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Abstract

A datacenter is a pool of resources such as computational, storage, and servers
interconnected using a communications network. Data Center Networking (DCN)
holds a pivotal role, and it needs to be scalable and efficient to connect the growing
number of servers so as to handle the intensive demands of cloud computing.
Recently there has been a rapidly growing field of literature on DCNSs, but it mainly
focus on studying how to model and evaluate the resource provisioning and allocation
algorithms for more effective and efficient resource management of a cloud system.
Unfortunately, there are not many studies that reveal how the underlying network’s
topological connectivity can affect the DCNs™ performance, in areas such as energy
consumption and service resilience. There is a saying that ‘it is not what you know but
who you know’ i.e., algorithm, connectivity, which argues that people get ahead in
life based on their connections, not on their skills or knowledge, and every day offers
evidence of this proverb. This case also applies to DCNs. DCNs performance is not
merely a function of resource provisioning and allocation, but also it is a
network-wide activity. The structure and ties that link a data center to other data
centers are also critical factors.

In this thesis, the researcher has proposed a method for evaluating topological
metrics (network robustness metrics and node centrality metrics) to identify critical
nodes and edges in a network so that it measures the overall DCN network
performance change (throughput, latency, packet drop ratio) according to the faults on
the network. We have identified the energy changes according to the change of
internal DCNs; the simulation study showed that the traffic load has a large impact on
energy consumption. Apart from that, the state of the art for modern DCNSs is
elaborated that depicts the true picture of the current progress in this field where good

research can actively contribute.
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Chapter 1 Introduction

The rise in information service provisioning is a product of user demands, and the
rapid growth of users’ demands in obtaining data has pushed Information
Communications Technologies (ICT) services to a whole new level. This has led to a
new evolution of cloud computing services. The prominent characteristic for a cloud
is its centralized distribution which applies high performance computing to the task it
receives, and delivers services by sharing resources which are stored inside a cloud
rather than having local servers to handle applications traditionally [1, 2]. This
“pay-as-you-go” model has brought huge benefits to customers, but there is an
enormous cost associated with maintaining its infrastructure. The cost has to be
considered seriously, as this leads to a threshold level for those organizations
intending to provide such services. Currently, the well-known cloud service providers
are Amazon, Microsoft and Google [2].

At present, cloud services are still evolving and, as a consequence, are far from
perfect. Although the cloud services are still running with the aid of network
infrastructure, cloud performance varies and is still being impacted on by different
layers. Numerous cloud competitors have made huge efforts to alleviate the
limitations of clouds, such as working on bandwidth and internal management. Data
center Networking (DCN) is a vital component of the cloud infrastructure and it is
being increasingly adopted by organizations to handle the core business and
operational data that interconnects all the components in the cloud, while delivering
main cloud services such as data storage and protection. It follows that the
maintenance work turns out to be extremely significant to cloud service providers.
Therefore, DCN performance is the top priority for most cloud providers.

In addition, a robust network topology is essential to comprehensively address
malicious attacks or nodes and link failures. Anecdotally, many cloud hosting
providers have stated that they have experienced network failures to varying degrees

[3]. One company running 100-200 nodes hosts on a major cloud hosting provider
1



declared that in a three-month period, the provider’s network came across five distinct
periods of partitions which made some connectivity unavailable between the
provider’s cloud network and the public Internet, and others isolated the cloud
network from the provider’s internal managed-hosting network. According to a report
from Amazon, a total partition between the front-end and back-end servers [4] caused
a severe network disruption in the Amazon cloud network, and the site’s servers lost
their connections to all back-end nodes for a few seconds, but several times a month.
Despite the disruptions being short, they resulted in 30-45 minutes outages and a
corrupted index for ElasticSearch. As problems escalated, the outages occurred two to
four times a day. Furthermore, in December 2012, a regular software update on an
aggregation switch caused instability at Github [5]. The engineers consequently killed
that particular software agent running on one of the aggregation switches. However,
this movement stopped other aggregation switches from handling link aggregation
and spanning tree, resulting in all traffic between access switches being blocked for
90 seconds. The 90-second stoppage caused failover chaos that led to parts of files
becoming unavailable, and delays in delivering messages among file servers.
Recovering those downed file-server pairs took five hours, during which Github's
service was critically compromised.

Network failures cannot be eliminated due to the complicated network system,
while the failure of failover policy can cause unpredicted consequences. Therefore, a
high-standard failover plan is necessary to mitigate the probability of failure occurring.
However, except for targeted systematic recovery, a comprehensive analysis of
network performance change is also required as a metric in risk assessment and is a
necessary precaution. Moreover, the energy consumption metric is also a critical
concern that needs to be addressed as it can be a measurement used to predict

expenditure of the entire network.



1.1 Background

Cloud computing is a model for enabling convenient, ubiquitous, on-demand
network access service to a shared pool of configurable computing resources (e.g.,
networks, storage, servers, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction. This
cloud model is composed of five essential characteristics, three service models, and
four deployment models. Cloud hosts a variety of applications from consumer,
scientific and business domains ranging from computing intensive data storage to
intensive applications. Data centers are infrastructure that hosts cloud applications.
The trend of growing reliance on online services, and the increasing demand in
mobile device has already converted many client-based applications into cloud
services [6]. To guarantee the service level, cloud service providers have to take
several factors into consideration, delivering cloud service is dependent on the
network infrastructure, while the services are always delivering in a geo-distributed
network. Improving such big area networking is not an easy job, so that the main
emphasis of the work should be elaborated on what they can control. Therefore, data
centers as the service-originated is paid extra efforts to maintain the service
provisioning. Server farm placed inside data centers should be interconnected in a
very efficient way to improve the service provisioning performance. Also, the
efficient server arrangement and the appropriate placement can largely reduce the
power consumption and the heat dissipation [7].

Moreover, with the sustained growth in computing capacity, the cost and
operational expenses (OPEX) are showing a sharp increase. Energy consumption has
been a great concern for data centers’ operators. According to the survey conducted
by Gartner Group [8], approximately 40% of data center OPEX comes from the
energy consumed by Information and Communications Technology (ICT) equipment,
which is composed of computing servers (2/3) and communication links (1/3). The
remainder 60% energy consumption comes from cooling and power distribution,
which are 45% and 15% respectively. On the other hand, the cooling cost of heat

3



generated by data center infrastructure ranges between $2 to $5 million per year [9,
10]. Therefore the optimized data center architecture plays an important role in OPEX

reduction [11].

1.2 Motivation

Datacenters are very energy hungry and consume huge amounts of electricity,
resulting in high operational cost and big carbon foot print to the environment.
Therefore, Green Cloud solutions are in need that efficiently manages energy
consumption to reduce operational costs without violating negotiated Quality of
Service (QoS) and Service Level Agreements (SLAs) in the cloud computing
environment. In cloud computing, it is a bit complex task to efficiently allocate
different ICT resources e.g. CPU, servers, storage disks) due to presence of number of
heterogeneous nature applications e.g. web apps, Content Distribution Network (CDN)
etc. that have contentious resource allocation requirements. So far a good effort has
been put to better address the problem of efficiently allocating resources in cloud with
different level of success. Studies have shown that an idle server consumes almost 70%
energy to the one that is working at full speed. So far the main focus was to improve
performance and a lot of efforts are done in this area, but now energy efficiency at
datacenters needs a serious attention as well. As those datacenters not only consume a
high amount of energy but also emit CO, that is also acting as a critical role in
affecting environment. Apart from network performance, energy efficiency is also
needed to be considered. If we successfully deliver some good techniques, it will help
service providers not only save operational cost but will also play a positive role
towards environment safety. It clearly justifies that it not only contributes positively
but also help other problems fixed. The main idea is to turn the idle server switched
off or to sleep mode, with the technique of adjusting CPU voltage/frequency. By this
way a good amount of energy can be saved but SLASs need to meet at the same time.

While the current studies on DCNs are mainly focusing on how to develop more

effective and efficient resource provision and allocation algorithms among data



centers, but there is not much discussion on how the underlying topology change can
affect the overlay DCNs™ performance.

Except the various DCs™ network performance evaluation, another main purpose
of this thesis is to identify the energy changes according to the change of internal
DCN. The energy-saving techniques then are analysed in a detailed way. Apart from
that, the state of art for trendy DCNs is elaborated that depicts the true picture of the

current progress in this field where a good research can actively contribute.

1.3 Research Questions

This thesis is conducted surrounded by three main doubts which are shown as
follows, Chapter 3 and 4 uses both modelling and simulation techniques to elaborate
the process of conducting researches, the answers are then summarized in the
conclusions.

Q 1: Does the underlying DCN topology have an impact on the cloud network

performance (QoS & energy)?

Q 2: What network topological metrics can be used as an index to quantify the

cloud data center performance in the cases of energy efficiency and QoS?

Q 3: How to use this metric to determine the critical nodes/links in a data center

network?

1.4 Contributions

In current research, there have not been enough contributions on the concrete
comparison of various DCNs based on the evaluation of data center network
performance, such as the network throughput, dropped packet, network latency, nor
energy consumption estimation. Current research only focuses on either the DCN
network-aware performance or the energy-aware. For example, in [12], the authors
evaluate the reliability of popular DCNs (Fat-tree, BCube-3&5 switch ports,
DCell-3&5 switch ports) by using different network reliability metrics according to

the Link Failure Rate (LFR) from a topological view. In [13], DCN energy efficiency



is evaluated by analyzing resource allocation techniques in a cloud computing system.
Also, a comprehensive analysis of green solutions on the basis of current challenges
that DCNs face is conducted in [14].

