
i

Robot Mapping Without

A Precise Map

Zati Hakim Azizul Hasan

A thesis submitted to

Auckland University of Technology

in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

2013

School of Computer and Mathematical Sciences

ii

TABLE OF CONTENTS

ATTESTATION OF AUTHORSHIP .. IX

ACKNOWLEDGEMENTS .. X

ABSTRACT ... XI

1 INTRODUCTION... 1

1.1 The Notion of a Cognitive Map ... 1
1.2 Cross-Fertilisation between Cognitive Mapping and Robot Mapping ... 3
1.3 Yeap‘s Theory of Cognitive Mapping.. 5
1.4 Work Done ... 8
1.5 A Guide to this Thesis .. 11

2 LITERATURE REVIEW... 13

2.1 Overview .. 13
2.2 Theories in Cognitive Mapping .. 13

2.2.1 Development Theory ... 14
2.2.2 Neurological Theory .. 19
2.2.3 Computational Theories of Cognitive Mapping .. 21

2.3 Implementing Cognitive Theories on Robots... 32
2.3.1 Spatial Semantic Hierarchy ... 32
2.3.2 R-PLAN ... 38
2.3.3 Absolute Space Representation ... 41
2.3.4 Neural Cognitive Maps .. 47

2.4 Traditional Robot Mapping .. 57
2.4.1 Metric Maps in SLAM... 58
2.4.2 Topological Maps in SLAM .. 62
2.4.3 Hybrid Maps in SLAM .. 64

2.5 Chapter Summary... 67

3 METHODOLOGY ... 69

3.1 MFIS Computation... 69
3.2 The Robot: Its Sensors and Input ... 70
3.3 An Algorithm for Autonomous Exploration .. 75
3.4 MFIS Computation... 82
3.5 ASR Computation .. 98
3.6 Conclusion ... 105

4 RESULTS .. 107

4.1 Overview .. 107
4.2 Experiment 1 (Going clockwise) .. 108

4.2.1 Computing the MFIS and ASRs .. 108
4.2.2 Closing the loop ... 118
4.2.3 Going around the second time ... 121
4.2.4 Going Home .. 124

4.3 Experiment 2 (Going anti-clockwise) .. 126
4.3.1 Computing the MFIS and ASRs .. 126
4.3.2 Closing the loop ... 128
4.3.3 Going Home .. 130
4.3.4 Going around the second time ... 132

4.4 Experiment 3 .. 135
4.4.1 Computing the MFIS and ASR.. 135
4.4.2 Go To ASR .. 139
4.4.3 Home finding when known route is blocked ... 142

iii

4.4.4 Novel short-cutting .. 144
4.5 Conclusion ... 145

5 CONCLUSION ... 146

REFERENCES ... 149

iv

LIST OF FIGURES

Fig. 1.1: The ASR model of the cognitive map. Reproduced from Fig. 1 of Yeap (2007) 5
Fig. 1.2: The environment used for testing. Highlighted is the path travelled by the robot which is

about 30m by 30m in size. Arrows denote an example of the robot moving in an anti-
clockwise manner ... 9

Fig. 1.3: An example of the MFIS computed for the environment ... 10
Fig. 1.4: An example of a network of ASRs computed for the environment .. 10
Fig. 2.1: (a) The egocentric (self-to-object) spatial representation, (b) the allocentric (object-to-object)

spatial reference .. 17
Fig. 2.2: Possible novel short-cutting when human configures new routes to get between goals in the

environment .. 20
Fig. 2.3: An example of the centroid-slope model. Reproduced from O‘Keefe (1991) 21
Fig. 2.4: The TOUR computational model of cognitive map. Reproduced from Kuipers (1978) 23
Fig. 2.5: The PLAN computational model inspired by Figure 2 and 3 in Chown et al. (1995) 29
Fig. 2.6: Example of an indoor map and the ASRs computed .. 31
Fig. 2.7: The logical dependencies and constraints (red arrows) in the SSH Model. Blue arrows denote

potential information flow without dependencies. Reprinted from Kuipers (2008) 35
Fig. 2.8: (a) Simulated exploration by the NX robot highlighting the distinct paths and places, (b)

parts of the topological map which defined the relation between paths and places, (c) the

global metric map produced. All images reprinted from Kuipers (2000) 36
Fig. 2.10: (a) An environment with multiple nested loop, (b) the LPMs computed at each place and

tagged with a number, (c) connecting the LPMs via their gateways. Adapted from

Kuipers et al. (2004) ... 38
Fig. 2.11: Computation of a global metrical map (right) from what is initially a topological

representation of the environment (left). Reprinted from Kuipers (2008) 38
Fig. 2.12: Samples of types of indoor gateways in R-PLAN; (a) left room entrance, (b) room entrance,

(c) left corner, (d) right room exit, (e) T-shape gateway, (f) four corners gateway, (g) left

opening gateway and (h) right opening gateway. Reprinted from Kortenkamp (1992).... 39
Fig. 2.13: Storage of visual cues into a scene (ASR). (b) The configuration of scenes for place

identification. Reproduced from Kortenkamp & Weymouth (1994) 40
Fig. 2.14: (a) Raw laser points separated at 180-angle to each other and (b) computing the corners by

breaking raw laser points at any right-angle found. Reprinted from Chown & Boots

(2008).. 41
Fig. 2.15: Example of exit detections. G1 and G2 are the gaps detected because surfaces S1 and S3 are

occluding surface S2. G3 is a gap because surface S5 is occluding S4. All gaps have one

occluding point (marked as filled circles) and one occluded point (marked as empty

circles). Connecting the two occluding points of G1 and G2 creates the first exit E1.

Connecting the two occluding points between G2 and G3 creates the second exit E2. 43
Fig. 2.16: (a) Example of a network of ASRs computed with robot currently in ASR3 (b) The MFIS

produced with robot about to revisit ASR7 from ASR3. Since ASR7 is identified, no new

ASR is formed. New link is established between ASR7 and ASR3. Reproduced from

Jefferies et al. (2008) .. 45
Fig. 2.17: (a) The large corridor-like environment for testing, (b) map for the outward journey with 10

ASRs computed, and (c) map for the homeward journey with 8 ASRs computed.

Reproduced from Wong et al. (2007) ... 46
Fig. 2.18: The neural network structure for visual homing. All weights at the output layer which

triangulates home is adjusted using the Hebbian learning. Reproduced from Hafner

(2001).. 48
Fig. 2.19: (a) aMouse with a single camera and real rat whiskers, and (b) neural network with neurons

at output layer represents places in the topological map. Reproduced from Hafner (2008)

 .. 48
Fig. 2.20: (a) and (b) represent the environment in grayscale format; black areas are obstacles and

different gray shadings indicate different place fields in the environment, (c) denotes the

v

connections between places at random parameters, and (d) the interconnectivity with

optimal parameters. Reproduced from Hafner (2005) .. 50
Fig. 2.21: Sketch of the model. From left to right: merging landmarks (Pr) and their azimuth (Ph) in a

matrix of neurons called product space, then learning of the corresponding set of active

neurons on a place cell (ECs). Two successive place cells define a transition cell (CA).

Place cell at time t-1 is in DG. Transitions are used to build the cognitive maps (PF)

which are linked with movements (ACC). Diagram and description reprinted from

Cuperlier et al. (2007) ... 51
Fig. 2.22: An example of extracting landmarks and its azimuths from an agent‘s visual input.

Reproduced from Cuperlier et al. (2007) .. 53
Fig. 2.23: The cognitive map computed using the transitions information. The triangles denote the

robot‘s localisation and direction at the point of exploration. Reproduced from Cuperlier

et al. (2006) ... 53
Fig. 2.24: Building the robot‘s experience map using pose cells and local view cells. Reproduced from

Milford (2007) .. 55
Fig. 2.25: (a) Representation of the pose (position and orientation) in a 3D network with the wrap-

around leads to grid-like response, (b) shows the connection between all three

representations. Reprinted from Milford et al. (2007) .. 55
Fig. 2.26: An example of the RatSLAM results in outdoor environment. Picture and results

reproduced from Milford et al. (2008) .. 56
Fig. 2.27: (a) Two sonar beam readings, (b) both readings projected onto same grid map, (c) and (d)

show readings on individual probabilistic map, (e) conflicting regions on grid when

probabilistic maps are compared, and (f) final map with removal of conflicting region.

Reproduced from Thrun (2003) .. 61
Fig. 2.28: Grid mapping in large environment. (a) Raw sonar data over 50m corridor-like

environment, (b) map with missing walls and doors in traditional grid map, (c) map with
completed walls and doors in advanced grid maps. Reproduced from Thrun (2003) 61

Fig. 2.29: Example of a GVG topological solution in performing robot‘s localization. Readings from 8

range-finders are used to estimate the nearest obstacles with H and C the two lowest

values in the sensor array (A is not considered as it is not a local minimum). When two

adjacent sensors have similar values, the closest obstacle is assumed to be in between the

two sensors. Reprinted from Choset & Nagatani (2001) .. 64
Fig. 2.30: Example of a hybrid map. The environment is represented with global topological nodes

and local metric places. When travelling from one node to another, the system switches

from topological to metric and vice versa. Reproduced from Tomatis et al. (2003)......... 66
Fig. 3.1: The laser taking samples from the environment at 0.5

0
 angular resolutions with 180

0

scanning field. Drawings of the narrow laser beams are an approximate and not to scale

 .. 72
Fig. 3.2: Processes involved in extracting surfaces from the environment ... 75
Fig. 3.3: Gaps (G1-G7) found in a view. The robot is at (0, 0). Circles indicate small gaps that are

ignored .. 76
Fig. 3.4: Creating a new gap for G1 and G2 will produce a gap that is outside the current bounded

space. Such new gaps are illegal ... 79
Fig. 3.5: (a) The view, (b) with gaps identified, (c) first iteration with G3 and G4 replaced and gaps

renamed, (d)-(e) two final iterations. (f) Removal of G1 and G2 as they are not made of

two occluding points ... 80
Fig. 3.6: (a) Two exits are identified in the initial view in addition to the gaps; (b)-(c) show two

iterations of the algorithm, and (d) shows the final output ... 81
Fig. 3.7: (a) The view, (b) with gaps computed, (c) first iteration which produces an exit E1, (d)-(e)

two final iterations, and (f) the final output .. 81
Fig. 3.8: Processes shaded in orange summarises the flow where the robot pre-process the laser scans,

make decision on the next target before planning its movement whereas the process

shaded in purple denotes where and when the spatial perception computation occurs in

the implementation ... 82
Fig. 3.9: Transferring of landmarks ID from the MFIS to Vn-1 ... 87

vi

Fig. 3.10: (a) Candidate in green being paired with a smaller comparing surface, (b) perpendicular

lines generated on the comparing surface, (c) markers X denote the intersections between

perpendicular lines and candidate, (d) match is verified after angle between the lines is

found satisfactory, (e) candidate inherit the ID ... 89
Fig. 3.11: Finding landmarks whereby the surface perceived in Vn-1 (single line in red) has changed its

shape drastically in the current view (split into 3 green lines). ... 89
Fig. 3.12: Finding landmarks: (a) Vn (surfaces in green) combined with Vn-1 (surfaces in red and are

labelled), and (b) Landmarks identified (IDs 7, 8, 9, 11, 12, and 13) are assigned the same

ID .. 90
Fig. 3.13: Computing the spatial locations of surfaces close to a landmark: S1 is recognised as a

landmark and S2 and S3 are coded using two pairs of vectors centred on the right end-

point of S1... 91
Fig. 3.14: (a) and (b) show which end-point of the landmark surface (ID 7) is chosen as its centre of

co-ordinate system respectively in Vn and Vn-1, and (c) shows the calculation of the

position of the unknown surface, U3, and (d) shows where it is positioned. In this case,

the position is roughly correct... 93
Fig. 3.15: (a) and (b) show which end-point of the landmark surface (ID 7) is chosen as its centre of

co-ordinate system respectively in Vn and Vn-1, and (c) shows the calculation of the

position of the unknown surface, U3, and (d) shows where it is positioned. In this case,

the position is seriously distorted. ... 93
Fig. 3.16: Normalisation of landmark surfaces – Perpendicular lines are generated at the end-points of

both surfaces and the two surfaces are normalised to become of equal length. 94
Fig. 3.17: Three examples of normalisation in a robot‘s view: – The left column shows the projection

of Vn-1 onto Vn and landmarks (circled surfaces) are identified, and the right column

shows the landmarks that are normalised. .. 94
Fig. 3.18: Examples of choosing the nearest landmarks to localise unknown surfaces. New surfaces

U1, U2 and U3 are closest to landmark ID7, new surface U4 to landmark ID9, and new

surfaces U5, U6 and U7 to landmark ID11 ... 95
Fig. 3.19: (a) Processes shaded in orange summarises the flow where the robot pre-process the laser

scans, make decision on the next target before planning its movement whereas the box

shaded in purple denotes where spatial mapping takes place. The flowchart diagram in (b)

breaks down the spatial mapping processes in (a). Blue boxes are processed in the

working memory whereas red boxes indicate updating in the MFIS 97
Fig. 3.20: (a) The green line denotes the robot‘s path, E1 denotes the exit crossed and the arrow points

at the exit-path line intersection, (b) the virtual boundary created perpendicular to the

path line slope at the exit-path line intersection where surfaces circled are considered

beyond the exit thus are not included in the ASR being computed 100
Fig. 3.21: (a) Surfaces shown connected to the robot‘s current position (path point ID 15) via a dashed

line can be eliminated according to algorithm #7. These are surfaces perceived after

crossing the exit of the previous ASR. (b) The remaining surfaces for ASR computation

 .. 101
Fig. 3.22: Computing the boundary using the outermost surfaces perceived. 101
Fig. 3.23: (a) The initial spatial information for the first local space boundary computation where two

surfaces (in yellow circles) fails the corner point test. (b) The large segments are filtered

from the MFIS 15 surface set whereas the singular points denote the corner points

derived from the smaller surfaces ... 104
Fig. 3.24: (a) The complete robot mapping system developed in this thesis. (b) Where ASR boundary

is computed in the robot system.. 106
Fig. 4.1: ASR 1 surfaces (shaded) extracted from MFIS ... 110
Fig. 4.2: Corner points and large surfaces for ASR 1 .. 110
Fig. 4.3: ASR 1 boundaries computed. Red lines denote the large surfaces which have been extracted

from the MFIS. The blue lines are boundaries computed as a result of joining adjacent

surfaces and corner points together... 110
Fig. 4.4: ASR 2 surfaces (shaded) extracted from the MFIS ... 111
Fig. 4.5: Corner points and large surfaces for ASR 2 .. 111
Fig. 4.6: Network of ASR showing ASR 1 and ASR 2 ... 111

vii

Fig. 4.7: ASR 3 surfaces extracted from the MFIS .. 112
Fig. 4.8: Corner points and large surfaces for ASR 3 .. 112
Fig. 4.9: Network of ASR showing ASR 1 to ASR 3 .. 113
Fig. 4.10: ASR 4 surfaces extracted from the MFIS .. 113
Fig. 4.11: Corner points and large surfaces for ASR 4 .. 114
Fig. 4.12: Network of ASR showing ASR 1 to ASR 4 .. 114
Fig. 4.13: ASR 5 surfaces extracted from the MFIS .. 115
Fig. 4.14: Corner points and large surfaces for ASR 5 .. 115
Fig. 4.15: Network of ASR showing ASR 1 to ASR 5 .. 116
Fig. 4.16: MFIS computed just after the robot crosses E6 and re-enters ASR1................................. 116
Fig. 4.17: ASR 6 surfaces (shaded) extracted from the MFIS ... 117
Fig. 4.18: Surface and corner point for ASR 6 .. 117
Fig. 4.19: Network of ASR showing ASR 1 to ASR 6 .. 118
Fig. 4.20: MFIS surfaces computed inside ASR1. E6 has been computed on surface ID 8 and the

robot will go through the exit computed and revisit ASR1... 119
Fig. 4.21: Comparison between Vn and Vn-1 before crossing E6. Robot is at (0, 0). (a) U1 matches

landmark 172 and (b) the normalisation process .. 120
Fig. 4.22: Updating before the robot crosses E6. (a) Showing U3 being matched to an old landmark

ID 22 and (b) the normalisation process ... 120
Fig. 4.23: The MFIS (top) and the network of ASRs (bottom) after looping the environment twice 122
Fig. 4.24: (a) and (b) depict the MFIS and the network of ASRs built in the first round. (c) and (d) are

the MFIS and ASRs computed in the second round. Changes is apparent to ASR6, ASR5

and ASR1 .. 123
Fig. 4.25: Example of using direction to navigate home. R1, R2 and R3 are three steps in the

navigation. Direction are recalculated at each step until the robot reach closer to home 124
Fig. 4.26: Black path lines indicates the robot‘s trajectory to home after crossing E6 125
Fig. 4.27: The network of ASRs after looping twice and the robot is instructed to go home 125
Fig. 4.28: The MFIS computed from home until the robot crosses the exit E6 127
Fig. 4.29: The network of ASR depicting ASR1 to ASR6 in the second experiment 127
Fig. 4.30: Some of the earlier MFIS surfaces computed inside ASR1 .. 128
Fig. 4.31: Comparison between Vn and Vn-1 before crossing E6. Robot is at (0, 0). (a) Denotes U1 and

U5 matching the landmarks 119 and 121 respectively. Results of the normalisation is

shown in (b) .. 129
Fig. 4.32: Updating the MFIS before crossing the exit E6 .. 129
Fig. 4.33: Updating after crossing the exit E6 where three current surfaces matching the centroids 12,

13 and 27 .. 130
Fig. 4.34: The MFIS when the robot reaches home. Path lines in black denotes the steps towards

home ... 131
Fig. 4.35: Changes to ASR1 after the go home activity ... 131
Fig. 4.36: MFIS after traversing the environment the second time. The robot ended the journey at

home ... 133
Fig. 4.37: The network of ASR after the second looping .. 133
Fig. 4.38: Three sets of MFIS and its corresponding network of ASRs. (a) and (b) for going about in

the first round, (c) and (d) for going home, and (e) and (f) indicate the representations

when the robot is instructed to go around again ... 134
Fig. 4.39: The MFIS computed once the robot closes the loop after crossing E6.............................. 136
Fig. 4.40: Network of ASRs after the robot crosses E6 and into ASR1... 136
Fig. 4.41: The MFIS as the robot goes home after entering ASR1 from ASR6 137
Fig. 4.42: ASR1 is expanded due to the robot seeing surfaces behind the robot when it first started137
Fig. 4.43: MFIS after completing the second loop in the opposite direction. ‗Robot‘ indicated where

the robot is after completing the second loop ... 138
Fig. 4.44: Network of ASRs after the robot closes the second loop and re-enters ASR1via E1 138
Fig. 4.45: Strategy to navigate towards E6 and E5 .. 140
Fig. 4.46: MFIS as the robot travels from ASR1 to ASR5 via E6 and E5 (in that order) 140
Fig. 4.47: Choosing new exit to go to ASR3 ... 141
Fig. 4.48: The MFIS updated with E7 and E8 ... 141

viii

Fig. 4.49: New ASR7 and its location inside the network of ASR .. 142
Fig. 4.50: Locations of new found exits E9 and E10 in the MFIS. Dotted line is where the physical

barrier is put up so the robot cannot choose to re-enter ASR1 via E1 143
Fig. 4.51: Network of ASR depicting the new ASR8 .. 143
Fig. 4.52: Utilizing new connection on the network (ASR8) to reach ASR2 from home when known

exit E1 is inaccessible. Dotted line is where the physical barrier is put up 144

ix

ATTESTATION OF AUTHORSHIP

―I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements), nor material which

to a substantial extent has been submitted for the award of any other degree or diploma

of a university or other institution of higher learning.‖

Signature :

Name of Candidate : Zati Hakim Azizul Hasan

Student ID : 0815129

Date : 16 May 2014

x

ACKNOWLEDGEMENTS

I am most grateful to the Almighty for inspiring and guiding this humble being

To my supervisor, anything that moved me leaps and bounds ahead has come from you.

Thank you, Albert, for this gift of knowledge. You‘re the best mentor one could hope

for. To my co-supervisor, you have provided invaluable perspective to my research

whenever needed. Thank you, Chee Kit for all your support.

My CAIR mates; Bobby, Thamilini, Tommi, Siew Cheng and Hossain, have without

exception been most supportive. To Jordan, thank you for always being there when I

needed advice particularly the time spent in Penrose. All of you have been partial to this

journey and may the friendship built long lasting.

Special thanks to Mohammad Hafizullah and Robin Cyril who came in to help with the

earlier testings. You guys were a joy to work with.

To my parents; Azizul and Nora, and siblings; Ainul, Rizal, Ida and Uniza, my deepest

appreciation for your understanding, prayers and endless love. You reminded me why I

chose this journey and to you I dedicate this thesis.

To my in laws; Karim and Salmah, and aunt Rosnah, thank you for the care and support

especially during the writing of this thesis. I am forever indebted to you with the care of

little Adam.

Last but not least, my better half, Shah, thank you for sharing every step of this journey

with me. You were a beacon in the dark. I could have not done it without you, love.

The work presented in this thesis was funded by the SLAI Fellowship Scheme from the

University of Malaya and the Ministry of Higher Education Malaysia

xi

ABSTRACT

In this thesis, I took two key ideas of cognitive mapping developed in Yeap‘s (1988)

theory of cognitive mapping and developed a robot mapping system that maps without

having a precise map.

Yeap argues that in a cognitive mapping process, it is important to compute a local

space representation that affords boundedness and a global map that tells one roughly

where things are located with respect to the self. While these two representations appear

to be similar to the global map and a topological network of local spaces that robotics

researchers compute for their robots, there are two major differences. First, Yeap‘s

global map is a transient, inexact map and second, the local space computed is often

inexact and incomplete. Computing such representations meant that one does not need

to correct errors due to sensors and generate an exact map.

I have successfully developed one such algorithm and tested it successfully on a mobile

robot equipped with laser and odometer sensors in a large office environment. The

journey through the environment before loop closing is about 30m x 30m. The robot

went round the environment twice and in a clockwise and anti-clockwise direction. It

also finds its way from one part of the environment to another.

