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ABSTRACT 

In this thesis, I took two key ideas of cognitive mapping developed in Yeap‘s (1988) 

theory of cognitive mapping and developed a robot mapping system that maps without 

having a precise map.  

 

Yeap argues that in a cognitive mapping process, it is important to compute a local 

space representation that affords boundedness and a global map that tells one roughly 

where things are located with respect to the self. While these two representations appear 

to be similar to the global map and a topological network of local spaces that robotics 

researchers compute for their robots, there are two major differences. First, Yeap‘s 

global map is a transient, inexact map and second, the local space computed is often 

inexact and incomplete. Computing such representations meant that one does not need 

to correct errors due to sensors and generate an exact map. 

 

I have successfully developed one such algorithm and tested it successfully on a mobile 

robot equipped with laser and odometer sensors in a large office environment.  The 

journey through the environment before loop closing is about 30m x 30m. The robot 

went round the environment twice and in a clockwise and anti-clockwise direction. It 

also finds its way from one part of the environment to another. 

 

There are three key steps in my approach. The first step is to constantly detect 

―landmarks‖ in two consecutive views (the current view and the previous view). Having 

two consecutive views meant that any errors due to the sensors are not accumulative. 
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Furthermore, one gets two copies of the landmark – one currently in view and the other 

in memory. Consequently, their position in space need not be absolute. The second step 

is to use the landmarks identified to provide a frame of reference to localize unknown 

surfaces that appear in the current view. The third is to enter those unknown surfaces 

into its global map using its own landmarks. 

 

The development of such an algorithm has led to better insights into cognitive and robot 

mapping. From a cognitive standpoint, what is important is that we now have an 

algorithm that computes an inexact map by attending to recognizable surfaces (referred 

to as landmark surfaces) in successive views rather than dependent on continuous 

tracking of one‘s position and orientation in the environment. Furthermore, it does not 

require continuous updating of the map as long as there are some overlapping surfaces 

between views. Both are characteristics of the human cognitive mapping process. From 

a robot mapping standpoint, my new algorithm shows that it is possible to compute and 

utilize an inexact map for navigation. This could be a new paradigm for robot mapping.  
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1 Introduction 

 

 

 

 

Introduction 

1.1 The Notion of a Cognitive Map 

As we move, our interactions with the environment allow us to encode the what and 

where of things seen. With it, we could retrieve the remembered locations of objects 

even though they are now out of sight or recognise them if they are in view again. 

Consequently, we know what lies immediately behind us and can predict what might 

appear in front as we move forward. These activities of sensing, encoding, storing, 

decoding and deploying the spatial information are all part of one‘s spatial process. 

Tolman (1948) first inferred that a map-like representation emerges in this process in 

animals other than humans. He demonstrated this by recording the spatial behaviour of 

maze-running rats that were able to take short cuts to their final destination. He called 

this act of mental structuring process leading to the creation of the rat‘s internal spatial 

model as cognitive mapping, and coined the internal model produced as cognitive map.  
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Recognition of this place learning activity stimulated multidisciplinary research in the 

human spatial knowledge acquisition. In city planning, geographers Kevin Lynch 

(1960) used sketch maps to reveal human knowledge of large-scale complex 

environments. He emphasised spatial visibility as the means by which people extend 

their knowledge about the city landscape as well as engaging in way finding. The 

environmental image is said to be the product of immediate sensation and the memory 

of past experience, and it is used to interpret information and to guide action. In brain 

studies, neurophysiologists studied the role of the hippocampus in navigation (O‘Keefe 

& Nadel, 1978) and continued their in-depth research in breaking down the anatomy of 

memory into quantitative models by reproducing detailed computational representations 

based on the specific changes in cellular firing rates after complex environmental 

manipulations (Zipser, 1985; Burgess et al., 1994; Touretzky & Redish, 1996).  

 

In cognitive psychology, the nature of mental map revolves around understanding how 

human process information. The Multi Store Model (Atkinson & Shiffrin, 1968) is a 

classic model studying the internal process of the mind by describing the human 

memory in terms of information flowing through a system. The model suggests that the 

human memory is made up of a series of stores; the sensory memory (SM), the short-

term memory (STM) and the long-term memory (LTM), but the lack of a mechanism to 

prove encoding of memory occurred when memories are being rehearsed, retrieved and 

transferred between the three stores led to newer memory models eliminating the SM 

(Raaijmakers & Shiffrin, 1981; Baddeley, 2003).  
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1.2 Cross-Fertilisation between Cognitive Mapping and Robot Mapping 

Advances in artificial intelligence research that led to the development of the first 

integrated mobile robot Shakey (Nilsson, 1969) presented a new and exciting paradigm 

for studying the mapping problem. When faced with the problem of creating a map of 

the robot‘s environment, these researchers quickly realised that there is a need to 

simultaneously locate and map. Otherwise, one cannot integrate successive views to 

form a map. Researchers investigating how humans/animals compute their map often 

overlook this part of the problem. For example, a popular early theory of cognitive 

mapping (Siegel & White, 1975) suggests that what is remembered initially are 

landmarks only. Robotics researchers thus refer to the mapping problem as SLAM, 

simultaneous localisation and mapping (Leonard & Durrant-Whyte, 1991).  

 

In robot mapping, the robot localises itself via updating its Cartesian position in the map 

and then using its known position at each step to overlay, re-align, and add subsequent 

views to the map. This is a fundamental step in the mapping process. However, it turns 

out that there is much noise present in the process and this distorts the localisation step. 

Errors accumulate quickly and the map created will soon be rendered useless. This 

problem, correcting the errors to get a precise metric map, became the focus of robotics 

research and many probabilistic solutions (such as those using Bayesian formula 

(Majumder et al., 2000), the extended Kalman filter or EKF-SLAM (Newmann et al., 

2002), Rao-Blackwellized particle filters (Murphy, 1999; Doucet et al., 2000) were 

proposed. Rigorous testing and development were done on wheeled mobile robots with 

either sonar and/or laser sensors (Chong & Kleeman, 1999; Castellanos & Tardos, 
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1999; Diosi et al., 2005; Newmann et al., 2006; Zhao et al., 2008; Kretzschmar et al., 

2011). The robotics researchers have had great success which meant that the problem is 

now well understood (Thrun, 2002; Durrant-Whyte & Bailey, 2006; Bailey & Durrant-

Whyte, 2006; Aulinas et al., 2008) and the field is advancing to develop robots mapping 

outdoor environments and using other sensors, notably vision (Jensfelt et al., 2006; 

Nuchter & Surmann, 2007; Milford & Wyeth, 2008; Maddern, Milford & Wyeth, 2012; 

Wendel & Bischof, 2013). The current success of robotics researchers, however, 

highlights a major point of difference between robot mapping and cognitive mapping, 

namely the latter is unlikely to produce and use a precise map. 

 

As Jefferies and Yeap (2008, p.1) noted, ―it is not surprising that the cognitive and robot 

mapping problems share some common core problems‖ and ―one would reasonably 

expect some cross-fertilisation of research between the two to have occurred‖. To date, 

the lessons learned in robot mapping provide significant insights into the nature of the 

low-level mapping problem and observations made about cognitive mapping provide 

significant insights into the nature of the map computed. The availability of more 

powerful robots for autonomous exploration and mapping provide a platform for testing 

cognitive mapping theories, and, in turn, the richer cognitive mapping theories being 

developed lead to the development of more powerful mapping algorithms for robot use. 

 

This thesis contributes to the cross-fertilisation of ideas between the two fields by 

developing a cognitive mapping algorithm (Yeap, 1988; Yeap & Jefferies, 1999) on a 

mobile robot that computes a key characteristic of cognitive maps, namely that such a 
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map is inexact. Given that robotics researchers are currently focusing on developing 

algorithms that compute a precise map, developing such an algorithm could lead to a 

paradigm shift in robotics. An earlier student‘s work (Wong, 2008) has shown that an 

inexact map extracted directly from the robot‘s sensors could still help the robot to find 

its way home albeit in a limited corridor-like environment. In this thesis, I ask: Can a 

robot compute an inexact map itself and how useful is such a map? For instance, can the 

robot use the map to perform various spatial tasks such as taking a short-cut, 

recognizing that one is returning to a familiar place, etc. in its environment? 

1.3 Yeap’s Theory of Cognitive Mapping 

Briefly, in Yeap‘s theory of cognitive mapping, three key representations are computed, 

namely a network of ASRs (which stands for an Absolute Space Representation), an 

MFIS (which stands for Memory For one‘s Immediate Surroundings), and a hierarchy 

of place representations (see Fig. 1.1). 

 

 

Fig. 1.1: The ASR model of the cognitive map. Reproduced from Fig. 1 of Yeap (2007) 
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The first representation, an ASR, is a representation that makes explicit the local 

environment that one is in. Its significance is that while we live in a universe that is ever 

expanding (Carroll et al., 1992), we are, due to the limit of our own perceptual 

apparatus, always bounded in a local space that limits where we can go and what we 

can see. To us, such a space is absolute and forms the cornerstone element for building 

our cognitive map.  

 

The second representation, an MFIS, is a representation that makes explicit one‘s 

immediate surroundings within a single co-ordinate system. Our ability to use visual 

cues to remain oriented to our surroundings and to reorient ourselves when we get lost 

(e.g. Mou et al., 2004; Cheng & Newcombe, 2005) supports the presence of such a 

representation. Note that an ASR is inadequate as a representation of one‘s immediate 

surroundings for two reasons. First, an ASR is a representation that indicates where one 

is but not necessary where one has been (except within the confine of that local space). 

Second, an ASR does not hold information beyond what is in one‘s local environment 

and therefore things perceived outside its boundary are not represented. 

 

The third representation is a hierarchy of place representations (Hirtle & Jonides, 1985); 

each place formed represents one‘s conceptual view of a part of the environment. Each 

place, if it is not an imaginary one, will be grounded to its physical environment as a 

collection of ASRs computed. Humans have shown that some form of hierarchical 

organisation is in order when they learn about their environment. For example when 

human subjects are asked to relay their experiences traversing a known route, they tend 
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to organise their spatial representation in clusters of landmarks (Reitman & Reuter, 

1980). Humans are also shown to learn an unstructured environment such as a map 

layout containing uniformly distributed objects by encoding the environment into a 

hierarchy of place by associating each place with the spatial proximity to the 

neighbouring landmarks (McNamara, Hardy & Hirtle, 1989). Although these studies 

present evidence about the organisation of place representations in our spatial 

knowledge, they do not provide information on how the hierarchical structure is built 

and used.  

 

The theory argues that an ASR is computed immediately as one enters a new local 

environment but given one has only a limited view on entry; it is not possible to identify 

its complete boundary without exploring the space further. If so, during exploration, 

how does one distinguish one ASR from another? Jefferies (1999) argued that ―exits‖ of 

an ASR play an important role in both identifying and computing an ASR. Exits are not 

doorways but any perceived gaps that the individual believes will allow them to 

―escape‖ out of the current bounded space. Wong (2008) showed that the spatial extent 

of each ASR and in particular between exits, though imprecise, could provide very 

useful information for traversing an environment using a network of ASRs.  

 

According to Yeap‘s theory of cognitive mapping, there are thus three key 

representations, namely, a network of ASRs, an MFIS, and a Hierarchy of Place 

representation. The MFIS and a network of ASRs bear a strong resemblance to the 

global map and a topological network representation computed in robotics research. 
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However, there are two major differences. First, the MFIS is a transient inexact map 

and second, the ASR is often an inexact and incomplete description of local spaces. The 

advantage of having an exact map is that the robot knows exactly where things are but 

the disadvantage is that such a map is not easy to maintain in the real world. The 

physical environment could often be altered significantly and the robot could be 

seriously displaced during its journey through an environment. Nature has shown that 

we could live with an inexact representation and it must have discovered other ways to 

cope with errors present in the sensors. In this thesis, I developed one such algorithm 

and tested it on a mobile robot equipped with laser sensors.  

1.4 Work Done 

In this thesis, I implemented a complete robot mapping system that explores its 

environment autonomously and computes both an inexact map and a topological 

network of incomplete and inexact local spaces without error corrections. Few robotics 

works, if any, generate such representations for their robots since they claim that 

without error corrections, the map will be distorted.  

 

The robot has been tested going through the environment as shown in Fig. 1.2 several 

times. The experiments conducted demonstrate successful loop closing and successful 

use of the inexact map for performing various spatial tasks such as returning home, find 

short cuts, and re-plan new routes. An important feature of the algorithm developed is 

that it does not correct errors. Rather, it detects ―landmarks‖ that are present from one 

view to another and via them, creates multiple frames of reference that could be used to 
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update new surfaces to the MFIS. An example of the kind of map generated is as shown 

in Fig. 1.3. As can be seen from the output, the map is neither exact nor precise but it is 

good enough for the robot to use for finding its way in the environment. The latter is 

aided with a network of ASRs extracted from the MFIS as shown in Fig. 1.4. An ASR is 

extracted from the MFIS each time the robot crosses an exit in the journey. To compute 

a boundary for the ASR, the algorithm follows the outermost surfaces starting from one 

end-point of the crossed exit to its other end-point, thereby merging the gaps in between 

these surfaces to enclose the space traversed by the robot. The ASRs are then connected 

to one another using their common exits. Using both the MFIS and a network of ASRs, 

the robot successfully traversed to different parts of the environment, re-visit places, 

find alternative routes and can take short-cuts. 

 

 

Fig. 1.2: The environment used for testing. Highlighted is the path travelled by the robot which is about 
30m by 30m in size. Arrows denote an example of the robot moving in an anti-clockwise manner 
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Fig. 1.3: An example of the MFIS computed for the environment 

 

Fig. 1.4: An example of a network of ASRs computed for the environment 
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1.5 A Guide to this Thesis  

Chapter 2 provides a review of the relevant literature. While this thesis focuses on robot 

mapping, the review begins with a brief discussion of ideas in cognitive mapping found 

in three different major research areas, namely psychology, neurophysiology, and 

computational studies. Then, the review continues with works that develop some 

interesting algorithms for robot mapping based on cognitive ideas. For completeness, 

the review ended with a discussion on traditional SLAM approaches that compute exact 

metrical maps. The latter would provide a contrast to the implementations done using 

cognitive ideas. 

 

Chapter 3 focuses on the development of the eight new algorithms for robot mapping 

without a precise map. These algorithms include: 

1. An algorithm for autonomous exploration;  

2. An algorithm for computing minimal bounded space; 

3. An algorithm for MFIS computation; 

4. An algorithm for finding landmarks in view; 

5. An algorithm for transferring surfaces in the current view to the MFIS; 

6. An algorithm for computing ASRs; 

7. An algorithm for eliminating new surfaces coming into view after crossing an 

exit; 

8. An algorithm for identifying surfaces and corner points for boundary 

computation; 
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Chapter 4 presents the results of three major experiments using the robot embedded 

with the seven new algorithms described in chapter 3. The first experiment sees the 

robot builds the MFIS and the network of ASRs while exploring the environment twice 

in a clockwise direction. Going round the environment twice tests the robot‘s ability to 

close loop and the effect on the representations computed when re-visiting. In the 

second experiment, the robot is assigned similar tasks to the first experiment but the 

direction of travel is reversed. This ensures that the representations computed are not 

direction dependent. In the third experiment, the robot explores the environment in a 

clockwise direction and then in an anticlockwise direction. It is also instructed to find 

its way from one ASR to another and in two occasions, the known routes are blocked.  

 

Chapter 5 concludes the thesis with a general discussion of the lessons learned, a 

summary to major contributions and points towards future work. 
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2 Literature Review 

 

 

 

 

Literature Review 

2.1 Overview 

This chapter reviews literature related to this study. It has three sections. Section 2.2 

discusses ideas about cognitive mapping found in cognitive and neurosciences and the 

computational models that have been proposed based upon these studies. Section 2.3 

discusses studies that implement cognitive ideas/models using robots. For 

completeness, Section 2.4 provides a review of work done in traditional robotics. 

2.2 Theories in Cognitive Mapping 

The mental representation of the spatial environment is referred to as a cognitive map. 

Tolman (1948) first coined the term. He observed the behaviour of rats in a maze-like 

environment and noticed that rats did not respond to stimulus while navigating but also 

produced something similar to a field map of the environment in their brains. This 

internal map is what helped the rats choose alternative correct routes when known 

2 



 14 

routes are inaccessible leading to assumptions that rats remembered their environment 

and able to perform novel connections between learned routes and routes they have 

never travelled before. For humans, a cognitive map is a more complex representation 

and computed from ―a process composed of a series of psychological transformations 

by which an individual acquires, codes, stores, recalls, and decodes information about 

the relative locations and attributes of phenomena in his everyday spatial environment‖ 

(Downs & Stea, 1973).  

