This paper was presented at the 9th International Conference on Evaluation of Novel Approachesto Software Engineering
Please citethisarticle as: Tahir, A., Macdonell, S. G. & Buchan, J. 2014. Understanding class-level testability through dynamic
analysis. 9th International Conference on Evaluation of Novel Approachesto Software Engineering (ENASE). Lisbon, Portugal

Under standing Class-level Testability through Dynamic Analysis

Amjed Tahit"*, Stephen G. MacDonélnd Jim Buchan
ISoftware Engineering Research Laboratory, Auckland University of Technology, Auckland, New Zealand
2 Department of Information Science, University of Otago, Dunedin, New Zealand
{amijed.tahir, jim.buchan} @aut.ac.nz, stephen.macdonell @otago.ac.nz

Keywords: Software Testability, Dynamic Metrics, iaymic Analysis, Unit Testing, Software Understagdin

Abstract: It is generally acknowledged that sofeveesting is both challenging and time-consumingdésstanding
the factors that may positively or negatively affexsting effort will point to possibilities for deicing this
effort. Consequently there is a significant bodyesfearch that has investigated relationships betstic
code properties and testability. The work repoiitedhis paper complements this body of research by
providing an empirical evaluation of the degreeas$ociation between runtime properties and clagd-le
testability in object-oriented (OO) systems. Thetiwagion for the use of dynamic code properties esm
from the success of such metrics in providing aencomplete insight into the multiple dimensions of
software quality. In particular, we investigate gratential relationships between the runtime charastics
of production code, represented by Dynamic Coupding Key Classes, and internal class-level testgbili
Testability of a class is considered here at tlvellef unit tests and two different measures aredus
characterise those unit tests. The selected measelae to test scope and structure: one is ietkrd
measure the unit test size, represented by test 6ficode, and the other is designed to reflectrttended
design, represented by the number of test caséBisimesearch we found that Dynamic Coupling ang Ke
Classes have significant correlations with classllégstability measures. We therefore suggestttieste
properties could be used as indicators of classHestability. These results enhance our curreniwedge
and should help researchers in the area to buildrevious results regarding factors believed todbated
to testability and testing. Our results should &soefit practitioners in future class testabipitgnning and
maintenance activities.

1 INTRODUCTION The notion that a software product has properties
that are related to the effort needed to validase t
product is commonly referred to as the ‘testability
of that product (ISO, 2001). In fact, this term dzn
traced back to 1994, when Binder (1994) coined the
dphrase “Design for Testability” to describe softevar
construction that considers testability from theyea
stages of the development. The core expectation is
that software components with a high degree of
testability are easier to test and consequentlybeil
more effectively tested, raising the software duali
as compared to software that has lower testability.
Improving software testability should help to reduc
testing cost, effort, and demand for resourcesoffra
and Robach (1995) noted that if components are
difficult to test, then the size of the test cases
designed to test those components, and the required
testing effort, will necessarily be larger. Compotse
with poor testability are also more expensive to
repair when problems are detected late in the
development process. In contrast, components and

Software testing is a core software engineering
activity. Although software systems have been
growing larger and more complex for some time,
testing resources, by comparison, have remaine
limited or constrained (Mouchawrab et al., 2005).
Software testing activities can also be costly,
requiring significant time and effort in both plang
and execution, and yet they are often unpredictable
in terms of their effectiveness (Bertolino, 2007).
Understanding and reducing testing effort have
therefore been enduring fundamental goals for both
academic and industrial research.

* A. Tahir is now with the Department of InformaticScience,
University of Otago, New Zealand

