
i 
 

 

Sustainable and Resilient Network 

Infrastructure Design for Cloud 

Data Centers 

 

 
Ritchie Qi 

 

 

A thesis submitted to 

Auckland University of Technology 

in partial fulfilment of the requirements for the degree 

of 

Master of Computer and Information Sciences (MCIS) 

 
 

2016 

School of Engineering, Computer and Mathematical Sciences 



ii 
 

Table of Contents 
List of Figures ------------------------------------------------------------------------------------------ v 
List of Tables ----------------------------------------------------------------------------------------- viii 
Attestation of Authorship --------------------------------------------------------------------------- ix 
Acknowledgements ------------------------------------------------------------------------------------ x 
Publications -------------------------------------------------------------------------------------------- xi 
Abstract ------------------------------------------------------------------------------------------------ xii 
Chapter 1 Introduction -------------------------------------------------------------------------------- 1 

1.1 Background ............................................................................................... 3 
1.2 Motivation ................................................................................................. 4 
1.3 Research Questions .................................................................................. 5 
1.4 Contributions ............................................................................................ 5 
1.5 Thesis Structure ........................................................................................ 7 

Chapter 2 Related Work ------------------------------------------------------------------------------ 9 
2.1 Background ............................................................................................... 9 

2.1.1 Cloud Computing Network Architecture--------------------------------- 13 
2.2 Overview of Data Center Network ......................................................... 15 

2.2.1 Performance Trend ------------------------------------------------------------ 15 
2.2.2 Power Consumption Trend -------------------------------------------------- 18 

2.3 Data Center Network Topology .............................................................. 19 
2.3.1 Three-tier ------------------------------------------------------------------------ 19 
2.3.2 Fat-tree --------------------------------------------------------------------------- 20 
2.3.3 BCube ---------------------------------------------------------------------------- 21 
2.3.4 HyperFlatNet ------------------------------------------------------------------- 22 
2.3.5 Discussion ----------------------------------------------------------------------- 23 

2.4 Traffic Load ............................................................................................. 24 
2.4.1 Computationally Intensive Workloads (CIWs) ------------------------- 25 
2.4.2 Data-intensive Workloads (DIWs) ---------------------------------------- 25 
2.4.3 Balanced Workloads (BWs) ------------------------------------------------ 25 
2.4.4 Workload specifications in the Simulation ------------------------------ 26 

2.5 Data Center Traffic Characteristics ......................................................... 27 
2.6 Energy Efficiency of Data Center Network ............................................. 28 

2.6.1 Dynamic Voltage and Frequency Scaling -------------------------------- 28 
2.6.2 Dynamic Power Management ---------------------------------------------- 30 

A. Timeout Policies --------------------------------------------------------------- 31 
B. Predictive Policies ------------------------------------------------------------ 32 

2.7 Data Center Network Failures ................................................................ 33 
Chapter 3 Topological Modelling and Metrics ------------------------------------------------ 35 

3.1 Network Modelling and Analysis Tools ................................................... 35 
3.1.1 CloudNetSim++ simulator -------------------------------------------------- 35 
3.1.2 Gephi Network Analysis Tool ---------------------------------------------- 37 

3.2 DCN architectural models ....................................................................... 38 
3.2.1 Three-tier ------------------------------------------------------------------------ 38 



iii 
 

3.2.2 Fat- tree -------------------------------------------------------------------------- 40 
3.2.3 BCube architecture modelling ---------------------------------------------- 42 
3.2.4 HyperFlatNet architecture --------------------------------------------------- 42 

3.3 Energy consumption modelling .............................................................. 44 
3.3.1 Energy Consumption Measurement Algorithm ------------------------- 45 

3.4 Network Performance Measurement..................................................... 48 
3.5 Topological Metrics ................................................................................. 49 

3.5.1 Network graph model -------------------------------------------------------- 53 
3.5.2 Topological metrics ----------------------------------------------------------- 55 

3.5.2.1 Average Nodal Degree (𝒌𝒌) -------------------------------------- 55 
3.5.2.2 Network Diameter ------------------------------------------------ 58 
3.5.2.3 Average Shortest Path Length --------------------------------- 59 
3.5.2.4 Betweenness Centrality ------------------------------------------ 59 
3.5.2.5 Closeness Centrality ----------------------------------------------- 60 
3.5.2.6 Eccentricity --------------------------------------------------------- 61 
3.5.2.7 Eigenvector Centrality ------------------------------------------- 61 

3.5.3 Summary ------------------------------------------------------------------------ 62 
Chapter 4 Simulation Studies --------------------------------------------------------------------- 63 

4.1 Case studies ............................................................................................ 63 
4.2 Case 1: Network Performance Evaluation (NPE) according to Network 
Robustness Metrics (NRM) .................................................................................. 66 

4.2.1 Topology Setup ---------------------------------------------------------------- 66 
4.2.2 Node Eigenvector Centrality Evaluation --------------------------------- 68 
4.2.3 Node Betweenness Centrality Evaluation -------------------------------- 68 
4.2.4 Node Closeness Centrality Evaluation ------------------------------------ 69 
4.2.5 Node Eccentricity Evaluation ----------------------------------------------- 70 
4.2.6 Node Degree Evaluation ----------------------------------------------------- 71 
4.2.7 Node Weighted Degree Evaluation---------------------------------------- 72 
4.2.8 Edge Weighted Degree Evaluation ---------------------------------------- 74 
4.2.9 Critical Nodes determination ----------------------------------------------- 76 
4.2.10 Network Performance Evaluation (NPE) Simulation setup ---------- 77 
4.2.11 Traffic Generation ------------------------------------------------------------- 78 
4.2.12 Case 1 - Scenario 1: Network Performance according to Server 
Failures ------------------------------------------------------------------------------------ 79 
4.2.13 Case 1 - Scenario 2: Network Performance according to 
Aggregation Switch Failures --------------------------------------------------------- 84 
4.2.14 Case 1 - Scenario 3: Network Performance according to 
Server/Switch/Rack Failures --------------------------------------------------------- 95 

4.3 Case 2: DCNs` Performance vs. LFR ........................................................ 99 
4.3.1 Simulation setup --------------------------------------------------------------- 99 
4.3.2 Topology setup --------------------------------------------------------------- 100 
4.3.3 Topological comparison --------------------------------------------------- 102 
4.3.4 Case 2 - Scenario 1: Network Performance of Various DCNs with 0% 
LFR 104 



iv 
 

4.3.5 Results Analysis for Scenario 1 ------------------------------------------ 104 
4.3.6 Case 2 – Scenario 2 (preparation): Link selection determination 
according to the Centrality metrics ------------------------------------------------ 108 
4.3.7 Case 2 - Scenario 2: Network Performance Metrics results analysis 
on Various DCNs according to increasing LFR -------------------------------- 118 

Chapter 5 Conclusion and Future work ------------------------------------------------------- 125 
5.1 Conclusion ............................................................................................. 125 
5.2 Main findings ........................................................................................ 126 
5.3 Future work ........................................................................................... 127 

Glossary ---------------------------------------------------------------------------------------------- 129 
Reference -------------------------------------------------------------------------------------------- 131 
Appendix A: CloudNetSim++ environment ------------------------------------------------- 141 

Sample C++ codes for Three-tier DCN topology implementation in 
CloudNetSim++ .................................................................................................. 141 
Sample C++ codes for Fat-tree DCN topology implementation in CloudNetSim++
............................................................................................................................ 142 
Sample C++ codes for BCube-2 layer DCN topology implementation in 
CloudNetSim++ .................................................................................................. 143 
Sample C++ codes for BCube-3 layer DCN topology implementation in 
CloudNetSim++ .................................................................................................. 144 
Sample C++ codes for realizing Energy Consumption Management................. 146 

Appendix B: Gephi Network Analysis Tool environment -------------------------------- 147 

 

 
 

 

 

 

 

 

 

 

 

 

 



v 
 

List of Figures 
Figure 1.1 – Thesis structure .................................................................................. 7 
Figure 2.1 – Carbon dioxide emissions as % of world total ................................. 11 
Figure 2.2 - Carbon dioxide emissions by country ............................................... 11 
Figure 2.3 - Emissions from data centers worldwide .......................................... 11 
Figure 2.4 - Cloud computing network architecture example ............................. 14 
Figure 2.5 – Transistor count from Year 1971 to 2011 ........................................ 17 
Figure 2.6 – Number of cores in system from Year 2000 to 2014 ....................... 17 
Figure 2.7 – Expenditure of data center components surveyed by Intel ............ 19 
Figure 2.8 – Three-tier DC architecture example ................................................ 20 
Figure 2.9 – Fat-tree DC architecture example .................................................... 21 
Figure 2.10 – BCube-2 layer DC architecture example ........................................ 22 
Figure 2.11 – HyperFlatNet DC architecture example ......................................... 23 
Figure 2.12 – Non-optimized task performance vs. Optimized task performance

...................................................................................................................... 28 
Figure 2.13 - (a) Server with working state, (b) Server with shutdown and 

wake-up state .............................................................................................. 31 
Figure 2.14 – DC component failure example ..................................................... 34 
Figure 3.1 - Simple and compound modules [80] ................................................ 35 
Figure 3.2 – CloudNetSim++ simulator higher architecture [83] ......................... 37 
Figure 3.3 – Gephi network analysis tool: Modular architecture [101] .............. 38 
Figure 3.4 – Three-tier Rack example .................................................................. 39 
Figure 3.5 - Three-tier model – more robust with “connect all-to-all” ............... 39 
Figure 3.6 - Three-tier: same connections with Fat-tree which between 

aggregation layer and access layer .............................................................. 40 
Figure 3.7 – Fat-tree: interconnection of core and aggregation layer ................ 41 
Figure 3.8 – Fat-tree: interconnection of aggregation and access layer ............. 41 
Figure 3.9 – Fat-tree: interconnection of access router and servers .................. 41 
Figure 3.10 – BCube-2 layers interconnection ..................................................... 42 
Figure 3.11 – Linked Clusters Maximization Algorithm [55] ................................ 44 
Figure 3.12 – Server load vs. DVFS/DPM applied ................................................ 45 
Figure 3.13 - The graph on V = {v1…v8} with edge set E = {e1…e10} = {(v1, v2), 

(v1, v3), (v1, v4), (v1, v7), (v2, v6), (v3, v4), (v4, v7), (v6, v8), (v2, v2)} ....... 50 
Figure 3.14 – Example – 6 nodes network ........................................................... 51 
Figure 3.15 - Example - A path 𝑷𝑷𝑷𝑷 = 5 in G ....................................................... 52 
Figure 3.16 - Tree-based Network Topology ....................................................... 53 
Figure 3.17 - Example of a Directed Network (a) and an Undirected Network (b)

...................................................................................................................... 55 
Figure 3.18 - Example of degree of a node X ....................................................... 56 
Figure 3.19 – Node degree distribution from 3.18 example ............................... 56 
Figure 3.20 - (a) More robust model compared to Figure 3.19, .......................... 57 
Figure 3.21 - (a) Failure 1 - node X failure, (b) Failure 2 – node Y failure ............ 57 



vi 
 

Figure 3.22 – ASPL: 6 nodes example .................................................................. 59 
Figure 3.23 – Betweenness centrality: 5 nodes example .................................... 60 
Figure 4.1 – Case 1 architecture .......................................................................... 63 
Figure 4.2 – Case 2 architecture .......................................................................... 64 
Figure 4.3 – Case 1 network setup ....................................................................... 66 
Figure 4.4 – Case 1 network implementation in Gephi ....................................... 67 
Figure 4.5 – Case 1 network: Eigenvector Centrality ranking .............................. 68 
Figure 4.6 - Case 1 network: Betweenness Centrality ranking ............................ 69 
Figure 4.7 - Case 1 network: Closeness Centrality ranking .................................. 70 
Figure 4.8 - Case 1 network: Eccentricity Centrality ranking ............................... 71 
Figure 4.9 - Case 1 network: Nodal degree ranking ............................................ 72 
Figure 4.10 - Case 1 network: Nodal weighted degree ranking .......................... 74 
Figure 4.11 - Case 1 network: Edge weighted ranking ........................................ 76 
Figure 4.12 - Case 1: Simulation setup................................................................. 77 
Figure 4.13 – Simulation server traffic generation .............................................. 78 
Figure 4.14 – Server workload distribution ......................................................... 79 
Figure 4.15 – Avg. Network Throughput (bit/s) ................................................... 80 
Figure 4.16 – Avg. packet delay (second) ............................................................ 81 
Figure 4.17 – Packet drop ratio (%) ..................................................................... 82 
Figure 4.18 – Total energy consumption (w) ....................................................... 83 
Figure 4.19 - Avg. server throughput according to AS[0] Failure (bit/s) ............. 85 
Figure 4.20 - Avg. server throughput according to AS[1] Failure (bit/s) ............. 86 
Figure 4.21 - Avg. server throughput according to AS[2] Failure (bit/s) ............. 87 
Figure 4.22 - Avg. server throughput according to AS[3] Failure (bit/s) ............. 88 
Figure 4.23 – Switch workload ............................................................................. 88 
Figure 4.24 – Avg. network throughput (bit/s) according to switch failures ...... 89 
Figure 4.25 – Packet drop ratio (%) according to AS failures .............................. 89 
Figure 4.26 – Avg. packet delay (second) according to AS failures ..................... 90 
Figure 4.27 – Total energy consumption (w) ....................................................... 91 
Figure 4.28 – Component traffic load vs. energy change illustration ................. 92 
Figure 4.29 - Avg. network throughput (bit/s) according to various Failures ..... 96 
Figure 4.30 - Total packet received according to various Failures ...................... 97 
Figure 4.31 - Avg. packet delay (second) according to various Failures .............. 97 
Figure 4.32 - Packet Drop Ratio (%) according to various Failures ...................... 98 
Figure 4.33 - Total energy consumption according to various Failures (w) ........ 98 
Figure 4.34 - Number of switches comparison between topologies ................. 102 
Figure 4.35 - Number of links comparison between topologies ....................... 103 
Figure 4.36 - Avg. network throughput (bits/s) comparison for different DCNs 

with no failures .......................................................................................... 105 
Figure 4.37 - Avg. Network latency (ms) comparison for different DCNs with no 

failures ....................................................................................................... 106 
Figure 4.38 - Total number of packet received comparison for different DCNs 

with no failures .......................................................................................... 106 



vii 
 

Figure 4.39 - Packet drop ratio (%) comparison for different DCNs with no 
failures ....................................................................................................... 107 

Figure 4.40 - Total energy consumption (w) comparison for different DCNs with 
no failures .................................................................................................. 107 

Figure 4.41 - Node betweenness centrality result for Fat-tree ......................... 109 
Figure 4.42 - Node eigenvector centrality result for Fat-tree ........................... 109 
Figure 4.43 - Node closeness centrality result for Fat-tree ............................... 109 
Figure 4.44 - Node eccentricity distribution result for Fat-tree ........................ 110 
Figure 4.45 - Number of packet received from higher layer for Fat-tree with no 

failures ....................................................................................................... 111 
Figure 4.46 - Number of packet received from higher layer for BCube-2layer 

with no failures .......................................................................................... 111 
Figure 4.47 - Number of packet received from higher layer for BCube-3layer 

with no failures .......................................................................................... 112 
Figure 4.48 - Number of packet received from higher layer for HyperFlatNet 

with no failures .......................................................................................... 112 
Figure 4.49 - Number of packet received from higher layer for Three-tier with no 

failures ....................................................................................................... 113 
Figure 4.50 - Average Nodal Degree according to increasing LFR ..................... 116 
Figure 4.51 - Average gradient of nodal degree for various DCNs .................... 116 
Figure 4.52 - Network Diameter for various DCNs according to increasing LFR

.................................................................................................................... 117 
Figure 4.53 – Average Shortest Path Length for various DCNs according to 

increasing LFR ............................................................................................ 117 
Figure 4.54 – Network Latency for various DCNs according to increasing LFR . 118 
Figure 4.55 – Total Packets Received for various DCNs according to increasing 

LFR .............................................................................................................. 120 
Figure 4.56 – Avg. Network Throughput for various DCNs according to 

increasing LFR ............................................................................................ 121 
Figure 4.57 – Packet Drop Ratio for various DCNs according to increasing LFR 121 
Figure 4.58 - Energy Consumption against increasing LFR ................................ 123 
Figure 0.1 – Appendix: Gephi-diagram of 4 distributed DCN ............................ 148 
Figure 0.2 – Appendix: Gephi-Layout panel....................................................... 148 
Figure 0.3 - Appendix: Gephi-Statistics panel .................................................... 149 
Figure 0.4 - Appendix: Gephi-Data Table ........................................................... 150 
Figure 0.5 – Appendix: Gephi-Preview panel .................................................... 150 

 
 

 

 



viii 
 

List of Tables 
Table 2.1 – Comparison of various DCN architectures ........................................ 24 
Table 2.2 – Workload specification applied in case study ................................... 27 
Table 3.1 - Server Energy Consumption Rate Specification ................................. 47 
Table 3.2 - Robustness comparison according to node failure with different 

degree .......................................................................................................... 58 
Table 3.3 – Topological metric summary ............................................................. 62 
Table 4.1 - Notice on notation representation of the use in simulation studies 

structure ....................................................................................................... 64 
Table 4.2 - Notice on notation representation of node used in this network..... 67 
Table 4.3 – Case 1 network: Eigenvector Centrality evaluation .......................... 68 
Table 4.4 – Case 1 network: Betweenness Centrality ranking ............................ 68 
Table 4.5 - Case 1 network: Eigenvector Centrality ranking ................................ 69 
Table 4.6 - Case 1 network: Eccentricity Centrality ranking ................................ 70 
Table 4.7 - Case 1 network: Node degree ranking............................................... 71 
Table 4.8 - Case 1 network: Weighted degree ranking ....................................... 73 
Table 4.9 - Case 1 network: Edge weighted ranking ............................................ 75 
Table 4.10 – Simulation parameters setting ........................................................ 78 
Table 4.11 - Sample servers’ description and servers` receiving throughput ..... 79 
Table 4.12 – Representative node network throughput ratio and degradation 

after failure .................................................................................................. 81 
Table 4.13 - The change of number of packet received after AS[0] failure for 

specific node port ........................................................................................ 93 
Table 4.14 - Energy degradation ratio for various AS failure .............................. 95 
Table 4.15 - Notice on notation representation for the use in later results ....... 95 
Table 4.16 - Case 2 - Network setup .................................................................. 100 
Table 4.17 - Case 2 – DCNs Topology setup ....................................................... 102 
Table 4.18 - Network Performance & Energy Consumption comparison for 

different DCNs with no failures ................................................................. 104 
Table 4.19 - Notice on notation representation for later use in the result ....... 108 
Table 4.20 - Notice on notation representation on table 4.21-25 .................... 113 
Table 4.21 - Fat-tree network robustness metrics change according to increasing 

LFR .............................................................................................................. 113 
Table 4.22 - BCube-2 layers network robustness metrics change according to 

increasing LFR ............................................................................................ 114 
Table 4.23 - BCube-3 layers network robustness metrics change according to 

increasing LFR ............................................................................................ 114 
Table 4.24- HyperFlatNet network robustness metrics change according to 

increasing LFR ............................................................................................ 115 
Table 4.25 - Three-tier network robustness metrics change according to 

increasing LFR ............................................................................................ 115 
Table 4.26 – The gradient of average nodal degree .......................................... 116 



ix 
 

Attestation of Authorship 
“I hereby declare that this submission is my own work and that, to the best of my 

knowledge and belief, it contains no material previously published or written by 

another person (except where explicitly defined in the acknowledgements), nor 

material which to a substantial extent has been submitted for the award of any other 

degree or diploma of a university or other institution of higher learning.” 

 

 

 

Signature of Candidate: ………………………………………………… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

Acknowledgements 
I would like to express my deep gratitude and thanks to my supervisor, Dr 

William Liu, of the School of Engineering, Computer and Mathematical Sciences, 

Auckland University of Technology. He has a strong sense of responsibility and 

dedication not only for my thesis supporting, but supervising me of great sense of 

logical thinking, which is great fortune to me. In every problem I came across, he 

showed me very easy-to-follow advices and examples which give me the greatest 

help. 

I am also deeply grateful to my co-supervisor, Associate Professor Jairo Gutierrez, 

he can always give me the correct direction to indicate me where I should go. His 

very effective recommendations always inspire me on my thesis forming and 

development. In each NSRG meeting, I always paid my attention to listen to his every 

comment. His logical and “targeted” thinking way is very helpful for me to follow. 

I should like to express my deepest gratitude to Dr. Asad Waqar Malik whose 

kindness and advice have made this work possible. He gave me valuable instructions 

on his simulator: CloudNetSim++. His effective advice, shrewd comments have kept 

the thesis in the right direction. 

I owe my loving thanks to my family. Without their encouragement and 

understanding it would have been impossible for me to finish this work. 

A sincere thank is given to Network and Security Research Group (NSRG) for 

their valuable suggestions and feedback to my research and conference. Without their 

help, I would not think of that I can publish my paper on INFOCOM 2016 

Workshops. 

 

 

 

 

 



xi 
 

Publications 
Ritchie Qi, William Liu, Jairo Gutierrez and Asad Malik, Crash Me If You Can: 

Rethinking Sustainable Data Center Networking From a Topological Perspective, 

2016 Green and Sustainable Networking and Computing Workshop in IEEE 

INFOCOM16, San Francisco, 9-15 April, paper accepted and being invited for 

presentation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xii 
 

Abstract 
A datacenter is a pool of resources such as computational, storage, and servers 

interconnected using a communications network. Data Center Networking (DCN) 

holds a pivotal role, and it needs to be scalable and efficient to connect the growing 

number of servers so as to handle the intensive demands of cloud computing. 

Recently there has been a rapidly growing field of literature on DCNs, but it mainly 

focus on studying how to model and evaluate the resource provisioning and allocation 

algorithms for more effective and efficient resource management of a cloud system. 

Unfortunately, there are not many studies that reveal how the underlying network`s 

topological connectivity can affect the DCNs` performance, in areas such as energy 

consumption and service resilience. There is a saying that ‘it is not what you know but 

who you know’ i.e., algorithm, connectivity, which argues that people get ahead in 

life based on their connections, not on their skills or knowledge, and every day offers 

evidence of this proverb. This case also applies to DCNs. DCNs performance is not 

merely a function of resource provisioning and allocation, but also it is a 

network-wide activity. The structure and ties that link a data center to other data 

centers are also critical factors. 

In this thesis, the researcher has proposed a method for evaluating topological 

metrics (network robustness metrics and node centrality metrics) to identify critical 

nodes and edges in a network so that it measures the overall DCN network 

performance change (throughput, latency, packet drop ratio) according to the faults on 

the network. We have identified the energy changes according to the change of 

internal DCNs; the simulation study showed that the traffic load has a large impact on 

energy consumption. Apart from that, the state of the art for modern DCNs is 

elaborated that depicts the true picture of the current progress in this field where good 

research can actively contribute.



1 
 

Chapter 1 Introduction 
The rise in information service provisioning is a product of user demands, and the 

rapid growth of users` demands in obtaining data has pushed Information 

Communications Technologies (ICT) services to a whole new level. This has led to a 

new evolution of cloud computing services. The prominent characteristic for a cloud 

is its centralized distribution which applies high performance computing to the task it 

receives, and delivers services by sharing resources which are stored inside a cloud 

rather than having local servers to handle applications traditionally [1, 2]. This 

“pay-as-you-go” model has brought huge benefits to customers, but there is an 

enormous cost associated with maintaining its infrastructure. The cost has to be 

considered seriously, as this leads to a threshold level for those organizations 

intending to provide such services. Currently, the well-known cloud service providers 

are Amazon, Microsoft and Google [2]. 

At present, cloud services are still evolving and, as a consequence, are far from 

perfect. Although the cloud services are still running with the aid of network 

infrastructure, cloud performance varies and is still being impacted on by different 

layers. Numerous cloud competitors have made huge efforts to alleviate the 

limitations of clouds, such as working on bandwidth and internal management. Data 

center Networking (DCN) is a vital component of the cloud infrastructure and it is 

being increasingly adopted by organizations to handle the core business and 

operational data that interconnects all the components in the cloud, while delivering 

main cloud services such as data storage and protection. It follows that the 

maintenance work turns out to be extremely significant to cloud service providers. 

Therefore, DCN performance is the top priority for most cloud providers. 

In addition, a robust network topology is essential to comprehensively address 

malicious attacks or nodes and link failures. Anecdotally, many cloud hosting 

providers have stated that they have experienced network failures to varying degrees 

[3]. One company running 100-200 nodes hosts on a major cloud hosting provider 



2 
 

declared that in a three-month period, the provider’s network came across five distinct 

periods of partitions which made some connectivity unavailable between the 

provider’s cloud network and the public Internet, and others isolated the cloud 

network from the provider’s internal managed-hosting network. According to a report 

from Amazon, a total partition between the front-end and back-end servers [4] caused 

a severe network disruption in the Amazon cloud network, and the site’s servers lost 

their connections to all back-end nodes for a few seconds, but several times a month. 

Despite the disruptions being short, they resulted in 30-45 minutes outages and a 

corrupted index for ElasticSearch. As problems escalated, the outages occurred two to 

four times a day. Furthermore, in December 2012, a regular software update on an 

aggregation switch caused instability at Github [5]. The engineers consequently killed 

that particular software agent running on one of the aggregation switches. However, 

this movement stopped other aggregation switches from handling link aggregation 

and spanning tree, resulting in all traffic between access switches being blocked for 

90 seconds. The 90-second stoppage caused failover chaos that led to parts of files 

becoming unavailable, and delays in delivering messages among file servers. 

Recovering those downed file-server pairs took five hours, during which Github`s 

service was critically compromised. 

Network failures cannot be eliminated due to the complicated network system, 

while the failure of failover policy can cause unpredicted consequences. Therefore, a 

high-standard failover plan is necessary to mitigate the probability of failure occurring. 

However, except for targeted systematic recovery, a comprehensive analysis of 

network performance change is also required as a metric in risk assessment and is a 

necessary precaution. Moreover, the energy consumption metric is also a critical 

concern that needs to be addressed as it can be a measurement used to predict 

expenditure of the entire network. 

 



3 
 

1.1 Background 
Cloud computing is a model for enabling convenient, ubiquitous, on-demand 

network access service to a shared pool of configurable computing resources (e.g., 

networks, storage, servers, applications, and services) that can be rapidly provisioned 

and released with minimal management effort or service provider interaction. This 

cloud model is composed of five essential characteristics, three service models, and 

four deployment models. Cloud hosts a variety of applications from consumer, 

scientific and business domains ranging from computing intensive data storage to 

intensive applications. Data centers are infrastructure that hosts cloud applications. 

The trend of growing reliance on online services, and the increasing demand in 

mobile device has already converted many client-based applications into cloud 

services [6]. To guarantee the service level, cloud service providers have to take 

several factors into consideration, delivering cloud service is dependent on the 

network infrastructure, while the services are always delivering in a geo-distributed 

network. Improving such big area networking is not an easy job, so that the main 

emphasis of the work should be elaborated on what they can control. Therefore, data 

centers as the service-originated is paid extra efforts to maintain the service 

provisioning. Server farm placed inside data centers should be interconnected in a 

very efficient way to improve the service provisioning performance. Also, the 

efficient server arrangement and the appropriate placement can largely reduce the 

power consumption and the heat dissipation [7]. 

Moreover, with the sustained growth in computing capacity, the cost and 

operational expenses (OPEX) are showing a sharp increase. Energy consumption has 

been a great concern for data centers’ operators. According to the survey conducted 

by Gartner Group [8], approximately 40% of data center OPEX comes from the 

energy consumed by Information and Communications Technology (ICT) equipment, 

which is composed of computing servers (2/3) and communication links (1/3). The 

remainder 60% energy consumption comes from cooling and power distribution, 

which are 45% and 15% respectively. On the other hand, the cooling cost of heat 



4 
 

generated by data center infrastructure ranges between $2 to $5 million per year [9, 

10]. Therefore the optimized data center architecture plays an important role in OPEX 

reduction [11]. 

