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Preface 

This thesis was prepared at School of Engineering, Computer and Mathematical Sciences, 

Auckland University of Technology, New Zealand to fulfil the requirements for the 

degree of Doctor of Philosophy (PhD). The work has been carried out during the period 

from Oct 2017 to Oct 2020 under the supervision of Prof. Tek Tjing Lie, Dr. Ramon 

Zamora and Dr. Gilbert Foo.  

The main theme of this thesis is to develop optimum scheduling and control techniques 

to manage extra electric vehicle (EV) charging loads in the low voltage distribution 

networks. The research work carried out in this thesis is divided into three parts to 

investigate the EV deployment. The first part of the thesis deals with the modelling of 

large-scale EV charging loads and applying heuristic algorithms to accommodate these 

extra charging loads in distribution networks. The second part develops an EV optimum 

scheduling technique that can be used in the energy market to produce a win-win solution 

for EV users and Distribution Network Operators. The last part describes a novel control 

technique to solve the power imbalance issue with the integration of EVs, to maximise 

asset utilisation.  

The work carried out in these three parts is mentioned in the form of published and 

submitted manuscripts. The link between the work presented in each manuscript and its 

relevance to the main idea of the thesis is explicitly mentioned at the beginning of each 

chapter. Each chapter is dedicated to describing the work presented in each manuscript. 

The chapters of this thesis are designed following the number of manuscripts covering 

the topic of the entire PhD project.  
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Abstract 

For more than a decade, global transportation and power industries have played a 

revolutionary role in considering alternative and sustainable solutions for internal 

combustion engine vehicles (ICEVs) to reduce oil dependency and environmental impact. 

Electric Vehicles (EVs), driven by the battery, offer unique advantages regarding 

emission reduction, reduced petroleum use and energy efficiency. Thus, it is noteworthy 

to consider the positive impacts EVs may have on power systems as numbers keep 

increasing in future market shares. The proliferation of EVs requires the deployment of 

charging facilities, scheduling strategies, and advanced power control schemes in order 

to manage incremental charging loads better. However, the practical and efficient 

application of such EV-related equipment and technologies involves challenges beyond 

merely upgrading the existing power grid. In the distribution network, the barriers to 

widespread EV adoption are (1) lack of sufficient information about EV charging profiles, 

(2) lack of effective control and scheduling techniques to manage EV charging loads and

(3) lack of market mechanisms to maximise economic benefits.

Uncontrolled EV charging can cause extra peak loading, inefficient network operation 

and redundant economic costs. This thesis focuses on the development of advanced 

modelling, scheduling, and controlling techniques that could be used within distribution 

networks to manage EV charging smartly. Modelling EV charging demands deals with 

stochastic problems related to the charging behaviours of EV users. Monte Carlo 

Simulation (MCS) is carried out (in manuscript 1) to demonstrate inhomogeneous 

charging characteristics based on a systematic investigation of the current composition of 

the EV fleet in New Zealand (NZ). A genetic algorithm (GA) has been applied to a smart 

charging strategy to mitigate the adverse impacts brought by large-scale EV integration. 

In a competitive market environment, EV users, utilities and charging service providers 
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should form a community of common interests to promote widespread usage of EVs. In 

manuscript 2, an online scheduling strategy is proposed to investigate the significance of 

economic integration under the energy trade market, where all participants’ interests can 

be satisfied. With increasing penetrations of distributed Photovoltaic (PV) generation in 

addition to EVs, the intermittent and stochastic power characteristic may detrimentally 

affect the security of the power supply. Thus, a Dynamic Power Balance System (DPBS) 

with a novel control scheme is proposed (in manuscript 3) to manage dynamic power 

generation and consumption in the distribution network. It could be used as a 

supplemental measure to obtain a fast load balance response without restraining EV users 

and considerably curtail the risk of overloading power distribution equipment. 

The findings of this study revealed that current EV adoption in NZ (and many other 

countries in the world) is still in its early stages while the majority of the existing 

distribution network is not intelligent enough to integrate large-scale EVs. It was further 

verified that the proposed methods in this research are theoretically flexible and capable 

of being applied to the power grid to smartly manage EVs’ charging demand.  
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Chapter 1  Introduction 

1. Background

During the last few decades, the reduction of fossil fuel dependency and reinforcement 

of environmental policies have motivated the transport sector to shift development 

direction from conventional internal combustion engine vehicles (ICEVs) to electric 

vehicles (EVs). The innovation captured by EVs is the reduction of carbon dioxide (CO2) 

and the revolution in road transport, particularly in highly urbanised areas. Due to 

increasing concern about uplifting greenhouse gas emissions and ever-increasing fossil 

fuel prices, there is growing interest in EVs or their variants (e.g., Plug-in Hybrid Electric 

vehicles PHEVs) as a replacement for ICEVs because of various attractive features 

including climate change and the security of fossil energy supply. 

With an increasing number of EVs in the marketplace, researchers soon realised that their 

environmental benefits are related to the electricity generation mixture in which the 

renewable energy source plays a dominant role in Green House Gas (GHG) emission 

reduction [1]. Major types of renewable energy sources (RES), such as wind, solar and 

hydro, are recommended to be placed at local sites where EV charging demand is high. 

The environmental benefits of EVs have received considerable attention because they are 

related to the cleanliness of electricity generated from the district power system. The 

carbon intensity of electricity is a vital index in the evaluation of GHG emission reduction 

from large-scale deployment of EVs. As shown in Figure 1.1, New Zealand (NZ) owns 
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one of the cleanest electrical power systems in the world with a carbon intensity of nearly 

130g CO2/kWh, which is less than most of the countries with a carbon intensity of more 

than 500g CO2/kWh. In contrast, light passenger vehicles in NZ have a relatively high 

CO2 emission value (see Figure 1.2). Compared with ICEVs, EVs have the potential to 

considerably reduce GHG emission within a ‘green’ grid in NZ. Therefore, the 

replacement of ICEVs by EVs is regarded as a substantial energy conservation measure 

to realise NZ’s GHG emission target, which is to reduce GHG emissions by 30% below 

2005 levels by 2030 [2]. 

Figure 1.1 Average GHG emissions of light passenger vehicles around the world [3] 
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Figure 1.2 Amount of GHG emitted per unit of residential electricity consumed [3] 

2. EV Fleets Composition

In 2020, annual vehicle statistics from the NZ Ministry of Transport [4] indicated there 

are approximately 20,000 EVs, nearly half of which are concentrated in the Auckland 

area, as shown in Figure 1.3. The size of the EV fleet almost doubled every year from 

20152019 (see Table 1.1). Figure 1.3 shows a clear trend that the revolution in the use 

of EVs initially occurs in urbanised areas. Cities like Auckland, Wellington and 

Christchurch have the highest number of EVs and the distribution networks in these areas 

may suffer from potential problems from large-scale EV integration. 
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Figure 1.3 EVs distribution map in New Zealand in 2020 

The EVs fleet composition displayed in Figure 1.4 provides a trail on consumers’ 

preferred EV models. As of December 2019, Japanese EV manufacturers such as Nissan 

and Toyota have the most significant market share, with more than 60% of all EV 

registrations in NZ. The average growth rates of EVs have kept above 200% over the past 

five years, as illustrated in Table 1.1. Although a growing interest in EVs has been 

witnessed in recent years, market penetration is only 0.44% of the overall vehicles in 

stock in 2019. It means that EVs still have not gained mainstream acceptance because of 

limited driving ranges, high costs and inadequate charging infrastructure. However, it 
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could be foreseen that the EV sales market has the potential to grow rapidly due to 

concerns over CO2 emissions and oil dependency in the future. 

Figure 1.4 Quarterly light EV registrations in NZ - main makes and models [4] 

Table 1.1 EV penetrations in New Zealand from 2014~2019 

Year EVs Fleet All Vehicles Annual EVs Fleet Growth EV Penetration 

2014 232 3545050 0.01% 

2015 592 3674100 255.17% 0.02% 

2016 1114 3813688 188.18% 0.03% 

2017 2752 3972783 247.04% 0.07% 

2018 6613 4144771 240.30% 0.16% 

2019 18696 4289903 282.72% 0.44% 

EV Penetration (%): the percentage of EVs out of all vehicles 

3. Charging Characteristics of EVs

Technically, EVs require a battery to support electric engine operation. The charging 

characteristics of the EV’s battery is a crucial factor in the power load. The coincident 

charging behaviours may result in severe operational problems in the power grid, such as 
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an increase of power demand, equipment overloading, phase unbalance, system losses, 

harmonics and stability issues [5]. To evaluate the adverse impact of EV charging in the 

power grid, it is necessary to investigate the charging parameters of the main EV 

manufacturers, as displayed in Figure 1.4. 

In general, EVs can be classified into two categories: i) plug-in electric vehicles (PEV) 

and ii) plug-in hybrid electric vehicles (PHEV). The charging parameters of various types 

of EVs are presented in Table 1.2. It summarises the classifications and technologies of 

available EVs models in the current NZ market [3, 4]. 

The EV charger is the device that connects PHEV and PEV to the power supply; the 

battery packs can be recharged externally from the power grid. It is designed to convert 

AC power from the grid to a suitable DC power level for EV battery charging. A typical 

EV charger usually consists of an AC/DC or DC/DC converter. The charging power is 

well below 10 kW in slow charging mode but goes up to 50 kW in fast mode. To perform 

a fast-charging task, an additional DC/DC converter is required in the design of the fast 

EV charger, such as the Tesla DC supercharging station with a 75 kW power level [6, 7]. 

In the current market, there are two main types of charging methods, namely off-board 

and on-board [8]. The Tesla charging solution is an off-board EV charger, which is built 

at dedicated locations to provide a fast-charging service. For the on-board charging 

method, energy conversion takes place within the vehicle where the EVs has its own built-

in charger [7, 9]. 



7 

Table 1.2 Charging specifications for 2019 generation EVs on the market 

Vehicle 

Models 

Charging 

level 

Charging 

Mode 

Charging 

Rating 

(KW) 

Charging 

Level   

(SAE 

charging 

level) 

Battery 

Capacity(kWh) 

Nissan Leaf PEV slow 6.6 AC level 2 24/40 

Tesla PEV 

slow 8 
AC level 2 

60-100fast 11 

 fast DC 75 DC level 2 

BMW i3 

series 
PEV 

slow 3.7 
AC level 2 

 33 
fast 11 

 fast DC 50 DC level 2 

Nissan E-

NV200 
PEV 

slow 3.3 
AC level 2 

24 
fast 6.6 

 fast DC 50 DC level 2 

Renault PEV 

slow 3 
AC level 2 

41 slow 7 

fast 43 AC level 3 

Paxster PEV slow 1 AC level 1 5.1-9.2 

Mitsubishi 

Outlander 
PHEV 

slow 3.3 AC level 2 
12 

fast 50 AC level 3 

Hyundai 

Ioniq 
PEV/EV slow 6.6 AC level 2 28 

Toyota Prius 

(plug-in type) 
PHEV 

slow 2 
AC level 2 8.8 

fast 3 

Audi A3 

e-Tron
PHEV 

slow 1.3 AC level 1 
8.8 

fast 3.8 AC level 2 
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4. State-of-the-Art Techniques on EV charging management

This section presents overall vision of state-of-art EV modelling methods and grid-based 

charging management studies. The studies [10-13] have concentrated the impacts of 

uncontrolled EV charging interconnection on the power grid. The positive and negative 

aspects of EV integration were thoroughly discussed in [14]. The key factor is how to 

make collective decisions to achieve proper EV coordination for charging and 

discharging. A comprehensive review in [15] presented cutting-edge charging-

discharging methods, optimisation strategies and optimisation objectives with respect to 

EVs and possible interaction with renewable generation or residential loads. 

The EV charging demands in the power system planning have been studied and quantified 

mainly by means of mathematical, deterministic and probabilistic models, as shown in 

Table 1.3. The reviews of various studies on the modelling of EV charging demand 

regarding the weakness and strength of each approach have been carried out in [16]. The 

study conducted in [17, 18] proposed a mathematical analysis of EV charging demand by 

using the fluid dynamic traffic model and queueing theory. The Markov chain models on 

EV charging demand were assessed in [19, 20], uncertainties related to when and where 

EVs will be recharged were pre-defined by a global transition matrix in which charging 

events for the next time interval were only influenced by pre-determined transition 

probabilities. 

In deterministic studies, distribution network constraints were utilised to estimate the 

threshold level of EV penetrations that would exceed thermal ratings [21, 22]. In 
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probabilistic studies, stochastic procedures were used to complete the quantitative 

analysis [23, 24]. The national transport survey was adopted in support of the extraction 

of probability density functions. The method of Monte-Carlo Simulation (MCS) was 

presented in [20], where loading profiles with the integration of EVs were acquired by 

probabilistic density functions (PDFs). The study [13] also employed MCS to evaluate 

EV deployment impacts on a distribution network with increasing penetration levels. 

The big data technology was firstly conducted by the authors of [25], where the EV 

charging demand was predicted by using historical real-world traffic data and weather 

data. Then, the data-driven methods were widely adopted to identify the driving patterns 

of the EVs, so as to carry out quantitative analysis of EV flexibility for integrated 

transport and power system analyses [26-28]. 

Table 1.3 Summary of EV demand Forecasting literature 

Applications Methods Implementation Pathways References 

EV demand 

modelling 

and 

forecasting 

Deterministic 

Method 
[21, 22] 

Markov Chain 

Method 
[20] [13]

Probabilistic Method Monte-Carlo Simulation [23, 24] [19] 

Mathematical 

Method 
Queueing Theory [17, 18] 

Data-driven Method 
Cluster Analysis 

Optimal Cluster Charging 

[25-27] 

[28] 

Numerous studies have been carried out to deal with uncertainties in EV charging load 

profiles. The study in [29, 30] introduced a passive control strategy to reduce the peak 

load demand with the aid of the forced time-delay charging and orderly charging 

approach. It assumed that all EV users negotiate with the charging station about their 
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charging schemes one day ahead; thus, the charging start time was rescheduled at night 

when loading level is relatively low to avoid creating a peak power demand. However, 

this method may result in an almost simultaneous EV charging scenario during off-peak 

hours, leading to a sudden power demand increment. 

A massive amount of research has been done on the development of metaheuristic 

algorithm for scheduling of EV charging process. Most of smart charging strategies made 

use of the data aggregator to obtain EV charging information [31, 32], as shown in Figure-

1.5. The data communication between the EV charger controller and the aggregator is 

realised by either wire or wireless method. The information hub executes an internal 

optimisation algorithm to generate charging scheduling with the consideration of network 

constraints. Then, the charging scheduling is sent back to EV chargers.   

HV

MV

LV EV EV EV

EV EV EV

Aggregator Electric Utility information hub

Aggregator

Aggregator

Figure 1.5 Communication system architecture in the distribution network with EVs 

A multi-objective optimisation method was proposed in Ref. [33], in which an optimal 

allocation of renewable energy resources (RES) and sizing of EV charging station were 

assessed in the IEEE 33-bus system. The hybrid genetic algorithms were introduced to 

maximise renewable energy use in EV charging. The proposed method gives a solution 
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in the stage of system planning to accommodate large-scale penetration of RES and EV 

without stressing the network. 

The primary purpose of the study in [34] focused on distributed demand-side management 

(DSM) for balancing supply from wind energy and demand stemming from charging 

EVs. The assumption was based on a distribution network that consists of a balance 

responsible party (BRP), multiple subscribers and a coordinator. The BRP aims to 

maintain the balance by changing EV demand and wind generation by agreement. Thus, 

the imbalance cost needs to be minimised in the optimisation solution requirement. In this 

study [36], more than 60% EV demands could be supplied by wind energy, which is 20 

% higher compared to the uncoordinated scenario. The similar approach presented in [31, 

35] provides a maximum benchmark for the utilisation of RES through the EV charging

strategy. The results demonstrated that wind energy complies better than solar energy in 

the integration of EVs as it possesses a more consistent generation pattern. The main 

benefit of balancing EV charging loads and distributed renewable generation is the 

substantial reduction in carbon intensity of the power system. 

The integration of electric vehicle and RES in the micro-grid (MG) was proposed in [32, 

36]. An intelligent EV parking lot model which participates in providing reserve capacity 

was developed in the study [32]. The reserve capacity provided by aggregated energy 

storage of EVs could be used for compensating the renewable power forecasting error. 

The paper [36] examined the viability of the reconfigurable MG in facilitating the 

integration of EV from operation cost and reliability perspectives. A scenario-based 
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framework is devised to test the optimal scheduling problem consisting of switches status 

(on/off), EV charging management, electricity price, wind/solar generation and active 

loads. 

The intelligent charging strategy with vehicle-to-grid (V2G) technique is a new concept 

related to bi-directional power flow between grid and EVs. The considerable numbers of 

aggregated battery vehicles act as controllable loads or storages to facilitate power system 

stable operation. Adding V2G technology to EVs can help to maintain a balance between 

power demand and supply, so as to increase the fraction of electricity from abundant RES. 

A national energy system example demonstrated in [37] made use of V2G to consume a 

higher share of wind electricity without excess Combine Heat Power (CHP) electric 

production, which achieves substantial GHG emissions reduction at a national level. 

Binary particle swarm optimisation (BPSO) is applied to a smart V2G charging strategy 

in EV parking lot to figure out a potential solution that maximises the EV owner’s power-

selling profit while satisfying power system constraints [38]. The multiple system 

services derived from the participation of EVs at the national level were mentioned in 

[39]. It presented that the 10% penetration of EVs controlled by the proposed charging 

strategy could decrease overall system cost and wind curtailment. Furthermore, the 

importance of EVs with V2G technology was recognised through their active 

participation in the provision of energy and reserve service. The study [40] proposed a 

control strategy to utilise aggregated EV batteries as a fast release energy storage to 

improve MG islanding operating condition. The storage capability of EV was integrated 
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into MG by the adoption of local control and centralised control strategies, contributing 

to frequency control and voltage balancing. Currently, the primary technology limitations 

related to the realisation of the V2G concept is the battery degradation and the degree of 

aggregation. When solving the battery lifetime barriers, V2G could be of great worth to 

maximise customer satisfaction and power grid stability [29]. 

The summary of the literature on EV charging strategies and their related applications are 

presented in Table 1.4. The multi-objective optimisation approach is widely used in the 

current research to control EV charging process and intermittent RES generation. The 

genetic algorithm (GA) is recommended to be used in the EV charging scheduling 

because of the confident convergence performance. Also, the optimised results from GA 

are independent of the initial condition. 