This thesis is focused on addressing such a shortage in the literature by
combining the network robustness metrics with network performance and the
currently popular topic of energy consumption, and proposes a method of evaluating
node centrality metrics to find critical nodes and edges so that one can measure a
DCN network's performance changes according to the faults on the network’s critical
paths.

Firstly, a topological comparison has been made between several popular DCN
structures, including Fat-tree, Three-tier, BCubes (different layers), and HyperFlatNet.
This thesis compares BCube - 2 layers with 3 layers; and important differences
occurred between switch port number and switch number. BCube — 2 layers uses far
fewer switch numbers than 3 layers, which significantly helps the network service
provider reduce the expenditure cost. Moreover, Fat-tree and Three-tier have two
similar DCN structures, and this thesis gives a comprehensive picture of both DCN
topologies. HyperFlatNet is a brand new DCN model in this area; this thesis also
looks at its network performance and energy consumption in comparison with other
types of DCN topologies.

Secondly, a method of evaluating node centrality metrics is proposed to find
critical nodes and edges so that measures of the DCN network’s performance changes
according to the faults on the network's critical paths. Network fault tolerance is a
metric of measuring the robustness of a network; different DCN architectures have
various performance responses to network failure. However, such responses can be
measured or even predicted by determining robustness and node centrality metrics.
For example, if the first aggregation switch (AS[0]) is determined as the most critical

node, then the failure of this node can cause the largest network performance change.



1.5 Thesis Structure

Chapter 1 Chapter 2
Motivation and Contribution Literature Review
Chapter 3
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Figure 1.1 — Thesis structure

The thesis structure is depicted in Figure 1.1. The reasons for conducting this

research are described in the introduction, and the background of current



problems is illustrated in the second section, followed by the motivation for doing
this thesis. The contributions are summed up in the consequent section.

In Chapter 2, the background of cloud computing and data center networks
is introduced. Five topological types of data center networks are analyzed for
their interconnection from a topological aspect. The characteristics for each type
of data center network are elaborated, which is useful for the data center
architectures modeling in Chapter 3. Furthermore, energy saving techniques
adopted in DCNs, including dynamic voltage/frequency scaling (DVFS) and
dynamic power management (DPM), are presented so that the algorithms for both
techniques are established in the energy modeling section. In addition, the data
center traffic characteristics and estimation to set up parameters for simulation
studies are detailed in Chapter 4.

In Chapter 3, each data center topological structure is modelled according to
its characteristics; for example, a 64-server DCN is adopted to enable
comparisons among five DCN structures. Then, the network graph modelling is
presented and formulated for network robustness metrics measurement and
analysis.

In Chapter 4, there is a discussion around the two case studies that have
been conducted. Within each case study, several scenarios are implemented for
more extensive comparison studies. The first case studied the correlations
between the topological location of nodes and overall network performance and
energy consumption. While in the second case study, more realistic (random) data
center traffic is simulated on various DCN topologies, i.e., Fat-tree, Three-tier,
BCube-2 layer, BCube-3 layers, and HyperFlatNet. The simulation was
conducted by increasing the failure ratio so that each DCN's capacity for fault
tolerance was revealed.

Chapter 5 summarizes the final findings and also lists the constraints of the

current work. Then possibilities for future research are discussed.



Chapter 2 Related Work

2.1 Background

Cloud computing is a natural evolution of the widespread adoption of
virtualization, service-oriented architecture (SOA), and computing resources which
are based on networking [15]. Cloud computing is a model for enabling convenient,
on-demand network access to a shared pool of configurable computing resources (e.qg.,
networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction [16].
The National Institute of Standard and Technology (NIST) [17] states that the cloud
computing resources are located in the data center and those end users can reach to
data centers through services and infrastructure providers. Therefore, there are three
components in the cloud system: end users, services and infrastructure providers, and
data centers. These three parts are connected together by network infrastructure.
Moreover, there are three types of service models in cloud computing. These are
“Software as a Service (SaaS)”, “Platform as a Service (PaaS)” and “Infrastructure as
a Service (laaS)”. The SaaS is a provider that supplies remotely run software
packages; it is a pricing model that is offered via the internet to consumers. The PaaS
is a provider that offers an additional layer on top of virtualized infrastructure. This
software platform can be deployed in exchange for built-in scalability. The laaS is a
provider that allows physical resources to be assigned and split dynamically by

provisioning capacity in virtualization [18].

There are an increasing number of companies that have already transferred their
business to a cloud platform so as to mitigate the burden of management and
maintenance of different resources [19-21] and to allow the supplementation of their
assets. Many industry flagships such as Microsoft, Amazon, Gogrid, vCloud Express,
Layered Technologies, ENKI Prima Cloud and Flexiant offer the service of resource

integration, platform provisioning, and infrastructure outsourcing.
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Furthermore, cloud computing follows a business model of “pay-as-you-go”
strategy; the cloud users only pay for the services as they use them and based on the
service type [22]. In a cloud environment, the ICT resource capacity can be increased
or removed via the invocation of a Simple Object Access Protocol (SOAP)/Restful
API. Cloud computing distributes workloads over servers and offers various services
such as data access, computation, backup, and software and hardware services to
end-users. The cloud providers guarantee the quality of service to the customers on
the basis of service level agreements (SLAS) that charge for usage and reservation of
data center resources. On the other hand, the cloud computing infrastructure has
critical key issues such as ensuring security and privacy of the hosted ICT resources
and application data [23], meeting performance demands despite uncertainties,
dynamic reliability, standardization, fault-tolerance, debugging, scalability, reducing

operational costs, and carbon emission [24].

Reducing carbon emissions for cloud computing data centers has become a
dominant research topic in both academia and industry. This fact shows that the
energy supplementation to datacenters for their power supply, cooling, operation, and
illumination, has been increasing, which contributes dramatically to the total
operational costs [25]. Reducing power consumption and energy dissipation have
become significant concerns for making cloud services environmentally developable
and sustainable [26]. According to the McKinsey report in 2008 [27], the amount of
electricity usage in global data centers was 1.3 % of total electricity usage worldwide.
The total estimated electricity cost for data centers in 2010 was $11.5 billion. Energy

costs in a typical data center doubles every five years.
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Figure 2.1 and 2.2 show the Carbon dioxide emissions worldwide (%) and by country,

Figure 2.3 shows the carbon emission from all datacenter worldwide estimated by

Stanford University, McKinsey study and Gartner research (CAGR: Compound

Annual Growth Rate)

The energy inefficiency in data centers is mostly due to servers using power
while idle. For example, a server still consumes over 50% of the peak load power,
even at an extremely low working load of 10% CPU utilization [28]. The cloud
service providers urgently need powerful energy efficient management of ICT
resources in data centers due to several reasons [29]. First, the increasing electricity
costs for supplying ICT resources and cooling systems has exceeded the purchase for
ICT hardware. Second, increased energy usage and inefficient heat dissipation
systems have a great influence on the system reliability and scalability of data center
hardware. Finally, it is an environmental issue, as mentioned above, as governments
are now seeking to regulate data center power usage.

As researched, there are four well known approaches for designing energy efficient

cloud computing datacenters:

(@) Infrastructure of high-intensive maintenance to lower the need for equipment
replacement e.g., avoid server breakdown by maintaining safe operation
temperature.

(b) Increase equipment utilization (reduce the time servers are idle).

(c) Flexibly allocate resources in an infrastructure to reduce the energy dissipated.

(d) Minimize self-management and flexibility as the cost is spread across a number of
datacenters [30].

To elaborate, some recent research has investigated the optimization of energy
utilization by monitoring the performance of virtualized ICT resources (servers) and
hosted workload under variable CPU frequency [31, 32]. Other approaches have
focused on techniques of voltage adjustments by switching off unnecessary resources
e.g., a display monitor, processors speed control, and using hibernate or sleep mode

[33-35]. However, the energy saved by scaling down the CPU voltage is far less than
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powering off a physical server. Cloud computing is a prototype shift from the
outdated uniprocessor computation approach of development to that of an accessible,

multi-tenant, and global infrastructure.

2.1.1 Cloud Computing Network Architecture

The cloud computing network architecture occupies a number of various
elements in different layers. The cloud network architecture is established based on
the data center, which is the cloud infrastructure that accounts for the cloud service
provisioning. The data center core layer [36] is responsible of maintaining the
connections to the remaining elements in a data center and the public Internet. While
the second layer switches (aggregation) is mainly responsible for distributing the
incoming traffic from the core layer to the lower service layer, they also transmit the
aggregation of the dispersed traffic from the downward service layer. In the data
center service layer, devices such as a router, Firewall, Ethernet switch, Fiber channel
switch, Server load balancing (SLB), and VVolume Based Billing/Control (VBB/VBC),
are involved [37]. The Firewall permits or denies the incoming network transmissions
based on a set of rules for the purpose of guaranteeing the data center's internal
security; it is, a shield for protecting the servers and storage. The SLB distributes the

workloads to each server and the VBB/VBC is designed for traffic volume billing.
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Figure 2.4 - Cloud computing network architecture example

As can be seen in Figure 2.5, network nodes in different layers construct a cloud
computing network. The data center uses one or more core routers to connect the
Internet and an aggregation layer aggregates the services’ layer devices. The services’
layer is a complex layer where the application devices such as Firewall, SLB and
VBB/VBC are involved. All devices in the services’ layer connect to the aggregation
layer and are routed by the aggregation device. The access layer includes virtual
machines, servers and storage. The access layer offers physical connectivity among
servers and the network. This network architecture and configuration are quite
complex, and the operation cost is very expensive. End-users are able to submit their

service requests flexibly. The network architecture may be different based on each
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service. Some cloud users can choose the SLB service and Firewall service while
others may choose the billing service. The cloud computing network architecture

could be varied based on different types of service provisioning.