software with good testability can dramatically metrics are usually computed based on data
increase the quality of the software as well asiced collected during program execution (i.e., at rulgm
the cost of testing (Gao et al., 2003). and may be obtained from the execution traceseof th
While clearly a desirable trait, testability has code (Gunnalan et al., 2005), although in somescase
been recognised as being an elusive concept, &nd itsimulation can be used instead of the actual
measurement and evaluation are acknowledged to bexecution. Therefore they can directly reflect the
challenging endeavours (Mouchawrab et al., 2005). quality attributes of that program, product or syst
In spite of the ISO definition, or perhaps becaose in operation. This paper extends the investigation of
its rather broad meaning, multiple views have been software characteristics as factors in code tdgtabi
adopted when authors have considered softwareby characterising that code using dynamic metrics.
testability. Researchers have therefore identified A fuller discussion of dynamic metrics and their
numerous factors that (may) have an impact on therelative advantages over static metrics is presente
testability of software. For instance, software in another article (Tahir and MacDonell, 2012).
testability is said to be affected by the extenthsf The rest of the paper is structured as follows.
required validation, the process and tools used, an Section 2 provides the research context for this
the representation of the requirements, among othempaper by reviewing related work, and confirms the
factors (Bruntink and van Deursen, 2006). Given potential of relating dynamic code metrics to
their various foundations it is challenging to foem testability. Section 3 argues for the suitabilifyttoe
complete and consistent view on all the potential Dynamic Coupling and Key Classes concepts as
factors that may affect testability and the degmee appropriate dynamic metrics to characterise the cod
which these factors are present and influentiakeund in relation to testability. These metrics are thsed
different testing contexts. Several are consideredin the design of a suitable set of experimentsesb t
here to provide an initial overview of the breadth our hypotheses on specific case systems, as
factors of potential influence on testability. described in sections 4 and 5. The results of these
A substantial body of work has addressed a experiments are then presented in section 6 aid the
diversity of design and code characteristics tlaat ¢ implications are discussed in section 7. Threats to
affect the testability of a software product. For the study’s validity are noted in section 8. Fipall
example, the relationships been internal classthe main conclusions from the study and some
properties in OO systems and characteristics of thethoughts on related future work are presented in
corresponding unit tests have been investigated insection 9.
several previous studies e.g., Bruntink and van
Deursen (2006), Badri et al., (2011). In theseistyd
several OO design metrics (drawn mainly from the 2 RELATED WORK
C&K suite (Chidamber and Kemerer, 1994)) have
been used to investigate the relationship betweenSeveral previous works have investigated the
class/system structure and test complexity. Somerelationships between properties of software
strong and significant relationships between sdvera production code components and properties of their
complexity- and size-related metrics of production associated test code, with the focus primarily pit u
code and internal test code properties have beertests. The focus of that work has varied from
found (Bruntink and van Deursen, 2006). designing measures for testability and testingreffo
In their research, Bruntink and van Deursen usedto assessing the strength of the relationshipsdsiw
only static software measures, and this is the ftase them. Given constraints on space, we consider a few
all previous work in this area. In this paper wéldbu typical studies here. Our intent is to be illustratas
on the view of Basili et al. (1996) that traditibna opposed to exhaustive, and these studies are
static software metrics may be necessary but notrepresentative of the larger body of work in this
sufficient for characterising, assessing and research domain.
predicting the entire quality profile of OO systems Bruntink and van Deursen (2006) investigated
and so we propose the use of dynamic metrics tothe relationship between several OO metrics and
represent further characteristics. Dynamic metrics class-level testability for the purpose of plannamgl
are the sub-class of software measures that captur@stimating later testing activities. The authongnid
the dynamic behaviour of a software system anda strong correlation between class-level metrics,
have been shown to be related to software qualitysuch as Number of Methods (NOM), and test level
attributes (Cai, 2008, Gunnalan et al., 2005, ®cott metrics, including the number of test cases and the
et al., 2006). Consideration of this group of nustri lines of code per test class. Five different sofewva
provides a more complete insight into the multiple systems, including one open source system, were
dimensions of software quality when compared to traversed during their experiments. However, no
static metrics alone (Dufour et al., 2003). Dynamic evidence of relationships was found between

inheritance-related metrics, e.g., Coupling Between testability. This notion of measuring Dynamic
Objects (CBO), and the proposed testability metrics Coupling is quite common in the emergent software
This is likely to be because the test metrics were engineering research literature. In our recent
considered at the class level. These inheritance-systematic mapping study of dynamic metrics,
related metrics are expected to have a strongDynamic Coupling was found to be the most widely
correlation with testability at the integration &od investigated system characteristic used as a basis
system level, as polymorphism and dynamic binding dynamic analysis (Tahir and MacDonell, 2012).
increase the complexity of a system and the number For the purposes of this work the approach taken
of required test cases, and contribute to a comsgqu by (Arisholm et al., 2004) is followed, and Dynamic
decrease in testability (Mouchawrab et al., 2005). Coupling metrics that capture coupling at the abjec
This suggestion can only be confirmed through level are used. Two objects are coupled if at least
evaluation at the object level using dynamic metric one of them acts upon the other (Chidamber and
In a similar study, Badri et al. (2011) investighte Kemerer, 1994). The measure of coupling used here
the relationship between cohesion and testability is based on runtime method invocations/calls: two
using the C&K static Lack of Cohesion metric. They classes, class A and class B, are said to be abifple
found a significant relationship between this a method from class Acdller) invokes a method
measure of static cohesion and software testability from class B ¢allee), or vice versa. Details of the
where testability was measured using the metricsspecific metrics used to measure this form of
suggested by Bruntink and van Deursen (2006). coupling are provided in section 4.2.1.
In other work related to testability, Arisholm et
al. (2004) found significant relationships between 3.2 Key Classes
Dynamic Coupling measures, especially Dynamic
Export Coupling, and change-proneness. Export The notion of a Key Class is introduced in thiggtu
Coupling appears to be a significant indicator of as a new production code property to be measured
change-proneness and likely complements existingand its relationship to class testability investiga
coupling measures based on static analysis (i.e.,The meaning of Key Classes in this study is defined
when used with size and static coupling measures). and its expected relationship to testability d et
OO systems are formed around groups of
classes some of which are linked together. As