1.2 Motivation 
Datacenters are very energy hungry and consume huge amounts of electricity, 

resulting in high operational cost and big carbon foot print to the environment. 

Therefore, Green Cloud solutions are in need that efficiently manages energy 

consumption to reduce operational costs without violating negotiated Quality of 

Service (QoS) and Service Level Agreements (SLAs) in the cloud computing 

environment. In cloud computing, it is a bit complex task to efficiently allocate 

different ICT resources e.g. CPU, servers, storage disks) due to presence of number of 

heterogeneous nature applications e.g. web apps, Content Distribution Network (CDN) 

etc. that have contentious resource allocation requirements. So far a good effort has 

been put to better address the problem of efficiently allocating resources in cloud with 

different level of success. Studies have shown that an idle server consumes almost 70% 

energy to the one that is working at full speed. So far the main focus was to improve 

performance and a lot of efforts are done in this area, but now energy efficiency at 

datacenters needs a serious attention as well. As those datacenters not only consume a 

high amount of energy but also emit 𝐶𝐶𝐶𝐶2 that is also acting as a critical role in 

affecting environment. Apart from network performance, energy efficiency is also 

needed to be considered. If we successfully deliver some good techniques, it will help 

service providers not only save operational cost but will also play a positive role 

towards environment safety. It clearly justifies that it not only contributes positively 

but also help other problems fixed. The main idea is to turn the idle server switched 

off or to sleep mode, with the technique of adjusting CPU voltage/frequency. By this 

way a good amount of energy can be saved but SLAs need to meet at the same time. 

While the current studies on DCNs are mainly focusing on how to develop more 

effective and efficient resource provision and allocation algorithms among data 



5 
 

centers, but there is not much discussion on how the underlying topology change can 

affect the overlay DCNs` performance. 

Except the various DCs` network performance evaluation, another main purpose 

of this thesis is to identify the energy changes according to the change of internal 

DCN. The energy-saving techniques then are analysed in a detailed way. Apart from 

that, the state of art for trendy DCNs is elaborated that depicts the true picture of the 

current progress in this field where a good research can actively contribute. 

1.3 Research Questions 
This thesis is conducted surrounded by three main doubts which are shown as 

follows, Chapter 3 and 4 uses both modelling and simulation techniques to elaborate 

the process of conducting researches, the answers are then summarized in the 

conclusions. 

Q 1: Does the underlying DCN topology have an impact on the cloud network 

performance (QoS & energy)? 

Q 2: What network topological metrics can be used as an index to quantify the 

cloud data center performance in the cases of energy efficiency and QoS? 

Q 3: How to use this metric to determine the critical nodes/links in a data center 

network? 

1.4 Contributions 
In current research, there have not been enough contributions on the concrete 

comparison of various DCNs based on the evaluation of data center network 

performance, such as the network throughput, dropped packet, network latency, nor 

energy consumption estimation. Current research only focuses on either the DCN 

network-aware performance or the energy-aware. For example, in [12], the authors 

evaluate the reliability of popular DCNs (Fat-tree, BCube-3&5 switch ports, 

DCell-3&5 switch ports) by using different network reliability metrics according to 

the Link Failure Rate (LFR) from a topological view. In [13], DCN energy efficiency 



6 
 

is evaluated by analyzing resource allocation techniques in a cloud computing system. 

Also, a comprehensive analysis of green solutions on the basis of current challenges 

that DCNs face is conducted in [14]. 

This thesis is focused on addressing such a shortage in the literature by 

combining the network robustness metrics with network performance and the 

currently popular topic of energy consumption, and proposes a method of evaluating 

node centrality metrics to find critical nodes and edges so that one can measure a 

DCN network`s performance changes according to the faults on the network`s critical 

paths. 

Firstly, a topological comparison has been made between several popular DCN 

structures, including Fat-tree, Three-tier, BCubes (different layers), and HyperFlatNet. 

This thesis compares BCube - 2 layers with 3 layers; and important differences 

occurred between switch port number and switch number. BCube – 2 layers uses far 

fewer switch numbers than 3 layers, which significantly helps the network service 

provider reduce the expenditure cost. Moreover, Fat-tree and Three-tier have two 

similar DCN structures, and this thesis gives a comprehensive picture of both DCN 

topologies. HyperFlatNet is a brand new DCN model in this area; this thesis also 

looks at its network performance and energy consumption in comparison with other 

types of DCN topologies. 

Secondly, a method of evaluating node centrality metrics is proposed to find 

critical nodes and edges so that measures of the DCN network`s performance changes 

according to the faults on the network`s critical paths. Network fault tolerance is a 

metric of measuring the robustness of a network; different DCN architectures have 

various performance responses to network failure. However, such responses can be 

measured or even predicted by determining robustness and node centrality metrics. 

For example, if the first aggregation switch (AS[0]) is determined as the most critical 

node, then the failure of this node can cause the largest network performance change. 

 

 



7 
 

 

1.5 Thesis Structure 

 
Figure 1.1 – Thesis structure 

The thesis structure is depicted in Figure 1.1. The reasons for conducting this 

research are described in the introduction, and the background of current 

Chapter 1 
Motivation and Contribution 

Chapter 2 
Literature Review 

Chapter 3 
DCN Architectures Modelling 
Network Robustness Metrics 

 Energy Consumption Modelling 

Chapter 4 
Simulation Studies 

Chapter 5 
Conclusion and Future work 

Case 1 
Case 1: Generates 

Network Performance 

Evaluation (NPE) 

according to critical 

node determination 

Case 2 
Study different 

topological DCNs` 
Performance vs. 
Link Failure Ratio 

(LFR) 



8 
 

problems is illustrated in the second section, followed by the motivation for doing 

this thesis. The contributions are summed up in the consequent section. 

In Chapter 2, the background of cloud computing and data center networks 

is introduced. Five topological types of data center networks are analyzed for 

their interconnection from a topological aspect. The characteristics for each type 

of data center network are elaborated, which is useful for the data center 

architectures modeling in Chapter 3. Furthermore, energy saving techniques 

adopted in DCNs, including dynamic voltage/frequency scaling (DVFS) and 

dynamic power management (DPM), are presented so that the algorithms for both 

techniques are established in the energy modeling section. In addition, the data 

center traffic characteristics and estimation to set up parameters for simulation 

studies are detailed in Chapter 4. 

In Chapter 3, each data center topological structure is modelled according to 

its characteristics; for example, a 64-server DCN is adopted to enable 

comparisons among five DCN structures. Then, the network graph modelling is 

presented and formulated for network robustness metrics measurement and 

analysis. 

In Chapter 4, there is a discussion around the two case studies that have 

been conducted. Within each case study, several scenarios are implemented for 

more extensive comparison studies. The first case studied the correlations 

between the topological location of nodes and overall network performance and 

energy consumption. While in the second case study, more realistic (random) data 

center traffic is simulated on various DCN topologies, i.e., Fat-tree, Three-tier, 

BCube-2 layer, BCube-3 layers, and HyperFlatNet. The simulation was 

conducted by increasing the failure ratio so that each DCN`s capacity for fault 

tolerance was revealed. 

Chapter 5 summarizes the final findings and also lists the constraints of the 

current work. Then possibilities for future research are discussed. 

 



9 
 

Chapter 2 Related Work 

2.1 Background 
Cloud computing is a natural evolution of the widespread adoption of 

virtualization, service-oriented architecture (SOA), and computing resources which 

are based on networking [15]. Cloud computing is a model for enabling convenient, 

on-demand network access to a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services) that can be rapidly provisioned 

and released with minimal management effort or service provider interaction [16]. 

The National Institute of Standard and Technology (NIST) [17] states that the cloud 

computing resources are located in the data center and those end users can reach to 

data centers through services and infrastructure providers. Therefore, there are three 

components in the cloud system: end users, services and infrastructure providers, and 

data centers. These three parts are connected together by network infrastructure. 

Moreover, there are three types of service models in cloud computing. These are 

“Software as a Service (SaaS)”, “Platform as a Service (PaaS)” and “Infrastructure as 

a Service (IaaS)”. The SaaS is a provider that supplies remotely run software 

packages; it is a pricing model that is offered via the internet to consumers. The PaaS 

is a provider that offers an additional layer on top of virtualized infrastructure. This 

software platform can be deployed in exchange for built-in scalability. The IaaS is a 

provider that allows physical resources to be assigned and split dynamically by 

provisioning capacity in virtualization [18]. 

There are an increasing number of companies that have already transferred their 

business to a cloud platform so as to mitigate the burden of management and 

maintenance of different resources [19–21] and to allow the supplementation of their 

assets. Many industry flagships such as Microsoft, Amazon, Gogrid, vCloud Express, 

Layered Technologies, ENKI Prima Cloud and Flexiant offer the service of resource 

integration, platform provisioning, and infrastructure outsourcing. 



10 
 

Furthermore, cloud computing follows a business model of “pay-as-you-go” 

strategy; the cloud users only pay for the services as they use them and based on the 

service type [22]. In a cloud environment, the ICT resource capacity can be increased 

or removed via the invocation of a Simple Object Access Protocol (SOAP)/Restful 

API. Cloud computing distributes workloads over servers and offers various services 

such as data access, computation, backup, and software and hardware services to 

end-users. The cloud providers guarantee the quality of service to the customers on 

the basis of service level agreements (SLAs) that charge for usage and reservation of 

data center resources. On the other hand, the cloud computing infrastructure has 

critical key issues such as ensuring security and privacy of the hosted ICT resources 

and application data [23], meeting performance demands despite uncertainties, 

dynamic reliability, standardization, fault-tolerance, debugging, scalability, reducing 

operational costs, and carbon emission [24]. 

Reducing carbon emissions for cloud computing data centers has become a 

dominant research topic in both academia and industry. This fact shows that the 

energy supplementation to datacenters for their power supply, cooling, operation, and 

illumination, has been increasing, which contributes dramatically to the total 

operational costs [25]. Reducing power consumption and energy dissipation have 

become significant concerns for making cloud services environmentally developable 

and sustainable [26]. According to the McKinsey report in 2008 [27], the amount of 

electricity usage in global data centers was 1.3 % of total electricity usage worldwide. 

The total estimated electricity cost for data centers in 2010 was $11.5 billion. Energy 

costs in a typical data center doubles every five years. 



11 
 

 
Figure 2.1 – Carbon dioxide emissions as % of world total 

 
Figure 2.2 - Carbon dioxide emissions by country 

 
Figure 2.3 - Emissions from data centers worldwide 

0.2

0.6

0.8

1.0

Data centers Airlines Shipyards Steel plants

Carbon dioxide (CO2) emissions as % of world total, by 
industry

80

142 145

178

Data centers Argentina Netherlands Malaysia

CO2 emissions by country,
megatons CO2 a year

80

340

2007 2020

Emissions from data centers worldwide, 
metric megatons CO2,

CAGR > 11%



12 
 

Figure 2.1 and 2.2 show the Carbon dioxide emissions worldwide (%) and by country, 

Figure 2.3 shows the carbon emission from all datacenter worldwide estimated by 

Stanford University, McKinsey study and Gartner research (CAGR: Compound 

Annual Growth Rate) 

The energy inefficiency in data centers is mostly due to servers using power 

while idle. For example, a server still consumes over 50% of the peak load power, 

even at an extremely low working load of 10% CPU utilization [28]. The cloud 

service providers urgently need powerful energy efficient management of ICT 

resources in data centers due to several reasons [29]. First, the increasing electricity 

costs for supplying ICT resources and cooling systems has exceeded the purchase for 

ICT hardware. Second, increased energy usage and inefficient heat dissipation 

systems have a great influence on the system reliability and scalability of data center 

hardware. Finally, it is an environmental issue, as mentioned above, as governments 

are now seeking to regulate data center power usage. 

As researched, there are four well known approaches for designing energy efficient 

cloud computing datacenters:  

(a) Infrastructure of high-intensive maintenance to lower the need for equipment 

replacement e.g., avoid server breakdown by maintaining safe operation 

temperature. 

(b) Increase equipment utilization (reduce the time servers are idle). 

(c) Flexibly allocate resources in an infrastructure to reduce the energy dissipated. 

(d) Minimize self-management and flexibility as the cost is spread across a number of 

datacenters [30]. 

To elaborate, some recent research has investigated the optimization of energy 

utilization by monitoring the performance of virtualized ICT resources (servers) and 

hosted workload under variable CPU frequency [31, 32]. Other approaches have 

focused on techniques of voltage adjustments by switching off unnecessary resources 

e.g., a display monitor, processors speed control, and using hibernate or sleep mode 

[33–35]. However, the energy saved by scaling down the CPU voltage is far less than 



13 
 

powering off a physical server. Cloud computing is a prototype shift from the 

outdated uniprocessor computation approach of development to that of an accessible, 

multi-tenant, and global infrastructure. 

2.1.1  Cloud Computing Network Architecture 

The cloud computing network architecture occupies a number of various 

elements in different layers. The cloud network architecture is established based on 

the data center, which is the cloud infrastructure that accounts for the cloud service 

provisioning. The data center core layer [36] is responsible of maintaining the 

connections to the remaining elements in a data center and the public Internet. While 

the second layer switches (aggregation) is mainly responsible for distributing the 

incoming traffic from the core layer to the lower service layer, they also transmit the 

aggregation of the dispersed traffic from the downward service layer. In the data 

center service layer, devices such as a router, Firewall, Ethernet switch, Fiber channel 

switch, Server load balancing (SLB), and Volume Based Billing/Control (VBB/VBC), 

are involved [37]. The Firewall permits or denies the incoming network transmissions 

based on a set of rules for the purpose of guaranteeing the data center`s internal 

security; it is, a shield for protecting the servers and storage. The SLB distributes the 

workloads to each server and the VBB/VBC is designed for traffic volume billing. 



14 
 

 
Figure 2.4 - Cloud computing network architecture example 

As can be seen in Figure 2.5, network nodes in different layers construct a cloud 

computing network. The data center uses one or more core routers to connect the 

Internet and an aggregation layer aggregates the services’ layer devices. The services’ 

layer is a complex layer where the application devices such as Firewall, SLB and 

VBB/VBC are involved. All devices in the services’ layer connect to the aggregation 

layer and are routed by the aggregation device. The access layer includes virtual 

machines, servers and storage. The access layer offers physical connectivity among 

servers and the network. This network architecture and configuration are quite 

complex, and the operation cost is very expensive. End-users are able to submit their 

service requests flexibly. The network architecture may be different based on each 

Data Center Core Layer

Internet

Data Center Aggregation Layer

Firewall

SLB

VBB/VBC

Servers & Storages

VMVMVM

Virtual Access

Access layer



15 
 

service. Some cloud users can choose the SLB service and Firewall service while 

others may choose the billing service. The cloud computing network architecture 

could be varied based on different types of service provisioning. 

2.2 Overview of Data Center Network 
A data center is the pool of servers linked together in one place in the cloud. It 

also has layers of networking that contain routers and switches connected to servers 

[38].  The increasing number of cloud users creates a challenge in the design of data 

center networks. This increase makes all communications busy in the data centers. 

This leads to effects on data centers in terms of performance and energy consumption 

of the system. 

The concept of cloud computing is an immediate extension of many well 

researched domains such as virtualization, distributed, utility, cluster, and grid 

computing. According to Google’s Whitepaper [39], the five key characteristics of 

cloud computing are task centric, user centric, intelligence, powerfulness, and 

programmability. Cloud computing data centers employ virtualization technologies 

that allow scheduling of workloads on a smaller number of servers that may be better 

utilized, as different workloads may have different resource utilization footprints and 

may further differ in their temporal variations. 

2.2.1  Performance Trend 

According to N. Gorti [40], the demand for computing performance is increasing 

at an unprecedented speed which is prompted by realistic reasons. The rise of 

software complexity motivates hardware designers to provide acceptable quality of 

service (QoS), such as latency, response time, and throughput. Organizations are 

badly in need of computing capacity for scientific missions with the goal of dealing 

with ever-challenging large problems at high speeds; for example, the genome 

sequencing, weather predicting, and molecular dynamics experiments. These tasks 

require systems equipped with fast processing powers in order to be completed within 



16 
 

an acceptable timeframe. Similarly, cloud computing must be provisioned by gathered 

computing ability to sufficiently offer diverse services to customers; examples are 

SaaS, PaaS, and IaaS. Furthermore, with the growing demand for “big data” service, 

many organizations are trying to adapt their systems to cater to the needs of flexibly 

manipulating such a service. As a result, the computing demand for data mining is 

increasing at an unprecedented pace. At the same time, the amount of data generated 

in such a process is growing in an unpredicted speed. IBM reported [41] that more 

than 90% of the data in this world has been generated within the past two years. 

To satisfy the growing demand for outstanding performance, an increasing 

amount of transistors has become the trend when manufacturing the cores. On the one 

hand, chips have become more and more complicated in order to make the cores 

much more powerful for computing tasks. On the other hand, the number of cores is 

increasing for each computing node, while the number of computing nodes in a 

computing platform is also increasing. Figure 2.5 [41] and 2.6 [42] show the 

consequences of scale-in and scale-out respectively in the IT industry over the last 14 

years. In particular, we can observe that the industry has been consistently 

outperforming Moore's law-based predictions starting from 2000. 



17 
 

 

 Figure 2.5 – Transistor count from Year 1971 to 2011 

 
Figure 2.6 – Number of cores in system from Year 2000 to 2014 

 



18 
 

2.2.2  Power Consumption Trend 

As a central issue of datacenters, the energy draw for datacenters can be ranging 

from kilowatts for a rack of servers to several tens of megawatts for large 

infrastructure. As stated in [43], some facilities even have power densities more than 

100 times that of a typical office building, so that the electricity costs are a dominant 

operating expense for those facilities and occupy over 10% of the total cost of 

ownership (TCO) of a datacenter [44]. The cost of power for the global datacenter had 

already exceeded the cost of the original capital investment by 2012 [45]. 

Based on the theory of semiconductor scaling [46], power consumption has a 

decreasing rate of U^2 with each new generation, where U is the reduction factor of 

voltage per transistor. Even though the new generation of semiconductor 

manufacturing technology facilitates the reduction of power consumption, the 

increasing transistor count trend nevertheless pulls the power consumption up anyway, 

particularly when increasing the computing nodes in a computing platform. 

According to a survey conducted by Intel [47], the powering and cooling of 

servers is the primary factor which limits the growth of the server industry to meet the 

current global demand. Figure 2.7 shows that 59% of the surveyed group agrees that 

power consumption is the bottleneck in the development of the server market. In the 

embedded and personal computing domain, the increase in power consumption leads 

to decreased battery life and discomfort in device handling. It also necessitates the 

design of aggressive cooling mechanisms and expensive heat sinks [48-50]. 



19 
 

 
Figure 2.7 – Expenditure of data center components surveyed by Intel 

2.3 Data Center Network Topology 
A datacenter is the pool of servers linked together in one place in the cloud. It 

also has layers of network that contains routers and switches connected with servers 

[50].  The number of cloud users has increased over the last few years, which creates 

a challenge in the design of datacenter networks. This increase makes all 

communications busy in the datacenters. This leads to effects on datacenters in 

performance and energy consumption of the system. This creates a challenge in the 

design of datacenter architecture and communication protocols. Therefore, there 

should be topological solutions to increase the performance and reduce energy 

consumption of the datacenter. 

2.3.1  Three-tier 

Three-tier DCN is the most commonly known for the current cloud datacenter 

architecture which contains three layers of switches, including core, aggregate and 

access switches from the top to the bottom [51]. The core layer allows for multiple 

aggregation switches to connect together, while aggregation layer switches are 

responsible for connecting access layer switches between each other. The access layer 

31%

28%

17%

10%

9%

6% Available Power

Cooling Capacity

There are no limiting
factors
Floor Space

Funding

Other



20 
 

contains the connections between the pool of servers and access switches. The core 

layer connects the layer 2 aggregate switches with the network outside the DCN, and 

the aggregate switches can be easily added due to their inexpensive character and 

transitive role, and they are also able to support large number of servers (over 10,000) 

[1, 51].  

The three-tier network topology is easily set up and uses less network 

components which lower the cost significantly on hardware expenditure [1, 52]. 

However, the three-tier DCN has limit capacity because of the cost issue which is 

reflected in link oversubscription, and growing demand for services has increased 

dramatically in recent years. It lacks scalability, energy efficiency, and cross-sectional 

bandwidth. 

 
Figure 2.8 – Three-tier DC architecture example 

2.3.2  Fat-tree 

Fat-tree DCN is the most widely adopted network according to Al-Fares [52]; it 

follows the hierarchy architecture and contains a core, aggregate and access layers. 

This structure is composed of k pods, where in each pod there are (k/2) 2 servers, k/2 

access layer switches, and k/2 aggregate layer switches. The core layers contain (k/2)2 

core switches, where each of the core switches is connected to one aggregate layer 



21 
 

switch in each of the pods. The Fat Tree DCN has advantages in strengthening the 

ability of oversubscription and cross section bandwidth in contrast to the three-tier 

DCN. Fat-tree DCN has a larger capacity, but as a result, increases the number of 

components including both switches and links, which pushes organizations to spend 

more on maintenance. 

 

Figure 2.9 – Fat-tree DC architecture example 

2.3.3  BCube 

BCube [53] topology is a datacenter built inside shipping containers and 

represents a brand-new DCN shape. It has been proposed to be used as a Modular 

Datacenter (MDC), which simplifies the installation procedure and implements 

physical migration, in comparison to conventional datacenters. Datacenter migration 

facilitates energy saving, because shipping datacenters to regions promotes strategic 

positioning, and allows for placement close to regions with high service demands. As 

MDCs are built in sealed containers with a high equipment density, they need to be 

highly reliable [54]. Furthermore, the equipment has to be moved under control 



22 
 

because failure rate is high when the hardware is not well-protected during the 

shipping process. 

 
Figure 2.10 – BCube-2 layer DC architecture example 

2.3.4  HyperFlatNet 

HyperFlatNet is a recursive DCN topology which was proposed by [55]. 

HyperFlatnet is formed by two layers in which the first layer contains n servers 

connected by one n-port switch; the second layer consists of n^2 first layers. Hence, 

the total n^3 servers can be taken as n^2 clusters of n servers. Moreover, different 

servers can be represented as a n^2 ∗ n matrix where the row and column indexes 

correspond to the cluster number (i) and the index in the cluster (j). The author 

proposes a connection algorithm named Linked Clusters Maximization (LCM) to 

increase the number of directly connected clusters and reduce the number of 

intermediate hops used to transmit the packet to the destination. A 64-server 

HyperFlatNet DC architecture is demonstrated in Figure 2.11. 



23 
 

 
Figure 2.11 – HyperFlatNet DC architecture example 

2.3.5  Discussion 

Table 2.1 summarizes the four DCN architectures. Both Three-tier and Fat-tree 

are Clos networks and have high transmission capacity, and BCube and HyperFlatNet 

are recursive networks which are highly reliable. 

 

 

 

 



24 
 

DCN type No. of 
Layer 

No. of 
Switch 
type 

Architectural 
type 

Characteristics Cost level 

Three-tier 3 3 Clos network, 
k-ary tree 

High 
transmission 
capacity 

Low cost 

Fat-tree 3 3 Clos network, 
k-ary tree 

High 
transmission 
capacity 

Low cost 

BCube 2 2 Recursive 
network 

High equipment 
density, high 
reliable 

Cost 
effective 

HyperFlatNet 3 2 Recursive 
network 

High 
performance 

Cost 
effective 

Table 2.1 – Comparison of various DCN architectures 

2.4 Traffic Load 
When the cloud user accesses the services such as instant messaging, content 

delivery, and social networking by cloud applications from datacenters, a set of 

servers then generates different levels of workloads that are usually modelled as a 

sequence of jobs which can be divided into a set of tasks. The tasks are either 

dependent on the execution of other tasks, or independent. Furthermore, by the nature 

of grid computing applications such as biological, climate, or financial modelling, the 

jobs are usually computationally intensive, which needs high workloads to minimize 

the time required for the computation. The servers are Map-Reduced to accomplish 

this goal. Usually, the time taken to compute may vary by weeks or months when 

dealing with a large sequence of jobs. 

In cloud computing, the incoming requests generated are always less 

computationally intensive, but with a strict completion deadline based on the SLA. 

The majority of cloud computing applications usually generate three types of jobs, 

which are as follows: 



25 
 

2.4.1  Computationally Intensive Workloads (CIWs) 

This kind of job always requires High-Performance Computing (HPC) that aims 

to solve computation-intensive problems which load computing servers considerably 

[11], e.g., huge data analysis which needs high computational ability from servers.  

Furthermore, CIWs also can be clustered into low data transferring (LDT) and high 

data transferring (HDT); the LDT requires less data transfers on the network so there 

is a very low probability of causing network congestion. In this case, the idle switches 

are put into sleep mode which reduces the energy consumed by the datacenter 

network, while the HDT requires a higher-leveled transmission network than LDT 

because it tends to produce network congestion. In this case, DVFS takes more effects 

than DPM to save energy because all network components are in full load when the 

shutdown of devices is not available. 

2.4.2  Data-intensive Workloads (DIWs) 

This type of job puts a heavy load on data transfers but produces almost no load 

at the computing servers [11]. For instance, the loads generated by the applications of 

video transferring or large file sharing from one simple user requires no computing 

capacity, but high demand for the interconnection of the DCN, so congestion always 

occurs through communication links for managing such jobs. Furthermore, the packet 

drop becomes much more common when the switches are dealing with DIWs. The 

DIWs always reflect the bottleneck of the DCN that must be deal with high resilient 

and sustainable DCN architecture to resolve the congestion issue so as to limit the 

packet drop rate to an acceptable range. 

2.4.3  Balanced Workloads (BWs) 

BWs are the jobs targeting applications that have both computing and data 

transfer requirements [11]. The computing servers are in load proportionally to the 

communication links. The average load on servers therefore equals the average DCN 

load with this type of job. BWs can model such applications as geographic systems 



26 
 

that take both large data transfers and heavy processing into account. In this thesis, 

this type of load is being simulated and considers both the server load and the 

networking load. 

2.4.4  Workload specifications in the Simulation 

The workloads in the simulation were required executed in two main parts: (a) 

communicational component and (b) computing components. The communication 

components are mainly switches and links, which are defined as the amount and the 

size of data transfers that are performed prior, during, and after the workload 

execution. The workloads for communicational components are defined in size of 

bytes. The workload size defines the tasks as divided packets in bytes that are 

transmitted between servers and switches after the execution of computation in a 

server. 

The computing servers are primarily defined as the amount and the ability of 

computation in units of packet bytes and server CPU mips respectively, which has to 

be executed within the limit of a given deadline in seconds. The adoption of the 

deadline scheme aims at introducing the QoS constraints specified in SLA.  

The workload can be specified into several parameters as follows: the size of the 

workload refers to the amount of bytes being transferred out of servers upon task 

completion after computing, CPU mips refers to the requirement for completing the 

computation of the task, deadline refers to the SLA specification for each task, output 

in this stage means the amount of data in bytes that sent out of the server upon task 

completion, intercom refers to the amount of data bytes to be transferred to another 

server, CurrProcRate refers to the current processing rate of the task which is 

determined by the server, and ExecutedSince refers to the last instance of task 

execution. 