With the increase mixture of EV charging loads and distributed Photovoltaic (PV) 

generation, the phenomenon of the power imbalance loading condition is becoming 

serious issue in the distribution network. It is well known that EVs as mobile loads may 

be randomly plugged in or out as unplanned events among feeders. These events may 

lead to the unbalanced loading scenarios, in which one feeder is heavily loaded whereas 

adjacent one is lightly loaded. Similarly, unbalanced loading scenarios among three 

phases of a feeder also result in several negative impacts on distribution network, such as 

voltage deviation and voltage unbalance [41]. The possible solution for imbalance issues 

either in three phases or among feeders might be provided by AC-DC or DC-DC 

converter having a bidirectional power flow topology [14].  The study [42] utilised EV 
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inverters to regulate voltage by the reactive discharging capability of those inverters, so 

as to achieve ancillary voltage support among three phased of the feeder. The inverters in 

PV plant are reconfigured in [43] to interconnect multiple distribution feeders. The 

reconfiguration expanded the use of PV generation for management of bidirectional 

power flow between interconnected feeders. In [44], considering the feeder loading 

capability, a feeder equalization control strategy was proposed to reduce the power 

fluctuation and peak demand of the feeders in order to maximise utilisation of the loading 

capacity of feeders. P-Q and DC voltage control schemes were applied into PI controllers 

to drive flexible multi-state switch (FMSS) to adjust bidirectional power flow based on 

assigned power values. Another similar flexible interconnection scheme for distribution 

network feeders was studied in [45] to achieve power flow reversal in FMSS. The 

increasing penetrations of EVs and PV in distribution network are quite likely to lead to 

imbalance loading scenarios due to randomly charging behaviours of EVs and 

intermittent PV generation. Therefore, it is essential to explore a possible control 

technique that could be used among adjacent feeders to mitigate the imbalance condition 

caused by EVs and PV. 
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Table 1.4 Literature on EVs charging strategies 

Strategies Algorithms Decision Variables Objects Applications References 
Non-Smart 

Charging 
Scenarios Modelling Off-peak charging Flatten load 

Mitigate Load Variance 

(Centralized Control) 
[30] [29]

Smart Charging 

Non-cooperative games Adapting the charging rates Min cost 
Mitigate Load Variance 

(Decentralized Control) 
[46] 

Binary particle swarm 
Adapting the charging/discharging 

rates and time 
Max profit 

Parking lot 

scheduling,V2G 
[38] 

Probabilistic Optimization Off-peak charging Min fluctuation 
Mitigate Load Variance 

(Centralized Control) 
 [13] 

Hybrid Genetic algorithm 

mixed integer programming 

Adapting the charging/discharging 

rates and time[33] 

Optimal allocation of EV charging 

resources[31, 35] 

Multi-objective: 

Max renewable energy 

utilisation[31, 33] 

Min cost and emission [35] 

Integrate wind and solar 

energy 

(Centralized Control) 

[31, 33, 35] 

Mixed integer linear programming 
Optimal allocation of EV charging and 

discharging resources 
Min cost 

Reserve Capacity Service 

(Centralized Control) 

[39] 

Multi-Master Operation 
Adapting the charging/discharging 

rates and time 

Multi-objective: 

voltage, frequency, 

generations, loads 

Frequency and Voltage 

Regulation 

(Centralized and 

Decentralized control) 

[40] 

Distributed algorithm Adapting the charging rates and time 

Multi-objective: 

Energy loss, Voltage, EV charging 

demand and costs 

Integrate wind energy 

(Decentralized Control) 
[34] 

 Mixed integer linear programming 
Adapting the charging/discharging 

rates and time 

Multi-objective: 

Min MG Power exchange and 

operation cost, Reserve Capacity 

Micro-grid Control [32] 

Depth-First Search (DFS) algorithm 

SAMCSA algorithm 

Adapting the charging/discharging 

rates and time 

Reconfiguration to improve MG 

viability 
Micro-grid Control [36]
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5. Research Problem Statement

Given the background information above, it should be noticed that the power generation, 

transmission, and distribution infrastructure should be upgraded to meet additional EV 

charging demand. The importance of a robust power system is indisputable to 

accommodate extra charging loads. The balance scenario between energy generation and 

energy consumption may be broken by the growing number of EVs in the coming years. 

EVs will be randomly plugged in or out at any node within distribution networks in the 

form of mobile loads, which has long been a question of peak demand, overloading and 

power quality fields. 

In most countries, current grids with existing infrastructure cannot ensure a stable and 

safe operation with the high penetration of EVs. The possible solution derived from smart 

grids have attracted much attention and have been thoroughly discussed in recent years. 

The shifting of power systems from the past to the future adopts more ICT infrastructure 

and components like EVs, renewable energy sources and battery storage, which are 

expected to increase in capacity and number. To accurately analyse EV charging loads, it 

is essential to investigate the pattern of EV charging behaviours. The stochastic approach 

could be applied to take into account uncertainty factors, such as vehicle travel demands, 

personal charging behaviours, battery charging characteristics, charging infrastructures 

and the numbers of EVs. An appropriate combination and analysis of various techniques 

are necessary for modelling these uncertain factors. 
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In manuscript 1 of the thesis, a comprehensive probabilistic model is built in the stochastic 

approach to describe EVs’ charging loads. It is necessary to estimate an expected power 

level that may be used by utilities to upgrade their infrastructure for supporting extensive 

penetration of EVs. Additionally, the increment charging loads exerted on the power grid 

may threaten the stability of network operations, especially at the distribution level. An 

elaborate scheduling strategy needs to be developed to obtain peak-shaving and valley-

filling effects, in part, on the power curve to maximise utilisation of existing network 

facilities. This necessitates the thorough and careful design of an EV charging scheduling 

strategy to mitigate potential impacts like thermal loading, harmonic distortion, system 

imbalance and loss, as displayed in Figure 1.6. 
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Figure 1.6  EVs impacts on the power grid 

As a part of EV deployment considerations, it is necessary to investigate the economics 

underlying the scheduling strategy, which may furnish a vision for operating charging 

services. In an electricity market, the retailers purchase electricity from the grid and sell 

it to EV users. The retailers could be utilities or EV aggregators as long as they can make 

profits from the charging service. Figure 1.7 depicts a typical relationship between 

participants regarding charging services in the distribution network; these participants 

include EV users, Distribution Network Operators (DNOs) or charging operators and 

high-voltage grid utilities. The hierarchical framework describes the decision-making 
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mechanism based on signal information between each group. Note that each group adapts 

to changes in the market environment by reacting to fulfil collective or individual 

economic goals. In the energy market environment, a reasonable EV scheduling strategy 

is to make sure that all participants can benefit from the charging service by economic 

incentives, rather than by strict rules and policies. The cost-effective investment in 
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Figure 1.7  The relationship between participants in EV charging service in the energy 

market 

Manuscript 1 and 2 deals with optimisation problems in the scheduling strategy that is 

derived from EV charging loads in distribution networks. These problems have static 

forms in which the decision variables do not vary in response to detailed variations in the 
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system state. The variations could happen to either the power consumption or power 

generation profile. For instance, the load profile of feeders within the distribution network 

could vary because EV users might dispersedly plugin or plugout at any available spot 

instead of ensuring identical distribution across feeders. This might result in one feeder 

getting heavy EV charging loads, whereas the adjacent feeder might only be lightly 

loaded. Also, the wide diffusion of distributed PV generation has been witnessed in the 

Low-Voltage (LV) distribution network in recent years. The intermittent PV generation, 

in addition to random EV charging loads, could potentially alter the load profile and make 

it highly dynamic. Both of them interact with the distribution network through a single-

phase connection. This may result in a typical power imbalance issue among LV feeders. 

In this circumstance, the scheduling strategy cannot force all EV users to jointly accept 

direct control without compromising their expected target. The third part of the thesis 

proposes a novel control scheme to manage the imbalanced power derived from EV 

charging and PV generation among feeders through a control system composed of tie-

line voltage source converters (VSCs). It could be used as a supplemental measure to 

effectively address the power imbalance without restraining the EV charging process 

while curtailing the risk of overloading the power distribution equipment. 

Based on the description of the problem above, the following research questions need to 

be answered: 

 How to develop a model of EV charging demand that can be used in estimating

the charging load level and planning of distribution network upgrades?
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 How to design a scheduling strategy to manage EV charging loads considering

the uncertainty factors mentioned above?

 How to enable economic operation into the EV scheduling strategy to generate a

win-win solution for all participants in the energy market framework?

 What control technique needs to be developed for solving the power imbalance

issue with the integration of EVs and intermittent PV generation?

6. Research Aim and Objectives

The previous subchapter discusses the main issues that are negatively affecting the EV 

charging in the distribution network. To address these problems, the primary research aim 

of this study is to develop effective optimisation and control techniques to manage EVs 

charging loads in the distribution network. To this end, the following objectives were 

recorded in Table 1.5 below. 

Table 1.5 Research aim and objectives 

Research Aim 

To develop effective optimisation and control techniques to better manage EV 

charging loads in the distribution network. 

Research Objectives 

(1) Develop a modelling technique for large-scale EV charging demand

(2) Determine key indexes for expected loading levels, allowing DNOs to plan network

reinforcements
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(3) Apply appropriate heuristic algorithms into an EV scheduling strategy to optimise

charging loads by flattening the load and voltage profile within distribution

networks

(4) Design a pricing mechanism into the proposed EV scheduling strategy, satisfying

all participants in the energy market environment

(5) Develop a control scheme that could solve the power imbalance caused by random

EV charging loads or intermittent PV generation in adjacent LV feeders

7. List of Publications

This thesis is based on work presented in the form of manuscripts. As listed in Table 1.3, 

the entire aim of this thesis is divided into multiple tasks, where each manuscript is 

dedicated to addressing one or two tasks. Manuscripts address individual problems lying 

under the main theme of the PhD project. When combined, the individual work addressed 

in each manuscript is considered to represent the entire PhD project. 

The research work described in this thesis has been accepted for publication or 

published/under reviewed in the following peer-review journals: 

Journal Papers 

i. J. Su, T.T. Lie, R. Zamora, Modelling of Large-Scale Electric Vehicles Charging

Demand: A New Zealand Case Study, Electric Power Systems Research 167 (2019)

171-182. https://doi.org/10.1016/j.epsr.2018.10.030

https://doi.org/10.1016/j.epsr.2018.10.030
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ii. Su J, Lie TT, Zamora R. A rolling horizon scheduling of aggregated electric vehicles

charging under the electricity exchange market. Applied Energy. 2020 Oct

1;275:115406. https://doi.org/10.1016/j.apenergy.2020.115406

iii. J. Su, T. T. Lie and R. Zamora, "Integration of Electric Vehicles in Distribution

Network Considering Dynamic Power Imbalance Issue," in IEEE Transactions on

Industry Applications, vol. 56, no. 5, pp. 5913-5923, Sept.-Oct. 2020.

DOI:10.1109/TIA.2020.2990106

8. Thesis Contribution

The work presented in this thesis contributes to developing optimisation and control 

techniques that could be used for the smart management of EV charging in distribution 

networks. The following research tasks are proposed to meet thesis objectives: 

 A temporal EV charging demand is generated based on 

the multivariate probabilistic model.

 The EV charging process is scheduled using GA strategies for load profile

flattening.

 A rolling horizon scheduling approach based on GA is proposed to provide a win-

win strategy for both DNOs and EV users. It deals with the online optimal

scheduling problem of aggregated EVs in the energy exchange market.

 A dynamic power balance system (DPBS) is developed to manage the power

imbalance derived from EV charging and distributed PV generation, by which the

https://doi.org/10.1016/j.apenergy.2020.115406
https://doi.org/10.1109/TIA.2020.2990106
https://www.sciencedirect.com/topics/mathematics/multivariate
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unbalanced power can be transferred from the heavily loaded feeder to the 

neighbouring feeder that is lightly loaded through the power electronic interface. 

9. Thesis Outline

This entire piece of work is divided into manuscripts, where the work presented in each 

manuscript has a unique contribution mentioned in each manuscript Chapter. In Chapter 2, 

manuscript one contributes to the aspects of the scheduling strategy that optimise the EV 

charging process to obtain peak-shaving and valley-filling effects on load profile. The 

techniques are developed such that the resulting load profile avoids creating extra peak 

demand. In Chapter 3, manuscript two further develops the algorithm to enable the scheduling 

strategy to be applied to the online system. In this way, the economic interests of EV users, 

DNOS or charging operators can be satisfied. A dynamic power balance system (DPBS) is 

proposed in manuscript three in Chapter 4. The DPBS could be installed as an additional 

component to the existing distribution network. It has fast response capability to smooth and 

balance out bidirectional power flowing among feeders. Chapter 5 concludes the thesis by 

integrating the key research findings into the research objectives. This chapter highlights 

the research contributions and provides suggestions and opportunities for future research 

arising from the current study. 
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Chapter 2  Manuscript 1 

This manuscript deals with modelling technique to estimate EV charging demands in NZ. 

The majority of studies on EV charging load impacts made assumptions for the EV 

charging demand profiles as real EV charging information is not publicly available due 

to privacy concerns. A modelling framework based on Monte-Carlo Simulation (MCS) 

was developed to extract the useful information hidden in vehicle travelling statistics, 

which can be utilised to estimate EV charging loads. A case study with projected EVs 

numbers in the future is presented to demonstrate the modelling performance. The 

resulting loading levels can be used to estimate the potential risk level of EV charging 

demand among different geographical areas. After that, a smart charging strategy is 

developed to obtain load shifting effects on power curves while guaranteeing charge 

completion for each EV before the next trip. 

The manuscript was published in the journal of ‘Electric Power Systems Research’ under 

the title: “Modelling of large-scale electric vehicle charging demand: A New Zealand 

case study”. 
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*Corresponding author email: Jun.Su@aut.ac.nz

Abstract 

Due to increasing electric vehicles (EVs) uptakes, power system distribution network will 

have to accommodate the increased load level for charging EVs. Thus, the importance of 

a robust power system especially in the distribution network level is indisputable. During 

the planning or reinforcement stage of distribution networks, it is paramount to have some 

estimations and analyses done on system-wide EV charging loads that will be placed in 

the network. Thus, this paper systematically investigates the EV fleet composition, 

market shares, and charging patterns within New Zealand (NZ) area. A multivariate 

probabilistic modelling of dependent random variables and cumulative distribution 

functions is adopted for the accurate estimation of aggregated EV charging demands. 

Several vehicle travel survey data sets are utilised to quantitatively determine charging 

behaviours and driving patterns of EVs. The developed methodology based on Monte-

Carlo simulation (MCS) is utilised to generate results close to the real use-cases daily 

power demand, which can be further utilised in the analysis of EV charging strategies. In 

addition, non-smart and smart EV charging strategies are introduced to mitigate impacts 

of the large-scale EV deployment and to guarantee the charging completion for each EV. 

file:///C:/Users/tlie/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/PDT5L86C/Jun.Su@aut.ac.nz
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1. Introduction 

During the last decade, the reduction of fossil fuel dependency and the reinforcement of 

environmental policies had motivated the automotive industry to shift development 

directions from conventional internal combustion engine vehicles (ICEVs) to electric 

vehicles (EVs). Both opportunities and challenges of EV deployments need to be 

identified in the electricity industry to achieve better integration at the planning and 

operational levels [47]. Along with expected environmental benefits, the increasing 

penetration of EVs may potentially reshape electricity load profiles due to the grid-to-

vehicle and vehicle-to-grid power flow [48].  

EV deployment impacts on transportation, manufacturing, economy or long-term power 

system plan have been identified, studied and quantified mainly by means of 

mathematical, deterministic and probabilistic models. Such models are necessary 

primarily for two reasons. Firstly, real world data about EV use is not publicly available 

due to the privacy concern and the low EV uptake to date. Secondly, although data is 

available, there will still be a concern on how to make use of the data to access and 

mitigate impacts for the conditions with different EV charging and driving patterns [16]. 

Moreover, the EV charging demand is considered as an essential input for EV charging 

strategies to carry out scheduling subject to a set of constraints. In order to demonstrate 
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the convincing effectiveness of EV charging strategies, it is necessary to consider the 

randomness and heterogeneity of EV charging demands. 

Reviews of the studies on the modelling of EV charging demand to identify the weakness 

and strength of each approach have been carried out in Ref. [16]. The studies conducted 

in Refs. [17, 18] proposed mathematical analyses of EV charging demands, in which the 

fluid dynamic traffic model and the queueing theory were utilised to evaluate the charging 

demands regarding spatial and temporal dynamics. The Markov chain models were built 

in Refs. [19, 20], uncertainties related to when and where EVs will be recharged were 

pre-defined by a global transition matrix in which charging events for the next time 

interval were only influenced by pre-determined transition probabilities. In deterministic 

studies, distribution network constraints were utilised to estimate the threshold level of 

EV penetrations that would exceed thermal ratings [21, 22, 49]. In probabilistic studies, 

stochastic procedures are used to complete the quantitative analysis [50]. The national 

transport survey was adopted in support of the extraction of probability density functions. 

The method of Monte-Carlo Simulation (MCS) was presented in Refs. [20, 51], where 

loading profiles with the integration of EVs were acquired by probabilistic density 

functions (PDFs). Ref. [13] also employed MCS to evaluate EV deployment impacts on 

a distribution network with increasing penetration levels. 

The diverse stochastic techniques become a popular choice to generate EV charging data, 

which is considered as essential input parameters of controlled or optimised charging 

strategies to evaluate EV deployment impacts. Different charging algorithms, methods 
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and strategies in the field of smart EV charging systems were reviewed in Ref. [52]. A 

number of metaheuristic approaches can be found in centralised and decentralised 

charging strategies that manage EV charging behaviours to achieve optimisation targets, 

such as the minimum cost, the minimum power variance and the minimum emission [13, 

53, 54]. The scheduling of EV charging loads in each domain is carried out by measuring 

local parameters or associated criteria, such as tariff signals or local electrical signals [55-

59]. 

A rigorous estimation of EV deployment impacts at the system level is considered 

important for distribution network operators (DNOs) in the planning phase of network 

reinforcements. Most of the existing research works evaluate EV deployment impacts 

mainly based on reasonable assumptions about the randomness characteristic while 

ignoring the heterogeneity characteristic. For instance, in Ref. [20], the authors merely 

made use of a BMW i3 model to represent all EVs within the distribution network. The 

fixed EV plug-in time and plug-out time were assigned in Ref. [21] to simulate the worst-

case scenario in which the EV charging demand overlap the peak residential loads. Ref. 