3 TESTABILITY CONCEPTS software systems grow in size, so the number of
classes used increases in these systems. To analyse
3.1 Dynamic Coupling and understand a program or a system, how it works

and the potential for decay, it is important to Wwno
In this study Dynamic Coupling has been selected aswhere to start and which aspects should be given
one of the system characteristics to measure andpriority. From a maintenance perspective,
investigate regarding its relationship to testapili understanding the roles of classes and their velati
Coupling has been shown in prior work to have a importance to a system is essential. In this rdspec
direct impact on the quality of software, and isoal there are classes that could have more influende an
related to the software quality characteristics of play more prominent roles than others. This grolup o
complexity and maintainability (Offutt et al., 2008 classes is referred to here as ‘Key Classes’. We
Al Dallal, 2013). It has been shown that, all other define a Key Class as a class that is executed
things being equal, the greater the coupling lehel, frequently in the typical use profile of a system.
greater the complexity and the harder it is to ldentifying these classes should inform the more
maintain a system (Chaumun et al., 2000, Tahir eteffective planning of testing activities. One okth
al., 2010). This suggests that it is reasonable topotential usages of these classes is in priordizin
expect that coupling will be related to testability testing activities — testers could usefully priagt
Dynamic rather than static coupling has been their work by focusing on testing these Key Classes
selected for our investigation to address somefirst, alongside consideration of other factorshsas
shortcomings of the traditional static measures of risk and criticality information.
coupling. For many vyears coupling has been The concept of Key Classes is seen elsewhere in
measured statically, based on the limited struttura the literature, but has an important distinction in
properties of software (Zaidman and Demeyer, meaning and usage in this research. For example, in
2008). This misses the coupling at runtime betweenwork of Zaidman and Demeyer (2008), classification
different components at different levels (classes, as a Key Class is based on the level of coupling of
objects, packages, and so on), which should captureclass. Therefore, Key Classes are those classes tha
a more complete picture and so relate better toare tightly coupled. In contrast, our definition is

based on thesage of these classes: Key Classes are

those classes that have high execution frequency ayg 2 Dynamic M easures
runtime. A metric used to measure Key Classes is

explained in section 4.2.2. _ In section 3 we described the Dynamic Coupling and
~ The following section now describes and Key Classes testability concepts. In this secti@n w
justifies the design of this study. define specific dynamic metrics that can be used to

measure these testability concepts.
4 STUDY DESIGN 4.2.1 Dynamic Coupling M easur es

In this section we explain our research questions a As stated in subsection 3.1, Dynamic Coupling is

the hypotheses that the work is aimed at testing. W intended to be measured in two forms - when a class

also define the various metrics used in operationalis accessed by another class at runtime, and when a

terms and our analysis procedures. class accesses other classes at runtime (i.e., to
One of the key challenges faced when evaluatingaccount for bothcallers and callees). To measure

software products is the choice of appropriate these levels of coupling we select the previously

measurements. Metric selection in this research haslefined Import Coupling (IC) and Export Coupling

been determined in a “goal-oriented” manner using (EC) metrics (Arisholm et al., 2004). IC measures

the GQM framework (Basili and Weiss, 1984) and the number of method invocationgceived by a

its extension, the GQM/MEDEA framework (Briand class ¢allee) from other classescdllers) in the

et al., 2002). Ougoal is to better understand what system. EC measures the number of method

affects software testability, and oabjective is to invocationssent from a classdaller) to other classes

assess the presence and strength of the relagonshi(callees) in the system. Note that both metrics are

between Dynamic Coupling and Key Classes on thecollected based on method invocations/calls. More

one hand and code testability on the other. Thedetailed explanations of these metrics are provided

specificpurpose is to measure and ultimately predict in Arisholm et al., (2004).