 

The subject of humans‘ and animals‘ spatial knowledge has also been the interest of 

other researchers from various other backgrounds; all keen to understand how cognitive 

agents sense and acquire a representation of their environment. Developmental 

psychologists studied how spatial cognition develops from children to adulthood. 

Neuropsychologists studied how the brain in general and the hippocampus in particular 

computes its map. Behavioural scientists focus their study on how humans and animals 

find their way in the environment given the diverse capacities of their sensors and 

survival needs. Even architects, inspired by the famous work of Lynch (1960) studied 

how people form images of their city.  

 

2.2.1 Development Theory 

The development theory (Piaget & Inhelder, 1967) is an early work based on observing 

children‘s developmental sequence in understanding the environment. The theory 

recognised cognitive maps to constitute more complexity than just a spatial layout of 

things in the environment as suggested by Tolman (1948). The theory expanded the 
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cognitive maps description by including mode of travel, preferences, attitude, and past 

experiences as additional factors to influence one‘s mental representation. In general, 

researchers building from this theory mainly delivered their findings based on the three 

recognised stages of development, i.e. the landmarks, the route map and the survey 

map. There is also evidence that these sequence of developmental stages occur similarly 

in adults traversing new environments (Golledge, 1987).  

 

When breaking down children way-finding strategies, it has been observed that children 

begins by recognising objects and are able to distinguish them. Thus landmarks 

identification is considered an object-based approach that occupies the first stage in the 

developmental sequence. According to Kaplan (1973), landmarks must be unique 

entities that function as indexes that mark places in the environment. With such distinct 

features, landmarks identification is assumed to be the easiest way-point reference for 

children to determine their locations and orientations in the environment. However in 

reality, identifying or extracting distinct objects or features from the environment as 

landmarks is not an easy task and remain the biggest challenge in this primary stage.  

 

Children are then observed to connect landmarks identified via route selections. When 

asked to navigate in the neighbourhood, children were selecting routes between 

landmarks based on their direct (egocentric) experience during travel. At this point in 

the stage, children are yet to form abstract representations of the environment; meaning 

a route does not represent a global direction in the map but are steps in achieving the 
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navigation target. These series of individual routes that will lead to the goal form 

connections that are topological in structure. 

 

The survey map can be defined as an abstract environmental overview which basically a 

further generalisation of the route map concept. In this stage, the quality of the spatial 

knowledge is upgraded from the egocentric representation (of route map) to an 

allocentric representation of the environment, giving birth to the notion of reference 

frames in mental representations (Gallistel, 1989 & 1990). If one were to travel 

extensively in a particular environment, it would be useful to have a logical overview 

(or a bird‘s eye view) of the entire environment. Rather than dealing with routes 

individually, one may get information required for traversing the environment from 

such abstraction. In addition, this overview would make large-scale reasoning about the 

environmental simpler. However, although the main function of these overviews is to 

increase the effectiveness of way finding, it does not mean one may need them all the 

time.  

 

The notion of frame of reference has shaped the way the robot in this thesis collects 

spatial inputs and organise them into building an imprecise map for the robot. For this 

reason, a sub-section on the encodings in the human spatial memory which underlies the 

idea of survey maps is added here.  
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2.2.1.1 Encodings in the Human Spatial Memory 

It has been argued that since humans live in a geometrical world, humans should be 

locating objects in the environment by means of reference to the geometrical features. 

Plenty of works have adopted this notion of frames of reference as a means to represent 

the location of entities in space (Wang & Spelke, 2000; Wang & Spelke, 2002; Mou & 

McNamara, 2002; Mou et al, 2004). These researchers believed that different frame of 

reference is used for different navigational activities. For instance, navigating through 

closely spaced trees requires accurate self-to-object (egocentric) judgement else one 

could bump into the obstacles (Andersen et al., 1997), but planning a distant goal and 

maintaining a sense of orientation in large environment requires one to judge how 

objects are allocentrically related to one another (Loomis & Beall, 1998). The following 

illustrations showcase how the two frames of reference configure. Fig. 2.1(a) denotes 

the egocentric frame of reference where locations of objects are encoded in relation to 

own body (e.g. left-right, front-back, or up-down). Fig. 2.1(b) depicts the allocentric 

frame of reference where the locations of objects are encoded relative to other objects 

surrounding the traveller.  

 

 

Fig. 2.1: (a) The egocentric (self-to-object) spatial representation, (b) the allocentric (object-to-object) 

spatial reference 
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In Sholl (2001; see also Holmes & Sholl, 2005; Schmidt & Lee, 2006; Ruggiero et al., 

2011), different roles and representations are identified for each reference frames. The 

egocentric representations always measure distance and orientation between the ego and 

the surrounding objects. Since this viewpoint-dependent system provides a framework 

for spatially directed motor activity such as walking, reaching and grasping, it requires 

constant updating as the human moves in the environment. In the case of an allocentric 

representation, the information is referred to the space independent to the human. The 

location of any objects is measured using its spatial relations (distance and orientation) 

to other objects in the same space. Holmes & Sholl (2005) postulated that this type of 

spatial framework takes time to develop because in the early stage of learning a new 

environment, the human is observed to rely more on the egocentric reference system to 

identify objects in the environment. Throughout the course of the journey, there may be 

occasions where the human‘s self-to-object spatial relations get disrupted by 

disorientation resulting in a temporary loss of his current orientation with respect to the 

surroundings.  

 

Therefore, the enduring allocentric representation which has been maintained 

independently is still intact in the human‘s memory, making it a more stable memory 

option for the human to correct his orientation by referring to recognised objects or 

landmarks available in the allocentric system. Once the orientation issue is resolved, the 

human is considered to switch back to the egocentric system to resume the journey.  
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2.2.2 Neurological Theory 

The notion of cognitive maps used in neurological studies (O‘Keefe & Nadel, 1978) 

often pay little attention to the use of spatial information about distances and directions 

as evidenced in the other psychological studies of cognitive maps. This is because of 

their discovery of place-coded neurones in the hippocampus where a specific firing 

activity among these neurones corresponds to a stimulus reading from a particular place 

cells. When tested the theory on primates and humans, researchers discovered that the 

firing activities are parallel to the subject‘s sensory input from environmental cues 

rather than to where the subject is physically located at (Burgess et al., 1994).  

 

Later, Nadel (1991) reiterated that in support of Tolman‘s (1949) theory that the 

cognitive map has multiple learning systems. O‘Keefe & Nadel (1978) proposed two 

classes from the systems as locale and taxon. A taxon is a navigation strategy which 

involves heading towards a landmark at or very near the goal. A locale is a navigation 

strategy which is used when a taxon strategy is disrupted, for instance the landmark is 

removed from the route. Therefore the taxon is similar to a route map whereas the 

locale is an allocentric–hippocampally representation since the cognitive map contains 

larger information about the environment and allows alternative routes towards a goal. 

With respect to their roles, it is assumed that learning within the locale system occurs 

during exploration and novelty-directed behaviours and that spatial learning is achieved 

by updating the locale system with new routes, landmarks and short-cuts over time.  
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Fig. 2.2: Possible novel short-cutting when human configures new routes to get between goals in the 

environment  

 

O‘Keefe (1990 &1991) proposed an extension to the allocentric model by defining the 

centroid and slope measurements. The centroid is referred to as the object which is 

fixed and does not move with the animal, whereas the slope is essentially the line that 

follows through the centroid at an orientation that fixes the orientation of the allocentric 

frame; unchangeable regardless how the animal moves around. In this model, an animal 

is said to construct its mental representation in two stages; first, they must identify a 

notional or a fixed point in the environment (i.e. the centroid, and second, they must 

identify the gradient (i.e. the slope) for the environment to fix the direction. Usually the 

slope is depicted as the gradient that is similar to how objects in the environment are 

widely spread. The animal‘s cognitive map is then a result of encoding objects in the 

surrounding using vectors whose lengths are distances from the centroid. 
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Fig. 2.3: An example of the centroid-slope model. Reproduced from O‘Keefe (1991) 

 

2.2.3 Computational Theories of Cognitive Mapping 

This section discusses three major cognitive mapping models developed to date, namely 

the Tour Model, the Plan Model, and the ASR/MFIS model. 

 

2.2.3.1 The TOUR Model 

The first comprehensive computational model of the environment was Kuipers‘ (1977) 

Tour model. This model was influenced by Lynch‘s (1960) work on ―The Image of the 

City‖ and studies concerning the development of spatial knowledge among children 

(Piaget & Inhelder, 1967). What distinguishes this model from earlier ones is its 

inclusion of several important representations for large-scale space navigation. For 

example, it has a representation which allows users to select correct routes to get from 

one place to another, a topological representation that keeps connection between 

traversed routes, and a different metrical representation for each local place visited. 

Other spatial knowledge models beforehand only proposed the mental map as a single 

global reference frame for the entire environment.  
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The following depict how the TOUR model divides the spatial knowledge into five 

different groups, each with its own representation: 

1. Routes 

A representation of a sequence of action which guides users along a particular 

route through the map 

2. Topological 

A network of routes with emphasise on the order of the places connected by the 

routes. This representation also makes explicit the intersections where these 

series of routes meet. 

3. Frame of Reference 

This representation describes each local space as a local metric map of its own. 

Objects inside a local metric map are positioned according to a particular 

orientation to the user. Different places are built from different orientation 

preference thus they cannot be compared to each other unless they share similar 

orientations.  

4. Dividing Boundaries 

This representation supplies the knowledge of where a place is located relative 

to other places in the environment. The boundaries are not physical barriers 

which may disrupt travel; their main purpose is to provide a qualitative 

measurement of positions.  

5. Regions 

Regions are defined as a structure with levels of abstraction use for stating 

properties of their elements. 
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To function properly, the TOUR model requires the navigational problem to be broken 

down into three different representations. The first is usually a map of the area (see Fig. 

2.4(a)), followed by a description of where the traveller is located at present in the 

environment (Fig. 2.4(b)), and lastly a set of inference rules to manipulate the 

knowledge of two previous classes (Fig. 2.4(c)). The performance of the model 

depended on how much information is available in the last two since these 

representations may be incompletely described.  

 

 

Fig. 2.4: The TOUR computational model of cognitive map. Reproduced from Kuipers (1978) 

 

The set of rules in the last representation is inferred as a result of manipulating and 

combining different parts of knowledge from the other two spatial representations. 

However it is not the representation which is accessed to learn about the environment. 

The only accessed environmental descriptions from the TOUR machines are the ones 
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referred by the ―You are here‖ pointer in the second representation, the representation 

which depicts the traveller‘s current position. This allows the model to work quite 

efficiently since the route programs that drives it do not have to search for 

environmental elements.  

 

The inference rules are made of simple modules which triggers some simple actions 

when pass certain thresholds. In general these rules are categorised according to the 

following: 

1. Rules which compare the route instructions in the ―You are here‖ pointer to the 

topological descriptions of the environment. If a part of the topological 

representation is incomplete, these rules can patch up the missing gap with 

information from the others 

2. Rules that fix the orientation to adequate the current heading of the frame. This 

is achieved by comparing the ―You are here‖ pointer to knowledge of the 

current place and path 

3. Rules which detect structural features that can be defined as  dividing 

boundaries 

4. Rules that utilises the hierarchy of regions, boundaries and referential frames to 

solve route-finding and position-finding problems 

 

Kuipers & Levitt (1988) discussed that the TOUR model keeps a topological map of the 

environments but has a separate representation for the route knowledge. This is the 

disadvantage of the model since the route knowledge on its own is not reliable in 



 25 

discovering new routes and shortcuts or cope without guidance in unknown 

environments. The model however is able to cope with the problem to some extent by 

depending on information from its topological representation.  

 

2.2.3.2 The PLAN Model 

PLAN is short for Prototypes, Location and Associative Networks (Chown et al., 1995) 

which derived inspirations from the developmental theory. They argued that the human 

cognitive mapping process is about solving how humans find their ways in the 

environment. Basically the model identified four functions of the humans‘ cognitive 

maps which are defined as follow: 

1. Landmark Identification 

With powerful sensory system like the vision, humans are able to identify 

distinct features among objects in the environment quite easily. For this reason 

landmarks are considered the most basic component in the human way-finding. 

By associating a unique object or landmark to a particular area (Kaplan, 1973), 

humans can later use the information to recognise where they are in the 

environment and to plan their routes to chosen destination.  

2. Path Selection 

The main task here is to choose a route to achieve the navigation target. A route 

is considered as a series of paths that will lead the human to the goal.  The 

common concept when dealing with paths is that they are actually sequences of 

landmarks. In this model, gateways used to enter and leave a city are depicted as 

landmarks. So to travel along a path means to follow from one landmark to 
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another (in this case, gateways) until one reaches the target. With many 

alternative paths to choose from the environment, selecting the correct ones is a 

problem which requires some reasoning skills.  

3. Direction Selection 

As the name suggests, this function deals with selecting a direction to guide 

one‘s travel. If one can see the target without obstructions, the practical solution 

is to turn towards the target. The problem arises when one has to deal with a 

faraway target which is beyond one‘s visual capacity at the time. Since one may 

have to perform constant turning to reach a distant target, selecting a direction 

when one begins a journey is unlikely sufficient to guide the entire journey 

(Golledge & Garling, 2003). 

4. Abstract Environmental Overviews 

When required to explore in a large-scale environment, a logical overview of the 

entire environment is a useful spatial knowledge to have. The abstract structure 

would aid in reasoning tasks and can overcome problems posed by dealing with 

only route knowledge. However acquiring such knowledge is not 

straightforward and often involves the combination of each of the other three 

solutions.  

 

The PLAN model includes three major modules; prototypes, locations and a simple 

associative network in its development.  
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Prototypes 

Chown et al. (1995) argued that landmarks are no different to other objects in general 

and thus proposed a category called prototypes which do not define landmarks as a 

single distinct entity. To address landmarks identification, the most common features 

among the landmarks will be included in the prototype representation. The prototypes 

are then ordered as a hierarchical representation with individual feature samples at the 

bottom and the more common features sampled at higher levels. The following 

conditions further defined landmarks in the model:  

1. Landmarks must be distinguishable even when perceived from different point of 

views. Also, it is required for the prototypes to function even with partial view 

of the landmarks 

2. The number of landmarks which can be processed at any time is limited to     

similar to the number of objects human processes mentally at a time 

3. Landmark must be explicitly influenced by the background. A good landmark 

for a particular area in the environment may not be a good choice to other areas 

 

Due to the above reasons, it can be said that not every object can passes as a landmark, 

only those that stood out and distinctively recognisable.  

 

Location 

Later, Chown et al. (1995) also proposed that local maps are not computed at landmarks 

but rather at a choice point in the journey. The observation leads to the construction of 

another network since choice points are not represented in the network of landmarks. 
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The new network is called the R-Net which stands for the network of local maps. The 

R-Net is similar to NAPS but rather than storing landmarks (in the form of prototypes), 

R-Net stores local maps or regions which are separated using gateways. The regional 

maps function like a survey map with the overview or abstraction from the R-Net and 

the lower level information from the network of landmarks. As a higher level 

representation, the regional maps optimise the amount of information in them making 

the maps the primary structure to reason and solve way-finding issues. When requiring 

further information, they can be extracted from the lower level representation.  

 

Associative Network 

To test the idea of using an associative network, an implementation known as NAPS 

(Network Activity Passing System) is carried out (Levenick, 1985; Levenick, 1991). 

The goal here is to encode a topological system into the associative network so the 

nodes in the network correspond to landmarks and links that connect the nodes 

correspond to distance between the landmarks. The establishment of such network made 

explicit paths as they are accessible by tracing the series of links between the 

landmarks. To solve the path searching problem, the nodes are activated from both 

ends; the starting point and the goal location. Wherever the signals meet at some point 

in the middle of the network, the meeting point (which is also a node) is computed as a 

sub-goal. The process is repeated until the path is completed. In the model, each 

landmark is treated like a local map which stores all links that connects it to other 

landmarks. Having local maps is useful to orient oneself to a nearby landmark. The 
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following figure denotes an example of how landmarks are extracted onto directional 

and locational grids which form the local maps. 

 

 

Fig. 2.5: The PLAN computational model inspired by Figure 2 and 3 in Chown et al. (1995) 

 

 

2.2.3.3 Yeap’s Computational Model 

In developing his model, Yeap (1988) questioned how information perceived by the 

sensors is processed into a cognitive map. This emphasis on the input follows from 

Marr‘s (1982) work on his theory of vision. Humans can rarely remember every detail 

perceived from the environment. Based on this observation, Yeap suggested that an 

important question about cognitive mapping is: ―What is remembered first and how is 

that information be useful later?‖ While other studies at that time have emphasised that 

cognitive mapping is a complex process that involves one‘s perception and conception 

of the world, it is important, and following Marr‘s idea, that our understanding of how 
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conceptual ideas are derived be grounded with our understanding of what is delivered at 

the perceptual end. In his model, four important representations were proposed (see Fig. 