There are three key steps in my approach. The first step is to constantly detect

―landmarks‖ in two consecutive views (the current view and the previous view). Having

two consecutive views meant that any errors due to the sensors are not accumulative.

xii

Furthermore, one gets two copies of the landmark – one currently in view and the other

in memory. Consequently, their position in space need not be absolute. The second step

is to use the landmarks identified to provide a frame of reference to localize unknown

surfaces that appear in the current view. The third is to enter those unknown surfaces

into its global map using its own landmarks.

The development of such an algorithm has led to better insights into cognitive and robot

mapping. From a cognitive standpoint, what is important is that we now have an

algorithm that computes an inexact map by attending to recognizable surfaces (referred

to as landmark surfaces) in successive views rather than dependent on continuous

tracking of one‘s position and orientation in the environment. Furthermore, it does not

require continuous updating of the map as long as there are some overlapping surfaces

between views. Both are characteristics of the human cognitive mapping process. From

a robot mapping standpoint, my new algorithm shows that it is possible to compute and

utilize an inexact map for navigation. This could be a new paradigm for robot mapping.

 1

1 Introduction

Introduction

1.1 The Notion of a Cognitive Map

As we move, our interactions with the environment allow us to encode the what and

where of things seen. With it, we could retrieve the remembered locations of objects

even though they are now out of sight or recognise them if they are in view again.

Consequently, we know what lies immediately behind us and can predict what might

appear in front as we move forward. These activities of sensing, encoding, storing,

decoding and deploying the spatial information are all part of one‘s spatial process.

Tolman (1948) first inferred that a map-like representation emerges in this process in

animals other than humans. He demonstrated this by recording the spatial behaviour of

maze-running rats that were able to take short cuts to their final destination. He called

this act of mental structuring process leading to the creation of the rat‘s internal spatial

model as cognitive mapping, and coined the internal model produced as cognitive map.

1

 2

Recognition of this place learning activity stimulated multidisciplinary research in the

human spatial knowledge acquisition. In city planning, geographers Kevin Lynch

(1960) used sketch maps to reveal human knowledge of large-scale complex

environments. He emphasised spatial visibility as the means by which people extend

their knowledge about the city landscape as well as engaging in way finding. The

environmental image is said to be the product of immediate sensation and the memory

of past experience, and it is used to interpret information and to guide action. In brain

studies, neurophysiologists studied the role of the hippocampus in navigation (O‘Keefe

& Nadel, 1978) and continued their in-depth research in breaking down the anatomy of

memory into quantitative models by reproducing detailed computational representations

based on the specific changes in cellular firing rates after complex environmental

manipulations (Zipser, 1985; Burgess et al., 1994; Touretzky & Redish, 1996).

In cognitive psychology, the nature of mental map revolves around understanding how

human process information. The Multi Store Model (Atkinson & Shiffrin, 1968) is a

classic model studying the internal process of the mind by describing the human

memory in terms of information flowing through a system. The model suggests that the

human memory is made up of a series of stores; the sensory memory (SM), the short-

term memory (STM) and the long-term memory (LTM), but the lack of a mechanism to

prove encoding of memory occurred when memories are being rehearsed, retrieved and

transferred between the three stores led to newer memory models eliminating the SM

(Raaijmakers & Shiffrin, 1981; Baddeley, 2003).

 3

1.2 Cross-Fertilisation between Cognitive Mapping and Robot Mapping

Advances in artificial intelligence research that led to the development of the first

integrated mobile robot Shakey (Nilsson, 1969) presented a new and exciting paradigm

for studying the mapping problem. When faced with the problem of creating a map of

the robot‘s environment, these researchers quickly realised that there is a need to

simultaneously locate and map. Otherwise, one cannot integrate successive views to

form a map. Researchers investigating how humans/animals compute their map often

overlook this part of the problem. For example, a popular early theory of cognitive

mapping (Siegel & White, 1975) suggests that what is remembered initially are

landmarks only. Robotics researchers thus refer to the mapping problem as SLAM,

simultaneous localisation and mapping (Leonard & Durrant-Whyte, 1991).

In robot mapping, the robot localises itself via updating its Cartesian position in the map

and then using its known position at each step to overlay, re-align, and add subsequent

views to the map. This is a fundamental step in the mapping process. However, it turns

out that there is much noise present in the process and this distorts the localisation step.

Errors accumulate quickly and the map created will soon be rendered useless. This

problem, correcting the errors to get a precise metric map, became the focus of robotics

research and many probabilistic solutions (such as those using Bayesian formula

(Majumder et al., 2000), the extended Kalman filter or EKF-SLAM (Newmann et al.,

2002), Rao-Blackwellized particle filters (Murphy, 1999; Doucet et al., 2000) were

proposed. Rigorous testing and development were done on wheeled mobile robots with

either sonar and/or laser sensors (Chong & Kleeman, 1999; Castellanos & Tardos,

 4

1999; Diosi et al., 2005; Newmann et al., 2006; Zhao et al., 2008; Kretzschmar et al.,

2011). The robotics researchers have had great success which meant that the problem is

now well understood (Thrun, 2002; Durrant-Whyte & Bailey, 2006; Bailey & Durrant-

Whyte, 2006; Aulinas et al., 2008) and the field is advancing to develop robots mapping

outdoor environments and using other sensors, notably vision (Jensfelt et al., 2006;

Nuchter & Surmann, 2007; Milford & Wyeth, 2008; Maddern, Milford & Wyeth, 2012;

Wendel & Bischof, 2013). The current success of robotics researchers, however,

highlights a major point of difference between robot mapping and cognitive mapping,

namely the latter is unlikely to produce and use a precise map.

As Jefferies and Yeap (2008, p.1) noted, ―it is not surprising that the cognitive and robot

mapping problems share some common core problems‖ and ―one would reasonably

expect some cross-fertilisation of research between the two to have occurred‖. To date,

the lessons learned in robot mapping provide significant insights into the nature of the

low-level mapping problem and observations made about cognitive mapping provide

significant insights into the nature of the map computed. The availability of more

powerful robots for autonomous exploration and mapping provide a platform for testing

cognitive mapping theories, and, in turn, the richer cognitive mapping theories being

developed lead to the development of more powerful mapping algorithms for robot use.

This thesis contributes to the cross-fertilisation of ideas between the two fields by

developing a cognitive mapping algorithm (Yeap, 1988; Yeap & Jefferies, 1999) on a

mobile robot that computes a key characteristic of cognitive maps, namely that such a

 5

map is inexact. Given that robotics researchers are currently focusing on developing

algorithms that compute a precise map, developing such an algorithm could lead to a

paradigm shift in robotics. An earlier student‘s work (Wong, 2008) has shown that an

inexact map extracted directly from the robot‘s sensors could still help the robot to find

its way home albeit in a limited corridor-like environment. In this thesis, I ask: Can a

robot compute an inexact map itself and how useful is such a map? For instance, can the

robot use the map to perform various spatial tasks such as taking a short-cut,

recognizing that one is returning to a familiar place, etc. in its environment?

1.3 Yeap’s Theory of Cognitive Mapping

Briefly, in Yeap‘s theory of cognitive mapping, three key representations are computed,

namely a network of ASRs (which stands for an Absolute Space Representation), an

MFIS (which stands for Memory For one‘s Immediate Surroundings), and a hierarchy

of place representations (see Fig. 1.1).

Fig. 1.1: The ASR model of the cognitive map. Reproduced from Fig. 1 of Yeap (2007)

 6

The first representation, an ASR, is a representation that makes explicit the local

environment that one is in. Its significance is that while we live in a universe that is ever

expanding (Carroll et al., 1992), we are, due to the limit of our own perceptual

apparatus, always bounded in a local space that limits where we can go and what we

can see. To us, such a space is absolute and forms the cornerstone element for building

our cognitive map.

The second representation, an MFIS, is a representation that makes explicit one‘s

immediate surroundings within a single co-ordinate system. Our ability to use visual

cues to remain oriented to our surroundings and to reorient ourselves when we get lost

(e.g. Mou et al., 2004; Cheng & Newcombe, 2005) supports the presence of such a

representation. Note that an ASR is inadequate as a representation of one‘s immediate

surroundings for two reasons. First, an ASR is a representation that indicates where one

is but not necessary where one has been (except within the confine of that local space).

Second, an ASR does not hold information beyond what is in one‘s local environment

and therefore things perceived outside its boundary are not represented.

The third representation is a hierarchy of place representations (Hirtle & Jonides, 1985);

each place formed represents one‘s conceptual view of a part of the environment. Each

place, if it is not an imaginary one, will be grounded to its physical environment as a

collection of ASRs computed. Humans have shown that some form of hierarchical

organisation is in order when they learn about their environment. For example when

human subjects are asked to relay their experiences traversing a known route, they tend

 7

to organise their spatial representation in clusters of landmarks (Reitman & Reuter,

1980). Humans are also shown to learn an unstructured environment such as a map

layout containing uniformly distributed objects by encoding the environment into a

hierarchy of place by associating each place with the spatial proximity to the

neighbouring landmarks (McNamara, Hardy & Hirtle, 1989). Although these studies

present evidence about the organisation of place representations in our spatial

knowledge, they do not provide information on how the hierarchical structure is built

and used.

The theory argues that an ASR is computed immediately as one enters a new local

environment but given one has only a limited view on entry; it is not possible to identify

its complete boundary without exploring the space further. If so, during exploration,

how does one distinguish one ASR from another? Jefferies (1999) argued that ―exits‖ of

an ASR play an important role in both identifying and computing an ASR. Exits are not

doorways but any perceived gaps that the individual believes will allow them to

―escape‖ out of the current bounded space. Wong (2008) showed that the spatial extent

of each ASR and in particular between exits, though imprecise, could provide very

useful information for traversing an environment using a network of ASRs.

According to Yeap‘s theory of cognitive mapping, there are thus three key

representations, namely, a network of ASRs, an MFIS, and a Hierarchy of Place

representation. The MFIS and a network of ASRs bear a strong resemblance to the

global map and a topological network representation computed in robotics research.

 8

However, there are two major differences. First, the MFIS is a transient inexact map

and second, the ASR is often an inexact and incomplete description of local spaces. The

advantage of having an exact map is that the robot knows exactly where things are but

the disadvantage is that such a map is not easy to maintain in the real world. The

physical environment could often be altered significantly and the robot could be

seriously displaced during its journey through an environment. Nature has shown that

we could live with an inexact representation and it must have discovered other ways to

cope with errors present in the sensors. In this thesis, I developed one such algorithm

and tested it on a mobile robot equipped with laser sensors.

1.4 Work Done

In this thesis, I implemented a complete robot mapping system that explores its

environment autonomously and computes both an inexact map and a topological

network of incomplete and inexact local spaces without error corrections. Few robotics

works, if any, generate such representations for their robots since they claim that

without error corrections, the map will be distorted.

The robot has been tested going through the environment as shown in Fig. 1.2 several

times. The experiments conducted demonstrate successful loop closing and successful

use of the inexact map for performing various spatial tasks such as returning home, find

short cuts, and re-plan new routes. An important feature of the algorithm developed is

that it does not correct errors. Rather, it detects ―landmarks‖ that are present from one

view to another and via them, creates multiple frames of reference that could be used to

 9

update new surfaces to the MFIS. An example of the kind of map generated is as shown

in Fig. 1.3. As can be seen from the output, the map is neither exact nor precise but it is

good enough for the robot to use for finding its way in the environment. The latter is

aided with a network of ASRs extracted from the MFIS as shown in Fig. 1.4. An ASR is

extracted from the MFIS each time the robot crosses an exit in the journey. To compute

a boundary for the ASR, the algorithm follows the outermost surfaces starting from one

end-point of the crossed exit to its other end-point, thereby merging the gaps in between

these surfaces to enclose the space traversed by the robot. The ASRs are then connected

to one another using their common exits. Using both the MFIS and a network of ASRs,

the robot successfully traversed to different parts of the environment, re-visit places,

find alternative routes and can take short-cuts.

Fig. 1.2: The environment used for testing. Highlighted is the path travelled by the robot which is about
30m by 30m in size. Arrows denote an example of the robot moving in an anti-clockwise manner

 10

Fig. 1.3: An example of the MFIS computed for the environment

Fig. 1.4: An example of a network of ASRs computed for the environment

 11

1.5 A Guide to this Thesis

Chapter 2 provides a review of the relevant literature. While this thesis focuses on robot

mapping, the review begins with a brief discussion of ideas in cognitive mapping found

in three different major research areas, namely psychology, neurophysiology, and

computational studies. Then, the review continues with works that develop some

interesting algorithms for robot mapping based on cognitive ideas. For completeness,

the review ended with a discussion on traditional SLAM approaches that compute exact

metrical maps. The latter would provide a contrast to the implementations done using

cognitive ideas.

Chapter 3 focuses on the development of the eight new algorithms for robot mapping

without a precise map. These algorithms include:

1. An algorithm for autonomous exploration;

2. An algorithm for computing minimal bounded space;

3. An algorithm for MFIS computation;

4. An algorithm for finding landmarks in view;

5. An algorithm for transferring surfaces in the current view to the MFIS;

6. An algorithm for computing ASRs;

7. An algorithm for eliminating new surfaces coming into view after crossing an

exit;

8. An algorithm for identifying surfaces and corner points for boundary

computation;

 12

Chapter 4 presents the results of three major experiments using the robot embedded

with the seven new algorithms described in chapter 3. The first experiment sees the

robot builds the MFIS and the network of ASRs while exploring the environment twice

in a clockwise direction. Going round the environment twice tests the robot‘s ability to

close loop and the effect on the representations computed when re-visiting. In the

second experiment, the robot is assigned similar tasks to the first experiment but the

direction of travel is reversed. This ensures that the representations computed are not

direction dependent. In the third experiment, the robot explores the environment in a

clockwise direction and then in an anticlockwise direction. It is also instructed to find

its way from one ASR to another and in two occasions, the known routes are blocked.

Chapter 5 concludes the thesis with a general discussion of the lessons learned, a

summary to major contributions and points towards future work.

 13

2 Literature Review

Literature Review

2.1 Overview

This chapter reviews literature related to this study. It has three sections. Section 2.2

discusses ideas about cognitive mapping found in cognitive and neurosciences and the

computational models that have been proposed based upon these studies. Section 2.3

discusses studies that implement cognitive ideas/models using robots. For

completeness, Section 2.4 provides a review of work done in traditional robotics.

2.2 Theories in Cognitive Mapping

The mental representation of the spatial environment is referred to as a cognitive map.

Tolman (1948) first coined the term. He observed the behaviour of rats in a maze-like

environment and noticed that rats did not respond to stimulus while navigating but also

produced something similar to a field map of the environment in their brains. This

internal map is what helped the rats choose alternative correct routes when known

2

 14

routes are inaccessible leading to assumptions that rats remembered their environment

and able to perform novel connections between learned routes and routes they have

never travelled before. For humans, a cognitive map is a more complex representation

and computed from ―a process composed of a series of psychological transformations

by which an individual acquires, codes, stores, recalls, and decodes information about

the relative locations and attributes of phenomena in his everyday spatial environment‖

(Downs & Stea, 1973).

The subject of humans‘ and animals‘ spatial knowledge has also been the interest of

other researchers from various other backgrounds; all keen to understand how cognitive

agents sense and acquire a representation of their environment. Developmental

psychologists studied how spatial cognition develops from children to adulthood.

Neuropsychologists studied how the brain in general and the hippocampus in particular

computes its map. Behavioural scientists focus their study on how humans and animals

find their way in the environment given the diverse capacities of their sensors and

survival needs. Even architects, inspired by the famous work of Lynch (1960) studied

how people form images of their city.

2.2.1 Development Theory

The development theory (Piaget & Inhelder, 1967) is an early work based on observing

children‘s developmental sequence in understanding the environment. The theory

recognised cognitive maps to constitute more complexity than just a spatial layout of

things in the environment as suggested by Tolman (1948). The theory expanded the

 15

cognitive maps description by including mode of travel, preferences, attitude, and past

experiences as additional factors to influence one‘s mental representation. In general,

researchers building from this theory mainly delivered their findings based on the three

recognised stages of development, i.e. the landmarks, the route map and the survey

map. There is also evidence that these sequence of developmental stages occur similarly

in adults traversing new environments (Golledge, 1987).

When breaking down children way-finding strategies, it has been observed that children

begins by recognising objects and are able to distinguish them. Thus landmarks

identification is considered an object-based approach that occupies the first stage in the

developmental sequence. According to Kaplan (1973), landmarks must be unique

entities that function as indexes that mark places in the environment. With such distinct

features, landmarks identification is assumed to be the easiest way-point reference for

children to determine their locations and orientations in the environment. However in

reality, identifying or extracting distinct objects or features from the environment as

landmarks is not an easy task and remain the biggest challenge in this primary stage.

Children are then observed to connect landmarks identified via route selections. When

asked to navigate in the neighbourhood, children were selecting routes between

landmarks based on their direct (egocentric) experience during travel. At this point in

the stage, children are yet to form abstract representations of the environment; meaning

a route does not represent a global direction in the map but are steps in achieving the

 16

navigation target. These series of individual routes that will lead to the goal form

connections that are topological in structure.

The survey map can be defined as an abstract environmental overview which basically a

further generalisation of the route map concept. In this stage, the quality of the spatial

knowledge is upgraded from the egocentric representation (of route map) to an

allocentric representation of the environment, giving birth to the notion of reference

frames in mental representations (Gallistel, 1989 & 1990). If one were to travel

extensively in a particular environment, it would be useful to have a logical overview

(or a bird‘s eye view) of the entire environment. Rather than dealing with routes

individually, one may get information required for traversing the environment from

such abstraction. In addition, this overview would make large-scale reasoning about the

environmental simpler. However, although the main function of these overviews is to

increase the effectiveness of way finding, it does not mean one may need them all the

time.

The notion of frame of reference has shaped the way the robot in this thesis collects

spatial inputs and organise them into building an imprecise map for the robot. For this

reason, a sub-section on the encodings in the human spatial memory which underlies the

idea of survey maps is added here.

 17

2.2.1.1 Encodings in the Human Spatial Memory

It has been argued that since humans live in a geometrical world, humans should be

locating objects in the environment by means of reference to the geometrical features.

Plenty of works have adopted this notion of frames of reference as a means to represent

the location of entities in space (Wang & Spelke, 2000; Wang & Spelke, 2002; Mou &

McNamara, 2002; Mou et al, 2004). These researchers believed that different frame of

reference is used for different navigational activities. For instance, navigating through

closely spaced trees requires accurate self-to-object (egocentric) judgement else one

could bump into the obstacles (Andersen et al., 1997), but planning a distant goal and

maintaining a sense of orientation in large environment requires one to judge how

objects are allocentrically related to one another (Loomis & Beall, 1998). The following

illustrations showcase how the two frames of reference configure. Fig. 2.1(a) denotes

the egocentric frame of reference where locations of objects are encoded in relation to

own body (e.g. left-right, front-back, or up-down). Fig. 2.1(b) depicts the allocentric

frame of reference where the locations of objects are encoded relative to other objects

surrounding the traveller.

Fig. 2.1: (a) The egocentric (self-to-object) spatial representation, (b) the allocentric (object-to-object)

spatial reference

 18

In Sholl (2001; see also Holmes & Sholl, 2005; Schmidt & Lee, 2006; Ruggiero et al.,

2011), different roles and representations are identified for each reference frames. The

egocentric representations always measure distance and orientation between the ego and

the surrounding objects. Since this viewpoint-dependent system provides a framework

for spatially directed motor activity such as walking, reaching and grasping, it requires

constant updating as the human moves in the environment. In the case of an allocentric

representation, the information is referred to the space independent to the human. The

location of any objects is measured using its spatial relations (distance and orientation)

to other objects in the same space. Holmes & Sholl (2005) postulated that this type of

spatial framework takes time to develop because in the early stage of learning a new

environment, the human is observed to rely more on the egocentric reference system to

identify objects in the environment. Throughout the course of the journey, there may be

occasions where the human‘s self-to-object spatial relations get disrupted by

disorientation resulting in a temporary loss of his current orientation with respect to the

surroundings.

Therefore, the enduring allocentric representation which has been maintained

independently is still intact in the human‘s memory, making it a more stable memory

option for the human to correct his orientation by referring to recognised objects or

landmarks available in the allocentric system. Once the orientation issue is resolved, the

human is considered to switch back to the egocentric system to resume the journey.

 19

2.2.2 Neurological Theory

The notion of cognitive maps used in neurological studies (O‘Keefe & Nadel, 1978)

often pay little attention to the use of spatial information about distances and directions

as evidenced in the other psychological studies of cognitive maps. This is because of

their discovery of place-coded neurones in the hippocampus where a specific firing

activity among these neurones corresponds to a stimulus reading from a particular place

cells. When tested the theory on primates and humans, researchers discovered that the

firing activities are parallel to the subject‘s sensory input from environmental cues

rather than to where the subject is physically located at (Burgess et al., 1994).

Later, Nadel (1991) reiterated that in support of Tolman‘s (1949) theory that the

cognitive map has multiple learning systems. O‘Keefe & Nadel (1978) proposed two

classes from the systems as locale and taxon. A taxon is a navigation strategy which

involves heading towards a landmark at or very near the goal. A locale is a navigation

strategy which is used when a taxon strategy is disrupted, for instance the landmark is

removed from the route. Therefore the taxon is similar to a route map whereas the

locale is an allocentric–hippocampally representation since the cognitive map contains

larger information about the environment and allows alternative routes towards a goal.

With respect to their roles, it is assumed that learning within the locale system occurs

during exploration and novelty-directed behaviours and that spatial learning is achieved

by updating the locale system with new routes, landmarks and short-cuts over time.