[60] introduced an example of the stochastic charging scenario with the application of the

conditional Gaussian distribution to simulate arrival times, charging times and departure 

times for an EV fleet. A probabilistic model of EV driving patterns was developed in Ref. 

[19] based on different PDFs extracted from transportation survey data, but only one

charging mode was considered in the model. 
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The research gap among these studies is the lack of consideration for heterogeneity in the 

modelling of EV charging demands so that the effectiveness level of charging strategies 

is not convincing. Such heterogeneity in EV charging loads is composed of factors that 

will change the profiles of EV charging loads, such as different daily driving mileages, 

recharging times and different compositions of EV fleets. For example, equivalent 

numbers of commercial EVs and private EVs may result in entirely different charging 

demands, which has been investigated in Ref. [61]. More importantly, despite the 

importance of EV charging behaviours in fore-mentioned works summarised, current 

smart charging strategies primarily rely on the simplistic representation of EV charging 

and travel behaviours. The promotion of EV usages will potentially alter the transport and 

electricity network. Hence, it is necessary to develop an empirically estimated model 

amenable for these integrated cross-sector analyses based on existing statistics data 

available. By this modelling technique, the proposed EV charging strategies can be 

carried out to validate the performance and effectiveness closer to a real case. 

From the practical operation view, the EV scheduling problem is formulated as an 

optimization model in this paper in order to identify the grid benefits solution that satisfies 

the charging requests. Therefore, the main contributions of the paper are: 

1. A large-scale EV charging model that bridges the gap between the

representations of charging behaviour used in integrated transport and power 

system analyses for the appraisal of smart charging strategies. 
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2. A multivariate probabilistic model to estimate aggregated EVs charging loads

with the consideration of randomness and heterogeneity based on transportation 

statistic data. 

3. A case study to test effectiveness of non-smart and smart charging strategies

regarding peak-shaving and valley-filling impacts on the aggregated EVs 

charging loads. 

The rest of the paper is organised as follows. The EV charging and driving patterns 

considering all relevant factors are explained in Sections 2 and 3. Section 4 provides the 

modelling approach based on MCS. Then, the charging strategies and a case study are 

described in Section 5. The results and discussion are presented in Section 6, and the 

paper is concluded in Section 7. 

2. EV Fleets Composition in NZ

The 2018 annual vehicles statistic from NZ Ministry of Transport [4] indicated that over 

7000 Electric Vehicles (EVs) are running on the road, 49% of which are concentrated in 

Auckland as presented in Fig. 1. As shown in Table 1, although the EV penetration in NZ 

has experienced a rapid growth in recent years, it merely occupied nearly 0.1% in 2017 

[4]. The EV penetration represents the percentage of the total EVs number over the total 

vehicles number. 



32 

Table 1 EV penetrations in New Zealand from 2014 to 2018 

Year EVs Number Annual EVs Fleet Growth EV Penetration 

2014 232 0.01% 

2015 592 255.17% 0.02% 

2016 1114 188.18% 0.03% 

2017 2752 247.04% 0.07% 

2018 7000 240.30% 

New 
Zealand

Fig. 1. EVs Distribution Map in New Zealand in 2018 

2.1 Projected Ownership of Electric Vehicles 

The EV population is a critical determinant of EV charging demands. The New Zealand 

Center of Advanced Engineering (CAENZ) proposed four scenarios about future EV 

uptakes in Ref. [62] based on NZ government and consulting company works as shown 

in Table 2. 
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Table 2 Predicted EV populations in NZ 

Years 
EV uptake scenarios (unit: millions) 

Lower Case Upper case 

2040 0.9 2 

2030 0.3 1.2 

Current 0.007 

2.2 Projected EV Fleets Composition 

EV populations can be categorized into five main fleets according to EV ownership 

statistics in NZ, which are private EVs, utility EVs, commercial EVs, electric goods 

trucks, and electric buses [4]. The fleet categories include a variety of EV manufacturers, 

in which each brand has its own endurance mileage, battery capacity and charging power. 

Table 3 introduces five mains EV models to represent each EV fleet in the modelling of 

charging demands. Their technical parameters will be used in MCS. Fig. 2 depicts the 

composition ratio of ICEV fleets in NZ [4]. The present and projected amount of various 

EV fleets in Table 4 are derived from predicted EV populations in Table 2 with the 

assumption that the composition ratio of the five EV fleets is equivalent to that of the 

ICEV fleets in Fig. 2. 

Table 3 Charging parameters of five types of EV models 

EV types 
Manufacturers 

Model 

Battery 

Capacity 

(kWh) 

Charging Power 

(kW, 𝑃𝐶) 

Full 

endurance 

mileage 

(km, 𝐷) 
Slow 

Charging 

Quick 

Charging 

Private Vehicle Nissan-Leaf 24/40 6.6 11 150/250 

Utility Vehicle Nissan-Leaf 40 6.6 11 250 

Commercial 

Vehicles 
Nissan-Leaf 40 -- 11 250 

Goods Truck EMS 18 series 240 -- 80 250 

Bus AUT-BUS 202 -- 50 200 
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Fig. 2 2018 composition ratio of ICEV fleet in NZ 

Table 4 The present and projected EV fleets in NZ 

EV uptake 

scenarios 

Private Electric 

Vehicle 

Electric 

Utility 

Vehicles 

Electric 

Commercial 

Vehicle 

Electric 

Goods Truck 

Electric 

Bus 

2018 Uptake 5919 633 394 35 20 

2030 Lower 

Case Uptake 
253660 27127 16881 1490 842 

2030 Upper 

Case Uptake 
1014641 108507 67524 5961 3367 

2040 Lower 

Case Uptake 
760981 81380 50643 4471 2525 

2040 Upper 

Case Uptake 
1691068 180844 112540 9935 5611 

3. Analysis of EV Charging Behaviour

Some existing studies [19, 20, 60, 63] in the appraisal of charging strategies relied on 

simplistic representation of EV fleets conforming to a certain probability model, which 

merely considered randomness of charging behaviours while ignoring heterogeneity. A 

multivariate probabilistic model is introduced to characterise both randomness and 

heterogeneity in the modelling of EV charging demand based on the summary statistics 

in NZ. Such model can be used to represent of consistent charging behaviours used in 

Utility Vehicle(330912)

9.04%

Goods Vehicle(18180)

0.5%

Bus(10268)

0.28%

Private Vehicle(3094345)

84.55%

Commercial Vehicle (131069)

5.63%
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integrated transport and power system analyses. It is assumed that advent of EVs will not 

affect daily travel patterns and lifestyles in general so that EVs have similar driving 

patterns with ICEVs. The following uncertainty factors are considered when modelling 

the 24-hour EV charging demand: (i) EV charging duration, (ii) EV charging power, (iii) 

EV daily travel distance/EV initial battery SoC, (iv) EV recharge probability, (v) EV 

plug-in time. These uncertainties were treated separately for each EV, which are random 

variables generated by predefined PDFs in Table 5.  

The PDFs of EV daily driving distances are either of normal or logarithmic distribution 

type with a positive value of the travel distance [64-66]. It can be expressed by Eqs. (1) 

and (2), respectively. 

𝑓𝐷1(𝑥𝑖,𝑗) =
1

𝜎𝐷1,𝑗√2𝜋
𝑒𝑥𝑝 [−

(𝑥𝑖,𝑗−𝜇𝐷1,𝑗)
2

2𝜎𝐷1,𝑗
2 ] , 𝑥 > 0     (1)     

𝑓𝐷2(𝑥𝑖,𝑗) =
1

𝑥𝜎𝐷2,𝑗√2𝜋
𝑒𝑥𝑝 [−

(𝑙𝑛𝑥𝑖,𝑗−𝜇𝐷2,𝑗)
2

2𝜎𝐷2,𝑗
2 ] , 𝑥 > 0   (2) 

where 𝑖 = {1,2,3…𝑁𝑗}  represents ith EV in the specific EV fleet, 𝑗 = {1,2,3,4,5} is the

total vehicle amount in the specific EV fleet, specifically 1: private EVs, 2: utility EVs, 

3: commercial EVs (taxies), 4: electric goods trucks, 5: electric buses. 𝑥𝑖,𝑗 is the daily 

travel distance of an EV, 𝜇𝐷1,𝑗,𝜇𝐷2,𝑗  are mean values, and 𝜎𝐷1,𝑗, 𝜎𝐷2,𝑗  are standard 

deviation values. For different EV fleets, the corresponding mean values and standard 

deviations are defined in Table 5.  

The endurance mileages of different EV models are related to their corresponding battery 

capacities. Given the full endurance mileage 𝐷𝑗 , the initial state of charge 𝑆𝑂𝐶𝑖,𝑗 can be 

estimated by Eq. (3). 
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𝑆𝑂𝐶𝑖,𝑗 = 1 −
𝑑𝑖,𝑗

𝐷𝑗∗ƞ1
, 0.05 ≤

𝑑𝑖,𝑗

𝐷𝑗∗ƞ1
≤ 0.95    (3) 

where 𝑑𝑖,𝑗  represents the daily travel distance of 𝑖𝑡ℎ  EV, which is a random variable

derived from Eqs. (1) and (2). All vehicles need to be fully charged before the next 

journey starts.  

Various studies about the efficiency of EV powertrain have been carried out to include 

the loss of battery power in driving cycles and the battery life cycle [67, 68]. This study 

considered ƞ1 = 0.95 to represent the loss of battery power during EV running. 

The plug-in time 𝑡𝑝𝑖,𝑗 is given in Eq. (4). 

𝑓𝑡(𝑡𝑝𝑖,𝑗) =
1

𝜎𝑡,𝑗√2𝜋
𝑒𝑥𝑝 [−

(𝑡𝑝𝑖,𝑗−𝜇𝑡,𝑗)
2

2𝜎𝑡,𝑗
2 ]      (4) 

where 𝑡𝑝𝑖,𝑗 is the plug-in time of an EV, 𝜇𝑡,𝑗 is the mean value, and 𝜎𝑡,𝑗 is the standard 

deviation. For different EV fleets, the corresponding values of 𝜇𝑡,𝑗, 𝜎𝑡,𝑗 are defined in 

Table 5. 

In Eqs. (5)-(8) 𝑡𝑐𝑖,𝑗 is the charging duration of 𝑖𝑡ℎ EV in 𝑗𝑡ℎ fleet type, 𝐶𝑎𝑝𝑖,𝑗 is the full

battery capacity, charging efficiency ƞ2 is 0.95 in all cases, 𝑁𝑗 is the total number of the 

specific EV fleet. 𝑡𝑑𝑖,𝑗  is the charging duration to reach 𝑆𝑂𝐶𝑖,𝑗 = 0.95  with rated 

charging power 𝑃𝐶𝑖,𝑗
 defined in Table 3. 𝑃𝐸𝑉𝑖,𝑗

(𝑡) is the charging power of each EV at

time t, 𝑃𝐸𝑉(𝑡) the total EV charging power at time t.

𝑡𝑐𝑖,𝑗 = ∑ (0.95 − 𝑆𝑂𝐶𝑖,𝑗
𝑁𝑗

𝑖=1
) ×

𝐶𝑎𝑝𝑖,𝑗

𝑃𝐶𝑖,𝑗
×ƞ2

        (5) 

𝑡𝑑𝑖,𝑗 = 𝑡𝑝𝑖,𝑗 + 𝑡𝑐𝑖,𝑗    (6)
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{
𝑃𝐸𝑉𝑖,𝑗

(𝑡) = 𝑃𝐶𝑖,𝑗
, 𝑡𝑝𝑖,𝑗 ≤ 𝑡 ≤ 𝑡𝑑𝑖,𝑗

𝑃𝐸𝑉𝑖,𝑗
(𝑡) = 0,  𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑚𝑒

 (7) 

𝑃𝐸𝑉(𝑡) = ∑ ∑ 𝑃𝐸𝑉𝑖,𝑗
(𝑡)

𝑁𝑗

𝑡=𝑖
5
𝑗=1  (8) 

Over 80% of light vehicles were parked overnight at private residences or private off-

street locations [62]. The assumptions in this model are to consider that 80% of the private 

EVs plug in the charging infrastructure during the off-work period 18:00 p.m.- next 07:00 

a.m. and the remaining 20% will be recharged during working hours 9:00 a.m.-17:00 p.m.

The values of 𝜇𝐷2 and 𝜎𝐷2 for private EVs are considered to be 3.2 and 0.92 respectively 

based on the average daily travel distance of 23.2 km specified in [62]. Due to the absence 

of travel data on utility EVs, it is assumed that it has the same driving pattern with private 

EVs. Typically, there are three working shifts for commercial EVs (Taxies) per day, 0:00-

9:00, 9:00-16:00, 16:00-24:00. In Ref. [69], authors pointed out driving distances of taxi 

drivers in every driving shift are ranging from 33 km to 350 km (an average of 195.49 

km, 𝜇𝐷1, std. dev. of 49.99, 𝜎𝐷1), thus charging twice a day is necessary to support the 

driving requirement. It is reasonable to assume that commercial EVs are quite likely to 

be charged with the fast charging mode because the shorter charging time implies longer 

service hours to make profit. A survey of 95 truck drivers carried out in Ref. [69] also 

revealed that daily driving distances are ranging from 38 km to 500 km (an average of 

201.80 km, 𝜇𝐷1, std. dev. of 94.42, 𝜎𝐷1). Two charging times and the high charging mode 

are essential to electric goods trucks as well. The electric buses are usually recharged with 

the high charging mode during off-service periods. As electric buses have relatively fixed 

daily routes so that their daily travel distances are relatively stable. The probability 
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distribution parameters are 𝜇𝐷1 = 155, 𝜎𝐷1 = 10 according to electric bus operation data 

from Auckland University of Technology [70]. 

According to the summary of travel survey discussed above, Fig. 3 presents the 

probability distributions of five EV fleets’ daily travel distances. The corresponding PDFs 

parameters are summarised in Table 5.  

Fig. 3 Probability distributions of daily travel distances by vehicle types 
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Table 5 Characteristic EV charging parameters for probabilistic modelling 

Daily Charging 

Times 

Charging 

Period 

(𝑇𝑝, 𝑇𝑑) 

Charging 

Mode 

𝑀𝐶 

Probability Initial 𝑆𝑂𝐶𝑖,𝑗 Distribution 
Plug in time 

𝑡𝑝𝑖,𝑗  

Electric Private 

Vehicle 
1 

9:00~17:00 slow 10% 

Equation (5.3) based on 

log N (3.2,0.92) 

N(9,0.9) 

18:00~07:00 slow 80% N(18.5,1) 

09:00~17:00 fast 10% 
Even 

Distribution 

Electric Utility 

Vehicles 
1 

9:00~17:00 fast 30% Equation (5.3) based on 

log N (3.2,0.92) 

N(12,0.9) 

18:00~07:00 slow 70% N(18.5,1) 

Electric 

Commercial 

Vehicles 

2 

00:00~09:00 fast 90% 
Equation (5.3) based on 

N(195.49,49.99) 

N(4,2.5) 

09:00~16:00 fast 60% N(12,2.5) 

16:00~24:00 fast 50% N(18,1.5) 

Electric Goods 

Trucks 
2 

00:00~09:00 fast 80% Equation (5.3) based on 

N(201.8,94.42) 

N(3,1.5) 

09:00~24:00 fast 120% N(14.5,2.8) 

Electric Bus 1 22:00~07:00 fast 100% 
Equation (5.3) based on 

N(155,10) 
N(22,0.5) 

N (μD1,j, σD1,j): normal probability distribution function.  Log N (μD1,j, σD1,j): logarithmic probability distribution function.  (𝑇𝑝𝑖,𝑗 , 𝑇𝑑𝑖,𝑗): charging period constraints.
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4. Modelling Method of EVs Charging Load

4.1 Monte Carlo Simulation 

The multivariate probabilistic model in MCS aims to estimate EV charging demands 

according to the transportation statistics data in New Zealand. The following are 

assumptions made for the simulation conducted in this paper: 

a. Charging facilities are enough so that the EV owners start charging immediately

once parked. 

b. The generation capacity is enough to supply EV loads.

c. The charging power is rounded to the nearest integers toward infinity in the hourly

charging power calculation 

4.2 Calculation Process of EV Charging Load based on MCS 

In the MCS, 𝑡𝑝𝑖,𝑗, 𝑀𝐶 and 𝑆𝑂𝐶𝑖,𝑗 are independent stochastic variables for each EV, which 

are generated based on the modelling parameters in Table 5. The MCS schematic process 

is presented in Fig. 4, specifying the following steps: 

1. Initiate EV modelling parameters listed in Table 3 and Table 4.

2. Based on the probability density functions of stochastic variables, EV charging

demand data is generated by Eqs. (1)-(4). 

3. Get the charging load of each EV based on Eqs. (5)-(6).

4. Accumulate the charging load of each EV. Loop counts until total EV calculation

complete by Eqs. (7)-(8). 
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Plug-in Times

Charging Modes

Daily Mileages

Charging Durations

Daily charging power 
curve of each EV

Aggregated EVs 
Charging Power

Monte-Carlo Simulation EV charging power demand Calculation

 EV uptakes 
 (Table 3, 4)

𝑓𝐷1 𝑥𝑖,𝑗 𝑓𝐷2 𝑥𝑖,𝑗

𝑡𝑐𝑖,𝑗

𝑃
𝑖,𝑗

𝑡

𝑃  𝑡

Probability Density 
Distributions  

(Table 5)

𝑡𝑝𝑖 ,𝑗

𝑀𝐶

Start

End

Determine Charging 
Complete Time 𝑡𝑑𝑖,𝑗

Determine Initial 
battery State of 
EV 𝑆𝑂𝐶𝑖,𝑗

Determine Charging 
Power 𝑃𝐶𝑖,𝑗

Fig. 4 The schematic process of EV charging demands simulation 

5. EV Charging Strategies

According to empirical estimations, private EVs, utility EVs and electric buses have more 

charging flexibility during the night. In contrast, commercial EVs and electric goods 

trucks are essential to be fully charged within the shortest time for the next driving work 

so that they are not participated in charging strategies. 