1.1), namely: 

1. The Absolute Space Representation (ASR) 

An ASR is the most basic description for each local space visited. It functions to 

capture the spatial extent of the space where one is in. The task in computing an 

ASR is to find the boundary surrounding the viewer and this comes from the 

surfaces perceived relative to the viewer. Another important feature of the 

boundary is exits (Yeap & Jefferies, 1999). Exits are path options which allow 

one to escape the current local space and move into another.  

2. The Memory for One’s Immediate Surroundings (MFIS) 

The MFIS is a global map of a viewer‘s immediate surroundings. Using a global 

co-ordinate system, it depicts the network of ASRs and has information on the 

current location of the viewer. It is often used as an extension to what an ASR is 

so the viewer is aware of the spatial layout of their immediate surroundings.  

3. The Raw Cognitive Map 

The raw cognitive map is a network of simplified ASRs which are loosely 

connected. It is termed ‗raw‘ because it produces a representation which is 

dependent on one‘s sensory perception. So the more one explores and visits new 

places, the larger one‘s map will be. The linking between one ASR to the other 

is done by connecting the common exits between them. The network, if well 

connected, enables the viewer to navigate with ease in the environment. Fig. 2.6 

depicts the raw cognitive map built based on a sample environment.  
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4. The Full Cognitive Map 

The full cognitive map identifies places in the environment by organizing 

several ASRs into groups. These groups of ASRs can also be combined and 

organised into a hierarchy of place representations. This type of representation is 

highly dynamic as the groupings may change if one perceives a place differently 

over time. At the inter-level, this map explains how to connect the places in the 

hierarchy and the possibility of joining new places to build new hierarchies. 

Similar information is available at the intra-level so one can extract or modify 

the connections between members inside a particular group.  Another advantage 

of the structure is one can examine exits which connects any two or more ASRs 

without having to search the entire hierarchy. This allows fast searching of exits 

(basically from anywhere) as long as one knows which ASR one wants to go to 

and which ASR one is leaving.  

 

 

Fig. 2.6: Example of an indoor map and the ASRs computed 
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2.3 Implementing Cognitive Theories on Robots  

The goal of this section is to describe robotic works that attempts at mapping the 

environment deriving inspiration from any of the cognitive theories presented in the 

previous section. Much of the works in cognitive inspired robot mapping are done in 

static, structured and small-scale environments.  

 

Briefly, in developing autonomous navigation behaviour, the robot is required to have 

an internal representation that adequately resembles an overview map of the 

environment. To acquire the map, mobile robots are equipped with sensors such as 

vision (camera, CCD, 3D laser, panoramic), range finders (sonar, laser, radar and 

infrared), and advanced positioning sensors (digital compass and GPS). These 

perceptual sensors are noisy with each one having their own measurement errors and 

range limitations. With the robot‘s limited capacity sensing the environment, it is of 

interest to see for example, how object-based robots work with landmark 

representations or how would a perceptually-driven architecture be fitting to develop a 

robot‘s spatial knowledge. Discovering new routes and performing novel short-cuttings 

are advanced way-finding tasks for robots, thus one would wonder if mapping 

algorithms based on the cognitive structures are useful to solve these problems.  

 

2.3.1 Spatial Semantic Hierarchy 

The SSH (Kuipers, 2000) is a further extension of the TOUR model (see section 

2.2.3.1). However, unlike the TOUR model, the SSH proposed one‘s perceptions while 
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experiencing the environment as reference to how one builds one‘s cognitive maps. The 

SSH is hierarchical by structure and offers five different levels of knowledge which 

influences one‘s cognitive maps.  

1. The Sensory Level 

This is the interface to the robot‘s sensors and effectors. Here, the environment 

is perceived as a black-box process which returns symbols of images from the 

sensor views. These symbols are then matched for recognition or used as 

retrieval keys. 

2. The Control Level 

At the control level, the agent and its environment are described as part of 

continuous dynamical system. Two behaviours are detected to define the agent‘s 

actions; the trajectory-following and hill-climbing control laws, so the agent-

environment system moves correctly towards an attractor. The stable attractor of 

a hill-climbing control law is called a distinctive state. 

3. The Causal Level 

Here, the agent and its environment are described as a partially known finite-

state automaton with views, actions and schemes representations. The views 

correspond to sensor readings at distinctive states identified at the control level. 

The actions are responsible for the commands to move where each movement 

matches several sequences of the control laws. The schemes are extracted from 

the interaction between the views and actions. 
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4. Topological Level 

This interface deduce two relationships; the first one between the distinctive 

states and movements which are calculated at the control level, and the second 

between the views and actions at the causal level. These relationships allow the 

interface to relay information about places, paths and regions and how they are 

connected to one another in the form of nodes and edges. The map produced 

here is responsible to solving way-finding problems. 

5. Metrical Level 

A 2-D global topological map is defined here. The map consists of properties 

like distance between places and angles between paths. These properties 

correspond to the nodes and edges of the topological graph.  

 

Even though the five levels in the SSH model relies on one another, the reliance are not 

without constrained. This control makes each combination of more than one level a 

unique representation on its own as every level defines different SSH knowledge. This 

model, when used to describe an agent‘s cognitive map, divides the map into 

representing knowledge at different SSH levels (see Fig. 2.7).  
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Fig. 2.7: The logical dependencies and constraints (red arrows) in the SSH Model. Blue arrows denote 

potential information flow without dependencies. Reprinted from Kuipers (2008) 

 

The earlier implementations of the SSH model were done in Kuipers & Byun (1987, 

1988 & 1997) using a simulated sonar robot with a digital compass called the NX (see 

Fig. 2.8). The compass is used for global orientation so the robot could reach distinctive 

states in the environment using simple control laws. They were also interested to see 

how the topological and metrical maps can be abstracted from the states. Then Lee 

(1996) implemented this algorithm on a real mobile robot called Spot. Spot is also a 

sonar robot with 3-legged wheels. A more recent implementation using the SSH model 

can be found in Remolina & Kuipers (2004).  
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Fig. 2.8: (a) Simulated exploration by the NX robot highlighting the distinct paths and places, (b) parts of 

the topological map which defined the relation between paths and places, (c) the global metric map 

produced. All images reprinted from Kuipers (2000) 

 

Later implementations see an upgrade to the SSH architecture when Kuipers and his co-

workers include the robot‘s local perceptual map and termed it as the Hybrid SSH 

(Kuipers et al., 2004). The popular SLAM methods are used to compute the local 
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perceptual map (LPM) which is a precise overview of the distinctive places available. 

The change sees the atomic representations of views of the SSH model is replaced by 

the LPMs in building the topological map. The LPMs provide precision in way-finding 

and thus avoid having to deal with the loop closing problems. Fig. 2.9 shows how the 

HSSH computes first the gateways, followed by the paths and distinct states. 

 

 
 

Fig. 2.9: (a) Robot (red) in the middle of an LPM, (b) and (c) show 5 gateways recorded where the 
corridors just about to merge into a large common area, (d) described how 4 paths are computed and 8 

distinct states detected. Reproduced from Kuipers et al. (2004) 

 

The LPMs are built on occupancy grids where each grid having their own local 

Euclidean representations. Testing the connections between the LPMs has been the 

main focus in Kuipers et al. (2004). To test the model‘s performance, the robot was 

made to travel in an environment with multiple nested loops (Fig. 2.10(a)). Each time 

the robot passes through a place, an LPM is computed for the place and a number is 

given to tag the LPM. The numberings accord to the order in which the robot travels 

(Fig. 2.10(b)). They observed that when revisiting the same LPM, the gateways are the 

key in solving the perceptual aliasing problems (see Fig. 2.10(c)). Once the loop 

problem is solved they were able to produce a global metrical map of the environment 

which originated from a topological representation in Kuipers (2008). See Fig. 2.11 for 

results. 
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Fig. 2.10: (a) An environment with multiple nested loop, (b) the LPMs computed at each place and 

tagged with a number, (c) connecting the LPMs via their gateways. Adapted from Kuipers et al. (2004) 

 

Fig. 2.11: Computation of a global metrical map (right) from what is initially a topological representation 

of the environment (left). Reprinted from Kuipers (2008) 

 

 

2.3.2 R-PLAN  

In Kortenkamp (1992), the cognitive theory PLAN (see 2.2.3.2) is implemented on a 

mobile robot equipped with 16 rings of sonar sensors and a single camera. The 

implementation is called the R-PLAN (robot PLAN) and the focus is to investigate the 

integration of both sensors to develop for the robot the notions of gateways and scenes 

respectively. The gateways in theory are places of choice points where the robot may 

potentially perceives new landmarks in its exploration. In the cognitive model (PLAN) 

these landmarks are an abstraction of objects such as buildings and trees. However, 
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these objects are too complex to be recognised as such using their robot senses and as 

such, in the implementation, they extracted vertical edges of objects instead. The latter 

is done using vision.  

 

For the gateways, doorways are seen as good options to see more of the environment 

because they offer the sense of visual narrowing then opening as the robot move 

towards and cross them. Sonar readings were used to detect them by sensing the spatial 

changes leading to gateways.  The scenes are composed of visual images captured at the 

gateways and each composition is specific to identify different gateways. Fig. 2.12 

illustrates several types of gateways identified for the robot. These gateways are useful 

to overcome the perceptual aliasing problems by reasoning about the type of gateways 

identified when looping occurs in the regional map. For instance, a T-shape gateway 

could not be a four-corner gateway on a route, but it could be a left or right opening on 

another.  

 

 

Fig. 2.12: Samples of types of indoor gateways in R-PLAN; (a) left room entrance, (b) room entrance, (c) 

left corner, (d) right room exit, (e) T-shape gateway, (f) four corners gateway, (g) left opening gateway 

and (h) right opening gateway. Reprinted from Kortenkamp (1992) 

 



 40 

In Kortenkamp & Weymouth (1994), the scenes are used to identify places in the 

environment. The scenes store the robot‘s visual cues in an abstracted scene 

representation which is a     grid. Each cell of the scene represents a visual cue; 

direction, distance or length of the cue. Fig. 2.13 shows the cues stored for a scene 

where each scene serves as a basic component for a larger representation. There were 

four algorithms to match the scenes for place identifications; (1) feature-to-feature 

matching using distance and direction, (2) cell-to-cell matching using distance and 

direction, (3) cell-to-cell matching using only direction, and (4) cell-to-cell matching 

using only occupancy. These algorithms however, are limited to highly structured and 

orthogonal environments due to the expensive computational resources to process the 

visual scenes.  

 

 

Fig. 2.13: Storage of visual cues into a scene (ASR). (b) The configuration of scenes for place 

identification. Reproduced from Kortenkamp & Weymouth (1994) 
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Recent implementations of the PLAN theory have seen a shift in the way the basic 

component is implemented. In Chown & Boots (2008), corners are detected using laser 

sensors which they termed the implementation as C-PLAN (corner PLAN). Each corner 

is annotated as node and the path and direction used to traverse between corners is 

recorded.  The nodes and their spatial relations form a topological representation of the 

environment. Apart from corners, the use of laser sensors allows Chown & Boots to 

also perceive wall information and suggested that walls can be of influence to humans‘ 

perceptions of an indoor environment. They further defined corners to be readings of 

two surfaces separated at 90-degree angle and walls to have 180-degree angle. These 

corners and walls were influential in their depiction of the environmental representation 

(see Fig. 2.14 for example).   

 

 

Fig. 2.14: (a) Raw laser points separated at 180-angle to each other and (b) computing the corners by 

breaking raw laser points at any right-angle found. Reprinted from Chown & Boots (2008) 

 

2.3.3 Absolute Space Representation 

Yeap and his students (see Yeap & Jefferies, 1999, 2001; Jefferies et al., 2004; Jefferies 

et al., 2008; Wong, 2008) have also attempted to use robots to test their theory of 

cognitive mapping. Their goal is to use the robotic platform to advance their theory for 

explaining cognitive mapping. As such the implementation for the ASR theory has so 
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far never been attempted for robot mapping, which is the aim of this thesis. However, 

much can be learned from their implementations and for that reason two of their 

contributions are forwarded here.  

 

Briefly, Jefferies contributed the idea of exit and the role of topological hierarchy in 

cognitive mapping. She tested using a laser robot and reported the importance in 

connecting network of local spaces (topology) particularly for loop closing. Then later, 

Wong tested the ASR on a sonar robot to see what kind of map is produced when the 

sensing is poor. He showed that distance and orientation is an important aspect in 

cognitive mapping.  

 

According to Yeap (1988), representing the local environments is the most basic 

requirement in building a robot‘s cognitive map. The robot must then describe the 

boundary of the local space by forming suitable connections between the surrounding 

surfaces, which gives the rough shape of the space the robot currently resides in. But 

Yeap & Jefferies (1999) highlighted that determining where a local space should start 

and end is not a clear-cut decision. They proposed the notion of exits as a cognitive 

solution in guiding the robot to leave the current local space and move into a new one. 

In Yeap & Jefferies (1999), an exit is defined as a narrow opening in the surrounding 

boundary which exists between local spaces. It acts as an entryway with enough space 

for the robot to pass through and it allows the robot to move into another local area to 

continue exploration. Exits are normally detected at occlusion points. Technically, when 
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a surface is perceived being occluded by another surface, then gaps are present in 

between these surfaces (see Fig. 2.15). 

 

These gaps are a good indication that there are areas beyond which are hidden from 

robot‘s direct line of sight. By connecting the occluding points of these gaps, a virtual 

edge is created. If the virtual edge is wide enough for the robot to pass through, it is a 

good candidate exit for the current local space. Sometimes a false exit can be calculated. 

But once the robot is closer towards a false exit, feedback from the sensors should be 

able to verify spurious data and eliminates any discrepancies detected (Jefferies et al., 

2001). Once exit information is available, the robot will be able to decide how it is 

going to leave the current local space.  

 

 

Fig. 2.15: Example of exit detections. G1 and G2 are the gaps detected because surfaces S1 and S3 are 
occluding surface S2. G3 is a gap because surface S5 is occluding S4. All gaps have one occluding point 

(marked as filled circles) and one occluded point (marked as empty circles). Connecting the two 

occluding points of G1 and G2 creates the first exit E1. Connecting the two occluding points between G2 

and G3 creates the second exit E2.  

 

Fig. 2.15 shows that regardless whether the robot leaves via the first exit (E1) or the 

second exit (E2), S1-E1-E2-S5 are used to compute the rough shape of current local 

space. Surfaces and gaps beyond an exit; such as S2, G1, and G2 for exit E1, or, S3, S4 
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and G3 for exit E2, are not included in the current local boundary computation unless 

the exits are deemed false and robot is not able to cross them. In the case where robot 

decides to use E2 but discovers upon crossing it that G3 is an actual surface hidden 

from robot‘s previous position, E2 will then be the only exit for that local space and 

robot has to reuse E2 to escape the area. E1 will then be useful to continue its 

exploration in the environment.  

 

Exploiting the sequence in which these exits are crossed allows for one to build up the 

connection between the different local spaces. With a network of the local spaces 

established, the robot will have another view of its environment. However, when using 

the network of ASRs to navigate, identification of a previously visited ASR particularly 

from the opposite direction remains a challenge. From different perspectives, the same 

local environment may have significant variations in terms of the shape or key feature 

descriptions and this makes matching them difficult. To solve the place recognition 

problems, Jefferies et al. (2008) proposed the computation of an MFIS representation 

whereby the recent ASRs visited are described are placed in the MFIS and thus 

described using a single global frame of reference (see Fig. 2.16). In this way, if it has 

re-entered any of the recently visited ASRs, it will still be able to identify them even 

though the route chosen is a novel one. However, distortions and the limited size MFIS 

meant that the problem is only solved partially.  
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Fig. 2.16: (a) Example of a network of ASRs computed with robot currently in ASR3 (b) The MFIS 
produced with robot about to revisit ASR7 from ASR3. Since ASR7 is identified, no new ASR is formed. 

New link is established between ASR7 and ASR3. Reproduced from Jefferies et al. (2008) 

 

Later, Wong et al. (2007) purposely implemented the ASR on a lower sensing robot. 

With only 8 sonar rings, he collected noisy readings and used them to compute what he 

called a network of fuzzy local places. His implementation showcased that an ASR 

could allow such representation and still be of use for navigation. In home-finding 

experiments, Wong et al. computed two separate maps; one for the journey outward and 

another for the journey homeward. Fig. 2.17 shows the results from the experiment. 

