcompact with some π-base B. .

Remarks

The construction of the π-base B in the previous example is
somehow tedious. Recently, Piatkiewicz and Zsilinszky
observed that

(

CL(Y ), τw(ρ)

)

is in fact almost countably base
compact via an indirect approach.

Jiling Cao Wijsman Convergence: Topological Properties and Embedding



What is Wijsman convergence?
Topological properties: a brief review
Recent progress and open questions

Amsterdam and other properties
The Baire property
Normality and embedding

Problem 1: properties defined by games

In 2010, Piatkiewicz and Zsilinszky showed the following

(Strong) α-favorability
(

CL(Y ), τw(ρ)

)

is α-favorable;
(

CL(X ), τw(d)

)

is strongly
α-favorable.

Two examples discussed in this subsection tell us that
Amsterdam properties as well as (strong) α-favorability may not
be good candidates for Problem 1.

Open questions

1 If (X , d) is base compact, must
(

CL(X ), τw(d)

)

be base
compact?

2 If (X , d) is subcompact, must
(

CL(X ), τw(d)

)

be
subcompact?
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Probem 2: the Baire property

Concerning Problem 2, we have the following partial results:

Partial results on Problem 2

Given a metric space (X , d),
(

CL(X ), τw(d)

)

is a Baire space, if
1 (X , d) is separable and Baire (Zsilinszky; 1996);
2 (X , d) is complete (Zsilinszky; 1998);
3 (X , d) almost locally separable Baire (Zsilinszky; 2007);
4 (X , d) is hereditarily Baire (Cao & Tomita; 2010).

Open question 3

If (X , d) is a metric Baire space, must (CL(X ), τw(d)) be a Baire
space?
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Open question 3: barely Baire spaces

A Baire space X is called barely Baire if there is a Baire space
Y such that X × Y is not Baire. Several examples of barely
Baire spaces were constructed by Fleissner and Kunen in 1978.

1 There is a metric Baire space Y such that Y 2 is not Baire.
2 For every cardinal κ, there is a family of {Xα : α < κ} of

metric space such that
∏

{Xα : α < κ,α 6= β} is Baire for
every β < α, but

∏

{Xα : α < κ} is not Baire.

Theorem (Cao & Junnila; 2010)

Let (X , d) be an ultrametric space such that no d-ball is
covered by countably many smaller d-balls and no set
{d(y , x) : y ∈ X}, where x ∈ X, has a non-zero accumulation
point in R+. Then (CL(X ), τw(d)) is countably base-compact.
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Problem 2: hereditarily Baire?

Example (Zsilinszky; 1998)

In 1973, Aarts and Lutzer constructed a separable, hereditarily
Baire metric space (X , d) such that X × X is not hereditarily
Baire; In 1998, Zsilinzsky observed that

(

CL(X ), τw(d)

)

is not
hereditarily Baire.

Example (Chaber & Pol; 2002)

In 2002, Chaber and Pol showed that if the set of points in
(X , d) without any compact nbhd has weight 2ℵ0, then
Q →֒ (CL(X ), τw(d)) as a closed subspace. Take X := C(βN)
with the metric d generated by the sup-norm. Then
(

CL(X ), τw(d)

)

is not hereditarily Baire.
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Problem 3: a question of Di Maio and Meccardiello

In 1998, Di Maio and Meccardiello posed the following open
question, which is related to the normality problem.

Open question 4 (Di Maio & Meccardiello; 1998)

It is known that if (X , d) is a separable metric space, then
(

CL(X ), τw(d)

)

is metrizable and so paracompact and normal.
Is the opposite true? Is

(

CL(X ), τw(d)

)

normal if, and only if
(

CL(X ), τw(d)

)

is metrizable?

Next, we provide a partial answer to this question.

Theorem (Cao & Junnila)

For a metric space (X , d),
(

CL(X ), τw(d)

)

is metrizable if, and
only if

(

CL(X ), τw(d)

)

is hereditarily normal.

Jiling Cao Wijsman Convergence: Topological Properties and Embedding



What is Wijsman convergence?
Topological properties: a brief review
Recent progress and open questions

Amsterdam and other properties
The Baire property
Normality and embedding

Problem 3: a question of Di Maio and Meccardiello

In 1998, Di Maio and Meccardiello posed the following open
question, which is related to the normality problem.

Open question 4 (Di Maio & Meccardiello; 1998)

It is known that if (X , d) is a separable metric space, then
(

CL(X ), τw(d)

)

is metrizable and so paracompact and normal.
Is the opposite true? Is

(

CL(X ), τw(d)

)

normal if, and only if
(

CL(X ), τw(d)

)

is metrizable?

Next, we provide a partial answer to this question.

Theorem (Cao & Junnila)

For a metric space (X , d),
(

CL(X ), τw(d)

)

is metrizable if, and
only if

(

CL(X ), τw(d)

)

is hereditarily normal.

Jiling Cao Wijsman Convergence: Topological Properties and Embedding



What is Wijsman convergence?
Topological properties: a brief review
Recent progress and open questions

Amsterdam and other properties
The Baire property
Normality and embedding

Hereditarily normal

Sketch of proof.

According to the Lechicki-Levi theorem, we only need to prove
that if

(

CL(X ), τw(d)

)

is hereditarily normal, then (X , d) must be
separable. If (X , d) is not separable, then we can find an ε > 0
and an ε-discrete closed subset D ⊆ X with |D| = ℵ1.

Next, we construct a homeomorphic embedding

ϕ : (ω1 + 1) × (ω1 + 1) →
(

CL(X ), τw(d)

)

such that ϕ((ω1 + 1) × (ω1 + 1)) is a closed subspace of
(

CL(X ), τw(d)

)

. Therefore, (ω1 + 1) × (ω1 + 1) is hereditarily
normal. This is impossible, as showed by a classical result of
Dieudonné.
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Embedding into Wijsman hyperspaces

Let C be the class of spaces embeddable as a closed subspace
into the Wijsman hyperspace of a metric space.

Theorem (Cao & Junnila)

C is closed hereditary and multiplicative, and contains all
Dieudonné complete spaces.

We know that C contains ω1 + 1, Q, etc. A topological space is
called N-compact if it is homeomorphic to a closed subspace of
a Cartesian product of copies of N.

An observation

Each N-compact space is embeddable into the Wijsman
hyperspace of some discrete metric space as a closed
subspace.
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Dieudonné complete spaces.

We know that C contains ω1 + 1, Q, etc. A topological space is
called N-compact if it is homeomorphic to a closed subspace of
a Cartesian product of copies of N.

An observation

Each N-compact space is embeddable into the Wijsman
hyperspace of some discrete metric space as a closed
subspace.

Jiling Cao Wijsman Convergence: Topological Properties and Embedding



What is Wijsman convergence?
Topological properties: a brief review
Recent progress and open questions

Amsterdam and other properties
The Baire property
Normality and embedding

Embedding into Wijsman hyperspaces

Let C be the class of spaces embeddable as a closed subspace
into the Wijsman hyperspace of a metric space.

Theorem (Cao & Junnila)

C is closed hereditary and multiplicative, and contains all
Dieudonné complete spaces.

We know that C contains ω1 + 1, Q, etc. A topological space is
called N-compact if it is homeomorphic to a closed subspace of
a Cartesian product of copies of N.

An observation

Each N-compact space is embeddable into the Wijsman
hyperspace of some discrete metric space as a closed
subspace.
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Thank You Very Much !
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