 20

Fig. 2.2: Possible novel short-cutting when human configures new routes to get between goals in the

environment

O‘Keefe (1990 &1991) proposed an extension to the allocentric model by defining the

centroid and slope measurements. The centroid is referred to as the object which is

fixed and does not move with the animal, whereas the slope is essentially the line that

follows through the centroid at an orientation that fixes the orientation of the allocentric

frame; unchangeable regardless how the animal moves around. In this model, an animal

is said to construct its mental representation in two stages; first, they must identify a

notional or a fixed point in the environment (i.e. the centroid, and second, they must

identify the gradient (i.e. the slope) for the environment to fix the direction. Usually the

slope is depicted as the gradient that is similar to how objects in the environment are

widely spread. The animal‘s cognitive map is then a result of encoding objects in the

surrounding using vectors whose lengths are distances from the centroid.

 21

Fig. 2.3: An example of the centroid-slope model. Reproduced from O‘Keefe (1991)

2.2.3 Computational Theories of Cognitive Mapping

This section discusses three major cognitive mapping models developed to date, namely

the Tour Model, the Plan Model, and the ASR/MFIS model.

2.2.3.1 The TOUR Model

The first comprehensive computational model of the environment was Kuipers‘ (1977)

Tour model. This model was influenced by Lynch‘s (1960) work on ―The Image of the

City‖ and studies concerning the development of spatial knowledge among children

(Piaget & Inhelder, 1967). What distinguishes this model from earlier ones is its

inclusion of several important representations for large-scale space navigation. For

example, it has a representation which allows users to select correct routes to get from

one place to another, a topological representation that keeps connection between

traversed routes, and a different metrical representation for each local place visited.

Other spatial knowledge models beforehand only proposed the mental map as a single

global reference frame for the entire environment.

 22

The following depict how the TOUR model divides the spatial knowledge into five

different groups, each with its own representation:

1. Routes

A representation of a sequence of action which guides users along a particular

route through the map

2. Topological

A network of routes with emphasise on the order of the places connected by the

routes. This representation also makes explicit the intersections where these

series of routes meet.

3. Frame of Reference

This representation describes each local space as a local metric map of its own.

Objects inside a local metric map are positioned according to a particular

orientation to the user. Different places are built from different orientation

preference thus they cannot be compared to each other unless they share similar

orientations.

4. Dividing Boundaries

This representation supplies the knowledge of where a place is located relative

to other places in the environment. The boundaries are not physical barriers

which may disrupt travel; their main purpose is to provide a qualitative

measurement of positions.

5. Regions

Regions are defined as a structure with levels of abstraction use for stating

properties of their elements.

 23

To function properly, the TOUR model requires the navigational problem to be broken

down into three different representations. The first is usually a map of the area (see Fig.

2.4(a)), followed by a description of where the traveller is located at present in the

environment (Fig. 2.4(b)), and lastly a set of inference rules to manipulate the

knowledge of two previous classes (Fig. 2.4(c)). The performance of the model

depended on how much information is available in the last two since these

representations may be incompletely described.

Fig. 2.4: The TOUR computational model of cognitive map. Reproduced from Kuipers (1978)

The set of rules in the last representation is inferred as a result of manipulating and

combining different parts of knowledge from the other two spatial representations.

However it is not the representation which is accessed to learn about the environment.

The only accessed environmental descriptions from the TOUR machines are the ones

 24

referred by the ―You are here‖ pointer in the second representation, the representation

which depicts the traveller‘s current position. This allows the model to work quite

efficiently since the route programs that drives it do not have to search for

environmental elements.

The inference rules are made of simple modules which triggers some simple actions

when pass certain thresholds. In general these rules are categorised according to the

following:

1. Rules which compare the route instructions in the ―You are here‖ pointer to the

topological descriptions of the environment. If a part of the topological

representation is incomplete, these rules can patch up the missing gap with

information from the others

2. Rules that fix the orientation to adequate the current heading of the frame. This

is achieved by comparing the ―You are here‖ pointer to knowledge of the

current place and path

3. Rules which detect structural features that can be defined as dividing

boundaries

4. Rules that utilises the hierarchy of regions, boundaries and referential frames to

solve route-finding and position-finding problems

Kuipers & Levitt (1988) discussed that the TOUR model keeps a topological map of the

environments but has a separate representation for the route knowledge. This is the

disadvantage of the model since the route knowledge on its own is not reliable in

 25

discovering new routes and shortcuts or cope without guidance in unknown

environments. The model however is able to cope with the problem to some extent by

depending on information from its topological representation.

2.2.3.2 The PLAN Model

PLAN is short for Prototypes, Location and Associative Networks (Chown et al., 1995)

which derived inspirations from the developmental theory. They argued that the human

cognitive mapping process is about solving how humans find their ways in the

environment. Basically the model identified four functions of the humans‘ cognitive

maps which are defined as follow:

1. Landmark Identification

With powerful sensory system like the vision, humans are able to identify

distinct features among objects in the environment quite easily. For this reason

landmarks are considered the most basic component in the human way-finding.

By associating a unique object or landmark to a particular area (Kaplan, 1973),

humans can later use the information to recognise where they are in the

environment and to plan their routes to chosen destination.

2. Path Selection

The main task here is to choose a route to achieve the navigation target. A route

is considered as a series of paths that will lead the human to the goal. The

common concept when dealing with paths is that they are actually sequences of

landmarks. In this model, gateways used to enter and leave a city are depicted as

landmarks. So to travel along a path means to follow from one landmark to

 26

another (in this case, gateways) until one reaches the target. With many

alternative paths to choose from the environment, selecting the correct ones is a

problem which requires some reasoning skills.

3. Direction Selection

As the name suggests, this function deals with selecting a direction to guide

one‘s travel. If one can see the target without obstructions, the practical solution

is to turn towards the target. The problem arises when one has to deal with a

faraway target which is beyond one‘s visual capacity at the time. Since one may

have to perform constant turning to reach a distant target, selecting a direction

when one begins a journey is unlikely sufficient to guide the entire journey

(Golledge & Garling, 2003).

4. Abstract Environmental Overviews

When required to explore in a large-scale environment, a logical overview of the

entire environment is a useful spatial knowledge to have. The abstract structure

would aid in reasoning tasks and can overcome problems posed by dealing with

only route knowledge. However acquiring such knowledge is not

straightforward and often involves the combination of each of the other three

solutions.

The PLAN model includes three major modules; prototypes, locations and a simple

associative network in its development.

 27

Prototypes

Chown et al. (1995) argued that landmarks are no different to other objects in general

and thus proposed a category called prototypes which do not define landmarks as a

single distinct entity. To address landmarks identification, the most common features

among the landmarks will be included in the prototype representation. The prototypes

are then ordered as a hierarchical representation with individual feature samples at the

bottom and the more common features sampled at higher levels. The following

conditions further defined landmarks in the model:

1. Landmarks must be distinguishable even when perceived from different point of

views. Also, it is required for the prototypes to function even with partial view

of the landmarks

2. The number of landmarks which can be processed at any time is limited to

similar to the number of objects human processes mentally at a time

3. Landmark must be explicitly influenced by the background. A good landmark

for a particular area in the environment may not be a good choice to other areas

Due to the above reasons, it can be said that not every object can passes as a landmark,

only those that stood out and distinctively recognisable.

Location

Later, Chown et al. (1995) also proposed that local maps are not computed at landmarks

but rather at a choice point in the journey. The observation leads to the construction of

another network since choice points are not represented in the network of landmarks.

 28

The new network is called the R-Net which stands for the network of local maps. The

R-Net is similar to NAPS but rather than storing landmarks (in the form of prototypes),

R-Net stores local maps or regions which are separated using gateways. The regional

maps function like a survey map with the overview or abstraction from the R-Net and

the lower level information from the network of landmarks. As a higher level

representation, the regional maps optimise the amount of information in them making

the maps the primary structure to reason and solve way-finding issues. When requiring

further information, they can be extracted from the lower level representation.

Associative Network

To test the idea of using an associative network, an implementation known as NAPS

(Network Activity Passing System) is carried out (Levenick, 1985; Levenick, 1991).

The goal here is to encode a topological system into the associative network so the

nodes in the network correspond to landmarks and links that connect the nodes

correspond to distance between the landmarks. The establishment of such network made

explicit paths as they are accessible by tracing the series of links between the

landmarks. To solve the path searching problem, the nodes are activated from both

ends; the starting point and the goal location. Wherever the signals meet at some point

in the middle of the network, the meeting point (which is also a node) is computed as a

sub-goal. The process is repeated until the path is completed. In the model, each

landmark is treated like a local map which stores all links that connects it to other

landmarks. Having local maps is useful to orient oneself to a nearby landmark. The

 29

following figure denotes an example of how landmarks are extracted onto directional

and locational grids which form the local maps.

Fig. 2.5: The PLAN computational model inspired by Figure 2 and 3 in Chown et al. (1995)

2.2.3.3 Yeap’s Computational Model

In developing his model, Yeap (1988) questioned how information perceived by the

sensors is processed into a cognitive map. This emphasis on the input follows from

Marr‘s (1982) work on his theory of vision. Humans can rarely remember every detail

perceived from the environment. Based on this observation, Yeap suggested that an

important question about cognitive mapping is: ―What is remembered first and how is

that information be useful later?‖ While other studies at that time have emphasised that

cognitive mapping is a complex process that involves one‘s perception and conception

of the world, it is important, and following Marr‘s idea, that our understanding of how

 30

conceptual ideas are derived be grounded with our understanding of what is delivered at

the perceptual end. In his model, four important representations were proposed (see Fig.

1.1), namely:

1. The Absolute Space Representation (ASR)

An ASR is the most basic description for each local space visited. It functions to

capture the spatial extent of the space where one is in. The task in computing an

ASR is to find the boundary surrounding the viewer and this comes from the

surfaces perceived relative to the viewer. Another important feature of the

boundary is exits (Yeap & Jefferies, 1999). Exits are path options which allow

one to escape the current local space and move into another.

2. The Memory for One’s Immediate Surroundings (MFIS)

The MFIS is a global map of a viewer‘s immediate surroundings. Using a global

co-ordinate system, it depicts the network of ASRs and has information on the

current location of the viewer. It is often used as an extension to what an ASR is

so the viewer is aware of the spatial layout of their immediate surroundings.

3. The Raw Cognitive Map

The raw cognitive map is a network of simplified ASRs which are loosely

connected. It is termed ‗raw‘ because it produces a representation which is

dependent on one‘s sensory perception. So the more one explores and visits new

places, the larger one‘s map will be. The linking between one ASR to the other

is done by connecting the common exits between them. The network, if well

connected, enables the viewer to navigate with ease in the environment. Fig. 2.6

depicts the raw cognitive map built based on a sample environment.

 31

4. The Full Cognitive Map

The full cognitive map identifies places in the environment by organizing

several ASRs into groups. These groups of ASRs can also be combined and

organised into a hierarchy of place representations. This type of representation is

highly dynamic as the groupings may change if one perceives a place differently

over time. At the inter-level, this map explains how to connect the places in the

hierarchy and the possibility of joining new places to build new hierarchies.

Similar information is available at the intra-level so one can extract or modify

the connections between members inside a particular group. Another advantage

of the structure is one can examine exits which connects any two or more ASRs

without having to search the entire hierarchy. This allows fast searching of exits

(basically from anywhere) as long as one knows which ASR one wants to go to

and which ASR one is leaving.

Fig. 2.6: Example of an indoor map and the ASRs computed

 32

2.3 Implementing Cognitive Theories on Robots

The goal of this section is to describe robotic works that attempts at mapping the

environment deriving inspiration from any of the cognitive theories presented in the

previous section. Much of the works in cognitive inspired robot mapping are done in

static, structured and small-scale environments.

Briefly, in developing autonomous navigation behaviour, the robot is required to have

an internal representation that adequately resembles an overview map of the

environment. To acquire the map, mobile robots are equipped with sensors such as

vision (camera, CCD, 3D laser, panoramic), range finders (sonar, laser, radar and

infrared), and advanced positioning sensors (digital compass and GPS). These

perceptual sensors are noisy with each one having their own measurement errors and

range limitations. With the robot‘s limited capacity sensing the environment, it is of

interest to see for example, how object-based robots work with landmark

representations or how would a perceptually-driven architecture be fitting to develop a

robot‘s spatial knowledge. Discovering new routes and performing novel short-cuttings

are advanced way-finding tasks for robots, thus one would wonder if mapping

algorithms based on the cognitive structures are useful to solve these problems.

2.3.1 Spatial Semantic Hierarchy

The SSH (Kuipers, 2000) is a further extension of the TOUR model (see section

2.2.3.1). However, unlike the TOUR model, the SSH proposed one‘s perceptions while

 33

experiencing the environment as reference to how one builds one‘s cognitive maps. The

SSH is hierarchical by structure and offers five different levels of knowledge which

influences one‘s cognitive maps.

1. The Sensory Level

This is the interface to the robot‘s sensors and effectors. Here, the environment

is perceived as a black-box process which returns symbols of images from the

sensor views. These symbols are then matched for recognition or used as

retrieval keys.

2. The Control Level

At the control level, the agent and its environment are described as part of

continuous dynamical system. Two behaviours are detected to define the agent‘s

actions; the trajectory-following and hill-climbing control laws, so the agent-

environment system moves correctly towards an attractor. The stable attractor of

a hill-climbing control law is called a distinctive state.

3. The Causal Level

Here, the agent and its environment are described as a partially known finite-

state automaton with views, actions and schemes representations. The views

correspond to sensor readings at distinctive states identified at the control level.

The actions are responsible for the commands to move where each movement

matches several sequences of the control laws. The schemes are extracted from

the interaction between the views and actions.

 34

4. Topological Level

This interface deduce two relationships; the first one between the distinctive

states and movements which are calculated at the control level, and the second

between the views and actions at the causal level. These relationships allow the

interface to relay information about places, paths and regions and how they are

connected to one another in the form of nodes and edges. The map produced

here is responsible to solving way-finding problems.

5. Metrical Level

A 2-D global topological map is defined here. The map consists of properties

like distance between places and angles between paths. These properties

correspond to the nodes and edges of the topological graph.

Even though the five levels in the SSH model relies on one another, the reliance are not

without constrained. This control makes each combination of more than one level a

unique representation on its own as every level defines different SSH knowledge. This

model, when used to describe an agent‘s cognitive map, divides the map into

representing knowledge at different SSH levels (see Fig. 2.7).

 35

Fig. 2.7: The logical dependencies and constraints (red arrows) in the SSH Model. Blue arrows denote

potential information flow without dependencies. Reprinted from Kuipers (2008)

The earlier implementations of the SSH model were done in Kuipers & Byun (1987,

1988 & 1997) using a simulated sonar robot with a digital compass called the NX (see

Fig. 2.8). The compass is used for global orientation so the robot could reach distinctive

states in the environment using simple control laws. They were also interested to see

how the topological and metrical maps can be abstracted from the states. Then Lee

(1996) implemented this algorithm on a real mobile robot called Spot. Spot is also a

sonar robot with 3-legged wheels. A more recent implementation using the SSH model

can be found in Remolina & Kuipers (2004).

 36

Fig. 2.8: (a) Simulated exploration by the NX robot highlighting the distinct paths and places, (b) parts of

the topological map which defined the relation between paths and places, (c) the global metric map

produced. All images reprinted from Kuipers (2000)

Later implementations see an upgrade to the SSH architecture when Kuipers and his co-

workers include the robot‘s local perceptual map and termed it as the Hybrid SSH

(Kuipers et al., 2004). The popular SLAM methods are used to compute the local

 37

perceptual map (LPM) which is a precise overview of the distinctive places available.

The change sees the atomic representations of views of the SSH model is replaced by

the LPMs in building the topological map. The LPMs provide precision in way-finding

and thus avoid having to deal with the loop closing problems. Fig. 2.9 shows how the

HSSH computes first the gateways, followed by the paths and distinct states.

Fig. 2.9: (a) Robot (red) in the middle of an LPM, (b) and (c) show 5 gateways recorded where the
corridors just about to merge into a large common area, (d) described how 4 paths are computed and 8

distinct states detected. Reproduced from Kuipers et al. (2004)

The LPMs are built on occupancy grids where each grid having their own local

Euclidean representations. Testing the connections between the LPMs has been the

main focus in Kuipers et al. (2004). To test the model‘s performance, the robot was

made to travel in an environment with multiple nested loops (Fig. 2.10(a)). Each time

the robot passes through a place, an LPM is computed for the place and a number is

given to tag the LPM. The numberings accord to the order in which the robot travels

(Fig. 2.10(b)). They observed that when revisiting the same LPM, the gateways are the

key in solving the perceptual aliasing problems (see Fig. 2.10(c)). Once the loop

problem is solved they were able to produce a global metrical map of the environment

which originated from a topological representation in Kuipers (2008). See Fig. 2.11 for

results.

 38

Fig. 2.10: (a) An environment with multiple nested loop, (b) the LPMs computed at each place and

tagged with a number, (c) connecting the LPMs via their gateways. Adapted from Kuipers et al. (2004)

Fig. 2.11: Computation of a global metrical map (right) from what is initially a topological representation

of the environment (left). Reprinted from Kuipers (2008)

2.3.2 R-PLAN

In Kortenkamp (1992), the cognitive theory PLAN (see 2.2.3.2) is implemented on a

mobile robot equipped with 16 rings of sonar sensors and a single camera. The

implementation is called the R-PLAN (robot PLAN) and the focus is to investigate the

integration of both sensors to develop for the robot the notions of gateways and scenes

respectively. The gateways in theory are places of choice points where the robot may

potentially perceives new landmarks in its exploration. In the cognitive model (PLAN)

these landmarks are an abstraction of objects such as buildings and trees. However,

 39

these objects are too complex to be recognised as such using their robot senses and as

such, in the implementation, they extracted vertical edges of objects instead. The latter

is done using vision.

For the gateways, doorways are seen as good options to see more of the environment

because they offer the sense of visual narrowing then opening as the robot move

towards and cross them. Sonar readings were used to detect them by sensing the spatial

changes leading to gateways. The scenes are composed of visual images captured at the

gateways and each composition is specific to identify different gateways. Fig. 2.12

illustrates several types of gateways identified for the robot. These gateways are useful

to overcome the perceptual aliasing problems by reasoning about the type of gateways

identified when looping occurs in the regional map. For instance, a T-shape gateway

could not be a four-corner gateway on a route, but it could be a left or right opening on

another.

Fig. 2.12: Samples of types of indoor gateways in R-PLAN; (a) left room entrance, (b) room entrance, (c)

left corner, (d) right room exit, (e) T-shape gateway, (f) four corners gateway, (g) left opening gateway

and (h) right opening gateway. Reprinted from Kortenkamp (1992)

 40

In Kortenkamp & Weymouth (1994), the scenes are used to identify places in the

environment. The scenes store the robot‘s visual cues in an abstracted scene

representation which is a grid. Each cell of the scene represents a visual cue;

direction, distance or length of the cue. Fig. 2.13 shows the cues stored for a scene

where each scene serves as a basic component for a larger representation. There were

four algorithms to match the scenes for place identifications; (1) feature-to-feature

matching using distance and direction, (2) cell-to-cell matching using distance and

direction, (3) cell-to-cell matching using only direction, and (4) cell-to-cell matching

using only occupancy. These algorithms however, are limited to highly structured and

orthogonal environments due to the expensive computational resources to process the

visual scenes.

Fig. 2.13: Storage of visual cues into a scene (ASR). (b) The configuration of scenes for place

identification. Reproduced from Kortenkamp & Weymouth (1994)

 41

Recent implementations of the PLAN theory have seen a shift in the way the basic

component is implemented. In Chown & Boots (2008), corners are detected using laser

sensors which they termed the implementation as C-PLAN (corner PLAN). Each corner

is annotated as node and the path and direction used to traverse between corners is

recorded. The nodes and their spatial relations form a topological representation of the

environment. Apart from corners, the use of laser sensors allows Chown & Boots to

also perceive wall information and suggested that walls can be of influence to humans‘

perceptions of an indoor environment. They further defined corners to be readings of

two surfaces separated at 90-degree angle and walls to have 180-degree angle. These

corners and walls were influential in their depiction of the environmental representation

(see Fig. 2.14 for example).

Fig. 2.14: (a) Raw laser points separated at 180-angle to each other and (b) computing the corners by

breaking raw laser points at any right-angle found. Reprinted from Chown & Boots (2008)

2.3.3 Absolute Space Representation

Yeap and his students (see Yeap & Jefferies, 1999, 2001; Jefferies et al., 2004; Jefferies

et al., 2008; Wong, 2008) have also attempted to use robots to test their theory of

cognitive mapping. Their goal is to use the robotic platform to advance their theory for

explaining cognitive mapping. As such the implementation for the ASR theory has so

 42

far never been attempted for robot mapping, which is the aim of this thesis. However,

much can be learned from their implementations and for that reason two of their

contributions are forwarded here.

Briefly, Jefferies contributed the idea of exit and the role of topological hierarchy in

cognitive mapping. She tested using a laser robot and reported the importance in

connecting network of local spaces (topology) particularly for loop closing. Then later,

Wong tested the ASR on a sonar robot to see what kind of map is produced when the

sensing is poor. He showed that distance and orientation is an important aspect in

cognitive mapping.

According to Yeap (1988), representing the local environments is the most basic

requirement in building a robot‘s cognitive map. The robot must then describe the

boundary of the local space by forming suitable connections between the surrounding

surfaces, which gives the rough shape of the space the robot currently resides in. But

Yeap & Jefferies (1999) highlighted that determining where a local space should start

and end is not a clear-cut decision. They proposed the notion of exits as a cognitive

solution in guiding the robot to leave the current local space and move into a new one.

In Yeap & Jefferies (1999), an exit is defined as a narrow opening in the surrounding

boundary which exists between local spaces. It acts as an entryway with enough space

for the robot to pass through and it allows the robot to move into another local area to

continue exploration. Exits are normally detected at occlusion points. Technically, when

 43

a surface is perceived being occluded by another surface, then gaps are present in

between these surfaces (see Fig. 2.15).

These gaps are a good indication that there are areas beyond which are hidden from

robot‘s direct line of sight. By connecting the occluding points of these gaps, a virtual

edge is created. If the virtual edge is wide enough for the robot to pass through, it is a

good candidate exit for the current local space. Sometimes a false exit can be calculated.