class testability in OO systems. Ouiewpoint is as

software engineers, and more specifically, testers,4.2.2 Key Classes Measure

maintainers and quality engineers. The targeted

3.2. The goal here is to examine if those Key @sass
4.1 Resear ch Questions and Hypotheses (i.e., those classes with higher frequency of

execution) have a significant relationship withssla

We investigate two factors that we contend are in testability (as defined in the next subsection). We
principle related to system testability: Dynamic define the Execution Frequency (EF) dynamic

classC. Consider a class, with methodsni, ne,.....
mn. Let EFfi) be the number of executions of
methodm of classC, then:

RQ1: Is Dynamic Coupling of a class significantly
correlated with the internal class testability
measures of its corresponding test class/unit?

n
RQ2: Are Key Classes significantly correlated with EF(C) = Z EF(mi) (D
the internal class testability measures of their i=1

corresponding test classes/units?] o
where n is the number of executed methods within class C

The following two research hypotheses are

investigated to answer the research questions: 4.3 Class Testability Measures
HO: Dynamic Coupling has a significant correlation
with class testability measures. The testability of a class is considered here in

relation to unit tests. In this work, we utilise dw
static metrics to measure unit test characteristics
Test Lines of Code (TLOC) and the Number of Test
The corresponding null hypotheses are: Cases (NTC). These metrics are motivated by the
] . . N test suite metrics suggested by Bruntink and van
H2: Dy”a”."c pouplmg ha;_ no significant Deursen (2006). TLOC, derived from the classic
correlation with class testability measures. Lines of Code (LOC) metric, is a size measure that
H3: Key Classes have no significant correlation with counts the total number of physical lines of code
class testability measures. within a test class or classes. NTC is a test desig

H1: Key Classes have a significant correlation with
class testability measures.

metric that counts the total number of test cases i
test class.

We used the two different traceability techniques
suggested by Rompaey and Demeyer (2009) to

Our hypotheses thus reflect an expectation thatidentify unit test classes and link them to their

the Dynamic Coupling and Key Classes of

corresponding production classes. First, we used th

production code classes are related to the size andNaming Convention techniqueto link test classes to

scope of their associated test classes.

4.4 Testing the Relationships

production classes following their names. It hasrbe
widely suggested (for instance, in the JUnit
documentation) that a test class should be named
after the corresponding class(es) that it tests, by

As we are interested in the potential associationsadding “Test” to the original class name. Secorel, w

between variables, a statistical test of correfat®
used in the evaluation of our hypotheses. After
collecting our metrics data we first apply the
Shapiro-Wilk (S-W) test to check the normality of
each data distribution. This is necessary as $efect
of the relevant correlation test should be informed
by the nature of the distributions, being normal or
non-normal. The S-W test is a particularly
appropriate one to use here given the size of atar d
sets (as detailed in the next section). The null
hypothesis for the S-W test is that data is norynall
distributed. Our data collection methods are
explained in more detail in the following section.

5 DATA COLLECTION

The collection of dynamic metrics data can be
accomplished in various ways. The most common
(and most accurate) way is to collect the data by
obtaining trace information using dynamic analysis
techniques during software execution. Such
approach is taken in this study and is implemented
by collecting metrics using thaspect* framework,
a well-established Java implementation of Aspect
Oriented Programming (AOP). Previous works
(including those of Cazzola and Marchetto (2008),
Adams et al. (2009) and Tahir et al. (2010)) have
shown that AOP is an efficient and practical
approach for the objective collection of dynamic
metrics data, as it can enable full runtime autdenat
source-code instrumentation to be performed.
Testability metrics data, including LOC, TLOC,
and Number of Classes (NOC), are collected using
the CodePro Analytix? tool. The values of these
metrics were later checked and verified using the
Eclipse Metrics Plugin®. Values for the NTC metric
are collected from théUnit* framework and these
values were verified manually by the first author.

! hitp://www.eclipse.org/aspectj/
?https://developers.google.com/java-devtools/codeioas
% http://metrics2.sourceforge.net/

4 http://junit.org/

used aSatic Call Graph technique, which inspects
method invocations in the test case. The latter
process was carried out manually by the first autho
The effectiveness of the Naming Convention
technique is reliant on developers’ efforts in
conforming to a coding standard, whereas the Static
Call Graph approach reveals direct references to
production classes in the test classes.

It is important to note here that we only consider
core system code: only production classes that are
developed as a part of the system are assessed.
Additional classes (including those in jar filesea
excluded from the measurement process. These files
are generally not part of the core system under
development and any dependencies could negatively
influence the results of the measurement process.