2.2 Overview of Data Center Network

A data center is the pool of servers linked together in one place in the cloud. It
also has layers of networking that contain routers and switches connected to servers
[38]. The increasing number of cloud users creates a challenge in the design of data
center networks. This increase makes all communications busy in the data centers.
This leads to effects on data centers in terms of performance and energy consumption

of the system.

The concept of cloud computing is an immediate extension of many well
researched domains such as virtualization, distributed, utility, cluster, and grid
computing. According to Google’s Whitepaper [39], the five key characteristics of
cloud computing are task centric, user centric, intelligence, powerfulness, and
programmability. Cloud computing data centers employ virtualization technologies
that allow scheduling of workloads on a smaller number of servers that may be better
utilized, as different workloads may have different resource utilization footprints and

may further differ in their temporal variations.

2.2.1 Performance Trend

According to N. Gorti [40], the demand for computing performance is increasing
at an unprecedented speed which is prompted by realistic reasons. The rise of
software complexity motivates hardware designers to provide acceptable quality of
service (QoS), such as latency, response time, and throughput. Organizations are
badly in need of computing capacity for scientific missions with the goal of dealing
with ever-challenging large problems at high speeds; for example, the genome
sequencing, weather predicting, and molecular dynamics experiments. These tasks

require systems equipped with fast processing powers in order to be completed within
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an acceptable timeframe. Similarly, cloud computing must be provisioned by gathered
computing ability to sufficiently offer diverse services to customers; examples are
SaaS, PaaS, and laaS. Furthermore, with the growing demand for “big data” service,
many organizations are trying to adapt their systems to cater to the needs of flexibly
manipulating such a service. As a result, the computing demand for data mining is
increasing at an unprecedented pace. At the same time, the amount of data generated
in such a process is growing in an unpredicted speed. IBM reported [41] that more

than 90% of the data in this world has been generated within the past two years.

To satisfy the growing demand for outstanding performance, an increasing
amount of transistors has become the trend when manufacturing the cores. On the one
hand, chips have become more and more complicated in order to make the cores
much more powerful for computing tasks. On the other hand, the number of cores is
increasing for each computing node, while the number of computing nodes in a
computing platform is also increasing. Figure 2.5 [41] and 2.6 [42] show the
consequences of scale-in and scale-out respectively in the IT industry over the last 14
years. In particular, we can observe that the industry has been consistently

outperforming Moore's law-based predictions starting from 2000.
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2.2.2 Power Consumption Trend

As a central issue of datacenters, the energy draw for datacenters can be ranging
from kilowatts for a rack of servers to several tens of megawatts for large
infrastructure. As stated in [43], some facilities even have power densities more than
100 times that of a typical office building, so that the electricity costs are a dominant
operating expense for those facilities and occupy over 10% of the total cost of
ownership (TCO) of a datacenter [44]. The cost of power for the global datacenter had

already exceeded the cost of the original capital investment by 2012 [45].

Based on the theory of semiconductor scaling [46], power consumption has a
decreasing rate of U”2 with each new generation, where U is the reduction factor of
voltage per transistor. Even though the new generation of semiconductor
manufacturing technology facilitates the reduction of power consumption, the
increasing transistor count trend nevertheless pulls the power consumption up anyway,

particularly when increasing the computing nodes in a computing platform.

According to a survey conducted by Intel [47], the powering and cooling of
servers is the primary factor which limits the growth of the server industry to meet the
current global demand. Figure 2.7 shows that 59% of the surveyed group agrees that
power consumption is the bottleneck in the development of the server market. In the
embedded and personal computing domain, the increase in power consumption leads
to decreased battery life and discomfort in device handling. It also necessitates the

design of aggressive cooling mechanisms and expensive heat sinks [48-50].
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Figure 2.7 — Expenditure of data center components surveyed by Intel

2.3 Data Center Network Topology

A datacenter is the pool of servers linked together in one place in the cloud. It
also has layers of network that contains routers and switches connected with servers
[50]. The number of cloud users has increased over the last few years, which creates
a challenge in the design of datacenter networks. This increase makes all
communications busy in the datacenters. This leads to effects on datacenters in
performance and energy consumption of the system. This creates a challenge in the
design of datacenter architecture and communication protocols. Therefore, there
should be topological solutions to increase the performance and reduce energy

consumption of the datacenter.

2.3.1 Three-tier

Three-tier DCN is the most commonly known for the current cloud datacenter
architecture which contains three layers of switches, including core, aggregate and
access switches from the top to the bottom [51]. The core layer allows for multiple
aggregation switches to connect together, while aggregation layer switches are

responsible for connecting access layer switches between each other. The access layer
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contains the connections between the pool of servers and access switches. The core
layer connects the layer 2 aggregate switches with the network outside the DCN, and
the aggregate switches can be easily added due to their inexpensive character and
transitive role, and they are also able to support large number of servers (over 10,000)

[1, 51].

The three-tier network topology is easily set up and uses less network
components which lower the cost significantly on hardware expenditure [1, 52].
However, the three-tier DCN has limit capacity because of the cost issue which is
reflected in link oversubscription, and growing demand for services has increased
dramatically in recent years. It lacks scalability, energy efficiency, and cross-sectional

bandwidth.

Caore layer Switches

Aggregation layer

Access layer

Computing Servers

Rack
Figure 2.8 — Three-tier DC architecture example

2.3.2 Fat-tree

Fat-tree DCN is the most widely adopted network according to Al-Fares [52]; it
follows the hierarchy architecture and contains a core, aggregate and access layers.
This structure is composed of k pods, where in each pod there are (k/2) 2 servers, k/2
access layer switches, and k/2 aggregate layer switches. The core layers contain (k/2)2

core switches, where each of the core switches is connected to one aggregate layer
20



switch in each of the pods. The Fat Tree DCN has advantages in strengthening the
ability of oversubscription and cross section bandwidth in contrast to the three-tier
DCN. Fat-tree DCN has a larger capacity, but as a result, increases the number of
components including both switches and links, which pushes organizations to spend

more on maintenance.

Core layer Switches

Aggregation layer

Access layer

Computing Servers

Rack
Pod 0 Pod 1 Pod 2 Pod 3

Figure 2.9 — Fat-tree DC architecture example

2.3.3 BCube

BCube [53] topology is a datacenter built inside shipping containers and
represents a brand-new DCN shape. It has been proposed to be used as a Modular
Datacenter (MDC), which simplifies the installation procedure and implements
physical migration, in comparison to conventional datacenters. Datacenter migration
facilitates energy saving, because shipping datacenters to regions promotes strategic
positioning, and allows for placement close to regions with high service demands. As
MDCs are built in sealed containers with a high equipment density, they need to be

highly reliable [54]. Furthermore, the equipment has to be moved under control
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because failure rate is high when the hardware is not well-protected during the

shipping process.
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Figure 2.10 — BCube-2 layer DC architecture example

2.3.4 HyperFlatNet

HyperFlatNet is a recursive DCN topology which was proposed by [55].
HyperFlatnet is formed by two layers in which the first layer contains n servers
connected by one n-port switch; the second layer consists of n"2 first layers. Hence,
the total n3 servers can be taken as n2 clusters of n servers. Moreover, different
servers can be represented as a n™2 = n matrix where the row and column indexes
correspond to the cluster number (i) and the index in the cluster (j). The author
proposes a connection algorithm named Linked Clusters Maximization (LCM) to
increase the number of directly connected clusters and reduce the number of
intermediate hops used to transmit the packet to the destination. A 64-server

HyperFlatNet DC architecture is demonstrated in Figure 2.11.
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Figure 2.11 — HyperFlatNet DC architecture example

2.3.5 Discussion

Table 2.1 summarizes the four DCN architectures. Both Three-tier and Fat-tree
are Clos networks and have high transmission capacity, and BCube and HyperFlatNet

are recursive networks which are highly reliable.
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DCN type No. of | No. of | Architectural | Characteristics | Cost level
Layer | Switch | type
type
Three-tier 3 3 Clos network, | High Low cost
k-ary tree transmission
capacity
Fat-tree 3 3 Clos network, | High Low cost
k-ary tree transmission
capacity
BCube 2 2 Recursive High equipment | Cost
network density, high effective
reliable
HyperFlatNet | 3 2 Recursive High Cost
network performance effective
Table 2.1 — Comparison of various DCN architectures
2.4 Traffic Load

When the cloud user accesses the services such as instant messaging, content
delivery, and social networking by cloud applications from datacenters, a set of
servers then generates different levels of workloads that are usually modelled as a
sequence of jobs which can be divided into a set of tasks. The tasks are either
dependent on the execution of other tasks, or independent. Furthermore, by the nature
of grid computing applications such as biological, climate, or financial modelling, the
jobs are usually computationally intensive, which needs high workloads to minimize
the time required for the computation. The servers are Map-Reduced to accomplish
this goal. Usually, the time taken to compute may vary by weeks or months when

dealing with a large sequence of jobs.