Each node in Fig. 2.17 (a) and (b) represents an ASR computed in the journey. It has 

been observed that the total number of the ASRs and its start and end points are 

different in both maps, which is due to the robot moving in opposite directions. This 

means that direct comparison of features from both maps; such as their rough shapes 

and sizes, is futile to perform place recognition.  
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Fig. 2.17: (a) The large corridor-like environment for testing, (b) map for the outward journey with 10 

ASRs computed, and (c) map for the homeward journey with 8 ASRs computed. Reproduced from Wong 

et al. (2007) 

 

For this reason, Wong et al. (2007) came out with the strategy to utilise distance and 

orientation in performing home-finding. The robot is instructed to calculate the distance 

between exits from the local spaces in the homeward journey and projected it onto the 

local space network created in the outward journey (Wong et al., 2007). The distance 

projection is then remembered and utilised for localisation and navigation towards 

home. Another important feature of the strategy is it also enables the robot to maintain 

orientation with its home throughout the return journey, which has been successfully 

demonstrated in several homecoming attempts (Wong, 2009).  
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2.3.4 Neural Cognitive Maps 

Many robotics implementations are inspired by the neurological theory of cognitive 

mappings (briefly described in section 2.2.2). These implementations differ from those 

based on symbolic models. In general, they are concerned about the connection between 

activated place cells whereas symbolic approaches are concerned with how information 

from the environment influences the acquisition, processing, development and use of 

one‘s cognitive maps.  

 

2.3.4.1 Hafner’s Works 

Hafner (2001) introduced a visual homing neural network model which is trained using 

a normalised version of the Hebbian learning. See Kempter (1999) and Gerstner & 

Kistler (2002) for formalisms. The neural network model is implemented on a mobile 

robot called Samurai with sensors (omni-directional camera and magnetic compass) 

resembling the desert ants‘ Cataglyphis. The main task of the robot is to perform visual 

homing but without any feature extractions or landmark segmentations. The strategy is 

to capture two snapshots of the environment; one at the beginning of the journey and 

the second at current position. The compass aligns the two images according to an 

external reference direction. The result is a homing vector pointing toward the position 

where the initial snapshot was taken (see Fig. 2.18).  
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Fig. 2.18: The neural network structure for visual homing. All weights at the output layer which 
triangulates home is adjusted using the Hebbian learning. Reproduced from Hafner (2001) 

 

Fig. 2.19: (a) aMouse with a single camera and real rat whiskers, and (b) neural network with neurons at 

output layer represents places in the topological map. Reproduced from Hafner (2008) 

 

Later, Hafner (2005) created her version of artificial mouse or aMouse which is a 

mobile robot that has omni-directional vision and active whiskers (see Fig. 2.19(a)). 

The visual field of the robot is similar to the large visual field of rats and mice and its 

whisker is made of real rat whiskers for realistic texture recognition. The whisker 

sensors of aMouse are attached to microphone membranes in order to produce high 
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resolution sensor data. The implementation is an effort to test if the added tactile sensor 

(whisker) on top of visual information aids Hafner‘s neural network model in 

performing place recognition.  

 

Inspired by a review of map building and path-planning strategies by Meyer & Filliat 

(2003), Hafner attempted to compute a topological model based on the output layer of 

her normalised Hebbian neural network. Instead of storing images only for visual 

homing, each neuron in the output layer stores an image of the place visited by the robot 

(see Fig. 2.19(b)). These images are processed into lower resolutions before Gaussian 

filtering is used to reduce the noise so that the intensity curves of images captured using 

the omni-vision can be extracted. After aMouse randomly explored its environment, the 

intensity information would reveal a range of grayscale values and areas of similar 

values is classified as the same place cell. Fig. 2.20 denotes the 2-D grayscale image of 

the simulated environment. It was observed that the robot‘s visual input changed more 

rapidly when it reaches closer to the surrounding obstacles (Hafner, 2008). The 

implication here is that more place cells are recruited for this area, adding new place 

nodes to the topological graph structure. The metrical map is extracted from the 

topological structure using the distance and orientation between the places defined by 

specific weight functions in the network‘s output layer.  
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Fig. 2.20: (a) and (b) represent the environment in grayscale format; black areas are obstacles and 

different gray shadings indicate different place fields in the environment, (c) denotes the connections 

between places at random parameters, and (d) the interconnectivity with optimal parameters. Reproduced 

from Hafner (2005) 

 

2.3.4.2 Cuperlier et al.  

Cuperlier et al. (2007) also propose mapping on a neural network architecture inspired 

by the interactions between the hippocampus and prefrontal activities. However, the 

representation of place cells has been redefined to include a new cell type called the 

transition cells (se Fig. 2.21). The transition cells is said to replace the traditional place 

cells in the hippocampus. The idea is derived from observing humans do not have to 

‗see‘ the map of the environment in order to use it. For instance, in using place cells to 

describe paths, one could say; ―… at A, turn 10 degree to the left and go straight to 

reach B. At B, turn 40 degree to the right and go straight to reach C‖. If transition cells 



 51 

are used, the description is changed to ―… at A use the transition AB to reach B, next 

use the transition BC to reach C‖. This mean the transition cells holds information 

(distance and orientation) about the link between two places and in the network, they 

replaces the place cells as the basic components that make up the neurons.  

 

 

Fig. 2.21: Sketch of the model. From left to right: merging landmarks (Pr) and their azimuth (Ph) in a 

matrix of neurons called product space, then learning of the corresponding set of active neurons on a 

place cell (ECs). Two successive place cells define a transition cell (CA). Place cell at time t-1 is in DG. 

Transitions are used to build the cognitive maps (PF) which are linked with movements (ACC). Diagram 

and description reprinted from Cuperlier et al. (2007)  

 

With each panoramic image from the environment, the model trains the network to 

identify a constellation of landmarks and their orientation in the environment using a 

compass. They defined specific features from the image to be processed as landmarks 

with a sampling size of       pixels thus making their approach different than the 

traditional object-based landmark extractions from visual input of the agent. The 

samples are then processed so its centres are the curve points. The orientation (azimuth) 
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of these curve points are computed relative to North as defaulted by the compass. Both 

the sample and its corresponding azimuth become the ‗landmark‘ which signifies a 

particular area in the environment. Fig. 2.22 shows a total of 10 different landmarks 

were extracted from the panoramic image which is first processed into binary pixels.  

 

Each pairings of the landmark and its azimuth occupies a place cell (at the neuronal 

level). One the trained set is setup, a matching function compares the distance between 

the learned set and the current set. If the current set is not matched, then a new place 

cell (neuron) is defined for this new location. It has been observed that when an agent 

traverses near walls or doors, more locations are learned since there is a rapid change in 

the angular positions of the landmarks. However, as the agent leaves an area the 

landmarks would begin to disappear from view. In Cuperlier et al. (2006), it is 

explained that once a transition is used, a new link is added into the cognitive map. This 

link represents a continuation of the path from the previous transition. These links 

which are numbered form the connections and denote the successive paths being 

traversed by the agent. The links can be trained with higher values when it is often 

revisited and decreased if they are not used much in the exploration. The links and 

landmarks representation looks like the map generated in Fig. 2.23.  
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Fig. 2.22: An example of extracting landmarks and its azimuths from an agent‘s visual input. Reproduced 
from Cuperlier et al. (2007) 

 

Fig. 2.23: The cognitive map computed using the transitions information. The triangles denote the robot‘s 

localisation and direction at the point of exploration. Reproduced from Cuperlier et al. (2006) 
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2.3.4.3 RatSLAM  

As the name suggests, RatSLAM is a mapping approach which solves the simultaneous 

localisation and mapping (SLAM) problems. It derives inspiration from observing how 

rodents build their representations of the environment by studying the patterns of neural 

activities which correspond to the place fields inside their hippocampus. The place 

fields are activated when the rodents moves about and collect visual input. Thus at the 

core of the model, RatSLAM has to deal with integrating odometry readings and visual 

stimulus in building the map similar to the SLAM‘s. However, as Milford et al. (2004) 

noted, the two approaches differ in defining what place cells or place fields are in their 

mapping components. SLAM treats place fields as Euclidean grids on a Cartesian plane 

and they could be topological or landmark-based. For the RatSLAM, place fields yield 

representations that are part grid and part topological. This means they are not rigid in 

the representation as the grids do not have to be strictly geometric nor the landmarks 

must be uniquely defined.  

 

Conceptually, the RatSLAM architecture is built on three representations; the pose cells 

(robot‘s position and orientation), the local view cells (stores visual information) and an 

experience map (Milford et al., 2007). As shown in Fig. 2.24, activities on the pose cells 

and local views cells propel the creation of experiences. In return, each experience 

represents the activity within the pose cells and local view cells. New experience is 

created when current experiences cannot be matched to any activity inside existing 

experience map. For each new addition of the local view and/or pose, an experience 

node is stored and this node is linked to the previous node by a transition derived from 
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the robot‘s self-motion (see Fig. 2.25). These experience nodes are like the rat‘s place 

cells in the hippocampus. When revisiting the same place, the place cell is recognised 

when the same view and pose occur in the experience map. Once the robot knows it is 

at the same spot again in the environment, loop closing is performed by aligning the 

transitions and poses. Correcting the geometric errors allows the robot to estimate self-

motions or localisations for the entire exploration.  

 

 

Fig. 2.24: Building the robot‘s experience map using pose cells and local view cells. Reproduced from 

Milford (2007) 

 

Fig. 2.25: (a) Representation of the pose (position and orientation) in a 3D network with the wrap-around 

leads to grid-like response, (b) shows the connection between all three representations. Reprinted from 

Milford et al. (2007) 
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Fig. 2.26 denotes the results of the RatSLAM in outdoor environment. Instead of using 

a mobile robot, a built-in laptop with webcam is mounted on top of a car and the car 

was driven for 100 minutes through 3km by 1.6km in an area in the Brisbane. When the 

experience map is visualised, the map was able to capture a fairly accurate 

representation of the area traversed which could be useful for navigation.  Recently, the 

RatSLAM (Milford et al., 2008) is augmented with a probabilistic approach to associate 

visual data called the FAB-MAP (Cummins & Newman, 2008). The FAB-MAP is short 

for Fast Appearance-based Mapping and uses recursive Bayesian estimations to infer 

the probability that two images seen at different times are indeed representing the same 

scene. While a full SLAM system since FAB-MAP has no pose data, the method on its 

own has successfully associated visual data on road loops as large as 1000km (for more 

information see Cummins and Newman, 2011). Results of combining both approaches 

can be seen in details in Maddern et al. (2009).  

 

 

Fig. 2.26: An example of the RatSLAM results in outdoor environment. Picture and results reproduced 

from Milford et al. (2008)      
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2.4 Traditional Robot Mapping 

Traditionally, the robot mapping is divided into two major groups; metric and 

topological. Metric mapping is an approach that utilises the geometric features of the 

environment (see Chatila & Laumond, 1985; Arras, 2003). The maps generated this 

way are also referred to as relative maps as roboticists use the concept to build maps in 

response to the movement of the robot in the environment (Martinelli et al., 2004). 

Topological mapping is normally associated with the computation of place-related data 

and other information that can help robot to get from one place to another (Choset & 

Nagatani, 2001; Tapus, 2005). There is also a new emerging concept which fuses both 

conventional methods termed the hybrid mapping (see Thrun, 1998; Tomatis et al., 

2003). This approach typically uses a combination of metric map for precision 

navigation in a local space and a global topological map for moving between places.  

 

All three approaches are similar in one sense; they are all representations centralised to 

attend to robot navigation which means they are useful for the robot to find its way in 

the environment. Two key questions being addressed in these approaches are the robot 

localisation; ―where am I?‖ and the robot mapping; ―what does the world look like?‖ By 

simultaneously estimating both map and robot location, robot mapping allows robots to 

be fully autonomous and able to operate in an environment without a priori knowledge 

of a map and without access to independent position information. This widely accepted 

concept in robot mapping is called the SLAM, and attempts at it are termed solving the 

SLAM problems.  
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In solving the SLAM problem, generally roboticists rely on the production of precise 

and complete map. Unfortunately, this often requires high-end probabilistic measures 

and is usually computationally expensive particularly in mapping large-scale 

environments. Furthermore, building such accurate maps has been reported to lack 

resemblance to the way biological agents computes its cognitive map. However, it is 

important to understand how roboticists have used different sensors to map the 

environment because efficiency of the mapping algorithms also depends on the physical 

capabilities of the robot. Learning the way the robot perceives its environment 

determines which mapping approach to be used and how the technique should be 

applied in this work.  

 

2.4.1 Metric Maps in SLAM 

A metric map is the capture of the geometric properties of the environment to build a 

detailed metrical description of robot‘s environment from sensor data (Preciado et al., 

1990; Durrant-Whyte, 1998; Thrun, 2001). The geometric properties refer to the 

geometric relations between objects and a fixed frame of reference identified in the map 

presenting accurately the positions of objects inside the environment, for instance 

chairs, desks and walls. A common method used in the construction of metric maps is 

the occupancy grid. This technique uses a matrix to store the exact position of objects in 

the global frame, in which each element of the matrix can be empty or occupied, or can 

be an unknown area. The metric map is said to be the most explicit map in robot 

mapping because it only reproduces the spatial state of the environment and carries no 
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functional information. Also, the precision of the information given by a metric map 

depends highly on the quality of the robot sensors.  

 

As sensors are often subject to noise, this dependence is a weakness of the metric map 

and it becomes more prominent as the map increases in size. Many works in space 

representation are based on metric maps such as the stochastic map technique to 

perform SLAM (Castellanos & Tardos, 1999; Dissanayake et al., 2001; Leonard & 

Durrant-Whyte, 1992). Another example of approach is the occupancy grids proposed 

by Thrun (1998). Thrun (2000) then proposed probabilistic methods that make the 

metric mapping process faster and more robust. These mapping techniques described 

above address the mapping problem with unknown robot poses. There is also a simpler 

version of the problem reported in the literature. It is described as mapping with known 

robot poses. Some examples of this approach are the occupancy grid maps developed by 

Moravec & Elfes in the mid-eighties, and one created by Thrun (1998).  

 

The occupancy grip mapping addresses the problem of producing a consistent metric 

map from noisy or incomplete sensor data. Even with predefined robot poses, the 

inaccuracy of the sensor data usually makes it very hard to mark whether a place in the 

environment is occupied or not. More often than not, range finder sensors such as sonar 

and laser are favoured in occupancy grid applications as both type of sensors are 

characterised by noise. However, there is an extra weight in using the sonar sensors as 

each sonar rings usually cover a cone-like area of the space. A single sonar reading set 

is insufficient to tell where exactly in the cone the object is. Both sensors are also 
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sensitive to the angle of an object surface relative to the sensor and the reflective 

properties of the surface (absorption and dispersion of signal).  

 

The occupancy grid maps take care of such problems by generating probabilistic maps. 

Each occupancy maps are represented by grids, which can be two-dimensional or three-

dimensional. The standard occupancy grid mapping algorithm normally uses Bayes 

filters which are used to calculate one set of occupancy grid map given the occurrence 

of another set of occupancy grid map. Fig. 2.27 displays the standard grid mapping 

process when a robot equipped with a set of sonar sensors passes by an open door. Such 

cluttered environment often leads to the sonar beams getting conflicting measurements 

about the area of the doorway, sometimes resulting in the opened doorway being closed 

in the final map. The conflicting regions are usually accommodated by averaging to 

avoid wrong interpretation of the physical data. Fig. 2.28 is an example of the real 

world data being mapped when a mobile robot is made to pass through a long corridor. 

The result in Fig.2.28(c) is used for robot‘s localisation, path planning, navigational 

strategies, obstacles avoidance and landmarks recognition (Thrun et al., 2005). 

However, like many other metric SLAM approaches reported in the literature, this 

method can become computationally very expensive for large environments.  
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Fig. 2.27: (a) Two sonar beam readings, (b) both readings projected onto same grid map, (c) and (d) show 

readings on individual probabilistic map, (e) conflicting regions on grid when probabilistic maps are 

compared, and (f) final map with removal of conflicting region. Reproduced from Thrun (2003) 

 

 

Fig. 2.28: Grid mapping in large environment. (a) Raw sonar data over 50m corridor-like environment, 

(b) map with missing walls and doors in traditional grid map, (c) map with completed walls and doors in 

advanced grid maps. Reproduced from Thrun (2003) 
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Often, the uncertainties from the measurement errors must be controlled using 

probabilistic calculations. For instance, the final map shown in Fig. 2.28(c) is a solution 

called Forward Models derived from the Bayesian theory. Other solution known from 

the literature includes the vision-based metric approaches utilizing the Scale Invariant 

Feature Transform (SIFT) algorithm which detect and describe local features in images. 