5.25.1 Case Studies

To consider the potential relationships betweesscla
testability and the selected dynamic metrics we

" selected three different open source systems to be

used in our experiments. The selection of these
systems was conducted with the goal of examining
applications of reasonable size, with some degfee o
complexity, and easily accessible source code. The
main criteria for selecting the applications arg: 1

each application should be fully open source i.e.,
source code (for both production code and test)code
is publicly available; 2) each application must be

written in Java, as we are using the JUnit and
AspectJ frameworks, which are both written for

Java; 3) each application should come with test
suites; and 4) each application should comprise at
least 25 test classes.

The systems selected for our experiments are:
JabRef°, Dependency Finder® and MOEA'. Brief
descriptions of the selected systems are shown in
Table 1. Table 2 reports particular characteristics

S http://JabRef.sourceforge.net/
8 http://depfind.sourceforge.net/
’ http://www.moeaframework.org/

and size information of both the production and tes JMeter, Ant

code of the three systems.

Table 1: Brief descriptions of the selected systems.

and Colossus. We computed
dependencies (dependency graphs) and OO metrics
at all layers (i.e., packages, classes, features).
Analysis reports on all four systems were extracted

System Description and saved individually.
ﬁ]gtr(;srz;%aezog&ﬁ L?;gg(ﬁi?gr;ocle MOE_A: MOEA has a GUI diagnost_ic tool that
JabRef management support for the provides access to a set of 6 algorithms, 57 test
BibTeX file format — a LaTeX problems and search operators. We used this
based referencing format. diagnostic tool to apply those different algorithors
An analyser tool that extracts the predefined problems. We applied each of these
dependencies, develops dependency ~ algorithms at least once on each problem. We
Dependency graphs and provides basic 0O displayed metrics and performance indicators fbr al
Finder metric information for Java results provided by those different problems and
compiled code. algorithms. Statistical results of these multiples
A Java-based framework oriented to were displayed at the end of the analysis.
the development and
MOEA experimentation of multi-objective
evglutionary and optimizati(J)n 6 RESULTS
algorithms.

On applying the S-W test to our data for all three

The size classification used in Table 2 is adaptedsystems the evidence led us to reject the null

from the work of Zhao and Elbaum (2000), where hypothesis regarding their distribution, and so we
application size is categorised into bands based onaccepted that the data were not normally distribute
the number of kiloLOC (KLOC): small (fewer than (see Figures 1-3 for illustration). We therefore
1 KLOC), medium (1-10 KLOC), large (10-100 decided to use Kendall's tar) (ank coefficient test.
KLOC) and extra-large (more than 100 KLOC). Kendall's tau is a rank-based non-parametric
statistical test that measures the associationdmgtw
two measured quantities. In our work Kendall's tau
is calculated to assess the degree of association
between each dynamic metric of the production code
h (i,e., IC, EC and EF) and the class testability
énetrics, defined in sections 4.2 and 4.3 respdgtive
We used the classification of Cohen (1988) to
interpret the degree of association between vasabl

5.3 Execution Scenarios

In order to arrive at dynamic metrics values that a
associated with typical, genuine use of a systemm t
selected execution scenarios must be representativ
of such use. Our goal is to mimic ‘actual’ system
behaviour, as this will enhance the utility of our N L

results. The scenarios are therefore designedeo usThe value O_fc indicates the association between two
the key system features, based on the avail<';1bler"3mke_OI varlables,_and it ranges from -1 (pe_r_fect
documentation and user manuals for the selected€9ative correlation) to +1 (perfect positive

systems, as well as our prior knowledge of these COIrelation). We interpr_et that vari_ab_les are when
systems. Further information on the selected 0, that there is a low direct association when®0<<

execution scenario for each system now follows. 828 a (rjnedlum d|rdect association Whin %ié
Note that all three systems have GUI access, and th 59, and a strong direct association when<0r6

developed scenarios assume use via the GUI. 1. Thie interpretation also_ eppli.es. to negative
correlations, but the association is inverse rather

JabRef: the tool is used to generate and store a listthan direct (Daniel, 2000). The value represents

of references from an original research report. We the statistical significance of the relationshipe W
included all reference types supported by the tool consider an association to be statistically sigaiit
(e.g., journal articles, conference proceedings, wherep< 0.05.

reports, standards). Reports were then extracted The number of observations considered in each
using all available formats (including XML, SQL test varies in accordance with the systems’ exeouti
and CSV). References were managed using all thescenarios described in subsection 5.2. Observation
provided features. All additional plugins provided points, in fact, represent the number of testedsela

the tool's website were added and used during thisthat were traversed in the execution (viz. clasisas
execution. have corresponding tests and were captured during
the execution by any of the dynamic metrics used).
The number of observations fdabRef is 26, 80 for
Dependency Finder and 76 foMOEA.