But once the robot is closer towards a false exit, feedback from the sensors should be

able to verify spurious data and eliminates any discrepancies detected (Jefferies et al.,

2001). Once exit information is available, the robot will be able to decide how it is

going to leave the current local space.

Fig. 2.15: Example of exit detections. G1 and G2 are the gaps detected because surfaces S1 and S3 are
occluding surface S2. G3 is a gap because surface S5 is occluding S4. All gaps have one occluding point

(marked as filled circles) and one occluded point (marked as empty circles). Connecting the two

occluding points of G1 and G2 creates the first exit E1. Connecting the two occluding points between G2

and G3 creates the second exit E2.

Fig. 2.15 shows that regardless whether the robot leaves via the first exit (E1) or the

second exit (E2), S1-E1-E2-S5 are used to compute the rough shape of current local

space. Surfaces and gaps beyond an exit; such as S2, G1, and G2 for exit E1, or, S3, S4

 44

and G3 for exit E2, are not included in the current local boundary computation unless

the exits are deemed false and robot is not able to cross them. In the case where robot

decides to use E2 but discovers upon crossing it that G3 is an actual surface hidden

from robot‘s previous position, E2 will then be the only exit for that local space and

robot has to reuse E2 to escape the area. E1 will then be useful to continue its

exploration in the environment.

Exploiting the sequence in which these exits are crossed allows for one to build up the

connection between the different local spaces. With a network of the local spaces

established, the robot will have another view of its environment. However, when using

the network of ASRs to navigate, identification of a previously visited ASR particularly

from the opposite direction remains a challenge. From different perspectives, the same

local environment may have significant variations in terms of the shape or key feature

descriptions and this makes matching them difficult. To solve the place recognition

problems, Jefferies et al. (2008) proposed the computation of an MFIS representation

whereby the recent ASRs visited are described are placed in the MFIS and thus

described using a single global frame of reference (see Fig. 2.16). In this way, if it has

re-entered any of the recently visited ASRs, it will still be able to identify them even

though the route chosen is a novel one. However, distortions and the limited size MFIS

meant that the problem is only solved partially.

 45

Fig. 2.16: (a) Example of a network of ASRs computed with robot currently in ASR3 (b) The MFIS
produced with robot about to revisit ASR7 from ASR3. Since ASR7 is identified, no new ASR is formed.

New link is established between ASR7 and ASR3. Reproduced from Jefferies et al. (2008)

Later, Wong et al. (2007) purposely implemented the ASR on a lower sensing robot.

With only 8 sonar rings, he collected noisy readings and used them to compute what he

called a network of fuzzy local places. His implementation showcased that an ASR

could allow such representation and still be of use for navigation. In home-finding

experiments, Wong et al. computed two separate maps; one for the journey outward and

another for the journey homeward. Fig. 2.17 shows the results from the experiment.

Each node in Fig. 2.17 (a) and (b) represents an ASR computed in the journey. It has

been observed that the total number of the ASRs and its start and end points are

different in both maps, which is due to the robot moving in opposite directions. This

means that direct comparison of features from both maps; such as their rough shapes

and sizes, is futile to perform place recognition.

 46

Fig. 2.17: (a) The large corridor-like environment for testing, (b) map for the outward journey with 10

ASRs computed, and (c) map for the homeward journey with 8 ASRs computed. Reproduced from Wong

et al. (2007)

For this reason, Wong et al. (2007) came out with the strategy to utilise distance and

orientation in performing home-finding. The robot is instructed to calculate the distance

between exits from the local spaces in the homeward journey and projected it onto the

local space network created in the outward journey (Wong et al., 2007). The distance

projection is then remembered and utilised for localisation and navigation towards

home. Another important feature of the strategy is it also enables the robot to maintain

orientation with its home throughout the return journey, which has been successfully

demonstrated in several homecoming attempts (Wong, 2009).

 47

2.3.4 Neural Cognitive Maps

Many robotics implementations are inspired by the neurological theory of cognitive

mappings (briefly described in section 2.2.2). These implementations differ from those

based on symbolic models. In general, they are concerned about the connection between

activated place cells whereas symbolic approaches are concerned with how information

from the environment influences the acquisition, processing, development and use of

one‘s cognitive maps.

2.3.4.1 Hafner’s Works

Hafner (2001) introduced a visual homing neural network model which is trained using

a normalised version of the Hebbian learning. See Kempter (1999) and Gerstner &

Kistler (2002) for formalisms. The neural network model is implemented on a mobile

robot called Samurai with sensors (omni-directional camera and magnetic compass)

resembling the desert ants‘ Cataglyphis. The main task of the robot is to perform visual

homing but without any feature extractions or landmark segmentations. The strategy is

to capture two snapshots of the environment; one at the beginning of the journey and

the second at current position. The compass aligns the two images according to an

external reference direction. The result is a homing vector pointing toward the position

where the initial snapshot was taken (see Fig. 2.18).

 48

Fig. 2.18: The neural network structure for visual homing. All weights at the output layer which
triangulates home is adjusted using the Hebbian learning. Reproduced from Hafner (2001)

Fig. 2.19: (a) aMouse with a single camera and real rat whiskers, and (b) neural network with neurons at

output layer represents places in the topological map. Reproduced from Hafner (2008)

Later, Hafner (2005) created her version of artificial mouse or aMouse which is a

mobile robot that has omni-directional vision and active whiskers (see Fig. 2.19(a)).

The visual field of the robot is similar to the large visual field of rats and mice and its

whisker is made of real rat whiskers for realistic texture recognition. The whisker

sensors of aMouse are attached to microphone membranes in order to produce high

 49

resolution sensor data. The implementation is an effort to test if the added tactile sensor

(whisker) on top of visual information aids Hafner‘s neural network model in

performing place recognition.

Inspired by a review of map building and path-planning strategies by Meyer & Filliat

(2003), Hafner attempted to compute a topological model based on the output layer of

her normalised Hebbian neural network. Instead of storing images only for visual

homing, each neuron in the output layer stores an image of the place visited by the robot

(see Fig. 2.19(b)). These images are processed into lower resolutions before Gaussian

filtering is used to reduce the noise so that the intensity curves of images captured using

the omni-vision can be extracted. After aMouse randomly explored its environment, the

intensity information would reveal a range of grayscale values and areas of similar

values is classified as the same place cell. Fig. 2.20 denotes the 2-D grayscale image of

the simulated environment. It was observed that the robot‘s visual input changed more

rapidly when it reaches closer to the surrounding obstacles (Hafner, 2008). The

implication here is that more place cells are recruited for this area, adding new place

nodes to the topological graph structure. The metrical map is extracted from the

topological structure using the distance and orientation between the places defined by

specific weight functions in the network‘s output layer.

 50

Fig. 2.20: (a) and (b) represent the environment in grayscale format; black areas are obstacles and

different gray shadings indicate different place fields in the environment, (c) denotes the connections

between places at random parameters, and (d) the interconnectivity with optimal parameters. Reproduced

from Hafner (2005)

2.3.4.2 Cuperlier et al.

Cuperlier et al. (2007) also propose mapping on a neural network architecture inspired

by the interactions between the hippocampus and prefrontal activities. However, the

representation of place cells has been redefined to include a new cell type called the

transition cells (se Fig. 2.21). The transition cells is said to replace the traditional place

cells in the hippocampus. The idea is derived from observing humans do not have to

‗see‘ the map of the environment in order to use it. For instance, in using place cells to

describe paths, one could say; ―… at A, turn 10 degree to the left and go straight to

reach B. At B, turn 40 degree to the right and go straight to reach C‖. If transition cells

 51

are used, the description is changed to ―… at A use the transition AB to reach B, next

use the transition BC to reach C‖. This mean the transition cells holds information

(distance and orientation) about the link between two places and in the network, they

replaces the place cells as the basic components that make up the neurons.

Fig. 2.21: Sketch of the model. From left to right: merging landmarks (Pr) and their azimuth (Ph) in a

matrix of neurons called product space, then learning of the corresponding set of active neurons on a

place cell (ECs). Two successive place cells define a transition cell (CA). Place cell at time t-1 is in DG.

Transitions are used to build the cognitive maps (PF) which are linked with movements (ACC). Diagram

and description reprinted from Cuperlier et al. (2007)

With each panoramic image from the environment, the model trains the network to

identify a constellation of landmarks and their orientation in the environment using a

compass. They defined specific features from the image to be processed as landmarks

with a sampling size of pixels thus making their approach different than the

traditional object-based landmark extractions from visual input of the agent. The

samples are then processed so its centres are the curve points. The orientation (azimuth)

 52

of these curve points are computed relative to North as defaulted by the compass. Both

the sample and its corresponding azimuth become the ‗landmark‘ which signifies a

particular area in the environment. Fig. 2.22 shows a total of 10 different landmarks

were extracted from the panoramic image which is first processed into binary pixels.

Each pairings of the landmark and its azimuth occupies a place cell (at the neuronal

level). One the trained set is setup, a matching function compares the distance between

the learned set and the current set. If the current set is not matched, then a new place

cell (neuron) is defined for this new location. It has been observed that when an agent

traverses near walls or doors, more locations are learned since there is a rapid change in

the angular positions of the landmarks. However, as the agent leaves an area the

landmarks would begin to disappear from view. In Cuperlier et al. (2006), it is

explained that once a transition is used, a new link is added into the cognitive map. This

link represents a continuation of the path from the previous transition. These links

which are numbered form the connections and denote the successive paths being

traversed by the agent. The links can be trained with higher values when it is often

revisited and decreased if they are not used much in the exploration. The links and

landmarks representation looks like the map generated in Fig. 2.23.

 53

Fig. 2.22: An example of extracting landmarks and its azimuths from an agent‘s visual input. Reproduced
from Cuperlier et al. (2007)

Fig. 2.23: The cognitive map computed using the transitions information. The triangles denote the robot‘s

localisation and direction at the point of exploration. Reproduced from Cuperlier et al. (2006)

 54

2.3.4.3 RatSLAM

As the name suggests, RatSLAM is a mapping approach which solves the simultaneous

localisation and mapping (SLAM) problems. It derives inspiration from observing how

rodents build their representations of the environment by studying the patterns of neural

activities which correspond to the place fields inside their hippocampus. The place

fields are activated when the rodents moves about and collect visual input. Thus at the

core of the model, RatSLAM has to deal with integrating odometry readings and visual

stimulus in building the map similar to the SLAM‘s. However, as Milford et al. (2004)

noted, the two approaches differ in defining what place cells or place fields are in their

mapping components. SLAM treats place fields as Euclidean grids on a Cartesian plane

and they could be topological or landmark-based. For the RatSLAM, place fields yield

representations that are part grid and part topological. This means they are not rigid in

the representation as the grids do not have to be strictly geometric nor the landmarks

must be uniquely defined.

Conceptually, the RatSLAM architecture is built on three representations; the pose cells

(robot‘s position and orientation), the local view cells (stores visual information) and an

experience map (Milford et al., 2007). As shown in Fig. 2.24, activities on the pose cells

and local views cells propel the creation of experiences. In return, each experience

represents the activity within the pose cells and local view cells. New experience is

created when current experiences cannot be matched to any activity inside existing

experience map. For each new addition of the local view and/or pose, an experience

node is stored and this node is linked to the previous node by a transition derived from

 55

the robot‘s self-motion (see Fig. 2.25). These experience nodes are like the rat‘s place

cells in the hippocampus. When revisiting the same place, the place cell is recognised

when the same view and pose occur in the experience map. Once the robot knows it is

at the same spot again in the environment, loop closing is performed by aligning the

transitions and poses. Correcting the geometric errors allows the robot to estimate self-

motions or localisations for the entire exploration.

Fig. 2.24: Building the robot‘s experience map using pose cells and local view cells. Reproduced from

Milford (2007)

Fig. 2.25: (a) Representation of the pose (position and orientation) in a 3D network with the wrap-around

leads to grid-like response, (b) shows the connection between all three representations. Reprinted from

Milford et al. (2007)

 56

Fig. 2.26 denotes the results of the RatSLAM in outdoor environment. Instead of using

a mobile robot, a built-in laptop with webcam is mounted on top of a car and the car

was driven for 100 minutes through 3km by 1.6km in an area in the Brisbane. When the

experience map is visualised, the map was able to capture a fairly accurate

representation of the area traversed which could be useful for navigation. Recently, the

RatSLAM (Milford et al., 2008) is augmented with a probabilistic approach to associate

visual data called the FAB-MAP (Cummins & Newman, 2008). The FAB-MAP is short

for Fast Appearance-based Mapping and uses recursive Bayesian estimations to infer

the probability that two images seen at different times are indeed representing the same

scene. While a full SLAM system since FAB-MAP has no pose data, the method on its

own has successfully associated visual data on road loops as large as 1000km (for more

information see Cummins and Newman, 2011). Results of combining both approaches

can be seen in details in Maddern et al. (2009).

Fig. 2.26: An example of the RatSLAM results in outdoor environment. Picture and results reproduced

from Milford et al. (2008)

 57

2.4 Traditional Robot Mapping

Traditionally, the robot mapping is divided into two major groups; metric and

topological. Metric mapping is an approach that utilises the geometric features of the

environment (see Chatila & Laumond, 1985; Arras, 2003). The maps generated this

way are also referred to as relative maps as roboticists use the concept to build maps in

response to the movement of the robot in the environment (Martinelli et al., 2004).

Topological mapping is normally associated with the computation of place-related data

and other information that can help robot to get from one place to another (Choset &

Nagatani, 2001; Tapus, 2005). There is also a new emerging concept which fuses both

conventional methods termed the hybrid mapping (see Thrun, 1998; Tomatis et al.,

2003). This approach typically uses a combination of metric map for precision

navigation in a local space and a global topological map for moving between places.

All three approaches are similar in one sense; they are all representations centralised to

attend to robot navigation which means they are useful for the robot to find its way in

the environment. Two key questions being addressed in these approaches are the robot

localisation; ―where am I?‖ and the robot mapping; ―what does the world look like?‖ By

simultaneously estimating both map and robot location, robot mapping allows robots to

be fully autonomous and able to operate in an environment without a priori knowledge

of a map and without access to independent position information. This widely accepted

concept in robot mapping is called the SLAM, and attempts at it are termed solving the

SLAM problems.

 58

In solving the SLAM problem, generally roboticists rely on the production of precise

and complete map. Unfortunately, this often requires high-end probabilistic measures

and is usually computationally expensive particularly in mapping large-scale

environments. Furthermore, building such accurate maps has been reported to lack

resemblance to the way biological agents computes its cognitive map. However, it is

important to understand how roboticists have used different sensors to map the

environment because efficiency of the mapping algorithms also depends on the physical

capabilities of the robot. Learning the way the robot perceives its environment

determines which mapping approach to be used and how the technique should be

applied in this work.

2.4.1 Metric Maps in SLAM

A metric map is the capture of the geometric properties of the environment to build a

detailed metrical description of robot‘s environment from sensor data (Preciado et al.,

1990; Durrant-Whyte, 1998; Thrun, 2001). The geometric properties refer to the

geometric relations between objects and a fixed frame of reference identified in the map

presenting accurately the positions of objects inside the environment, for instance

chairs, desks and walls. A common method used in the construction of metric maps is

the occupancy grid. This technique uses a matrix to store the exact position of objects in

the global frame, in which each element of the matrix can be empty or occupied, or can

be an unknown area. The metric map is said to be the most explicit map in robot

mapping because it only reproduces the spatial state of the environment and carries no

 59

functional information. Also, the precision of the information given by a metric map

depends highly on the quality of the robot sensors.

As sensors are often subject to noise, this dependence is a weakness of the metric map

and it becomes more prominent as the map increases in size. Many works in space

representation are based on metric maps such as the stochastic map technique to

perform SLAM (Castellanos & Tardos, 1999; Dissanayake et al., 2001; Leonard &

Durrant-Whyte, 1992). Another example of approach is the occupancy grids proposed

by Thrun (1998). Thrun (2000) then proposed probabilistic methods that make the

metric mapping process faster and more robust. These mapping techniques described

above address the mapping problem with unknown robot poses. There is also a simpler

version of the problem reported in the literature. It is described as mapping with known

robot poses. Some examples of this approach are the occupancy grid maps developed by

Moravec & Elfes in the mid-eighties, and one created by Thrun (1998).

The occupancy grip mapping addresses the problem of producing a consistent metric

map from noisy or incomplete sensor data. Even with predefined robot poses, the

inaccuracy of the sensor data usually makes it very hard to mark whether a place in the

environment is occupied or not. More often than not, range finder sensors such as sonar

and laser are favoured in occupancy grid applications as both type of sensors are

characterised by noise. However, there is an extra weight in using the sonar sensors as

each sonar rings usually cover a cone-like area of the space. A single sonar reading set

is insufficient to tell where exactly in the cone the object is. Both sensors are also

 60

sensitive to the angle of an object surface relative to the sensor and the reflective

properties of the surface (absorption and dispersion of signal).

The occupancy grid maps take care of such problems by generating probabilistic maps.

Each occupancy maps are represented by grids, which can be two-dimensional or three-

dimensional. The standard occupancy grid mapping algorithm normally uses Bayes

filters which are used to calculate one set of occupancy grid map given the occurrence

of another set of occupancy grid map. Fig. 2.27 displays the standard grid mapping

process when a robot equipped with a set of sonar sensors passes by an open door. Such

cluttered environment often leads to the sonar beams getting conflicting measurements

about the area of the doorway, sometimes resulting in the opened doorway being closed

in the final map. The conflicting regions are usually accommodated by averaging to

avoid wrong interpretation of the physical data. Fig. 2.28 is an example of the real

world data being mapped when a mobile robot is made to pass through a long corridor.

The result in Fig.2.28(c) is used for robot‘s localisation, path planning, navigational

strategies, obstacles avoidance and landmarks recognition (Thrun et al., 2005).

However, like many other metric SLAM approaches reported in the literature, this

method can become computationally very expensive for large environments.

 61

Fig. 2.27: (a) Two sonar beam readings, (b) both readings projected onto same grid map, (c) and (d) show

readings on individual probabilistic map, (e) conflicting regions on grid when probabilistic maps are

compared, and (f) final map with removal of conflicting region. Reproduced from Thrun (2003)

Fig. 2.28: Grid mapping in large environment. (a) Raw sonar data over 50m corridor-like environment,

(b) map with missing walls and doors in traditional grid map, (c) map with completed walls and doors in

advanced grid maps. Reproduced from Thrun (2003)

 62

Often, the uncertainties from the measurement errors must be controlled using

probabilistic calculations. For instance, the final map shown in Fig. 2.28(c) is a solution

called Forward Models derived from the Bayesian theory. Other solution known from

the literature includes the vision-based metric approaches utilizing the Scale Invariant

Feature Transform (SIFT) algorithm which detect and describe local features in images.

Example of this approach can be seen in Se et al. (2002). More recent work highlights

the widely popular approach called the Extended Kalman Filter (EKF) where Kong and

his colleagues (Kong et al., 2006) implemented a localization system which detect

features inside the surroundings such as corners and flat surfaces.

2.4.2 Topological Maps in SLAM

The main drawback of the metric maps approach is the rigidity in which they are

computed. Researchers solving the map using purely metric maps face the challenge in

controlling the odometry error of the robot. Such inaccuracy of the robot‘s wheel

trajectory makes it difficult to maintain the global consistency of the map even if all

relationships between the environmental features and the robot itself has been attended

to. Also, most metrical maps do not have information about the objects and places of

the environment which limits its flexibility to be extended to incorporate higher level

reasoning or symbolic reasoning. In contrast to geometric mapping, the topological

approach does not build a representation that is visually comparable to the environment.

Rather, it is a feature-based map that uses symbolic representation that records the

relationship between geometric features known as landmark (Engelson & McDermott,

1992; Fabrizi & Saffiotti, 2000). Examples of landmarks include junctions, corners and

 63

dead ends, and they can either be natural or artificial. Since the published works of

Kuipers (1978 & 1983), a lot of progress has been made by researchers to tackle the

shortcomings of the geometric method. A review of Kuiper‘s topological SSH can be

found in section 2.3.1.

One of the more popular strategies was to model the space using graphs. Unlike the

metric map which is an absolute representation, the topological graph represents the

environment as a list of significant places which carry information on how a robot can

travel from one place to another. Two key properties of the graph; the nodes and the

arcs, correspond respectively to the places and the paths from the environment. When

two nodes are connected without any obstacle in the graph, it means that they are

adjacent places in the real environment.

In Choset & Nagatani (2001) a new method using Generalized Voronoi Graph (GVG)

to solve SLAM is proposed. The main goal is to exploit the topology of the robot‘s free

space on a partially constructed map. Using a graph matching process, their robot is

able to localise itself by tracing two points from the walls so it is always positioned in

the middle part of the pathways. When it is no longer able to find the two points,

meaning it reaches some point where the distance threshold is met; the robot will

choose to follow the obstacle boundaries to perform localization. Fig. 2.29 is a sample

of localisation strategies worked using the GVG algorithm. Lisien et al. (2003) extended

this graph matching concept to H-SLAM (i.e. Hierarchical SLAM) in which a high-

 64

level topological map organises a collection of low-level feature-based maps creating a

hierarchical approach to the topological SLAM.

Fig. 2.29: Example of a GVG topological solution in performing robot‘s localization. Readings from 8

range-finders are used to estimate the nearest obstacles with H and C the two lowest values in the sensor

array (A is not considered as it is not a local minimum). When two adjacent sensors have similar values,
the closest obstacle is assumed to be in between the two sensors. Reprinted from Choset & Nagatani

(2001)

2.4.3 Hybrid Maps in SLAM

It has been a common assumption that two distinctive places can be easily recognised,

but in robot reality, it is not so easy to differentiate between the two places. The absence

of compact and dense metric data in topological maps, by principle, should make the

coarse, graph-structured topological maps fare better in recognizing an already visited

place. However, closing the loop remains a fundamental problem in topological

mapping because these techniques often ignore valuable metric information which

affects its ability to describe individual objects in an environment, a feat that is easily

solved with richer sensory information and unique features abstraction offered by the

grid techniques.