In cloud computing, the incoming requests generated are always less
computationally intensive, but with a strict completion deadline based on the SLA.
The majority of cloud computing applications usually generate three types of jobs,

which are as follows:
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2.4.1 Computationally Intensive Workloads (CIWSs)

This kind of job always requires High-Performance Computing (HPC) that aims
to solve computation-intensive problems which load computing servers considerably
[11], e.g., huge data analysis which needs high computational ability from servers.
Furthermore, CIWs also can be clustered into low data transferring (LDT) and high
data transferring (HDT); the LDT requires less data transfers on the network so there
is a very low probability of causing network congestion. In this case, the idle switches
are put into sleep mode which reduces the energy consumed by the datacenter
network, while the HDT requires a higher-leveled transmission network than LDT
because it tends to produce network congestion. In this case, DVFS takes more effects
than DPM to save energy because all network components are in full load when the

shutdown of devices is not available.

2.4.2 Data-intensive Workloads (DIWs)

This type of job puts a heavy load on data transfers but produces almost no load
at the computing servers [11]. For instance, the loads generated by the applications of
video transferring or large file sharing from one simple user requires no computing
capacity, but high demand for the interconnection of the DCN, so congestion always
occurs through communication links for managing such jobs. Furthermore, the packet
drop becomes much more common when the switches are dealing with DIWs. The
DIWs always reflect the bottleneck of the DCN that must be deal with high resilient
and sustainable DCN architecture to resolve the congestion issue so as to limit the

packet drop rate to an acceptable range.

2.4.3 Balanced Workloads (BWs)

BWs are the jobs targeting applications that have both computing and data
transfer requirements [11]. The computing servers are in load proportionally to the
communication links. The average load on servers therefore equals the average DCN

load with this type of job. BWs can model such applications as geographic systems
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that take both large data transfers and heavy processing into account. In this thesis,
this type of load is being simulated and considers both the server load and the

networking load.

2.4.4 Workload specifications in the Simulation

The workloads in the simulation were required executed in two main parts: (a)
communicational component and (b) computing components. The communication
components are mainly switches and links, which are defined as the amount and the
size of data transfers that are performed prior, during, and after the workload
execution. The workloads for communicational components are defined in size of
bytes. The workload size defines the tasks as divided packets in bytes that are
transmitted between servers and switches after the execution of computation in a

Server.

The computing servers are primarily defined as the amount and the ability of
computation in units of packet bytes and server CPU mips respectively, which has to
be executed within the limit of a given deadline in seconds. The adoption of the

deadline scheme aims at introducing the QoS constraints specified in SLA.

The workload can be specified into several parameters as follows: the size of the
workload refers to the amount of bytes being transferred out of servers upon task
completion after computing, CPU mips refers to the requirement for completing the
computation of the task, deadline refers to the SLA specification for each task, output
in this stage means the amount of data in bytes that sent out of the server upon task
completion, intercom refers to the amount of data bytes to be transferred to another
server, CurrProcRate refers to the current processing rate of the task which is
determined by the server, and ExecutedSince refers to the last instance of task

execution.
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Workload Parameters Workload Specification

Workload size amount of data in bytes sent out of the

server upon task completion

CompAmount Amount of computing

CPU mips computational requirement of the task
Deadline task deadline

Intercom amount of data in bytes to be

transferred to another server

application

CurrProcRate current processing rate of the task

(determinded by the server)

ExecutedSince last time instance of task execution

Table 2.2 — Workload specification applied in case study

2.5 Data Center Traffic Characteristics

Traffic in the datacenter is commonly flowing in three directions [56].
“North-South” traffic is usually flowing between end-users and servers, which is
primarily comprised of traffic that enters and exits the datacenter, and generally
contains commands, queries, and specific data either being retrieved or stored.
Meanwhile, the “East-West” traffic, flows between DC nodes and applications that
never leave the DC. It is primarily composed of communication between applications
hosted on physical servers and virtual machines, coupled with virtual machine (VM)
to VM, and physical to physical interactions within the DC. As the name implies,
“Inter-DC” traffic is largely comprised of resource optimization and disaster recovery

requirements between multiple DCs, and between DCs and the private/public cloud.

Cisco’s Global Cloud Index [57] indicates that, the dominant volume of traffic in

the DC traverses in an “East-West” direction (76%), followed by “North-South”

27



traffic (17%), and finally, inter-DC traffic, which is currently only at 7%, but is
gradually growing. Moreover, in campus networks, traffic is primarily ( > 90%)

“North-South” traffic.
2.6 Energy Efficiency of Data Center Network

2.6.1 Dynamic Voltage and Frequency Scaling

Reducing energy consumption is an important research topic and always a
challenge for cloud computing organizations. Dynamic voltage and frequency scaling
(DVES) is the most common method in power management to deal with the challenge,
where the supply voltage and frequency can be scaled dynamically within a computer
component in order to achieve reduced energy consumption. Dynamic Frequency
Scaling (DFS) or CPU throttling is mostly a power saving technique in computer
architecture where the frequency of a CPU can be automatically adjusted for the
purpose of conserving power and reducing the amount of heat produced by the chip.
Dynamic frequency scaling by itself can rarely save switching power, whilst Dynamic
Voltage Scaling (DVS) is always used in conjunction with DFS in order to conserve

the power, because the frequency of a chip is normally run at an operated voltage.
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Figure 2.12 — Non-optimized task performance vs. Optimized task performance

The dynamic power (switching power) dissipated per unit of time by a chip is

expressed as C x V2 x A x F, where C is represented as capacitance being switched
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per clock cycle, V is the amount of supply voltage in the unit of time, and A reflects
the Activity Factor [58] which indicates the number of switching events undergone by
the transistors in a chip, and f is the switching frequency [59]. The voltage required
for stable operation is determined by the frequency at which the circuit is clocked, and
can be reduced if the frequency is also reduced [60]. Increasing voltage (overvolting)
and frequency (overclocking) allow an increase in performance such as the task
calculation time because the number of instructions a processor can issue in a given
amount of time is increased, but that is a power hungry action because the power
dissipates in proportion to the square of voltage. Lowering voltage (undervolting) and
processor clock frequency (underclocking) is always done with the goal of reducing
power while keeping the performance is always a consisting researching topic. For
instance, microprocessors such as AMD [61] and Intel [62] allow the CPU speed to be

set dynamically.

However, DVFS has been studied for the target of minimizing power
consumption. Okuma et al. [63] deployed a few variable voltages to verify that
voltage scaling technique is more effective than just stopping the power supply for the
components which are idle [63]. Similarly, DeLangen and Juurlink [64] implemented
a leakage-aware multiprocessor scheduling algorithm in non-peak performance with a
loose task deadline environment to investigate techniques of DVS, and processor
shutdown. The results showed that the total energy consumption can be reduced up to
46% for tight deadlines (1.5x the critical path length) and by up to 73% for loose
deadlines (8x the critical path length) compared to an approach that only employs
DVS. Chen et al. [65] lowered the voltage for non-critical execution tasks without
impact the execution time in a mesh network by using the DVFS technique. They
reflected that an integrated CPU/communication link voltage scaling method produces
much better results rather than only CPU voltage scaling and only link voltage scaling,
and they achieved a 13% energy saving over CPU voltage scaling and 17% energy
savings over communication link voltage scaling. Wang et al. [66] studied the slack

time for non-critical jobs, by extending their execution time and reducing the energy
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consumption without increasing the task's execution time. Additionally, the Green
Service Level Agreement was considered. Similarly, Kim et al. [67] proposed
energy-aware scheduling algorithms based on DVS for bag-of-tasks applications

within the limit of deadline requests by application users.

2.6.2 Dynamic Power Management

Dynamic Power Management (DPM) [68] refers to a technique of selective
shutdowns of systems for which components are in idle status or underutilized. It is
considered to be the most effective method for mitigating the power dissipation, but
deploying such a technique also incurs performance degradation due to the frequent
shutdowns and wakeups. Therefore, the design of such technique has to be aimed at
maximizing the power saving while maintaining performance within acceptable

limits.

Power management is a prediction problem; it seeks to forecast whether an idle
period will be long enough to compensate for the overhead of power state changes. As
reported in [69-70], although a server stays in an idle state, it also consumes around
66% of energy compared to its full load energy consumption, which comes from the
fixed component that is not related to the frequency but also consumes power.
According to [71], the minimum length of time for a server staying in an idle period is
referred as the break-even time (Tbe), and the state transition delay (To) consists of
shutdown delay (Tsd) and wake-up delay (Twu); the energy consumed during this
period is Eo. The power consumed in working and sleeping states is Pw and Ps.
Figure 2.13-(a) represents the working state of the server; Figure 2.13-(b)
demonstrates the shutdown state of the server. The break-even time makes energy

consumption in both cases equal.

That is to say, the total energy consumed of a server that in working state going

through the minimum time length to save power is

Pw x The.
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While the total energy consumed of a server that in sleep mode with the

minimum time length to save power is
Eo + Ps x (The - To).
Therefore,
Pw x The = Eo + Ps x (The - To).
So that
The = (Eo - Ps xTo)/ (Pw - Ps).
The break-even time has to be larger than the transition delay; therefore,

The = max[(Eo - Ps x To)/(Pw - Ps),To].

Power
Power

Sleeping Time
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<=————  The === Time =-———  Tbe TTTT7 = Time

Figure 2.13 - (a) Server with working state, (b) Server with shutdown and wake-up
state

DPM policy will only take effect when the server idle time period is longer than
The, so the primary goal of any DPM policy is to make the device sleep for at least

The. Otherwise, it might cause more power to be consumed than the always “on’ state.