The flowchart of the proposed EV charging strategies is displayed in Fig. 5. The input 

parameters for each charging strategies are obtained from the MCS. The targeted EV 

fleets selected by the proposed charging strategies are private EVs, utility EVs and 

electric buses when they plug in networks after 𝑇𝑝=18:00 p.m. and plug out before 

𝑇𝑑=next 7:00 a.m. (next day usage constraint). Optimization algorithms aims to achieve 

peak-shaving and valley-filling effect on the typical daily power curve, and at the same 

time, to guarantee selected EV fleets to be fully charged before expected usage time 7:00 

a.m.
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E-Pri: Private EV number
E-Uti: Utility Evs number
E-Bus: Electric Bus number
MCS:Monte Carlo Simulation

Identify 
targeted EVs 

 𝑡𝑝𝑖 ,𝑗  𝑇𝑝 = 1  00 𝑝.𝑚.     

 𝑡𝑑𝑖,𝑗 ≤ 𝑇𝑑 =  𝑒𝑥𝑡   00 𝑎.𝑚.  

Time-delayed 
charging strategy 

Time-delayed and 
restricted power charging 

strategy

Input Parameters 
(MCS in Fig. 4)

Select EV number Nj 
(E-Pri,E-Uti,E-Bus)

i=1 

Check
Charging Constraints

Smart Charging 
Strategy (GA)

Y Y

N

    Update                for 
three charging strategies 

𝑃 𝑡

Y

SOC>0.9

Low Charging Mode
𝑃𝐶𝑖,𝑗

= 4

Y

N

i=i+1

Check Stop 
Criteria

i<=Nj

Y

Start

End

Y

N

N

𝑡 𝑖 ,𝑗 + 𝑡𝑐𝑖,𝑗 ≤ 𝑡𝑑𝑖,𝑗

Fig. 5 Flowchart of EV charging Strategies 
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5.1 Non-smart EV Charging Strategies 

5.1.1 Time-Delayed EV Charging Strategy 

EV charging data is obtained from MCS described in Fig. 4. The selection process of 

specific EV fleets for the charging strategy is presented in Eq. (9): Only private EVs, 

utility EVs and electric buses are considered in the charging strategy. The scheduling 

duration is between 18:00 p.m. and next 7:00 a.m. 

{
𝑡𝑝𝑖,𝑗  1  00 p.m.      𝑗 = {1,2,5} 

𝑡𝑑𝑖,𝑗 ≤ next   00 a.m.  𝑗 = {1,2,5} 
  (9) 

Eq. (10) delays start charging time 𝑡 𝑖,𝑗 by 3 hours after EV plug-in time 𝑡𝑝𝑖,𝑗 and verifies 

charging period constraints to make sure that each EV completes the charging before 𝑡𝑑𝑖,𝑗 

(the next day expected usage time 7:00 a.m.) 

{
𝑡 𝑖,𝑗 = 𝑡𝑝𝑖,𝑗 + 3       𝑗 = {1,2,5} 

𝑡 𝑖,𝑗 + 𝑡𝑐𝑖,𝑗 ≤ 𝑡𝑑𝑖,𝑗      𝑗 = {1,2,5}
    (10) 

5.1.2 Time-Delayed and Restricted Power EV Charging Strategy 

This charging strategy combines the time delayed process and the restricted charging 

power process. The time-delayed process is the same as described above. The additional 

restricted power process is to assign a new charging power 𝑃𝐶𝑖,𝑗
= 4 kW instead of 6.6

kW, to private EV and utility EVs if the initial battery SoC is over 0.9, as described in 

Eq. (11) 
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{
𝑃𝐶𝑖,𝑗

= 4, 𝑓𝑜𝑟 0.9 < 𝑆𝑂𝐶𝑖,𝑗 ≤ 1

𝑃𝐶𝑖,𝑗
= 6.6, 𝑓𝑜𝑟 0.05 < 𝑆𝑂𝐶𝑖,𝑗 ≤ 0.9

        (11) 

5.2 Smart Charging Strategy based on Genetic Algorithm 

The same EV fleets and scheduling duration as previously described are considered in the 

smart charging strategy. The objective function in Eq. (12) is to minimize the peak-valley 

difference on power curves by applying Genetic Algorithm (GA). The decision variable 

in Eq. (13) is the start charging time 𝑡 𝑖,𝑗 of each EV. 

 Objective Function

𝑀𝑖 ∑ 𝑃𝑇.𝑣𝑎𝑟(𝑡) = 𝑃𝑇.𝑚𝑎𝑥(𝑡) − 𝑃𝑇.𝑚𝑖𝑛(𝑡)
𝑇
𝑡=1    (12) 

 Decision Variable

𝑡𝑝𝑖,𝑗 < 𝑡 𝑖,𝑗 ≤ 𝑡𝑑𝑖,𝑗 − 𝑡𝑐𝑖,𝑗    (13) 

 Charging Conditions

In the smart charging strategy, the charging power of each EV is set up based on Eq. (11) 

as well, except for electric buses with the high charging mode. The total charging power 

are calculated according to Eqs. (14) and (15).  

{
𝑃𝐸𝑉𝑖,𝑗

(𝑡) = 𝑃𝐶𝑖,𝑗
, 𝑡 𝑖,𝑗 ≤ 𝑡 ≤ 𝑡 𝑖,𝑗 + 𝑡𝑐𝑖,𝑗

𝑃𝐸𝑉𝑖,𝑗
(𝑡) = 0, 𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑚𝑒

       (14) 

𝑃𝑇(𝑡) = 𝑃𝑏𝑎𝑠𝑒(𝑡) + 𝑃𝐸𝑉(𝑡)  (15) 

where 𝑃𝑏𝑎𝑠𝑒(𝑡) is the original demand-side base load at time t, 𝑡 𝑖,𝑗 is the start charging

time; in the smart charging strategy, the EVs do not have to be recharged once parked. 
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The start charging times is subject to the optimization process. 𝑃𝑇,max/𝑚𝑖𝑛(𝑡) is the total

electrical load at time t. The subscripts mean maximum and minimum values. 

5.3 Genetic Algorithm Implementation 

An appropriate scheduling of the charging times may lead to energy savings, but at the 

same time, it also increases the complexity as it needs to satisfy constraints from a set of 

EV users and the electrical network. The choice of scheduling optimisation algorithms 

depends on several aspects, such as the computation time, the required quality of 

solutions, and the selection of the problem’s constraints or objective functions. 

The use of GA has been discussed in Refs. [53, 71-73] as a well-established heuristic 

approach to compute EV scheduling. In particular, the natural evolution character of GA 

is able to make the process more likely to converge to a global optimum. Therefore, it has 

been proven to be robust optimisation techniques dealing with non-linear and non-convex 

problems in the EV scheduling [71]. Also, GA has the ability to work with search spaces 

by using multiple points of the population and iterative characteristics and to exploit any 

kind of heuristic knowledge from the problem domain, and by doing so, it is competitive 

with the most efficient methods in the scheduling [73]. Given that decision variables used 

in this study are a type of floating numbers, according to the satisfactory performance of 

GA for discrete spaces [53], GA was selected to solve EV scheduling problems in this 

study. 

In this article, three adjustable parameters P, Cr, Mr need to be defined to solve the 

scheduling problem. P is the population size in each generation (alternatively iteration), 
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which directly affects the computation time and convergence rate. In genetic operators, 

Cr and Mr are crossover rate and mutation rate, respectively, to enable GA to enhance 

search capability. The adjustment of P, Cr and Mr tries to remove the undesirable 

response and to obtain more optimal solutions at the given computation time step. A 

sensitivity analysis based on the empirical method is conducted to determine values of P, 

Cr and Mr, aiming to achieve lowest mean fitness of the obtained results in each 

generation, in other words, to achieve the lowest power variation on the load curve, as 

displayed in Fig. 9b. With a population size of 10, cases 1-3 in Fig. 6 demonstrate that 

Cr=0.8 and Mr=0.1 obtain the highest computing efficiency. The purpose of cases 4-6 in 

Fig. 6 is to find an appropriate value of population size (P=300) to obtain the best solution 

set at the given computation time step, which is considered as 3 minutes for 2018 EV 

uptake. 

Fig. 6 The average fitness of the population in the parameter tuning 
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The GA implementation begins with the encoding, in which EV charging data specified 

in Table 5 is used as constraints (𝑡𝑝𝑖,𝑗, 𝑡𝑑𝑖,𝑗) to determine the feasible solution space of 

the population. The decision variable 𝑡 𝑖,𝑗  for a set of EVs are encoded into a 

chromosome of parent generation. The population size (P=300) in each generation is 

composed of 300 chromosomes. The chromosome of offspring generation inherits part of 

genes from the parent generation while also receives some modified part of gene from 

crossover and mutation operator, which can be described as the global searching 

capability for the decision variable in Eq. (13). A proper fitness function described in Eq. 

(12) is designed to search a potential set of 𝑡 𝑖,𝑗 to give a lowest grid load variance, at the 

same time, to guarantee selected EV fleets to be fully charged before expected usage time 

7:00 a.m. The loop iteration will repeat again to produce new generations until iteration 

converges to stopping criteria. 

5.4 Case Study 

A case study is utilized to evaluate the effectiveness of the proposed charging strategies. 

The Auckland real-time base load and demand-side wholesale electricity price from [74] 

are used in the simulation. The NZ 2030 lower case EV uptake is considered in the 

Auckland city case study. There will be 0.3 million EVs running on the road, 49.9% of 

which are in Auckland District. The composition ratio of five EV fleets is based on the 

current statistical data introduced in Fig. 2. The total charging cost of EV could be 

estimated based on Eq. (16).  

𝑇𝑐𝑜 𝑡 = 𝑊 𝑝𝑟𝑖𝑐𝑒(𝑡) × 𝑃𝐸𝑉(𝑡)      (16) 

where 𝑊 𝑝𝑟𝑖𝑐𝑒(𝑡) is demand side wholesale electricity price. 
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5.5 Applicability 

The modelling of EV charging demand could be either on-line or off-line. In the off-line 

system, the EV travel and charging patterns were extracted from summary statistics, as 

the real world data about EV use is not publicly available. The variability of EV travel 

and charging patterns could be redefined in Table 5 to access short-term EV charging 

demand if on-line charging events data can be obtained. The modelling process may 

appear suitable for long-term planning, such as planning of power generation capacity, 

planning of network reinforcement. 

The proposed strategies can be potentially applied for on-line smart charging systems. 

Fig. 7 displays a schematic structure of the on-line smart EV charging system. Start 

charging times 𝑡 𝑖,𝑗  of EVs are considered as decision variables in the optimisation 

process. The data communication between EV chargers and local servers could be 

realized by either wire or wireless technology, such as internet of things and the power 

line communication. Overall, the operation of the system is based on the event-driven 

architecture. The main event in this system is the occurrence of EVs plug-in and plug-

out. In this methodology, EV users, EV chargers, local servers and main server should 

perform a set of tasks, as shown in the following process: 

 Every EV charger transmits battery parameters and requests a start charging time for

the specific parking duration and the expected battery SoC set by the user.

 The local server acts as a data aggregator to collect all EV charging requests within

its domain at each computation time step (3 minutes).
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 The main server executes the optimal charging algorithm taking into account all EV

chargers’ data and predicted base loads at the current time step. The scheduled start

charging times 𝑡 𝑖,𝑗 are sent back to all chargers through local servers.

 The requested EV chargers update the charging schedule and execute it.

 Any charging process is interrupted before the estimated plug-out time. EV chargers

will send a disconnection request to the local server.

 The main server will receive interrupted charging signals and update new EV

charging loads for scheduling in the next time slot.

EV charging 
Loads

Residential 
Loads

Main Server

IoT/PLC
Communication

Communication
TCP/IP

EV charging requests in each time step

Charging Scheduling for EVs in each time step

Local Server

Local Server Predicted Base Loads

Grid

EV Chargers

Fig. 7 Schematic structure of an on-line smart EV charging system 
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6. Results and Discussion

6.1 Free EV Charging Power Demand 

The 2018 EV uptake defined in Table 4 have been applied in MCS to generate a charging 

demand that is closer to the real-case in NZ. The temporal distribution of the uncontrolled 

EV’s charging demand is conducted in the probabilistic model as depicted in Fig. 8a. The 

simulation results display private EVs and utility EVs are mainly recharged in early hours 

during on-work and off-work periods. Due to longer daily travel distances, the electric 

goods trucks, commercial EVs and electric buses have lower initial battery SoC, 

represented by blue, green and pink dots.  

After the EV charging data is obtained, the total daily EV charging power 𝑃𝐸𝑉(𝑡) could

be calculated based on the flowchart described in Fig. 4. By far the greatest charging 

demand in Fig. 9a is from private EVs, contributing roughly 14MW rapid growth on the 

black power curve between 18:00 a.m. and 24:00 p.m. The uncontrolled EV charging 

scenario gives rise to the overall charging demand at early night with a peak power of 19 

MW, which is almost the same time as when households turn their heating, cooking and 

other appliances on. 

The charging period of private EVs, utility EVs and electric buses could be further 

delayed to avoid peak hours as their charging process almost ends up before 2:00 a.m. 

when it is still too early for the next day’s usage.  
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6.2 Coordinated EV Charging Power Demand 

The free EV charging load profiles in Fig. 8a and Fig. 9a reveals that private EVs and 

utility EVs are the primary sources contributing to the rapid power raise due to higher 

penetrations. As introduced in Section 5, three charging strategies are designed to 

coordinate selected EV fleets when plugged-in during 18:00 p.m.-next 7:00 a.m. without 

affecting EV use in the next day. Fig. 10 presents a comparison between coordinated EV 

charging load curves and original EV charging load curves, where the peak power point 

was decreased from 19 MW to 12.5 MW and finally levelled out at 10.9 MW in the smart 

charging strategy. Therefore, it is apparent from Fig. 8b and Fig. 9b that the concentrated 

charging loads in peak hours were delayed to span on off-peak periods to reduce load 

variance. 

(a)       (b) 

Fig. 8 (a) Scatter plot between plug-in time and initial SoC in 2018 NZ free charging 

scenario (b) Scatter plot between plug-in time and initial SoC in 2018 NZ smart 

charging scenario 
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(a)                                                             (b) 

Fig. 9 (a) Indicated NZ EV charging profile in 2018 free charging scenario 

(b) Indicated NZ EV charging profile in 2018 smart charging scenario

Fig. 10 Indicated NZ EV charging load profile in 2018 with three charging strategies 

6.3 Management of EV Charging Demand: Case Study 

Currently, there are just 3499 EVs in Auckland and may not lead to a distinct increase in 

the daily power load profile. Therefore, the 2030 lower case EV uptake is adopted in the 

case study as detailed in Section 5.4. 
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Fig. 11 displays EV deployment impacts on the Auckland electrical load curve 

(22/05/2018). From the free charging load curve (red dotted), we can see that the peak 

charging demand coincides with peak hours of the day, leading to a peak power of nearly 

1400 MW. Comparing charging load curves in three charging strategies, it is found that 

there is no noticeable load spike as the peak charging demand is delayed to off-peak 

periods. Consequently, proposed non-smart and smart charging strategies demonstrate a 

positive correction on the electricity load profile regarding peak-shaving and valley-

filling influences. 

The further statistical analysis shown in Fig. 12 demonstrates effectiveness levels of three 

charging strategies. The smart charging strategy achieves the best performance to flatten 

the power curve with a power variance range between 788.55 MW and 1173.83 MW. 

With the extra EV burden, various power curves have similar mean values nearly 990 

MW, which could be explained by the electrical energy consumptions from the same EV 

uptake. The analysis results are summarised in Table 6. In 2030 EV lower case, the 

growth rate of Auckland peak loads will reach 31% without proper management of the 

EV charging demands. Whereas, by applying the proposed charging strategies, the growth 

rate can be restricted to merely 6%~9%. The standard deviation of the electrical loads 

with integration of EVs decreases from 234 MW to 128 MW. The charging cost savings 

due to the lower electricity price after midnight gives an economic incentive to EV owner 

to give up direct control of the charging process.  
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Fig. 11 Indicated EV charging load profile with three charging strategies 

Fig. 12 Box plot of indicated EV charging load profile in 2030 with three charging 

strategies 
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Table 6 Charging indexes of large-scale EVs deployment in Auckland power system 

Auckland 

Electricity 

Load in 

2018 

Auckland 2030 Lower Case EV charging Load 

Free 

charging 

Delayed 

charging 

strategy 

Delayed and 

restricted 

power 

charging 

strategy 

Smart 

charging 

strategy 

Peak Load(kW) 1086 1423 1179 1152 1173 

Peak Load-Growth 

Rate 
31% 9% 6% 8% 

Load Standard 

Deviation(kW) 
175 234 149 136 128 

Load Standard 

Deviation Change 

Rate 

34% -15% -22% -27%

𝑇𝑐𝑜 𝑡 (Thousands 

NSD$) 
118 109 107 113 

6.4 Future EV Deployment Impacts 

Fig. 13 Indicated Charging load profile of future EV uptakes 

Fig. 13 exhibits the indicated 24-hour base load profile with future EV uptakes specified 

in Table 4. Without consideration of the base load growth, the lack of demand-side 
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management on EVs may challenge NZ national power system regarding power 

generation, transmission and distribution equipment, leading to peak loads from 6024MW 

to 10464MW. It may exceed New Zealand’s total installed generation capacity of 

9281MW [75]. 

7. Conclusions and future research 

In this paper, the uncertainty problems in planning of distribution networks with 

integration of EVs have been addressed. The estimation of aggregated EV charging loads 

based on the elaborated multivariate probabilistic model is implemented in MCS, taking 

into account several factors that may affect the loading profiles. EV charging and driving 

patterns are considered in the modelling in order to present the EV charging demand 

closer to a realistic scenario, in which the randomness and heterogeneous characteristics 

have been detailed by the proposed methodology. Moreover, the evaluation of EV 

charging demand at the national level reveals the potential shortage of generation installed 

capacity in NZ based on future EV uptakes. The case study demonstrates the peak 

charging demands as a result from the coincidence of EV charging loads and residential 

loads has been mitigated by the proposed coordinated charging strategies, in which 

targeted EV fleets were rescheduled to flatten the load curve, so as to postpone the 

investment of network reinforcement. 