 65

The lack of one-to-one relationship between the matrix grid and the geometry of the

represented environment proves to be computationally inadequate in practice when

dealing with place recognition particularly in large-scale surroundings. Moreover, even

though purely landmark-based approaches are fairly robust against sensor noise and

small environmental changes, they also rely heavily on the global consistency of the

topology. This proves to be a challenging task as the map lacks recognizable landmarks

which make minimizing the number of topological nodes in the network difficult as it

contains redundant information that is hard to remove (Kuipers et al., 2004).

Since metric and topological maps focuses on different aspects of the same

environment, their integration is useful in producing a robust map which contain both

the quantitative and qualitative information of that environment. In a hybrid

representation, the environment is described using a global topological map and local

metrical maps. When traversing from one place to another, the path within the whole

environment is planned using the global topology so the robot is able to find the

connecting route to a targeted place. Once it reaches the target, navigating inside that

place is done via the local metric map to ensure precise localization and safe navigation.

Works which are prominent in the concept of enriching the topological map with metric

information include these references (Habib & Yuta, 1993; Tomatis et al., 2001;

Tomatis et al., 2003). Their hybrid models describe the requirement to switch from the

topological to the metric paradigm each time their robot traverses between the local

metric maps. Since the local metric maps are independent from one another, it allows

 66

for a compact environment modelling which does not require global metric consistency

and permits both precision and robustness. Fig. 2.30 shows how hybrid maps are used.

Fig. 2.30: Example of a hybrid map. The environment is represented with global topological nodes and

local metric places. When travelling from one node to another, the system switches from topological to

metric and vice versa. Reproduced from Tomatis et al. (2003)

Advancement of vision techniques in indoor SLAM has allowed production of visual

hybrid map of a mobile robot‘s working environment. The construction of a hybrid

visual map has been done on image based navigation along the lines of appearance

based mapping (Cummins & Newmann, 2008) and topological SLAM (Angeli et al.,

2008a). Earlier, the hybrid visual map was proposed using two levels of representation;

an absolute map representation of distinct visual planes using the Extended Kalman

Filter (or EKF-SLAM), and a relative map representation of dense visual features for

each visual place done using sparse information filter update (Ahn et al., 2007).

However, it has since been a common technique to use semantic approaches in reducing

the number of nodes in the topological graph through a combination of local and global

decision making strategies (Krishnan et al., 2010).

 67

Utilizing images, these vision based explorations provide dense range information (Sim

& Little, 2006) or as a classification of the surrounding area around the robot pose

(Santosh et al., 2008; Krishnan et al., 2010). Given that it is possible to extract a lot

more information about the objects and spatial layouts from an image, researchers are

able to obtain the semantic construction. The knowledge is then applied in robot

operations where higher lever understanding can be used to formulate an effective

exploration and mapping strategy in tackling visual homing (Filliat, 2008) as well as

loop detection (Angeli et al., 2008b). Nonetheless, these semantic approaches sometime

require user interventions where the robot is either guided to collect the images for

learning (Filliat, 2008) or made to move along predefined paths (Angeli et al., 2008b)

limiting the robot‘s autonomy operating in its own surroundings.

2.5 Chapter Summary

This chapter shows that there has been a significant progress particularly in the

development of computational models for cognitive mapping. Significantly,

implementation and testing of these theories have been expanded on the mobile robot

platform. The current thesis investigates how a cognitive theory such as the ASR can be

borrowed into robot mapping. However, the current implementations of the

computational models including the SSH and PLAN are basically using the mobile

robots as test-bed to get more insights on the cognitive mapping process itself. None of

these approaches have been adopted into a robot mapping work. This work is the first

attempt at doing so and in return the work presented a novel approach to using an

inexact map for a robot. The following Chapter 3 discusses how a cognitive theory such

 68

as the ASR can inspire a novel robot mapping work that computes and uses an inexact

representation of the environment without any error corrections.

 69

3 Methodology

The MFIS & ASR

Computation

3.1 MFIS Computation

The MFIS is a representation that describes the spatial layout of one‘s immediate

surroundings using a single global co-ordinate system. The MFIS is viewed here as

similar to the global map computed using the traditional robotics SLAM approach

except that (i) it is not an exact map, and (ii) it is not meant to be a map representing the

entire environment that the robot has experienced. Psychologists often describe the

implementation of such a map using an egocentric frame of reference (Klatzky, 1998;

Wang & Spelke, 2000; Mou et al., 2004). That is, the spatial layout of surfaces in one‘s

immediate surroundings is described using a co-ordinate system centred on the self (see

Yeap, Jefferies, & Naylor (1991) for an alternative approach). As one move, the co-

ordinates of these surfaces are updated but at some point, surfaces that are far away

3

 70

from the self are simply removed from it. The extent of such a map has little been

studied.

In this chapter, we present the algorithms needed for the robot to compute its MFIS and

from it, extracts a topological network of local environments (ASR). The transient

nature of the MFIS will not be studied here (if readers are interested, see Jefferies,

1997) and consequently, the MFIS is computed for the entire test environment. The

robot explores its environment autonomously and computes its map.

Section 3.1 discusses the setup of the robot and the input it gets from its laser. Sections

3.2, 3.3, and 3.4 discuss the algorithms developed in this thesis for autonomous

navigation, MFIS computation and ASR computation respectively. Section 3.5 presents

a summary of my approach to robot mapping.

3.2 The Robot: Its Sensors and Input

The robot used is a mobile robot of the model Pioneer 3DX from MobileRobots Inc.

commonly used in indoor environments and by default its base is factory manufactured

with 8 rings of sonar sensors for data collection. However, for the purpose of this work,

the base has been fully integrated with a set of SICK LMS-200 laser rangefinder instead

and the sonar sensors are ignored. Even though such a robot is selected for the work, the

algorithms developed in this thesis are not strictly dependent on the particular robot

hardware and sensors.

 71

The laser rangefinder used on the robot is a non-contact optical device which emits

pulsed laser beams. When set up to collect data, the laser beams are fired to hit objects

in the scanning field where part of those beams are reflected back to the sensors. Data

are gathered by calculating the distance between the sensors and the objects, which

according to the time of flight (TOF) principles applied, is directly proportionate to the

time between the transmission and reception of each pulsed signal.

The sensor‘s scanning range can be modified according to the resolution setting but in

order to capture the most out of the scanning field in an indoor environment, it has been

left to scan at the maximum range of approximate 30-32m. Separated at 0.5
0
 angular

resolutions, each laser beam travels a long distance in a straight line, maintaining a

narrow beam which covers a wide 180
0
 field of view for a total of 360 laser point

collections at any single scan. During each scan, the laser pulse is diverted sequentially

using an internal rotating mirror which results in a fan-shaped 2D scan of the

surrounding area (see Fig. 3.1). Laser sensor is chosen for the robot mainly because of

its accuracy and high sampling density but the beam readings may sometimes face

multiple reflections during scanning. The environment used for testing in this work is a

standard office environment with a combination of carpeted flooring in the rooms and

tiles surfacing in most of the connecting corridors.

 72

Fig. 3.1: The laser taking samples from the environment at 0.5
0
 angular resolutions with 180

0
 scanning

field. Drawings of the narrow laser beams are an approximate and not to scale

For this robot to map the spatial extent of an indoor office environment, the ideal

candidates for surfaces have to be the walls enclosing and partitioning the spaces or the

rooms. However, given its size, the robot has its sensors positioned at approximate 45-

50cm height from the ground. The sensor cannot be panned, tilted or elevated and can

only emit long-range laser beams horizontally in a straight line. With these limitations,

it is impossible for the robot to avoid scanning the office furniture such as desks, chairs,

cupboards, bins, pots and boxes scattered around in the office rooms as well as in the

kitchen, lounges and larger corridors while searching for the limits of the space (i.e. the

walls).

Furthermore, due to limited recognition abilities of the laser sensor, the robot is not able

to distinguish between these objects or choose the ones that are most likely to be useful

to assist the spatial mapping tasks. The only decision that the robot has control over is

what to do to the surfaces once they are computed. Using size of the surfaces as

 73

reference, those that are long are regarded as important since they have the highest

chance to be the walls or part of the walls or some major obstacles to avoid during

exploration. Tiny surfaces computed may not be as important to the robot and they can

be dismissed as junks.

Given that laser beams are in the form of light and light penetrates through transparent

materials, all glass walls in the office are covered using cardboards throughout the

implementation. This is important because if the robot does not realise it is scanning

through a glass wall, the area where the glass wall lies will be computed as an empty

space. If the robot decided that the empty space is an interesting location for the robot to

explore, this could lead to property damage should the robot manoeuvred right through

it. Thus, covering all forms of highly transparent materials with something solid like cut

out cardboards is necessary for safety reasons. Note that this is the only physical

modification done to the environment. Everything else (position of things, opening or

closing of doors to the rooms, etc.) is left as it is. After making sure only solid objects

accommodate the robot‘s scanning field, the environment can then be treated as

experiment-ready. All geometrical properties scannable as surfaces to the robot are

decoded as straight lines in the implementation.

With the scanning range set at maximum, it is very rare for the laser sensors to return a

no object detected reading since 30-32m is often enough to cover the distance to the

closest objects in the structured indoor spaces. Nonetheless, if the scanner does return

valid readings with values exceeding the maximum detection distance, they are filtered

 74

out as spurious data. The 2D range data are then processed using line segmentation

algorithm to generate planar surfaces so they would correspond to the geometrical

properties scanned from the environment.

There are many sophisticated algorithms such as the popular split-and-merge algorithm

(Borges & Aldon, 2000; Zhang & Ghosh, 2000; Castellanos & Tardos, 1996), the line

regression algorithm (Arras & Siegwart, 1998), the incremental algorithm (Vandorpe et

al., 1996; Taylor & Probert, 1996) and the Hough transform algorithm (Jensfelt &

Christensen, 1998; Pfister et al., 2003) to perform line extraction from points; all

interested in providing an accurate polygonal model of the environment. However,

since we do not need to build an exact map, precision is not of utmost important and

hence a simple line approximation from points based on the spatial relationship of

neighbouring laser information suffices.

A straightforward method for computing lines from laser points is thus implemented.

First, the laser points are grouped into different clusters. This is done by going through

the laser readings one after another in a clockwise sequential manner and calculating the

Euclidean distance between them. If the distance between any of them exceeds a set

threshold (currently set at 1.2m), a new cluster is formed. Second, for each cluster, the

exact shapes of the lines in it are recursively computed using the average gradient

descent between neighbouring points. Points on the same slope are grouped as a line

representing a surface (see Fig. 3.2). Note that, for simplicity, small surfaces (of size <

500mm) in view are simply ignored.

 75

Fig. 3.2: Processes involved in extracting surfaces from the environment

3.3 An Algorithm for Autonomous Exploration

For exploring the environment autonomously, the robot must decide where to go next

and how to get there. This is very different than say allowing the robot to simply move

about by avoiding obstacles in the environment since the latter may not guide the robot

to get out of a room. The algorithm here is about getting the robot to explore as much of

the environment as possible on its own. Therefore, the basic strategy opted for

autonomous exploration is for the robot to move towards a gap, selected at random,

 76

found in each view (see Fig. 3.3). A gap is initially defined as an empty space (large

enough for the robot to cross i.e. > 0.6 meters) between two adjacent surfaces in view,

scanned in a clockwise or anti-clockwise direction. However, this strategy was found,

after rigorous testing, to be inefficient for two reasons. First, by definition, one could

not see what is beyond the gap from where one is. Thus, using such an algorithm, one

often arrives at a gap that does not open up well to other parts of the environment.

Second, the robot is often unable to move straight to, say, the mid-point of the gap

targeted. This is because the robot could easily drift and bump into an obstacle along the

way. These gaps are usually far enough that any drifts from the robot could be

significant. For example, going to the mid-point of G3 in Fig. 3.3, the robot could easily

bump onto the surface immediately to its left due to drifts.

Fig. 3.3: Gaps (G1-G7) found in a view. The robot is at (0, 0). Circles indicate small gaps that are ignored

Consequently, to reach any target gap, the robot has to move incrementally towards it,

taking a small step at a time. In the implementation, each step of the robot is limited to a

maximum of 3 meters and each turn, 30
0
. Doing so meant that the robot would

 77

necessary pause and could take a new view of the environment. If so, it is unnecessary

to target a gap in view unless it is close to the robot itself. Rather, one should calculate a

suitable point in space for the robot to move to next. My algorithm calculates such a

point by finding the minimal bounded space for the robot.

The minimal bounded space is defined as one that contains no gaps that can be covered

by another gap in view. Yeap & Jefferies (1999) introduced the notion of covering by a

gap as a space in which an individual must cross in order to reach another part of the

environment that is currently in view. They used the idea for computing ASRs. I have

used it here to compute the minimal bounded space for the robot. My algorithm for

autonomous exploration can now be described:

Algorithm #1: Autonomous exploration:

1. Identify the gaps in view (gaps are defined above)

2. Compute the minimal bounded space

3. Select a gap on the new boundary as target

4. Move towards the gap

5. Repeat

Here I introduce the notion of an exit gap. In my test environment, a typical office

environment, one finds many doorways, a gap of a certain size (defined here as between

0.6 to 1.2 meters). It is useful to recognise such gaps as special because they often lead

from one room/corridor to another, thus enabling the robot to ―escape‖ the current local

space (Yeap & Jefferies, 1999; Jefferies et al., 2001). These gaps, when detected in a

view, are labelled as exits and they are important targets (as opposed to other gaps) to

 78

be remembered. The robot prefers moving towards exits than other gaps. Consequently

when found, they will be remembered in the view. The algorithm for computing the

minimal bounded space (step 2 above) is given below (this algorithm includes

remembering exits found in the current view):

Algorithm #2: Computing the minimal bounded space:

Input: G = {} (a list of gaps, G1...Gn, obtained from the current view in a clockwise

manner)

 E = {} (a list of exits, E1…En, i.e. gaps measured between 0.6 to 1.2 meters)

1. I = 1; Gnew = nil

2. While i < n do:

2.1 If the start-point of Gi and the end-point of Gi+1 are both occluding point do:

2.1.1 Create a new gap joining the start-point of Gi and the end-point of

Gi+1.

2.1.2 Create a new line connecting the mid-point of the new gap and robot

2.1.3 If this new line does not intersect any surfaces in view, do:

2.1.3.1 If this line is an exit, save it in E else save it in Gnew

2.1.3.2 Delete Gi and Gi+1 from G

2.1.3.3 i = i + 1

2.2 i = i + 1

3. If Gnew is not empty, add Gnew to G, re-order the gaps in it and goto step 1

4. Finish

Output: G = {} (a list of gaps computed)

 E = {} (a list of exits computed)

Note that the test condition 2.1.3 is needed to ensure that the gap identified is ―inside‖

the bounded space (Fig. 3.4)

 79

Fig. 3.4: Creating a new gap for G1 and G2 will produce a gap that is outside the current bounded space.

Such new gaps are illegal

Fig. 3.5 to 3.7 presents three examples showing how algorithm #2 works. Fig. 3.5

shows the initial view and the iterations of the algorithm to produce the final gap for the

example. Figs. 3.6 and 3.7 show the robot in the same position but with different

viewing angles. In the former, two exits are identified in the initial view and in the

latter, an exit is discovered when computing the minimal bounded space. Although in

all three examples, the robot moves to the nearest boundary, G
1
, the robot is aiming for

E
1
 in the latter two examples. The robot is programmed to choose a potential exit that is

furthest away; thus, giving it an opportunity to explore the current space. If the exit

chosen turns out to be a dead-end (a false exit), the robot is simply instructed to rotate

backward and re-scan the environment. If no exit is present, the robot moves to the gap

that is directly in front or to the largest available gap.

 80

Fig. 3.5: (a) The view, (b) with gaps identified, (c) first iteration with G3 and G4 replaced and gaps
renamed, (d)-(e) two final iterations. (f) Removal of G1 and G2 as they are not made of two occluding

points

 81

Fig. 3.6: (a) Two exits are identified in the initial view in addition to the gaps; (b)-(c) show two iterations

of the algorithm, and (d) shows the final output

Fig. 3.7: (a) The view, (b) with gaps computed, (c) first iteration which produces an exit E1, (d)-(e) two
final iterations, and (f) the final output

 82

3.4 MFIS Computation

The robot explores the environment autonomously and computes a map of its

immediate surroundings. Every time the robot moves and perceives a new view, it

initiates two different processes. One is to decide where to go next and the other is to

update its MFIS (see Fig. 3.8). This section describes how the latter is done. Like each

view, the MFIS is implemented using a single Cartesian co-ordinate system to describe

the surfaces perceived in its immediate surroundings. It thus consists of a list of surface

descriptors and each descriptor consists of its own unique name and spatial co-

ordinates:

MFIS: [(S1 (x11 y11) (x12 y12)) (S2 (x21 y21) (x22 y22)) (S3…..)]

Fig. 3.8: Processes shaded in orange summarises the flow where the robot pre-process the laser scans,
make decision on the next target before planning its movement whereas the process shaded in purple

denotes where and when the spatial perception computation occurs in the implementation

 83

The MFIS is a structure built from integrating successive views as the robot explores its

environment. Initially, it is initialised with the robot‘s first view, V1 and will use the co-

ordinate system of the robot‘s first view to describe the spatial layout of its surfaces. To

add subsequent views to it, a straightforward method is to transform the co-ordinates of

the new surfaces or parts thereof in each subsequent view to that of the MFIS using the

standard co-ordinate transformation formula as shown below:

Where

 is the transformed -coordinates

 is the transformed -coordinates

 is the robot‘s turn angle and is always negative in the calculation

 is the translation in -direction which is always zero, and

 is the translation in -direction which is always negative

To transform surfaces in the current view so that it appears as if the robot is looking at

them from its new position in the subsequent view, the surfaces must be rotated first

opposite the direction the robot took in the move. This explains why is always

negative in the formula. Due to the fact that the distance travelled by the robot is

measured as a result of the robot traversing in a forward manner, the surfaces are then

translated backward using the distance traversed by the robot in the move. This explains

why is always zero and is always negative; the transformation must shifts the

surfaces backward as if the robot is leaving them behind.

 84

Using the above formula, and as noted in the Introduction, errors in measuring the ,

 and will cause distortions in the map computed and robotics researchers have

produced algorithms to correct the errors and produce an accurate map. However, to

maintain such a map for a large environment in practice is not easy (see reviews of such

work in chapter 2).

My goal therefore is to compute an approximate map that is good enough for one to

orient in it. To do so, I implement a strategy that has been commonly observed in

cognitive species i.e. the use of landmarks for orientation. However, the idea of a

landmark as interpreted in the cognitive sciences often refers to objects found in the

environment that are perceived as salient, unique and/or special. Recognising them

informs one‘s whereabouts but these objects are typically found few and far between in

the environment. In contrast, we argue that surfaces that could be seen in consecutive

views can serve the role of a landmark. This is because recognising them in the later

views allows one to localise one‘s position and the spatial arrangement of other objects

in the current environment even though one has moved. For example, if, say, the same

table or doorway is seen in consecutive views, one could use the table as the common

reference point for describing the objects seen in these views.

To use such an algorithm, one must assume that there will always be overlapping

surfaces between consecutive views of the robot. This is generally true, however, by not

allowing the robot to take too large a step forward or turn too far to its left/right. My

algorithm for computing an MFIS is described below:

 85

Algorithm #3: Computing MFIS:

Input: Vn-1 = {S‘1, S‘2 … S‘n}

 Vn = {S1, S2 … Sn}

MFIS initialised to V1

1. Transform surfaces in Vn-1 onto Vn using the transformation formula described

above.

2. Remove all S‘, in Vn-1 that cannot be seen in Vn

3. Identify and if necessary normalise landmarks in Vn.

4. For each surface, S, of Vn that is not recognised as a landmark, transfers it to the

MFIS.

5. Remove all S‘ in Vn and Vn becomes the next Vn-1

Output: Ln = {L1, L2 … Ln}

 Ln-1 = {L1, L2 … Ln}

 Vn-1 = {S‘1, S‘2 … S‘n}

The initialisation of the MFIS using V1 involves transferring all the surfaces in V1 into

the MFIS and giving each surface a unique ID (a number). Doing so also meant that the

MFIS uses the same co-ordinate system of V1 to describe the surfaces in it.

For every move, landmarks are identified in the current view and using them, any new

surfaces that have appeared in the current view will be updated in the MFIS. This is the

basic loop for getting the MFIS up to date. However, since my robot can only ―see‖ the

surfaces as lines, it cannot uses a more powerful landmark recognition algorithm (i.e.

one based on richer features of objects such as colour, texture, shape, etc.).

Consequently, we implemented the traditional transformation approach (above) to

transform surfaces in the previous view to the current view and surfaces from both

views that are found to be in close spatial proximity are evaluated as landmark surfaces

 86

(steps 1 and 2). Note that while this landmark recognition algorithm employs the same

transformation method that robotics researchers used to compute their global map, they

are not the same process. The latter process is about integrating what is new with what

was remembered whereas the former process is about ―recognising‖ landmarks. Thus,

in the former process one is concerned with correctly matching all surfaces and

computing their exact locations while the latter is concerned only with the identity of

the surfaces. It is also not essential to find all matches (i.e. landmarks) and this is

important given that the method provides only a crude means of finding landmarks. It is

alright that some will be missed and others that are doubtful will be ignored.

Landmarks are identified in every two consecutive views and these two views, Vn

(current view) and Vn-1 (previous view), thus form part of the input for computing the

MFIS. Vn-1 is the in-between representation that provides a linkage between what is in

view with what is in the memory. Based upon the assumption we made earlier that there

are overlapping surfaces between two consecutive views, some of the surfaces in Vn-1

are found in Vn. At the same time, some, if not all, of the surfaces in Vn-1 have already

been transferred into the MFIS and therefore surfaces in Vn-1 are also found in the

MFIS. Furthermore, these surfaces in Vn-1 are assigned the same ID as their

corresponding surfaces in the MFIS. Consequently, if surfaces in Vn-1 are identified as

landmarks with those in Vn after transforming Vn-1 onto Vn, then one will also know

how Vn is linked to the MFIS. Fig. 3.9 shows the initial set up of the process prior to

exploring the environment. Note that Vn, Vn-1, and the MFIS are the same except

surfaces in the latter two have unique IDs.