Dependency Finder: this scenario involves using the
tool to analyse the source code of four mediumedarg
sized systems one after another, namely, FindBugs,

Table 2: Characteristics of the selected systems.

. . # JUnit Test
System Version KLOC Size NOC o NTC KLOC
JabRef 2.9.2 84.711 Mediumr 61€ 5E 237 5.39:
Dependency Finder | 1.2.1 beta 26.23! Mediur 41¢ 25¢ 2,002 32.09¢
MOEA 1.17 24.30° Mediumr 43¢ 28C 1,168 16.69¢
- in two of the three systems. These relationshipg va
from low direct (in the case dflOEA) to medium
g - direct (in theDependency Finder case). However, a

similar significant correlation between EC and NTC
is only evident for théependency Finder system (a
medium direct association).

20
o

w

10

T T T
Test.cases EC IC °

40

Figure 1: Data distribution boxplots for the JabRgftem.

[=]
2 4 o

@
o @m®oom oo

|
|

b °© Test cases EC Ic

40

o0

Figure 3: Data distribution boxplots for the MOEA
system.

30

o

20

2 : In terms of relationships with the NTC metric
S g (Table 4), a low direct association between IC and
’ NTC is evident in the case dbbRef. Analysis of

{oo 000 0 o

[] Dependency Finder reveals a significant medium
= : ‘ ‘ direct association between these metrics. A low
oot emnae o o inverse association between IC and NTC is evident
for the MOEA system.
Figure 2: Data distribution boxplots for the Depency Positive and significant associations were found
Finder system. between EF and the test suite metrics for two ef th

, three systems (the exception being tNEOEA
Table 3 shows the Kendall's tau results for the gystem). We found a significant, medium direct
two dynamic coupling metrics against the test suite 5g5qciation between EF and TLOC and between EF
metrics. Corresponding results for the execution gnq NTC in the case ojabRef. In Dependency
frequency (EF) metric against the test suite Melric ringer, low direct associations between EF and both

are presented in Table 4. _ TLOC and NTC were revealed.
For dynamic coupling, we see (Table 3) a mix of

results from the collected metrics. ECobserved to
have a significant relationship with the TLOC metri

Table 3: Dynamic coupling correlation results.

. TLOC NTC

Systems Metrics z D I D
EC 20z 052 201 06¢
JabRef IC 197 197 148 041
S eoerdency Fimder EC 380 000 319 000
e y IC 388 000 251 003
EC 230 008 00z 300
MOEA IC _.05¢ 50 £190 027

Table 4: Execution Frequency (EF) correlation rasul

. TLOC NTC
Systems Metrics . D . D

JabRef EF 344 .016 .306 .041

Dependency Finder EF 216 .005 .158 .048

MOEA EF .00t 958 -.074 .36¢€
In summary, we found EC to have a significant
7 DISCUSSION correlation wit%’ TLOC, where IC was signigflicantly
associated with NTC. We interpret this to indicate
Based on our analysis we accéf and rejectH?2; that Dynamic Coupling, in some form, has a

that is, we note evidence of a significant assaoiat ~ significant correlation with test suite metrics. We
between dynamic coupling (either EC or IC) and the draw a similar inference regarding Key Classes thi
two test suite metrics for all three systems arelys property is also significantly associated with test
here. As we also found EF to be significantly suite metrics. Additionally, we found the two
associated with the test suite metrics for twohaf t dynamic testability concepts studied here, i.e.,
three systems considered we also acdéptand Dynamic Coupling and Key Classes, to be

rejectH3 on the balance of evidence. themselves significantly correlated.
An additional test of relevance in this study is to
consider whether our dynamic testability metrias ar In revisiting our research questions, we found

themselves related, as this may indicate that anly Dynamic Coupling to have a significant (although
subset of these metrics needs to be collected. Wenot strong) direct association with testability riest
therefore performed further correlation analysis to (RQ1). A more significant correlation was found
investigate this. between Key Classes (i.e., frequently executed
Our results indicate that the Dynamic Coupling classes) and class testability metrics. By answerin
metrics are correlated with EF (Table 5) to varying RQ1 and RQ2, we suggest that Dynamic Coupling
degrees for the three systems investigated. Highand Key Classes can act, to some extent, as
direct and medium direct associations between onecomplementary indicators of class testability. We
or both of the two Dynamic Coupling metrics (i.e., contend here that a tightly coupled or frequently
IC and EC)and the EF metric are evident for all executed class would need a large corresponding tes
three systems. class (i.e., higher numbers of TLOC and NTC). This
expectation has been found to be evidenced in at
Table 5: Correlation results between coupling and EF least two of the three systems examined.
dynamic metrics.