 

 



27 
 

Workload Parameters Workload Specification 

Workload size amount of data in bytes sent out of the 

server upon task completion 

CompAmount Amount of computing 

CPU mips computational requirement of the task 

Deadline task deadline 

Intercom amount of data in bytes to be 

transferred to another server 

application 

CurrProcRate current processing rate of the task 

(determinded by the server) 

ExecutedSince last time instance of task execution 

Table 2.2 – Workload specification applied in case study 

2.5 Data Center Traffic Characteristics 
Traffic in the datacenter is commonly flowing in three directions [56]. 

“North-South” traffic is usually flowing between end-users and servers, which is 

primarily comprised of traffic that enters and exits the datacenter, and generally 

contains commands, queries, and specific data either being retrieved or stored. 

Meanwhile, the “East-West” traffic, flows between DC nodes and applications that 

never leave the DC. It is primarily composed of communication between applications 

hosted on physical servers and virtual machines, coupled with virtual machine (VM) 

to VM, and physical to physical interactions within the DC. As the name implies, 

“Inter-DC” traffic is largely comprised of resource optimization and disaster recovery 

requirements between multiple DCs, and between DCs and the private/public cloud. 

Cisco’s Global Cloud Index [57] indicates that, the dominant volume of traffic in 

the DC traverses in an “East-West” direction (76%), followed by “North-South” 



28 
 

traffic (17%), and finally, inter-DC traffic, which is currently only at 7%, but is 

gradually growing. Moreover, in campus networks, traffic is primarily ( > 90%) 

“North-South” traffic. 

2.6 Energy Efficiency of Data Center Network 

2.6.1  Dynamic Voltage and Frequency Scaling 

Reducing energy consumption is an important research topic and always a 

challenge for cloud computing organizations. Dynamic voltage and frequency scaling 

(DVFS) is the most common method in power management to deal with the challenge, 

where the supply voltage and frequency can be scaled dynamically within a computer 

component in order to achieve reduced energy consumption. Dynamic Frequency 

Scaling (DFS) or CPU throttling is mostly a power saving technique in computer 

architecture where the frequency of a CPU can be automatically adjusted for the 

purpose of conserving power and reducing the amount of heat produced by the chip. 

Dynamic frequency scaling by itself can rarely save switching power, whilst Dynamic 

Voltage Scaling (DVS) is always used in conjunction with DFS in order to conserve 

the power, because the frequency of a chip is normally run at an operated voltage. 

 

Figure 2.12 – Non-optimized task performance vs. Optimized task performance 

The dynamic power (switching power) dissipated per unit of time by a chip is 

expressed as C × 𝑉𝑉2 × 𝐴𝐴 × 𝐹𝐹, where C is represented as capacitance being switched 



29 
 

per clock cycle, V is the amount of supply voltage in the unit of time, and A reflects 

the Activity Factor [58] which indicates the number of switching events undergone by 

the transistors in a chip, and f is the switching frequency [59]. The voltage required 

for stable operation is determined by the frequency at which the circuit is clocked, and 

can be reduced if the frequency is also reduced [60]. Increasing voltage (overvolting) 

and frequency (overclocking) allow an increase in performance such as the task 

calculation time because the number of instructions a processor can issue in a given 

amount of time is increased, but that is a power hungry action because the power 

dissipates in proportion to the square of voltage. Lowering voltage (undervolting) and 

processor clock frequency (underclocking) is always done with the goal of reducing 

power while keeping the performance is always a consisting researching topic. For 

instance, microprocessors such as AMD [61] and Intel [62] allow the CPU speed to be 

set dynamically. 

However, DVFS has been studied for the target of minimizing power 

consumption. Okuma et al. [63] deployed a few variable voltages to verify that 

voltage scaling technique is more effective than just stopping the power supply for the 

components which are idle [63]. Similarly, DeLangen and Juurlink [64] implemented 

a leakage-aware multiprocessor scheduling algorithm in non-peak performance with a 

loose task deadline environment to investigate techniques of DVS, and processor 

shutdown. The results showed that the total energy consumption can be reduced up to 

46% for tight deadlines (1.5× the critical path length) and by up to 73% for loose 

deadlines (8× the critical path length) compared to an approach that only employs 

DVS. Chen et al. [65] lowered the voltage for non-critical execution tasks without 

impact the execution time in a mesh network by using the DVFS technique. They 

reflected that an integrated CPU/communication link voltage scaling method produces 

much better results rather than only CPU voltage scaling and only link voltage scaling, 

and they achieved a 13% energy saving over CPU voltage scaling and 17% energy 

savings over communication link voltage scaling. Wang et al. [66] studied the slack 

time for non-critical jobs, by extending their execution time and reducing the energy 



30 
 

consumption without increasing the task's execution time. Additionally, the Green 

Service Level Agreement was considered. Similarly, Kim et al. [67] proposed 

energy-aware scheduling algorithms based on DVS for bag-of-tasks applications 

within the limit of deadline requests by application users. 

2.6.2  Dynamic Power Management 

Dynamic Power Management (DPM) [68] refers to a technique of selective 

shutdowns of systems for which components are in idle status or underutilized. It is 

considered to be the most effective method for mitigating the power dissipation, but 

deploying such a technique also incurs performance degradation due to the frequent 

shutdowns and wakeups. Therefore, the design of such technique has to be aimed at 

maximizing the power saving while maintaining performance within acceptable 

limits. 

Power management is a prediction problem; it seeks to forecast whether an idle 

period will be long enough to compensate for the overhead of power state changes. As 

reported in [69-70], although a server stays in an idle state, it also consumes around 

66% of energy compared to its full load energy consumption, which comes from the 

fixed component that is not related to the frequency but also consumes power. 

According to [71], the minimum length of time for a server staying in an idle period is 

referred as the break-even time (Tbe), and the state transition delay (To) consists of 

shutdown delay (Tsd) and wake-up delay (Twu); the energy consumed during this 

period is Eo. The power consumed in working and sleeping states is Pw and Ps. 

Figure 2.13-(a) represents the working state of the server; Figure 2.13-(b) 

demonstrates the shutdown state of the server. The break-even time makes energy 

consumption in both cases equal. 

That is to say, the total energy consumed of a server that in working state going 

through the minimum time length to save power is 

Pw × Tbe. 



31 
 

While the total energy consumed of a server that in sleep mode with the 

minimum time length to save power is 

Eo + Ps × (Tbe - To). 

Therefore, 

Pw × Tbe = Eo + Ps × (Tbe - To). 

So that  

Tbe = (Eo - Ps ×To)/ (Pw - Ps). 

The break-even time has to be larger than the transition delay; therefore, 

Tbe = max[(Eo - Ps × To)/(Pw - Ps),To]. 

 

Figure 2.13 - (a) Server with working state, (b) Server with shutdown and wake-up 
state 

DPM policy will only take effect when the server idle time period is longer than 

Tbe, so the primary goal of any DPM policy is to make the device sleep for at least 

Tbe. Otherwise, it might cause more power to be consumed than the always ‘on’ state. 

The common DPM policy can be represented as Timeout Policy, Predictive 

Policy, and a mixture of both policies. 

A. Timeout Policies 

Timeout is the most conventional policy that is used in DPM and which uses a 

timeout value of τ. The device is put into sleep mode if it is kept idle for more than τ. 



32 
 

The basic mechanism is that if the device remains idle up to τ, then it should further 

stay idle for at least Tbe. However, this policy wastes energy while within the value τ. 

In [72], the authors adopted a fixed timeout τ that equals the Tbe for 

accomplishing the target of DPM. Adaptive timeout policies dynamically modify τ 

based on certain parameters. In [73], Douglis et al. adopted an adaptive timeout policy 

to dynamically adjust τ according to the ratio of performance delay and sleeping time 

from the previous idle time period. If the ratio is high, τ is increased, but when the 

ratio gained is too high, it decreases on the contrary. The maximum and minimum 

values for τ are considered to forestall the policy being either too aggressive or 

conservative. 

B. Predictive Policies 

Another DPM policy applied a predictive algorithm to predict the length of the 

upcoming idle period. The prediction would generate a decision on whether to put the 

device into sleep or not, which makes use of the comparison of greater or less than the 

Tbe metric. In [74], Hwang et al. used an exponential average scheme to predict the 

upcoming idle period length by taking an exponential average of the predicted and 

actual lengths of the previous idle period. 

Chung et al. [75] proposed another predictive policy that applies an adaptive 

learning tree to conduct analysis on the basis of prediction confidence level (PCL) to 

make predictions on the sleeping period against on the Tbe. The tree stores the 

sequence of idle periods into tree nodes while the PCL is stored in leaf nodes 

associated with the respective sequence. A finite state machine is applied to update 

the PCL, and if the prediction is correct, then the FSM updates the PCL as increased, 

conversely, it recorded PCL as decreased if the prediction was incorrect. The 

advantage of this scheme is that it has the capability of managing multiple power 

states. 

In [76], Lu proposed a DPM policy which mixed adaptive timeout and predictive 

schemes. The policy makes the sequence of user requests into clusters named sessions. 



33 
 

The current session length is predicted on the basis of predicted and actual lengths of 

the previous sessions, which uses a similar scheme to [74]. The session length is then 

decreased by an adjustment factor if no service requests are receive, instead of 

immediately issuing a shutdown command. In contrast, if there are requests received, 

the session length is increased by the same adjustment factor. A shutdown command 

is issued when the device has been in idle state long enough compared to the 

predicted session length. 

Compared to the timeout policy, the mixture of timeout and predictive policy can 

solve the problem of wasting energy while waiting for the timeout to expire but it 

highly depends on the assumption of service requests the user sends. However, both 

policies only target maximizing the energy savings and do not take performance loss 

into account. 

2.7 Data Center Network Failures 
Datacenter networks are subject to power failure, misconfiguration, firmware 

bugs, topology changes, cable damage, and malicious traffic. Their failure modes are 

accordingly diverse. 

Fog Creek Software suddenly lost access to servers during a regular network 

reconfiguration maintenance. As stated in [77], a network loop occurred among a set 

of switches. The gateways controlling access was isolated from the switching 

management network, producing a brain-split scenario. Neither system was accessible 

because of a multi-switch BPDU flood. However, the flood should not have happened 

on the basis of the Bridge Protocol Data Unit (BPDU) standard; this deviation 

resulted in two hours of total service unavailability. 

On April 21, 2011, Amazon Web Services (AWS) suffered service unavailability 

for more than 12 hours [78], which caused hundreds of high-profile websites to go 

offline. Moreover, Amazon engineers tried to transfer the traffic away from a main 

router in eastern US, but the improper routing policy made many its network nodes 

within the affected zone totally isolated from other nodes within the cluster. Unlike a 



34 
 

normal network interruption, this change disconnected both the primary and 

secondary networks simultaneously, leaving the affected nodes completely isolated 

from one another. This failure also caused an outage in Amazon’s RDS (Relational 

Database Service). When one “Availability Zone” (AZ) fails, RDS is designed to 

failover to a different AZ; however, 2.5% of multi-AZ databases in the eastern U.S. 

failed to failover because of a bug in the failover protocol. This correlated failure 

caused widespread outages for clients relying on AWS. For example, Heroku reported 

between 16 and 60 hours of unavailability for its users’ databases. 

To implement failures concretely, each type of fault can be presented as component 

failures in a DC, where component failure is classified by link failure, server failure, 

rack failure, and switch failure. Figure 2.14 depicts the example of the fault types in a 

BCube DCN, where with under-redundant connections, a link failure cannot 

effectively stop the traffic between source node and destination node, and traffic can 

be still switched from an alternative route. A server failure will immediately isolate 

the server from the rest of the network. A switch failure can cause significant 

influence on the network, as shown in Figure 2.14. The minimum hop count among 

servers in the second Cube will be increased from two to six which will largely 

increase the average network latency. On the other hand, the Cube failure causes an 

unimagined consequence because eight links will be totally disconnected which 

involves a total failure of a switch. 

 
Figure 2.14 – DC component failure example 



35 
 

Chapter 3 Topological Modelling 

and Metrics 
 The modelling and simulation techniques are used to answer my research 

question. Both techniques are commonly used in networking due to the difficulties of 

experimenting with real configurations. The DCN architectures are modelled and 

studied by using CloudNetSim++ (an extension of OMNeT++) cloud simulator, as 

well as Gephi network analysis toolkit. 

3.1 Network Modelling and Analysis Tools 

3.1.1  CloudNetSim++ simulator 

OMNeT++ [79] is an extensible, modular, component-based C++ simulation 

library and framework, with strong GUI support primarily for building 

communicational network simulation. It implements C++ language and offers 

powerful simulation class libraries. In OMNeT++, a network model consists of nested 

entities in hierarchical order which called modules. Simple modules (e.g., links, server) 

can be grouped into a compound module, and a network module is normally 

composed of a mixture of compound modules and simple modules. 

 
Figure 3.1 - Simple and compound modules [80] 



36 
 

Modules can communicate via message passing which is the central 

communication mechanism of OMNeT++, where the messages contain strictly 

complicated data structures. Messages can be sent either directly to destination 

addresses from source addresses or along a predefined path, through gates and edges, 

which can be assigned properties like bandwidth, delay and length, and error rate. 

Modules can have parameters which are used to customize module behavior, create 

flexible model topologies and for module communication as shared variables. The 

user must provide the lowest level module in the hierarchy, containing the algorithms 

in the model. 

CloudNetSim++ [81] is a modeling and simulation toolkit to facilitate simulation 

of distributed datacenter architectures, energy models, and high speed data centers' 

communication network. CloudNetSim++ [82] is the first cloud computing simulator 

that uses real network physical characteristics to model distributed datacenters. 

CloudNetSim++ provides a generic framework that allows users to define Service 

Level Agreement (SLA) policy, and schedule algorithms and modules with ease for 

different components of datacenters without worrying about low level details. The 

CloudNetSim++ is designed to allow researchers to incorporate their custom 

protocols and applications, and to analyze under-realistic datacenter architectures with 

network traffic patterns. CloudNetSim++ works with the INET framework, on the 

basis of OMNeT++. Each datacenter can be regarded as a network module which is 

composed of compound modules and simple modules, so messages can be transmitted 

via modules inside a datacenter, between datacenters, or with clients. 



37 
 

 
Figure 3.2 – CloudNetSim++ simulator higher architecture [83] 

3.1.2  Gephi Network Analysis Tool 

Gephi is an open-source network analysis and visualization software package 

written in Java on the NetBeans platform,[84] initially developed by students of the 

University of Technology of Compiègne (UTC)[85] in France. It adopts a 3D render 

engine to display large networks in real-time and to speed up the exploration of such 

networks. The flexible and multi-task architecture brings new possibilities to work 

with complex data sets and produces valuable visual results. It provides easy and 

broad access to network data and allows for spatializing, filtering, navigating, 

manipulating and clustering. Gephi [86] is an interactive visualization and exploration 

platform for all kinds of networks and complex systems, with dynamic and 

hierarchical graphs. It gives researchers the ability to see its data from a new angle. In 

Gephi, a network consists of two components: a list of the vertices (nodes, in Gephi) 

composing the network, and a list of the relations (edges, in Gephi). Gephi provides 

the metrics of robustness of a network such as node degree, betweenness centrality, 

closeness, diameter, clustering coefficient, PageRank, community detection 

(Modularity), random generators, and shortest path. 



38 
 

 
Figure 3.3 – Gephi network analysis tool: Modular architecture [101] 

3.2 DCN architectural models 
In this work, each DCN implemented a 64-server architecture, for the sake of 

being able to compare topologies. The link error rate was set as 0.8%, and various link 

bandwidths were adopted in the range from 1Gigabit/second to 100Gigabit/second. 

There was always one switch that was responsible for connecting outside the 

datacenter, for example, the core switch in Three-tier and Fat-tree; the upper layer 

switch in BCube; and the external switch in HyperFlatNet. 

3.2.1  Three-tier 

The conventional Three-tier topology follows a tree-based architecture which has 

three layers, i.e., core layer, aggregation layer, and access layer. The core switches are 

responsible for connecting the network outside the DC, and also the aggregation layer. 

The aggregation layer switches the link between the upper core layer switches and the 

access routers, where access routers are normally placed inside the Rack to connect a 

set of servers. 



39 
 

 
Figure 3.4 – Three-tier Rack example 

The conventional Three-tier DC belongs to the type of “stable” architecture, 

where “stable” equates to more connections in comparison to the other tree-based 

topology, the Fat-tree. The prominent difference with Fat-tree from a topological 

aspect is that the number of connections between the core layer and the aggregation 

layer is doubled and follows a “connect all-to-all” pattern as shown in Figure 3.5. 

 
Figure 3.5 - Three-tier model – more robust with “connect all-to-all” 

Each core switch connects all aggregation switches so that the in-between links 

are fully connected. This characteristic demonstrates a highly average nodal degree 

whose features are more robust as described in the following robustness metric 

section. Moreover, the interconnections between aggregation layer and access layer 

for Three-tier DCN are diverse; in this thesis, the same connections as with Fat-tree 

architecture were implemented. 



40 
 

 
Figure 3.6 - Three-tier: same connections with Fat-tree which between aggregation 

layer and access layer 

The tree-based DCN architecture can be modelled as two modules. The Three-tier 

model is composed of a Rack module and an internal Three-tier module, where the 

Rack module consists of one access router with a set of servers connected, and the 

internal Three-tier module consists of the internal DC connections. Each of core 

switches links with each of the aggregation switches, while the connections between 

the aggregation layer and the access layer are identical with the one in Fat-tree. 

3.2.2  Fat- tree 

According to the architecture of Fat-tree DC, the tree-based architecture which 

highly relies on the server Rack assembled can be modelled as sectionalized modules, 

and the rack can be regarded as an entirety which involves servers placed inside with 

the edge router connected. The rest of the architecture can be referred to as the 

interconnections among core switches, aggregation switches, and the Racks.  

Hence, the entire Fat-tree DCN can be formed by Fat-tree internal modules and 

Rack modules, where the computing servers and edge routers are included inside a 

Rack module. For each Rack, there are “N” computing servers connected to only one 

edge router which is connected with the aggregation layer outside the Rack. In a 

64-server Fat-tree architecture, four core switches are included and there are four pods 

in total, where for each pod, there are two Racks (each Rack has one edge router), and 

two aggregation switches. Hence, there are four core switches connected with eight 

aggregation switches, however, the number of links which connects between the core 

layer and aggregation layer is half reduced in contrast with the conventional 



41 
 

Three-tier architecture so as to mitigate the link oversubscription issue. Compared to 

the “connect all-to-all” pattern, each core switch in Fat-tree only connects half the 

number of aggregation switches, where the first half of the numbers of core switches 

connect to the first aggregation switch in each pod, and the second half of the 

numbers of core switches connect to the second aggregation switch in each pod, 

shown in the following figure. 

 
Figure 3.7 – Fat-tree: interconnection of core and aggregation layer 

The connection between aggregation layer and access layer complies with the 

“connect all-to-all” pattern where each aggregation switch is connected to each access 

switch in each pod. 

 
Figure 3.8 – Fat-tree: interconnection of aggregation and access layer 

In each Rack, there are 8 computing servers being connected by 1 access router. 

 
Figure 3.9 – Fat-tree: interconnection of access router and servers 



42 
 

3.2.3  BCube architecture modelling 

BCube DC architecture complies with the shipping container principle that 

applies a “servers place in a Cube” method to achieve the goal of “portable”. 

Similarly, a Cube module is much like a Rack module, where a Level 0 switch is 

connected with a set of servers. In fact, Cubes are always considered as Level 0 (L0) 

of a BCube DC, whereas in an upper layer, Level 1 (L1) switches are placed above 

the first level. Normally, a typical BCube consists of the same number of L0 switches 

and L1 switches. The number of Cubes is considered to be the same as the number of 

switch ports. Hence, in a 64-server BCube with two layers, eight servers are 

connected with each L0 switch, where there are eight for both L0 switches and L1 

switches. Due to BCube is being a server-centric architecture, instead of a L1 switch 

being connected to a L0 switch, the ith L1 switch connects to the ith server in each 

Cube. 

 
Figure 3.10 – BCube-2 layers interconnection 

3.2.4  HyperFlatNet architecture 

According to the property of HyperFlatNet, HyperFlatnet has two layers where 

the first layer has n servers and only one n-port switch, and the second layer consists 

of 𝑛𝑛2 first layers. Thus, there are 𝑛𝑛3 servers in total which are connected by 𝑛𝑛2 



43 
 

groups of switches; a group here can be considered as a cluster. The hyperFlatNet 

modelling can be deployed by a matrix function. 𝑛𝑛3 servers can be treated as a 𝑛𝑛2 ∗

𝑛𝑛 matrix. The row and column indexes correspond to the cluster number and the 

index in the cluster, respectively. In this way, every server would be assigned a 

specific index for the use of DCN connections. 

Each server can be connected by the Linked Clusters Maximization (LCM) 

algorithm, where the matrix denotes as L, which is generated as  
∀i ∈ {1. .𝑛𝑛2}, 
∀j ∈ {1. .𝑛𝑛}, 

Then the matrix can be completed as  
∀i ∈ {1. .𝑛𝑛2}, 
∀j ∈ {2. .𝑛𝑛}, 

L(𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿(𝑖𝑖 − 1, 𝑗𝑗) + 1, 𝑛𝑛2).                (3.1) 
L1 refers as the first line of the matrix L, the LCM is shown as follows, 



44 
 

 
Figure 3.11 – Linked Clusters Maximization Algorithm [55] 

3.3 Energy consumption modelling 
In this thesis, we deployed an energy model by using the DVFS technique and 

DPF fixed timeout policy together as shown in the following algorithm, and the fixed 

timeout scheme was used as DPM policy. As Figure 3.12 [87] shows, when the 

servers are underloaded after a period of execution time at full load, the DVFS 

technique is adopted to save energy, while if the servers are transferred into idle state, 

DPM policy can be implemented. 



45 
 

 

Figure 3.12 – Server load vs. DVFS/DPM applied 

3.3.1  Energy Consumption Measurement Algorithm 

In this thesis, energy consumption algorithm is deployed by DVFS technique and 

DPM together. In DVFS [88], chip switching power decreases proportionally to 𝑉𝑉2  ∗

 f, where V is voltage and f is switching frequency. The core principle is that the 

average power consumed has a cubic relationship with the CPU frequency, moreover, 

the power consumption for the components which are not related to f that remains 

fixed, such as bus, memory, and disk. Therefore, the server power consumption can 

be stated as follows, 

𝑃𝑃 =  𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑃𝑃𝑓𝑓 × 𝑓𝑓3                       (3.2) 

Where 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓  is the fixed power consumption by components not linked with 

frequency such as the bus, memory, and disk, 𝑃𝑃𝑓𝑓 is CPU power consumption linked 

with frequency. 

On the other hand, according to [11], the total energy consumption for the DCN 

can be divided into three main portions: computing energy by servers, communication 

energy consumed by links and network equipment operations, and the power 

consumed by infrastructure for supporting datacenters (e.g., cooling/air conditioning 



46 
 

system). Only a fraction of energy consumption has been delivered to the computing 

server directly, another considerable portion of the energy being consumed for 

maintaining interconnection links and network equipment operations. The power 

consumption for switches makes up a great proportion to the overall DCN power 

consumption. The researcher set up three scenarios with the GreenCloud simulator to 

compare the detailed network component energy consumed among Two-tier DCN, 

Three-tier DCN and Three-tier high-speed DCN. The results showed that the energy 

consumption for the switches accounted for 26.54%, 30.27% and 30.98% respectively, 

which take up around 1/3 of the total energy. As stated in [11] the energy consumed 

by a switch can be expressed as: 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∗ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖=0   

(3.3) 

Where 𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the power consumed by switch hardware, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 represents the 

line card power consumption with no ports turned on, 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  represents the 

number of cards plugged into a switch, 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 is related to the power consumed 

for a port running at rate i, 𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are fixed due to the operation of a 

switch, so in this equation, only 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 is dependent on transmission rate 𝑖𝑖 which 

is proportional to the overall power consumption of the switch. In other words, the 

transmission workload directly influences the total energy consumption of a switch; 

more tasks go through a switch, more energy a switch consumed. 

On the other hand, the DPM model allows the server power to be shut down 

whenever the servers are in zero load; this mechanism is presented in the following 

algorithm, in addition to the DVFS technique. 

To make the model accurate, some data was notarized first as prerequisites. A 

typical cloud server was used as the model, running an Intel Xeon processor [89] with 

a nominal energy consumption rate fixed as 301W / hour and the CPU nominal mips 

to be 2000, and around 171 W / hour allocated for other peripheral devices. 171w/h is 



47 
 

consumed by memory modules, disks, I/O resources, and other peripherals in an 

acceptable state. Then, the power consumption linearly increased with the level of 

CPU load. 

CPU Nominal Energy Consumption Rate 301w/hour 

CPU Peak Load Energy Consumption Rate 130w/hour 

Power Rate for Component not linked with frequency (idle 

status) 

171w/hour 

CPU Nominal Mips 2000 

Table 3.1 - Server Energy Consumption Rate Specification 

Algorithm 2: Energy Model algorithm application 

/* Compute idle server energy consumption */ 
Idle Server Energy Consumption Rate = Nominal Energy Consumption Rate*2/3; 
/*mission load is calculated according to CPU metric: Mips (Million instructions 
per second)*/ 
Current Load = Current Mips / Nominal Mips; 
/* frequency component */ 
CPU Frequency = Current Load 
/* if DPM is enabled no energy is consumed with zero load */ 
   if Current Load == 0 && DPM -> enabled then 
      Current Consumption Rate = 0; 
      return; 
   else if DVFS model -> enabled then 

/* if DVFS is enabled energy consumed is scaled with the frequency */ 
      Current Consumption Rate = Idle Consumption + Nominal Rate * f*f*f / 3; 
      return; 
 end if 
end if 
/* Compute load dependent energy consumption component */ 
   Load Component Energy Consumption Rate = (Nominal Energy Consumption 
Rate – Idle Server Energy Consumption) * Current Load; 
   Current Consumption Rate = Idle Server Energy Consumption Rate + Load 
Component Energy Consumption Rate; 
/*Energy consumption calculation*/ 
Energy Consumption = a period of time from last update* Current Consumption Rate; 
 



48 
 

3.4 Network Performance Measurement 
Based on the existing DCNs infrastructure, there are possibilities to conduct 

topological change to improve the DCNs performance. The communication 

components for networking such as the switches and links directly influence the 

network performance, so as to the Cloud infrastructure. Normally, due to the 

geographical distribution character, the links which connect each data center are 

always equipped with relative long distance, which link delay cannot be neglected as 

a performance metric. According to [90], the latency or packet delivery time indicates 

the time spent from the first bit sent from transmitter to the last bit received by the 

receiver, which is composed of packet transmission time and link propagation delay. 

The average packet delay can be calculated as the followed, where 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 refers to the 

average packet delay and represents to the number of packets received, 𝑑𝑑𝑖𝑖 refers to 

the delay of the packet i. 

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝑛𝑛
∑ 𝑑𝑑𝑖𝑖𝑛𝑛
𝑖𝑖=1                            (3.4) 

On the other hand, when a data stream is transmitted over a communication channel, 

it exists possibilities of the number of received bits be altered due to the link noise, 

interference, etc. [91], this leads to a probability of packet dropping. In addition, the 

packets also have the probability of being dropped when a large data stream traffic 

pass the switch especially when the switch load burdens beyond its frame capacity, 

the packets are dropped automatically by switch queue mechanism. Furthermore, the 

simulation will adopt this model in the situation of traffic are forced to be transferred 

to alternative routes due to the link failures so that alternative switches will bear the 

extra weight of load. 
 