Example of this approach can be seen in Se et al. (2002). More recent work highlights 

the widely popular approach called the Extended Kalman Filter (EKF) where Kong and 

his colleagues (Kong et al., 2006) implemented a localization system which detect 

features inside the surroundings such as corners and flat surfaces.  

 

2.4.2 Topological Maps in SLAM 

The main drawback of the metric maps approach is the rigidity in which they are 

computed. Researchers solving the map using purely metric maps face the challenge in 

controlling the odometry error of the robot. Such inaccuracy of the robot‘s wheel 

trajectory makes it difficult to maintain the global consistency of the map even if all 

relationships between the environmental features and the robot itself has been attended 

to. Also, most metrical maps do not have information about the objects and places of 

the environment which limits its flexibility to be extended to incorporate higher level 

reasoning or symbolic reasoning. In contrast to geometric mapping, the topological 

approach does not build a representation that is visually comparable to the environment. 

Rather, it is a feature-based map that uses symbolic representation that records the 

relationship between geometric features known as landmark (Engelson & McDermott, 

1992; Fabrizi & Saffiotti, 2000). Examples of landmarks include junctions, corners and 
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dead ends, and they can either be natural or artificial. Since the published works of 

Kuipers (1978 & 1983), a lot of progress has been made by researchers to tackle the 

shortcomings of the geometric method. A review of Kuiper‘s topological SSH can be 

found in section 2.3.1. 

 

One of the more popular strategies was to model the space using graphs. Unlike the 

metric map which is an absolute representation, the topological graph represents the 

environment as a list of significant places which carry information on how a robot can 

travel from one place to another. Two key properties of the graph; the nodes and the 

arcs, correspond respectively to the places and the paths from the environment. When 

two nodes are connected without any obstacle in the graph, it means that they are 

adjacent places in the real environment.  

 

In Choset & Nagatani (2001) a new method using Generalized Voronoi Graph (GVG) 

to solve SLAM is proposed. The main goal is to exploit the topology of the robot‘s free 

space on a partially constructed map. Using a graph matching process, their robot is 

able to localise itself by tracing two points from the walls so it is always positioned in 

the middle part of the pathways. When it is no longer able to find the two points, 

meaning it reaches some point where the distance threshold is met; the robot will 

choose to follow the obstacle boundaries to perform localization. Fig. 2.29 is a sample 

of localisation strategies worked using the GVG algorithm. Lisien et al. (2003) extended 

this graph matching concept to H-SLAM (i.e. Hierarchical SLAM) in which a high-
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level topological map organises a collection of low-level feature-based maps creating a 

hierarchical approach to the topological SLAM.  

 

 

Fig. 2.29: Example of a GVG topological solution in performing robot‘s localization. Readings from 8 

range-finders are used to estimate the nearest obstacles with H and C the two lowest values in the sensor 

array (A is not considered as it is not a local minimum). When two adjacent sensors have similar values, 
the closest obstacle is assumed to be in between the two sensors. Reprinted from Choset & Nagatani 

(2001) 

 

2.4.3 Hybrid Maps in SLAM 

It has been a common assumption that two distinctive places can be easily recognised, 

but in robot reality, it is not so easy to differentiate between the two places. The absence 

of compact and dense metric data in topological maps, by principle, should make the 

coarse, graph-structured topological maps fare better in recognizing an already visited 

place. However, closing the loop remains a fundamental problem in topological 

mapping because these techniques often ignore valuable metric information which 

affects its ability to describe individual objects in an environment, a feat that is easily 

solved with richer sensory information and unique features abstraction offered by the 

grid techniques.  
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The lack of one-to-one relationship between the matrix grid and the geometry of the 

represented environment proves to be computationally inadequate in practice when 

dealing with place recognition particularly in large-scale surroundings. Moreover, even 

though purely landmark-based approaches are fairly robust against sensor noise and 

small environmental changes, they also rely heavily on the global consistency of the 

topology. This proves to be a challenging task as the map lacks recognizable landmarks 

which make minimizing the number of topological nodes in the network difficult as it 

contains redundant information that is hard to remove (Kuipers et al., 2004). 

 

Since metric and topological maps focuses on different aspects of the same 

environment, their integration is useful in producing a robust map which contain both 

the quantitative and qualitative information of that environment. In a hybrid 

representation, the environment is described using a global topological map and local 

metrical maps. When traversing from one place to another, the path within the whole 

environment is planned using the global topology so the robot is able to find the 

connecting route to a targeted place. Once it reaches the target, navigating inside that 

place is done via the local metric map to ensure precise localization and safe navigation.  

 

Works which are prominent in the concept of enriching the topological map with metric 

information include these references (Habib & Yuta, 1993; Tomatis et al., 2001; 

Tomatis et al., 2003). Their hybrid models describe the requirement to switch from the 

topological to the metric paradigm each time their robot traverses between the local 

metric maps. Since the local metric maps are independent from one another, it allows 
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for a compact environment modelling which does not require global metric consistency 

and permits both precision and robustness. Fig. 2.30 shows how hybrid maps are used.  

 

 

Fig. 2.30: Example of a hybrid map. The environment is represented with global topological nodes and 

local metric places. When travelling from one node to another, the system switches from topological to 

metric and vice versa. Reproduced from Tomatis et al. (2003) 

 

Advancement of vision techniques in indoor SLAM has allowed production of visual 

hybrid map of a mobile robot‘s working environment. The construction of a hybrid 

visual map has been done on image based navigation along the lines of appearance 

based mapping (Cummins & Newmann, 2008) and topological SLAM (Angeli et al., 

2008a). Earlier, the hybrid visual map was proposed using two levels of representation; 

an absolute map representation of distinct visual planes using the Extended Kalman 

Filter (or EKF-SLAM), and a relative map representation of dense visual features for 

each visual place done using sparse information filter update (Ahn et al., 2007). 

However, it has since been a common technique to use semantic approaches in reducing 

the number of nodes in the topological graph through a combination of local and global 

decision making strategies (Krishnan et al., 2010).  
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Utilizing images, these vision based explorations provide dense range information (Sim 

& Little, 2006) or as a classification of the surrounding area around the robot pose 

(Santosh et al., 2008; Krishnan et al., 2010). Given that it is possible to extract a lot 

more information about the objects and spatial layouts from an image, researchers are 

able to obtain the semantic construction. The knowledge is then applied in robot 

operations where higher lever understanding can be used to formulate an effective 

exploration and mapping strategy in tackling visual homing (Filliat, 2008) as well as 

loop detection (Angeli et al., 2008b). Nonetheless, these semantic approaches sometime 

require user interventions where the robot is either guided to collect the images for  

learning (Filliat, 2008) or made to move along predefined paths (Angeli et al., 2008b) 

limiting the robot‘s autonomy operating in its own surroundings.   

2.5 Chapter Summary 

This chapter shows that there has been a significant progress particularly in the 

development of computational models for cognitive mapping. Significantly, 

implementation and testing of these theories have been expanded on the mobile robot 

platform. The current thesis investigates how a cognitive theory such as the ASR can be 

borrowed into robot mapping. However, the current implementations of the 

computational models including the SSH and PLAN are basically using the mobile 

robots as test-bed to get more insights on the cognitive mapping process itself. None of 

these approaches have been adopted into a robot mapping work. This work is the first 

attempt at doing so and in return the work presented a novel approach to using an 

inexact map for a robot. The following Chapter 3 discusses how a cognitive theory such 
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as the ASR can inspire a novel robot mapping work that computes and uses an inexact 

representation of the environment without any error corrections.  
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3 Methodology 

 

 

 

 

The MFIS & ASR  

Computation 

 

3.1 MFIS Computation 

The MFIS is a representation that describes the spatial layout of one‘s immediate 

surroundings using a single global co-ordinate system. The MFIS is viewed here as 

similar to the global map computed using the traditional robotics SLAM approach 

except that (i) it is not an exact map, and (ii) it is not meant to be a map representing the 

entire environment that the robot has experienced. Psychologists often describe the 

implementation of such a map using an egocentric frame of reference (Klatzky, 1998; 

Wang & Spelke, 2000; Mou et al., 2004). That is, the spatial layout of surfaces in one‘s 

immediate surroundings is described using a co-ordinate system centred on the self (see 

Yeap, Jefferies, & Naylor (1991) for an alternative approach). As one move, the co-

ordinates of these surfaces are updated but at some point, surfaces that are far away 

3 
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from the self are simply removed from it. The extent of such a map has little been 

studied. 

 

In this chapter, we present the algorithms needed for the robot to compute its MFIS and 

from it, extracts a topological network of local environments (ASR). The transient 

nature of the MFIS will not be studied here (if readers are interested, see Jefferies, 

1997) and consequently, the MFIS is computed for the entire test environment. The 

robot explores its environment autonomously and computes its map. 

 

Section 3.1 discusses the setup of the robot and the input it gets from its laser. Sections 

3.2, 3.3, and 3.4 discuss the algorithms developed in this thesis for autonomous 

navigation, MFIS computation and ASR computation respectively. Section 3.5 presents 

a summary of my approach to robot mapping. 

3.2 The Robot: Its Sensors and Input 

The robot used is a mobile robot of the model Pioneer 3DX from MobileRobots Inc. 

commonly used in indoor environments and by default its base is factory manufactured 

with 8 rings of sonar sensors for data collection. However, for the purpose of this work, 

the base has been fully integrated with a set of SICK LMS-200 laser rangefinder instead 

and the sonar sensors are ignored. Even though such a robot is selected for the work, the 

algorithms developed in this thesis are not strictly dependent on the particular robot 

hardware and sensors. 
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The laser rangefinder used on the robot is a non-contact optical device which emits 

pulsed laser beams. When set up to collect data, the laser beams are fired to hit objects 

in the scanning field where part of those beams are reflected back to the sensors. Data 

are gathered by calculating the distance between the sensors and the objects, which 

according to the time of flight (TOF) principles applied, is directly proportionate to the 

time between the transmission and reception of each pulsed signal.  

 

The sensor‘s scanning range can be modified according to the resolution setting but in 

order to capture the most out of the scanning field in an indoor environment, it has been 

left to scan at the maximum range of approximate 30-32m. Separated at 0.5
0
 angular 

resolutions, each laser beam travels a long distance in a straight line, maintaining a 

narrow beam which covers a wide 180
0
 field of view for a total of 360 laser point 

collections at any single scan. During each scan, the laser pulse is diverted sequentially 

using an internal rotating mirror which results in a fan-shaped 2D scan of the 

surrounding area (see Fig. 3.1). Laser sensor is chosen for the robot mainly because of 

its accuracy and high sampling density but the beam readings may sometimes face 

multiple reflections during scanning. The environment used for testing in this work is a 

standard office environment with a combination of carpeted flooring in the rooms and 

tiles surfacing in most of the connecting corridors. 
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Fig. 3.1: The laser taking samples from the environment at 0.5
0
 angular resolutions with 180

0
 scanning 

field. Drawings of the narrow laser beams are an approximate and not to scale 

 

For this robot to map the spatial extent of an indoor office environment, the ideal 

candidates for surfaces have to be the walls enclosing and partitioning the spaces or the 

rooms. However, given its size, the robot has its sensors positioned at approximate 45-

50cm height from the ground. The sensor cannot be panned, tilted or elevated and can 

only emit long-range laser beams horizontally in a straight line. With these limitations, 

it is impossible for the robot to avoid scanning the office furniture such as desks, chairs, 

cupboards, bins, pots and boxes scattered around in the office rooms as well as in the 

kitchen, lounges and larger corridors while searching for the limits of the space (i.e. the 

walls).  

 

Furthermore, due to limited recognition abilities of the laser sensor, the robot is not able 

to distinguish between these objects or choose the ones that are most likely to be useful 

to assist the spatial mapping tasks. The only decision that the robot has control over is 

what to do to the surfaces once they are computed. Using size of the surfaces as 
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reference, those that are long are regarded as important since they have the highest 

chance to be the walls or part of the walls or some major obstacles to avoid during 

exploration. Tiny surfaces computed may not be as important to the robot and they can 

be dismissed as junks. 

 

Given that laser beams are in the form of light and light penetrates through transparent 

materials, all glass walls in the office are covered using cardboards throughout the 

implementation. This is important because if the robot does not realise it is scanning 

through a glass wall, the area where the glass wall lies will be computed as an empty 

space. If the robot decided that the empty space is an interesting location for the robot to 

explore, this could lead to property damage should the robot manoeuvred right through 

it. Thus, covering all forms of highly transparent materials with something solid like cut 

out cardboards is necessary for safety reasons. Note that this is the only physical 

modification done to the environment. Everything else (position of things, opening or 

closing of doors to the rooms, etc.) is left as it is. After making sure only solid objects 

accommodate the robot‘s scanning field, the environment can then be treated as 

experiment-ready. All geometrical properties scannable as surfaces to the robot are 

decoded as straight lines in the implementation.  

 

With the scanning range set at maximum, it is very rare for the laser sensors to return a 

no object detected reading since 30-32m is often enough to cover the distance to the 

closest objects in the structured indoor spaces. Nonetheless, if the scanner does return 

valid readings with values exceeding the maximum detection distance, they are filtered 
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out as spurious data. The 2D range data are then processed using line segmentation 

algorithm to generate planar surfaces so they would correspond to the geometrical 

properties scanned from the environment.  

 

There are many sophisticated algorithms such as the popular split-and-merge algorithm 

(Borges & Aldon, 2000; Zhang & Ghosh, 2000; Castellanos & Tardos, 1996), the line 

regression algorithm (Arras & Siegwart, 1998), the incremental algorithm (Vandorpe et 

al., 1996; Taylor & Probert, 1996) and the Hough transform algorithm (Jensfelt & 

Christensen, 1998; Pfister et al., 2003) to perform line extraction from points; all 

interested in providing an accurate polygonal model of the environment. However, 

since we do not need to build an exact map, precision is not of utmost important and 

hence a simple line approximation from points based on the spatial relationship of 

neighbouring laser information suffices.  

 

A straightforward method for computing lines from laser points is thus implemented. 

First, the laser points are grouped into different clusters. This is done by going through 

the laser readings one after another in a clockwise sequential manner and calculating the 

Euclidean distance between them. If the distance between any of them exceeds a set 

threshold (currently set at 1.2m), a new cluster is formed. Second, for each cluster, the 

exact shapes of the lines in it are recursively computed using the average gradient 

descent between neighbouring points. Points on the same slope are grouped as a line 

representing a surface (see Fig. 3.2). Note that, for simplicity, small surfaces (of size < 

500mm) in view are simply ignored. 
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Fig. 3.2: Processes involved in extracting surfaces from the environment 

 

3.3 An Algorithm for Autonomous Exploration 

For exploring the environment autonomously, the robot must decide where to go next 

and how to get there. This is very different than say allowing the robot to simply move 

about by avoiding obstacles in the environment since the latter may not guide the robot 

to get out of a room. The algorithm here is about getting the robot to explore as much of 

the environment as possible on its own. Therefore, the basic strategy opted for 

autonomous exploration is for the robot to move towards a gap, selected at random, 
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found in each view (see Fig. 3.3). A gap is initially defined as an empty space (large 

enough for the robot to cross i.e. > 0.6 meters) between two adjacent surfaces in view, 

scanned in a clockwise or anti-clockwise direction. However, this strategy was found, 

after rigorous testing, to be inefficient for two reasons. First, by definition, one could 

not see what is beyond the gap from where one is. Thus, using such an algorithm, one 

often arrives at a gap that does not open up well to other parts of the environment. 

Second, the robot is often unable to move straight to, say, the mid-point of the gap 

targeted. This is because the robot could easily drift and bump into an obstacle along the 

way. These gaps are usually far enough that any drifts from the robot could be 

significant. For example, going to the mid-point of G3 in Fig. 3.3, the robot could easily 

bump onto the surface immediately to its left due to drifts.  

 

 

Fig. 3.3: Gaps (G1-G7) found in a view. The robot is at (0, 0). Circles indicate small gaps that are ignored 

 

Consequently, to reach any target gap, the robot has to move incrementally towards it, 

taking a small step at a time. In the implementation, each step of the robot is limited to a 

maximum of 3 meters and each turn, 30
0
. Doing so meant that the robot would 
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necessary pause and could take a new view of the environment. If so, it is unnecessary 

to target a gap in view unless it is close to the robot itself. Rather, one should calculate a 

suitable point in space for the robot to move to next. My algorithm calculates such a 

point by finding the minimal bounded space for the robot. 