Merics = ; _EC 5~ 8 THREATSTOVALIDITY
/
éaeiﬁfdmcy 19 19¢ 691 000 We acknowledge a number of threats that could
EF e 415 000 .376 .000 affect the validity of our results.

MOEA 221 .008 .304 .000

- Limited number and form of systems. The metrics were used to measure internal class
results discussed here are derived from the amalysi testability, namely TLOC and NTC. As we were
of three open source systems. The consideratian of interested in the relationships between system
larger number of systems, perhaps also including characteristics at runtime, Dynamic Coupling and
closed-source systems, could enable further Key Classes were measured using dynamic software
evaluation of the associations revealed in thidystu metrics collected via AOP. Results were then
- Execution scenarios: All our execution scenarios analysed statistically using the Kendall's tau
were designed to mimic as closely as possible coefficient test to study the associations.

‘actual’ system behaviour, based on the available The resulting evidence indicates that there is a
system documentation and, in particular, indication significant association between Dynamic Coupling
of each system’s key features. We acknowledge,and internal class testability. We found that
however, that the selected scenarios might not beDynamic Coupling metrics, and especially the
fully representative of the typical uses of the export coupling metric (EC), have a significant
systems. Analysing data collected based on differen direct association with TLOC. A less significant
scenarios might give different results. This iseayv =~ association was found between dynamic import
common threat in most dynamic analysis research.coupling (IC) and NTC. Similarly, Key Classes are
However, we tried to mitigate this threat by callgfu also shown to be significantly associated with our
checking user manuals and other documentation oftest suite metrics in two of the three systems
each of the examined systems and deriving theexamined.

chosen scenarios from these sources. Most listed The findings of this work contribute to our
features were visited (at least once) during the understanding of the nature of the relationships
execution. We are planning to examine more between characteristics of production and test .code
scenarios in the future and compare the resulta fro The use of dynamic measures can provide a level of
these different scenarios. insight that is not available using static metrics
- Testing information: Only available test alone. These relationships can act as an indiéator
information was used. We did not collect or have internal class level testability, and should bénelp
access to any information regarding the testing in informing maintenance and reengineering tasks.
strategy of the three systems. Test strategy and .

criteria information could be very useful if combth Several future research directions are suggested
with the test metrics, given that test criteria can by the outcomes of this research. This work can be
inform testing decisions, and the number of test €xténded by examining a wider range of systems

cases designed is highly influenced by the (such as closed-source systems) to enable further
implemented test strategy. evaluation of the findings. Another research

- Test class sdection: We only considered direction would be to investigate whether Dynamic
production classes that have corresponding testcOUPling and Key Class information can be used
classes, which may lead to a selection bias. Glasse{0g€ether to predict the size and structure of test
that are extremely difficult to test, or are comsit classes. Predicting class-level testability should
too simple, might have zero associated test classesMProve the early estimation and assessment of the
Such production classes are not considered in our€ffort needed in testing activities. This work abul
analyses. Due to their availability, we only inghad @S0 be extended to an investigation of the

classes that had associated JUnit test classes, an@ssociation between other source code factors and
ignored all others. testability using runtime information. It would als

be potentially beneficial to incorporate the cutren
information about class testability with other tegt

9 CONCLUSIONSAND FUTURE information such as test coverage and test strategy
WORK
10 REFERENCES

In this work we set out to investigate the presence

and_ significance of any associations bgtween .tWOAdams, B., De Schutter, K., Zaidman, A., Demeyer, S.

runtime code properties, namgly Dynamic Co_gpllng Tromp, H. & De Meuter, W. 2009. Using aspect

and Key Classes, and the internal testability Of orientation in legacy environments for reverse

classes in three open source OO system,s. Tegtabilit engineering using dynamic analysis--an industrial
was measured based on the systems’ production experience report. Journal of Systems and Software,
classes and their associated unit tests. Two differ 82, 668-684.

Al Dallal, J. 2013. Object-oriented class maintaitity Gao, J. Z., Jacob, H.-S. & Wu, Y. 2003. Testing and
prediction using internal quality attributes. Infation quality assurance for component-based software,
and Software Technology, 55, 2028-2048. Norwood, MA, USA, Artech House Publishers.