Algorithm 3: Packet dropping algorithm – DropTailQueue mechanisim 
/** the algorithm is divided into two parts: enqueue and dequeue. **/ 
Enqueue: 
if queue = Empty then 
 return NULL; 
else 
    if frameCapacity && queue.length() >= frameCapacity then 
        Queue -> is full, dropping the packet; 



49 
 

        return msg; 
    else 
        queue->insert(msg); 
        emit -> queueLengthSignal, queue.length(); 
        return NULL; 
 end if 
end if 
Dequeue: 
if queue -> empty then 

return NULL; 
else 

cMessage *msg = (cMessage *)queue -> pop();  
/** unlinks and returns the front element in the queue. If the queue was empty, 
error is thrown. **/ 

    emit -> queueLengthSignal, queue.length(); 
    return msg; 
end if 
 

The average network throughput can be calculated as the followed, where 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  

refers to the average throughput in the network, 𝑝𝑝𝑖𝑖 ∈ [0,1] while 0 reflects the loss of 

packet i and 1 indicates the receipt of packet i, 𝛿𝛿𝑖𝑖 refers to the size of packet in bits 

and 𝑑𝑑𝑖𝑖 represents the delay of the packet, n as the number of packets received. 

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ (𝑝𝑝𝑖𝑖×𝛿𝛿𝑖𝑖)𝑛𝑛
𝑖𝑖=1
∑ 𝑑𝑑𝑖𝑖𝑛𝑛
𝑖𝑖=1

                              (3.5) 

3.5 Topological Metrics 
The researcher used graph theory in this thesis to evaluate different topologies, 

especially for the aim of network analysis. The prerequisites included the most basic 

definitions of a graph, network interpretations, and robustness metrics that prioritized 

used in the network graph. 

A graph [92] can be represented as a pair G = (V, E) of sets assuming that V ∩

E = ∅ where V is depicted as the vertex. The elements of vertices (or nodes in the 

case of a network), and E represents a set of edges (or links). To draw a graph, the 

only essential information needed is which pair of vertices forms an edge. 



50 
 

 
Figure 3.13 - The graph on V = {v1…v8} with edge set E = {e1…e10} = {(v1, v2), (v1, 

v3), (v1, v4), (v1, v7), (v2, v6), (v3, v4), (v4, v7), (v6, v8), (v2, v2)} 

From the Figure above, we have the following terminologies, as example: 

• v4 and v3 are end vertices of e9. 

• e5 is a loop. 

• e6 and e7 are parallel because they have the same end vertices. 

• The graph is not simple because it has parallel edges or loops. 

• e4 and e3 are adjacent. 

• v1 and v4 are adjacent. 

• The degree of v8 is 1 so it is a pendant vertex. 

• e10 is a pendant edge. 

• The degree of v2 is 4. 

• The degree of v3 is 2. 



51 
 

• The degree of v5 is 0 so it is an isolated vertex. 

In a graph G, the degree of a vertex v is the number of edges at v, as the consequence, 

it is equal to the number of its neighbors. 

The minimum degree of the vertices [92] is denoted as δ(G) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑑𝑑(𝑣𝑣)|𝑣𝑣𝑣𝑣𝑣𝑣}, 

In particularly, δ (G) = 0 if there is an isolated vertex in G. Similarly, we denote ∆ (G) 

as the maximum degree of vertices in G, ∆(G) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑(𝑣𝑣)|𝑣𝑣𝑣𝑣𝑣𝑣}. In this case, δ (G) 

= 0 and ∆ (G) = 4. We calculate the average degree of a vertex v as the following 

formula, 

d(G) =  1
|𝑉𝑉|
∑ 𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑉𝑉                        (3.6) 

Where, δ(G) ≤ 𝑑𝑑(𝐺𝐺) ≤  ∆(𝐺𝐺). 

A path is a ¬∅ graph P = (V, E) of the form of  

V =  {𝑣𝑣0, 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑘𝑘}   E =  {𝑣𝑣0𝑣𝑣1, 𝑣𝑣1𝑣𝑣2, 𝑣𝑣2𝑣𝑣3, … , 𝑣𝑣𝑘𝑘−1𝑣𝑣𝑘𝑘}, 

The vertices 𝑣𝑣0 and 𝑣𝑣𝑘𝑘 are connected by path P, where 𝑣𝑣0 and 𝑣𝑣𝑘𝑘 are called its 

“end vertices”. The number of edges of a path indicates the Path Length k (denoted 

by 𝑃𝑃𝑘𝑘), we usually refer to a path as a natural sequence of its vertices, a path P from 

𝑣𝑣0 to 𝑣𝑣𝑘𝑘. 

 

Figure 3.14 – Example – 6 nodes network 



52 
 

 

Figure 3.15 - Example - A path 𝑷𝑷𝒌𝒌 = 5 in G 

A graph which does not contain any cycles is called a forest; the components of 

the forest are called trees. The vertices of degree 1 (a pendant vertex) are called leafs 

in one tree, while each tree has at least one or more leafs, for example, the end 

vertices of a longest path. As shown in Figure 3.16, one of the longest paths, 𝑃𝑃𝑘𝑘, is 

oriented from Leaf (0) to Leaf (k), and there are 10 longest paths in total. As stated in 

the previous section, Fat-tree and Three-tier are called Tree-based Topologies; the 

longest path which is mostly dominated by the switch layer must be from one node to 

the leaf – the computing server. 



53 
 

 

Figure 3.16 - Tree-based Network Topology 

3.5.1  Network graph model 

It is useful to define the term “graph” to assist network analyzing. In modern 

graph theory, a graph [92] can be classified by different types of edges into two main 

kinds, a directed graph, or digraph, and an undirected graph. These two types of 

graphs are mainly distinguished by the edge property: the directed graph has oriented 

edges while the undirected graph has no oriented edges. The other types of graphs that 

are all variants of the above two types of graphs are “mixed graph”, “multigraph”, 

“simple graph”, and “weighted graph”. 

An undirected graph is a graph in which the edges have no orientation. If there is 

a graph G = (V, E), where V = {a, b, c, d} and E = {(a, b), (c, d), (d, a)}, then the edge 

(a, b) is identical to the edge (b, a), i.e., they are not ordered pairs. In networking, the 



54 
 

links are bidirectional with both “upward” transmitting and “downward” transmitting 

functionality. The maximum number of edges in an undirected graph without a loop is 

n(n − 1)/2. 

However, in a directed graph, the distinction appears from Edge set where E is a 

set of ordered pairs of vertices. Presenting as an expression, (a, b) is a different edge 

from (b, a), i.e., (a, b) is considered to be directed from node “a” to node “b”. Often “a” 

is called the head and “b” is the tail of an arrow, and (b, a) is treated as the inverted 

arrow of (a, b). Shown in Figure 3.17-(a) is an example of a directed graph which 

radiates from N1 to the rest of nodes, and Figure 3.17-(b) is an undirected graph with 

no oriented vertices. 

 

(a) 



55 
 

 

(b) 

Figure 3.17 - Example of a Directed Network (a) and an Undirected Network (b) 

3.5.2  Topological metrics 

3.5.2.1 Average Nodal Degree (𝒌𝒌) 

This is the coarsest connectivity feature of any topology. The degree of a node is 

the number of edges neighbored to that node while the average nodal degree 

represents average of the degrees over all nodes in the network [92]. For example, in 

Figure 3.18, the degree of node X is 6 while the average nodal degree is 2.5. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐×𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

= 2×1+4×2+1×4+1×6
8

= 2.5         (3.7) 



56 
 

 

Figure 3.18 - Example of degree of a node X 

 

Figure 3.19 – Node degree distribution from 3.18 example 

Networks with higher k are regarded as better-connected on average, and, 

consequently, are likely to be more robust. On one hand, “more robust” means that 

there are more chances to establish new connections such as the Figure 3.20, the 

average nodal degree increases to 4.5 when more connections are established based 



57 
 

on Figure 3.20 (c). When one connection (X<->Y) is failed, the average nodal degree 

decreases to 4.25 while the same scenario from Figure 3.20 (c) to Figure 3.18 

decreases the average degree from 2.5 to 2.25, 

 

(a)                   (b)                     (c) 

Figure 3.20 - (a) More robust model compared to Figure 3.19, 

(b) one connection fail compared to (a), 

(c) one connection fail compared to Figure 3.19. 

However, if a node with a high nodal degree fails, potentially higher numbers of 

connections are also bound to be affected. For example, in Figure 3.21-(a), X obtains 

the highest nodal degree of 6, so the failure of node X makes the average nodal degree 

decrease from 4.5 to 3.429, while there are six connections that get disconnected. If 

node Y fails (Y with degree of 5) a little lower than the one with node X, the average 

nodal degree decreases from 4.5 to 3.714. From Table 3.2, the k of Failure 2 is higher 

than Failure 1, which means the failure of node X with a higher degree has more 

impacts on the system compared to the failure of node Y with a lower degree. So Y in 

Figure 3.21-(b) is more robustness than X in Figure 3.21-(a). 

 

(a) (b) 

Figure 3.21 - (a) Failure 1 - node X failure, (b) Failure 2 – node Y failure 



58 
 

Node Failure Failure 1 Failure 2 

Node selected Node X Node Y 

K - Initial 4.5 4.5 

K - After failure 3.429 3.714 

Robustness low high 

Table 3.2 - Robustness comparison according to node failure with different degree 

However, in more complicated network architectures, this metric cannot indicate 

the overall network robustness because the network robustness is much more complex 

which has to be comprehensively evaluated. Thus, this metric by itself provides only a 

limited measure of the robustness of a network which is likely to vary depending on 

how the nodal degree is actually distributed over the graph. 

3.5.2.2 Network Diameter 

The diameter is, like the average nodal degree, another broad robustness metric of 

a network [94]. It is the longest of all the shortest paths between pairs of nodes. In 

general, one would wish the diameter of networks to be low. Scale-free networks 

generally have small diameters, but are not particularly robust in response to 

deliberate attacks, due to their relatively low value of node connectivity. Nonetheless, 

small-world networks represent a combination of the advantages of the properties of 

random networks (where no node is privileged by design) and scale-free networks 

(where there is a low diameter). We also note that expansion, the diameter of a 

network normalized by its size, could be also used in order to carry out a comparison 

analysis [94]. The length 𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢,𝑣𝑣𝑑𝑑(𝑢𝑢, 𝑣𝑣)of the "longest shortest path" (i.e., the 

longest graph geodesic) between any two graph vertices (u,v) of a graph, where 

𝑑𝑑(𝑢𝑢, 𝑣𝑣) is graph distance. 

𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢,𝑣𝑣𝑑𝑑(𝑢𝑢, 𝑣𝑣)                       (3.8) 



59 
 

3.5.2.3 Average Shortest Path Length 

The average shortest path length (ASPL) is calculated as an average of all the 

shortest paths between all the possible origin-destination node pairs of the network 

[95]. Generally, networks with smaller ASPL are more robust in network latency 

performing, but prone to lose connections due to less linking cardinal numbers. 

Therefore, in order to comprehensively compare network performance, ASPL cannot 

tell all, which is usually network robustness metric that with related to the network 

latency. 𝑑𝑑𝑖𝑖𝑖𝑖 denotes the distance between the vertices 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑗𝑗 , N is the vertices 

number, and the average path length L of an un-weighted network can be calculated 

by the formula: 

L =  2
𝑁𝑁(𝑁𝑁−1)

∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖≥𝑗𝑗                         (3.9) 

 
Figure 3.22 – ASPL: 6 nodes example 

For example, ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖≥𝑗𝑗  = 𝑑𝑑12 + 𝑑𝑑13 + 𝑑𝑑14 + 𝑑𝑑15+𝑑𝑑16 + 𝑑𝑑23+𝑑𝑑24 + 𝑑𝑑25 +

𝑑𝑑26+𝑑𝑑34+𝑑𝑑35+𝑑𝑑36+𝑑𝑑45 + 𝑑𝑑46 + 𝑑𝑑56 = 1 + 1 + 1 + 2 + 1 + 1 + 1 + 2 + 2 + 1 +

2 + 2 + 1 + 2 + 3 = 23, then L = 2
6×5

× 23 = 23
15

. 

3.5.2.4 Betweenness Centrality 

The betweenness centrality for a node in a network indicates the proportion of the 

node that lies on paths between other nodes in the network. A high proportion implies 



60 
 

an important node in a network which has a large influence on the transfer of 

messages through the network. The betweenness centrality of a node reflects the 

amount of control that this node exerts over the interactions of other nodes in the 

network [96]. 

The betweenness centrality of a node N is calculated as follows: 

𝐶𝐶𝑏𝑏(𝑁𝑁) = ∑ (𝜑𝜑𝑠𝑠𝑠𝑠(𝑁𝑁)/𝜑𝜑𝑠𝑠𝑠𝑠)𝑠𝑠≠𝑁𝑁≠𝑡𝑡                   (3.10) 

Where s and t are nodes that different from N, 𝜑𝜑𝑠𝑠𝑠𝑠 refers to the number of shortest 

paths from node s to t, and 𝜑𝜑𝑠𝑠𝑠𝑠(𝑁𝑁) denotes the number of shortest paths from s to t 

that N lies on. 

For example, the betweenness centrality of node b is computed as follows: 

 
Figure 3.23 – Betweenness centrality: 5 nodes example 

𝐶𝐶𝑏𝑏(𝑏𝑏) = 𝜑𝜑𝑎𝑎𝑎𝑎(𝑏𝑏)
𝜑𝜑𝑎𝑎𝑎𝑎

+ 𝜑𝜑𝑎𝑎𝑎𝑎(𝑏𝑏)
𝜑𝜑𝑎𝑎𝑎𝑎

+ 𝜑𝜑𝑎𝑎𝑎𝑎(𝑏𝑏)
𝜑𝜑𝑎𝑎𝑎𝑎

+ 𝜑𝜑𝑐𝑐𝑐𝑐(𝑏𝑏)
𝜑𝜑𝑐𝑐𝑐𝑐

+ 𝜑𝜑𝑐𝑐𝑐𝑐(𝑏𝑏)
𝜑𝜑𝑐𝑐𝑐𝑐

+ 𝜑𝜑𝑑𝑑𝑑𝑑(𝑏𝑏)
𝜑𝜑𝑑𝑑𝑑𝑑

= 1/1 + 1/1 + 2/2 +

1/2 + 0 + 0 = 3.5            (3.11) 

3.5.2.5 Closeness Centrality 

Closeness centrality is a measure of how fast information spreads from a given 

node to other reachable nodes in the network [97]. Nodes with high closeness 

centrality are important because they can reach the whole network more quickly than 

the other nodes. The node`s closeness centrality is measured by the reciprocal of its 



61 
 

average distance. The average distance of node 𝑣𝑣𝑖𝑖 to other nodes is calculated as 

follows: 

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎(𝑣𝑣𝑖𝑖) = 1
𝑛𝑛−1

∑ 𝑔𝑔�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�𝑛𝑛
𝑗𝑗≠𝑖𝑖                    (3.12) 

, where n is the number of nodes, 𝑔𝑔�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� is the length from node 𝑣𝑣𝑖𝑖 to node 𝑣𝑣𝑗𝑗 . 

The closeness centrality of node 𝑣𝑣𝑖𝑖 is measured as follows: 

𝐶𝐶𝐶𝐶(𝑣𝑣𝑖𝑖) = � 1
𝑛𝑛−1

∑ 𝑔𝑔�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�𝑛𝑛
𝑗𝑗≠𝑖𝑖 �

−1
                  (3.13) 

For example, the closeness centrality of node b in Figure 3.23 is computed as follows: 

𝐶𝐶𝐶𝐶(𝑏𝑏) = 1/ ( (𝐿𝐿(𝑏𝑏,𝑎𝑎)  +  𝐿𝐿(𝑏𝑏, 𝑐𝑐)  +  𝐿𝐿(𝑏𝑏,𝑑𝑑)  +  𝐿𝐿(𝑏𝑏, 𝑒𝑒)) / 4)  

=  4/ (1 +  1 +  1 +  2)  =  4/5 =  0.8 

3.5.2.6 Eccentricity 

In graph theory, the eccentricity E(𝑣𝑣) of a vertex 𝑣𝑣 is the greatest geodesic 

distance from 𝑣𝑣 to another vertex. In a network, the eccentricity is regarded as the 

distance from a given starting node to the farthest node from it [98]. 

3.5.2.7 Eigenvector Centrality 

Eigenvector centrality measures the influence of a node in a network. Each node 

is assigned a score on the basis of the concept that connections to high-scored nodes 

make more contributions to the score of the node than identical connections to 

low-scored nodes. PageRank by Google is a variant of eigenvector centrality 

measurement [99]. 

Eigenvector centrality can be measured by using adjacency matrix. For a given 

graph G = (𝑉𝑉,𝐸𝐸) with a set of vertex 𝑉𝑉 and a set of edges 𝐸𝐸, and let A = �𝑎𝑎𝑣𝑣,𝑡𝑡� be 

the adjacency matrix, if the vertex 𝑣𝑣 is connected to vertex 𝑡𝑡, then the score of 

vertex 𝑣𝑣 is defined as: 

𝑠𝑠𝑣𝑣 = 1
𝜇𝜇
∑ 𝑠𝑠𝑡𝑡𝑡𝑡∈𝑀𝑀(𝑣𝑣) = 1

𝜇𝜇
∑ 𝑎𝑎𝑣𝑣,𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡∈𝐺𝐺                 (3.14) 

where 𝑀𝑀(𝑣𝑣) is a set of neighbors of 𝑣𝑣 and 𝜇𝜇 is a constant value (referred as 

eigenvalue). Generally, only the greatest eigenvalue 𝜇𝜇 can result in the desired 

centrality measure [100]. 



62 
 

3.5.3  Summary 

Metrics such as average nodal degree, average weighted degree, and network 

diameter and radius, are necessary parameters for evaluating the robustness of a 

network. A larger average nodal and weighted degree, and a shorter diameter and 

radius tend to represent a robust network. However, the centrality metrics are 

important metrics that have great influence on a network. 

Metric Summary Metric Feature 

Average Nodal Degree Measures the number of edges 

neighbored to that node 

Coarse metric 

Network Diameter Measures the longest of all the 

shortest paths between pairs of 

nodes 

Coarse Metric 

Average Shortest Path 

Length 

An average of all the shortest 

paths between all the possible 

origin-destination node pairs of 

the network 

Shorter, less 

latency 

Betweenness Centrality Measures the proportion that lies 

on paths between other nodes in 

the network 

Large influence 

Closeness Centrality Measures how fast information 

spreads from a given node to 

other reachable nodes in the 

network 

Large influence 

Eccentricity Measures the distance from a 

given starting node to the farthest 

node from it 

Medium influence 

Eigenvector Centrality Measures the influence of a node 

in a network 

Large influence 

Table 3.3 – Topological metric summary 



63 
 

Chapter 4 Simulation Studies 
For the case study, the researcher firstly built an energy-aware DCN by 

conducting simulation studies in order to observe the impact of the underlying 

network connectivity on the DCNs` performance according to the fault tolerant 

perspective. A distributed DCN was then set up so as to evaluate different DCNs` 

performance under the failure conditions based on the solution of the first study. Both 

studies were conducted using a Network Analysis Tool (Gephi 0.8.2) and a Network 

Simulation Tool (CloudNetSim++ version 1.0 based on OMNeT++ Version 4.1 and 

Inet network framework). 

4.1 Case studies 
The structure of case studies in this chapter is shown in Figure 4.1 and 4.2 as 

following. 

 
Figure 4.1 – Case 1 architecture 

Case 1

Co
nv

en
tio

na
l D

CN
 

to
po

lo
gy

 S
et

up

Generate 
Regular 
Traffic

Determine 
Traffic 

Pattern

Calculate 
NRM 

according to 
Traffic 

Pattern by 
using Gephi 

Network 
Analysis Tool

Obtain most 
critical nodes 

and edges 
according to 

NRM

Scenario 1:
Server 

Failures 

Scenario 2:
Critical 
Switch 

Failures

Scenario 3 :
Representative
Servers/Switch/

Rack Failures 



64 
 

 
Figure 4.2 – Case 2 architecture 

Notation Representation 

NRM Network Robustness Metric 

NP DC Network Performance 

NPE DC Network Performance Evaluation 

ECE Energy Consumption Evaluation 

LFR Link Failure Ratio 

Table 4.1 - Notice on notation representation of the use in simulation studies 
structure 

As can be seen in Figures 4.1 and 4.2, the simulation study was divided into two 

processes. In the first process, robustness metrics were evaluated based on the 

network established, according to the analysis for each metric, and important nodes 

and edges were determined in this process according to NRM values. Various types of 

component failure based on important nodes and edges were simulated in 

CloudNetSim++ simulator as depicted in Scenarios 1, 2 and 3. The NP was analyzed 

and verified on the basis of node and link selection. 

Case 2

DCN 
Topologies 

Setup

Scenario 2 
(preparation): 
Critical Nodes 

and Edges 
Determination

Scenario 2: 
Various DCNs 

NPE&ECE 
according to 
increasing 

LFR

Scenario 1: Three-tier DCN 
performance based on 

increasing LFR

Scenario 2: Fat-tree DCN 
performance based on 

increasing LFR

Scenario 3: BCube-2 layers 
DCN performance based on 

increasing LFR

Scenario 4: BCube-3 layers 
DCN performance based on 

increasing LFR

Scenario 5: HyperFlatNet DCN 
performance based on increasing 

LFR

Topological 
Comparison

Result Analysis 
according to the 

various DCN 
topologies

Scenario 1: 
Various DCNs 
Performance 

Comparison with 
no Failures



65 
 

Initially, a representative conventional balanced-DCN with unbalanced edge 

weight was constructed in Gephi; the reason for this was to find important nodes and 

weights in the network by using network robustness metrics measuring technique so 

that the network performance simulation part could be treated as the verification of 

the results gained from Gephi. Moreover, the network QoS evaluation part is the first 

study was represented as the network performance and energy consumption versus the 

node failure scenarios so as to be able to compare between the different nodes. 

The conclusion from the first study was a stepping stone to the second study as 

the second study generated more complicated realistic scenarios by comparing 

different trendy DCNs to achieve the main goal of this thesis. Initially, five DCN 

architectures were set up, and the architectures were comprehensively compared in 

topological view. Then in Scenario 1, network performance of various DCNs was 

recorded and compared using CloudNetSim++. In Scenario 2, as a preparation process, 

the critical nodes and edges were first determined by comparing network robustness 

metrics and centrality metrics in Gephi. The main part of Scenario 2 was gaining 

NPE1 and ECE for various DCNs according to increasing LFR. 

 

 

 

 

                                                      
1 NPE includes average network throughput, average packet delay, packet drop ratio, and the total number of 
packets received. 



66 
 

4.2 Case 1: Network Performance Evaluation 

(NPE) according to Network Robustness 

Metrics (NRM) 

4.2.1 Topology Setup 

 
Figure 4.3 – Case 1 network setup 



67 
 

 
Figure 4.4 – Case 1 network implementation in Gephi 

*The edge thickness is depicted according to the edge weight size, while the weight in 

this case represents the traffic flow. 

Notation Representation 

Central Central Switch which connects outside DC network 

CS[n] Core Switch [n] 

AS[n] Aggregation Switch [n] 

Rks[n] Edge Router [n], but shown as Racks[n] in the figure 

Sn nth server 

* implies all (i.e. CS[*] means all core switches in the network) 

Table 4.2 - Notice on notation representation of node used in this network 
 
 
 
 
 
 



68 
 

4.2.2 Node Eigenvector Centrality Evaluation 

Eigenvector Centrality Value (in order of importance) 

CS[*] 1 

AS[*] 0.821 

Central 0.514 

Edge[*] (display as Rks[*]) 0.268 

Server[*] 0.077 

Table 4.3 – Case 1 network: Eigenvector Centrality evaluation 

 
Figure 4.5 – Case 1 network: Eigenvector Centrality ranking 

Core switches and aggregation switches own the highest eigenvector centrality 

which indicates that they are the most important nodes in such network, with 

important neighbors connected as well. 

4.2.3 Node Betweenness Centrality Evaluation 

Betweenness Centrality Value (in order of frequency) 

AS[*] 558.2 

CS[*] 533 

Edge[*] (display as Rks[*]) 105 

Central 0.2 

Server[*] 0 

Table 4.4 – Case 1 network: Betweenness Centrality ranking 

0

0.2

0.4

0.6

0.8

1
1

0.821

0.514

0.268

0.077

Eigenvector Centrality

Eigenvector Centrality



69 
 

 
Figure 4.6 - Case 1 network: Betweenness Centrality ranking 

According to the rank, aggregation switches which lie on a high proportion of 

paths between other nodes in the network are the most important nodes, which is to 

say that aggregation switches held the greatest responsibility in this study. Similarly, 

core switches also hold an important position for relaying packets to farther 

destinations. On the other hand, each edge router had 1 in 5 chances of being walked 

through that packet than each aggregation switch. 

4.2.4 Node Closeness Centrality Evaluation 

Closeness Centrality Value (in order of distance) 

CS[*] 0.402 

AS[*] 0.353 

Central 0.293 

Edge[*] (display as Rks[*]) 0.27 

Server[*] 0.214 

Table 4.5 - Case 1 network: Eigenvector Centrality ranking 

0

100

200

300

400

500

600 558.2 533

105

0.2 0

Betweenness Centrality

Betweenness Centrality



70 
 

 
Figure 4.7 - Case 1 network: Closeness Centrality ranking 

The core switches and aggregation switches obtained the largest value of 

closeness centrality which means that these two types of switches could quickly 

communicate with other nodes in the network. The less the average distance to other 

nodes, the more efficiently it can relay the message, especially in a role of a switch. 

The results showed that the core layer switches and aggregation layer switches gain 

the ability of fast communication with other nodes in the network. 

 

 

4.2.5 Node Eccentricity Evaluation 

Eccentricity Value (in order of distance) 

CS[*] 3 

AS[*] 4 

Central 4 

Edge[*] (display as Rks[*]) 5 

Server[*] 6 

Table 4.6 - Case 1 network: Eccentricity Centrality ranking 

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45 0.402

0.353
0.293 0.27

0.214

Closeness Centrality

Closeness Centrality



71 
 

 
Figure 4.8 - Case 1 network: Eccentricity Centrality ranking 

As expected, servers had the largest value of eccentricity. They had distance of 

six hops from one server to the farthest server. For example, the server connected by 

AS[0] had to go through six hops to the server connected by AS[1], but four hops to a 

neighboring rack which was connected by the same aggregation switch, and two hops 

to the server inside a rack. On the other side, core switches and aggregation switches 

had the lowest eccentricity value which means they were lying on the “center” of the 

network. 

4.2.6 Node Degree Evaluation 

Nodal Degree Value (in order of size) 

AS[*] 6 

CS[*] 5 

Edge[*] (display as Rks[*]) 3 

Central 2 

Server[*] 1 

Table 4.7 - Case 1 network: Node degree ranking 

0

1

2

3

4

5

6

CS[*] AS[*] Central Edge[*] Server[*]

3

4 4

5

6

Eccentricity

Eccentricity



72 
 

 
Figure 4.9 - Case 1 network: Nodal degree ranking 

Aggregation switches achieved highest nodal degree of 6 because each aggregation 

switch has 6 ways out to its neighbors. 