 

The minimal bounded space is defined as one that contains no gaps that can be covered 

by another gap in view. Yeap & Jefferies (1999) introduced the notion of covering by a 

gap as a space in which an individual must cross in order to reach another part of the 

environment that is currently in view. They used the idea for computing ASRs. I have 

used it here to compute the minimal bounded space for the robot. My algorithm for 

autonomous exploration can now be described: 

 

Algorithm #1: Autonomous exploration: 

1. Identify the gaps in view (gaps are defined above) 

2. Compute the minimal bounded space  

3. Select a gap on the new boundary as target 

4. Move towards the gap 

5. Repeat 

 

Here I introduce the notion of an exit gap. In my test environment, a typical office 

environment, one finds many doorways, a gap of a certain size (defined here as between 

0.6 to 1.2 meters). It is useful to recognise such gaps as special because they often lead 

from one room/corridor to another, thus enabling the robot to ―escape‖ the current local 

space (Yeap & Jefferies, 1999; Jefferies et al., 2001). These gaps, when detected in a 

view, are labelled as exits and they are important targets (as opposed to other gaps) to 
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be remembered. The robot prefers moving towards exits than other gaps. Consequently 

when found, they will be remembered in the view. The algorithm for computing the 

minimal bounded space (step 2 above) is given below (this algorithm includes 

remembering exits found in the current view): 

 

Algorithm #2: Computing the minimal bounded space: 

Input: G = {} (a list of gaps, G1...Gn, obtained from the current view in a clockwise 

manner) 

  E = {} (a list of exits, E1…En, i.e. gaps measured between 0.6 to 1.2 meters) 

1. I = 1;  Gnew = nil 

2. While i < n  do: 

2.1  If the start-point of Gi and the end-point of Gi+1 are both occluding point do: 

2.1.1 Create a new gap joining the start-point of Gi and the end-point of 

Gi+1.  

2.1.2 Create a new line connecting the mid-point of the new gap and robot 

2.1.3 If this new line does not intersect any surfaces in view, do: 

2.1.3.1 If this line is an exit, save it in E else save it in Gnew  

2.1.3.2 Delete Gi and Gi+1 from G 

2.1.3.3 i = i + 1 

2.2  i = i + 1 

3. If Gnew is not empty, add Gnew to G, re-order the gaps in it and goto step 1 

4. Finish 

Output: G = {} (a list of gaps computed) 

 E = {} (a list of exits computed) 

 

Note that the test condition 2.1.3 is needed to ensure that the gap identified is ―inside‖ 

the bounded space (Fig. 3.4) 
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Fig. 3.4: Creating a new gap for G1 and G2 will produce a gap that is outside the current bounded space. 

Such new gaps are illegal 

 

Fig. 3.5 to 3.7 presents three examples showing how algorithm #2 works. Fig. 3.5 

shows the initial view and the iterations of the algorithm to produce the final gap for the 

example. Figs. 3.6 and 3.7 show the robot in the same position but with different 

viewing angles. In the former, two exits are identified in the initial view and in the 

latter, an exit is discovered when computing the minimal bounded space. Although in 

all three examples, the robot moves to the nearest boundary, G
1
, the robot is aiming for 

E
1
 in the latter two examples. The robot is programmed to choose a potential exit that is 

furthest away; thus, giving it an opportunity to explore the current space. If the exit 

chosen turns out to be a dead-end (a false exit), the robot is simply instructed to rotate 

backward and re-scan the environment. If no exit is present, the robot moves to the gap 

that is directly in front or to the largest available gap. 
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Fig. 3.5: (a) The view, (b) with gaps identified, (c) first iteration with G3 and G4 replaced and gaps 
renamed, (d)-(e) two final iterations. (f) Removal of G1 and G2 as they are not made of two occluding 

points 
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Fig. 3.6: (a) Two exits are identified in the initial view in addition to the gaps; (b)-(c) show two iterations 

of the algorithm, and (d) shows the final output 

 

Fig. 3.7: (a) The view, (b) with gaps computed, (c) first iteration which produces an exit E1, (d)-(e) two 
final iterations, and (f) the final output 
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3.4 MFIS Computation 

The robot explores the environment autonomously and computes a map of its 

immediate surroundings. Every time the robot moves and perceives a new view, it 

initiates two different processes. One is to decide where to go next and the other is to 

update its MFIS (see Fig. 3.8). This section describes how the latter is done. Like each 

view, the MFIS is implemented using a single Cartesian co-ordinate system to describe 

the surfaces perceived in its immediate surroundings. It thus consists of a list of surface 

descriptors and each descriptor consists of its own unique name and spatial co-

ordinates:  

 

MFIS: [(S1 (x11 y11) (x12 y12)) (S2 (x21 y21) (x22 y22)) (S3…..)] 

 

 

 

Fig. 3.8: Processes shaded in orange summarises the flow where the robot pre-process the laser scans, 
make decision on the next target before planning its movement whereas the process shaded in purple 

denotes where and when the spatial perception computation occurs in the implementation 
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The MFIS is a structure built from integrating successive views as the robot explores its 

environment. Initially, it is initialised with the robot‘s first view, V1 and will use the co-

ordinate system of the robot‘s first view to describe the spatial layout of its surfaces. To 

add subsequent views to it, a straightforward method is to transform the co-ordinates of 

the new surfaces or parts thereof in each subsequent view to that of the MFIS using the 

standard co-ordinate transformation formula as shown below:  

 

                    

                     

Where 

   is the transformed  -coordinates 

   is the transformed  -coordinates 

   is the robot‘s turn angle and is always negative in the calculation 

   is the translation in  -direction which is always zero, and  

   is the translation in  -direction which is always negative 

To transform surfaces in the current view so that it appears as if the robot is looking at 

them from its new position in the subsequent view, the surfaces must be rotated first 

opposite the direction the robot took in the move. This explains why   is always 

negative in the formula. Due to the fact that the distance travelled by the robot is 

measured as a result of the robot traversing in a forward manner, the surfaces are then 

translated backward using the distance traversed by the robot in the move. This explains 

why    is always zero and    is always negative; the transformation must shifts the 

surfaces backward as if the robot is leaving them behind.  
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Using the above formula, and as noted in the Introduction, errors in measuring the  ,  

   and    will cause distortions in the map computed and robotics researchers have 

produced algorithms to correct the errors and produce an accurate map. However, to 

maintain such a map for a large environment in practice is not easy (see reviews of such 

work in chapter 2).  

 

My goal therefore is to compute an approximate map that is good enough for one to 

orient in it. To do so, I implement a strategy that has been commonly observed in 

cognitive species i.e. the use of landmarks for orientation. However, the idea of a 

landmark as interpreted in the cognitive sciences often refers to objects found in the 

environment that are perceived as salient, unique and/or special. Recognising them 

informs one‘s whereabouts but these objects are typically found few and far between in 

the environment. In contrast, we argue that surfaces that could be seen in consecutive 

views can serve the role of a landmark. This is because recognising them in the later 

views allows one to localise one‘s position and the spatial arrangement of other objects 

in the current environment even though one has moved. For example, if, say, the same 

table or doorway is seen in consecutive views, one could use the table as the common 

reference point for describing the objects seen in these views.  

 

To use such an algorithm, one must assume that there will always be overlapping 

surfaces between consecutive views of the robot. This is generally true, however, by not 

allowing the robot to take too large a step forward or turn too far to its left/right. My 

algorithm for computing an MFIS is described below: 
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Algorithm #3: Computing MFIS: 

Input: Vn-1 = {S‘1, S‘2 … S‘n} 

  Vn = {S1, S2 … Sn} 

MFIS initialised to V1 

1. Transform surfaces in Vn-1 onto Vn using the transformation formula described 

above. 

2. Remove all S‘, in Vn-1 that cannot be seen in Vn 

3. Identify and if necessary normalise landmarks in Vn. 

4. For each surface, S, of Vn that is not recognised as a landmark, transfers it to the 

MFIS.  

5. Remove all S‘ in Vn and Vn becomes the next Vn-1  

Output: Ln = {L1, L2 … Ln} 

            Ln-1 = {L1, L2 … Ln} 

           Vn-1 = {S‘1, S‘2 … S‘n} 

 

The initialisation of the MFIS using V1 involves transferring all the surfaces in V1 into 

the MFIS and giving each surface a unique ID (a number). Doing so also meant that the 

MFIS uses the same co-ordinate system of V1 to describe the surfaces in it.  

 

For every move, landmarks are identified in the current view and using them, any new 

surfaces that have appeared in the current view will be updated in the MFIS. This is the 

basic loop for getting the MFIS up to date. However, since my robot can only ―see‖ the 

surfaces as lines, it cannot uses a more powerful landmark recognition algorithm (i.e. 

one based on richer features of objects such as colour, texture, shape, etc.). 

Consequently, we implemented the traditional transformation approach (above) to 

transform surfaces in the previous view to the current view and surfaces from both 

views that are found to be in close spatial proximity are evaluated as landmark surfaces 
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(steps 1 and 2). Note that while this landmark recognition algorithm employs the same 

transformation method that robotics researchers used to compute their global map, they 

are not the same process. The latter process is about integrating what is new with what 

was remembered whereas the former process is about ―recognising‖ landmarks. Thus, 

in the former process one is concerned with correctly matching all surfaces and 

computing their exact locations while the latter is concerned only with the identity of 

the surfaces. It is also not essential to find all matches (i.e. landmarks) and this is 

important given that the method provides only a crude means of finding landmarks. It is 

alright that some will be missed and others that are doubtful will be ignored. 

 

Landmarks are identified in every two consecutive views and these two views, Vn 

(current view) and Vn-1 (previous view), thus form part of the input for computing the 

MFIS. Vn-1 is the in-between representation that provides a linkage between what is in 

view with what is in the memory. Based upon the assumption we made earlier that there 

are overlapping surfaces between two consecutive views, some of the surfaces in Vn-1 

are found in Vn. At the same time, some, if not all, of the surfaces in Vn-1 have already 

been transferred into the MFIS and therefore surfaces in Vn-1 are also found in the 

MFIS. Furthermore, these surfaces in Vn-1 are assigned the same ID as their 

corresponding surfaces in the MFIS. Consequently, if surfaces in Vn-1 are identified as 

landmarks with those in Vn after transforming Vn-1 onto Vn, then one will also know 

how Vn is linked to the MFIS. Fig. 3.9 shows the initial set up of the process prior to 

exploring the environment. Note that Vn, Vn-1, and the MFIS are the same except 

surfaces in the latter two have unique IDs. 
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Fig. 3.9: Transferring of landmarks ID from the MFIS to Vn-1 

 

The algorithm for finding landmarks (step 3 of algorithm #3) after transforming 

surfaces in Vn-1 onto Vn is described below:  

 

Algorithm #4: Finding landmarks in view: 

  For each surface, x, in Vn do:  

For each surface, y, in Vn but transformed from Vn-1 do: 

1. If there is strong evidence that y is close to x, then y is a candidate match for x  

2. If there is weak evidence that y is close to x, then 

      If y has a similar orientation as x, then y is a candidate match for x. 

3. If neither (1) nor (2) is true then y is not a candidate match for x. 

For each surface, x, in Vn that has matching candidates do: 

Select the best candidate for x (i.e. x is thus recognised as the matching surface) 

and assign its ID to x 
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Note that after identifying a landmark in Vn, there are now two copies of a landmark 

surface – one in Vn and one from Vn-1 (also in Vn). We will refer to the landmarks 

identified as L
1
, L

2
… L

n
, to refer to both surfaces collectively. To identify its unique 

copy, we will use the notations: L
1

vn and L
1
vn-1. The former refers to the landmark 

surface originally found in Vn and the latter refers to the one transformed from Vn-1. 

 

Evidence of closeness (re: step 1 of algorithm #4) is obtained by generating imaginary 

lines of 1-meter length (on both sides of the line), drawn perpendicular along each x 

beginning at one of its end points and at regular ½-meter intervals (see Fig. 3.10). If any 

of these lines intersect y, then there is weak evidence that y is close to x. If more than 5 

such lines are found intersecting y, then there is strong evidence that y is close to x. 

Two surfaces are considered to be of the same orientation if their orientation does not 

differ by more than 10 degrees. If the above algorithm produces more than one 

matching surfaces, then the surface that has the most similar orientation would be 

chosen as the matched surface.  

 

Fig. 3.11 shows another example of how a surface is matched to another using the 

above algorithm. This example is quite commonly observed in an office environment. 

Whenever there is a significant change in the robot‘s position and/or orientation, the 

robot‘s view could change quite significantly from one view to another. In this example, 

the robot saw a single large surface in its previous view and then sees the same surfaces 

as three separate surfaces in the current view. The algorithm treats these surfaces as 

competing surfaces and selects the best possible option.  
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Fig. 3.10: (a) Candidate in green being paired with a smaller comparing surface, (b) perpendicular lines 

generated on the comparing surface, (c) markers X denote the intersections between perpendicular lines 

and candidate, (d) match is verified after angle between the lines is found satisfactory, (e) candidate 

inherit the ID 

 

Fig. 3.11: Finding landmarks whereby the surface perceived in Vn-1 (single line in red) has changed its 
shape drastically in the current view (split into 3 green lines). 

 

Fig. 3.12 shows the identification of landmarks by the robot in two successive views. 

Once landmarks in the current view are identified, the remaining surfaces are either new 

or unrecognised. The last step in MFIS computation is to add those new surfaces to the 

MFIS so that the robot gets a reasonably accurate map. To do so, we compute their 

spatial locations relative to one of the landmarks identified, say, L
x
vn. Note that one 

could choose the closest landmark or the best-matched landmarks. Given the latter 

could be quite far away from the unknown surfaces, we have decided to use the closest 
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landmark. Locations of nearby surfaces can be coded as a vector whose length is the 

distance from the chosen end-point and whose angle is its angular displacement from 

the surface slope (Fig. 3.13). Such coding has been suggested for cognitive species. An 

example is O‘Keefe‘s (1991) ―slope-centroid‖ model. By using the same landmark 

found in the MFIS (i.e. using L
x
vn-1), we can enter these surfaces into the MFIS in their 

positions relative to the same landmark.  

 

 

 
Fig. 3.12: Finding landmarks: (a) Vn (surfaces in green) combined with Vn-1 (surfaces in red and are 

labelled), and (b) Landmarks identified (IDs 7, 8, 9, 11, 12, and 13) are assigned the same ID 
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Fig. 3.13: Computing the spatial locations of surfaces close to a landmark: S1 is recognised as a 

landmark and S2 and S3 are coded using two pairs of vectors centred on the right end-point of S1 

 

 

Finding the landmarks and using them to describe the spatial layout of nearby surfaces 

meant that one has transformed an egocentric representation into an object-centred 

representation. With two different surfaces for the same landmark, L
x

vn and L
x
vn-1, one 

in each view, we have now established a common frame of reference to describe the 

spatial layout of surfaces in view surrounding the landmark in two different ―worlds‖. 

Note that it is not important that L
x
vn and L

x
vn-1 are not located exactly in Vn since L

x
vn-1 

is just a projection of that surface into Vn. It is the spatial layout of surfaces surrounding 

the landmark that matters. However, what is important is that centre of the reference 

frame established needs to be reasonably close. Otherwise this could cause serious 

distortion to the map computed in the MFIS. Given the 2D nature of my surface 

description, this could happen if the two surfaces differ significantly in length.  
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For example, consider ID 7 in Fig. 3.12. If we establish the centre of the reference 

frame at the end-point of ID7 nearest to ID8 (see Fig. 3.14), then U3 will be copied 

close to its relative position in the MFIS. If we establish the centre of the reference 

frame at the opposite end-point of ID7 (see Fig. 3.15), then U3 will be copied 

incorrectly in the MFIS. To overcome this problem, the length of L
x
vn and L

x
vn-1 are 

―normalised‖ i.e. make them of equal length and choose the end-points that are closest 

together as the centre of the reference frame.  

 

For normalisation, we again use the technique of generating perpendicular lines from 

the end-points of both surfaces. If they intersect with the other surfaces, then the end-

point of the surface will be extended to match the end-point of the other surface (see 

Fig. 3.16). After normalisation, the two surfaces are identical in length. If during 

normalisation, the surface being extended is L
x
vn-1, then its corresponding surface in the 

MFIS needs to be extended too. Fig. 3.17 shows 3 examples of identifying and 

normalising of landmarks using the robot‘s actual view of the environment. 
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Fig. 3.14: (a) and (b) show which end-point of the landmark surface (ID 7) is chosen as its centre of co-

ordinate system respectively in Vn and Vn-1, and (c) shows the calculation of the position of the unknown 

surface, U3, and (d) shows where it is positioned. In this case, the position is roughly correct. 

 

 

Fig. 3.15: (a) and (b) show which end-point of the landmark surface (ID 7) is chosen as its centre of co-

ordinate system respectively in Vn and Vn-1, and (c) shows the calculation of the position of the unknown 

surface, U3, and (d) shows where it is positioned. In this case, the position is seriously distorted. 
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Fig. 3.16: Normalisation of landmark surfaces – Perpendicular lines are generated at the end-points of 

both surfaces and  the two surfaces are normalised to become of equal length. 