The common DPM policy can be represented as Timeout Policy, Predictive

Policy, and a mixture of both policies.

A. Timeout Policies

Timeout is the most conventional policy that is used in DPM and which uses a

timeout value of 1. The device is put into sleep mode if it is kept idle for more than .
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The basic mechanism is that if the device remains idle up to 1, then it should further

stay idle for at least The. However, this policy wastes energy while within the value 7.

In [72], the authors adopted a fixed timeout t that equals the Tbe for
accomplishing the target of DPM. Adaptive timeout policies dynamically modify 1
based on certain parameters. In [73], Douglis et al. adopted an adaptive timeout policy
to dynamically adjust T according to the ratio of performance delay and sleeping time
from the previous idle time period. If the ratio is high, t is increased, but when the
ratio gained is too high, it decreases on the contrary. The maximum and minimum
values for t are considered to forestall the policy being either too aggressive or

conservative.

B. Predictive Policies

Another DPM policy applied a predictive algorithm to predict the length of the
upcoming idle period. The prediction would generate a decision on whether to put the
device into sleep or not, which makes use of the comparison of greater or less than the
The metric. In [74], Hwang et al. used an exponential average scheme to predict the
upcoming idle period length by taking an exponential average of the predicted and

actual lengths of the previous idle period.

Chung et al. [75] proposed another predictive policy that applies an adaptive
learning tree to conduct analysis on the basis of prediction confidence level (PCL) to
make predictions on the sleeping period against on the Thbe. The tree stores the
sequence of idle periods into tree nodes while the PCL is stored in leaf nodes
associated with the respective sequence. A finite state machine is applied to update
the PCL, and if the prediction is correct, then the FSM updates the PCL as increased,
conversely, it recorded PCL as decreased if the prediction was incorrect. The
advantage of this scheme is that it has the capability of managing multiple power

states.

In [76], Lu proposed a DPM policy which mixed adaptive timeout and predictive

schemes. The policy makes the sequence of user requests into clusters named sessions.
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The current session length is predicted on the basis of predicted and actual lengths of
the previous sessions, which uses a similar scheme to [74]. The session length is then
decreased by an adjustment factor if no service requests are receive, instead of
immediately issuing a shutdown command. In contrast, if there are requests received,
the session length is increased by the same adjustment factor. A shutdown command
is issued when the device has been in idle state long enough compared to the

predicted session length.

Compared to the timeout policy, the mixture of timeout and predictive policy can
solve the problem of wasting energy while waiting for the timeout to expire but it
highly depends on the assumption of service requests the user sends. However, both
policies only target maximizing the energy savings and do not take performance loss

into account.

2.7 Data Center Network Failures

Datacenter networks are subject to power failure, misconfiguration, firmware
bugs, topology changes, cable damage, and malicious traffic. Their failure modes are
accordingly diverse.

Fog Creek Software suddenly lost access to servers during a regular network
reconfiguration maintenance. As stated in [77], a network loop occurred among a set
of switches. The gateways controlling access was isolated from the switching
management network, producing a brain-split scenario. Neither system was accessible
because of a multi-switch BPDU flood. However, the flood should not have happened
on the basis of the Bridge Protocol Data Unit (BPDU) standard; this deviation
resulted in two hours of total service unavailability.

On April 21, 2011, Amazon Web Services (AWS) suffered service unavailability
for more than 12 hours [78], which caused hundreds of high-profile websites to go
offline. Moreover, Amazon engineers tried to transfer the traffic away from a main
router in eastern US, but the improper routing policy made many its network nodes

within the affected zone totally isolated from other nodes within the cluster. Unlike a
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normal network interruption, this change disconnected both the primary and
secondary networks simultaneously, leaving the affected nodes completely isolated
from one another. This failure also caused an outage in Amazon’s RDS (Relational
Database Service). When one “Availability Zone” (AZ) fails, RDS is designed to
failover to a different AZ; however, 2.5% of multi-AZ databases in the eastern U.S.
failed to failover because of a bug in the failover protocol. This correlated failure
caused widespread outages for clients relying on AWS. For example, Heroku reported
between 16 and 60 hours of unavailability for its users’ databases.

To implement failures concretely, each type of fault can be presented as component
failures in a DC, where component failure is classified by link failure, server failure,
rack failure, and switch failure. Figure 2.14 depicts the example of the fault types in a
BCube DCN, where with under-redundant connections, a link failure cannot
effectively stop the traffic between source node and destination node, and traffic can
be still switched from an alternative route. A server failure will immediately isolate
the server from the rest of the network. A switch failure can cause significant
influence on the network, as shown in Figure 2.14. The minimum hop count among
servers in the second Cube will be increased from two to six which will largely
increase the average network latency. On the other hand, the Cube failure causes an
unimagined consequence because eight links will be totally disconnected which

involves a total failure of a switch.
Level 1 Switch™-..
Link Failure \
_-LEVEI o SIH.!’I[I:h : [ - - N | |
Server % X E ok _ Cube Failure

Switch Failure |

Figure 2.14 — DC component failure example
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Chapter 3 Topological Modelling

and Metrics

The modelling and simulation techniques are used to answer my research
question. Both techniques are commonly used in networking due to the difficulties of
experimenting with real configurations. The DCN architectures are modelled and
studied by using CloudNetSim++ (an extension of OMNeT++) cloud simulator, as

well as Gephi network analysis toolkit.
3.1 Network Modelling and Analysis Tools

3.1.1 CloudNetSim++ simulator

OMNeT++ [79] is an extensible, modular, component-based C++ simulation
library and framework, with strong GUI support primarily for building
communicational network simulation. It implements C++ language and offers
powerful simulation class libraries. In OMNeT++, a network model consists of nested
entities in hierarchical order which called modules. Simple modules (e.g., links, server)
can be grouped into a compound module, and a network module is normally

composed of a mixture of compound modules and simple modules.

Network
Simple modules

Compound W /

e B o B

Figure 3.1 - Simple and compound modules [80]
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Modules can communicate via message passing which is the central
communication mechanism of OMNeT++, where the messages contain strictly
complicated data structures. Messages can be sent either directly to destination
addresses from source addresses or along a predefined path, through gates and edges,
which can be assigned properties like bandwidth, delay and length, and error rate.
Modules can have parameters which are used to customize module behavior, create
flexible model topologies and for module communication as shared variables. The
user must provide the lowest level module in the hierarchy, containing the algorithms
in the model.

CloudNetSim++ [81] is a modeling and simulation toolKkit to facilitate simulation
of distributed datacenter architectures, energy models, and high speed data centers'
communication network. CloudNetSim++ [82] is the first cloud computing simulator
that uses real network physical characteristics to model distributed datacenters.
CloudNetSim++ provides a generic framework that allows users to define Service
Level Agreement (SLA) policy, and schedule algorithms and modules with ease for
different components of datacenters without worrying about low level details. The
CloudNetSim++ is designed to allow researchers to incorporate their custom
protocols and applications, and to analyze under-realistic datacenter architectures with
network traffic patterns. CloudNetSim++ works with the INET framework, on the
basis of OMNeT++. Each datacenter can be regarded as a network module which is
composed of compound modules and simple modules, so messages can be transmitted

via modules inside a datacenter, between datacenters, or with clients.
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Figure 3.2 — CloudNetSim++ simulator higher architecture [83]

3.1.2 Gephi Network Analysis Tool

Gephi is an open-source network analysis and visualization software package
written in Java on the NetBeans platform,[84] initially developed by students of the
University of Technology of Compiegne (UTC)[85] in France. It adopts a 3D render
engine to display large networks in real-time and to speed up the exploration of such
networks. The flexible and multi-task architecture brings new possibilities to work
with complex data sets and produces valuable visual results. It provides easy and
broad access to network data and allows for spatializing, filtering, navigating,
manipulating and clustering. Gephi [86] is an interactive visualization and exploration
platform for all kinds of networks and complex systems, with dynamic and
hierarchical graphs. It gives researchers the ability to see its data from a new angle. In
Gephi, a network consists of two components: a list of the vertices (nodes, in Gephi)
composing the network, and a list of the relations (edges, in Gephi). Gephi provides
the metrics of robustness of a network such as node degree, betweenness centrality,
closeness, diameter, clustering coefficient, PageRank, community detection

(Modularity), random generators, and shortest path.
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Figure 3.3 — Gephi network analysis tool: Modular architecture [101]

3.2 DCN architectural models

In this work, each DCN implemented a 64-server architecture, for the sake of
being able to compare topologies. The link error rate was set as 0.8%, and various link
bandwidths were adopted in the range from 1Gigabit/second to 100Gigabit/second.
There was always one switch that was responsible for connecting outside the
datacenter, for example, the core switch in Three-tier and Fat-tree; the upper layer

switch in BCube; and the external switch in HyperFlatNet.

3.2.1 Three-tier

The conventional Three-tier topology follows a tree-based architecture which has
three layers, i.e., core layer, aggregation layer, and access layer. The core switches are
responsible for connecting the network outside the DC, and also the aggregation layer.
The aggregation layer switches the link between the upper core layer switches and the
access routers, where access routers are normally placed inside the Rack to connect a

set of servers.
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Figure 3.4 — Three-tier Rack example
The conventional Three-tier DC belongs to the type of “stable” architecture,

where “stable” equates to more connections in comparison to the other tree-based
topology, the Fat-tree. The prominent difference with Fat-tree from a topological
aspect is that the number of connections between the core layer and the aggregation

layer is doubled and follows a “connect all-to-all” pattern as shown in Figure 3.5.