 87

Fig. 3.9: Transferring of landmarks ID from the MFIS to Vn-1

The algorithm for finding landmarks (step 3 of algorithm #3) after transforming

surfaces in Vn-1 onto Vn is described below:

Algorithm #4: Finding landmarks in view:

 For each surface, x, in Vn do:

For each surface, y, in Vn but transformed from Vn-1 do:

1. If there is strong evidence that y is close to x, then y is a candidate match for x

2. If there is weak evidence that y is close to x, then

 If y has a similar orientation as x, then y is a candidate match for x.

3. If neither (1) nor (2) is true then y is not a candidate match for x.

For each surface, x, in Vn that has matching candidates do:

Select the best candidate for x (i.e. x is thus recognised as the matching surface)

and assign its ID to x

 88

Note that after identifying a landmark in Vn, there are now two copies of a landmark

surface – one in Vn and one from Vn-1 (also in Vn). We will refer to the landmarks

identified as L
1
, L

2
… L

n
, to refer to both surfaces collectively. To identify its unique

copy, we will use the notations: L
1

vn and L
1
vn-1. The former refers to the landmark

surface originally found in Vn and the latter refers to the one transformed from Vn-1.

Evidence of closeness (re: step 1 of algorithm #4) is obtained by generating imaginary

lines of 1-meter length (on both sides of the line), drawn perpendicular along each x

beginning at one of its end points and at regular ½-meter intervals (see Fig. 3.10). If any

of these lines intersect y, then there is weak evidence that y is close to x. If more than 5

such lines are found intersecting y, then there is strong evidence that y is close to x.

Two surfaces are considered to be of the same orientation if their orientation does not

differ by more than 10 degrees. If the above algorithm produces more than one

matching surfaces, then the surface that has the most similar orientation would be

chosen as the matched surface.

Fig. 3.11 shows another example of how a surface is matched to another using the

above algorithm. This example is quite commonly observed in an office environment.

Whenever there is a significant change in the robot‘s position and/or orientation, the

robot‘s view could change quite significantly from one view to another. In this example,

the robot saw a single large surface in its previous view and then sees the same surfaces

as three separate surfaces in the current view. The algorithm treats these surfaces as

competing surfaces and selects the best possible option.

 89

Fig. 3.10: (a) Candidate in green being paired with a smaller comparing surface, (b) perpendicular lines

generated on the comparing surface, (c) markers X denote the intersections between perpendicular lines

and candidate, (d) match is verified after angle between the lines is found satisfactory, (e) candidate

inherit the ID

Fig. 3.11: Finding landmarks whereby the surface perceived in Vn-1 (single line in red) has changed its
shape drastically in the current view (split into 3 green lines).

Fig. 3.12 shows the identification of landmarks by the robot in two successive views.

Once landmarks in the current view are identified, the remaining surfaces are either new

or unrecognised. The last step in MFIS computation is to add those new surfaces to the

MFIS so that the robot gets a reasonably accurate map. To do so, we compute their

spatial locations relative to one of the landmarks identified, say, L
x
vn. Note that one

could choose the closest landmark or the best-matched landmarks. Given the latter

could be quite far away from the unknown surfaces, we have decided to use the closest

 90

landmark. Locations of nearby surfaces can be coded as a vector whose length is the

distance from the chosen end-point and whose angle is its angular displacement from

the surface slope (Fig. 3.13). Such coding has been suggested for cognitive species. An

example is O‘Keefe‘s (1991) ―slope-centroid‖ model. By using the same landmark

found in the MFIS (i.e. using L
x
vn-1), we can enter these surfaces into the MFIS in their

positions relative to the same landmark.

Fig. 3.12: Finding landmarks: (a) Vn (surfaces in green) combined with Vn-1 (surfaces in red and are

labelled), and (b) Landmarks identified (IDs 7, 8, 9, 11, 12, and 13) are assigned the same ID

 91

Fig. 3.13: Computing the spatial locations of surfaces close to a landmark: S1 is recognised as a

landmark and S2 and S3 are coded using two pairs of vectors centred on the right end-point of S1

Finding the landmarks and using them to describe the spatial layout of nearby surfaces

meant that one has transformed an egocentric representation into an object-centred

representation. With two different surfaces for the same landmark, L
x

vn and L
x
vn-1, one

in each view, we have now established a common frame of reference to describe the

spatial layout of surfaces in view surrounding the landmark in two different ―worlds‖.

Note that it is not important that L
x
vn and L

x
vn-1 are not located exactly in Vn since L

x
vn-1

is just a projection of that surface into Vn. It is the spatial layout of surfaces surrounding

the landmark that matters. However, what is important is that centre of the reference

frame established needs to be reasonably close. Otherwise this could cause serious

distortion to the map computed in the MFIS. Given the 2D nature of my surface

description, this could happen if the two surfaces differ significantly in length.

 92

For example, consider ID 7 in Fig. 3.12. If we establish the centre of the reference

frame at the end-point of ID7 nearest to ID8 (see Fig. 3.14), then U3 will be copied

close to its relative position in the MFIS. If we establish the centre of the reference

frame at the opposite end-point of ID7 (see Fig. 3.15), then U3 will be copied

incorrectly in the MFIS. To overcome this problem, the length of L
x
vn and L

x
vn-1 are

―normalised‖ i.e. make them of equal length and choose the end-points that are closest

together as the centre of the reference frame.

For normalisation, we again use the technique of generating perpendicular lines from

the end-points of both surfaces. If they intersect with the other surfaces, then the end-

point of the surface will be extended to match the end-point of the other surface (see

Fig. 3.16). After normalisation, the two surfaces are identical in length. If during

normalisation, the surface being extended is L
x
vn-1, then its corresponding surface in the

MFIS needs to be extended too. Fig. 3.17 shows 3 examples of identifying and

normalising of landmarks using the robot‘s actual view of the environment.

 93

Fig. 3.14: (a) and (b) show which end-point of the landmark surface (ID 7) is chosen as its centre of co-

ordinate system respectively in Vn and Vn-1, and (c) shows the calculation of the position of the unknown

surface, U3, and (d) shows where it is positioned. In this case, the position is roughly correct.

Fig. 3.15: (a) and (b) show which end-point of the landmark surface (ID 7) is chosen as its centre of co-

ordinate system respectively in Vn and Vn-1, and (c) shows the calculation of the position of the unknown

surface, U3, and (d) shows where it is positioned. In this case, the position is seriously distorted.

 94

Fig. 3.16: Normalisation of landmark surfaces – Perpendicular lines are generated at the end-points of

both surfaces and the two surfaces are normalised to become of equal length.

Fig. 3.17: Three examples of normalisation in a robot‘s view: – The left column shows the projection of
Vn-1 onto Vn and landmarks (circled surfaces) are identified, and the right column shows the landmarks

that are normalised.

 95

Once the landmarks are identified and normalised, we need to transfer the surfaces to

the MFIS. The algorithm for this step is described below:

Algorithm #5: Transfer surfaces to the MFIS:

For each surface, S, not recognised as a landmark in Vn, do:

1. Find the nearest landmark for S in Vn

2. Compute the vector and angular displacement of S from L
x
vn

3. Create S‘ of similar length of S

3. Using (2), compute the position of S‘ in the MFIS using the equivalent of L
x
vn-1

in the MFIS and put S‘ in the MFIS

4. If S intersects with another surface in the MFIS, remove it and skip step 5.

5. Using algorithm #4 (for finding landmarks), find if there is a ―landmark‖

surface for S‘ in the MFIS. If there is, normalise it with S‘, assign its ID to S

and delete S‘ from the MFIS. If there isn‘t, create a new ID and assign it to

both S‘ and S.

Fig. 3.18: Examples of choosing the nearest landmarks to localise unknown surfaces. New surfaces U1,
U2 and U3 are closest to landmark ID7, new surface U4 to landmark ID9, and new surfaces U5, U6 and

U7 to landmark ID11

 96

When transferring a surface to the MFIS, one uses its position with respect to its nearest

landmark. This means that different reference frames are used to localise different sets

of unknown surfaces and if errors were introduced in the calculation, its effects could be

contained. Fig. 3.18 shows an example of how different reference frames are used to

describe unknown surfaces present in the view.

Not all surfaces transferred to the MFIS are new to the MFIS and therefore the last two

steps in the algorithm check if the incoming surface is not already known in the MFIS.

If the new surface intersects with another surface in the MFIS, it usually indicates an

area with several cluttered surfaces. A slight change in perspective can often produce

different descriptions of the surfaces in view. As such, it is best to ignore such new

surfaces and not update the MFIS. If the new surface is positioned close to another

surface in the MFIS, the two could be the same surface. We use the same test for

identifying landmark to check if this is the case and if so, that surface is not new and

has an ID already assigned. The corresponding surface in Vn is then marked with the

same ID. However, these two surfaces may not be of the same shape and therefore they

need to be normalised; surfaces having the same ID must be of the same shape.

In summary, we presented an algorithm for computing an inexact MFIS that utilises two

consecutive views to track where new surfaces are appearing and help position them in

their relative positions in the MFIS (see Fig. 3.19(a)). Fig. 3.19(b) is a flowchart

showing the connection between all algorithms presented in this chapter.

 97

Fig. 3.19: (a) Processes shaded in orange summarises the flow where the robot pre-process the laser
scans, make decision on the next target before planning its movement whereas the box shaded in purple

denotes where spatial mapping takes place. The flowchart diagram in (b) breaks down the spatial

mapping processes in (a). Blue boxes are processed in the working memory whereas red boxes indicate

updating in the MFIS

 98

3.5 ASR Computation

Many robotics researchers compute a topological network out of their global map. The

former is a more efficient representation for spatial planning. Each node in the network

represents a well-defined empty space, captured using a fixed polygonal structure. The

network is often computed offline after the global map is learned and loops are closed.

For my robot, I also need to compute a network of ―places‖ visited so that it could use

its network to plan paths and find short cuts. However, the MFIS is an inexact and

incomplete representation and therefore, computing a network of structured empty

spaces might not be useful. The network could be unstable as the inexact nature of the

representation meant it could change shape drastically during later explorations of the

environment. Furthermore, from a cognitive standpoint, one is not interested in how

empty spaces are partitioned but rather the affordance of each local space remembered

(Gibson, 1966). Yeap (1988) argued that each local space remembered (or ASR) affords

boundedness i.e. it is a bounded region whereby one could move into and out of. Hence,

two pieces of information are important when computing an ASR, namely its exits and

its boundary. Interestingly, its boundary could be imprecise and incomplete and if so,

this indicates the part of the ASR that could be explored further in subsequent visits. In

this section, we developed the algorithms needed for the robot to compute a network of

ASRs from its MFIS.

As defined above, an ASR is a bounded space with identified exits that one could move

in and out of it. Recall that when developing an autonomous exploration algorithm for

the robot in section 3.3 above, exits are recognised in the environment as perceived gaps

 99

of a certain size (defined here as between 0.6 to 1.2 meters). Hence, when the robot

crosses an exit, it ―knows‖ that it is leaving an ASR and entering a new one. At this

moment, it computes an ASR just left and assigned it to the same number as the exit

identified. The algorithm for computing an ASR is as shown below:

Algorithm #6: Computing ASR

1. Copy what is in the MFIS to ASR

2. Assign an ID to this ASR

3. Identify surfaces in the ASR that do not belong to this ASR:

a. Eliminate all surfaces that have already been assigned to an ASR

b. Eliminate new surfaces that come into view after crossing the exit

4. Remove all surfaces in the ASR that will not be considered as part of the boundary

for this ASR

5. Compute the boundary for this ASR

6. Add the exit used to this ASR and returns it as a new ASR

The representation of an ASR is thus similar to that of an MFIS i.e. it consists of a list

of surfaces descriptors and each descriptor consists of its own unique name and spatial

co-ordinates. These surfaces are the boundary surfaces for the ASR. In addition it has an

exit descriptor to describe where an exit can be found. Step 3 of the algorithm is

straightforward except for those new surfaces that come into view right after the robot

crosses the exit (step 3b). These surfaces belong to the next ASR and should be

eliminated when considering surfaces for computing the boundary of the ASR just

passed. To do so, I introduce a virtual exit line that is perpendicular to the robot‘s path

at the point where the path intersects the exit crossed (see Fig. 3.20). This virtual

boundary is used as a reference line for separating the MFIS surfaces seen prior to

 100

crossing the exit and those surfaces seen after crossing the exit (see Fig. 3.21). The

algorithm for eliminating such surfaces is described below:

Algorithm #7: Eliminate new surfaces coming into view after crossing an exit

Input: MFIS with all surfaces assigned to an ASR removed but with robot‘s path added

1. Find the point where the robot‘s path intersects the exit crossed

2. Create a virtual exit line perpendicular to the robot‘s path at the intersection point

3. From the robot‘s current position, draw a line to the mid-point of all remaining

surfaces. If the line does not intersect (a) any other surfaces, or (b) the virtual exit

line, or the robot‘s path, then eliminate this surface.

Fig. 3.20: (a) The green line denotes the robot‘s path, E1 denotes the exit crossed and the arrow points at
the exit-path line intersection, (b) the virtual boundary created perpendicular to the path line slope at the

exit-path line intersection where surfaces circled are considered beyond the exit thus are not included in

the ASR being computed

 101

Fig. 3.21: (a) Surfaces shown connected to the robot‘s current position (path point ID 15) via a dashed

line can be eliminated according to algorithm #7. These are surfaces perceived after crossing the exit of

the previous ASR. (b) The remaining surfaces for ASR computation

Fig. 3.22: Computing the boundary using the outermost surfaces perceived.

 102

Intuitively, to compute a boundary for the ASR, one could follow the ―outermost‖

surfaces starting from one end-point of the crossed exit to its other end-point, merging

the gaps in between these surfaces so that one forms a boundary enclosing the robot‘s

path (see Fig. 3.22). However in doing so, one ignores much of the details that are

available and one often ends up with a space larger than is required. The latter is

because one could often have a glimpse of surfaces at the edge that are not part of the

current ASR. To overcome this problem, I need to have more options on how to connect

from one surface to another as part of the boundary.

In designing my algorithm, I utilise two heuristics to decide what options one has in

boundary formation. In other words, I first select all surfaces that could be part of the

boundary and then use the above algorithm that starts from one end-point of the crossed

exit to its other end-point, merging the gaps between two nearest surfaces so that one

forms a boundary enclosing the robot‘s path.

These two heuristics concern the use of large surfaces and small surfaces in boundary

computation. The first heuristics is that large surfaces are often a part of the boundary.

This is because they provide significant barriers to movements and perception of what

is on the other side. Thus, these surfaces are always selected as possible candidates for

boundary formation. The second heuristics is that while small surfaces are often not a

part of the boundary, a close group of them could become a boundary. Such groups of

lines are commonly observed in this environment and in places where several small

objects were placed alongside a perimeter wall. However, grouping them into a ―large

 103

surface‖ is difficult due to their different orientations and using a heuristics on what is

―large‖ could inevitably rule out groups of some smaller surfaces.

It is observed that corners are detected in early vision and they play an important role in

our ability to recognise objects that are partially occluded (e.g. Shevelev, Kamenkovich

& Sharaev, 2003). Consequently, for small surfaces, I made explicit corner points as

options for boundary formation. Corner points are defined as points whereby two small

surfaces intersect or close enough that they are considered as intersecting. Note that this

definition allows two collinear lines to create a corner point. While it is not, strictly

speaking, a corner, such points could be useful for boundary formation too and

especially if there are several such lines close together. My algorithm for identifying

surfaces and corner points in the MFIS for boundary computation can now be described

as follows:

Algorithm #8: Identify surfaces and corner points in the MFIS for boundary

computation

1. For each small surface (i.e. < 2 meters) do:

1a. If it intersects with another small surface, create a corner point where the two

surfaces intersect.

1b. If it finds another small surface less than 0.5 meter away, create a corner point

where the two surfaces would have intersected.

2. Remove all small surfaces

3. For each large surface (i.e. > 2 meters) do:

If it intersects with another large surface then

For both surfaces do:

3a. Find length of intersection point to the start point

 104

3b. Find length of intersection point to the end point

3c. If (3a) < (3b) shorten surface start point to intersection point else shorten

surface end point to intersection point.

Figure 3.23(b) shows the result of applying Algorithm #8.

Fig. 3.23: (a) The initial spatial information for the first local space boundary computation where two

surfaces (in yellow circles) fails the corner point test. (b) The large segments are filtered from the MFIS

15 surface set whereas the singular points denote the corner points derived from the smaller surfaces

 105

To compute the boundary, and as mentioned earlier, I start with one end of the exit and

connect it to its nearest surface or corner point and from that to its nearest surface or

corner point and so forth. The connection is not allowed to cross any of these: (a) the

robot‘s path (b) the large MFIS surfaces, (c) the exit line and (d) the ASR boundary

computed so far. Note that one could form the boundary either in a clockwise manner or

in an anticlockwise manner. It was found that at times one gets stuck in forming the

boundary i.e. reach a point that one of the connection rules could not be true. It was

discovered that the problem can easily be solved by then doing the boundary in the

opposite direction. Consequently, and for simplicity, I apply the algorithm twice, once

in a clockwise and the other in an anticlockwise direction, and pick the boundary that is

successfully completed.

3.6 Conclusion

In this chapter, I presented eight new algorithms to create a robot mapping system that

perform mapping without a precise map. Fig. 3.24 shows the complete robot mapping

system developed. In the next chapter, I present the results of some experiments

performed using my robot.

 106

Fig. 3.24: (a) The complete robot mapping system developed in this thesis. (b) Where ASR boundary is
computed in the robot system

 107

4 Results

Results & Analysis

4.1 Overview

In this chapter I present three experiments on robot mapping using the algorithms

developed in the previous chapter. The goal is to demonstrate that the algorithm is

robust, at least for mapping in a reasonably large office environment (30m x 30m) and

the map produced is of a reasonable shape that the robot could use to find its way

around the environment. In each experiment, the robot performs an exploration in the

indoor environment (as illustrated in Fig. 1.2) where it computes an MFIS and a

network of ASRs in real-time. Apart from demonstrating how the robot builds these

representations, the robot also shows how it uses its map to perform spatial tasks like

finding its way home and finding its way to different ASRs. In one of the latter

experiments, some parts of the environment are blocked so the robot could not use a

known route to travel to its target. The robot then re-plans and finds alternative routes.

4

 108

Section 4.1 presents an experiment whereby the robot explores its environment twice in

a clockwise manner before returning home. Section 4.2 presents an experiment whereby

the robot explores its environment in an anti-clockwise manner and then finds its way

home. It then explores its environment again in an anti-clockwise manner. Section 4.3

presents an experiment whereby the robot explores its environment in a clockwise

manner, then in an anti-clockwise manner and then performs several spatial tasks.

Throughout this chapter, I will use a diagrammatic approach to present the results to the

reader.

4.2 Experiment 1 (Going clockwise)

In this experiment the robot is allowed to wander from its home (0, 0) to explore its

environment twice in a clockwise manner and then return to its home. The way the

robot is forced to explore its environment in a clockwise manner is by closing the door

that leads to the other direction. The goal of this experiment is to see how well the robot

computes its MFIS and its network of ASRs and how well it closes loops when

returning to familiar places.

4.2.1 Computing the MFIS and ASRs

The following figures denote how the MFIS and the ASRs are built. Each time the robot

crosses an exit in the environment, the local space it leaves behind is quickly computed

as a new ASR. The algorithm to build individual ASRs is as described in Algorithm #6

(section 3.5). In general, what is required to compute the ASR boundary are the surfaces

 109

which belongs to the local space the robot just left, as well as the path line computed

from the beginning of its journey. Fig. 4.1 to 4.3 shows how the first ASR (ASR1) is

computed. Fig. 4.1 highlighted the surfaces and path lines extracted from the MFIS to

compute ASR1. Fig. 4.2 shows the results of extracting corner points and large surfaces

for the boundary and Fig. 4.3 shows the boundary computed for ASR1. ASR1 then

initialises the network of ASRs for this environment.

The robot continues to explore the environment and crosses another exit, E2. Next, the

process is repeated for the second ASR (ASR2). Fig. 4.4 shows the surfaces extracted

from the MFIS for ASR computation. Fig. 4.5 shows the extraction of corner points and

large surfaces. Fig. 4.6 shows the ASR2 computed. I will display the ASRs together

using a single global co-ordinate system to reveal their overall shape rather than a

topological network of nodes.

The series of figures after that denote the computation of ASR3 to ASR6 for the

environment. All of the ASRs on the network (so far) have two exits on its boundary

description. Each time a new ASR is built, they are represented immediately in the

network so the robot can grow both the MFIS and the network as it experiences the

environment.

 110

Fig. 4.1: ASR 1 surfaces (shaded) extracted from MFIS

Fig. 4.2: Corner points and large surfaces for ASR 1

Fig. 4.3: ASR 1 boundaries computed. Red lines denote the large surfaces which have been extracted
from the MFIS. The blue lines are boundaries computed as a result of joining adjacent surfaces and

corner points together

 111

Fig. 4.4: ASR 2 surfaces (shaded) extracted from the MFIS

Fig. 4.5: Corner points and large surfaces for ASR 2

Fig. 4.6: Network of ASR showing ASR 1 and ASR 2

 112

Fig. 4.7: ASR 3 surfaces extracted from the MFIS

Fig. 4.8: Corner points and large surfaces for ASR 3

 113

Fig. 4.9: Network of ASR showing ASR 1 to ASR 3

Fig. 4.10: ASR 4 surfaces extracted from the MFIS

 114

Fig. 4.11: Corner points and large surfaces for ASR 4

Fig. 4.12: Network of ASR showing ASR 1 to ASR 4

 115

Fig. 4.13: ASR 5 surfaces extracted from the MFIS

Fig. 4.14: Corner points and large surfaces for ASR 5

 116

Fig. 4.15: Network of ASR showing ASR 1 to ASR 5

Fig. 4.16: MFIS computed just after the robot crosses E6 and re-enters ASR1

 117

Fig. 4.17: ASR 6 surfaces (shaded) extracted from the MFIS

Fig. 4.18: Surface and corner point for ASR 6

 118

Fig. 4.19: Network of ASR showing ASR 1 to ASR 6

4.2.2 Closing the loop

The previous section has shown how the robot computes the MFIS and extracts a

number of ASRs during its exploration. At ASR6, the robot is about to re-enter a

familiar environment. In the next move, the robot needs to perform loop closing and

recognise that it is entering ASR1. Fig. 4.20 shows the ASR before the robot crosses the

latest exit (E6) and leaves ASR6. Note that E6 is matched to surface ID8 in ASR1. It

was a door that was closed earlier in order to force the robot to travel in a clockwise

direction. Consequently, we allow exits to match to surfaces but we do not normalise

such ―landmarks‖.