This study has shown the EV modelling technique used for the cross-sector analysis 

(transport and energy sectors) regarding the temporal distribution of charging behaviours, 

and charging strategies. However, more research and analysis are required to justify the 
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adoption of EVs on the spatial distribution in electrical networks, and on economic 

incentives in demand-side response. Future works will explore price and non-price 

incentives for behavioural change in the design of EV charging strategies under a smart 

distribution network environment. Extending the smart charging strategy into temporal, 

spatial and economic considerations in the distribution networks could be a focal spot for 

the analyses of integrated transport and power systems at the tactical and operational 

level. 



58 

Chapter 3  Manuscript 2 

This manuscript further develops the scheduling strategy that runs on an online 

management system. The online system is developed in the rolling horizon scheduling 

framework with considerations of EV availability, power flow constraints and 

profitability of charging service. All the information in the rolling horizon scheduling 

strategy will be updated, calculated and partially forecasted at each time interval until the 

end of the day. From the economic operation view, the profitable charging problem is 

formulated as an online optimisation model to identify the economic solution that satisfies 

both EV users and DNOs. In the competitive energy market, this active management 

scheme is proposed to solve the economic integration of the aggregated EVs in 

distribution networks. 

The manuscript was published in the journal of ‘Applied Energy’ with the title: “A rolling 

horizon scheduling of aggregated electric vehicles charging under the electricity 

exchange market". 
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Abstract 

The uncertainty of plug-in electric vehicle (EV) charging behaviour is a crucial factor that 

not only influences the peak power demand in distribution networks, but also the tariff 

plans of EV charging service. The uncertain upstream electricity price considerably 

complicates the issue regarding how to achieve specific economic goals for distribution 

network operators (DNOs) while guaranteeing EV users’ interest. A rolling horizon 

scheduling approach based on Genetic Algorithm (GA) is proposed in this paper to 

provide a win-win strategy for both DNOs and EV users. It deals with the online optimal 

scheduling problem of aggregated EVs in the energy exchange market. The objective of 

the scheduling strategy is to maximise DNOs’ profit margin by charging EVs in the low 

price time intervals as well as shifting peak charging loads. The operational constraints 

of EVs’ availability and electricity bidding are all considered in the time rolling horizon 

framework, meaning all this information will be updated, calculated and partially 

forecasted at each time interval until the end of the day. A case study is carried out with 

a 33-node distribution network to verify the effectiveness of the proposed scheduling 

strategy. In detail, specific tariff plans can be determined toward possible values of 

uncertain market price to satisfy utilities’ economic targets. In this way, both individuals 

file:///C:/Users/tlie/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/PDT5L86C/Jun.Su@aut.ac.nz
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and energy providers that participate in the energy market can benefit from the proposed 

rolling horizon strategy and keep the uncertainty under control. 

Keywords: 

Electric vehicle, online scheduling algorithm, win-win strategy, rolling horizon, genetic 

algorithm 

1. Introduction

In response to incentives on carbon emission reductions, the general goal of governments 

around the world is to encourage the deployment of electric vehicles (EVs) in the densely 

populated area. The trending of electrification in the vehicle manufacturer is considered 

a sustainable and environmentally friendly alternative to conventional vehicles [76]. For 

instance, the New Zealand (NZ) emission reduction target under the Paris Agreement 

aimed to reduce Green House Gas (GHG) emissions by 30 per cent below 2005 levels by 

2030. Under this background, the NZ government announced an EV program with a 

short-term goal of reaching 64,000 EVs on the road by the end of 2020 [77]. In most 

countries, the current grids with existing infrastructure cannot ensure an economic and 

stable operation with the increasing penetrations of EVs. It has been noticed that 

uncoordinated EV charging behaviours are quite likely to result in inefficient operations 

in the power system, such as elevated peak loads, the power quality degradation and 

increased energy losses [24, 78]. Various scheduling strategies have attracted many 

attentions and have been thoroughly discussed in recent years, aiming to adopt more 

intermittent and random electricity prosumers like EVs and renewable energy [79]. 
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Implementing a cost-effective upgrade on power utility infrastructure normally comes 

with an economic solution that benefits stakeholders participated in the EV integration, 

such as charging operators, EV customers and distribution network operators (DNOs). It 

involves extra investments in charging facilities and power distribution equipment. In this 

situation, it is necessary to investigate economic scheduling strategies before reaching a 

wide deployment of EVs [80]. The economic EV integration may refer to an optimal 

scheduling problem in the energy trade market. Under the competitive market 

environment, the EV charging tariff is the key factor to affect the charging demand as 

high demand periods normally accompany with high costs. The pricing mechanism of the 

charging tariffs potentially shifts the extra EV charging demands into the load-valley 

period to minimise the network’s loading level. However, the challenge is to make a 

trade-off situation in which proposed charging tariff can achieve appropriate load-shifting 

effectiveness for DNOs while satisfying economic interests for EV owners. The tariff 

plan means that EV users pay different rates for power. The tariff price is normally higher 

than the wholesale electricity price to gain appropriate profits for DNOs. [81, 82]. In order 

to achieve the economic EV integration, DNOs may need to determine the optimal tariff 

plan by resorting to appropriate strategies, which implies the necessity of online optimal 

scheduling for EVs [83]. 

As discussed in [84], the online charging scheduling problem was naturally formulated 

as finite-horizon dynamic programming with continuous state space and action space. It 

was referred to the general model predictive control (MPC) to generate a near-optimal 

solution for exogenous random variables in each time stages. Ideally, the charging 
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demand can be flattened as much as possible if the future information about the plug-in 

event is known in advance. In practice, the charging station can only know the plug-in 

time of EVs that have been arrived. Fortunately, statistical information on plug-in events 

can be estimated from daily driving mileage and charging behaviour analysis [85]. 

However, the problem is to decide the proper charging tariff to manage the EV charging 

demand. With the uncertain upstream electricity pricing, the risk-involved participation 

urges charging operators or DNOs to predict future energy price to carry out profitable 

scheduling [86]. To overcome this issue, there is a persistent need to adopt partially 

forecasted price information in the design of online EV scheduling algorithms [87]. In 

this paper, the proposed online scheduling strategy, on one hand, deals with EV charging 

scheduling within certain time interval by deciding EV’s start charging time for the sake 

of lower charging cost; on the other hand, helps DNOs to develop a profitable charging 

tariff by partially forecasting wholesale electricity prices. It would considerably reduce 

risks of electricity auctions for market players, yet, offering relatively lower charging 

costs to EV users. 

Numerous algorithms were found in centralised, decentralised or agent-based charging 

strategies that manage EV charging processes to achieve optimised targets [88]. 

Comparing to the centralised strategy, the agent-based or decentralised strategies offer 

great flexibility in the multi-targets control, and good computation and convergence 

capabilities [89, 90]. Several optimisation algorithms such as genetic algorithm (GA) 

[91], particle swarm optimisation [92], water filling algorithm [93] were considered 

robust techniques in the EV scheduling strategies to cater for complex power system 
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constraints [94]. An overview of the research pathway among these latest research works 

is briefly described in Fig. 1 , regarding the integration of EVs into distribution networks. 

The dynamic problem has been discussed in many studies. An interaction model in [95] 

was proposed to solve the unbalances of the charging demand and load deviation with 

considerations of time-of-use (TOU) pricing. The study aims to find mutually beneficial 

charging scheduling to satisfy the different interests of the system operators and the EV 

users. However, it is under the assumption that all EV plug-in events and tariff are known 

in all scenarios. In practical, the assumption is not convinced as it is not realistic to obtain 

this information in advance. An online scheduling study can be found in [86], in which 

the EV charging process was coordinated with renewable source to minimize daily market 

cost with uncertain electricity price. In this way, the strategy is developed to satisfy 

economic goals of the aggregator while ignoring the EV users’ interest. A decentralised 

method on scheduling of EV charging loads was carried out in [57] to mitigate over-

current situation while reducing the charging cost. It should be noted that, in this research, 

there is no guarantee that all EV would be fully charged because the priority of the 

charging strategy is to adjust the charging rates of PHEV chargers to prevent violation of 

the network constraints. 

Afterwards, the prediction of data knowledge was adopted in the online charging 

scheduling as it plays a dominant role in improving the system practical performance 

[87]. As proposed in [96], the data knowledge such as spot/intraday prices could be 

forecasted by an Extreme Learning Machine (ELM). The correlation between electricity 

price and EV charging demand has been investigated in [83] by carrying out price-
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responsive charging control, in which the online scheduling was developed to minimise 

charging costs for EV users based on the known tariffs. Apparently, the design of tariff is 

the key point to successfully implement economic EV scheduling. With respect to 

economic EV integration, some authors devoted to minimize the operating cost [97] while 

others intend to maximize the operational profit [98]. By only considering the unilateral 

interest of either DNOs or EV users, the charging tariff may result in the failure of load 

shifting, thereby posing a threat to profitability of charging service. Therefore, the 

repetitive iterations over times between the charging operators and PEV users are 

necessary to reach the equilibrium for satisfying the interests of both of them [88]. It is 

expected that there is a point, wherein, both the DNOs (relieving loads) and the EV users 

(saving costs) are satisfied with the mutually beneficial arrangements. In order to achieve 

mutual benefits, [99] proposed a rolling multi-period optimisation to control EV charging 

processes. The basic idea of rolling horizon scheduling is to split the whole time horizon 

and operation problem into multiple slots which are solved in sequence as different sub-

problems [100]. These rolling horizon strategies had ideas in common that they acquire 

EV charging data over a fixed time step in the past and make charging decisions based 

on forecasting electrical price or other required information [80]. During the execution of 

the algorithm, the knowledge of EV charging data and solutions were updated in a moving 

horizon pattern. In this field, [101] developed a rolling horizon optimisation framework 

for the simultaneous energy supply and demand planning in microgrids consisting of 

solar, wind power systems and storage units. The duration of the energy consumption 

tasks was updated at each time-step to maximise profit. The rolling EV scheduling 
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strategy was proposed in [102] to suppress the known 24-hour load profile. Another 

similar work can be found in [84], model predictive control (MPC) based approach was 

suggested to verify the difference between near-optimal solutions and the optimal 

solutions.
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In the current literature, the EV management strategies are classified in the integration of 

prediction, operational planning and operation control. The research work primarily 

focused on the effectiveness of optimization methods that are deployed for EV integration 

with pre-determined charging data. Few papers elaborated the solutions with uncertain 

charging data and examined their feasibilities in the energy trade market. As such, this 

paper aims to build up an online economic scheduling strategy, which can be used to 

coordinate energy trading between DNOs and EVs for the win-win ecosystem. The main 

contributions of this article can be summarised as follows: 

 Both EVs and DNOs that are participated in the energy market can benefit from the

proposed rolling horizon scheduling strategy by satisfying expected cost-effective

goals.

 Specific tariff plans can be determined toward possible values in a rolling prediction

basis to obtain load-shifting effect for DNOs and the lower charging cost for EV users.

 In the rolling horizon framework, Genetic Algorithm (GA) is integrated into

scheduling strategy to solve optimisation problems that are derived from EV

availability, predicted tariff plan and voltage profile at each time interval until the end

of the day.

The rest of this paper is organised as follows. Section 2 describes the roll-scheduling 

conceptual framework and the major existing challenge for its practical implementation. 

Then, the proposed optimisation model, in terms of the mathematical model and 

computation flow chart, is presented in Section 3. Next, Section 4 mainly introduces the 
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application of the rolling horizon scheduling strategy into a case study. Then, the results 

and discussion are presented in Section 5, and the paper is concluded in Section 6. 

2. Problem Statement

The objective of the proposed rolling horizon scheduling is to make sure that the charging 

service can be carried out with a certain profit margin in the presence of uncertain 

wholesale electricity prices and random EV charging behaviours. The rolling horizon 

method utilises Mixed Integer Linear Programming (MILP) for optimising the EV 

charging schedule in the distribution network. The variable sets used for model 

characterisation need to be introduced first because these sets represent base framework 

suitability for the implementation in the modelling language. The set 𝑇 of hours of the 

day: 𝑇 = {1, 2, 3, 4, … , 96}  with the subscript 𝑡  indicates the variable or parameter 

corresponding to the 𝑡  period (15 mins) of the day. The set  𝐾  of 320 EVs fleet: 

𝐾 = {1, 2, 3, 4, … , 320}  with the superscript 𝑘  indicates the variable or parameter 

corresponding to the EV. The following parameters have different values for each time 

period 𝑡 being affected by 𝑘 EV charging events:  

- 𝐶𝑡: charging fees of the tariff in time period 𝑡, with 𝑡 ∈ 𝑇.

- 𝐶𝑃𝑡: wholesale electricity prices in time period 𝑡, with 𝑡 ∈ 𝑇.

- 𝐷𝑘: daily travel distance of 𝑘 EV at time period, with 𝑘 ∈ 𝐾.

- 𝐻𝑡: future 8-hour rolling horizon period of the day in time period 𝑡, with 𝑡 ∈ 𝑇, that is

represented by the vector {𝑡, 𝑡 + 1, 𝑡 + 2, 𝑡 + 3,… , 𝑡 + 32} 

- 𝑀𝐶𝑡: pre-set 8-hour charging fees of the tariff in time period 𝑡 to 𝑡+32, with 𝑡 ∈ 𝑇, that

is represented by the vector {𝐶𝑡+1, 𝐶𝑡+2, 𝐶𝑡+3, 𝐶𝑡+4, … , 𝐶𝑡+32}
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- 𝑀𝐶𝑃𝑡: predicted 8-hour wholesale electricity prices set in time period 𝑡 to 𝑡+32, that is

represented by the vector {𝐶𝑃𝑡+1, 𝐶𝑃𝑡+2, 𝐶𝑃𝑡+3, 𝐶𝑃𝑡+4, … , 𝐶𝑃𝑡+32}, with 𝑡 ∈ 𝑇.

- 𝜎𝑡: the sum of 𝑘 EVs plug in time period 𝑡, with 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾.

- 𝑃𝑡
𝑘: charging power of 𝑘 EV at time period, with 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾.

- ∑ 𝑃𝑡
𝑘𝜎𝑡

𝑘=1 : aggregated EVs charging power in time period 𝑡, with 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇. 

- 𝑡𝑐
𝑘: charging duration of 𝑘 EV, with 𝑘 ∈ 𝐾.

- 𝑡𝑖𝑛
𝑘 : plug-in time of 𝑘 EV in time period 𝑡, with 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇. 

- 𝑡𝑜𝑢𝑡
𝑘 : plug-out time (charging completion) of 𝑘 EV in time period 𝑡, with 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇.

- 𝑡𝑠
𝑘: start charging time of 𝑘 EV in time period 𝑡, with 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇.

- 𝑡𝑝𝑎𝑟𝑘
𝑘 : parking duration of 𝑘 EV in time period 𝑡, with 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇. 

- 𝑆𝑜𝐶𝑘: battery state of charge 𝑘 EV at time period 𝑡𝑖𝑛
𝑘 , with 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇. 

Due to the stochastic characteristics, a high degree of uncertainty is related to when and 

how many EVs start charging. The modelling of EV charging demand is done by the 

Monte-Carlo Simulation (MCS) that was previously developed by authors in [85]. In the 

MCS, 𝑡𝑖𝑛
𝑘 , 𝑡𝑝𝑎𝑟𝑘

𝑘 , 𝐷𝑘  and 𝑆𝑜𝐶𝑘  are independent stochastic variables for 𝑘𝑡ℎ  EV, which

are generated based on the modelling parameters in Table 3. Then, the aggregated EVs 

charging power ∑ 𝑃𝑡
𝑘𝜎𝑡

𝑘=1  in time interval 𝑡 can be calculated. 

In this work, the wholesale electricity price 𝑀𝐶𝑃𝑡 is considered as future knowledge (FK) 

that is generated from ELM. In the energy trade market, the DNOs would announce an 

optimised tariff 𝐶𝑡 in advance to sell power to EV users, then, carry out the EV scheduling 

based on predicted wholesale electricity price 𝐶𝑃𝑡 with a specified time horizon vector 

𝐻𝑡. The profit margin in the rolling horizon is represented by the price difference between 
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the tariff and upstream electricity price, which is represented by 𝑀𝐶𝑡 − 𝑀𝐶𝑃𝑡 . Once 

above charging data is obtained in MCS, the DNOs aims to shift the EV charging loads 

to the period when the future profit margin is as high as possible. However, the EV users 

are only willing to attend the scheduling if charging cost will not get higher. This becomes 

a competing situation in which the rolling horizon scheduling is required to generate a 

win-win solution for all participants. In this optimised problem, the decision variable is 

start charging time 𝑡𝑠
𝑘 for 𝑘 EV. It should satisfy the constraints that every EV should be

fully charged to 𝑆𝑜𝐶𝑘=0.95 at the plug-out time 𝑡𝑜𝑢𝑡
𝑘 . With the time rolling forward, all

these variables need to be updated and imported into the scheduling algorithm to generate 

an optimised solution for time interval 𝑡. Then, the resultant charging power ∑ 𝑃𝑡
𝑘𝜎𝑡

𝑘=1

could happen in any busbar 𝑖 of a distribution network model to verify the proper tariff 

that brings the most obvious load-shifting effect.  