 

 

Fig. 3.17: Three examples of normalisation in a robot‘s view: – The left column shows the projection of 
Vn-1 onto Vn and landmarks (circled surfaces) are identified, and the right column shows the landmarks 

that are normalised. 

 

 

 

  



 95 

Once the landmarks are identified and normalised, we need to transfer the surfaces to 

the MFIS. The algorithm for this step is described below:  

 

Algorithm #5: Transfer surfaces to the MFIS: 

For each surface, S, not recognised as a landmark in Vn, do: 

1. Find the nearest landmark for S in Vn 

2. Compute the vector and angular displacement of S from L
x
vn 

3. Create S‘ of similar length of S 

3. Using (2), compute the position of S‘ in the MFIS using the equivalent of L
x
vn-1 

in the MFIS and put S‘ in the MFIS 

4. If S intersects with another surface in the MFIS, remove it and skip step 5. 

5. Using algorithm #4 (for finding landmarks), find if there is a ―landmark‖ 

surface for S‘ in the MFIS. If there is, normalise it with S‘, assign its ID to S 

and delete S‘ from the MFIS. If there isn‘t, create a new ID and assign it to 

both S‘ and S. 

 

 

Fig. 3.18: Examples of choosing the nearest landmarks to localise unknown surfaces. New surfaces U1, 
U2 and U3 are closest to landmark ID7, new surface U4 to landmark ID9, and new surfaces U5, U6 and 

U7 to landmark ID11 

 



 96 

When transferring a surface to the MFIS, one uses its position with respect to its nearest 

landmark. This means that different reference frames are used to localise different sets 

of unknown surfaces and if errors were introduced in the calculation, its effects could be 

contained. Fig. 3.18 shows an example of how different reference frames are used to 

describe unknown surfaces present in the view. 

 

Not all surfaces transferred to the MFIS are new to the MFIS and therefore the last two 

steps in the algorithm check if the incoming surface is not already known in the MFIS. 

If the new surface intersects with another surface in the MFIS, it usually indicates an 

area with several cluttered surfaces. A slight change in perspective can often produce 

different descriptions of the surfaces in view. As such, it is best to ignore such new 

surfaces and not update the MFIS. If the new surface is positioned close to another 

surface in the MFIS, the two could be the same surface. We use the same test for 

identifying landmark to check if this is the case and if so, that surface is not new and 

has an ID already assigned. The corresponding surface in Vn is then marked with the 

same ID. However, these two surfaces may not be of the same shape and therefore they 

need to be normalised; surfaces having the same ID must be of the same shape. 

 

In summary, we presented an algorithm for computing an inexact MFIS that utilises two 

consecutive views to track where new surfaces are appearing and help position them in 

their relative positions in the MFIS (see Fig. 3.19(a)). Fig. 3.19(b) is a flowchart 

showing the connection between all algorithms presented in this chapter.  
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Fig. 3.19: (a) Processes shaded in orange summarises the flow where the robot pre-process the laser 
scans, make decision on the next target before planning its movement whereas the box shaded in purple 

denotes where spatial mapping takes place. The flowchart diagram in (b) breaks down the spatial 

mapping processes in (a). Blue boxes are processed in the working memory whereas red boxes indicate 

updating in the MFIS 
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3.5 ASR Computation  

Many robotics researchers compute a topological network out of their global map. The 

former is a more efficient representation for spatial planning. Each node in the network 

represents a well-defined empty space, captured using a fixed polygonal structure. The 

network is often computed offline after the global map is learned and loops are closed. 

For my robot, I also need to compute a network of ―places‖ visited so that it could use 

its network to plan paths and find short cuts. However, the MFIS is an inexact and 

incomplete representation and therefore, computing a network of structured empty 

spaces might not be useful. The network could be unstable as the inexact nature of the 

representation meant it could change shape drastically during later explorations of the 

environment. Furthermore, from a cognitive standpoint, one is not interested in how 

empty spaces are partitioned but rather the affordance of each local space remembered 

(Gibson, 1966). Yeap (1988) argued that each local space remembered (or ASR) affords 

boundedness i.e. it is a bounded region whereby one could move into and out of. Hence, 

two pieces of information are important when computing an ASR, namely its exits and 

its boundary. Interestingly, its boundary could be imprecise and incomplete and if so, 

this indicates the part of the ASR that could be explored further in subsequent visits. In 

this section, we developed the algorithms needed for the robot to compute a network of 

ASRs from its MFIS.  

 

As defined above, an ASR is a bounded space with identified exits that one could move 

in and out of it. Recall that when developing an autonomous exploration algorithm for 

the robot in section 3.3 above, exits are recognised in the environment as perceived gaps 
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of a certain size (defined here as between 0.6 to 1.2 meters). Hence, when the robot 

crosses an exit, it ―knows‖ that it is leaving an ASR and entering a new one. At this 

moment, it computes an ASR just left and assigned it to the same number as the exit 

identified. The algorithm for computing an ASR is as shown below: 

 

Algorithm #6: Computing ASR 

1. Copy what is in the MFIS to ASR 

2. Assign an ID to this ASR 

3. Identify surfaces in the ASR that do not belong to this ASR: 

a. Eliminate all surfaces that have already been assigned to an ASR 

b. Eliminate new surfaces that come into view after crossing the exit 

4. Remove all surfaces in the ASR that will not be considered as part of the boundary 

for this ASR 

5. Compute the boundary for this ASR 

6. Add the exit used to this ASR and returns it as a new ASR  

 

The representation of an ASR is thus similar to that of an MFIS i.e. it consists of a list 

of surfaces descriptors and each descriptor consists of its own unique name and spatial 

co-ordinates. These surfaces are the boundary surfaces for the ASR. In addition it has an 

exit descriptor to describe where an exit can be found. Step 3 of the algorithm is 

straightforward except for those new surfaces that come into view right after the robot 

crosses the exit (step 3b). These surfaces belong to the next ASR and should be 

eliminated when considering surfaces for computing the boundary of the ASR just 

passed. To do so, I introduce a virtual exit line that is perpendicular to the robot‘s path 

at the point where the path intersects the exit crossed (see Fig. 3.20). This virtual 

boundary is used as a reference line for separating the MFIS surfaces seen prior to 
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crossing the exit and those surfaces seen after crossing the exit (see Fig. 3.21). The 

algorithm for eliminating such surfaces is described below: 

 

Algorithm #7: Eliminate new surfaces coming into view after crossing an exit  

Input: MFIS with all surfaces assigned to an ASR removed but with robot‘s path added 

1. Find the point where the robot‘s path intersects the exit crossed 

2. Create a virtual exit line perpendicular to the robot‘s path at the intersection point 

3. From the robot‘s current position, draw a line to the mid-point of all remaining 

surfaces. If the line does not intersect (a) any other surfaces, or (b) the virtual exit 

line, or the robot‘s path, then eliminate this surface. 

 

 

Fig. 3.20: (a) The green line denotes the robot‘s path, E1 denotes the exit crossed and the arrow points at 
the exit-path line intersection, (b) the virtual boundary created perpendicular to the path line slope at the 

exit-path line intersection where surfaces circled are considered beyond the exit thus are not included in 

the ASR being computed 
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Fig. 3.21: (a) Surfaces shown connected to the robot‘s current position (path point ID 15) via a dashed 

line can be eliminated according to algorithm #7. These are surfaces perceived after crossing the exit of 

the previous ASR. (b) The remaining surfaces for ASR computation 

 

 

Fig. 3.22:  Computing the boundary using the outermost surfaces perceived. 
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Intuitively, to compute a boundary for the ASR, one could follow the ―outermost‖ 

surfaces starting from one end-point of the crossed exit to its other end-point, merging 

the gaps in between these surfaces so that one forms a boundary enclosing the robot‘s 

path (see Fig. 3.22). However in doing so, one ignores much of the details that are 

available and one often ends up with a space larger than is required. The latter is 

because one could often have a glimpse of surfaces at the edge that are not part of the 

current ASR. To overcome this problem, I need to have more options on how to connect 

from one surface to another as part of the boundary.  

 

In designing my algorithm, I utilise two heuristics to decide what options one has in 

boundary formation. In other words, I first select all surfaces that could be part of the 

boundary and then use the above algorithm that starts from one end-point of the crossed 

exit to its other end-point, merging the gaps between two nearest surfaces so that one 

forms a boundary enclosing the robot‘s path. 

 

These two heuristics concern the use of large surfaces and small surfaces in boundary 

computation. The first heuristics is that large surfaces are often a part of the boundary. 

This is because they provide significant barriers to movements and perception of what 

is on the other side. Thus, these surfaces are always selected as possible candidates for 

boundary formation. The second heuristics is that while small surfaces are often not a 

part of the boundary, a close group of them could become a boundary. Such groups of 

lines are commonly observed in this environment and in places where several small 

objects were placed alongside a perimeter wall. However, grouping them into a ―large 
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surface‖ is difficult due to their different orientations and using a heuristics on what is 

―large‖ could inevitably rule out groups of some smaller surfaces.  

 

It is observed that corners are detected in early vision and they play an important role in 

our ability to recognise objects that are partially occluded (e.g. Shevelev, Kamenkovich 

& Sharaev, 2003). Consequently, for small surfaces, I made explicit corner points as 

options for boundary formation. Corner points are defined as points whereby two small 

surfaces intersect or close enough that they are considered as intersecting. Note that this 

definition allows two collinear lines to create a corner point. While it is not, strictly 

speaking, a corner, such points could be useful for boundary formation too and 

especially if there are several such lines close together. My algorithm for identifying 

surfaces and corner points in the MFIS for boundary computation can now be described 

as follows: 

 

Algorithm #8: Identify surfaces and corner points in the MFIS for boundary 

computation 

1. For each small surface (i.e. < 2 meters) do: 

1a. If it intersects with another small surface, create a corner point where the two 

surfaces intersect. 

1b. If it finds another small surface less than 0.5 meter away, create a corner point 

where the two surfaces would have intersected. 

2. Remove all small surfaces 

3. For each large surface (i.e. > 2 meters) do: 

If it intersects with another large surface then 

For both surfaces do: 

3a. Find length of intersection point to the start point 
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3b. Find length of intersection point to the end point 

3c. If (3a) < (3b) shorten surface start point to intersection point else shorten 

surface end point to intersection point. 

 

Figure 3.23(b) shows the result of applying Algorithm #8. 

 

 

 

Fig. 3.23: (a) The initial spatial information for the first local space boundary computation where two 

surfaces (in yellow circles) fails the corner point test. (b) The large segments are filtered from the MFIS 

15 surface set whereas the singular points denote the corner points derived from the smaller surfaces  
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To compute the boundary, and as mentioned earlier, I start with one end of the exit and 

connect it to its nearest surface or corner point and from that to its nearest surface or 

corner point and so forth. The connection is not allowed to cross any of these: (a) the 

robot‘s path (b) the large MFIS surfaces, (c) the exit line and (d) the ASR boundary 

computed so far. Note that one could form the boundary either in a clockwise manner or 

in an anticlockwise manner. It was found that at times one gets stuck in forming the 

boundary i.e. reach a point that one of the connection rules could not be true. It was 

discovered that the problem can easily be solved by then doing the boundary in the 

opposite direction. Consequently, and for simplicity, I apply the algorithm twice, once 

in a clockwise and the other in an anticlockwise direction, and pick the boundary that is 

successfully completed. 

3.6 Conclusion 

In this chapter, I presented eight new algorithms to create a robot mapping system that 

perform mapping without a precise map. Fig. 3.24 shows the complete robot mapping 

system developed. In the next chapter, I present the results of some experiments 

performed using my robot. 
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Fig. 3.24: (a) The complete robot mapping system developed in this thesis. (b) Where ASR boundary is 
computed in the robot system 
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4 Results 

 

 

 

 

Results & Analysis 

 

4.1  Overview 

In this chapter I present three experiments on robot mapping using the algorithms 

developed in the previous chapter. The goal is to demonstrate that the algorithm is 

robust, at least for mapping in a reasonably large office environment (30m x 30m) and 

the map produced is of a reasonable shape that the robot could use to find its way 

around the environment. In each experiment, the robot performs an exploration in the 

indoor environment (as illustrated in Fig. 1.2) where it computes an MFIS and a 

network of ASRs in real-time. Apart from demonstrating how the robot builds these 

representations, the robot also shows how it uses its map to perform spatial tasks like 

finding its way home and finding its way to different ASRs. In one of the latter 

experiments, some parts of the environment are blocked so the robot could not use a 

known route to travel to its target. The robot then re-plans and finds alternative routes. 

4 
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Section 4.1 presents an experiment whereby the robot explores its environment twice in 

a clockwise manner before returning home. Section 4.2 presents an experiment whereby 

the robot explores its environment in an anti-clockwise manner and then finds its way 

home. It then explores its environment again in an anti-clockwise manner. Section 4.3 

presents an experiment whereby the robot explores its environment in a clockwise 

manner, then in an anti-clockwise manner and then performs several spatial tasks. 

Throughout this chapter, I will use a diagrammatic approach to present the results to the 

reader. 

4.2 Experiment 1 (Going clockwise) 

In this experiment the robot is allowed to wander from its home (0, 0) to explore its 

environment twice in a clockwise manner and then return to its home. The way the 

robot is forced to explore its environment in a clockwise manner is by closing the door 

that leads to the other direction. The goal of this experiment is to see how well the robot 

computes its MFIS and its network of ASRs and how well it closes loops when 

returning to familiar places. 

 

4.2.1 Computing the MFIS and ASRs 

The following figures denote how the MFIS and the ASRs are built. Each time the robot 

crosses an exit in the environment, the local space it leaves behind is quickly computed 

as a new ASR. The algorithm to build individual ASRs is as described in Algorithm #6 

(section 3.5). In general, what is required to compute the ASR boundary are the surfaces 
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which belongs to the local space the robot just left, as well as the path line computed 

from the beginning of its journey. Fig. 4.1 to 4.3 shows how the first ASR (ASR1) is 

computed. Fig. 4.1 highlighted the surfaces and path lines extracted from the MFIS to 

compute ASR1. Fig. 4.2 shows the results of extracting corner points and large surfaces 

for the boundary and Fig. 4.3 shows the boundary computed for ASR1. ASR1 then 

initialises the network of ASRs for this environment.  

 

The robot continues to explore the environment and crosses another exit, E2. Next, the 

process is repeated for the second ASR (ASR2). Fig. 4.4 shows the surfaces extracted 

from the MFIS for ASR computation. Fig. 4.5 shows the extraction of corner points and 

large surfaces. Fig. 4.6 shows the ASR2 computed. I will display the ASRs together 

using a single global co-ordinate system to reveal their overall shape rather than a 

topological network of nodes.  

 

The series of figures after that denote the computation of ASR3 to ASR6 for the 

environment. All of the ASRs on the network (so far) have two exits on its boundary 

description. Each time a new ASR is built, they are represented immediately in the 

network so the robot can grow both the MFIS and the network as it experiences the 

environment.  
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Fig.  4.1: ASR 1 surfaces (shaded) extracted from MFIS 

 

Fig.  4.2: Corner points and large surfaces for ASR 1 

 

Fig.  4.3: ASR 1 boundaries computed. Red lines denote the large surfaces which have been extracted 
from the MFIS. The blue lines are boundaries computed as a result of joining adjacent surfaces and 

corner points together 



 111 

 
Fig.  4.4: ASR 2 surfaces (shaded) extracted from the MFIS 

 
Fig.  4.5: Corner points and large surfaces for ASR 2 

 

Fig.  4.6: Network of ASR showing ASR 1 and ASR 2 
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Fig.  4.7: ASR 3 surfaces extracted from the MFIS 

 

Fig.  4.8: Corner points and large surfaces for ASR 3 
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Fig.  4.9: Network of ASR showing ASR 1 to ASR 3 

 

Fig.  4.10: ASR 4 surfaces extracted from the MFIS 
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Fig.  4.11: Corner points and large surfaces for ASR 4 

 

Fig.  4.12: Network of ASR showing ASR 1 to ASR 4 
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Fig.  4.13: ASR 5 surfaces extracted from the MFIS 

 

Fig.  4.14: Corner points and large surfaces for ASR 5 
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Fig.  4.15: Network of ASR showing ASR 1 to ASR 5 

 

Fig.  4.16: MFIS computed just after the robot crosses E6 and re-enters ASR1 
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Fig.  4.17: ASR 6 surfaces (shaded) extracted from the MFIS 

 

 

Fig.  4.18: Surface and corner point for ASR 6 
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Fig.  4.19: Network of ASR showing ASR 1 to ASR 6 

 

4.2.2 Closing the loop 

The previous section has shown how the robot computes the MFIS and extracts a 

number of ASRs during its exploration. At ASR6, the robot is about to re-enter a 

familiar environment. In the next move, the robot needs to perform loop closing and 

recognise that it is entering ASR1. Fig. 4.20 shows the ASR before the robot crosses the 

latest exit (E6) and leaves ASR6. Note that E6 is matched to surface ID8 in ASR1. It 

was a door that was closed earlier in order to force the robot to travel in a clockwise 

direction. Consequently, we allow exits to match to surfaces but we do not normalise 

such ―landmarks‖.  
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Fig.  4.20: MFIS surfaces computed inside ASR1. E6 has been computed on surface ID 8 and the robot 
will go through the exit computed and revisit ASR1 

 

Fig. 4.21 shows the landmark computation before the robot crosses E6. The four 

surfaces depicted in green are the new surfaces picked up at the scene. When Vn and Vn-

1 is compared, it is found that new surface U1 matches landmark 172 from Vn-1 (see Fig. 