 119

Fig. 4.20: MFIS surfaces computed inside ASR1. E6 has been computed on surface ID 8 and the robot
will go through the exit computed and revisit ASR1

Fig. 4.21 shows the landmark computation before the robot crosses E6. The four

surfaces depicted in green are the new surfaces picked up at the scene. When Vn and Vn-

1 is compared, it is found that new surface U1 matches landmark 172 from Vn-1 (see Fig.

4.21(a)). They are normalised as depicted in Fig. 4.21(b). Using the landmark 172, the

algorithm updates the MFIS with the intention to add U2, U3, U4 and the exit E6.

However, the updating algorithm returns with a match between the new surface U3 and

the landmark ID 22 (see Fig. 4.22(a)). U3 is then normalised (see Fig. 4.22(b)) so it is

now representing the landmark ID 22 in Vn. When trying to add U2 and U4, the updates

fail since the two surfaces intersect the landmark ID 8 from the MFIS. For this reason,

only the exit E6 is the new addition inside the MFIS. Due to the detection of landmarks

in the MFIS (landmarks 22 and 8) and these landmarks are marked as part of an ASR,

the robot now believes it is about to re-enter ASR1 (since both landmarks belongs to

ASR1).

 120

Fig. 4.21: Comparison between Vn and Vn-1 before crossing E6. Robot is at (0, 0). (a) U1 matches
landmark 172 and (b) the normalisation process

Fig. 4.22: Updating before the robot crosses E6. (a) Showing U3 being matched to an old landmark ID
22 and (b) the normalisation process

The results show the robot is able to close the loop by finding surfaces in the MFIS that

were seen earlier.

 121

4.2.3 Going around the second time

Robot is now set to continue its exploration. The goal here is to make the robot re-visits

all of the ASRs computed to test if (1) the MFIS would still be stable, and (2) if the

revisit changes the description of the ASRs computed, when it is traversing in the same

direction again. Fig. 4.23 shows the MFIS and the network of ASRs computed after

completing the second exploration.

The results of the MFIS after the second looping shows that without alteration to the

physical environment or change of direction, the robot perceives the environment in a

fairly similar fashion to its earlier exploration. Therefore, it does not discover different

routes, exits or ASRs. One important aspect observed is the fact that the robot did not

have to compute a new MFIS ‗on top‘ of the old one, instead the mapping algorithm is

able to recognise familiar surfaces (i.e. the landmarks) from each ASR and reuse them

to localise and guide its journey.

 122

Fig. 4.23: The MFIS (top) and the network of ASRs (bottom) after looping the environment twice

 123

Since the robot chooses gaps and exits based on what it perceives at a particular

moment, the robot‘s trajectory between the first and the second loop differs a little.

However there are some viewpoints in the second loop where the robot is able to add

new surfaces or extend old surfaces which have been initially computed in the first

loop. Some of these updates enhance the description to a local space. The following

figure compares the MFIS and ASRs built in the first round of exploration with the

MFIS and ASRs computed in the second (see Fig. 4.24).

Fig. 4.24: (a) and (b) depict the MFIS and the network of ASRs built in the first round. (c) and (d) are
the MFIS and ASRs computed in the second round. Changes is apparent to ASR6, ASR5 and ASR1

 124

4.2.4 Going Home

The robot is then instructed to go home at this point. Home is where the robot started its

journey and in the map home is (0, 0). The strategy to go-home for the robot is simple;

from wherever it is, calculates the direction to home and use it like a beacon to guide its

movements (see Fig. 4.25). The process of calculating direction to home is repeated at

every step until the robot thinks it has reaches home (usually within a meter). Fig. 4.26

shows the robot‘s path going home. With its new perspective on its home environment,

new information is entered into the MFIS and ASR1. Fig. 4.27 shows the final ASRs

computed for this experiment.

Fig. 4.25: Example of using direction to navigate home. R1, R2 and R3 are three steps in the navigation.

Direction are recalculated at each step until the robot reach closer to home

 125

Fig. 4.26: Black path lines indicates the robot‘s trajectory to home after crossing E6

Fig. 4.27: The network of ASRs after looping twice and the robot is instructed to go home

 126

4.3 Experiment 2 (Going anti-clockwise)

The second experiment replicates the goals of the first experiment however this time the

direction in which the robot traverses is reversed. It would be interesting to see how

many ASRs the robot computes this way and if the description of the MFIS and

individual ASRs differs much from the first experiment.

4.3.1 Computing the MFIS and ASRs

Fig. 4.28 shows the result of the robot computing the MFIS from where it started its

journey (home) out and around the environment in an anti-clockwise manner. There is

not much difference between the overall shape and size of the MFIS computed in this

experiment as compared to Experiment 1. The robot is able to find all six exits even

though they are in different order due to the exploration. The most noted change would

be the large wall on the left of the computed exit E2. It was not present in the previous

experiment as the robot was not able to see them from the opposite direction. Fig. 4.29

shows the network of ASR computed after the robot crosses the exit E6 in this

experiment. The number of ASRs computed is the same as in the previous experiment

and there are only minor variations in the ASR description.

 127

Fig. 4.28: The MFIS computed from home until the robot crosses the exit E6

Fig. 4.29: The network of ASR depicting ASR1 to ASR6 in the second experiment

 128

4.3.2 Closing the loop

Fig. 4.30: Some of the earlier MFIS surfaces computed inside ASR1

Fig. 4.30 shows the part of the MFIS at the time before loop closing. Fig. 4.31 compares

the robot‘s current view (Vn) and its remembered view (Vn-1), at the point where the

robot is just about to cross an exit (E6). Two of the Vn surfaces, U1 and U5 were a

match to the landmarks ID 119 and 121 respectively (see Fig. 4.31(a)). Results of the

normalisation process can be seen in Fig. 4.31(b). The next step is to update the MFIS

with new surfaces found (U2, U3 and U4). When compared with the MFIS, the position

where U2 and U3 are supposed to be projected is very similar to where existing

landmarks ID13 and ID12 are located inside the MFIS. Since they pass the threshold for

a match, they are normalised and both U2 and U3 inherited the ID13 and 12

respectively (shown in Fig. 4.32). The landmark 13 and 12 are now available to guide

the robot‘s next move.

 129

Fig. 4.31: Comparison between Vn and Vn-1 before crossing E6. Robot is at (0, 0). (a) Denotes U1 and

U5 matching the landmarks 119 and 121 respectively. Results of the normalisation is shown in (b)

Fig. 4.32: Updating the MFIS before crossing the exit E6

 130

To confirm it is returning to a previously visited local space, the robot‘s next move is

observed. This time, the landmarks 13 and 12 became the references to update the

MFIS. As shown in Fig. 4.33, another landmark from ASR1 reappears during the

update (landmark ID 27).

Fig. 4.33: Updating after crossing the exit E6 where three current surfaces matching the centroids 12, 13

and 27

4.3.3 Going Home

In Experiment 1, the robot is instructed to go home after going around the environment

twice. This time, the robot is instructed to go home directly after it crosses the exit E6

for the first time. Fig. 4.34 and Fig. 4.35 show the MFIS computed as the robot perform

the strategy to go home.

 131

Fig. 4.34: The MFIS when the robot reaches home. Path lines in black denotes the steps towards home

Fig. 4.35: Changes to ASR1 after the go home activity

 132

4.3.4 Going around the second time

The robot is then instructed to continue exploring the environment. Fig. 4.36 is the

result of the MFIS after the robot revisits all the ASR computed in the same manner (no

changes of direction). Once the robot closes the loop again after crossing E6, the

command to go home is passed to the robot. The robot stopped its journey once it

reaches home the second time. Fig. 4.37 is the results of the ASRs computation. Note

that in ASR5 and ASR1, there are some surfaces and corner points inside the boundary.

These are some surfaces and corner points which were not used but left as it is in the

ASR representation.

 133

Fig. 4.36: MFIS after traversing the environment the second time. The robot ended the journey at home

Fig. 4.37: The network of ASR after the second looping

 134

Fig. 4.38 depicts the MFIS and network of ASRs for the three main tasks assigned to

the robot in this experiment.

Fig. 4.38: Three sets of MFIS and its corresponding network of ASRs. (a) and (b) for going about in the

first round, (c) and (d) for going home, and (e) and (f) indicate the representations when the robot is

instructed to go around again

 135

4.4 Experiment 3

The first two experiments showed that there are not many changes to the description of

the environment when the robot is looping in the same direction. The goal in the third

experiment is then to make the robot loop in one direction then immediately go around

again in the opposite direction. Then after computing its network of ASRs, the robot is

asked to perform a number of go-to tasks to see if it is able to use the network to

optimise its navigation.

4.4.1 Computing the MFIS and ASR

The robot is first asked to move in a clockwise manner. The following figures are the

results starting with the computed MFIS (Fig. 4.39) then the network of ASRs (Fig.

4.40). The robot is asked to stop once it closes the loop. The robot is then instructed to

go home from where it currently is in the environment. See Fig. 4.41 for the MFIS

computation and Fig. 4.42 for the network of ASRs established. After reaching home,

the robot is instructed to loop the environment again, this time in the opposite direction.

Results from the test can be found in Fig. 4.43 and 4.44.

 136

Fig. 4.39: The MFIS computed once the robot closes the loop after crossing E6

Fig. 4.40: Network of ASRs after the robot crosses E6 and into ASR1

 137

Fig. 4.41: The MFIS as the robot goes home after entering ASR1 from ASR6

Fig. 4.42: ASR1 is expanded due to the robot seeing surfaces behind the robot when it first started

 138

Fig. 4.43: MFIS after completing the second loop in the opposite direction. ‗Robot‘ indicated where the

robot is after completing the second loop

Fig. 4.44: Network of ASRs after the robot closes the second loop and re-enters ASR1via E1

 139

4.4.2 Go To ASR

Instead of going home, the robot is instructed to navigate from where it is (ASR1) to

ASR5. Since the robot is already in ASR1, it calculated the shortest path into ASR5 is

via E5. And the shortest route to cross E5 from where it is now is via E6. Using similar

strategy like going home, E6 becomes the beacon followed by E5 (Fig. 4.45 and Fig.

4.46).

After crossing E5 and re-entering ASR5, the robot is instructed to navigate to ASR3.

Since the robot has crossed E5, calculating the optimal route returns E4 and E3 as the

exits to cross to enter ASR3. However a physical barrier is put up so the robot could not

use the familiar route inside ASR5. The options left are to either turn back and go to

ASR3 via E6-E1-E2 or cross a new found exit nearby (Fig. 4.47 – the blockage is not

shown). When comparing the two options, go back to ASR6, or choose the new exit, the

robot weighs its options by measuring the possible distances to the goal with either

move. The robot chose the new exit because it appears to be a shorter route (Fig. 4.48

and Fig. 4.49).

 140

Fig. 4.45: Strategy to navigate towards E6 and E5

Fig. 4.46: MFIS as the robot travels from ASR1 to ASR5 via E6 and E5 (in that order)

 141

Fig. 4.47: Choosing new exit to go to ASR3

Fig. 4.48: The MFIS updated with E7 and E8

 142

Fig. 4.49: New ASR7 and its location inside the network of ASR

4.4.3 Home finding when known route is blocked

From here (ASR3) the robot is instructed to go home. So the optimal route is to

continue via E2 then E1. However another physical block is placed so the robot crosses

E2 but not able to cross E1. The robot again chooses to cross a new exit instead of

going backward (E3-E4-E5-E6-Home) (Fig. 4.50 and Fig 4.51).

 143

Fig. 4.50: Locations of new found exits E9 and E10 in the MFIS. Dotted line is where the physical

barrier is put up so the robot cannot choose to re-enter ASR1 via E1

Fig. 4.51: Network of ASR depicting the new ASR8

 144

4.4.4 Novel short-cutting

To demonstrate the robot deciding to use a short-cut, the robot is instructed to go to

ASR2 from home. However a barrier is put up to block the way out via E1. The robot is

forced to exit ASR1 via E6 and hence enter into ASR6. Given the connection between

ASR6 to ASR8 and ASR8 to ASR2, the robot decided to utilise this information to

achieve the task. Fig. 4.52 shows the results.

Fig. 4.52: Utilizing new connection on the network (ASR8) to reach ASR2 from home when known exit

E1 is inaccessible. Dotted line is where the physical barrier is put up

 145

4.5 Conclusion

This chapter presented three experiments which show the robot‘s performance in

building then use an imprecise map to perform cognitive spatial tasks like home finding,

navigating to different ASRs, finding alternative routes when known route is blocked

and short cut discovery. The next chapter concludes the thesis.

 146

5 Conclusion

Conclusion &

Future Work

This thesis begins with a question: If a cognitive map is an inexact map, can a robot

compute one too? The answer is yes and this constitutes the most significant

contribution of this work: the discovery of a mapping algorithm that does not need to

correct errors due to sensors in order to compute a global map.

The success of the algorithm is attributed to the use of an intermediate buffer for

identifying landmarks and to update the MFIS using information in the MFIS itself. The

former meant that any errors generated would be the result of the last move rather than

an accumulation of errors since the start of the journey. The latter meant that the MFIS

captures only the relative positions of new surfaces to the nearest landmarks used in

locating them. Thus, the absolute displacement errors that one gets in successive views

5

 147

which hamper robotic researchers‘ efforts in computing a map are simply ignored in the

computation. Loop closing is done by association rather than by correction.

While it is pleasing and motivating given the roboticists‘ claim that without error

correction, the map computed will be distorted, it is even more exciting that the

mapping process might shed light on how human cognitive mapping process work.

From this cognitive standpoint, what is important is that we now have an algorithm that

computes an inexact map by attending to recognizable surfaces (referred to as landmark

surfaces) in successive views rather than being dependent on continuous tracking of

one‘s position and orientation in the environment. Furthermore, it does not require

continuous updating of the map as long as there are some overlapping surfaces between

views. Given that humans are good at object recognition and unlikely to continuously

update their maps; I argue that this algorithm is more cognitively plausible.

Developing this approach also reveals an interesting gap in Yeap‘s theory. The network

of ASRs computed from the MFIS functions as a network of places rather than a

network of ASRs. If so, this raises the question of where and when ASRs are computed.

Does it really exist? From a cognitive standpoint, the current algorithm has two serious

limitations – it computes too detailed an MFIS and that the MFIS covers the entire test

environment. One‘s cognitive map is not detailed and yet the MFIS computed is

updated with every new surface in view. Can we compute an incomplete MFIS as well?

My tests of the algorithm currently focus on showing that a stable inexact map is

maintained as the robot performs some spatial tasks in its environment. Worse, the

 148

MFIS computed is as large as the environment – this is not correct since the MFIS is

meant to be for one‘s immediate surroundings only.

The two questions raised above provide motivations for future work. Further research

needs to be done to understand the nature of such an algorithm. In particular, how do we

create dynamic MFIS where information in it is deleted as the MFIS grows in size?

How do we compute inexact and incomplete MFIS? The algorithm needs to be

evaluated against psychological theories of human spatial mapping and in particular the

work of Wang & Spelke (2002) and McNamara (2003).

From a practical standpoint, this new approach could be used as a basis for robot

mapping. This could lead to a new paradigm for robot mapping. However, we need to

develop a more robust algorithm and this implies performing more tests in different

environments and comparing its performance with those using the SLAM approach.

Finally, the approach developed here is not restricted to a robot equipped with laser and

odometer sensors. It should also work well using vision, if not better, since it is easier to

recognise landmarks using vision. This would also be an important future project –

cognitive mapping using a robot with vision.

 149

REFERENCES

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its

control processes. The psychology of learning and motivation, 2, 89-195.

Ahn, S., Chung, W. K., & Oh, S. R. (2007, October). Construction of hybrid visual map

for indoor SLAM. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ

International Conference on (pp. 1695-1701). IEEE.

Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal

representation of space in the posterior parietal cortex and its use in planning

movements. Annual review of neuroscience, 20(1), 303-330.

Angeli, A., Doncieux, S., Meyer, J. A., & Filliat, D. (2008, September). Incremental

vision-based topological slam. In Intelligent Robots and Systems, 2008. IROS

2008. IEEE/RSJ International Conference on (pp. 1031-1036). IEEE.

Angeli, A., Doncieux, S., Meyer, J. A., & Filliat, D. (2008b, May). Real-time visual loop-

closure detection. In Robotics and Automation, 2008. ICRA 2008. IEEE

International Conference on (pp. 1842-1847). IEEE.

Arras, K. O. (2003). Feature-based robot navigation in known and unknown

environments (Doctoral dissertation, Swiss Federal Institute of Technology

Lausanne).

Arras, K. O., & Siegwart, R. Y. (1998). Feature extraction and scene interpretation for

map-based navigation and map building. In Intelligent Systems & Advanced

Manufacturing (pp. 42-53). International Society for Optics and Photonics.

Aulinas, J., Petillot, Y. R., Salvi, J., & Lladó, X. (2008, October). The SLAM problem: a

survey. In CCIA (pp. 363-371).

Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature

Reviews Neuroscience, 4(10), 829-839.

Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM):

Part II. Robotics & Automation Magazine, IEEE, 13(3), 108-117.

Benhamou, S. (1998). Place navigation in mammals: a configuration-based model. Animal

Cognition, 1(1), 55-63.

Borges, G. A., & Aldon, M. J. (2000). A split-and-merge segmentation algorithm for line

extraction in 2d range images. In Pattern Recognition, 2000. Proceedings. 15th

International Conference on (Vol. 1, pp. 441-444). IEEE.

 150

Burgess, N., & O‘Keefe, J. (2003). Hippocampus: spatial models. The Handbook of Brain

Theory and Neural Networks, M. Arbib, ed., The MIT Press, Cambridge, MA, 539-

543.

Burgess, N., Recce, M., & O'Keefe, J. (1994). A model of hippocampal function. Neural

networks, 7(6), 1065-1081.

Carroll, S. M., Press, W. H., & Turner, E. L. (1992). The cosmological constant. Annual

Review of Astronomy and Astrophysics, 30(1), 499-542.

Castellanos, J. A., & Tardós, J. D. (1996). Laser-based segmentation and localization for a

mobile robot. Robotics and manufacturing: recent trends in research and

applications, 6, 101-109.

Castellanos, J. A., & Tardos, J. D. (2000). Mobile robot localization and map building: A

multisensor fusion approach. Kluwer academic publishers.

Chatila, R., & Laumond, J. (1985, March). Position referencing and consistent world

modeling for mobile robots. In Robotics and Automation. Proceedings. 1985 IEEE

International Conference on (Vol. 2, pp. 138-145). IEEE.

Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial

orientation? Squaring theory and evidence. Psychonomic bulletin & review, 12(1),

1-23.

Chong, K. S., & Kleeman, L. (1999). Feature-based mapping in real, large scale

environments using an ultrasonic array. The International Journal of Robotics

Research, 18(1), 3-19.

 Choset, H., & Nagatani, K. (2001). Topological simultaneous localization and mapping

(SLAM): toward exact localization without explicit localization. Robotics and

Automation, IEEE Transactions on, 17(2), 125-137.

Chown, E., & Boots, B. (2008). Learning cognitive maps: Finding useful structure in an

uncertain world. In Robotics and Cognitive Approaches to Spatial Mapping (pp.

215-236). Springer Berlin Heidelberg.

Chown, E., Kaplan, S., & Kortenkamp, D. (1995). Prototypes, location, and associative

networks (PLAN): Towards a unified theory of cognitive mapping. Cognitive

Science, 19(1), 1-51.

Cummins, M., & Newman, P. (2007, April). Probabilistic appearance based navigation

and loop closing. In Robotics and automation, 2007 IEEE international conference

on (pp. 2042-2048). IEEE.

Cummins, M., & Newman, P. (2008, May). Accelerated appearance-only SLAM.

 151

In Robotics and automation, 2008. ICRA 2008. IEEE international conference

on (pp. 1828-1833). IEEE.

Cummins, M., & Newman, P. (2011). Appearance-only SLAM at large scale with FAB-

MAP 2.0. The International Journal of Robotics Research, 30(9), 1100-1123.

Cuperlier, N., Quoy, M., & Gaussier, P. (2006, January). Navigation and planning in an

unknown environment using vision and a cognitive map. In European Robotics

Symposium 2006 (pp. 129-142). Springer Berlin Heidelberg.

Cuperlier, N., Quoy, M., Giovannangeli, C., Gaussier, P., & Laroque, P. (2006).

Transition cells for navigation and planning in an unknown environment. In From

Animals to Animats 9 (pp. 286-297). Springer Berlin Heidelberg.

Diosi, A., Taylor, G., & Kleeman, L. (2005, April). Interactive SLAM using laser and

advanced sonar. In Robotics and Automation, 2005. ICRA 2005. Proceedings of

the 2005 IEEE International Conference on (pp. 1103-1108). IEEE.

Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001).

A solution to the simultaneous localization and map building (SLAM)

problem. Robotics and Automation, IEEE Transactions on, 17(3), 229-241.

Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000, June). Rao-Blackwellised

particle filtering for dynamic Bayesian networks. In Proceedings of the Sixteenth

conference on Uncertainty in artificial intelligence (pp. 176-183). Morgan

Kaufmann Publishers Inc.