As mentioned in [103, 104], MPC was known as an established technique for dealing 

with different complex control problems under uncertainty. In this paper, MPC is used to 

solve an online EV scheduling problem that provides the optimal decisions about the start 

charging time 𝑡𝑠
𝑘 of deferrable EV charging loads, whilst minimising the energy trading

cost of the distribution network in the given rolling horizon. As specified in Table 1, at 

time 𝑡 the online scheduling strategy is computed for a relatively short future time horizon 

𝐻𝑡. The forward-looking objective function (14) is repetitively executed at subsequent

time slots 𝑡 + 1, 𝑡 + 2,… , ∈ 𝑇 , and every time the variables of the first time step are 

implemented as the optimal decision variables in accordance with the rolling horizon 

concept. 
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Table 1 Computation flowchart of rolling horizon scheduling strategy 

Rolling horizon scheduling strategy 

Predefined tariff inputs: 𝑀𝐶𝑡 

EV fleet charging data from MCS: {𝑡𝑖𝑛
𝑘 , 𝑡𝑜𝑢𝑡

𝑘 , 𝑆𝑜𝐶𝑘 , 𝑃𝑡
𝑘, 𝐷𝑘}

Procedure: 

1 Set 𝑡 ← 0 

2 iterate 

3      Get forecast data vector 𝑀𝐶𝑃𝑡 based on ELM 

4      Update user constraints parameters {𝑡𝑖𝑛
𝑘 , 𝑡𝑜𝑢𝑡

𝑘 , 𝑆𝑜𝐶𝑘 , 𝑃𝑘 , 𝐷𝑘}, 𝑘 ∈ 𝜎𝑡

5      Solve the optimisation problem for 𝐻𝑡 by using GA 

6      apply solution 𝑡𝑠
𝑘, 𝑘 ∈ 𝜎𝑡

7      Set 𝑡 ← 𝑡 + 1 

Outputs: ∑ 𝑃𝑡+1
𝑘𝜎𝑡+1

𝑘=1

The rolling horizon strategy consists of three sets of knowledge at time 𝑡, constructing 

the basic rolling horizontal framework as shown in Fig. 2 . The Future knowledge (𝐹𝐾) 

represents the predicted 8-hour prices of the wholesale electricity 𝑀𝐶𝑃𝑡 , and the past 

knowledge (𝑃𝐾 ) and solution knowledge (𝑆𝐾)  are referred to charging information 

𝑡𝑖𝑛
𝑘 , 𝑡𝑜𝑢𝑡

𝑘 , 𝑆𝑜𝐶𝑘 , 𝑃𝑡
𝑘 , 𝐷𝑘 of kth EV and the optimised start charging time 𝑡𝑠

𝑘 in time interval

𝑡, respectively. These three sets of knowledge are included in the time rolling horizon 

with a time step 𝑡 of 15 minutes. In such way, uncertain parameters, such as the external 

variability in EV charging requests 𝜎𝑡 and wholesale electricity prices 𝑀𝐶𝑃𝑡, could be 

updated with the same pace rolling horizon 𝐻𝑡.  

The operation of the online charging system is based on event-driven architecture (see 

Fig. 3 ). The main event in this system is the occurrence of EVs plug-in and plug-out at 

time 𝑡. The rolling process is characterised in terms of the following step:  
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(i) A period of T (24 hours) is divided into 96 of equal-size time intervals 𝑡 ∈ 𝑇. 

Also, the three sets of knowledge. 

(ii) Once an EV plugged in a charger during time slot ∆𝑡 = 𝑡2 − 𝑡1, the EV owner 

will be requested to provide total parking duration 𝑡𝑝𝑎𝑟𝑘
𝑘 . Then, the EV charger 

transmits battery 𝑆𝑜𝐶𝑘  and requests a start charging time 𝑡𝑠
𝑘  for charging 

duration from 𝑡𝑖𝑛
𝑘  to 𝑡𝑜𝑢𝑡

𝑘 . 

(iii) As displayed in Fig. 3 , the local server acts as an EV aggregator to collect 

𝑃𝐾 within its domain at each time slot ∆𝑡. 

(iv) The prediction of future 8-hours wholesale electricity prices 𝑀𝐶𝑃𝑡 needs to be 

done during the current time slot ∆𝑡 to produce 𝐹𝐾. Normally, the time length 

of the rolling horizon 𝐻𝑡 needs to be defined the same length as 𝐹𝐾’s to keep 

synchronisation. 

(v) Meanwhile, the load-flow and economic calculations need to be carried out to 

evaluate scheduling effectiveness. 

(vi) The main server executes the optimal charging strategy based on GA, 

generating 𝑆𝐾, as shown in Fig. 2 . 
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Fig. 3 Schematic structure of an online smart EV charging system [85] 

3. Mathematical formulation

3.1 Modelling of EVs charging loads 

The modelling of EV charging demand was derived from our previous work [85], in 

which a temporal EV charging demand is generated based on 

the multivariate probabilistic model. The developed methodology based on MCS is 

utilised to generate results close to the real use-cases daily power demand, which can be 

https://www.sciencedirect.com/topics/mathematics/multivariate
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further utilised in the analysis of EV charging strategies. In this paper, EV model is 

parameterised according to Nissan-Leaf specifications, as presented in Table 2.  

Table 2 Charging parameters of EV models 

Manufactur

ers 

Model 

Battery 

Capacity 

(kWh, 

𝐶𝑎𝑝𝑘)

Charging Power 

(kW, 𝑃𝑘)
Full 

endurance 

mileage 

(km, 𝐷) 
Slow 

Charging 

Quick 

Chargin

g 

Nissan-Leaf 24/40 6.6 11 150/250 

The household travel survey in [62] indicated that the daily travel distance of private EVs 

was 23.2 km on average. Therefore, for private EVs, the mean value 𝜇𝐷 and deviation 

value 𝜎𝐷 in log-normal distribution function are assumed to be 3.2 and 0.92, respectively, 

which are applied to Eq. (1) [85]. 

𝑓𝐷(𝐷𝑘) =
1

𝜎𝐷√2𝜋
𝑒𝑥𝑝 [−

(𝑙𝑜𝑔𝐷𝑘−𝜇𝐷)2

2𝜎𝐷
2 ] , 𝐷𝑘 > 0     (1)

𝑆𝑂𝐶𝑘 = 1− 𝐷𝑘

𝐷
, 0.1 ≤ 𝐷𝑘

𝐷
≤ 0.95            (2)

where 𝐷𝑘  represents the daily travel distance of 𝑘𝑡ℎ  EV, which is a random variable

derived from Eq. (1). All vehicles need to be fully charged before the next journey starts. 

Given the full endurance mileage 𝐷𝑘, the initial state of charge 𝑆𝑜𝐶𝑘 can be estimated by

Eq. (2) [85]. 

For 𝑘𝑡ℎ EV, plug-in time 𝑡𝑖𝑛
𝑘 , plug-out time 𝑡𝑜𝑢𝑡

𝑘  and state-of-charge 𝑆𝑜𝐶𝑘 of battery are

independent stochastic variables, which are generated from authors’ previous work [85]. 

As real EV charging data is not publicly available, a multivariate probabilistic model is 

developed in [85] to estimate aggregated EVs charging loads with the consideration of 

randomness and heterogeneity based on transportation statistic data. As displayed in 

Table 3, it is assumed that 80% of private EVs would plug in the chargers from 07:00 to 
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09:00 and from 16:00 to 18:00; the remaining 20% will be recharged evenly across 

working hours from 09:00 to 24:00. In Eq. (3), it is assumed that each EV immediately 

starts charging once 𝑡𝑠
𝑘 is assigned. Charging power 𝑃𝑘 keeps constant until the charging

process completes at time 𝑡𝑜𝑢𝑡
𝑘 . The 𝑃𝑡

𝑘 denotes the power charging demand of 𝑘𝑡ℎ EV at

time slot 𝑡 aims to make sure charge completion (SoC=0.98) for all EVs, as described in 

Eq. (4). 

{
𝑃𝑡

𝑘 = 𝑃𝑘,   𝑡𝑠
𝑘 ≤ 𝑡 ≤ 𝑡𝑜𝑢𝑡

𝑘

𝑃𝑡
𝑘 = 0,      𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑚𝑒

  (3) 

𝑡𝑐
𝑘 = (0.95 − 𝑆𝑜𝐶𝑘) ×

𝐶𝑎𝑝𝑘

𝑃𝑘        (4) 

The parking duration 𝑡𝑝𝑎𝑟𝑘
𝑘 of 𝑘𝑡ℎ EV is defined by a random function in Eq. (5). The

parking duration 𝑡𝑝𝑎𝑟𝑘
𝑘  is rounded to the nearest integer towards infinity in the calculation. 

The sum of EV charging requests in the time slot is indicated by 𝜎(𝑡). The decision 

variable for start charging time 𝑡𝑠
𝑘 is defined in Eq. (6). Aggregated EV charging loads in

each time step 𝑡 can be expressed as ∑ 𝑃𝑡
𝑘𝜎𝑡

𝑘=1 . 

𝑡𝑝𝑎𝑟𝑘
𝑘 = 𝑡𝑖𝑛

𝑘 + + 𝑟𝑎 𝑑(−1,1), 𝑡𝑝𝑎𝑟𝑘
𝑘 ∈ 𝑁           (5) 

𝑡𝑖𝑛
𝑘 ≤ 𝑡𝑠

𝑘 ≤ 𝑡𝑝𝑎𝑟𝑘
𝑘 -𝑡𝑐

𝑘   (6) 

Table 3 Charging Parameters of Private EVs for MCS [85] 

Plug-in 

Period 

Charging Power       

(kW, 𝑃𝑘)
Probability 

Initial 𝑆𝑜𝐶𝑘

Distribution 

Plug-in time 

𝑡𝑖𝑛
𝑘

07:00~09:00 6.6 40% 

Equation (1) based on 

log LogN (3.2,0.92) 

N(8,0.5) 

16:00~18:00 6.6 40% N(17,1) 

09:00~24:00 11 20% 
Even 

Distribution 
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3.2 Power Flow Calculation 

Once the EV charging loads ∑ 𝑃𝑡
𝑘𝜎𝑡

𝑘=1  is obtained, it could be placed at any busbar 𝑖 of a 

distribution network model, in addition to the existing load power 𝑃𝐿𝑖, 𝑄𝐿𝑖 and generation 

power 𝑃𝐺𝑖 , 𝑄𝐺𝑖 . For n-nodes (𝑖 = 1,2, … ,  ) distribution network model, there are 2  

power balance equations to be solved in the Newton-Raphson algorithm. The uncertainty 

in EV charging loads is one of the input variables for the power flow problem. The 

aggregated EV charging loads ∑ (𝑃𝑖
𝑘)𝑡

𝜎𝑖,𝑡

1  in busbar 𝑖  was integrated into power flow 

calculation, which can be represented by a set of nonlinear equation represented in Eq. 

(7). 

{

(𝑃𝐺𝑖 − 𝑃𝐿𝑖)𝑡 − ∑ (𝑃𝑖
𝑘)𝑡

𝜎𝑖,𝑡

1 =  𝑖 ∑  𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)𝑗≠𝑖

(𝑄𝐺𝑖 − 𝑄𝐿𝑖)𝑡 =  𝑖 ∑  𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 − 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)𝑗≠𝑖  

𝑖 = 1,2, … ,     

   (7) 

The variables in Eq. (7) must satisfy the constraints in Eq. (8) to enable the distribution 

network to operate in a stable condition. 

{
𝑃𝐿𝑖,𝑚𝑖𝑛 < 𝑃𝐿𝑖 < 𝑃𝐿𝑖,𝑚𝑎𝑥

𝑄𝐿𝑖,𝑚𝑖𝑛 < 𝑄𝐿𝑖 < 𝑄𝐿𝑖,𝑚𝑎𝑥
     (8) 

The power generation in the distribution network is zero in this research so that 𝑃𝐺𝑖 =

𝑄𝐺𝑖 = 0. 𝑃𝐿𝑖 and 𝑄𝐿𝑖 will be specified by the case study in Section 4, where a typical 

residential load profile is introduced. 

In Eq. (9), the voltage of each node 𝑖 should meet the power quality requirement of the 

system, and it must be limited to a certain range, i.e  𝑖,𝑚𝑖𝑛 = 0.9 𝑝. 𝑢.,  𝑖,𝑚𝑎𝑥 = 1.1 𝑝. 𝑢. 

Similarly, the voltage phase difference in Eq. (10) between some nodes 𝑖, 𝑗 should not 
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exceed a certain range as well, i.e |𝜃𝑖 − 𝜃𝑗|𝑚𝑎𝑥
= 10°. The relevant variables shall be

modified and recalculated until the solution can satisfy the constraint conditions. 

 𝑖,𝑚𝑖𝑛 <  𝑖 <  𝑖,𝑚𝑎𝑥        (9) 

|𝜃𝑖 − 𝜃𝑗| ≤ |𝜃𝑖 − 𝜃𝑗|𝑚𝑎𝑥
     (10)

3.3 Rolling Prediction of Electrical Price 

In each time interval 𝑡, future wholesale electricity prices 𝑀𝐶𝑃𝑡 needs to be predicted as 

the input data for the proposed online scheduling strategy. In order to assure the accuracy 

of the prediction, an 8-hour horizon, defined as 𝐹𝐾 in Section 0, is set up in ELM and 

kept rolling forward in the same pace with scheduling iterations.  

The forecasting of 𝑀𝐶𝑃𝑡 is done by a time series model based on ELM. For a single 

hidden feed-forward neural networks (see Fig. 4 ), it is assumed that there are   historical 

wholesale electricity price samples (𝑋𝑖, 𝐶𝑃𝑖) collected from the wholesale market, in 

which time series slots 𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]
𝑇 ∈ 𝑅𝑛 , price series data 𝐶𝑃𝑖 =

[𝑐𝑝𝑖1, 𝑐𝑝𝑖2, … , 𝑐𝑝𝑖𝑚]𝑇 ∈ 𝑅𝑚 . The neural networks with 𝐿  hidden layer nodes can be

expressed by Eq. (11) [105].  

∑ 𝛽𝑖𝑔(𝑊𝑖 ∙ 𝑋𝑗 + 𝑏𝑖)
𝐿
𝑖=1 = 𝑜𝑗 , 𝑗 = 1,… ,𝑁      (11) 

In Eq. (11), 𝑔(𝑥) acts as activation function; 𝑊𝑖 = [𝑤1, 𝑤2, … , 𝑤𝐿]
𝑇  and 𝛽𝑖  describes

input and output weights respectively; 𝑏𝑖 is the offset of 𝑖𝑡ℎ hidden layer element. The 𝑜𝑗

denotes output vector. The goal of the single hidden layer neural network learning is to 

minimize output errors, which can be expressed by Eq. (12) [105]. 
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∑ ‖𝑜𝑗 − 𝐶𝑃𝑖‖ = 0𝑁
𝐽=1       (12)

Therefore, there are 𝛽𝑖,𝑊𝑖 and 𝑏𝑖 to make Eq. (13) true. It can also be rewritten as the 

matrix 𝐻𝛽 = 𝑇 , in which 𝐻  is the hidden layer output matrix，𝛽  is output weights 

respectively，𝑇  is expectation outputs [106]. In the ELM, once 𝛽𝑖,𝑊𝑖  are randomly

confirmed, 𝐻, 𝛽 can be uniquely identified as well [105]. 

∑ 𝛽𝑖𝑔(𝑊𝑖 ∙ 𝑋𝑗 + 𝑏𝑖)
𝐿
𝑖=1 = 𝐶𝑃𝑖, 𝑗 = 1,… ,𝑁   (13) 

1

1 𝑖 𝐿

𝛽1 𝛽𝐿𝛽𝑖

Output Neuron

L Hidden Neurons

Input Neurons

𝑋𝑗
Vector of trained 
data in time series

Vector of predicted 
data in time series

1 1( , )w b ( , )L Lw b

n

iCP

Fig. 4 Architecture of an ELM [105] 

3.4 Objective Functions 

In DNOs’ point of view, aggregated EVs is reckoned as a tremendous source of 

controllable loads that could be used to make peak-shaving and valley impact. In order to 

enhance participation, the forward-looking objective function needs to be designed to 

comprise the commercial interest among EV users and DNOs. As illustrated in Fig. 5, the 

original EV charging tariff 𝐶𝑡 obtained from Vector Network Ltd [107] is applied to the 

case study. The wholesale electricity prices 𝐶𝑃𝑡 displayed by the black line is downloaded 
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from the NZ electricity trading system in [108]. Two different EV charging tariffs are set 

up for the scheduling. The objective function is clarified in Eq (14). 

𝑓𝑡 = 𝑚𝑎𝑥∑ ∑ (𝑃𝑡
𝑘 × ((0. − 𝐶𝑡) − 𝐶𝑃𝑡) × ∆𝑡

𝑘∈𝜎𝑡
𝑘=1

𝑡+32
𝑡=1      (14)

The forward-looking objective function is subject to constraint functions Eqs. (3)-(6), (8)-

(10), (12) and (13). The charging requests of 𝑘𝑡ℎ EV in time interval 𝑡 (15 mins) of a day

𝐷  is aggregated to form 𝑃𝐸𝑉𝑖

𝑘  in a busbar 𝑖  of distribution network. The predicted

wholesale electricity prices 𝑀𝐶𝑃𝑡 is generated by ELM models, detailed by Eqs. (11)-

(13). It covers the future 8-hour price knowledge and keep rolling forward every 15 

minutes. The formulation ((0. − 𝐶𝑡) − 𝐶𝑃𝑡)aims to schedule EV charging requests in

∆𝑡 to maximise profit margin for DNOs. The constant 0.8 denotes load-shift factor to 

postpone EV start charging time to low price period. The elaborated objective function 

has the following three characteristics： 

1. The wholesale electricity price and tariff are employed as a transitive signal of

define profit margin displayed in Fig. 5.

2. The energy trading mechanism is considered by updating ((0. − 𝐶𝑡) − 𝐶𝑃𝑡) in

the rolling prediction algorithm mentioned in Section 3.3.

3. It involves checks and balances between EV users and DNOs, which naturally

creates dynamic equality in the energy market.
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Fig. 5  Wholesale electricity price for test 

4. Case Study

The application of the rolling horizon, in which the EV charging problem is solved 

iteratively, can produce fast responses to price changes in the tariff. This is contributed 

by the introduction of the three sets of information 𝐹𝐾, 𝑃𝐾, 𝑆𝐾. As introduced in Section 

0, the rolling information is comprised of EV modelling data, charging tariff, forecasted 

wholesale prices and network parameters. An 8-hour length of the prediction horizon has 

been considered in this case study because it is considered an adequate optimization 

horizon to ensure that EV charging would be completed within parking duration. 

Additionally, it is an appropriate horizon to forecast wholesale electricity price 𝑀𝐶𝑃𝑡 

with an acceptable error because long term prediction normally comes with high errors. 
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In the scheduling, the forecasting errors should be maintained within a certain level to 

generate satisfying solutions. 

The predicted wholesale price 𝑀𝐶𝑃𝑡 will be compared with the tariff price 𝑀𝐶𝑡 in the 

future 8-hour horizon to find the durations that give maximum profit margin for DNOs, 

as presented in Fig. 5. Then, the EV scheduling strategy will start to calculate whether or 

not the scheduled results save charging costs for EV users. If not, the EV will be excluded 

from the scheduling. As described in Fig. 7 , the purpose of the exclusion arrangement is 

to ensure customers interests while maximising profit for DNOs. 