4.2.7 Node Weighted Degree Evaluation 

Nodal Weighted Degree Value (in order of size) 

CS[0] 1056 

Central 529 

AS[0] 457 

AS[1] 329 

AS[2] 201 

Edge[0] (display as Rks[0]) 126 

Edge[1] (display as Rks[1]) 118 

Edge[2] (display as Rks[2]) 110 

Edge[3] (display as Rks[3]) 102 

Edge[4] (display as Rks[4]) 90 

Edge[5] (display as Rks[5]) 82 

Edge[6] (display as Rks[6]) 78 

AS[3] 73 

Edge[7] (display as Rks[7]) 70 

0

1

2

3

4

5

6

AS[*] CS[*] Edge[*] Central Server[*]

6

5

3

2

1

Nodal Degree

Nodal Degree



73 
 

…continued 

Edge[8] (display as Rks[8]) 62 

Edge[9] (display as Rks[9]) 54 

Edge[10] (display as Rks[10]) 46 

Edge[11] (display as Rks[11]) 38 

Server[0] 32 

Server[1] 31 

Server[2] 30 

Edge[12] (display as Rks[12]) 30 

Server[3]  29 

Server[4] 28 

Server[5] 27 

Server[6] 26 

Server[7] 25 

Server[8] 24 

Server[9] 23 

Server[10] 22 

Server[11] 21 

Server[12] 20 

Server[13] 19 

Server[14] 18 

Server[15] 17 

… … 

Server[31] 1 

Table 4.8 - Case 1 network: Weighted degree ranking 



74 
 

 
Figure 4.10 - Case 1 network: Nodal weighted degree ranking 

4.2.8 Edge Weighted Degree Evaluation 

Edge Weighted Degree Value (in order of size) 

Central – CS[0] 528 

CS[0] – AS[0] 228 

CS[0] – AS[1] 164 

CS[0] – AS[2] 100 

AS[0] – Edge[0] 63 

AS[0] – Edge[1] 59 

AS[0] – Edge[2] 55 

0

200

400

600

800

1000

1200

Nodal Weight Degree Nodal Weight Degree



75 
 

…continued 

AS[0] – Edge[3] 51 

AS[1] – Edge[4] 47 

AS[1] – Edge[5] 43 

AS[1] – Edge[6] 39 

CS[0] – AS[3] 36 

AS[1] – Edge[7] 35 

Edge[0] – Server[0] 32 

Edge[0] – Server[1] 31 

Edge[0] – Server[2] 30 

Edge[0] – Server[3] 29 

Edge[1] – Server[4] 28 

Edge[1] – Server[5] 27 

… … 

Edge[15] – Server[31] 1 

Table 4.9 - Case 1 network: Edge weighted ranking 



76 
 

 
Figure 4.11 - Case 1 network: Edge weighted ranking 

4.2.9 Critical Nodes determination 

According to centrality metrics, CS and AS are the most important nodes in the 

network, and by the result shown in the weighted degree, AS[0] was determined as 

the most important switch in this network. Server[0] was regarded as the most 

important server, and Rack[0] was the most important rack. To verify this assumption, 

the simulation was conducted from latitudinal and longitudinal dimensions. 

Comparisons were carried out among servers; among aggregation switches; and 

between AS, Rack and server. 

0

100

200

300

400

500

600
Ce

nt
ra

l –
CS

[0
]

CS
[0

] –
AS

[0
]

CS
[0

] –
AS

[1
]

CS
[0

] –
AS

[2
]

AS
[0

] –
Ed

ge
[0

]

AS
[0

] –
Ed

ge
[1

]

AS
[0

] –
Ed

ge
[2

]

AS
[0

] –
Ed

ge
[3

]

AS
[1

] –
Ed

ge
[4

]

AS
[1

] –
Ed

ge
[5

]

AS
[1

] –
Ed

ge
[6

]

CS
[0

] –
AS

[3
]

AS
[1

] –
Ed

ge
[7

]

Ed
ge

[0
] –

Se
rv

er
[0

]

Ed
ge

[0
] –

Se
rv

er
[1

]

Ed
ge

[0
] –

Se
rv

er
[2

]

Ed
ge

[0
] –

Se
rv

er
[3

]

Ed
ge

[1
] –

Se
rv

er
[4

]

Ed
ge

[1
] –

Se
rv

er
[5

]

…
…

Ed
ge

[1
5]

 –
Se

rv
er

[3
1]

Edge Weight Degree
Edge Weight Degree



77 
 

4.2.10  Network Performance Evaluation (NPE) Simulation setup 

 
Figure 4.12 - Case 1: Simulation setup 

Parameter Value Description 

DCN Three-Tier 

architecture 

Conventional DCN 

No. of Core Switch (CS) 2 Shown as CS[0] & CS[1] 

No. of Aggregation 

Switch (AS) 

4 Shown as AS[0]-AS[3] 

No. of Rack (Rks) 16 Shown as Rack[0]-Rack[15] 

No. of Server per Rack 2 Shown as Rack[*].server[0], 

Rack[*].server [1] 

Protocol UDP - 

Traffic Type All-To-All Server-To-Server 

Server workload 

Distribution 

Diverse From high-load to low-load 

(Rks[0].server[0] to 

Rks[15].server[1]) 

Packet Size 1000 bytes - 

Send Interval 5 s - 

Queue Type Drop Tail Queue Queuing Mechanism 



78 
 

…continued 

Queue Capacity 1000 - 

Power Management DVFS & DPM Dynamic Voltage/Frequency 

Scaling & Dynamic Power 

Management (Fixed Timeout 

τ) 

Simulation Time 2500 sim-seconds Simulation Time 

Table 4.10 – Simulation parameters setting 

4.2.11  Traffic Generation 

 
Figure 4.13 – Simulation server traffic generation 

As realized in CloudNetSim++, the traffic generated in this case was set as 

unbalanced and skewed distribution, from the left to the right, and each server sent an 

equal number of packets (400) to other servers, while the servers located to the left, 

i.e., Rack[0].server[0], received the larger number of packets compared to the right, 

i.e., Rack[15].server[1], as shown in the figure above. 

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Rk
s[

0]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

0]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

1]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

1]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

2]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

2]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

3]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

3]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

4]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

4]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

5]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

5]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

6]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

6]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

7]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

7]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

8]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

8]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

9]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

9]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

10
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

10
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

11
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

11
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

12
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

12
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

13
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

13
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

14
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

14
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

15
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

15
].c

om
pu

tin
gS

er
ve

r[
1]

Avg. Server Receiving Throughput (bit/s) Avg. Server Throughput



79 
 

4.2.12  Case 1 - Scenario 1: Network Performance according to 

Server Failures 

The sampling servers were selected based on the principle of equipartition in the 

range of server size, so from the left to the right were, in order, the server with the 

lowest throughput_received to the highest throughput_received. 

 
Figure 4.14 – Server workload distribution 

Rack[n] selection Server[n] selection Avg. Throughput_rx 

(bit/s) 

Rks[15] Server[1] 103.0 

Rks[13] Server[0] 260.75 

Rks[11] Server[1] 453.9 

Rks[7] Server[1] 1036.57 

Rks[5] Server[1] 1413.21 

Rks[3] Server[1] 1912.18 

Rks[2] Server[0] 2378.96 

Rks[1] Server[1] 3257.79 

Rks[0] Server[0] 4078.67 

Table 4.11 - Sample servers’ description and servers` receiving throughput 

Server Workload

Server Workload



80 
 

 
Figure 4.15 – Avg. Network Throughput (bit/s) 

From Figure 4.15, it can be seen that the failure of the server with low 

throughput_rx remained high average network throughput, and vice versa. The failure 

on different servers generated various average network throughputs for packet 

receiving (throughput_rx), while the network with no failures achieved 41,500 bits/s 

throughput_rx, but the failure on higher-workload server caused a larger impact on 

the overall network performance. Originally, Rks[0].server[0] was the node that made 

up the highest throughput to the network which contributes 9.82% to the entire 

network, while Rks[15].server[1] contributed the smallest portion of the network 

throughput of only 0.248%. However, the node failure would further degrade the 

entire network performance due to the completed cloud tasks being reduced because 

of the decreasing total number of packets received. The failure on Rks[15].server[1] 

made average network throughput decrease by 3.1% while Rks[0].server[0] decreased 

12.9% on the overall network average throughput. 

 

 

 

33000

34000

35000

36000

37000

38000

39000

40000

41000

42000

Avg. Network Throughput (bit/s)

Original

Rks[15].server[1]

Rks[13].server[0]

Rks[11].server[1]

Rks[7].server[1]

Rks[5].server[1]

Rks[3].server[1]

Rks[2].server[0]

Rks[1].server[1]

Rks[0].server[0]



81 
 

 Rks[15].server[1] Rks[0].server[0] 

Contribution to overall avg. network 

throughput (%) 

0.248% 9.82% 

Avg. network throughput degradation after 

failure (%) 

3.1% 12.9% 

Table 4.12 – Representative node network throughput ratio and degradation after 
failure 

 
Figure 4.16 – Avg. packet delay (second) 

The avg. packet delay did not vary too much on the basis of failures, which is still 

in the accepted range of 0.0039 - 0.0041 seconds. 

0.0035

0.0036

0.0037

0.0038

0.0039

0.004

0.0041

0.0042

Avg. Packet Delay (second)

Original

Rks[15].server[1]

Rks[13].server[0]

Rks[11].server[1]

Rks[7].server[1]

Rks[5].server[1]

Rks[3].server[1]

Rks[2].server[0]

Rks[1].server[1]

Rks[0].server[0]



82 
 

 
Figure 4.17 – Packet drop ratio (%) 

The packet drop ratio result presented a reverse graph to the one for an average 

network throughput. Failures on high-loaded servers produced a higher packet drop 

ratio. The packets which were originally going to the failed server had to be dropped 

by the switches taking charge of that data flow. The failure on the most important 

node generated the highest packet drop ratio which was 15.57%, five times higher 

than the original network`s ratio. 

3.04%

6.11%6.47%6.86%
8.24%8.75%

9.71%10.32%
11.60%

15.57%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

Packet Drop Ratio (%)

Original

Rks[15].server[1]

Rks[13].server[0]

Rks[11].server[1]

Rks[7].server[1]

Rks[5].server[1]

Rks[3].server[1]

Rks[2].server[0]

Rks[1].server[1]

Rks[0].server[0]



83 
 

 
Figure 4.18 – Total energy consumption (w) 

The energy consumption for the network was considered to be the sum of 

computing servers and the communicational components such as the switches. 

According to the GreenCloud [11], the power for supporting the operation of the 

switches accounted for a large portion (approximately 1/3 under normal operating 

conditions) of the total power consumption. The DVFS technique automatically 

decreased the energy consumption on the basis of CPU frequency adjustment, and 

servers with peak load correspond to the high CPU frequency. According to the 

DVFS model, the power consumption of a server was proportional to the CPU 

frequency, and the high-loaded server consumed more power rather than the 

low-loaded server. When failure occurred on a server, packets may be dropped by a 

switch in varying degrees, and transmitting to a failed server was blocked at the 

connected edge switch, which caused a high workload to the switch so that the energy 

consumption for the switch increased. 

𝐸𝐸𝑇𝑇 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝑃𝑃𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                       (4.1) 

, where 𝐸𝐸𝑇𝑇 is the total network energy consumption, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ is the power supplied 

for switches and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents the server power consumption. The failed server 

caused increment “a” on the switch power because of the increasing switch work load, 

0

5000000

10000000

15000000

20000000

25000000

30000000

Total Energy Consumption (w)

Original

Rks[15].server[1]

Rks[13].server[0]

Rks[11].server[1]

Rks[7].server[1]

Rks[5].server[1]

Rks[3].server[1]

Rks[2].server[0]

Rks[1].server[1]

Rks[0].server[0]



84 
 

and reduction “b” on the server power, so that the Total power consumption after 

failure can be calculated as: 

𝐸𝐸𝑇𝑇` = (𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝑎𝑎) + (𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑏𝑏)               (4.2) 

So that 

𝐸𝐸𝑇𝑇` = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝑎𝑎 − 𝑏𝑏)                 (4.3) 

, where 𝐸𝐸𝑇𝑇` indicates the total energy consumption after server failure. While |𝑎𝑎| <

|𝑏𝑏|  due to the reality of hardware component property, the power needed for 

supplying components of a server is always higher than the one for a switch, and 

conditions change in a server so it needs more power supplementing compared to the 

switch. Therefore, the absolute increment for switch power cannot be beyond the 

absolute reduction for server power. This is to say, a – b is always < 0, but various “a” 

and “b” makes the reduction of 𝐸𝐸𝑇𝑇 in varying degrees. As Figure 4.18 shows, as the 

servers failed in order from low loaded to high loaded, the reduction of 𝐸𝐸𝑇𝑇 became 

larger, however, the value of (a – b) became smaller, so that the reduction of 𝐸𝐸𝑇𝑇 was 

not so obvious. However, despite the theoretical assumption, in an extreme condition, 

the 𝐸𝐸𝑇𝑇` could be larger than 𝐸𝐸𝑇𝑇, which indicates that |𝑎𝑎| > |𝑏𝑏|, could, in this case, 

mean more power will be consumed for supplying the intensive workload for switches 

which could overwhelm the power reduction of the server, under various conditions 

of failure. 

4.2.13  Case 1 - Scenario 2: Network Performance according to 

Aggregation Switch Failures 

According to the critical node determination, AS[0] was the most influenced node 

in the network, therefore, scenarios of aggregation switch failures were simulated to 

have a comprehensive comparison among equal switches. 



85 
 

 
Figure 4.19 - Avg. server throughput according to AS[0] Failure (bit/s) 

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Rk

s[
0]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
0]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
1]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
1]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
2]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
2]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
3]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
3]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
4]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
4]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
5]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
5]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
6]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
6]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
7]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
7]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
8]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
8]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
9]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
9]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
10

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
10

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
11

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
11

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
12

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
12

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
13

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
13

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
14

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
14

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
15

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
15

].c
om

pu
tin

gS
er

ve
r[

1]

Avg. Server Throughput according to AS[0] Failure (bit/s) Avg.throughput



86 
 

 
Figure 4.20 - Avg. server throughput according to AS[1] Failure (bit/s) 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Rk
s[

0]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

0]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

1]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

1]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

2]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

2]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

3]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

3]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

4]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

4]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

5]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

5]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

6]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

6]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

7]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

7]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

8]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

8]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

9]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

9]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

10
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

10
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

11
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

11
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

12
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

12
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

13
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

13
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

14
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

14
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

15
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

15
].c

om
pu

tin
gS

er
ve

r[
1]

Avg. Server Throughput according to AS[1] Failure 
(bit/s)

Avg.Throughp
ut



87 
 

 
Figure 4.21 - Avg. server throughput according to AS[2] Failure (bit/s) 

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Rk

s[
0]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
0]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
1]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
1]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
2]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
2]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
3]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
3]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
4]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
4]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
5]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
5]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
6]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
6]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
7]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
7]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
8]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
8]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
9]

.c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
9]

.c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
10

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
10

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
11

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
11

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
12

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
12

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
13

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
13

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
14

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
14

].c
om

pu
tin

gS
er

ve
r[

1]
Rk

s[
15

].c
om

pu
tin

gS
er

ve
r[

0]
Rk

s[
15

].c
om

pu
tin

gS
er

ve
r[

1]

Avg. Server Throughput according to AS[2] Failure (bit/s)
Avg.Throughput



88 
 

 
Figure 4.22 - Avg. server throughput according to AS[3] Failure (bit/s) 

The switch failures reacted on server throughputs is depicted as the above figures, 

and failure on AS[0] lowered the throughput_rx of Rks[0-3], while AS[1] reacted on 

Rks[4-7]; AS[2] on Rks[8-11]; and AS[3] on Rks[12-15]. 

 
Figure 4.23 – Switch workload 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Rk
s[

0]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

0]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

1]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

1]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

2]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

2]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

3]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

3]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

4]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

4]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

5]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

5]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

6]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

6]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

7]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

7]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

8]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

8]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

9]
.c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

9]
.c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

10
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

10
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

11
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

11
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

12
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

12
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

13
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

13
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

14
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

14
].c

om
pu

tin
gS

er
ve

r[
1]

Rk
s[

15
].c

om
pu

tin
gS

er
ve

r[
0]

Rk
s[

15
].c

om
pu

tin
gS

er
ve

r[
1]

Avg. Server Throughput according to AS[3] Failure 
(bit/s)

Avg.Throughput

AS3 AS2 AS1 AS0

Switches Workload

Switches Workload



89 
 

 
Figure 4.24 – Avg. network throughput (bit/s) according to switch failures 

According to the corresponding relation with servers, AS[0] connected the 

highest loaded Racks which took the responsibility of transmitting the largest number 

of packets, while AS[3] received the least number of packets that were sent from the 

first 12 racks so that AS[3] had the lowest workload. The switch load was thus 

demonstrated as the above figure. Failure on AS[0] minimized the average network 

throughput of 44.76% from the initial network, where AS[3] degraded the average 

network throughput to 22.43%. 

 
Figure 4.25 – Packet drop ratio (%) according to AS failures 

41517.52755

32204.49295
29803.57335

26124.64633
22932.50266

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Original AS3 AS2 AS1 AS0

Avg. Network Throughput (bit/s) according to Switch Failures

Original

AS3

AS2

AS1

AS0

3.04%

25.52%

31.33%

40.19%

47.61%

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%

Original AS3 AS2 AS1 AS0

Packet Drop Ratio (%) according to AS Failures

Original

AS3

AS2

AS1

AS0



90 
 

The packet drop ratio based on switch failures demonstrated a reverse pattern 

from the one with average network throughput. This result predicted that all failures 

generated high PDR with an increasing pattern in the order of AS[3, 2, 1, 0]. In 

contrast to the server failures, switch failures produced much larger PDR, while 

despite that the Rks[0].server[0] failure dropped the largest number of total packets 

(15.57%). Among server failures, the failure of AS[0] dropped almost half the number 

of total packets. 

 
Figure 4.26 – Avg. packet delay (second) according to AS failures 

Queuing time decreased when a large number of packets were dropped from the 

AS[0], and the average delay decreased to the lowest period as expected. With 

comparison to the server failures, more packets were dropped, causing the number of 

queuing packets to be reduced, so that decreased the average packet delay. 

0.0040718
0.00377091

0.0034922

0.00294881

0.0020041

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

Original AS3 AS2 AS1 AS0

Avg. Packet Delay (second) according to AS Failures

Original

AS3

AS2

AS1

AS0



91 
 

 
Figure 4.27 – Total energy consumption (w) 

Servers transmitted packets to servers inside a rack directly through the 

corresponding edge router, but needed assistance of the edge router and connected 

aggregation switch to send and receive messages from neighboring racks, while core 

switch was necessary for transferring the packets to the farther servers. The failure on 

AS[0] disconnected two groups of edges, one with Edge[0, 1, 2, 3] and the other one 

between AS[0] and the core switches. The AS[0] failure caused the largest amount of 

data from far servers to be forced to be dropped at the core switch layer. In addition, 

the amount of packets dropped by connected edge routers from internal servers led to 

energy increments by a core switch and edge routers. This accounts for a reasonable 

portion due to the increased workload. This is the essential difference in energy 

consumption in contrast to the one with the other AS failure. 

As aforementioned, the total energy consumption of a DC network can be 

expressed as: 

𝐸𝐸𝑇𝑇 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                      (4.4) 

So it can be expanded as the following equation, 

𝐸𝐸𝑇𝑇 = ∑ 𝑃𝑃𝐶𝐶𝑖𝑖
𝑛𝑛=2
𝑖𝑖=0 + ∑ 𝑃𝑃𝐴𝐴𝑖𝑖

𝑛𝑛=4
𝑖𝑖=0 + ∑ 𝑃𝑃𝐸𝐸𝑖𝑖

𝑛𝑛=16
𝑖𝑖=0 + 𝑃𝑃𝑆𝑆             (4.5) 

24325900

12370300

9201780

4377360

9109200

0

5000000

10000000

15000000

20000000

25000000

30000000

Original AS3 AS2 AS1 AS0

Total Energy Consumption (w)

Original

AS3

AS2

AS1

AS0



92 
 

Where 𝑃𝑃𝐶𝐶𝑖𝑖 is the power consumption for the core switch i, 𝑃𝑃𝐴𝐴𝑖𝑖 refers to the 

power consumption for the aggregation switch i, 𝑃𝑃𝐸𝐸𝑖𝑖  represents the power supplied 

for edge router i, while 𝑃𝑃𝑆𝑆 represents the total power consumption for servers. 

 
Figure 4.28 – Component traffic load vs. energy change illustration 

The total energy consumption of the network after the failure of AS[0] is: 

𝐸𝐸𝑇𝑇′ = ��𝑃𝑃′𝐶𝐶0 + 𝛿𝛿� + 𝑃𝑃𝐶𝐶1� + �𝑃𝑃𝐴𝐴0𝑓𝑓𝑓𝑓𝑓𝑓 + ∑ 𝑃𝑃𝐴𝐴′𝑖𝑖
𝑛𝑛=3
𝑖𝑖=1 � + �∑ 𝑃𝑃𝐸𝐸′𝑖𝑖

𝑛𝑛=4
𝑖𝑖=0 + ∑ 𝑃𝑃𝐸𝐸𝑖𝑖

𝑛𝑛=12
𝑖𝑖=4 � +

(𝑃𝑃𝑆𝑆 − 𝜀𝜀)                                                     (4.6) 

The failure of AS[0] disconnected Racks[0-3], thus the packets could not be 

received by Server[0-7]; in the same way, packets also could not be sent away from 

Server[0-7] so that the other servers had less tasks received to be computed. This 

significantly decreased the total energy consumption especially servers[0-7] which 

took the responsibility for the heaviest computation tasks. However, even though 

Rack[0], Rack[1], Rack[2], and Rack[3] lost the capacity of transmitting packets to 

each other, the two servers with corresponding edge routers in each Rack[0-3] 

constituted a small LAN which could only interact with each other because the AS[0] 

failure did not affect the edge router in each rack, as shown in Table 4.13, Edge[0-3] 



93 
 

had received 800 packets, i.e., server[0] could only sent 400 packets to server[1] and 

vice versa, but server[0] could not send and receive packets outside Rack[0]. 
 rcvdPk-Original rcvdPk-after AS[0] failure Difference 
AS[0].pppg[0] 0 0 6332 

AS[0].pppg[16] 2194 0 
AS[0].pppg[17] 1692 0 
AS[0].pppg[18] 1346 0 
AS[0].pppg[19] 1100 0 

AS[1].pppg[0] 2183 0 2183 
AS[1].pppg[16] 1028 1028 
AS[1].pppg[17] 825 825 
AS[1].pppg[18] 689 689 

AS[1].pppg[19] 620 620 
AS[2].pppg[0] 2595 1342 1253 
AS[2].pppg[16] 480 480 
AS[2].pppg[17] 408 408 

AS[2].pppg[18] 325 325 
AS[2].pppg[19] 237 237 
AS[3].pppg[0] 2716 1819 897 
AS[3].pppg[16] 210 210 

AS[3].pppg[17] 135 135 
AS[3].pppg[18] 94 94 
AS[3].pppg[19] 30 30 
Edge[0] 2590 800 5928 

Edge[1] 2492 800 
Edge[2] 2146 800 
Edge[3] 1900 800 
Edge[4] 1828 1828 

Edge[5] 1625 1625 
Edge[6] 1489 1489 
Edge[7] 1420 1420 
Edge[8] 1280 1280 

Edge[9] 1208 1208 
Edge[10] 1125 1125 
Edge[11] 1037 1037 
Edge[12] 1010 1010 

Edge[13] 935 935 
Edge[14] 894 894 
Edge[15] 830 830 

Table 4.13 - The change of number of packet received after AS[0] failure for specific 
node port 



94 
 

Due to the failure of AS[0], CS[0] bore a heavier workload of disposing dropped 

packets; the increment of energy 𝛿𝛿 was added to the power consumed by CS[0], so 

that the total energy consumption for the core layer switches was recalculated as 

��𝑃𝑃𝐶𝐶′0 + 𝛿𝛿� + 𝑃𝑃𝐶𝐶1� where 𝑃𝑃𝐶𝐶0 represents the original power consumption for CS[0], 

𝑃𝑃𝐶𝐶′0 stands for the new power consumption based on less packets received, and 𝑃𝑃𝐶𝐶1 

stands for the power consumption of CS[1] which is fixed. In addition, the failure 

caused no responses to AS[0], but there is a great probability that AS[0] still 

consumed a fixed amount of energy 𝑃𝑃𝐴𝐴0𝑓𝑓𝑓𝑓𝑓𝑓  due to the fixed consuming components 

but less than while in a working state. The rest of the aggregation switches also 

consumed less power because the failure of AS[0] resulted in the number of packets 

received by other aggregation switches to decrease but only by a small portion. 

However, the connected four edge routers bore a much heavier workload of disposing 

the packets which got stuck as a result of the situation of CS[0]. The power 

consumption based on received packets for Edge[0, 1, 2, 3] is represented as 

∑ 𝑃𝑃𝐸𝐸′𝑖𝑖
𝑛𝑛=4
𝑖𝑖=0  and the energy of bearing load on dropping packets is 𝛾𝛾. Moreover, the 

computing power for the packets not received at Server[0-7] would be avoided, which 

refreshes the server power consumption to (𝑃𝑃𝑆𝑆 − 𝜀𝜀). 

Therefore, based on the failure of AS[0], the difference ∆𝐸𝐸𝐴𝐴0 between 𝐸𝐸𝑇𝑇′𝐴𝐴0  

and 𝐸𝐸𝑇𝑇𝐴𝐴0  would be 

∆𝐸𝐸𝐴𝐴0 = 𝛿𝛿 + �𝑃𝑃′𝐶𝐶0 − 𝑃𝑃𝐶𝐶0� + �𝑃𝑃𝐴𝐴0𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑃𝑃𝐴𝐴0� + �∑ 𝑃𝑃𝐴𝐴′𝑖𝑖
𝑛𝑛=3
𝑖𝑖=1 − ∑ 𝑃𝑃𝐴𝐴𝑖𝑖

𝑛𝑛=3
𝑖𝑖=1 � + 𝛾𝛾 +

�∑ 𝑃𝑃𝐸𝐸′𝑖𝑖
𝑛𝑛=4
𝑖𝑖=0 − ∑ 𝑃𝑃𝐸𝐸𝑖𝑖

𝑛𝑛=4
𝑖𝑖=0 � − ε                                   (4.7) 

Due to the received packets reduced, ∑ 𝑃𝑃𝐴𝐴′𝑖𝑖
𝑛𝑛=3
𝑖𝑖=1 − ∑ 𝑃𝑃𝐴𝐴𝑖𝑖

𝑛𝑛=3
𝑖𝑖=1  < 0, ∑ 𝑃𝑃𝐸𝐸′𝑖𝑖

𝑛𝑛=4
𝑖𝑖=0 −

∑ 𝑃𝑃𝐸𝐸𝑖𝑖
𝑛𝑛=4
𝑖𝑖=0 < 0, 𝑃𝑃′𝐶𝐶0 − 𝑃𝑃𝐶𝐶0< 0, energy on CS[0]`s extra dropping packet load bearing 

𝛿𝛿 > 0,  AS[0] power consumption 𝑃𝑃𝐴𝐴0𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑃𝑃𝐴𝐴0< 0, energy on Edge[0-3]s` extra 

dropping packet load bearing 𝛾𝛾 > 0, and −ε represents the server energy reduction 

accounts for the largest portion in ∆𝐸𝐸𝐴𝐴0 must be negative value. As a result, ∆𝐸𝐸𝐴𝐴0 is 



95 
 

negative but the value is varying based on the difference between the value of positive 

sum and the value of ε. 

In the same way, every variable in ∆𝐸𝐸𝐴𝐴3 ∆𝐸𝐸𝐴𝐴2 ∆𝐸𝐸𝐴𝐴1are different from the one in 

∆𝐸𝐸𝐴𝐴0 because the traffic pattern varied widely. Therefore, each AS failure generated 

as different energy consumption result. However, the failures of AS[3, 2, 1] produced 

a ladder-like downward decrease on total power consumption where AS[3] decreased 

by 49.15% compared to the original network: AS[1] at 82.01% and AS[0] at 62.55%, 

respectively. 