Downs, R. M., & Stea, D. (1973). Cognitive maps and spatial behavior: Process and

products. Image and Environment. Chicago: Aldine, 8-26.

Durrant-Whyte, H. F. (1987). Integration, coordination and control of multi-sensor robot

systems. Kluwer Academic Publishers.

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: part

I. Robotics & Automation Magazine, IEEE, 13(2), 99-110.

Elfes, A. (1987). Sonar-based real-world mapping and navigation. Robotics and

Automation, IEEE Journal of, 3(3), 249-265.

Engelson, S. P., & McDermott, D. V. (1992, May). Error correction in mobile robot map

learning. In Robotics and Automation, 1992. Proceedings., 1992 IEEE

International Conference on (pp. 2555-2560). IEEE.

Fabrizi, E., & Saffiotti, A. (2000). Extracting topology-based maps from gridmaps. In

Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International

 152

Conference on (Vol. 3, pp. 2972-2978). IEEE.

Filliat, D. (2008, September). Interactive learning of visual topological navigation. In

Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International

Conference on (pp. 248-254). IEEE.

Filliat, D., & Meyer, J. A. (2003). Map-based navigation in mobile robots: I. a review of

localization strategies. Cognitive Systems Research, 4(4), 243-282.

Franz, M. O., Scholkopf, B., Mallot, H. A. & Bulthoff (1998) Learning view graphs for

robot navigation, Autonomous Robots, 5:111-125

Friedman, A. (2005). Examining egocentric and allocentric frames of reference in virtual

space systems.

Gallistel, C. R. (1989). Animal cognition: The representation of space, time and

number. Annual review of psychology, 40(1), 155-189.

Gallistel, C. R. (1990). The organization of learning. The MIT Press.

Gerstner, W., & Kistler, W. M. (2002). Mathematical formulations of Hebbian

learning. Biological cybernetics, 87(5-6), 404-415.

Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton

Mifflin.

Giovannangeli, C., Gaussier, P., & Banquet, J. P. (2006). Robustness of visual place cells

in dynamic indoor and outdoor environment. International Journal of Advanced

Robotic Systems, 3(2), 115-124.

Golledge, R. G., & Garling, T. (2003). Cognitive maps and urban travel. In D. A Hensher,

K. J. Buttom, K. E. Haynes & P. R. Stopher (Eds), Handbook of Transport

Geography and Spatial Systems. Oxford: Elsevier.

Grush, R. (2000). Self, World and Space: The Meaning and Mechanisms of Ego-and

Allocentric Spatial Representation. Brain and Mind, 1(1), 59-92.

Guivant, J., Nebot, E., & Baiker, S. (2000). Autonomous navigation and map building

using laser range sensors in outdoor applications. Journal of robotic

systems, 17(10), 565-583.

Habib, M. K., & Yuta, S. I. (1993). Map representation of a large in-door environment

with path planning and navigation abilities for an autonomous mobile robot with

its implementation on a real robot. Automation in construction, 2(2), 155-179.

Hafner, V. V. (2005). Cognitive maps in rats and robots. Adaptive Behaviour, 13(2), 87-

96.

 153

Hafner, V. V. (2008). Robots as Tools for Modelling Navigation Skills–A Neural

Cognitive Map Approach. In Robotics and cognitive approaches to spatial

mapping (pp. 315-324). Springer Berlin Heidelberg.

Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory &

Cognition, 13(3), 208-217.

Holmes, M. C., & Sholl, M. J. (2005). Allocentric coding of object-to-object relations in

overlearned and novel environments. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 31, 1069–1087.

Iyengar, S. S., & Elfes, A. (1991). Autonomous Mobile Robots: Perception. IEEE

Computer Society Press.

Jefferies, M. E. (1999). Cognitive Maps: Understanding How Local Environments are

Computed (PhD Thesis, University of Otago).

Jefferies, M. E., & Yeap, W. K. (Eds.). (2008). Robotics and cognitive approaches to

spatial mapping (Vol. 38). Springer.

Jefferies, M. E., Baker, J., & Weng, W. (2008). Robot cognitive mapping–A role for a

global metric map in a cognitive mapping process. In Robotics and cognitive

approaches to spatial mapping (pp. 265-279). Springer Berlin Heidelberg.

Jefferies, M. E., Cree, M., Mayo, M., & Baker, J. T. (2004). Using 2D and 3D landmarks

to solve the correspondence problem in cognitive robot mapping. In Spatial

Cognition IV. Reasoning, Action, Interaction (pp. 434-454). Springer Berlin

Heidelberg.

Jefferies, M. E., Yeap, W. K., Smith, L., & Ferguson, D. (2001). Building a map for robot

navigation using a theory of cognitive maps. In Proceedings of the IASTED

International Conference on Artificial Intelligence and Application (pp. 348-353).

Jensfelt, P., & Christensen, H. (1998). Laser based position acquisition and tracking in an

indoor environment. In International Symposium on Robotics and Automation-

ISRA (Vol. 98).

Jensfelt, P., Kragic, D., Folkesson, J., & Bjorkman, M. (2006, May). A framework for

vision based bearing only 3D SLAM. In Robotics and Automation, 2006. ICRA

2006. Proceedings 2006 IEEE International Conference on (pp. 1944-1950).

IEEE.

Kaplan, S. (1973). Cognitive maps in perception and thought. Image and environment:

Cognitive mapping and spatial behavior, 63-78.

Kempter, R., Gerstner, W., & Van Hemmen, J. L. (1999). Hebbian learning and spiking

neurons. Physical Review E, 59(4), 4498.

 154

Klatzky, R. L. (1998, January). Allocentric and egocentric spatial representations:

Definitions, distinctions, and interconnections. In Spatial cognition (pp. 1-17).

Springer Berlin Heidelberg.

Kong, F., Chen, Y., Xie, J., Zhang, G., & Zhou, Z. (2006, June). Mobile robot localization

based on extended kalman filter. In Intelligent Control and Automation, 2006.

WCICA 2006. The Sixth World Congress on (Vol. 2, pp. 9242-9246). IEEE.

Kortenkamp, D. (1992). Applying computational theories of cognitive mapping to mobile

robots. Ann Arbor, 1001, 48109.

Kortenkamp, D. M. (1993). Cognitive maps for mobile robots: A representation for

mapping and navigation (PhD Thesis, University of Michigan).

Kortenkamp, D., & Weymouth, T. (1994, October). Topological mapping for mobile

robots using a combination of sonar and vision sensing. In AAAI (Vol. 94, pp. 979-

984).

Kortenkamp, D., Nourbakhsh, I., & Hinkle, D. (1997). The 1996 AAAI mobile robot

competition and exhibition. AI magazine, 18(1), 25.

Kretzschmar, H., Stachniss, C., & Grisetti, G. (2011, September). Efficient information-

theoretic graph pruning for graph-based SLAM with laser range finders.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International

Conference on (pp. 865-871). IEEE.

Krishnan, A. K., Krishna, M., & Achar, S. (2010, May). Image based exploration for

indoor environments using local features. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume

1 (pp. 1499-1500). International Foundation for Autonomous Agents and

Multiagent Systems.

Kuipers, B. (1978). Modeling spatial knowledge. Cognitive science, 2(2), 129-153.

Kuipers, B. (1983). The cognitive map: Could it have been any other way? In Spatial

orientation (pp. 345-359). Springer US.

Kuipers, B. J. (2000) The spatial semantic hierarchy. Artificial Intelligence, 19:191-233

Kuipers, B. (2001, February). The skeleton in the cognitive map: A computational

hypothesis. In Proceedings of the Third International Symposium (pp. 10-11).

Kuipers, B. (2008). An intellectual history of the Spatial Semantic Hierarchy. In Robotics

and cognitive approaches to spatial mapping (pp. 243-264). Springer Berlin

Heidelberg.

 155

Kuipers, B., & Byun, Y. T. (1991). A robot exploration and mapping strategy based on a

semantic hierarchy of spatial representations. Robotics and autonomous

systems, 8(1), 47-63.

Kuipers, B. J., & Levitt, T. S. (1988). Navigation and mapping in large scale space. AI

magazine, 9(2), 25.

Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., & Savelli, F. (2004, April). Local

metrical and global topological maps in the hybrid spatial semantic hierarchy.

In Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE

International Conference on (Vol. 5, pp. 4845-4851). IEEE.

Kuipers, B., Tecuci, D. G., & Stankiewicz, B. J. (2003). The Skeleton In The Cognitive

Map A Computational and Empirical Exploration. Environment and

Behavior, 35(1), 81-106.

Lee, W. Y. (1996). Spatial semantic hierarchy for a physical mobile robot (PhD Thesis,

University of Texas).

Leonard, J. J., & Durrant-Whyte, H. F. (1992). Directed sonar sensing for mobile robot

navigation (Vol. 448). Dordrecht: Kluwer Academic Publishers.

Leonard, J. J., & Durrant-Whyte, H. F. (1991, November). Simultaneous map building

and localization for an autonomous mobile robot. In Intelligent Robots and

Systems' 91.'Intelligence for Mechanical Systems, Proceedings IROS'91. IEEE/RSJ

International Workshop on (pp. 1442-1447). IEEE

Levenick, J. R. (1985). Knowledge representation and intelligent systems: from semantic

networks to cognitive maps (Unpublished doctoral dissertation, The University of

Michigan), Ann Harbor.

Levenick, J. R. (1991). NAPS: A connectionist implementation of cognitive

maps. Connection Science, 3(2), 107-126.

Levitt, T. S., & Lawton, D. T. (1990). Qualitative navigation for mobile robots. Artificial

intelligence, 44(3), 305-360.

Lisien, B., Morales, D., Silver, D., Kantor, G., Rekleitis, I., & Choset, H. (2003, October).

Hierarchical simultaneous localization and mapping. In Intelligent Robots and

Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International

Conference on (Vol. 1, pp. 448-453). IEEE.

Loomis, J. M., & Beall, A. C. (1998). Visually controlled locomotion: Its dependence on

optic flow, three-dimensional space perception, and cognition. Ecological

Psychology, 10(3-4), 271-285.

 156

Lynch, K. (1960). The image of the city (Vol. 11). MIT Press.

Maddern, W., Glover, A., Milford, M., & Wyeth, G. (2009). Augmenting RatSLAM using

FAB-MAP-based visual data association. In Proceedings of Australasian

Conference on Robotics and Automation 2009. Australian Robotics and

Automation Association Inc.

Maddern, W., Milford, M., & Wyeth, G. (2012). CAT-SLAM: probabilistic localisation

and mapping using a continuous appearance-based trajectory. The International

Journal of Robotics Research, 31(4), 429-451.

Majumder, S., Durrant-Whyte, H., Thrun, S., & de Battista, M. (2000). An approximate

Bayesian method for simultaneous localisation and mapping. IEEE Trans.

Automatic Control, 45(3), 477-482.

 Marr, D., & Vision, A. (1982). A computational investigation into the human

representation and processing of visual information. WH San Francisco: Freeman

and Company.

Martinelli, A., Svensson, A., Tomatis, N., & Siegwart, R. (2004, July). SLAM based on

quantities invariant of the robot‘s configuration. In IFAC Symposium on Intelligent

Autonomous Vehicles.

Mataric, M. J. (1991) Navigating with a rat brain: A neurobiologically-inspired model for

robot spatial representation. In Proceedings of the first international conference on

simulation of adaptive behaviour on From Animals to Animats, Meyer, J. A &

Wilson, S. W (Eds), MIT Press, Cambridge, MA

McNamara, T. P., Hardy, J. K., & Hirtle, S. C. (1989). Subjective hierarchies in spatial

memory. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 15(2), 211.

McNamara, T. P., Rump, B., & Werner, S. (2003). Egocentric and geocentric frames of

reference in memory of large-scale space. Psychonomic Bulletin & Review, 10(3),

589-595.

McNamara, T. P. (2003). How are the locations of objects in the environment represented

in memory? In Spatial cognition III (pp. 174-191). Springer Berlin Heidelberg.

Milford, M. J., & Wyeth, G. F. (2008). Mapping a suburb with a single camera using a

biologically inspired SLAM system. Robotics, IEEE Transactions on, 24(5), 1038-

1053.

Milford, M. J., Wyeth, G. F., & Prasser, D. (2004, April). RatSLAM: a hippocampal

model for simultaneous localization and mapping. In Robotics and Automation,

2004. Proceedings. ICRA'04. 2004 IEEE International Conference on (Vol. 1, pp.

 157

403-408). IEEE.

Milford, M., Schulz, R., Prasser, D., Wyeth, G., & Wiles, J. (2007). Learning spatial

concepts from RatSLAM representations. Robotics and Autonomous

Systems, 55(5), 403-410.

Milford, M., Wyeth, G., & Prasser, D. (2004). Simultaneous localisation and mapping

from natural landmarks using RatSLAM. In 2004 Australasian Conference on

Robotics and Automation. Australian Robotics and Automation Association Inc.

Modayil, J. (2013, June). Two Perspectives on Learning Rich Representations from Robot

Experience. In Workshops at the Twenty-Seventh AAAI Conference on Artificial

Intelligence.

Moravec, H. P., & Elfes, A. (1985, March). High resolution maps from wide angle sonar.

In Robotics and Automation. Proceedings. 1985 IEEE International Conference

on (Vol. 2, pp. 116-121). IEEE.

Moravec, H. P. (1988). Sensor fusion in certainty grids for mobile robots. AI

magazine, 9(2), 61.

Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial

memory. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 28(1), 162.

Mou, W., McNamara, T. P., Valiquette, C. M., & Rump, B. (2004). Allocentric and

egocentric updating of spatial memories. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 30(1), 142.

Murphy, K. P. (1999, November). Bayesian Map Learning in Dynamic Environments.

In NIPS (pp. 1015-1021).

Nadel, L. (1991). The hippocampus and space revisited. Hippocampus, 1(3), 221-229.

Newman, P., Cole, D., & Ho, K. (2006, May). Outdoor SLAM using visual appearance

and laser ranging. In Robotics and Automation, 2006. ICRA 2006. Proceedings

2006 IEEE International Conference on (pp. 1180-1187). IEEE.

Newman, P., Leonard, J., Tardos, J. D., & Neira, J. (2002). Explore and return:

Experimental validation of real-time concurrent mapping and localization.

InRobotics and Automation, 2002. Proceedings. ICRA'02. IEEE International

Conference on (Vol. 2, pp. 1802-1809). IEEE.

Nilsson, N. J. (1969). A mobile automaton: An application of artificial intelligence

techniques. SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL

INTELLIGENCE CENTER.

 158

Nüchter, A., Lingemann, K., Hertzberg, J., & Surmann, H. (2007). 6D SLAM—3D

mapping outdoor environments. Journal of Field Robotics, 24(8‐9), 699-722.

O'Keefe, J. (1990). A computational theory of the hippocampal cognitive map. Progress

in brain research, 83, 301-312.

O'Keefe, J. (1991). An allocentric spatial model for the hippocampal cognitive

map. Hippocampus, 1(3), 230-235.

O'keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map (Vol. 3, pp. 483-

484). Oxford: Clarendon Press.

Pfister, S. T., Roumeliotis, S. I., & Burdick, J. W. (2003, September). Weighted line

fitting algorithms for mobile robot map building and efficient data representation.

In Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International

Conference on (Vol. 1, pp. 1304-1311). IEEE.

Piaget, J., & Inhelder, B. (1969). The psychology of the child. Basic Books.

Pierce, D., & Kuipers, B. (1994, October). Learning to explore and build maps.

In AAAI (Vol. 94, pp. 1264-1271).

Raaijmakers, J. G., & Shiffrin, R. M. (1981). Search of associative memory.

Psychological review, 88(2), 93.

Redhead, E. S., & Hamilton, D. A. (2007). Interaction between locale and taxon strategies

in human spatial learning. Learning and Motivation, 38(3), 262-283.

Reitman, J. S., & Rueter, H. H. (1980). Organization revealed by recall orders and

confirmed by pauses. Cognitive Psychology, 12(4), 554-581.

Remolina, E. (2001). A logical account of causal and topological maps (Doctoral

dissertation, The University of Texas at Austin).

Remolina, E., & Kuipers, B. (2004). Towards a general theory of topological

maps. Artificial Intelligence, 152(1), 47-104.

Ruggiero, G., Iachini, T., Ruotolo, F., & Senese, V.P. (2011). Spatial memory: the role of

egocentric and allocentric frames of reference. In J.B. Thomas (Ed.), Spatial

Memory: Visuospatial Processes, Cognitive Performance and Developmental

Effects (Chapter 2, pp. 51-75). NY: Nova Science Publishers.

Saleiro, M., Rodrigues, J. M. F., & du Buf, J. M. H. (2010). Cognitive robotics: a new

approach to simultaneous localisation and mapping (Unpublished short paper,

University of Algarve)

 159

Santosh, D., Achar, S., & Jawahar, C. V. (2008, May). Autonomous image-based

exploration for mobile robot navigation. In Robotics and Automation, 2008. ICRA

2008. IEEE International Conference on (pp. 2717-2722). IEEE.

Schmidt, T., & Lee, E. Y. (2006). Spatial memory organized by environmental

geometry. Spatial Cognition and Computation, 6(4), 347-369.

Se, S., Lowe, D., & Little, J. (2002). Mobile robot localization and mapping with

uncertainty using scale-invariant visual landmarks. The international Journal of

robotics Research, 21(8), 735-758.

Shevelev, I., Kamenkovich, V. M. & Sharaev, G. A. (2003). The roles of lines and corners

of geometric figures in recognition. Acta Neurobiol Exp 2003, 63: 361-368

Sholl, M. J. (2001). The role of a self-reference system in spatial navigation. In D.

Montello (Ed.), Spatial Information Theory: Foundations of geographical

information science (pp. 217–232). Berlin, Germany: Springer-Verlag.

Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-

scale environments. Advances in child development and behavior, 10, 9-55.

Sim, R., & Little, J. J. (2006, October). Autonomous vision-based exploration and

mapping using hybrid maps and Rao-Blackwellised particle filters. In Intelligent

Robots and Systems, 2006 IEEE/RSJ International Conference on (pp. 2082-

2089). IEEE.

Taylor, R. M., & Probert, P. J. (1996, April). Range finding and feature extraction by

segmentation of images for mobile robot navigation. In Robotics and Automation,

1996. Proceedings, 1996 IEEE International Conference on (Vol. 1, pp. 95-100).

IEEE.

Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation.

Artificial Intelligence, 99(1), 21-71.

 Thrun, S. (2000). Probabilistic algorithms in robotics. Ai Magazine, 21(4), 93.

Thrun, S. (2002). Robotic mapping: A survey. Exploring artificial intelligence in the new

millennium, 1-35.

Thrun, S. (2003). Learning occupancy grid maps with forward sensor models.

Autonomous robots, 15(2), 111-127.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT press.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review, 55(4), 189.

 160

Tolman, E. C. (1949). There is more than one kind of learning. Psychological

review, 56(3), 144.

Tomatis, N., Nourbakhsh, I., & Siegwart, R. (2003). Hybrid simultaneous localization and

map building: a natural integration of topological and metric. Robotics and

Autonomous systems, 44(1), 3-14.

Tomatis, N., Nourbakhsh, I., Arras, K., & Siegwart, R. (2001). A hybrid approach for

robust and precise mobile robot navigation with compact environment modeling.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International

Conference on (Vol. 2, pp. 1111-1116). IEEE.

Touretzky, D. S., & Redish, A. D. (1996). Theory of rodent navigation based on

interacting representations of space. Hippocampus, 6(3), 247-270.

Vandorpe, J., Van Brussel, H., & Xu, H. (1996). Exact dynamic map building for a mobile

robot using geometrical primitives produced by a 2D range finder. In Robotics and

Automation, 1996. Proceedings, 1996 IEEE International Conference on (Vol. 1,

pp. 901-908). IEEE.

Wang, R. F., & Spelke, E. S. (2000). Updating egocentric representations in human

navigation. Cognition, 77(3), 215-250.

Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: Insights from

animals. Trends in cognitive sciences, 6(9), 376-382.

Wendel, A., & Bischof, H. (2013). Visual Localization for Micro Aerial Vehicles in

Urban Outdoor Environments. In Advanced Topics in Computer Vision (pp. 181-

214). Springer London.

Werner, S., Krieg-Brückner, B., Mallot, H. A., Schweizer, K., & Freksa, C. (1997).

Spatial Cognition: The Role of Landmark, Route, and Survey Knowledge in

Human and Robot Navigation1. In Informatik’97 Informatik als

Innovationsmotor (pp. 41-50). Springer Berlin Heidelberg.

Wong, C. K. (2008). Cognitive Inspired Mapping by an Autonomous Mobile Robot (PhD

Thesis, Auckland University of Technology).

Yeap, W. K. (1988). Towards a computational theory of cognitive maps. Artificial

Intelligence 34(3):297-360

Yeap, W. K. (2007). From Spatial Perception to Cognitive Mapping: How is the Flow

of Information Controlled? In AAAI Spring Symposium: Control Mechanisms for

Spatial Knowledge Processing in Cognitive/ Intelligent Systems (pp. 59-61)

Yeap, W. K., & Jefferies, M. E. (1999). Computing a representation of the local

 161

environment. Artificial Intelligence, 107(2), 265-301.

Yeap, W. K., Jefferies, M. E., & Naylor, P. S. (1991, August). An MFIS for computing a

raw cognitive map. In IJCAI (pp. 373-380).

Zhang, L., & Ghosh, B. K. (2000). Line segment based map building and localization

using 2D laser rangefinder. In Robotics and Automation, 2000. Proceedings.

ICRA'00. IEEE International Conference on (Vol. 3, pp. 2538-2543). IEEE.

Zhao, H., Chiba, M., Shibasaki, R., Shao, X., Cui, J., & Zha, H. (2008, May). SLAM in a

dynamic large outdoor environment using a laser scanner. In Robotics and

Automation, 2008. ICRA 2008. IEEE International Conference on (pp. 1455-

1462). IEEE.

Zipser, D. (1985). A computational model of hippocampal place fields. Behavioral

neuroscience, 99(5), 1006.