To demonstrate the proposed EV scheduling strategy, a numerical case study is performed 

to verify the improvements of rolling-horizon EV scheduling. The one-line diagram of 

the IEEE 33-bus system [109] is chosen to represent synthetic distribution system as 

shown in Fig. 6 . A charging station with a total number of 320 chargers is placed at the 

busbar 33 of the network in order to illustrate the worst condition. In the case study, it is 

assumed that the load profile is composed of 500 households with after diversity 

maximum demand (ADMD) 1.3 kW per household. The load demand data produced by 

the Electricity Association data show that the minimum and maximum demand are 0.16 

kVA and 1.3 kVA, respectively [110]. Two different charging tariffs are considered in 

the case study to verify the effectiveness of the proposed strategy. 
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Fig. 6 IEEE 33-bus distribution system with an EV charging station 

The proposed scheduling problem is introduced into an iterative rolling horizon 

framework. The flowchart of the rolling horizon approach is illustrated in Fig. 7 , as 

specified in the following steps: 

 Initially, generate EV charging data by MCS that was developed in [85]

 Next, set the initial horizon of EV charging requests (𝑃𝐾) and predicted electricity

wholesale price (𝐹𝐾), as well as the impedance of the distribution network

 Optimise start charging times for those requests. Then, run the load flow in order

to get voltage and power loss profiles for the charging node in the distribution

network

 Use GA to evaluate these solutions, and find out the solution with the highest

fitness

 Review scheduled solutions to ensure the charging cost is reduced, otherwise,

exclude the EV from the scheduling

 Finally, move to the next time slot and repeat executing 𝑃𝐾 and 𝐹𝐾 until reaching

the end of time scale
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Defined the initial state of the system(       and       ). 
For the given prediction horizon, calculate the total 
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Fig. 7 Flowchart of the rolling horizon approach
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5. Results and Discussions

The rolling-horizon model has been done in Matlab 2019b with a Pentium Intel@ CoreTM 

CPU 7700 @3.6 GHz. The resolution of the model provides the online optimal schedule for 

EV users and DNOs. The rolling horizon approach is used to address the presence of EV 

plug-in uncertainty, allow updating information related to forecasted wholesale electricity 

price at each 15 minutes time interval in a day. 

The historical data of the wholesale electricity price (𝑋𝑖, 𝐶𝑃𝑖)  is collected from NZ 

Wholesale information Trading System [108]. A daily example of the wholesale electricity 

price is presented by the blue line in Fig. 8. For each repetition of the forecasting, a set of 

prices data composed of 32 dots is generated according to Eqs. (11)-(13) to represents the 

predicted wholesale electrical prices 𝑀𝐶𝑃𝑡  in the future 8-hour horizon. As the intra-day 

forecasts updated iteratively, the EV scheduling decisions (defined as 𝑆𝐾 in Section 0) are 

made according to the assigned starting charging times 𝑡𝑠
𝑘 to response EV charging requests

in each time interval 𝑡. Within a day, a total number of 96 sets of predicted prices are 

produced in the ELM model. R-square errors of the rolling predictions are recorded in Fig. 9 

. Although, R-square values in some iterations are under 0.6, the rolling optimisation is still 

able to generate satisfied solutions 𝑆𝐾 as long as the price trending is accurately foreseen. 
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(a) Selected time slots

(b) Full time slots

Fig. 8 The comparison of actual and predicted 15-mins electrical price in the 

wholesale market  
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Fig. 9 R-square error values of predicted results among 96 iterations 

The temporal distribution of the uncontrolled EV’s charging demand is conducted in the 

probabilistic model introduced in Section 3.1. Fig. 10 displays the EVs’ plug-in time 𝑡𝑖𝑛
𝑘 , and

initial 𝑆𝑜𝐶𝑘 that are generated from MCS, as formulated in Eqs. (1)-(2). In the proposed

scheduling strategy, the plug-in time 𝑡𝑖𝑛
𝑘  can be used to figure out the total number of the

charging request in each time slot t. As all EVs are guaranteed to be fully charged, the initial 

𝑆𝑜𝐶𝑘 can be used to calculate charging duration based on constant charging power 𝑃𝑘 and

battery capacity 𝐶𝑎𝑝𝑘. Then, the charging data is applied to define constraints in Eqs. (3)-(5)

and Eqs. (7)-(10) and decision variable in Eq. (6) for the charging optimisation. It can be seen 

that most EVs are recharged in early hours of on-work and off-work periods. In the 

uncontrolled scenario, it is assumed the EVs immediately start charging once plug-in. The 

charging processes are displayed in Fig. 11  with a Gantt chart. It records charging and 

parking durations of 320 EVs by red and green bars, respectively. In most of the time, EVs 

are parking on spot without charging processes. The charging duration is calculated based on 



87 

the Eq. (1) –(3), as described in Section 3.1. It can be seen that charging times only take up 

a minor fraction of total parking durations. This kinds of driving and parking patterns give 

significant feasibility for scheduling strategy to shift deferrable EV charging loads. 

Fig. 10 Scatter plot between EV plug-in time and initial SoC 
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(a) 100 samples of 320 EVs             (b) total 320 EVs

Fig. 11 EVs charging information in Gantt Chart 

For individual EV users, the economic incentive is reckoned the most effective factor to 

enhance participation of scheduling if their departure is not affected. As presented in Fig. 12 

, two different EV charging tariffs are suggested for energy trading with respect to the 320 

EVs fleet. The uncontrolled scheme (grey bars) indicates that EVs start charging immediately 

after they plug in. It results in severe peaks on power load at 08:00 and 17:00 respectively, 

with a value of 1100 kW and 500 kW, respectively (see Fig. 13 ).  

In the scheduling scenario, the first stage is to apply original tariff into the rolling horizon 

strategy. By comparing grey and blue portions in Fig. 12 , it can be found that most of EV 

charging requests at dusk are delay by three hours, while, the charging requests in the early 
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morning remain unchanged because the charging strategy considers the delayed charging will 

result in higher charging cost to users. Indeed, in the original EV charging tariff, the charging 

fees raises from $0.18/kWh to $0.26/kWh in the early morning, forcing the charging strategy 

to abandon scheduling for the sake of saving cost. This logic judgement explained in Section 

0 plays a significant role in producing win-win solutions for EV users and DNOs. Even 

though the peak power demand is decreased by 100 kW in the early evening, it still peaks at 

as high as 1100 kW in the early morning (see Fig. 13 ). In order to obtain better scheduling 

results, the tariff might need to be revised to enhance participation of EV users.  

Thus, a new tariff is proposed and depicted by red lines in Fig. 12  and Fig. 13 . The high 

price duration starts from 06:00 to 10:00 when it is coincident with rush hours of charging 

requests. This tariff allows the charging strategy to obtain lower charging cost by shifting 

peak charging demands. The red portions in Fig. 12  and Fig. 13  displays that a considerable 

curtailment on peak power demand is experienced in the early morning, which drops from 

1100 kW to just over 400 kW. It dramatically saves network investment in terms of 

substations and cables.  

More importantly, the elaborated objective function Eq. (14) aims to schedule EVs within 

periods when the profit margin is large. By comparing the low-price duration of two tariffs, 

the large profit margins are highlighted by green dash lines in Fig. 12  and Fig. 13 . These 

are exactly the same durations when two scheduled results reach peak charging demand. 

Apart from achieving peak-shaving and valley-filling effect, the strategy is also trying to 

maximise profit.  
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Fig. 12 EV charging requests based on different tariffs 

Fig. 13 EV charging loads based on different tariffs 
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Fig. 14 Voltage profile at node 33 under different senarios 

Fig. 15 Voltage profile (proposed tariff) in the IEEE 33-node network 
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Fig. 16 Computational time of each time step 

The rolling-horizon algorithm maintains the voltage magnitude at the far end of the feeder. 

To demonstrate the scheduling effect, the EV charging station is located at the furthest end 

of the feeder as the worst scenario of network operation. (see Fig. 6 ). The voltage magnitudes 

at node 33 for the 320 EVs fleet are displayed in Fig. 15 . Once again, power flow results 

shown in Fig. 14  and Fig. 15  correspond to the rolling horizon charging strategy mentioned 

above. Recall that the minimum voltage magnitude of the system is set at 0.9 p.u in (9). In 

Fig. 14 , the uncontrolled scenario with original tariff scheduling cause significant voltage 

magnitude drops in the morning, under 0.95 p.u. With the proposed tariff, voltage magnitudes 

stay above 0.97 p.u. even though some EVs start charging during rush hours. As shown in 

Fig. 15 , the charging strategy effectively enhances the voltage profile of all nodes under 

proposed tariff. In the uncontrolled scenario, the running times are just about 2 s when it 

comes to updating the EV plug in or out events (see Fig. 16 ). With 𝐹𝐾 and 𝑆𝐾 being applied, 
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the running times of optimisation are increased to roughly 14 seconds. Under all conditions, 

the running times are well within the time step of the scheduling 15 minutes, therefore, there 

is no overtime issue in the optimisation process. With the proposed tariff being applied, the 

number of EVs is reset to 1000 to verify the calculation performance of the algorithm 

regarding the scalability. The computational times (blue line) merely slightly grow by 1-5 

seconds in each time step, which means the dimensionality of the variables will not have an 

obvious impact on the calculation capability of the proposed algorithm. 

Finally, several key indexes are concluded in Table 4 The comparison of scheduling results 

demonstrates that EV users experience lower charging costs in both tariffs. The aggregated 

demands of 320 EVs decreases from 1133 kW to 462 kW in the proposed tariff. Similar 

effects are noticed in the load standard deviation, which falls from 214 kW to 206 kW, and 

finally bottoms at 128 kW. The peak demand is considered a major driver of investment in 

the distribution network. It means the DNOs only need to invest 500 kW installed capacity 

to meet the EV charging demand that originally required 1200 kW. Based on information 

from DNOs [111], reinforcing the lines to increase capacity by 920 kVA costs €67,000 

(approx. NZ$123,000), while reinforcing the substation costs €3 million (approx. NZ$ 5 

million). Although, in the scheduling scenario, the daily profit drops from NZ$212 to 

NZ$175, DNOs are more interested in the use of a smart charging strategy that could lead to 

reduced capital expenditure and social costs in comparison with the uncontrolled case. The 

scheduling results reveal potential investment decisions for distribution networks regarding 

trade-offs between capital costs and profits. 
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Table 4 The comparison of scheduling results 

 
Peak 

Load(kW) 

Load Standard 

Deviation(kW) 

Charging 

Cost (NZ$) 

Profit 

(NZ$) 

Uncontrolled Scenario 

Original tariff 1133 214 655 233 

Proposed tariff 1133 214 707 285 

Scheduled Scenario 

Original tariff 1133 206 608 212 

Proposed tariff 462 128 598 175 

6. Conclusions 

In this paper, the online economic scheduling problem considering both the availability and 

status of EVs, and the uncertain upstream electricity price has been solved. The rolling 

horizon approach has been introduced in the formulations to address the uncertainties 

inspired by the realistic EV charging scenario. The approach takes into account not only the 

EV charging time (beginning and end) but also the profit margin of the electricity tariffs for 

DNOs. The forecast of electricity price plays a significant role in the decisions of opportunity 

charging for EVs so that all charging requests can be satisfied as long as the EV users do not 

make an earlier departure. The significant improvement was found in the voltage profile of 

the IEEE 33-node test network. Also, the charging strategy integrates a fast convergence 

power flow calculation to provide technical insights for DNOs to evaluate the tariff that will 

encourage EV deployment under the energy trading market. The scheduling results derived 

from the proposed tariff demonstrates that high-price durations coincident with charging rush 

hours obtains better performance than the original tariff regarding peak loads shifting. The 

rolling prediction of wholesale electricity prices gives the charging strategy a certain level of 

perception capability to make proper decisions on the opportunity charging. Although the 

accuracy of the rolling prediction is not always satisfied, it still can produce good scheduling 
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results as long as the price trend can be foreseen correctly. Overall, the simulation results 

verify that the proposed method does contribute to cost-saving for EV users and profitability 

for DNOs while ensuring each EV to be fully charged before desired usage time. Opportunity 

charging based on the market mechanism is considered as the win-win strategy for main 

participants within distribution networks.  

In the future work, the proposed approach could be used as the basis for solving further 

problems with higher complexity by combining proactive technique to take into account the 

feasibility of Vehicle-to-Grid mode. The rolling horizon could be made with dynamic 

durations to actively solve EVs scheduling problems in a smarter way. Another direction for 

future work is to investigate other robust MPC techniques that could be applied to the EV 

integration, so as to investigate convergence characteristics; and whether or not rolling 

horizon scheme can provide solutions as good as global optimisation scheme. 
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Chapter 4  Manuscript 3 

This manuscript addresses the closed-loop control problems regarding imbalanced EVs 

charging power among adjacent feeders in the distribution network. The modelling of EVs 

charging demand developed in Chapter 2 has been used in this manuscript as an uncertain 

input variable. The distributed PV generation is considered as another input variable. Due to 

the varying nature of EV and PV in the LV distribution network, this manuscript proposes a 

novel control system to manage the imbalanced power among feeders. In the proposed DPBS, 

unbalanced power can be transferred from the heavily loaded feeder to the neighbouring 

feeder that is lightly loaded through tie-line voltage source converters (VSCs). 

The manuscript was published in the journal of ‘IEEE Transactions on Industry Applications’ 

under the title: “Integration of Electric Vehicles in Distribution Network Considering 

Dynamic Power Imbalance Issue".  
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Abstract 

The continuous growth of the number of electric vehicles (EVs) poses great challenges to 

distribution networks. Intermittent and stochastic EV access detrimentally affects the security 

of the power supply. In terms of unplanned events, EV users might dispersedly plug in or out 

at any available spot instead of ensuring identical distribution across feeders. This uneven 

deployment may lead to imbalanced loading conditions among adjacent feeders. The 

situation may become worse with an increased penetration of the distributed Photovoltaic 

(PV) generation due to the intermittent generation characteristic. This paper proposes a novel 

control scheme to manage the imbalanced power among feeders. In the proposed dynamic 

power balance system (DPBS), unbalanced power can be transferred from the heavily loaded 

feeder to the neighbouring feeder that is lightly loaded through tie-line voltage source 

converters (VSCs). The tie-line VSCs are designed to connect adjacent feeders at the low-

voltage side of distribution transformers via an 800 V dc-link. In this way, the power variance 

caused by either EV or PV can be split into joint feeders and transformers, so as to mitigate 

fluctuations. The stochastic variations on EV charging loads are addressed using a Monte-

Carlo simulation (MCS) technique. The effectiveness of the proposed scheme is 

demonstrated on a typical distribution network with integration of EVs and PV. It could be 

file:///C:/Users/tlie/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/PDT5L86C/Jun.Su@aut.ac.nz
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used as a supplementary measure to obtain a fast demand balance response without 

restraining EV users, and to considerably curtail the risk of overloading the power 

distribution equipment. 

Keywords: Distribution network, unbalanced power, voltage source converter, electric 

vehicle, photovoltaic 
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Nomenclature 

Indices 

i Index of network equipment 

j Index of controller 

k Index of electric vehicles 

t Index of time intervals 

* Index of reference values

Parameters

𝐶𝑑𝑐 Capacitance of the VSC dc 

capacitor 

𝐷𝑘 Endurance mileage of 𝑘𝑡ℎ EV

𝑖𝑎,𝑏,𝑐 Phase current a, b, c at ac side of 

the VSC 

𝑖𝑑𝑐 Current flowing towards dc side of 

the VSC 

𝑖𝑑,𝑞 Injected current at ac side of the 

VSC in dq-axis 

Framework 

𝑖𝐿 DC load current of the VSC 

𝐾𝑗𝑑,𝑞
𝑝 Proportional coefficient of the 

current proportional-integral (PI) 

controller in dq-axis framework 

𝐾𝑗𝑑,𝑞
𝑖  Integral coefficient of the current

PI controller 

in dq-axis framework 

𝐾′𝑗𝑑,𝑞
𝑝 Proportional coefficient of the 

voltage PI controller in dq-axis 

framework 

𝐾′𝑗𝑑,𝑞
𝑖  Integral coefficient of the voltage

PI controller              in dq-axis 

framework 

𝐿 Inductance of RL filter for the VSC 

𝑀𝑘 Daily travel distance of 𝑘𝑡ℎ EV

𝑃𝐶
𝑘 Rated charging power of 𝑘𝑡ℎ EV

𝑃𝑒i Imported grid power in 𝑖𝑡ℎ feeder

𝑃𝑔𝑚𝑎𝑥.𝑖 Maximum output power of the 

VSC in 𝑖𝑡ℎ feeder

𝑃𝑔i Output power of the VSC in 𝑖𝑡ℎ

feeder 

𝑃𝑥𝑖 Aggregated EV charging power in 

𝑖𝑡ℎ feeder

𝑅 Resistance of RL filter for the VSC 

sss Laplace operator 

𝑆𝑖 Installed capacity of distribution 

transformer in 𝑖𝑡ℎ feeder

𝑆0 Aggregated installed capacity of 

transformers within P-Q control 

scheme 

𝑆𝑜𝐶𝑘 Battery state-of-charge of 𝑘𝑡ℎ EV

𝑇𝑘 Parking duration of 𝑘𝑡ℎ EV

𝑡𝑖
𝑘 Plug in time of 𝑘𝑡ℎ EV

𝑡𝑜𝑢𝑡
𝑘 Charging completion time of 𝑘𝑡ℎ

EV 

𝑢𝑎,𝑏,𝑐 Phases a, b and c voltage at grid 

side of the VSC 

𝑢𝑑𝑐 Output dc link voltage of the VSC 

𝑢𝑑,𝑞 Grid voltage in dq-axis framework 

𝜇𝐷 Mean value in logarithmic 

probability distribution function 

𝜎𝐷 Standard deviation value in 

logarithmic probability 

distribution function 

𝑣𝑑,𝑞 Voltage at ac side of the VSC in 

dq-axis framework 

𝑣𝑔𝑑,𝑞 New voltage vector of the VSC in 

𝑑𝑞-axis framework 

∆ 𝑑,𝑞 Outputs of PI control current loop 

in 𝑑𝑞-axis framework   

𝜔 Angular velocity of dq-axis 

framework 
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1. Introduction

The expanded deployment of electric vehicles (EVs) will potentially reshape residential 

power consumption profiles as charging one EV is nearly equivalent to adding two houses to 

distribution networks [85]. Imagine what will happen when all EV owners living in the same 

residential area decide to recharge them after returning from work, which is almost the same 

time that households turn on their heating, ovens and other appliances. The risk of 

overloading distribution transformers or feeders is particularly high in specific periods of a 

day, such as early morning and evening. On the contrary, photovoltaic (PV) generation 

normally reaches peak output at midday, when demand for EV charging is relatively low 

[112, 113]. These two reversed cases expose a dynamic power imbalance issue between 

renewable distributed generation and EV charging demand. It is a challenge to get consumers 

to shift their EV charging times to periods when grid power consumption is relatively low or 

distributed generation reaches the peak output [114]. For distribution network operators 

(DNOs), EVs could be considered the controllable loads in scheduling strategies [115]. With 

scheduling strategies being applied, DNOs may need to provide incentives for their 

customers to change their charging behaviours for optimised objectives [116]. This could be 

done by providing various price tariffs that are designed to flatten power curves [83, 117, 

118].  