Switch Failure AS[3] AS[2] AS[1] AS[0] 

Energy degradation ratio from 

original 

49.15% 62.17% 82.01% 62.55% 

Table 4.14 - Energy degradation ratio for various AS failure 

4.2.14 Case 1 - Scenario 3: Network Performance according to 

Server/Switch/Rack Failures 

Notation in result figure Representation 

Original Network with no failures 

SF15 Server Failure of Rack[15].server[1] 

SF0 Server Failure of Rack[0].server[0] 

RF Rack Failure (Rack[0]) 

AS Aggregation Switch Failure (AS[0]) 

Table 4.15 - Notice on notation representation for the use in later results 



96 
 

 
Figure 4.29 - Avg. network throughput (bit/s) according to various Failures 

Server Failures seem to produce the smallest effect on the network throughput 

where the failure of a low-load server (Rack[15].server[1]) only decreased 3.16% of 

the entire average network throughput, failure of high-load server (Rack[0].server[0]) 

decreases the avg. network throughput to 12.92%. The rack failure was selected from 

Rack[0], the one server[0] belonged to, which is also the rack that bore the highest 

workload, which resulted in a decrease of 20.08% to the average network throughput. 

Furthermore, as AS[0] was the most important node in this network, its failure had the 

largest impact on the average network throughput compared to server failure and rack 

failure. 

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

Original SF15 SF0 RF AS

41517.52755
40204.1096

36151.18511
33179.89892

22932.50266

Avg. Network Throughput (bit/s) according to various 
Failures

Original

SF15

SF0

RF

AS



97 
 

 
Figure 4.30 - Total packet received according to various Failures 

Similar to the result of average network throughput, the number of packets 

received decreased in the order of SF15, SF0, RF and AS. The failure of AS[0] 

reduced almost half the number of packet received, and this significantly influenced 

the whole network performance no matter how the QoS was defined in the designated 

SLA. 

 
Figure 4.31 - Avg. packet delay (second) according to various Failures 

The server failure and rack failure did not influence the average packet delay 

critically, which was still around 0.004s. Although the failure of AS[0] reduced the 

0

2000

4000

6000

8000

10000

12000

14000

Original SF15 SF0 RF AS

12897
12489

11230
10307

6969

Total Packet Received according to various Failures

Original

SF15

SF0

RF

AS

0
0.0005
0.001

0.0015
0.002

0.0025

0.003

0.0035

0.004

0.0045

Original SF15 SF0 RF AS

0.00407180.004014940.00409479
0.00383752

0.0020041

Avg. Packet Delay (second) according to various Failures

Original

SF15

SF0

RF

AS



98 
 

average time of packet transmitting from source node to destination node to 0.002s, 

the number of packet received also halved. 

 
Figure 4.32 - Packet Drop Ratio (%) according to various Failures 

The Rack[0] failure enlarges the network packet drop ratio (22.51%) compared to 

server failure, particularly to Rack[15].server[1], i.e., 6.11%. Nevertheless, the AS[0] 

failure doubled the packet drop ratio produced by the rack failure, i.e., 47.61%, and 

lowered the network performance by almost half. 

 
Figure 4.33 - Total energy consumption according to various Failures (w) 

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%

40.00%

45.00%

50.00%

Original SF15 SF0 RF AS

3.04% 6.11%

15.57%

22.51%

47.61%

Packet Drop Ratio according to various Failures(%)

Original

SF15

SF0

RF

AS

0

5000000

10000000

15000000

20000000

25000000

Original SF15 SF0 RF AS

Total Energy Consumption according to various Failures (w)

Original

SF15

SF0

RF

AS



99 
 

As aforementioned, the total energy consumption change would took several 

factors into consideration which included the switch load bearing energy, the server 

energy reduction, and the switch energy change according to the traffic change. The 

server energy change ε plays the crucial role in the total energy change, where the 

AS[0] failure disconnected eight servers so as to decrease the total energy 

consumption significantly. On the other hand, the energy consumed for the network 

did not change much when the rack is failed, because the absolute value of the 

increase of power supplied for switch load remained almost the same as the absolute 

decrease value for the energy for handling jobs in switches, plus the server energy 

reduction. 

∆𝐸𝐸𝐴𝐴0 = 𝛿𝛿 + �𝑃𝑃′𝐶𝐶0 − 𝑃𝑃𝐶𝐶0� + �𝑃𝑃𝐴𝐴0𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑃𝑃𝐴𝐴0� + �∑ 𝑃𝑃𝐴𝐴′𝑖𝑖
𝑛𝑛=3
𝑖𝑖=1 − ∑ 𝑃𝑃𝐴𝐴𝑖𝑖

𝑛𝑛=3
𝑖𝑖=1 � + 𝛾𝛾 +

�∑ 𝑃𝑃𝐸𝐸′𝑖𝑖
𝑛𝑛=4
𝑖𝑖=0 − ∑ 𝑃𝑃𝐸𝐸𝑖𝑖

𝑛𝑛=4
𝑖𝑖=0 � − ε                                       (4.8) 

4.3 Case 2: DCNs` Performance vs. LFR 

4.3.1 Simulation setup 

In order to make the simulation more realistic, in this case, we deployed a 

different traffic pattern compared to the first study. The unbalanced traffic pattern is 

regarded as the closest situation to the DCN traffic as can be realistically simulated. 

This movement made the simulation more complicated to conduct, but valuable for its 

research contribution due to there not being much literature that reveals the DCN 

performance even under normal daily DCN traffic conditions. 

In this study, we built an energy-aware distributed DCN through simulation 

studies in order to observe the impact of the underlying network connectivity on the 

DCN`s performance. We modeled four identical datacenters distributed in 

geographical fashion by using the CloudNetSim++ simulator, and the datacenters 

were interconnected by Full-mesh topology to maximize the network stability. Five 

types of DCN architecture were simulated which were Fat-tree, BCube-2 layers 

(shown as BCube1 in results), BCube-3 layers (shown as BCube2 in results), 



100 
 

Three-tier, and HyperFlatnet. UDP transportation protocol was used and the traffic 

was still followed all-to-all but with an unbalanced pattern. Servers still generated the 

same number of packets but the receivers were organized randomly. 

Inter-DCN Full-mesh Network 

Intra-DCN Fat-tree; BCube-2 layers (shown as BCube1 in results); 

BCube-3 layers (shown as BCube2 in results); Three-tier; 

HyperFlatnet 

Traffic Protocol User Datagram Protocol (UDP) 

Traffic Type (all-to-all) All servers to all servers 

Traffic Pattern Unbalanced, tends to real-life cases 

Packet Size 2500 bytes 

Packet Send 

Interval 

0.8s 

Connection 

Type 

Gigabit Ethernet links 

Link quality Packet Error Rate = 0.8% (0.8 packet will be wrong when 

transmits 100 packets through one link) 

Link Bandwidth Varies from 1Gbps to 10Gbps inside intra-DCN; 100Gbps for 

inter-DCN 

Simulation Time 2000 seconds 

Table 4.16 - Case 2 - Network setup 

4.3.2 Topology setup 

In order to make network performance comparable between each data center 

topology, the number of servers and the inter-DCN were maintained as fixed, and as a 

consequence, the variance then appeared in intra-DCN, which arose from the DCN 



101 
 

type and the internal architecture such as DCN layers, the number of switches and 

links, the server port number, and the switch port number. 

 Fat Tree Three Tier BCube1 BCube2 HyperFlatNet 

Switch degrees 3 layer 3 layer 2 layer 3 layer 2 layer 

Switches Breakdown Core=16 

Aggregation=32 

Edge=32 

Core=16 

Aggregation=32 

Edge=32 

Level0=32 

Level1=32 

Level0=48 

Level1=48 

Level2=48 

Internal=64 

External=64 

No. of Switches 80 80 64 192 128 

No. of Servers 256 256 256 256 256 

No. of Links (4 

distributed DC) 

384 448 512 512 976 

No. of Links (mesh) 16 16 16 16 16 

Total Links 400 464 528 528 992 

Core layer Switch 

ports 

4 8 - - - 

Aggregation layer 

Switch ports 

4 6 - - - 

Edge layer Switch 

ports 

10 10 - - - 

Level 0 Switch ports - - 8 4 - 

Level 1 Switch ports - - 8 4 - 

Level 2 Switch ports - - - 4 - 

Internal Switch 

ports 

- - - - 5 



102 
 

…continued 

External Switch 

ports 

- - - - 4 

Max. Server ports 1 1 2 3 2 

Table 4.17 - Case 2 – DCNs Topology setup 

4.3.3 Topological comparison 

When the number of servers was maintained as 256 as highlighted in the above 

table, there were 3 layers of switches in Fat Tree, Three Tier and BCube-2 level, as a 

result, these three DCNs possessed more number of switches than the other 2 layers 

DCNs (BCube-1 level & HyperFlatNet). 

 
Figure 4.34 - Number of switches comparison between topologies 

However, due to the connecting patterns varied diversely, difference appeared on 

the number of links used, which the HyperFlatNet consumed the maximum number of 

links (976) while Fat Tree obtained the least number of links which was 384. 

80 80
64

192

128

0

50

100

150

200

250

No. of Switches

No. of Switch



103 
 

  
Figure 4.35 - Number of links comparison between topologies 

On the other side, although 2 BCubes were different from the switch layers and 

the switch numbers, the links used were maintained as the same because both the 

switch type and server type differentiated between port numbers: BCube-1 level 

employed 8-port switches and only 2-port servers, while BCube-2 level applied 

comparatively less costly 4-port switches and 3-port servers. 

Fat-tree and Three-tier DCN have very similar architectures which only vary 

between the numbers of links consumed and switch types, as discussed in the previous 

section. Fat-tree has less number of link oversubscription issues than the mainstream 

Three-tier DCN, which caused the fewer links used compared to Three-tier. Also, 

from the view of DCN arrangement, although Fat-tree and Three-tier obtain the same 

number of racks (32 racks in this scenario), the cost of establishing Fat Tree DCN can 

be saved from not only the number of links consumed, but the number of 

maximum-port switches used, as the core and aggregation layer switches can be 

substituted to commodity 4-port switches. 

384 448 512 512

976

0

200

400

600

800

1000

1200

No. of Links

No. of Link



104 
 

4.3.4 Case 2 - Scenario 1: Network Performance of Various DCNs 

with 0% LFR 

In this section, we compare the five DCNs under a 0% link failure ratio. The 

results show the original network performance and the evaluation generated a 

comprehensive analysis of these topologies. 

4.3.5 Results Analysis for Scenario 1 

The following table shows the network performance and energy consumption for 

various DCNs. 

DCN Energy Network 

latency (ms) 

Avg. Network 

Throughput 

(bits/s) 

Total 

Packets 

Received 

Packet 

Drop Ratio 

Fat-tree 23289.3 8.5051 154383.375 2007 3.238% 

HyperFlatNet 22842.4 5.09346 104444.568 1965 1.157% 

BCube1 39038.3 0.54233 100442.854 1929 0.942% 

BCube2 55378.4 1.06712 98117.726 1879 0.9404% 

Three-tier 22617.7 10.0481 154215.035 2004 3.311% 

Table 4.18 - Network Performance & Energy Consumption comparison for different 
DCNs with no failures 



105 
 

 
Figure 4.36 - Avg. network throughput (bits/s) comparison for different DCNs with 

no failures 

The tree-based DCN topologies (Fat-tree and Three-tier) achieved the highest 

average network throughput which was approximately 1/3 higher than the 

server-centric topologies (HyperFlatNet, BCube-2 layers and 3 layers). The 

topological aspect significantly determined the network performance because they 

followed the same traffic pattern. The tree-based topologies used the least network 

components such as switches and links, but gained the highest network throughput. 

0

20000

40000

60000

80000

100000

120000

140000

160000
154383.375

104444.568 100442.854 98117.726

154215.035

Avg. Network Throughput (bits/s) Avg. Network Throughput (bits/s)



106 
 

 
Figure 4.37 - Avg. Network latency (ms) comparison for different DCNs with no 

failures 

BCube-2 layers and 3 layers achieved the lowest network latency, and 

HyperFlatNet also gained very reasonable latency, which indicates the server-centric 

DCNs are definitely relaying messages quickly in comparison to the “switch-based” 

(tree-based) DCNs. The conventional Three-tier architecture produced the highest 

network latency due to the architectural property (switch-based) and the more 

network components (links) used compared to Fat-tree. 

 
Figure 4.38 - Total number of packet received comparison for different DCNs with 

no failures 

0

2

4

6

8

10

12

8.5051

5.09346

0.54233 1.06712

10.0481

Avg. Network latency (ms) Network latency (ms)

1800
1820
1840
1860
1880
1900
1920
1940
1960
1980
2000
2020

2007

1965

1929

1879

2004

Total Packets Received Packets Received



107 
 

 
Figure 4.39 - Packet drop ratio (%) comparison for different DCNs with no failures 

The result of total packets received and the packet drop ratio presented a similar 

pattern to the one for average network throughput. BCube-3 layers dropped most 

packets and Fat-tree and Three-tier performed the robustness characteristics in this 

movement. 

 
Figure 4.40 - Total energy consumption (w) comparison for different DCNs with no 

failures 

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%

3.500% 3.24%

1.16%
0.94% 0.94%

3.31%

Packet Drop Ratio (%) Packet Drop Ratio

0

10000

20000

30000

40000

50000

60000

23289.3 22842.4

39038.3

55378.4

22617.7

Total Energy Consumption (W) Energy



108 
 

BCube-3 layers consumed the largest amount of power, except for server power 

consumption. The power for supporting the largest number of switch (192) accounted 

for a relative high proportion of the total power consumed. 

4.3.6 Case 2 – Scenario 2 (preparation): Link selection 

determination according to the Centrality metrics 

In order to move on to the next process, LFR metric had to be determined, as the 

link failure selection would be a critical mission in this case. With the purpose of 

closely evaluating the DCN performance, prominent failures must be considered a top 

priority so that the effect will be enlarged according to the increasing LFR for the 

process of observing phenomenon. To accomplish this goal, we followed the 

methodology based on the first study, using centrality metrics to determine the most 

important nodes in the network. After that, a second round determination was 

conducted for deciding the important links based on the traffic load determined, for 

use in the later results analysis process. 

For example, in the preparation process, we imported the datasheet of the five DC 

architectures into Gephi, calculated each architecture`s centrality value, and the 

decision was made after the result analysis. The centrality results of Fat-tree are 

shown below, 

Notation Representation 
* Implies all 
R Represents R*, Routers in full mesh network 
CS[0] The first core switch 
AS[0,2,4,6] The first, third, fifth and seventh aggregation switch 
AS[1,3,5,7] The second, fourth, sixth and eighth aggregation switch 
Table 4.19 - Notice on notation representation for later use in the result 



109 
 

 
Figure 4.41 - Node betweenness centrality result for Fat-tree 

 
Figure 4.42 - Node eigenvector centrality result for Fat-tree 

 
Figure 4.43 - Node closeness centrality result for Fat-tree 

0

5000

10000

15000

20000

25000

Fat-tree: Betweenness Centrality

Fat-tree: Betweenness
Centrality

0

0.2

0.4

0.6

0.8

1

1.2

Fat-tree: Eigenvector Centrality

Fat-tree: Eigenvector
Centrality

0
1
2
3
4
5
6
7
8
9

Fat-tree: Closeness Centrality

Fat-tree: Closeness
Centrality



110 
 

 
Figure 4.44 - Node eccentricity distribution result for Fat-tree 

According to the node centrality result of the Fat-tree, CS[0] and AS[0,2,4,6] are 

considered the most important nodes. They gained the highest betweenness centrality 

and eigenvector centrality values, and the lowest closeness centrality and eccentricity 

value. Routers in mesh network should not be considered as critical nodes for Fat-tree. 

By following this inference, the links were randomly selected as the edges which 

belong to the critical nodes. In the case of Fat-tree, a set of edges connected to AS[0] 

were selected as the link failures. For BCube-2 layers, the higher layer switches (L1) 

were selected. For BCube-3 layers, L2 switches were selected. For HyperFlatNet, 

internal switches (ins) were selected. For Three-tier, AS and CS were selected. 

The following tables are reference for the later process the researcher used to 

represent the network robustness metrics. They changed according to the increasing 

link failures. The figures in red indicate the critical links based on the links selection 

after consideration of the traffic load, which is shown as the following figures, 

representing the packet received from higher layer by the source node ports with LFR 

= 0%. 

0

2

4

6

8

10

12

Fat-tree: Eccentricity

Fat-tree: Eccentricity



111 
 

 
Figure 4.45 - Number of packet received from higher layer for Fat-tree with no 

failures 

 
Figure 4.46 - Number of packet received from higher layer for BCube-2layer with 

no failures 

1022

48 20 19 24

958 967 982

104

0

200

400

600

800

1000

1200

Fat-tree with LFR=0%: rxPacketFromHL

North.agg[0].eth[2]

North.agg[2].eth[2]

South.agg[2].eth[2]

West.agg[2].eth[2]

East.agg[2].eth[2]

South.agg[0].eth[2]

West.agg[0].eth[2]

East.agg[0].eth[2]

East.agg[0].eth[0]

956

5 0 0 0

956

0

954

0 0 0
0

200

400

600

800

1000

1200

BCube-2layer with LFR=0%: rxPacketFromHL

North.L1[0].eth[0]

North.L1[1].eth[0]

North.L1[2].eth[0]

North.L1[4].eth[0]

North.L1[6].eth[0]

South.L1[0].eth[0]

South.L1[6].eth[0]

West.L1[0].eth[0]

West.L1[2].eth[0]

West.L1[4].eth[0]

West.L1[6].eth[0]



112 
 

 
Figure 4.47 - Number of packet received from higher layer for BCube-3layer with 

no failures 

 
Figure 4.48 - Number of packet received from higher layer for HyperFlatNet with 

no failures 

956

5 3 1 1

954

1

954

3

952

0
0

200

400

600

800

1000

1200

BCube-3layer with LFR=0%: rxPacketFromHL

North.L2[0].eth[0]

North.L2[1].eth[0]

North.L2[0].eth[2]

North.L2[0].eth[3]

North.L2[1].eth[1]

South.L2[0].eth[0]

South.L2[0].eth[2]

West.L2[0].eth[0]

East.L2[1].eth[0]

East.L2[0].eth[0]

East.L2[0].eth[1]

3

15

32

1
5

2

14

2 3
1

3

9
6

3

12

6

13 14

1
3 3

5
1

0

5

10

15

20

25

30

35

N
or

th
.in

S[
0]

.e
th

[2
]

N
or

th
.in

S[
1]

.e
th

[0
]

N
or

th
.in

S[
1]

.e
th

[1
]

N
or

th
.in

S[
3]

.e
th

[4
]

N
or

th
.in

S[
6]

.e
th

[3
]

N
or

th
.in

S[
7]

.e
th

[2
]

So
ut

h.
in

S[
1]

.e
th

[0
]

So
ut

h.
in

S[
1]

.e
th

[1
]

So
ut

h.
in

S[
3]

.e
th

[4
]

So
ut

h.
in

S[
6]

.e
th

[3
]

W
es

t.i
nS

[0
].e

th
[2

]
W

es
t.i

nS
[1

].e
th

[0
]

W
es

t.i
nS

[1
].e

th
[1

]
W

es
t.i

nS
[3

].e
th

[4
]

Ea
st

.in
S[

8]
.e

th
[0

]
Ea

st
.in

S[
6]

.e
th

[0
]

Ea
st

.in
S[

4]
.e

th
[0

]
Ea

st
.in

S[
10

].e
th

[0
]

Ea
st

.in
S[

13
].e

th
[3

]
W

es
t.i

nS
[5

].e
th

[2
]

W
es

t.i
nS

[7
].e

th
[3

]
W

es
t.i

nS
[9

].e
th

[1
]

W
es

t.i
nS

[1
4]

.e
th

[5
]

HyperFlatNet with LFR=0%: rxPacketFromHL
North.inS[0].eth
[2]
North.inS[1].eth
[0]
North.inS[1].eth
[1]
North.inS[3].eth
[4]
North.inS[6].eth
[3]
North.inS[7].eth
[2]
South.inS[1].eth
[0]
South.inS[1].eth
[1]
South.inS[3].eth
[4]
South.inS[6].eth
[3]
West.inS[0].eth[
2]



113 
 

 
Figure 4.49 - Number of packet received from higher layer for Three-tier with no failures 

Notation Representation 
F-SN Failure of source node 
F-DN Failure of destination node 
ASPL Average Shortest Path Length 
AWD Average weighted degree (regardless of traffic load) 
AND Average nodal degree 
AS[n] Aggregation switches [index] in Fat-tree and Three-tier 
L1[n] Layer 2 switches [index] in BCube-2 layer 
L2[n] Layer 3 switches [index] in BCube-3 layer 
Ins[n] Internal Switches [index] in HyperFlatNet 
CS[n] Core switches [index] in Three-tier 
S[n] Server[index] 

Table 4.20 - Notice on notation representation on table 4.21-25 
Index LFR F-SN F-DN Diameter Radius ASPL AWD AND 

Original 0% - - 11 6 7.441821725441855 16.231 2.329 

1 0.260% N.AS[0] N.Edge[0] 12 6 7.522480051973147 16.173 2.323 

2 0.521% N.AS[2] N.Edge[2] 12 6 7.60313837850444 16.115 2.317 

3 0.781% S.AS[2] Edge[2] 13 7 7.683796705035731 16.058 2.311 

4 1.042% W.AS[2] W.Edge[2] 13 7 7.7644550315670235 16 2.305 

5 1.302% E.AS[2] E.Edge[2] 13 7 7.845113358098316 15.942 2.300 

6 1.563% S.AS[0] S.Edge[0] 13 7 7.925771684629608 15.885 2.294 

7 1.823% W.AS[0] E.Edge[0] 13 7 8.0064300111609 15.827 2.288 

8 2.083% E.AS[0] E.Edge[0] 13 7 8.087088337692192 15.769 2.282 

9 2.344% E.AS[0] E.CS[0] 15 8 8.262997451316819 15.712 2.277 

Table 4.21 - Fat-tree network robustness metrics change according to increasing 
LFR 

1072

48 37 47 29 49 36

1018

19 14

984

0

200

400

600

800

1000

1200

Three-tier with LFR=0%: rxPacketFromHL

North.CS[0].eth[0]

North.AS[2].eth[4]

North.AS[2].eth[5]

North.AS[4].eth[4]

North.AS[6].eth[5]

North.AS[4].eth[5]

North.AS[6].eth[4]

North.AS[0].eth[4]

South.AS[2].eth[4]

South.AS[2].eth[5]

South.CS[0].eth[0]



114 
 

Index LFR F-SN F-DN Diameter Radius ASPL AWD AND 

Original 0% - - 11 6 7.083401995788702 10.828 3.215 

1 0.195% N.L1[0] N.S[0] 14 7 7.195166163141994 10.822 3.208 

2 0.391% N.L1[1] N.S[1] 14 7 7.206408495834478 10.816 3.202 

3 0.586% N.L1[2] N.S[2] 14 7 7.218236748146114 10.81 3.196 

4 0.781% N.L1[4] N.S[4] 14 7 7.230650920076902 10.804 3.19 

5 0.977% N.L1[6] N.S[6] 14 7 7.243651011626842 10.798 3.184 

6 1.172% S.L1[0] S.S[0] 17 9 7.355415178980134 10.792 3.178 

7 1.367% S.L1[6] S.S[6] 17 9 7.366657511672617 10.785 3.172 

8 1.563% W.L1[0] W.S[0] 17 9 7.478421679025908 10.779 3.166 

9 1.758% W.L1[2] W.S[2] 17 9 7.489664011718393 10.773 3.16 

10 1.953% W.L1[4] W.S[4] 17 9 7.501492264030029 10.767 3.154 

11 2.148% W.L1[6] W.S[6] 17 9 7.513906435960816 10.761 3.148 

Table 4.22 - BCube-2 layers network robustness metrics change according to 
increasing LFR 

Index LFR F-SN F-DN Diameter Radius ASPL AWD AND 

Original 0%   17 9 10.181878154170928 37.657 3.091 

1 0.195% N.L2[0] N.S[0] 17 9 10.382249782850106 37.611 3.087 

2 0.391% N.L2[1] N.S[1] 18 9 10.398610240679046 37.564 3.082 

3 0.586% N.L2[0] N.S[32] 18 9 10.456905366625985 37.518 3.077 

4 0.781% N.L2[0] N.S[48] 18 9 10.515112533122231 37.471 3.073 

5 0.977% N.L2[1] N.S17 18 9 10.550142384360809 37.424 3.068 

6 1.172% S.L2[0] S.S[0] 18 9 10.75051401303999 37.377 3.063 

7 1.367% S.L2[0] S.S[32] 18 9 10.808809138986927 37.33 3.059 

8 1.563% W.L2[0] W.S[0] 18 9 11.009180767666106 37.283 3.054 

9 1.758% E.L2[1] E.S[1] 18 9 11.01067607832789 37.237 3.049 

10 1.953% E.L2[0] E.S[0] 19 10 11.225912854174226 37.19 3.044 

11 2.148% E.L2[0] E.S[16] 22 11 12.061923453288035 37.143 3.04 

Table 4.23 - BCube-3 layers network robustness metrics change according to 
increasing LFR 

Index LFR F-SN F-DN Diameter Radius ASPL AWD AND 

Original 0% - - 15 8 8.570738289532866 35.646 3.018 

1 0.102% N.ins[0] N.S[0] 15 8 8.611051853755702 35.595 3.013 

2 0.205% N.ins[1] N.ins[0] 17 9 8.856043179335604 35.544 3.008 

3 0.307% N.ins[1] N.ins[2] 17 9 8.858703334832615 35.494 3.003 

4 0.410% N.ins[3] N.S[2] 17 9 8.871567178564543 35.443 2.997 

5 0.512% N.ins[6] N.S[63] 17 9 8.914412388357 35.392 2.992 

6 0.615% N.ins[7] N.S[28] 17 9 8.916275782304183 35.342 2.987 

7 0.717% S.ins[1] S.ins[0] 17 9 9.064499132557991 35.291 2.982 

8 0.820% S.ins[1] S.ins[2] 17 9 9.067082182098567 35.241 2.977 

9 0.922% S.ins[3] S.S[2] 17 9 9.0820792906252 35.19 2.972 

10 1.025% S.ins[6] S.S[63] 17 9 9.100983100944548 35.139 2.967 



115 
 

…continued 

11 1.127% W.ins[0] W.S[0] 17 9 9.141296665167385 35.089 2.962 

12 1.230% W.ins[1] N.ins[0] 19 10 9.386287990747284 35.038 2.957 

13 1.332% W.ins[1] W.ins[2] 19 10 9.388948146244298 34.987 2.952 

14 1.434% W.ins[3] W.S[2] 19 10 9.401811989976226 34.937 2.947 

15 1.537% E.ins[8] E.ins[7] 19 10 9.404677761357064 34.886 2.942 

16 1.639% E.ins[6] E.ins[5] 19 10 9.407492128766947 34.835 2.937 

17 1.742% E.ins[4 E.ins[3] 19 10 9.4104607080897 34.785 2.932 

18 1.844% E.ins[10] E.ins[9] 19 10 9.41330077748506 34.734 2.927 

19 1.947% E.ins[13] E.S[27] 19 10 9.433708153954893 34.684 2.922 

20 2.049% W.ins[5] W.S[20] 19 10 9.439285484803701 34.633 2.916 

21 2.152% W.ins[7] W.S[3] 19 10 9.458330656043179 34.582 2.911 

22 2.254% W.ins[9] W.ins[10] 19 10 9.461209278416758 34.532 2.906 

23 2.357% W.ins[14] W.S[53] 19 10 9.4627642485382 34.481 2.901 

Table 4.24- HyperFlatNet network robustness metrics change according to 
increasing LFR 

Index LFR F-SN F-DN Diameter Radius ASPL AWD AND 

Original 0% - - 9 5 7.227265912611817 16.599 2.697 

1 0.223% N.CS[0] N.AS[0] 9 5 7.236061368293049 16.542 2.692 

2 0.446% N.AS[2] N.Edge[2] 9 5 7.23636121337309 16.536 2.686 

3 0.669% N.AS[2] N.Edge[3] 9 5 7.236661058453133 16.53 2.68 

4 0.893% N.AS[4] N.Edge[4] 9 5 7.236960903533174 16.524 2.674 

5 1.116% N.AS[6] Edge[7] 9 5 7.237260748613217 16.519 2.669 

6 1.339% N.AS[4] N.Edge[5] 9 5 7.237560593693258 16.513 2.663 

7 1.562% N.AS[6] N.Edge[6] 9 5 7.237860438773301 16.507 2.657 

8 1.786% N.AS[0] N.Edge[0] 9 5 7.238160283853342 16.501 2.651 

9 2.009% S.AS[2] S.Edge[2] 9 5 7.238460128933385 16.496 2.646 

10 2.232% S.AS[2] S.Edge[3] 9 5 7.238759974013426 16.438 2.64 

11 2.455% S.CS[0] S.AS[0] 9 5 7.247555429694658 16.380 2.634 

Table 4.25 - Three-tier network robustness metrics change according to increasing 
LFR 



116 
 

 
Figure 4.50 - Average Nodal Degree according to increasing LFR 

 
Figure 4.51 - Average gradient of nodal degree for various DCNs 

Fat Tree Three Tier BCube BCube2 HyperFlatNet 

0.058 0.069 0.079 0.061 0.112 

Table 4.26 – The gradient of average nodal degree 

From table 4.26, we can see that by contrast to Fat-tree/Three-tier/BCube-2 layers 

and 3 layers, HyperFlatNet had a higher gradient of decreasing its average nodal 

degree, which implies that with the LFR increased, the HyperFlatNet mitigates the 

probability of connections being affected. In this case, even if the Fat-tree gained the 

lowest average nodal degree, it lacked the ability of “stopping” the connections that 

were being affected. On the other hand, several link failures may constitute one 

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

Av
er

ag
e 

N
od

al
 D

eg
re

e

LFR

Average Nodal Degree

Fat Tree

Three Tier

BCube

BCube2

HyperFlatNet

0.006 0.006 0.006

0.005 0.005

0.0044
0.0046
0.0048

0.005
0.0052
0.0054
0.0056
0.0058

0.006
0.0062

Av
er

ag
e 

G
ra

di
en

t 

Average Gradient of Nodal Degree

Average Gradient of Nodal
Degree



117 
 

effective connection failure between nodes, which is to say, the higher average degree 

of a node indicates a higher number of the neighbor edges of a node. This means it 

has a large failure ratio to make up for any connection failure to its neighboring nodes. 