Arisholm, E., Briand, L. C. & Foyen, A. 2004. Dynamic Gunnalan, R., Shereshevsky, M. & Ammar, H. H. 2005.
coupling measurement for object-oriented software. Pseudo dynamic metrics [software metrics].
IEEE Transactions on Software Engineering, 30, 491- International Conference on Computer Systems and
506. Applications. IEEE Computer Society.

Badri, L., Badri, M. & Toure, F. 2011. An empirical Iso 2001. Software engineering - product qualityt-da
analysis of lack of cohesion metrics for predicting Quality model Geneva: International Organization fo

testability of classes. International Journal oft®Bare Standardization

Engineering and Its Applications, 5, 69-86. Mouchawrab, S., Briand, L. C. & Labiche, Y. 2005. A
Basili, V. R., Briand, L. C. & Melo, W. L. 1996. A measurement framework for object-oriented software

validation of object-oriented design metrics asligya testability. Information and Software Technology, 4

indicators. IEEE Transactions on Software 979-997.

Engineering, 22, 751-761. Offutt, J., Abdurazik, A. & Schach, S. 2008.
Basili, V. R. & Weiss, D. M. 1984. A methodology for Quantitatively measuring object-oriented couplings.

collecting valid software engineering data. IEEE Software Quality Journal, 16, 489-512.
Transactions on Software Engineering, 10, 728-738. Rompaey, B. V. & Demeyer, S. 2009. Establishing

Bertolino, A. 2007. Software testing research: traceability links between unit test cases and sunit
Achievements, challenges, dreams. Future of Softwar under test. European Conference on Software
Engineering. IEEE Computer Society. Maintenance and Reengineering. |IEEE Computer

Binder, R. V. 1994. Design for testability in object- Society.
oriented systems. Communications of the ACM, 37, Scotto, M., Sillitti, A., Succi, G. & Vernazza, 2006. A
87-101. non-invasive approach to product metrics collection
Briand, L. C., Morasca, S. & Basili, V. R. 2002. An Journal of Systems Architecture, 52, 668-675.
operational process for goal-driven definition of Tahir, A., Ahmad, R. & Kasirun, Z. M. 2010.
measures. |IEEE Transactions on Software Engineering Maintainability dynamic metrics data collection bds

28, 1106-1125. on aspect-oriented technology. Malaysian Journal of
Bruntink, M. & Van Deursen, A. 2006. An empiricalidy Computer Science, 23, 177-194.

into class testability. Journal of Systems and \&arfe, Tahir, A. & Macdonell, S. G. A systematic mappirgdy

79, 1219-1232. on dynamic metrics and software quality. 28th
Cai, Y. 2008. Assessing the effectiveness of softwar International Conference on Software Maintenance,

modularization techniques through the dynamics of 2012. 2473587: IEEE Computer Society, 326-335.

software evolution. 3rd Workshop on Assessment of Traon, Y. L. & Robach, C. 1995. From hardware to

COntemporary Modularization Techniques. Orlando, software testability. International Test Conferemce

Us. Driving Down the Cost of Test. IEEE Computer
Cazzola, W. & Marchetto, A. 2008. Aop-hiddenmetrics: Society.

Separation, extensibility and adaptability in sw Zaidman, A. & Demeyer, S. 2008. Automatic
measurement. Journal of Object Technology, 7, 53—68 identification of key classes in a software systesimg
Chaumun, M. A., Kabalili, H., Keller, R. K., Lustmah, webmining techniques. Journal of Software

& Saint-Denis, G. 2000. Design properties and dbjec Maintenance and Evolution, 20, 387-417.
oriented software changeability. European Conference Zhao, L. & Elbaum, S. 2000. A survey on qualityatetl
on Software Maintenance and Reengineering. IEEE activities in open source. SIGSOFT Software
Computer Society. Engineering Notes, 25, 54-57.
Chidamber, S. R. & Kemerer, C. F. 1994. A metricsesuit
for object oriented design. IEEE Transactions on
Software Engineering, 20, 476-493.
Cohen, J. 1988. Statistical power analysis for the
behavioral sciences, L. Erlbaum Associates.
Daniel, W. W. 2000. Applied nonparametric statistic
Boston MA, USA, KENT Publishing Company.
Dufour, B., Driesen, K., Hendren, L. & Verbrugge, C.
2003. Dynamic metrics for java. 18th Annual ACM
SIGPLAN Conference on Object-oriented Programing,
Systems, Languages, and Applications. Anaheim,
California, USA: ACM.