[;mebyers\.\,,tches .

Aggregation layer

Figure 3.5 - Three-tier model — more robust with “connect all-to-all”

Each core switch connects all aggregation switches so that the in-between links
are fully connected. This characteristic demonstrates a highly average nodal degree
whose features are more robust as described in the following robustness metric
section. Moreover, the interconnections between aggregation layer and access layer
for Three-tier DCN are diverse; in this thesis, the same connections as with Fat-tree

architecture were implemented.
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Figure 3.6 - Three-tier: same connections with Fat-tree which between aggregation
layer and access layer

The tree-based DCN architecture can be modelled as two modules. The Three-tier
model is composed of a Rack module and an internal Three-tier module, where the
Rack module consists of one access router with a set of servers connected, and the
internal Three-tier module consists of the internal DC connections. Each of core
switches links with each of the aggregation switches, while the connections between

the aggregation layer and the access layer are identical with the one in Fat-tree.

3.2.2 Fat- tree

According to the architecture of Fat-tree DC, the tree-based architecture which
highly relies on the server Rack assembled can be modelled as sectionalized modules,
and the rack can be regarded as an entirety which involves servers placed inside with
the edge router connected. The rest of the architecture can be referred to as the
interconnections among core switches, aggregation switches, and the Racks.

Hence, the entire Fat-tree DCN can be formed by Fat-tree internal modules and
Rack modules, where the computing servers and edge routers are included inside a
Rack module. For each Rack, there are “N” computing servers connected to only one
edge router which is connected with the aggregation layer outside the Rack. In a
64-server Fat-tree architecture, four core switches are included and there are four pods
in total, where for each pod, there are two Racks (each Rack has one edge router), and
two aggregation switches. Hence, there are four core switches connected with eight
aggregation switches, however, the number of links which connects between the core

layer and aggregation layer is half reduced in contrast with the conventional
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Three-tier architecture so as to mitigate the link oversubscription issue. Compared to
the “connect all-to-all” pattern, each core switch in Fat-tree only connects half the
number of aggregation switches, where the first half of the numbers of core switches
connect to the first aggregation switch in each pod, and the second half of the
numbers of core switches connect to the second aggregation switch in each pod,

shown in the following figure.

Core layer Switches
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Figure 3.7 - Fat-tree: mterconnectlon of core and aggregation layer

The connection between aggregation layer and access layer complies with the
“connect all-to-all” pattern where each aggregation switch is connected to each access

switch in each pod.
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Figure 3.8 — Fat-tree: interconnection of aggregation and access layer

In each Rack, there are 8 computing servers being connected by 1 access router.
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Figure 3.9 — Fat-tree: interconnection of access router and servers
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3.2.3 BCube architecture modelling

BCube DC architecture complies with the shipping container principle that
applies a “servers place in a Cube” method to achieve the goal of “portable”.
Similarly, a Cube module is much like a Rack module, where a Level 0 switch is
connected with a set of servers. In fact, Cubes are always considered as Level 0 (LO)
of a BCube DC, whereas in an upper layer, Level 1 (L1) switches are placed above
the first level. Normally, a typical BCube consists of the same number of LO switches
and L1 switches. The number of Cubes is considered to be the same as the number of
switch ports. Hence, in a 64-server BCube with two layers, eight servers are
connected with each LO switch, where there are eight for both LO switches and L1
switches. Due to BCube is being a server-centric architecture, instead of a L1 switch
being connected to a LO switch, the ith L1 switch connects to the ith server in each

Cube.
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Figure 3.10 — BCube-2 layers interconnection

3.2.4 HyperFlatNet architecture

According to the property of HyperFlatNet, HyperFlatnet has two layers where
the first layer has n servers and only one n-port switch, and the second layer consists

of n? first layers. Thus, there are n3 servers in total which are connected by n?
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groups of switches; a group here can be considered as a cluster. The hyperFlatNet
modelling can be deployed by a matrix function. n3 servers can be treated as a n? *
n matrix. The row and column indexes correspond to the cluster number and the
index in the cluster, respectively. In this way, every server would be assigned a
specific index for the use of DCN connections.

Each server can be connected by the Linked Clusters Maximization (LCM)

algorithm, where the matrix denotes as L, which is generated as

vi € {1..n?},
vj € {1..n},
Then the matrix can be completed as
vi € {1..n?},
vj € {2..n},
L(i,j) = mod(L(i — 1,)) + 1,n?). (3.1)
L, refers as the first line of the matrix L, the LCM is shown as follows,
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Algorithm 1 Linked Clusters Maximization algorithm

procedure LCM(n)
L, =[]
for i =2..n do
D=[]
for j = 1..n? do
Li(i)=Li(i—-1)+j
D(j)=ConnectedClusters(i,L)
if D(j) =i(i — 1) then
Break
end if
end for
Jselected = ﬂ-f‘gmar[D}
Ll{” = Ll[? - 1]' +jseiected
end for
end procedure

function ConnectedClusters(p,L1)
LC =]
for i = p..1 do
for j =1..1—1 do
LC =[LC Ly(i) — Ly (i — j)]
end for
end for
LC' = unique(mod([LC n? — LC],n?))
return (Length(LC)) ;
end function

Figure 3.11 - Linked Clusters Maximization Algorithm [55]

3.3 Energy consumption modelling

In this thesis, we deployed an energy model by using the DVFS technique and
DPF fixed timeout policy together as shown in the following algorithm, and the fixed
timeout scheme was used as DPM policy. As Figure 3.12 [87] shows, when the
servers are underloaded after a period of execution time at full load, the DVFS
technique is adopted to save energy, while if the servers are transferred into idle state,

DPM policy can be implemented.
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Figure 3.12 — Server load vs. DVFS/DPM applied

3.3.1 Energy Consumption Measurement Algorithm

In this thesis, energy consumption algorithm is deployed by DVFS technique and
DPM together. In DVFS [88], chip switching power decreases proportionally to V2 =
f, where V is voltage and f is switching frequency. The core principle is that the
average power consumed has a cubic relationship with the CPU frequency, moreover,
the power consumption for the components which are not related to f that remains
fixed, such as bus, memory, and disk. Therefore, the server power consumption can

be stated as follows,

Where Py;, is the fixed power consumption by components not linked with
frequency such as the bus, memory, and disk, Pr is CPU power consumption linked

with frequency.

On the other hand, according to [11], the total energy consumption for the DCN
can be divided into three main portions: computing energy by servers, communication
energy consumed by links and network equipment operations, and the power

consumed by infrastructure for supporting datacenters (e.g., cooling/air conditioning
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system). Only a fraction of energy consumption has been delivered to the computing
server directly, another considerable portion of the energy being consumed for
maintaining interconnection links and network equipment operations. The power
consumption for switches makes up a great proportion to the overall DCN power
consumption. The researcher set up three scenarios with the GreenCloud simulator to
compare the detailed network component energy consumed among Two-tier DCN,
Three-tier DCN and Three-tier high-speed DCN. The results showed that the energy
consumption for the switches accounted for 26.54%, 30.27% and 30.98% respectively,
which take up around 1/3 of the total energy. As stated in [11] the energy consumed

by a switch can be expressed as:

_ configs
Pswitch - Pchassis + Nyinecard * Plinecard + Zi:o nportsconfigsi * Pconfigsi

(3.3
Where P_p.ssis 1S the power consumed by switch hardware, Pjnecara represents the
line card power consumption with no ports turned on, Mipecara represents the

number of cards plugged into a switch, Pgynfi4s, is related to the power consumed

for a port running at rate i, P.pqssis @Nd Pjinecara are fixed due to the operation of a

switch, so in this equation, only Pc,pr;4s, is dependent on transmission rate i which

is proportional to the overall power consumption of the switch. In other words, the
transmission workload directly influences the total energy consumption of a switch;

more tasks go through a switch, more energy a switch consumed.

On the other hand, the DPM model allows the server power to be shut down
whenever the servers are in zero load; this mechanism is presented in the following

algorithm, in addition to the DVFS technique.

To make the model accurate, some data was notarized first as prerequisites. A
typical cloud server was used as the model, running an Intel Xeon processor [89] with
a nominal energy consumption rate fixed as 301W / hour and the CPU nominal mips

to be 2000, and around 171 W / hour allocated for other peripheral devices. 171w/h is
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consumed by memory modules, disks, 1/0O resources, and other peripherals in an
acceptable state. Then, the power consumption linearly increased with the level of

CPU load.