Three server-centric DCN topologies gained the highest average nodal degree which 

means that BCube (2 layers and 3 layers), and HyperFlatNet are prone to be affected 

by link failure ratio increases. 

 
Figure 4.52 - Network Diameter for various DCNs according to increasing LFR 

 
Figure 4.53 – Average Shortest Path Length for various DCNs according to 

increasing LFR 

5
7
9

11
13
15
17
19
21
23

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

N
et

w
or

k 
Di

am
et

er

LFR
Fat Tree Three Tier BCube BCube2 HyperFlatNet

7

8

9

10

11

12

13

14

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

Av
er

ag
e 

Sh
or

te
st

 P
at

h 
Le

ng
th

LFR
Fat Tree Three Tier BCube BCube2 HyperFlatNet



118 
 

The network diameter is known as the maximum length among all the calculated 

shortest paths in a network. Under the all-to-all server traffic scenario, it is the longest 

path from one server to another reachable server. From a topological respect, a 

smaller network diameter indicates relatively lower network latency because of less 

opportunities of producing transmission delays and delays caused by the number of 

times information has to be queued. Ideally, that generates more effective routing. 

From the figure shown above, the Three-tier DCN topology maintains the lowest 

network diameter with regard to the increase of LFR, which assumes that Three-tier 

DCN obtains the lowest network latency than all the others. On the other side, BCube 

with 3 layers is suspected to gain the highest network latency, as shown in Figure 

4.53. 

4.3.7 Case 2 - Scenario 2: Network Performance Metrics results 

analysis on Various DCNs according to increasing LFR 

 
Figure 4.54 – Network Latency for various DCNs according to increasing LFR 

As aforementioned, the three server-centric DCN architectures are predicted to 

have higher network latency because of the results of average nodal degree, network 

diameter and ASPL as shown in Figure 4.53. The previous assumption could have 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

N
et

w
or

k 
La

te
nc

y

LFR
Fat Tree Three Tier BCube BCube2 HyperFlatNet



119 
 

been identified by the latency curves. BCube with 2 layers and 3 layers, and 

HyperFlatNet generated relative higher network latency, and the Three-tier showed 

the predicted result with the lowest network latency with the increase of LFR. This 

verified the hypothesis that it could take more chances to go through less transmission 

delay with a small ASPL and network diameter. However, BCube with 3 layers did 

not achieve the highest latency but this was achieved by Fat-tree. The discrepancy 

occurred mainly within the range 2.50% > LFR > 2.00%, as the traffic was generated 

as unbalanced. There was a coincidence that within that LFR range, the specific racks 

which generated a large number of data flows failed to transport packets to other racks 

on the shortest paths, so that more packets were necessarily sent on longer paths. 

Furthermore, the transmission time spent for a large proportion of total packets was 

increased as a result of the paths becoming longer while the packets received 

decreased due to longer queuing time. This exira time was required within the fixed 

UDP application transmitting time as shown in the following figure, which led to a 

steeper gradient after 2.00% LFR of average network latency of the Fat-tree. 

The joggle of latency for HyperFlatNet was created by a random traffic load as 

the packet received stayed smooth with only a little decrease, which implies that the 

HyperFlatNet DCN topology is relatively more stable than the others. No matter how 

links were disconnected, the total number of packets received was maintained around 

2000. According to the network latency model, the almost fixed packets received with 

the nearly unchanged latency result deduced that the delay of the packet i is relatively 

controlled within the acceptable time frame, so that the latency for HyperFlatNet 

presents a much more stable status. Also, from the respect of a topological view, 

HyperFlatNet possesses 1.9 times more links than BCube and 2.54 times more than 

the Fat-tree, and it contains the second largest number of switches which is supposed 

to have much more powerful stable transmission ability. Despite that, it has second 

largest ASPL and network diameter out of the five topologies. 



120 
 

 
Figure 4.55 – Total Packets Received for various DCNs according to increasing LFR 

There were a total of 2100 packets generated for all topologies. The packets 

received for all topologies presented as ladder-like trend except for HyperFlatNet, 

while the BCube-2 layers and 3 layers produced several steps downward after 1.00% 

LFR, and the Fat-tree got a sensitive response when LFR > 1.25% which appeared to 

be a lower reliability than the other tree-based topology, Three-tier. HyperFlatNet, 

with the largest number of links, shows the highest reliability against the other four 

topologies. 

0

500

1000

1500

2000

2500

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

To
ta

l P
ac

ke
ts

 R
cv

d

LFR
Fat Tree Three Tier BCube BCube2 HyperFlatNet



121 
 

 
Figure 4.56 – Avg. Network Throughput for various DCNs according to increasing 

LFR 

 
Figure 4.57 – Packet Drop Ratio for various DCNs according to increasing LFR 

The above two figures show that the result curves could be clustered by different 

types of topology; the tree-based conventional Three-Tier and Fat-tree have very 

closed initial points on average throughput which is around 150,000 bits/s. Even 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

Av
g.

 T
hr

ou
gh

pu
t (

bi
ts

/s
)

LFR

Fat Tree Three Tier BCube BCube2 HyperFlatNet

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

Pa
ck

et
 D

ro
p 

Ra
tio

LFR

Fat Tree Three Tier BCube BCube2 HyperFlatNet



122 
 

though the Fat-tree has less link oversubscription issues than Three-tier, with the link 

failure ratio increased, the Fat-tree decreases more dramatically than Three-Tier 

because Three-tier has more effective connections for maintaining the number of 

ASPLs, as well as for network robustness. As the traffic was defined as unbalanced, 

Figure 4.56 shows the source node ports of failed edges were used for receiving 

packets from a higher layer; as observed, the average network throughput decreased 

sharply after the 6th link failure because the number of packets dropped dramatically 

at this moment. 

The server-centric topologies all appeared steady until the LFR reached around 

2.00%. Relatively, the HyperFlatNet was more robust within the limited LFR, but a 

fall occurred that indicates a specific effective connection failed. This may imply a 

substantial decrease of network performance. However, the performance could be still 

steady in a lower level. The BCube-2 layers and BCube-3 layers represent highly 

reliable capacity when LFR is less than 2.00%. The average throughput decreases 

approximate 20% which compared to Fat-tree at 31.25% and HyperFlatNet at 46.8%. 

Similar with the average throughput, the result of PDR against LFR can also be 

classified into two clusters: tree-based DCN topologies and server-centric topologies. 

Obviously, the PDR for tree-based topologies are higher than the server-centric. The 

Fat-tree still presents an unstable trend; in addition to the decreasing number of 

shortest path length (SPL), the selected links for failure are prominent, as can be seen 

in Figure 4.56. Numerous effective connections failed to reliably relay messages after 

LFR moved beyond 1.50%, leading to an abnormal pattern on packets dropped. 

BCube-3 layers had more switches used than the other two server-centric topologies, 

and the failures on switches forced the packets to be transferred to alternative routes 

which caused the load burden on alternative switches. The drop tail queue mechanism 

compelled the packets to be dropped when the switch frame capacity achieved 100. 

This means the ratio for the packet dropping increased. 



123 
 

 
Figure 4.58 - Energy Consumption against increasing LFR 

In this thesis, the researcher deployed the DVFS and DPM energy models 

simultaneously, and the energy consumption was adjusted according to the node 

voltage / CPU frequency by DVFS technique. Idle nodes were shut down 

automatically based on DPM technique so that energy consumption could be reduced 

to the lowest level. Within the limited simulation time, the energy consumption varied 

widely against the LFR, as shown in the above figure. In Fat-tree/Three-tier 

architectures, any failures of a top-of-rack (ToR) switch will cause the disconnection 

of a whole rack of servers, so that makes DVFS and DPM model dysfunction 

regionalized. This will produce a decrease in energy consumption. Otherwise, any 

failures of an end-of-rack (EoR) switch (aggregation or core switch) will push the 

switching load to be moved to other switches, thus the accumulated switching energy 

consumption will lead to the promotion of the curve. On the other hand, in order to 

capture the prominent topological feature, connections lie on important routes were 

selected as failure scenarios so that the results were amplified as representative. As 

BCube-2 layers and 3 layers results show, several link failures constitute a Cube fail, 

and the energy consumption decrease in these two topologies was due to the servers in 

that Cube not sending any packets, as shown in Figures 4.46 and 4.47. However, the 

number of packets received is determined by both switch load capacity and the degree 

0

10000

20000

30000

40000

50000

60000

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

To
ta

l E
ne

rg
y 

Co
ns

um
pt

io
n 

(w
)

LFR

Fat Tree Three Tier BCube BCube2 HyperFlatNet



124 
 

of failure, so an entire Cube cannot easily fail in BCube-3 layers because a Cube is 

supported by three layers of switches rather than BCube-2`s two layers of switches. 

The BCube-3 layers consumed more energy than two layers due to the higher number 

of switches which supported the workload concurrently. Comparatively, the 

HyperFlatNet is a more robust DCN topology so that there is less probability of link 

failures leading to server failure; only a few switches were disconnected during the 

LFR increasing process, so that the workload was easily transferred to the existing 

operating switches, which resulted in the energy increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



125 
 

Chapter 5 Conclusion and Future 

work 

5.1 Conclusion 
Cloud computing is a potential next generation technology in networking and 

telecommunication as it benefits daily life such as in the areas of global commerce, 

media and education. The cloud minimizes the cost of hardware and maintenance 

work from a commercial perspective, and there is no limitation on the availability of 

software. While datacenters play a very important role in cloud computing, the cost 

and the efficiency of datacenters are always the dominant topic in this cloud 

computing area; researchers have been evaluating datacenter efficiency with the aim 

of reducing cost and carbon dioxide output. This thesis focuses on such topics from a 

DCN topological aspect. However, because of the increasing use of DCN, QoS must 

be guaranteed in order to assure the normal operation, so DCN performance 

measurement is another important topic in this work. Therefore, the comparison 

among DCNs` architecture and performance (i.e., network throughput, packet latency, 

packet drop ratio, and number of total packets received) are regarded as the emphasis 

of this thesis. Five different popular types of DCN topology were compared from a 

topological view: Three-tier and Fat-tree, as well as the recursive MDC BCubes, and 

the high-performing and reliable network: HyperFlatNet. Moreover, fault tolerance is 

another network characteristic that indicates whether a network is robust or not. This 

thesis measured the network performance change versus an increasing link error rate 

to evaluate the fault tolerant ability of each DCN. For each DCN, network robustness 

metrics (i.e., average nodal degree, average weighted degree, average shortest path 

length, network diameter and radius) were evaluated and analyzed, centrality metrics 

(i.e., betweenness centrality, closeness centrality, eigenvector, and eccentricity) were 

evaluated for both nodes and edges. The network robustness metrics and the centrality 



126 
 

metrics determined the most critical nodes and edges, so that a number of links could 

be identified as the selection of failures. Such principle is valuable for cloud service 

providers to identify the network vulnerabilities, so that they are able to invest in the 

most critical network areas or hardware components with limited funds. 

5.2 Main findings 
DCNs performance is not merely a function of resource provisioning and 

allocation, but also it is a network-wide activity. This study revealed how the DCN 

QoS performance and robustness can be impacted on by the underlying network 

structure in a cloud environment. Some topological metrics were studied to reveal 

their impacts on DCN performances and robustness. Then the robustness of increasing 

LFR for different DCN architectures was evaluated, which also shows correlations to 

DCN performances. Under the same network settings, the topological metrics such as 

network diameter and ASPL can only be rough indicators of network latency because 

they cannot comprehensively explain the complicated DCN structure. The 

conventional Three-tier DCN in this case generated lowest average latency due to the 

amount of links deployed and its tree architecture preserved the highest efficiency on 

network transmission. Additionally, with the adoption of DVFS and fixed timeout 

DPM policy, the energy consumption by different DCN architectures illustrated 

irregular patterns as the failed links were selected to highlight the effects. 

 

Q 1: Does the underlying DCN topology have an impact on the cloud network 

performance (QoS & energy)? 

From the results of simulation studies, we can see that the different DCN 

topologies have various impacts on the cloud network performance (QoS and energy). 

For example, in case 2, under the same traffic scenario, the Fat-tree achieved the 

highest average network throughput, while the BCube-3 layers obtained the lowest. 

The Three-tier DCN topology got both the highest network latency and the packet 

drop ratio. On the other hand, BCube-3 layers consumed the largest energy compared 



127 
 

to all the other DCN topologies. The DCN architecture produces the difference in the 

network performance and energy consumption. 

Q 2: What network topological metrics can be used as an index to quantify the cloud 

data center performance in the cases of energy efficiency and QoS? 

It is difficult to find one accurate metric for quantifying data center network 

performance and also energy efficiency, but it is able to monitor the performance on 

the basis of comprehensively analyzed network robustness metrics and centrality 

metrics according to the traffic load pattern where the faults happened. For example, 

the failure of a critical link has much significant impact on the DCN performance 

compared to less critical links. So the foremost thing is to determine the critical links. 

Therefore, the method in this thesis was to use centrality metrics (betweenness, 

closeness, eigenvector, eccentricity) coupled with analyzing traffic flow patterns to 

determine the critical links. 

Q 3: How to use this metric to determine the critical nodes/links in a data center 

network? 

For example, aggregation switches were found to be the most important clusters 

of important nodes. And if the aggregation switch [0] got the heaviest workload, then 

AS[0] became the most critical node in the DCN. The failure of AS[0] decreased the 

network performance by the largest proportion (throughput, packet drop rate), and 

latency was lowered due to queuing time decreasing when a large number of packets 

were dropped. Energy consumption showed an irregular pattern which should be 

considered case-by-case. 

5.3 Future work 
Considering the work covered in this thesis occurred within a limited time period, 

it would be useful to highlight some areas to be further investigated. 

Firstly, more realistic and complex DCN energy aware performance models will 

be further developed by considering various network scenarios, and also a better 

topological indicator needs to be sought. 



128 
 

Secondly, a larger number of experiments should be conducted in the next 

research stage to minimize the average error. The cases are also needed to be 

improved; link error rate should be expanded so that more links are selected to be 

failed. Furthermore, failed links could be selected randomly to cater to the realistic 

scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

Glossary 
ASPL: Average Shortest Path Length 

AWS: Amazon Web Services 

BWs: Balanced Workloads 

CDN: Content Distribution Network 

CIWs: Computationally Intensive Workloads 

DC: Data center 

DCN: Data Center Network 

DIWs: Data-intensive Workloads 

DPM: Dynamic Power Management 

DVFS: Dynamic Voltage/Frequency Scaling 

HDT: high data transferring 

HPC: High-Performance Computing 

IaaS: Infrastructure as a Service 

ICT: Information Communications Technologies 

LCM: Linked Clusters Maximization 

LDT: low data transferring 

LFR: Link Failure Rate 

MDC: Modular Data Center 

NIST: National Institute of Standard and technology 

NPE: Network Performance Evaluation 

OPEX: Operational Expenses 

PaaS: Platform as a Service 

PCL: Prediction Confidence Level 

QoS: Quality of Service 

RDS: Relational Database Service 

SaaS: Software as a Service 

SLAs: Service Level Agreements 



130 
 

SLB: Server load balancing 

SOA: Service-oriented Architecture 

SOAP: Simple Object Access Protocol 

TCO: Total Cost of Ownership 

VBB/VBC: Volume Based Billing/Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



131 
 

Reference 
[1] S. Khan and A. Zomaya, Handbook on data centers.  

[2] Y. Liu, J. Muppla, M. Veeraghavan, D. Lin and M. Hamdi, Data Center Networks. 

Springer International Publishing, 2013, pp. 1-5. 

[3] P. Bailis and K. Kingsbury, "The network is reliable", Communications of the 

ACM, vol. 57, no. 9, pp. 48-55, 2014. 

[4] Amazon, "Random network interruptions with my EC2 instances, failover 

impossible", 2013. [Online]. Available: https://forums.aws.amazon.com/thread. 

jspa?messageID=454155. [Accessed: 19- Sep- 2015]. 

[5] GitHub, "Downtime last Saturday", 2012. [Online]. Available: 

https://github.com/blog/1364-downtime-last-saturday. [Accessed: 28- Sep- 2015]. 

[6] K. Choo, 'Mobile Cloud Storage Users', IEEE Cloud Computing, vol. 1, no. 3, pp. 

20-23, 2014. 

[7] A. Beitelmal and C. Patel, "Thermo-Fluids Provisioning of a High Performance 

High Density Data Center", Distrib Parallel Databases, vol. 21, no. 2-3, pp. 

227-238, 2006.. 

[8] Gartner.com, 'Technology Research | Gartner Inc., 2015. [Online].  

[9] A. Banerjee, T. Mukherjee, G. Varsamopoulos and S. Gupta, 'Integrating cooling 

awareness with thermal aware workload placement for HPC data centers', 

Sustainable Computing: Informatics and Systems,  

[10] J. Carter and K. Rajamani, 'Designing Energy-Efficient Servers and Data 

Centers', Computer, vol. 43, no. 7, pp. 76-78, 2010. 

[11] D. Kliazovich, P. Bouvry and S. Khan, 'GreenCloud: a packet-level simulator of 

energy-aware cloud computing data centers', The Journal of Supercomputing, vol. 

62, no. 3, pp. 1263-1283, 2010. 

[12] R. Couto, S. Secci, M. Campista and L. Costa, "Reliability and Survivability 

Analysis of Data Center Network Topologies", J Netw Syst Manage, 2015. 



132 
 

[13] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. Jayaraman, J. Kolodziej, P. 

Balaji, S. Zeadally, Q. Malluhi, N. Tziritas, A. Vishnu, S. Khan and A. Zomaya, 

"A survey and taxonomy on energy efficient resource allocation techniques for 

cloud computing systems", Computing, 2014. 

[14] A. Hammadi and L. Mhamdi, "A survey on architectures and energy efficiency 

in Data Center Networks", Computer Communications, vol. 40, pp. 1-21, 2014. 

[15] W. Lloyd, S. Pallickara, O. David, M. Arabi, T. Wible and J. Ditty, 

"Demystifying the Clouds: Harnessing Resource Utilization Models for Cost 

Effective Infrastructure Alternatives", IEEE Transactions on Cloud Computing, 

pp. 1-1, 2015. 

[16] Costa, P., Migliavacca, M., Pietzuch, P., & Wolf, A. L. “NaaS: 

Network-as-a-Service in the Cloud.” In Proceedings of the 2nd USENIX 

conference on Hot Topics in Management of Internet, Cloud, and Enterprise 

Networks and Services, Hot-ICE (Vol. 12, pp. 1-1). 

[17] P. Mell and T. Grance, "The NIST Definition of Cloud Computing.", 

Communications of the ACM., vol. 53, no. 6, pp. p50-50. 2/3p., 2010. 

[18] C. Liu, Service-oriented computing. Heidelberg: Springer, 2012. 

[19] L. Wang, D. Chen, J. Zhao and J. Tao, "Resource management of distributed 

virtual machines", IJAHUC, vol. 10, no. 2, p. 96, 2012.  

[20] L. Wang, D. Chen and F. Huang, "Virtual workflow system for distributed 

collaborative scientific applications on Grids", Computers & Electrical 

Engineering, vol. 37, no. 3, pp. 300-310, 2011.  

[21] L. Wang, G. von Laszewski, D. Chen, J. Tao and M. Kunze, "Provide Virtual 

Machine Information for Grid Computing", IEEE Transactions on Systems, Man, 

and Cybernetics - Part A: Systems and Humans, vol. 40, no. 6, pp. 1362-1374, 

2010. 

[22] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. 

Patterson, A. Rabkin, I. Stoica, M. Zaharia (2010) “A view of cloud computing.” 

Commun ACM 53(4):50–58 



133 
 

[23] W. Jansen (2011) “Cloud hooks: security and privacy issues in cloud computing.” 

In: 44th Hawaii international conference on systems science (HICSS), pp 1–10. 

[24] N. Sadashiv, S. Kumar (2011) “Cluster, grid and cloud computing: a detailed 

comparison.” In: 6th international conference on computer science and education 

(ICCSE 2011), pp 477–482 

[25] L. Barroso, U.Hölzle(2009) The datacenter as a computer: an introduction to the 

design ofwarehousescale machines, 1st edn. In: Hill MD (ed) Morgan and 

Claypool Publishers, University of Wisconsin, Madison 

[26] A. Berl, E. Gelenbe, M. Girolamo, G. Giuliani, H. Meer, M. Dang, K. 

Pentikousis (2010) “Energyefficient cloud computing.” Comput J 53(7):1045–

1051 

[27] J. Kaplan, W. Forrest and N. Kindler, "Revolutionizing Data Center Energy 

Efficiency", McKinsey & Company, 2016. 

[28] S.Srikantaiah, A. Kansal, F. Zhao (2008) “Energy aware consolidation for cloud 

computing.” In: Conference on power aware computer and systems 

(HotPower ’08) 

[29] Y. Lee, A. Zomaya (2012) “Energy efficient utilization of resources in cloud 

computing systems.” J Supercomput 60(2):268–280. 

doi:10.1007/s11227-010-0421-3 

[30] J. Paradiso, T. Starner (2005) “Energy scavenging formobile andwireless 

electronics.” Pervasive Comput 4(1):18–27 

[31] M. Elnozahy, M. Kistler, R. Rajamony (2002) “Energy-efficient server clusters.” 

Power aware computer systems, vol 2325. Springer, Berlin, pp 179–197 

[32] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron (2003) “Power-aware QoS 

management in web servers.” In: Real-time systems symposium (RTSS 2003), 

pp 63–72 

[33] T. Horvath, T. Abdelzaher, K. Skadron, X. Liu (2007) “Dynamic voltage scaling 

in multitier web servers with end-to-end delay control.” IEEE Trans Comput 

56(4):444–458 



134 
 

[34] X. Liu, P. Shenoy, W. Gong (2004) “A time series-based approach for power 

management in mobile processors and disks.” In: 14th international workshop on 

network and operating systems support for digital audio and video 

(NOSSDAV ’04), pp 74–79 

[35] D. Steere, A. Goel, J. Gruenberg, D. Mcnamee, C. Pu, L. Walpole (1999) “A 

feedback-driven proportion allocator for real-rate scheduling.” In: Third 

symposium on operating system designand implementation (OSDI), pp 145–158 

[36] Chang Ge, Zhili Sun and Ning Wang, "A Survey of Power-Saving Techniques on 

Data Centers and Content Delivery Networks", IEEE Communications Surveys 

& Tutorials, vol. 15, no. 3, pp. 1334-1354, 2013. 

[37] F. Fang and X. Yu, "Design and Implementation of Next-Generation Data Center 

Infrastructure", AMM, vol. 513-517, pp. 1316-1319, 2014. 

[38] Al-Fares, M., Loukissas, A., & Vahdat, A. (2008, August). A scalable, 

commodity data center network architecture. In ACM SIGCOMM Computer 

Communication Review (Vol. 38, No. 4, pp. 63-74). ACM. 

[39] Google Whitepaper (2011) Google’s green data centers: network POP case study. 

Google. 

http://static.googleusercontent.com/external_content/untrusted_dlcp/www.googl

e.com/en/us/corporate/datacenter/dc-best-practices-google.pdf 

[40] N. Gorti, "Application aware performance, power consumption, and reliability 

tradeoff" (2014). Graduate Theses and Dissertations. Paper 13933.", Ph.D, Iowa 

State University, 2016. [41] IBM. Ibm watson, 2013. 

[41] P. Bosshart, C. Hewes, Mi-Chang Chang, Kwok-Kit Chau, C. Hoac, T. Houston, 

V. Kalyan, S. Lusky, S. Mahant-Shetti, D. Matzke, K. Ruparel, Ching-Hao Shaw, 

T. Sridhar and D. Stark, "A 553K-transistor LISP processor chip", 1987 IEEE 

International Solid-State Circuits Conference. Digest of Technical Papers.  

[42] "Efficiency, Power, Cores... | TOP500 Supercomputer Sites", Top500.org, 2016. 

[Online]. Available: http://www.top500.org/statistics/efficiency-power-cores/. 

[Accessed: 20- May- 2015].  



135 
 

[43] M. Dayarathna, Y. Wen and R. Fan, "Data Center Energy Consumption 

Modeling : A Survey", IEEE Communications Surveys & Tutorials, pp. 1-1, 

2015. 

[44] J. Koomey, C. Belady, M. Patterson, A. Santos and K. Lange, Assessing Trends 

Over Time in Performance, Costs, and Energy Use for Servers, 1st ed. 2009. 

[45] A. Howard and J. Holmes, "Addressing data center efficiency: lessons learned 

from process evaluations of utility energy efficiency programs", Energy 

Efficiency, vol. 5, no. 1, pp. 137-148, 2011. 

[46] G. Baccarani, M. Wordeman, and R. Dennard, “Generalized scaling theory and 

its application to a ¼ micrometer MOSFET design,” IEEE Trans. Electron 

Devices IEEE Transactions on Electron Devices, vol. 31, no. 4, pp. 452–462, 

1984.  

[47] Intel. Dynamic data center power management: Trends, issues, and solutions 

[48] Ram Viswanath, Vijay Wakharkar, Abhay Watwe, Vassou Lebonheur, et al. 

Thermal performance challenges from silicon to systems. 2000. 

[49] Roger Schmidt. Challenges in electronic cooling opportunities for enhanced 

thermal management techniquesmicroprocessor liquid cooled minichannel heat 

sink. Heat Transfer Engineering, 25(3):3{12, 2004. 