4.21(a)). They are normalised as depicted in Fig. 4.21(b). Using the landmark 172, the 

algorithm updates the MFIS with the intention to add U2, U3, U4 and the exit E6. 

However, the updating algorithm returns with a match between the new surface U3 and 

the landmark ID 22 (see Fig. 4.22(a)). U3 is then normalised (see Fig. 4.22(b)) so it is 

now representing the landmark ID 22 in Vn. When trying to add U2 and U4, the updates 

fail since the two surfaces intersect the landmark ID 8 from the MFIS. For this reason, 

only the exit E6 is the new addition inside the MFIS. Due to the detection of landmarks 

in the MFIS (landmarks 22 and 8) and these landmarks are marked as part of an ASR, 

the robot now believes it is about to re-enter ASR1 (since both landmarks belongs to 

ASR1).  
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Fig.  4.21: Comparison between Vn and Vn-1 before crossing E6. Robot is at (0, 0). (a) U1 matches 
landmark 172 and (b) the normalisation process 

 

Fig.  4.22: Updating before the robot crosses E6. (a) Showing U3 being matched to an old landmark ID 
22 and (b) the normalisation process 

 

 

The results show the robot is able to close the loop by finding surfaces in the MFIS that 

were seen earlier.  
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4.2.3 Going around the second time 

Robot is now set to continue its exploration. The goal here is to make the robot re-visits 

all of the ASRs computed to test if (1) the MFIS would still be stable, and (2) if the 

revisit changes the description of the ASRs computed, when it is traversing in the same 

direction again. Fig. 4.23 shows the MFIS and the network of ASRs computed after 

completing the second exploration. 

 

The results of the MFIS after the second looping shows that without alteration to the 

physical environment or change of direction, the robot perceives the environment in a 

fairly similar fashion to its earlier exploration. Therefore, it does not discover different 

routes, exits or ASRs. One important aspect observed is the fact that the robot did not 

have to compute a new MFIS ‗on top‘ of the old one, instead the mapping algorithm is 

able to recognise familiar surfaces (i.e. the landmarks) from each ASR and reuse them 

to localise and guide its journey.  
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Fig.  4.23: The MFIS (top) and the network of ASRs (bottom) after looping the environment twice 
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Since the robot chooses gaps and exits based on what it perceives at a particular 

moment, the robot‘s trajectory between the first and the second loop differs a little. 

However there are some viewpoints in the second loop where the robot is able to add 

new surfaces or extend old surfaces which have been initially computed in the first 

loop. Some of these updates enhance the description to a local space. The following 

figure compares the MFIS and ASRs built in the first round of exploration with the 

MFIS and ASRs computed in the second (see Fig. 4.24). 

 

 

Fig.  4.24: (a) and (b) depict the MFIS and the network of ASRs built in the first round. (c) and (d) are 
the MFIS and ASRs computed in the second round. Changes is apparent to ASR6, ASR5 and ASR1 
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4.2.4 Going Home 

The robot is then instructed to go home at this point. Home is where the robot started its 

journey and in the map home is (0, 0). The strategy to go-home for the robot is simple; 

from wherever it is, calculates the direction to home and use it like a beacon to guide its 

movements (see Fig. 4.25). The process of calculating direction to home is repeated at 

every step until the robot thinks it has reaches home (usually within a meter). Fig. 4.26 

shows the robot‘s path going home. With its new perspective on its home environment, 

new information is entered into the MFIS and ASR1. Fig. 4.27 shows the final ASRs 

computed for this experiment. 

 

 

Fig.  4.25: Example of using direction to navigate home. R1, R2 and R3 are three steps in the navigation. 

Direction are recalculated at each step until the robot reach closer to home 
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Fig.  4.26: Black path lines indicates the robot‘s trajectory to home after crossing E6  

 
 

 
Fig.  4.27: The network of ASRs after looping twice and the robot is instructed to go home  
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4.3 Experiment 2 (Going anti-clockwise) 

The second experiment replicates the goals of the first experiment however this time the 

direction in which the robot traverses is reversed. It would be interesting to see how 

many ASRs the robot computes this way and if the description of the MFIS and 

individual ASRs differs much from the first experiment.  

 

4.3.1 Computing the MFIS and ASRs 

Fig. 4.28 shows the result of the robot computing the MFIS from where it started its 

journey (home) out and around the environment in an anti-clockwise manner. There is 

not much difference between the overall shape and size of the MFIS computed in this 

experiment as compared to Experiment 1. The robot is able to find all six exits even 

though they are in different order due to the exploration. The most noted change would 

be the large wall on the left of the computed exit E2. It was not present in the previous 

experiment as the robot was not able to see them from the opposite direction. Fig. 4.29 

shows the network of ASR computed after the robot crosses the exit E6 in this 

experiment. The number of ASRs computed is the same as in the previous experiment 

and there are only minor variations in the ASR description.   
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Fig.  4.28: The MFIS computed from home until the robot crosses the exit E6 

 

Fig.  4.29: The network of ASR depicting ASR1 to ASR6 in the second experiment 
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4.3.2 Closing the loop 

 

Fig.  4.30: Some of the earlier MFIS surfaces computed inside ASR1 

 

Fig. 4.30 shows the part of the MFIS at the time before loop closing. Fig. 4.31 compares 

the robot‘s current view (Vn) and its remembered view (Vn-1), at the point where the 

robot is just about to cross an exit (E6). Two of the Vn surfaces, U1 and U5 were a 

match to the landmarks ID 119 and 121 respectively (see Fig. 4.31(a)). Results of the 

normalisation process can be seen in Fig. 4.31(b). The next step is to update the MFIS 

with new surfaces found (U2, U3 and U4). When compared with the MFIS, the position 

where U2 and U3 are supposed to be projected is very similar to where existing 

landmarks ID13 and ID12 are located inside the MFIS. Since they pass the threshold for 

a match, they are normalised and both U2 and U3 inherited the ID13 and 12 

respectively (shown in Fig. 4.32). The landmark 13 and 12 are now available to guide 

the robot‘s next move. 
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Fig.  4.31: Comparison between Vn and Vn-1 before crossing E6. Robot is at (0, 0). (a) Denotes U1 and 

U5 matching the landmarks 119 and 121 respectively.  Results of the normalisation is shown in (b) 

 

 

Fig.  4.32: Updating the MFIS before crossing the exit E6 
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To confirm it is returning to a previously visited local space, the robot‘s next move is 

observed. This time, the landmarks 13 and 12 became the references to update the 

MFIS. As shown in Fig. 4.33, another landmark from ASR1 reappears during the 

update (landmark ID 27).  

 

 

Fig.  4.33: Updating after crossing the exit E6 where three current surfaces matching the centroids 12, 13 

and 27 

 

4.3.3 Going Home 

In Experiment 1, the robot is instructed to go home after going around the environment 

twice. This time, the robot is instructed to go home directly after it crosses the exit E6 

for the first time. Fig. 4.34 and Fig. 4.35 show the MFIS computed as the robot perform 

the strategy to go home.  
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Fig.  4.34: The MFIS when the robot reaches home. Path lines in black denotes the steps towards home 

 

Fig.  4.35: Changes to ASR1 after the go home activity 
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4.3.4 Going around the second time 

The robot is then instructed to continue exploring the environment. Fig. 4.36 is the 

result of the MFIS after the robot revisits all the ASR computed in the same manner (no 

changes of direction). Once the robot closes the loop again after crossing E6, the 

command to go home is passed to the robot. The robot stopped its journey once it 

reaches home the second time. Fig. 4.37 is the results of the ASRs computation. Note 

that in ASR5 and ASR1, there are some surfaces and corner points inside the boundary. 

These are some surfaces and corner points which were not used but left as it is in the 

ASR representation.  
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Fig.  4.36: MFIS after traversing the environment the second time. The robot ended the journey at home 

 
 
 
 

Fig.  4.37: The network of ASR after the second looping 
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Fig. 4.38 depicts the MFIS and network of ASRs for the three main tasks assigned to 

the robot in this experiment.  

 

 

 

 

Fig.  4.38: Three sets of MFIS and its corresponding network of ASRs. (a) and (b) for going about in the 

first round, (c) and (d) for going home, and (e) and (f) indicate the representations when the robot is 

instructed to go around again 
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4.4 Experiment 3 

The first two experiments showed that there are not many changes to the description of 

the environment when the robot is looping in the same direction. The goal in the third 

experiment is then to make the robot loop in one direction then immediately go around 

again in the opposite direction. Then after computing its network of ASRs, the robot is 

asked to perform a number of go-to tasks to see if it is able to use the network to 

optimise its navigation. 

 

4.4.1 Computing the MFIS and ASR 

The robot is first asked to move in a clockwise manner. The following figures are the 

results starting with the computed MFIS (Fig. 4.39) then the network of ASRs (Fig. 

4.40). The robot is asked to stop once it closes the loop. The robot is then instructed to 

go home from where it currently is in the environment. See Fig. 4.41 for the MFIS 

computation and Fig. 4.42 for the network of ASRs established. After reaching home, 

the robot is instructed to loop the environment again, this time in the opposite direction. 

Results from the test can be found in Fig. 4.43 and 4.44. 
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Fig.  4.39: The MFIS computed once the robot closes the loop after crossing E6 

 

Fig.  4.40: Network of ASRs after the robot crosses E6 and into ASR1 
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Fig.  4.41: The MFIS as the robot goes home after entering ASR1 from ASR6 

 

Fig.  4.42: ASR1 is expanded due to the robot seeing surfaces behind the robot when it first started 
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Fig.  4.43: MFIS after completing the second loop in the opposite direction. ‗Robot‘ indicated where the 

robot is after completing the second loop 

 

Fig.  4.44: Network of ASRs after the robot closes the second loop and re-enters ASR1via E1 
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4.4.2 Go To ASR 

Instead of going home, the robot is instructed to navigate from where it is (ASR1) to 

ASR5. Since the robot is already in ASR1, it calculated the shortest path into ASR5 is 

via E5. And the shortest route to cross E5 from where it is now is via E6. Using similar 

strategy like going home, E6 becomes the beacon followed by E5 (Fig. 4.45 and Fig. 

4.46).  

 

After crossing E5 and re-entering ASR5, the robot is instructed to navigate to ASR3. 

Since the robot has crossed E5, calculating the optimal route returns E4 and E3 as the 

exits to cross to enter ASR3. However a physical barrier is put up so the robot could not 

use the familiar route inside ASR5. The options left are to either turn back and go to 

ASR3 via E6-E1-E2 or cross a new found exit nearby (Fig. 4.47 – the blockage is not 

shown). When comparing the two options, go back to ASR6, or choose the new exit, the 

robot weighs its options by measuring the possible distances to the goal with either 

move. The robot chose the new exit because it appears to be a shorter route (Fig. 4.48 

and Fig. 4.49). 
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Fig.  4.45: Strategy to navigate towards E6 and E5 

 

Fig.  4.46: MFIS as the robot travels from ASR1 to ASR5 via E6 and E5 (in that order) 
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Fig.  4.47: Choosing new exit to go to ASR3 

 

Fig.  4.48: The MFIS updated with E7 and E8 
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Fig.  4.49: New ASR7 and its location inside the network of ASR 

 

4.4.3 Home finding when known route is blocked 

From here (ASR3) the robot is instructed to go home. So the optimal route is to 

continue via E2 then E1. However another physical block is placed so the robot crosses 

E2 but not able to cross E1. The robot again chooses to cross a new exit instead of 

going backward (E3-E4-E5-E6-Home) (Fig. 4.50 and Fig 4.51). 
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Fig.  4.50: Locations of new found exits E9 and E10 in the MFIS. Dotted line is where the physical 

barrier is put up so the robot cannot choose to re-enter ASR1 via E1 

 

 

Fig.  4.51: Network of ASR depicting the new ASR8 
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4.4.4 Novel short-cutting  

To demonstrate the robot deciding to use a short-cut, the robot is instructed to go to 

ASR2 from home. However a barrier is put up to block the way out via E1. The robot is 

forced to exit ASR1 via E6 and hence enter into ASR6. Given the connection between 

ASR6 to ASR8 and ASR8 to ASR2, the robot decided to utilise this information to 

achieve the task. Fig. 4.52 shows the results.  

 

 

Fig.  4.52: Utilizing new connection on the network (ASR8) to reach ASR2 from home when known exit 

E1 is inaccessible. Dotted line is where the physical barrier is put up 
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4.5 Conclusion 

This chapter presented three experiments which show the robot‘s performance in 

building then use an imprecise map to perform cognitive spatial tasks like home finding, 

navigating to different ASRs, finding alternative routes when known route is blocked 

and short cut discovery. The next chapter concludes the thesis.   
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5 Conclusion 

 

 

 

 

Conclusion &  

Future Work 

 
 

This thesis begins with a question: If a cognitive map is an inexact map, can a robot 

compute one too? The answer is yes and this constitutes the most significant 

contribution of this work: the discovery of a mapping algorithm that does not need to 

correct errors due to sensors in order to compute a global map.  

 

The success of the algorithm is attributed to the use of an intermediate buffer for 

identifying landmarks and to update the MFIS using information in the MFIS itself. The 

former meant that any errors generated would be the result of the last move rather than 

an accumulation of errors since the start of the journey. The latter meant that the MFIS 

captures only the relative positions of new surfaces to the nearest landmarks used in 

locating them. Thus, the absolute displacement errors that one gets in successive views 

5 
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which hamper robotic researchers‘ efforts in computing a map are simply ignored in the 

computation. Loop closing is done by association rather than by correction. 

 

While it is pleasing and motivating given the roboticists‘ claim that without error 

correction, the map computed will be distorted, it is even more exciting that the 

mapping process might shed light on how human cognitive mapping process work. 

From this cognitive standpoint, what is important is that we now have an algorithm that 

computes an inexact map by attending to recognizable surfaces (referred to as landmark 

surfaces) in successive views rather than being dependent on continuous tracking of 

one‘s position and orientation in the environment. Furthermore, it does not require 

continuous updating of the map as long as there are some overlapping surfaces between 

views. Given that humans are good at object recognition and unlikely to continuously 

update their maps; I argue that this algorithm is more cognitively plausible.  

 

Developing this approach also reveals an interesting gap in Yeap‘s theory. The network 

of ASRs computed from the MFIS functions as a network of places rather than a 

network of ASRs. If so, this raises the question of where and when ASRs are computed. 

Does it really exist? From a cognitive standpoint, the current algorithm has two serious 

limitations – it computes too detailed an MFIS and that the MFIS covers the entire test 

environment. One‘s cognitive map is not detailed and yet the MFIS computed is 

updated with every new surface in view. Can we compute an incomplete MFIS as well? 

My tests of the algorithm currently focus on showing that a stable inexact map is 

maintained as the robot performs some spatial tasks in its environment. Worse, the 
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MFIS computed is as large as the environment – this is not correct since the MFIS is 

meant to be for one‘s immediate surroundings only.  

 

The two questions raised above provide motivations for future work. Further research 

needs to be done to understand the nature of such an algorithm. In particular, how do we 

create dynamic MFIS where information in it is deleted as the MFIS grows in size? 

How do we compute inexact and incomplete MFIS? The algorithm needs to be 

evaluated against psychological theories of human spatial mapping and in particular the 

work of Wang & Spelke (2002) and McNamara (2003).  

 

From a practical standpoint, this new approach could be used as a basis for robot 

mapping. This could lead to a new paradigm for robot mapping. However, we need to 

develop a more robust algorithm and this implies performing more tests in different 

environments and comparing its performance with those using the SLAM approach.  

 

Finally, the approach developed here is not restricted to a robot equipped with laser and  

odometer sensors. It should also work well using vision, if not better, since it is easier to 

recognise landmarks using vision. This would also be an important future project – 

cognitive mapping using a robot with vision.  
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