CPU Nominal Energy Consumption Rate 301w/hour

CPU Peak Load Energy Consumption Rate 130w/hour

Power Rate for Component not linked with frequency (idle | 171w/hour

status)

CPU Nominal Mips 2000

Table 3.1 - Server Energy Consumption Rate Specification
Algorithm 2: Energy Model algorithm application

[* Compute idle server energy consumption */
Idle Server Energy Consumption Rate = Nominal Energy Consumption Rate*2/3;
/*mission load is calculated according to CPU metric: Mips (Million instructions
per second)*/
Current Load = Current Mips / Nominal Mips;
[* frequency component */
CPU Frequency = Current Load
[* if DPM is enabled no energy is consumed with zero load */
if Current Load == 0 && DPM -> enabled then
Current Consumption Rate = 0;
return;
else if DVFS model -> enabled then
/* if DVFS is enabled energy consumed is scaled with the frequency */
Current Consumption Rate = Idle Consumption + Nominal Rate * f*f*f / 3;
return;
end if
end if
/* Compute load dependent energy consumption component */
Load Component Energy Consumption Rate = (Nominal Energy Consumption
Rate — Idle Server Energy Consumption) * Current Load;
Current Consumption Rate = Idle Server Energy Consumption Rate + Load
Component Energy Consumption Rate;
[*Energy consumption calculation*/
Energy Consumption = a period of time from last update* Current Consumption Rate;
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3.4 Network Performance Measurement

Based on the existing DCNs infrastructure, there are possibilities to conduct
topological change to improve the DCNs performance. The communication
components for networking such as the switches and links directly influence the
network performance, so as to the Cloud infrastructure. Normally, due to the
geographical distribution character, the links which connect each data center are
always equipped with relative long distance, which link delay cannot be neglected as
a performance metric. According to [90], the latency or packet delivery time indicates
the time spent from the first bit sent from transmitter to the last bit received by the
receiver, which is composed of packet transmission time and link propagation delay.
The average packet delay can be calculated as the followed, where D, refers to the
average packet delay and represents to the number of packets received, d; refers to
the delay of the packet i.

Davg =~ Y1y d; (3.4)
On the other hand, when a data stream is transmitted over a communication channel,
it exists possibilities of the number of received bits be altered due to the link noise,
interference, etc. [91], this leads to a probability of packet dropping. In addition, the
packets also have the probability of being dropped when a large data stream traffic
pass the switch especially when the switch load burdens beyond its frame capacity,
the packets are dropped automatically by switch queue mechanism. Furthermore, the
simulation will adopt this model in the situation of traffic are forced to be transferred
to alternative routes due to the link failures so that alternative switches will bear the

extra weight of load.

Algorithm 3: Packet dropping algorithm — DropTailQueue mechanisim

/** the algorithm is divided into two parts: enqueue and dequeue. **/
Enqueue:
if queue = Empty then

return NULL;
else

if frameCapacity && queue.length() >= frameCapacity then

Queue -> is full, dropping the packet;
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return msg;
else
gueue->insert(msg);
emit -> queueLengthSignal, queue.length();
return NULL,;
end if
end if
Dequeue:
if queue -> empty then
return NULL;
else
cMessage *msg = (cMessage *)queue -> pop();
/** unlinks and returns the front element in the queue. If the queue was empty,
error is thrown. **/
emit -> queueLengthSignal, queue.length();
return msg;
end if

The average network throughput can be calculated as the followed, where Ty,
refers to the average throughput in the network, p; € [0,1] while O reflects the loss of
packet i and 1 indicates the receipt of packet i, §; refers to the size of packet in bits

and d; represents the delay of the packet, n as the number of packets received.

Y (X))
Tavg = Zl%z:l a; (3.5)

3.5 Topological Metrics

The researcher used graph theory in this thesis to evaluate different topologies,
especially for the aim of network analysis. The prerequisites included the most basic
definitions of a graph, network interpretations, and robustness metrics that prioritized

used in the network graph.

A graph [92] can be represented as a pair G = (V, E) of sets assuming that V n
E = @ where V is depicted as the vertex. The elements of vertices (or nodes in the
case of a network), and E represents a set of edges (or links). To draw a graph, the

only essential information needed is which pair of vertices forms an edge.
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Figure 3.13 - The graph on V = {v1...v8} with edge set E = {el...e10} = {(v1, v2), (v1,
v3), (v1, v4), (v1, v7), (v2, v6), (v3, v4), (v4, v7), (v6, v8), (v2, v2)}

From the Figure above, we have the following terminologies, as example:
* v4 and v3 are end vertices of e9.

*e5isaloop.

* €6 and e7 are parallel because they have the same end vertices.

* The graph is not simple because it has parallel edges or loops.

* e4 and e3 are adjacent.

* v1 and v4 are adjacent.

* The degree of v8 is 1 so it is a pendant vertex.

* e10 is a pendant edge.

* The degree of v2 is 4.

» The degree of v3is 2.
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* The degree of v5 is 0 so it is an isolated vertex.
In a graph G, the degree of a vertex v is the number of edges at v, as the consequence,

it is equal to the number of its neighbors.
The minimum degree of the vertices [92] is denoted as 6(G) = min {d(v)|veV},

In particularly, & (G) = 0 if there is an isolated vertex in G. Similarly, we denote A (G)
as the maximum degree of vertices in G, A(G) = max{d(v)|veV}. In this case,  (G)
=0 and A (G) = 4. We calculate the average degree of a vertex v as the following

formula,
d(6) = 5 Tver d(v) (3.6)
Where, 6(G) <d(G) < A(G).
Apathisa =@ graph P = (V,E) of the form of
V = {vy,v1,v5,V3, ..., 0} E = {vyvq, 0105, V503, ..., V1 Vi },

The vertices v, and v, are connected by path P, where v, and v, are called its
“end vertices”. The number of edges of a path indicates the Path Length k (denoted
by P¥), we usually refer to a path as a natural sequence of its vertices, a path P from

vy tovy.

Figure 3.14 — Example — 6 nodes network
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Figure 3.15 - Example - A path P¥ =5inG
A graph which does not contain any cycles is called a forest; the components of

the forest are called trees. The vertices of degree 1 (a pendant vertex) are called leafs
in one tree, while each tree has at least one or more leafs, for example, the end
vertices of a longest path. As shown in Figure 3.16, one of the longest paths, P¥, is
oriented from Leaf (0) to Leaf (k), and there are 10 longest paths in total. As stated in
the previous section, Fat-tree and Three-tier are called Tree-based Topologies; the
longest path which is mostly dominated by the switch layer must be from one node to

the leaf — the computing server.
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Leafi(1)

Leaf (k)

Figure 3.16 - Tree-based Network Topology

3.5.1 Network graph model

It is useful to define the term “graph” to assist network analyzing. In modern
graph theory, a graph [92] can be classified by different types of edges into two main
kinds, a directed graph, or digraph, and an undirected graph. These two types of
graphs are mainly distinguished by the edge property: the directed graph has oriented
edges while the undirected graph has no oriented edges. The other types of graphs that
are all variants of the above two types of graphs are “mixed graph”, “multigraph”,

“simple graph”, and “weighted graph”.

An undirected graph is a graph in which the edges have no orientation. If there is
agraph G = (V, E), where V ={a, b, ¢, d} and E = {(a, b), (c, d), (d, a)}, then the edge

(a, b) is identical to the edge (b, a), i.e., they are not ordered pairs. In networking, the
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links are bidirectional with both “upward” transmitting and “downward” transmitting
functionality. The maximum number of edges in an undirected graph without a loop is

n(n — 1)/2.

However, in a directed graph, the distinction appears from Edge set where E is a
set of ordered pairs of vertices. Presenting as an expression, (a, b) is a different edge
from (b, a), i.e., (a, b) is considered to be directed from node “a” to node “b”. Often “a”
is called the head and “b” is the tail of an arrow, and (b, a) is treated as the inverted
arrow of (a, b). Shown in Figure 3.17-(a) is an example of a directed graph which
radiates from N1 to the rest of nodes, and Figure 3.17-(b) is an undirected graph with

no oriented vertices.

®
@

@ ®

(a)
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(b)

Figure 3.17 - Example of a Directed Network (a) and an Undirected Network (b)

3.5.2 Topological metrics

3.5.2.1 Average Nodal Degree (E)

This is the coarsest connectivity feature of any topology. The degree of a node is
the number of edges neighbored to that node while the average nodal degree
represents average of the degrees over all nodes in the network [92]. For example, in

Figure 3.18, the degree of node X is 6 while the average nodal degree is 2.5.

node countxvalue 2X1+4X2+1X4+1X6
= =25 (3.7)

degavg =

total number of node - 8
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deg(X) =6

Figure 3.18 - Example of degree of a node X

Degree Distribution

Count
a
o

Value

Figure 3.19 — Node degree distribution from 3.18 example

Networks with higher k are regarded as better-connected on average, and,
consequently, are likely to be more robust. On one hand, “more robust” means that
there are more chances to establish new connections such as the Figure 3.20, the

average nodal degree increases to 4.5 when more connections are established based
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on Figure 3.20 (c). When one connection (X<->Y) is failed, the average nodal degree
decreases to 4.25 while the same scenario from Figure 3.20 (c) to Figure 3.18

decreases the average degree from 2.5 to 2.25,

(@) (b) (©)

Figure 3.20 - (a) More robust model compared to Figure 3.19,

(b) one connection fail compared to (a),
(c) one connection fail compared to Figure 3.19.

However, if a node with a high nodal degree fails, potentially higher numbers of
connections are also bound to be affected. For example, in Figure 3.21-(a), X obtains
the highest nodal degree of 6, so the failure of node X makes the average nodal degree
decrease from 4.5 to 3.429, while there are six connections that get disconnected. If
node Y fails (Y with degree of 5) a little lower than the one with node X, the average
nodal degree decreases from 4.5 to 3.714. From Table 3.2, the k of Failure 2 is higher
than Failure 1, which means the failure of node X with a higher degree has more
impacts on the system compared to the failure of node Y with a lower degree. So Y in

Figure 3.21-(b) is more robustness than X in Figure 3.21-(a).