[50] Ravi Mahajan and Chia-pin Chiu. Cooling a microprocessor chip. Proceedings of 

the IEEE, 94(8), 2006. 

[51] L. Shang, L. Peh, and N. Jha, “Power-efficient Interconnection Networks: 

Dynamic Voltage Scaling with Links,” IEEE Comput. Arch. Lett. IEEE 

Computer Architecture Letters, vol. 1, no. 1, pp. 6–6, 2002.  

[52] M. Al-Fares, A. Loukissas and A. Vahdat, 'A scalable, commodity data center 

network architecture', SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 

63-74, 2008. 

[53] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang and S. Lu, 

'BCube', SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, p. 63, 2009. 



136 
 

[54] M. Brocanelli, W. Zheng and X. Wang, "Reducing the expenses of 

geo-distributed data centers with portable containerized modules", Performance 

Evaluation, vol. 79, pp. 104-119, 2014. 

[55] Z. Chkirbene, S. Foufou, M. Hamdi and R. Hamila, "HyperFlatnet: A Novel 

Network Architecture For Data Centers", in Communication Workshop (ICCW), 

2015 IEEE International Conference, London, 2015, pp. 1877 - 1882. 

[56] C. Liu, A. Kind and T. Liu, "Summarizing Data Center Network Traffic by 

Partitioned Conservative Update", IEEE Communications Letters, vol. 17, no. 11, 

pp. 2168-2171, 2013. 

[57] Cisco, "Global Cloud Index (GCI)", 2014. [Online]. Available: 

http://www.cisco.com/c/en/us/solutions/service-provider/global-cloud-index-gci/

index.html. [Accessed: 28- Oct- 2015]. 

[58] K. Moiseev, A. Kolodny and S. Wimer, "Timing-aware power-optimal ordering 

of signals", ACM Transactions on Design Automation of Electronic Systems, vol. 

13, no. 4, pp. 1-17, 2008. 

[59] "Digital integrated circuits: analysis and design", Choice Reviews Online, vol. 42, 

no. 01, pp. 42-0323-42-0323, 2004. 

[60] S. Djosic and M. Jevtic, "Dynamic voltage and frequency scaling algorithm for 

fault-tolerant real-time systems", Microelectronics Reliability, vol. 53, no. 7, pp. 

1036-1042, 2013. 

[61] "Global Provider of Innovative Graphics, Processors and Media Solutions | 

AMD", Amd.com, 2016. [Online]. Available: http://www.amd.com. [Accessed: 

25- Aug- 2015].  

[62] "Resource & Design Center", Intel, 2016. [Online]. Available: 

http://www.intel.com/content/www/us/en/design/resource-design-center.html. 

[Accessed: 16- Aug- 2015].. 



137 
 

[63] T. Okuma, H. Yasuura, and T. Ishihara. Software energy reduction techniques for 

variable voltage processors. IEEE Design Test of Computers, 18(2):31–41, Mar. 

2001. 

[64] P. Langen and B. Juurlink. Leakage-aware multiprocessor scheduling. J. Signal 

Process. Syst.,57(1):73–88, 2009. 

[65] G. Chen, K. Malkowski, M. Kandemir, and P. Raghavan. Reducing power with 

performance constraints for parallel sparse applications. In Proceedings of the 

International Parallel and Distributed Processing Symposium (IPDPS), page 8 

pp., Apr. 2005. 

[66] Wang, L., Khan, S.U., Chen, D., Kolodziej, J., Ranjan, R., Xu, C.Z., Zomaya, 

A.Y.: Energy aware parallel task scheduling in a cluster. Future Generation 

Comp. Syst 29(7) (2013) 1661–1670 

[67] D. Shin and J. Kim, “Power-aware scheduling of conditional task graphs in 

real-time multiprocessor systems,” Proceedings of the International Symposium 

on Low Power Electronics and Design, pp. 408–413, 2003. 

[68] L. Benini and G. De Micheli, Dynamic Power Management:Design Techniques 

and CAD Tools, Kluwer Academic Publishers, 1997. 

[69] Chen G, He W, Liu J, Nath S, Rigas L, Xiao L, Zhao F (2008) Energy-aware 

server provisioning and load dispatching for connection-intensive internet 

services. In: The 5th USENIX symposium on networked systems design and 

implementation, Berkeley, CA, USA 

[70] Fan X, Weber W-D, Barroso LA (2007) Power provisioning for a 

warehouse-sized computer. In:Proceedings of the 34th annual international 

symposium on computer architecture (ISCA ’07). ACM, New York, pp 13–23. 

[71] Yung-Hsiang Lu , Giovanni De Micheli, Comparing System-Level Power 

Management Policies, IEEE Design & Test, v.18 n.2, p.10-19, March 2001. 

[72] A. Karlin, M. Manesse, L. McGeoch and S. Owicki, "Competitive Randomized 

Algorithms for Nonuniform Problems", Algorithmica, pp. 542-571, 1994. 



138 
 

[73] F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk Spin-Down Policies for 

Mobile Computers. In Computing Systems, volume 8, pages 381–413, 1995. 

[74] C.-H. Hwang and A. C. Wu. A Predictive System Shutdown Method for Energy 

Saving of Event-Driven Computation. In International Conference on 

Computer-Aided Design, pages 28–32, 1997. 

[75] E.-Y. Chung, L. Benini, and G. D. Micheli. Dynamic power management using 

adaptive learning tree. In International Conference on Computer-Aided Design, 

pages 274–279, 1999. 

[76] Y.-H. Lu and G. D. Micheli. Adaptive Hard Disk Power Management on 

Personal Computers. In Great Lakes Symposium on VLSI, pages 50–53, 1999. 

[77] Fog Creek Software. 2012. May 5-6 network maintenance post-mortem; 

http://status.fogcreek.com/2012/05/may-5-6-network-maintenance-post-mortem

.html. 

[78] Amazon Web Services. 2011. Summary of the Amazon EC2 and Amazon RDS 

service disruption in the U.S. East region; 

http://aws.amazon.com/message/65648/. 

[79] Omnetpp.org, "OMNeT++ Discrete Event Simulator - Home", 2015. [Online]. 

Available: https://omnetpp.org/. [Accessed: 13- Apr- 2015]. 

[80] A. Varga, "OMNeT++ - Manual", Omnetpp.org, 2016. [Online]. Available: 

https://omnetpp.org/doc/omnetpp/manual/usman.html#sec101. [Accessed: 23- 

Aug- 2015]. 

[81] Cloudnetsim.seecs.edu.pk, 2016. [Online]. Available: 

http://cloudnetsim.seecs.edu.pk/. [Accessed: 10- May- 2015]. 

[82] A. W. Malik, K. Bilal, K. Aziz, D. Kliazovich, N. Ghani, S. U. Khan, R. Buyya, 

'CloudNetSim++: A toolkit for Data Center Simulations in OMNeT++', 

Proceedings of the 11th International Conference on High-capacity Optical 

Networks and Enabling/ Emerging Technologies, Dec, 2014, Charlotte United 

States. 

http://status.fogcreek.com/2012/05/may-5-6-network-maintenance-post-mortem.html
http://status.fogcreek.com/2012/05/may-5-6-network-maintenance-post-mortem.html


139 
 

[83] A. Malik, "CloudNetSim++: A Toolkit for Data Center Simulations in 

OMNET++", 2015. 

[84] S. Heymann, “Gephi,” Encyclopedia of Social Network Analysis and Mining, pp. 

612–625, 2014. 

[85] P. Desmedt, "Prix", usinenouvelle.com, 2011. [Online]. Available: 

http://www.usinenouvelle.com/article/prix-science-sebastien-heymann-le-cartogr

aphe-des-donnees.N164939. [Accessed: 16- Sep- 2015]. 

[86] Gephi.org, "Gephi - The Open Graph Viz Platform", 2016. [Online]. Available: 

https://gephi.org/. [Accessed: 12- Sep- 2015]. 

[87] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao and F. Zhao, "Energy-aware 

server provisioning and load dispatching for connection-intensive internet 

services.", 2008, pp. 337–350. 

[88] Li Shang, L. Peh and N. Jha, 'Power-efficient Interconnection Networks: 

Dynamic Voltage Scaling with Links', IEEE Computer Architecture Letters, vol. 

1, no. 1, pp. 6-6, 2002. 

[89] "Intel® Xeon® Processor E5 Family", Intel, 2016. [Online]. Available: 

http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e5-fa

mily.html. [Accessed: 16- Jul- 2015]. 

[90] R. Goonatilake and R. Bachnak, 'Modeling Latency in a Network Distribution', 

Network and Communication Technologies, vol.1, 2012. 

[91] Jayanthi, 'Improving the performance and reducing bit error rate on wireless deep 

fading environment receivers', Journal of Computer Science, vol. 10, no. 3, pp. 

458-468, 2014. 

[92] R. Diestel, Graph theory. New York: Springer, 1997. 

[93] G. McCusker, "A Graph Model for Imperative Computation", Logical Methods 

in Computer Science, vol. 6, no. 1, 2010. 



140 
 

[94] B. Wu, K. Yeung and P. Ho, "Virtual Topology Design for Minimizing Network 

Diameter and Average Hop Count in WDM Networks", Journal of Optical 

Communications and Networking, vol. 2, no. 12, p. 1077, 2010. 

[95] Y. Qin, "Computer Network Attack Modeling and Network Attack Graph Study", 

AMR, vol. 1079-1080, pp. 816-819, 2014. 

[96] L. Freeman, "A Set of Measures of Centrality Based on Betweenness", 

Sociometry, vol. 40, no. 1, p. 35, 1977. 

[97] "A GraphML-based Visualization Framework for Workflow-Performers’ 

Closeness Centrality Measurements", KSII TIIS, vol. 9, no. 8, pp. 3216-3230, 

2015. 

[98] Øystein Ore, Theory of graphs [3rd ed., 1967], Colloquium Publications, 

American Mathematical Society, p. 104 

[99] "Feature Column from the AMS", American Mathematical Society, 2016. 

[Online]. Available: 

http://www.ams.org/samplings/feature-column/fcarc-pagerank. [Accessed: 15- 

Aug- 2015]. 

[100] M. E. J. Newman. "The mathematics of networks" (PDF). Retrieved 

2006-11-09. 

[101] G. Consortium, "Gephi: Exploratory networks analysis software", 

Slideshare.net, 2010. [Online]. Available: 

http://www.slideshare.net/gephi/gephi-exploratory-networks-analysis-software-

4931589. [Accessed: 21- Sep- 2015]. 

 



141 
 

Appendix A: CloudNetSim++ 

environment 

Sample C++ codes for Three-tier DCN topology 

implementation in CloudNetSim++ 
A 64-server Three-tier DCN can be modelled as the following code on the basis of 

CloudNetSim++ simulator. 

module Racks_Three64 
{ 
    parameters: 
        int N @prompt("Number of servers per Rack");//inputs N=8 
        @display("bgb=506,467"); 
    gates: 
        inout iogate[]; 
    submodules: 
        computingServer[N]: myComputingNode { 
            @display("p=120,305,m,6,80,80"); 
        } 
        edgeRouter: RouterGreenCloud { 
            @display("p=202,148"); 
        } 
    connections: 
        for i=0..N-1 { 
            edgeRouter.ethg++ <--> Eth1G{per=0.008;} <--> 
computingServer[i].ethg++; 
        } 
        edgeRouter.ethg++ <--> iogate++; 
        edgeRouter.ethg++ <--> iogate++; 
} 
module MeshCDatacenter_Three64 
{ 
    parameters: 
        int aggregateswitch = default(8); 
        int corerouter = default(4); 
        int accessswitch = default(8); 
        @display("bgb=954,456"); 
    gates: 



142 
 

        inout iogate[]; 
    submodules: 
        AS1[aggregateswitch]: RouterGreenCloud  
        CS1[corerouter]: RouterGreenCloud 
        Rks[accessswitch]: Racks_Three64 
    connections allowunconnected: 
        for i=0..corerouter-1, for j=0..aggregateswitch-1 {CS1[i].ethg++ <--> 
Eth10G {per=0.008;} <--> AS1[j].ethg++;} 
        CS1[0].ethg++ <--> Eth10G <--> iogate++; 
        Rks[0].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[0].ethg++; 
        Rks[0].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[1].ethg++; 
        Rks[1].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[0].ethg++; 
        Rks[1].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[1].ethg++; 
        Rks[2].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[2].ethg++; 
        Rks[2].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[3].ethg++; 
        Rks[3].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[2].ethg++; 
        Rks[3].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[3].ethg++; 
        Rks[4].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[4].ethg++; 
        Rks[4].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[5].ethg++; 
        Rks[5].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[4].ethg++; 
        Rks[5].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[5].ethg++; 
        Rks[6].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[6].ethg++; 
        Rks[6].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[7].ethg++; 
        Rks[7].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[6].ethg++; 
        Rks[7].iogate++ <--> Eth1G{per=0.008;}  <--> AS1[7].ethg++; 
} 

Sample C++ codes for Fat-tree DCN topology 

implementation in CloudNetSim++ 
The Fat-tree modelling in CloudNetSim++ can be illustrated briefly as followed, 
module Racks_Fattree64 
{ 
    parameters: 
        int N @prompt("Number of servers per Rack");//input N=8 
    gates: 
        inout iogate[]; 
    submodules: 
        computingServer[N]: myComputingNode 
        edgeRouter: RouterGreenCloud 
    connections: 
        for i=0..N-1 {edgeRouter.ethg++ <--> Eth1G {per = 0.008;} <--> 
computingServer[i].ethg++;} 



143 
 

        edgeRouter.ethg++ <--> iogate++; 
        edgeRouter.ethg++ <--> iogate++; 
} 
module Datacenter_Fattree64 
{ 
    parameters: 
        int aggregateswitch = default(8); 
        int corerouter = default(4); 
        int accessswitch = default(8); 
    gates: 
        inout iogate[]; 
    submodules: 
        core[corerouter]: RouterGreenCloud 
        agg[aggregateswitch]: RouterGreenCloud 
        Rack[accessswitch]: Racks_Fattree64 
    connections allowunconnected: 
        for j=0..1 { 
            core[j].ethg++ <--> Eth10G {per = 0.008;}<--> agg[0].ethg++; 
            core[j].ethg++ <--> Eth10G {per = 0.008;}<--> agg[2].ethg++; 
            core[j].ethg++ <--> Eth10G {per = 0.008;}<--> agg[4].ethg++; 
            core[j].ethg++ <--> Eth10G {per = 0.008;}<--> agg[6].ethg++; 
        } 
        for j=2..3 { 
            core[j].ethg++ <--> Eth10G {per = 0.008;}<--> agg[1].ethg++; 
            core[j].ethg++ <--> Eth10G {per = 0.008;}<--> agg[3].ethg++; 
            core[j].ethg++ <--> Eth10G {per = 0.008;}<--> agg[5].ethg++; 
            core[j].ethg++ <--> Eth10G {per = 0.008;}<--> agg[7].ethg++; 
        } 
        for j=0..1, for i=0..1 {agg[j].ethg++ <--> Eth10G {per = 0.008;}<--> 
Rack[i].iogate++;} 
        for j=2..3, for i=2..3 {agg[j].ethg++ <--> Eth10G {per = 0.008;}<--> 
Rack[i].iogate++;} 
        for j=4..5, for i=4..5 {agg[j].ethg++ <--> Eth10G {per = 0.008;}<--> 
Rack[i].iogate++;} 
        for j=6..7, for i=6..7 {agg[j].ethg++ <--> Eth10G {per = 0.008;}<--> 
Rack[i].iogate++;} 
        core[0].ethg++ <--> Eth10G <--> iogate++; 
} 

Sample C++ codes for BCube-2 layer DCN topology 

implementation in CloudNetSim++ 
module MeshCDatacenter_Bcube 



144 
 

{ 
    parameters: 
        int x @prompt("Number of L0 switch"); 
        int Level1switch = default(x); 
        int Level0switch = default(x); 
        int n @prompt("Number of server for each of L0"); 
        int Server = default(n*x); 
    gates: 
        inout iogate[]; 
    submodules: 
        L1[Level1switch]: RouterGreenCloud  
        L0[Level0switch]: RouterGreenCloud  
        computingServer[Server]: myComputingNode 
    connections: 
        for j=0..x-1, for i=0..n-1 {L0[j].ethg++ <--> Eth10G <--> 
computingServer[(j*n)+i].ethg++;} 
        for j=0..x-1, for i=0..n-1 {L1[j].ethg++ <--> Eth10G <--> 
computingServer[(i*n)+j].ethg++;} 
} 

Sample C++ codes for BCube-3 layer DCN topology 

implementation in CloudNetSim++ 
module MeshCDatacenter_Bcube2 
{ 
    parameters: 
        int Level2switch = default(16); 
        int Level1switch = default(16); 
        int Level0switch = default(16); 
        int Server = default(64); 
    gates: 
        inout iogate[]; 
    submodules: 
        L2[Level2switch]: RouterGreenCloud  
        L1[Level1switch]: RouterGreenCloud  
        L0[Level0switch]: RouterGreenCloud  
        computingServer[Server]: myComputingNode  
    connections: 
        for j=0..15, for i=0..3 {L0[j].ethg++ <--> Eth10G {per=0.008;}<--> 
computingServer[(j*4)+i].ethg++;} 
        for j=0..15, for i=0..3 {L2[j].ethg++ <--> Eth10G {per=0.008;} <--> 
computingServer[(i*16)+j].ethg++;} 
            L1[0].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[0].ethg++; 



145 
 

            L1[0].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[4].ethg++; 
            L1[0].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[8].ethg++; 
            L1[0].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[12].ethg++; 
            L1[1].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[1].ethg++; 
            L1[1].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[5].ethg++; 
            L1[1].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[9].ethg++; 
            L1[1].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[13].ethg++; 
            L1[2].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[2].ethg++; 
            L1[2].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[6].ethg++; 
            L1[2].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[10].ethg++; 
            L1[2].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[14].ethg++; 
            L1[3].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[3].ethg++; 
            L1[3].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[7].ethg++; 
            L1[3].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[11].ethg++; 
            L1[3].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[15].ethg++; 
            L1[4].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[16].ethg++; 
            L1[4].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[20].ethg++; 
            L1[4].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[24].ethg++; 
            L1[4].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[28].ethg++; 
            L1[5].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[17].ethg++; 
            L1[5].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[21].ethg++; 
            L1[5].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[25].ethg++; 
            L1[5].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[29].ethg++; 
            L1[6].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[18].ethg++; 
            L1[6].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[22].ethg++; 
            L1[6].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[26].ethg++; 
            L1[6].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[30].ethg++; 
            L1[7].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[19].ethg++; 
            L1[7].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[23].ethg++; 
            L1[7].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[27].ethg++; 
            L1[7].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[31].ethg++; 
            L1[8].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[32].ethg++; 
            L1[8].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[36].ethg++; 
            L1[8].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[40].ethg++; 
            L1[8].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[44].ethg++; 
            L1[9].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[33].ethg++; 
            L1[9].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[37].ethg++; 
            L1[9].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[41].ethg++; 
            L1[9].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[45].ethg++; 
            L1[10].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[34].ethg++; 
            L1[10].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[38].ethg++; 
            L1[10].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[42].ethg++; 
            L1[10].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[46].ethg++; 
            L1[11].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[35].ethg++; 



146 
 

            L1[11].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[39].ethg++; 
            L1[11].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[43].ethg++; 
            L1[11].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[47].ethg++; 
            L1[12].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[48].ethg++; 
            L1[12].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[52].ethg++; 
            L1[12].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[56].ethg++; 
            L1[12].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[60].ethg++; 
            L1[13].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[49].ethg++; 
            L1[13].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[53].ethg++; 
            L1[13].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[57].ethg++; 
            L1[13].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[61].ethg++; 
          L1[14].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[50].ethg++; 
            L1[14].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[54].ethg++; 
            L1[14].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[58].ethg++; 
            L1[14].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[62].ethg++; 
            L1[15].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[51].ethg++; 
            L1[15].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[55].ethg++; 
            L1[15].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[59].ethg++; 
            L1[15].ethg++ <--> Eth10G {per=0.008;}<--> computingServer[63].ethg++; 
} 

Sample C++ codes for realizing Energy 

Consumption Management 
void UDPComputeNode::eUpdate() /* complete impl*/ 
{ 
    /* Get time spent since last update */ 
     double etime = (simTime().dbl() - eLastUpdateTime_)/3600;   /* time in 
hours */ 
     eConsumed_ += etime * eCurrentConsumption_; 
     eLastUpdateTime_ = simTime().dbl(); 
} 
void UDPComputeNode::setCurrentConsumption()  /* complete impl*/ 
{ 
    /* Compute idle server consumption */ 
      double eIdleConsumption = eNominalrate_*2/3; 
      /* if DPM is enabled no energy is consumed with zero load */ 
      if ((getCurrentLoad() == 0) && (eDPM_enabled_)) { 
        eCurrentConsumption_ = 0; 
         return; 
      } 
      /* if DVFS is enabled energy consumed is scaled with the frequency */ 
      if (eDVFS_enabled_) { 



147 
 

        double f = getCurrentLoad();    /* frequency component */ 
        eCurrentConsumption_ = eIdleConsumption + eNominalrate_ * f*f*f / 3; 
        return; 
      } 
      /* Compute load dependant energy consumption component */ 
      double eLoadComponent = (eNominalrate_ - eIdleConsumption) * 
getCurrentLoad(); 
      eCurrentConsumption_ = eIdleConsumption + eLoadComponent; 
} 
double UDPComputeNode::getMostUrgentTaskRate() 
{ 
    std::vector<cloudTask*>::iterator iter; 
     /* Compute highest MIPS/deadline ratio */ 
     double maxrate = 0.0; 
     /* remove completed tasks from the execution list */ 
     for (iter = tasks_list_.begin(); iter != tasks_list_.end(); iter++) 
     { 
       /* task should be completed and remove it from the list */ 
       double rate = (double)(*iter)->getMIPS()/(double)(*iter)->getDeadline(); 
       if (rate > maxrate) maxrate = rate; 
     } 
     return maxrate; 
} 
double UDPComputeNode::getCurrentLoad() 
{ 
    ev<<"Value of current_mpis"<<current_mips_<<endl; 
    ev<<"Value of nominal_mpis"<<nominal_mips_<<endl; 
    currentLoad_ = (double)current_mips_/(double)nominal_mips_; 
    return currentLoad_; 
} 

Appendix B: Gephi Network 

Analysis Tool environment 
The distributed DCNs can be illustrated as follows in Gephi, there are four 

geographical fashioned DCNs interconnected by five main routers which are arranged 

in the middle of the diagram. 



148 
 

 
Figure 0.1 – Appendix: Gephi-diagram of 4 distributed DCN 

 
Figure 0.2 – Appendix: Gephi-Layout panel 



149 
 

The layout panel supports nodes and links arrangement with a 3D render engine. 

It offers several choices that aim at various interconnection ways. 

 
Figure 0.3 - Appendix: Gephi-Statistics panel 

 The statistics panel supports the measurements of a series of network robustness 

metrics, the betweenness centrality, closeness centrality are placed inside the Avg. 

Path Length. 



150 
 

 
Figure 0.4 - Appendix: Gephi-Data Table 

 The data is imported by csv formatted file in this case. Nodes and edges are 

inputted in separate files. In the Gephi data table, the calculated statistics are shown 

by nodes. 

 
Figure 0.5 – Appendix: Gephi-Preview panel 

 In the “Preview” section, parameters can be set up by preferences include label, 

proportional size, color, font type, etc... 


	Sustainable and Resilient Network Infrastructure Design for Cloud Data Centers
	List of Figures
	List of Tables
	Attestation of Authorship
	Acknowledgements
	Publications
	Abstract
	Chapter 1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research Questions
	1.4 Contributions
	1.5 Thesis Structure

	Chapter 2 Related Work
	2.1 Background
	2.1.1  Cloud Computing Network Architecture

	2.2 Overview of Data Center Network
	2.2.1  Performance Trend
	2.2.2  Power Consumption Trend

	2.3 Data Center Network Topology
	2.3.1  Three-tier
	2.3.2  Fat-tree
	2.3.3  BCube
	2.3.4  HyperFlatNet
	2.3.5  Discussion

	2.4 Traffic Load
	2.4.1  Computationally Intensive Workloads (CIWs)
	2.4.2  Data-intensive Workloads (DIWs)
	2.4.3  Balanced Workloads (BWs)
	2.4.4  Workload specifications in the Simulation

	2.5 Data Center Traffic Characteristics
	2.6 Energy Efficiency of Data Center Network
	2.6.1  Dynamic Voltage and Frequency Scaling
	2.6.2  Dynamic Power Management
	A. Timeout Policies
	B. Predictive Policies


	2.7 Data Center Network Failures

	Chapter 3 Topological Modelling and Metrics
	3.1 Network Modelling and Analysis Tools
	3.1.1  CloudNetSim++ simulator
	3.1.2  Gephi Network Analysis Tool

	3.2 DCN architectural models
	3.2.1  Three-tier
	3.2.2  Fat- tree
	3.2.3  BCube architecture modelling
	3.2.4  HyperFlatNet architecture

	3.3 Energy consumption modelling
	3.3.1  Energy Consumption Measurement Algorithm

	3.4 Network Performance Measurement
	3.5 Topological Metrics
	3.5.1  Network graph model
	3.5.2  Topological metrics
	3.5.2.1 Average Nodal Degree (,𝒌.)
	3.5.2.2 Network Diameter
	3.5.2.3 Average Shortest Path Length
	3.5.2.4 Betweenness Centrality
	3.5.2.5 Closeness Centrality
	3.5.2.6 Eccentricity
	3.5.2.7 Eigenvector Centrality

	3.5.3  Summary


	Chapter 4 Simulation Studies
	4.1 Case studies
	4.2 Case 1: Network Performance Evaluation (NPE) according to Network Robustness Metrics (NRM)
	4.2.1 Topology Setup
	4.2.2 Node Eigenvector Centrality Evaluation
	4.2.3 Node Betweenness Centrality Evaluation
	4.2.4 Node Closeness Centrality Evaluation
	4.2.5 Node Eccentricity Evaluation
	4.2.6 Node Degree Evaluation
	4.2.7 Node Weighted Degree Evaluation
	4.2.8 Edge Weighted Degree Evaluation
	4.2.9 Critical Nodes determination
	4.2.10  Network Performance Evaluation (NPE) Simulation setup
	4.2.11  Traffic Generation
	4.2.12  Case 1 - Scenario 1: Network Performance according to Server Failures
	4.2.13  Case 1 - Scenario 2: Network Performance according to Aggregation Switch Failures
	4.2.14 Case 1 - Scenario 3: Network Performance according to Server/Switch/Rack Failures

	4.3 Case 2: DCNs` Performance vs. LFR
	4.3.1 Simulation setup
	4.3.2 Topology setup
	4.3.3 Topological comparison
	4.3.4 Case 2 - Scenario 1: Network Performance of Various DCNs with 0% LFR
	4.3.5 Results Analysis for Scenario 1
	4.3.6 Case 2 – Scenario 2 (preparation): Link selection determination according to the Centrality metrics
	4.3.7 Case 2 - Scenario 2: Network Performance Metrics results analysis on Various DCNs according to increasing LFR


	Chapter 5 Conclusion and Future work
	5.1 Conclusion
	5.2 Main findings
	5.3 Future work

	Glossary
	Reference
	Appendix A: CloudNetSim++ environment
	Sample C++ codes for Three-tier DCN topology implementation in CloudNetSim++
	Sample C++ codes for Fat-tree DCN topology implementation in CloudNetSim++
	Sample C++ codes for BCube-2 layer DCN topology implementation in CloudNetSim++
	Sample C++ codes for BCube-3 layer DCN topology implementation in CloudNetSim++
	Sample C++ codes for realizing Energy Consumption Management

	Appendix B: Gephi Network Analysis Tool environment