(a) (b)
Figure 3.21 - (a) Failure 1 - node X failure, (b) Failure 2 — node Y failure
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Node Failure Failure 1 Failure 2
Node selected Node X Node Y
K - Initial 4.5 4.5

K - After failure 3.429 3.714
Robustness low high

Table 3.2 - Robustness comparison according to node failure with different degree

However, in more complicated network architectures, this metric cannot indicate
the overall network robustness because the network robustness is much more complex
which has to be comprehensively evaluated. Thus, this metric by itself provides only a
limited measure of the robustness of a network which is likely to vary depending on

how the nodal degree is actually distributed over the graph.

3.5.2.2 Network Diameter

The diameter is, like the average nodal degree, another broad robustness metric of
a network [94]. It is the longest of all the shortest paths between pairs of nodes. In
general, one would wish the diameter of networks to be low. Scale-free networks
generally have small diameters, but are not particularly robust in response to
deliberate attacks, due to their relatively low value of node connectivity. Nonetheless,
small-world networks represent a combination of the advantages of the properties of
random networks (where no node is privileged by design) and scale-free networks
(where there is a low diameter). We also note that expansion, the diameter of a
network normalized by its size, could be also used in order to carry out a comparison
analysis [94]. The length max, ,d(u,v)of the "longest shortest path” (i.e., the
longest graph geodesic) between any two graph vertices (u,v) of a graph, where

d(u,v) is graph distance.

D = max, ,d(u,v) (3.8)
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3.5.2.3 Average Shortest Path Length

The average shortest path length (ASPL) is calculated as an average of all the
shortest paths between all the possible origin-destination node pairs of the network
[95]. Generally, networks with smaller ASPL are more robust in network latency
performing, but prone to lose connections due to less linking cardinal numbers.
Therefore, in order to comprehensively compare network performance, ASPL cannot
tell all, which is usually network robustness metric that with related to the network
latency. d;; denotes the distance between the vertices v; and v;, N is the vertices
number, and the average path length L of an un-weighted network can be calculated

by the formula:

2
L= mzl’zj d;j (3.9)
I“I
_i
U, ::rh
& L ]
L
i:._-_
v,
; v
T ™
lllI
Figure 3.22 — ASPL: 6 nodes example
For example, X;>jd;; = dip+diz+dis+distdig+dyztdy, +dys +

dyotdzs+dys+dsgtdys +dgg+dsg =1+1+1+2+1+1+14+242+1+

23

24+424+1+2+3=23then L=—"x23=2,
6X5 15

3.5.2.4 Betweenness Centrality
The betweenness centrality for a node in a network indicates the proportion of the

node that lies on paths between other nodes in the network. A high proportion implies
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an important node in a network which has a large influence on the transfer of
messages through the network. The betweenness centrality of a node reflects the
amount of control that this node exerts over the interactions of other nodes in the
network [96].
The betweenness centrality of a node N is calculated as follows:

Co(N) = Xszn2e(@se(N)/Ps) (3.10)
Where s and t are nodes that different from N, ¢, refers to the number of shortest
paths from node s to t, and ¢4 (N) denotes the number of shortest paths from s to t
that N lies on.

For example, the betweenness centrality of node b is computed as follows:
a b e
. |
\Ea, ) |

@

Figure 3.23 — Betweenness centrality: 5 nodes example

Cb(b) — @ac(b) + Pad(b) + Pae(b) + @ca(b) + @ce(b) + Pge(b) — 1/1 + 1/1 + 2/2 +

Pac Pad Pae Pcd Pce Pde

1/2+0+0=235 (3.11)

3.5.2.5 Closeness Centrality
Closeness centrality is a measure of how fast information spreads from a given
node to other reachable nodes in the network [97]. Nodes with high closeness
centrality are important because they can reach the whole network more quickly than

the other nodes. The node’s closeness centrality is measured by the reciprocal of its

60



average distance. The average distance of node v; to other nodes is calculated as

follows:
1 ¢vn
Davg(v) = — ¥ 9(vi,vj) (3.12)
, where n is the number of nodes, g(vi,vj) is the length from node v; to node v;.

The closeness centrality of node v; is measured as follows:

Cc(vy) = [ﬁzz‘lﬂg(vi'vj)]_l (3.13)

For example, the closeness centrality of node b in Figure 3.23 is computed as follows:

Cc(b) =1/ ((L(b,a) + L(b,c) + L(b,d) + L(b,e)) /4)
=4/(1+1+1+2) =4/5=08

3.5.2.6 Eccentricity
In graph theory, the eccentricity E(v) of avertex v is the greatest geodesic
distance from v to another vertex. In a network, the eccentricity is regarded as the

distance from a given starting node to the farthest node from it [98].

3.5.2.7 Eigenvector Centrality

Eigenvector centrality measures the influence of a node in a network. Each node
is assigned a score on the basis of the concept that connections to high-scored nodes
make more contributions to the score of the node than identical connections to
low-scored nodes. PageRank by Google is a variant of eigenvector centrality
measurement [99].

Eigenvector centrality can be measured by using adjacency matrix. For a given
graph G = (V,E) with a set of vertex V' and a set of edges E, and let A = (a,,,t) be

the adjacency matrix, if the vertex v is connected to vertex t, then the score of

vertex v is defined as:
1 1
Sy = ;ZtEM(v) St = ;ZtEG QAy,tSt (3.14)
where M(v) is a set of neighbors of v and u is a constant value (referred as
eigenvalue). Generally, only the greatest eigenvalue u can result in the desired

centrality measure [100].
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3.5.3 Summary

Metrics such as average nodal degree, average weighted degree, and network

diameter and radius, are necessary parameters for evaluating the robustness of a

network. A larger average nodal and weighted degree, and a shorter diameter and

radius tend to represent a robust network. However, the centrality metrics are

important metrics that have great influence on a network.

Metric

Summary

Metric Feature

Average Nodal Degree

Measures the number of edges

neighbored to that node

Coarse metric

Network Diameter

Measures the longest of all the
shortest paths between pairs of

nodes

Coarse Metric

Average Shortest Path
Length

An average of all the shortest
paths between all the possible
origin-destination node pairs of

the network

Shorter, less

latency

Betweenness Centrality

Measures the proportion that lies
on paths between other nodes in

the network

Large influence

Closeness Centrality

Measures how fast information
spreads from a given node to
other reachable nodes in the

network

Large influence

Eccentricity

Measures the distance from a
given starting node to the farthest

node from it

Medium influence

Eigenvector Centrality

Measures the influence of a node

in a network

Large influence

Table 3.3 — Topological metric summary
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Chapter 4 Simulation Studies

For the case study, the researcher firstly built an energy-aware DCN by
conducting simulation studies in order to observe the impact of the underlying
network connectivity on the DCNs™ performance according to the fault tolerant
perspective. A distributed DCN was then set up so as to evaluate different DCNs®
performance under the failure conditions based on the solution of the first study. Both
studies were conducted using a Network Analysis Tool (Gephi 0.8.2) and a Network
Simulation Tool (CloudNetSim++ version 1.0 based on OMNeT++ Version 4.1 and

Inet network framework).

4.1 Case studies

The structure of case studies in this chapter is shown in Figure 4.1 and 4.2 as

following.

Scenario 1:

Server
Failures

Scenario 2:

Critical
Switch
Failures

Calculate

NRM Obtain most
according to

Generate Determine Traffic critical nodes
Regular Traffic e and edges &

Traffic Pattern Pgttern by. according to
using Gephi NRM
Network
Analysis Tool

Q)
>S5
+—
Q
(%]
>
o1
L
o
Q)
[©]
+—

Scenario 3 :

P
O
(&)
©
c
el
=]
c
o
>
c
o
@]

Representative
Servers/Switch/
Rack Failures

Figure 4.1 — Case 1 architecture
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Scenario 1: Three-tier DCN
performance based on

increasing LFR

Scenario 2:
Various DCNs
NPE&ECE
according to
increasing
LFR

Scenario 2

(preparation):
Critical Nodes (o
and Edges

Scenario 2: Fat-tree DCN
performance based on
increasing LFR

Determination

Scenario 3: BCube-2 layers
DCN performance based on

increasing LFR
Result Analysis

T D(le — Topological |l according to the
OPOIoBIES Comparison various DCN
Setup

topologies

Scenario 4: BCube-3 layers
DCN performance based on
Scenario 1: increasing LFR

Various DCNs

Performance
Comparison with
no Failures

Scenario 5: HyperFlatNet DCN
performance based on increasing
LFR

Figure 4.2 — Case 2 architecture

Notation Representation

NRM Network Robustness Metric

NP DC Network Performance

NPE DC Network Performance Evaluation

ECE Energy Consumption Evaluation

LFR Link Failure Ratio

Table 4.1 - Notice on notation representation of the use in simulation studies

structure

As can be seen in Figures 4.1 and 4.2, the simulation study was divided into two
processes. In the first process, robustness metrics were evaluated based on the
network established, according to the analysis for each metric, and important nodes
and edges were determined in this process according to NRM values. Various types of
component failure based on important nodes and edges were simulated in
CloudNetSim++ simulator as depicted in Scenarios 1, 2 and 3. The NP was analyzed

and verified on the basis of node and link selection.
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Initially, a representative conventional balanced-DCN with unbalanced edge
weight was constructed in Gephi; the reason for this was to find important nodes and
weights in the network by using network robustness metrics measuring technique so
that the network performance simulation part could be treated as the verification of
the results gained from Gephi. Moreover, the network QoS evaluation part is the first
study was represented as the network performance and energy consumption versus the
node failure scenarios so as to be able to compare between the different nodes.

The conclusion from the first study