Various scheduling models in the integration of EVs and renewable energy sources have had 

their effectiveness demonstrated with respect to peak-shaving and valley-filling capabilities 

[119]. Such optimisation approaches would improve the grid’s reliability and efficiency with 

a high share of intermittent loads and renewable generation [120-124]. Numerous algorithms 
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had been found in centralised, decentralised or agent-based charging strategies that manage 

EV charging processes to achieve optimisation targets [88, 125]. Most of the previously used 

strategies have focused on the management of a large group of EVs in order to produce 

significant changes on a systemic level. When it comes to high EV and PV penetrations, 

scheduling may not be sufficient to achieve the expected effectiveness as it does not 

accurately reflect the willingness of EV owners to undertake those charging strategies. 

Moreover, centralised control is not appropriate for managing a large number of EVs because 

it requires high computational capability and advanced communication infrastructure to 

avoid delays in real-time operation [126]. The significant network upgrade investment for 

peak charging demand can be expected either to have costly implications for consumers or 

to cause constraints preventing customers from charging their EVs anytime and anywhere 

[127]. Inevitably, the grid upgrade might eventually mean adding an energy management 

system (EMS) and power distribution equipment [128, 129]. In this instance, the EMS would 

control power flow by shifting the EV charging loads to meet scheduled targets [130, 131]. 

In general, the controllers are responsible for managing EV charging demand, thereby 

directly controlling the charging process of EVs [126]. Such studies can be found in [132-

134], in which the EV charging process was shifted to the period when PV generation was 

excessive. With increasing penetration of distributed renewable energy, the complexity of 

EMS is increasing to maintain a proper operation of the grid. Due to this, a robust local 

controller for the voltage source converter (VSC) is necessary to deal with bidirectional 

power flows and power ripples. Therefore, it is essential to develop a dynamic power balance 

system (DPBS) as a supplementary measure to EMS to better manage EV charging loads and 

renewable generation.  
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A motor integrated converter was proposed in [135] to operate in the bidirectional power 

flow mode, wherein energy can be transferred between the vehicle and the dc or single-phase 

ac supply. A further study in [136] proposed a three-level dc-dc converter to integrate 

renewable energy, EV and storage altogether within the distribution network. The proposed 

dc power balance management centre was in charge of the power transition between EV 

charging and renewable generation, assisting the central converter in balancing power when 

the imbalanced power was out of its predetermined controllable zone. Similarly, a novel dc 

power electronic transformer topology was researched in [137] to obtain power conversion 

between a medium-voltage (MV) dc bus and a low-voltage (LV) dc bus, based on a series 

connection of full-bridge converters. Another advanced study can be found in [138], in which 

a multi-port dc-dc converter was adapted in EV integration with energy storage units. The 

effect of the load shedding was minimised to avoid power quality issues. Basically, a 

common dc-link based converter developed among the above literature has been utilised to 

manage the bidirectional power conversion in different scenarios. Most studies have intended 

to address the integration problem between EV and other types of energy resources, e.g. solar 

power, or storage units, while ignoring the integration problem between EVs and the grid. 

There has been little discussion on a power control scheme that can be applied to EV 

integration within adjacent feeders, which can be used to address the imbalanced power 

issues arising from coincidental charging behaviours. 

The mobility of EVs means that high energy consumption may happen at any available spot 

within the LV distribution network [139]. From a power system point of view, EVs can be 

regarded as random moving loads. Uncertain factors, like how users drive, park and charge 

their EVs, may lead to varying load profiles in residential and commercial areas [140, 141]. 

The mobile and stochastic characteristics make EV charging loads highly unpredictable in 
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their spatial and temporal distribution. Such a dynamic scenario exposes a potential risk to 

the traditional radial LV distribution network, as it is quite likely to overload certain feeders 

while keeping other adjacent feeders lightly loaded. In this study, this issue is defined as a 

dynamic power imbalance issue. In the investigation of  [142], the main topologies used to 

configure the LV distribution networks show that most LV networks are designed as radial 

networks because of the simplicity of analysis and design. The extent of power imbalance 

may become worse when more distributed PV generation and EVs are penetrated into LV 

radial distribution networks. To overcome this issue, there is an urgent need to reconfigure 

the conventional LV network to adapt it to the appearance of imbalanced power. 

To address the aforementioned shortcomings, this study proposes a control scheme to 

incorporate EV and PV integration. It is designed to take into account not only the network 

constraints but also flexible EV usage. More importantly, the DPBS intends to regulate 

bidirectional power flow among adjacent feeders instead of direct control of charging 

processes. It further extends the current feature of tie-line VSCs by transferring EV charging 

loads and excessive PV power between neighbouring feeders. In this way, power deviations 

and peak demands should be suppressed within the threshold level. However, the challenge 

is designing a controller that coordinates parallel VSCs to transfer imbalanced power from 

the heavily loaded transformer to the lightly loaded one. The DPBS proposed in this study 

contributes to the issue in the following way: 

 Examines the potential impact of coincidental EV charging behaviours by Monte-Carlo

Simulation (MCS). This part was previously developed in  [85].

 Obtains bidirectional power flow among adjacent feeders through the dc-link spanned

across transformers.
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 Transfers excessive PV power to local EV charging loads rather than feeding into the

grid.

 Tests the robustness of the VSCs (in dq frame) through proper tracking of the reference

power and current value. Moreover, multiple control schemes (P-Q and voltage control)

are integrated into the DPBS.

 Specifies reinforcement arrangement regarding DPBS in a typical distribution network.

This article is organised as follows: Section 2 presents the overall DPBS system description; 

Section 3 explains the VSCs’ control schemes and mathematical formulations for the DPBS 

system; Section 4 introduces the modelling of EV charging loads; Section 5 describes the 

solution method and procedure; the simulation results and discussion are detailed in Section 

6; finally, Section 7 presents the conclusions. 

2. System Description and Problem Formulation

The proposed architecture of the distribution network is displayed in Fig. 1. The network 

comprises of three branches with integration of the DPBS, EV, and PV. Each branch consists 

of a transformer, feeder and EV charging station with a specified number of charging spots. 

It is assumed there are 80, 80 and 40 available EV chargers allocated within these three 

feeders, respectively. The EVs will plug into these spots following a predefined probability 

density function (PDF). The modelling of EV charging demand was derived from the 

authors’ previous work [85], in which the multivariate probabilistic model had been 

established and validated in MCS. In this paper, EV models are parameterised according to 

Nissan-Leaf specifications, as presented in Table 1.  
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Table 1 Charging Parameters of Nissan Leaf EV Model 

Brand 

Battery 

Capacity 

(kWh, 𝑆𝑜𝐶𝑘)

Charging Power 

(𝑘𝑊, 𝑃𝐶
𝑘)

Endurance 

mileage 

(km, 𝐷𝑘)

Nissan 

Leaf 
24/40 6.6/11 150/250 

As shown in Fig. 1, three parallel tie-line converters are spanned across LV buses of 

distribution transformers. 𝑃𝑒1 , 𝑃𝑒2  and 𝑃𝑒3  represent grid power flowing towards EV

charging loads 𝑃𝑥1, 𝑃𝑥2 and 𝑃𝑥3 through the corresponding LV buses. Whenever an EV is 

connected to the charger, its owner is required to set the charging power rate, plug-out time, 

and expected state-of-charge (SoC) of the battery (normally 100%). The configuration of the 

DPBS is depicted by the red dashed line in Fig. 1. The ac sides of VSCs connect to LV buses 

1-3 through circuit breakers. They share a common dc bus with an interlinked capacitor.

 The DPBS is designed to achieve bidirectional power flow among the three feeders. 𝑃𝑔1, 𝑃𝑔2, 

and 𝑃𝑔3  represent the output power values of the VSCs that are determined by the 

corresponding controllers. The VSCs control the power flow in both directions according to 

different strategies. For VSC1 and VSC2, the amount of active power flowing in either 

direction can be assigned to a pre-set value. VSC3 works as a voltage regulator to maintain 

the dc-link voltage. In this distribution network, EV charging loads generated by MCS are 

randomly distributed into 200 chargers along with three feeders. Furthermore, a 73 kWp PV 

system is considered in a case study to verify the effectiveness and robustness of the proposed 

DPBS. 
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Fig. 1   The proposed DPBS reinforcement in the typical distribution network with 

integration of EV and PV 

3. VSC Control Scheme

The configuration of the three-phase VSC is presented in Fig. 2. The transient mathematic 

model of the VSC has been widely discussed previously. For simplicity, its control block 

diagram under the 𝑑𝑞 synchronous reference frame is presented in Fig. 3 [143]. 
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Fig. 2   The three-phase topology of the VSC 
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Fig. 3   The control block diagram of the three-phase VSC under the dq synchronous 

reference frame 

A. P-Q Control

It can be seen from Fig. 3 that currents under the dq synchronous reference frame are coupled 

with each other. Such coupling components make it difficult to control the active power P 

and reactive power Q separately. Therefore, decoupling control needs to be adopted to 

eliminate cross-coupling terms 𝜔𝐿𝑖𝑝, 𝜔𝐿𝑖𝑞 and 𝑢𝑑, 𝑢𝑞. As defined in Eq. (1), a new voltage 

vector is assigned to consist of 𝑣𝑔𝑑 and 𝑣𝑔𝑞. In a decoupled feedback control strategy, the 

outputs of the proportional-integral (PI) control current loop are ∆ 𝑑, ∆ 𝑞 in Eq. (2) [144]. 

{
𝑣𝑔𝑑 = 𝑢𝑔𝑑 + 𝜔𝐿𝑖𝑞 − ∆ 𝑑

𝑣𝑔𝑞 = 𝑢𝑔𝑞 − 𝜔𝐿𝑖𝑞 − ∆ 𝑞
(1) 

{
 𝑑 = (𝐾𝑗𝑑

𝑝 +
𝐾𝑗𝑑

𝑖

𝑠
)(𝑖𝑑

∗ − 𝑖𝑑)

∆ 𝑞 = (𝐾𝑗𝑞
𝑝 +

𝐾𝑗𝑞
𝑖

𝑠
)(𝑖𝑞

∗ − 𝑖𝑞)

          (2) 

where 𝑖𝑑
∗ , 𝑖𝑞

∗  are reference currents in 𝑑𝑞  frame, 𝑖𝑑 , 𝑖𝑞  are actual sampling currents. 

Substituting Eqs. (1) and (2) into (3), Eq. (4) can be obtained as follows: 
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{
𝑣𝑑 = 𝑢𝑑 + 𝐿

𝑑𝑖𝑑

𝑑𝑡
+ 𝑅𝑖𝑑 + 𝜔𝐿𝑖𝑞

𝑣𝑞 = 𝑢𝑞 + 𝐿
𝑑𝑖𝑞

𝑑𝑡
+ 𝑅𝑖𝑞 − 𝜔𝐿𝑖𝑑

     (3) 

{
𝐿

𝑑𝑖𝑑

𝑑𝑡
= −𝑅𝑖𝑑 + ∆ 𝑑

𝐿
𝑑𝑖𝑞

𝑑𝑡
= 𝑅𝑖𝑞 + ∆ 𝑞    

        (4) 

Eq. (4) can be rewritten as (5) by substituting (2) into (4). Based on Eqs. (1)-(5), currents in 

the  𝑑𝑞 frame can be controlled separately to solve the coupling issue.  

{
(𝐿 + 𝑟)𝑖𝑑 = (𝐾𝑗𝑑

𝑝 +
𝐾𝑗𝑑

𝑖

𝑠
)(𝑖𝑑

∗ − 𝑖𝑑)

(𝐿 + 𝑟)𝑖𝑞 = (𝐾𝑗𝑞
𝑝 +

𝐾𝑗𝑞
𝑖

𝑠
)(𝑖𝑞

∗ − 𝑖𝑞)

     (5) 

Fig. 4  The control block diagram of current decoupling of the three-phase VSC under the d-

q synchronous reference frame  [144] 

As calculated in Eq. (5), the control diagram of the decoupled current control is displayed in 

Fig. 4. The introduction of voltage feedforward components, 𝑢𝑔𝑑 and 𝑢𝑔𝑞 , improves the 

dynamic response speed of the system. As a result, P and Q of the VSC are computed as 

follows [145]: 
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{
𝑃 =

3

2
× (𝑢𝑑 × 𝑖𝑑 + 𝑢𝑞 × 𝑖𝑞)

𝑄 =
3

2
× (𝑢𝑞 × 𝑖𝑑 − 𝑢𝑑 × 𝑖𝑞)

        (6) 

In the EV charging scenarios, the focus is active power rather than reactive power. As a 

result, the unity power factor is assigned in the P-Q control scheme so that 𝑖𝑞 and  𝑢𝑞 are 

equal to 0. Therefore, Eq. (6) can be simplified as follows: 

{
𝑃 =

3

2
𝑢𝑑𝑖𝑑

𝑄 = −
3

2
𝑢𝑑𝑖𝑞

(7) 

According to Eqs. (5) and (6), 𝑖𝑑 and 𝑖𝑞 can be calculated based on the pre-set values of 𝑃 

and 𝑄. To do so, the reference values of 𝑃∗and 𝑄∗ determine 𝑖𝑑
∗  and 𝑖𝑞

∗  in the current inner

loop (see Fig. 5). It eventually controls the output powers of VSC1 and VSC2 to manage 

imbalanced power flows coming from the EVs. In the steady-state operation, the reactive 

power output is assigned to 0; therefore, 𝑄∗ = 0.

Fig. 5   The power decoupling control block diagram of the VSC 
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B. Voltage Control

For a dc-link of VSC3, the excess power increases the capacitor’s voltage when the input 

active power from VSC1 and VSC2 is greater than the EV’s charging demands, and vice 

versa. The reference dc link voltage  𝑢𝑑𝑐
∗  is set up at 800 V in the model. Ignoring the

harmonic component and power loss, the formulation of dc voltage 𝑢𝑑𝑐  and current 𝑖𝑑  is 

described by Eq. (8). With a unity power factor, the dc link voltage is only related to the 

current 𝑖𝑑 . Therefore, the dc voltage can be controlled by adjusting 𝑖𝑑 ; The PI control 

equation of the voltage loop controller is defined as Eq. (9). The related control diagram of 

the voltage loop is displayed in Fig. 6. 

𝐶𝑢𝑑𝑐
𝑑𝑢𝑑𝑐

𝑑𝑡
=

3

2
𝑢𝑑𝑖𝑑 +

3

2
𝑢𝑞𝑖𝑞 (8) 

𝑖𝑑
∗ = (𝐾′𝑗𝑑

𝑝 +
𝐾𝑗𝑑

′𝑖

𝑠
)(𝑢𝑑𝑐

∗ − 𝑢𝑑) (9) 

Fig. 6   The voltage control block diagram of the VSC 
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C. Control Strategy in the DPBS

In order to demonstrate the effectiveness of the proposed DPBS, VSC1. VSC2 and VSC3 are 

equipped in a radial distribution test system, as displayed in the reinforcement section in Fig. 

77. Three tie-line VSCs are interconnected by circuit breakers in transformers’ LV buses. A

voltage-regulating capacitor was added to stabilise the dc-link voltage at 800 V and reduce 

the impacts on the power-switching bridge. The DPBS is installed as additional components 

to the existing system to minimise the network reinforcement. 

In principle, DPBS balances 𝑃 and 𝑄 transfer among feeders by adjusting the set values of 

𝑃𝑠
∗ and 𝑄𝑠

∗ for the tie-line VSCs under the P-Q control scheme. In steady-state operation, the

𝑄𝑠
∗ is assigned to 0 to maintain operation with a unity power factor. The problem is how to

figure out the reference values of 𝑃𝑠
∗ for the corresponding feeders to transfer the unbalanced

power caused by EVs and PV integrations. The bidirectional power flow among feeders can 

only be obtained by measuring the voltage and the current signals at the LV bus of the 

distribution transformer. The targeted load power of each transformer is proportional to its 

size over the total installed capacity. The imported grid power of 𝑖𝑡ℎ distribution transformer

𝑃𝑒𝑖
∗  shall be guaranteed as shown in Eq. (10). 
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DPBS Reinforcement section
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Feeder 1 Feeder 2 Feeder 3
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3gp

Fig. 7   Configuration of the DPBS 

𝑃𝑒𝑖
∗ =

𝑆𝑖

𝑆𝑜
∑ 𝑃𝑥𝑖

𝑛
𝑖=1          (10) 

𝑆𝑜 = ∑ 𝑆𝑖
𝑛
𝑖=1  describes the aggregated installed capacity of the total transformers within the 

P-Q control scheme. In this paper,  = 2.

According to the power-balance principle, the reference output powers of the VSC and 

transformer in 𝑖𝑡ℎ feeder should equal the power demand, as described in Eq. (11).

𝑃𝑔𝑖
∗ + 𝑃𝑒𝑖

∗ = 𝑃𝑥𝑖       (11) 

Substituting Eq. (10) into (11), the reference transferred power 𝑃𝑔𝑖
∗  of VSC under the P-Q 

controlled scheme can be obtained as follows.  

𝑃𝑔𝑖
∗ = 𝑃𝑥𝑖 −

𝑆𝑖

𝑆𝑜
∑ 𝑃𝑥𝑖

𝑛
𝑖=1           (12) 

Similarly, the measured power values also satisfy the power-balance principle. It is defined 

as follows: 
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𝑃𝑔𝑖 + 𝑃𝑒𝑖 = 𝑃𝑥𝑖  (13) 

Ignoring the power losses of VSCs, that is ∑ 𝑃𝑔𝑖 = 0𝑛
𝑖=1 , the measured output power of the 

transformers satisfies: 

∑ 𝑃𝑒𝑖 = ∑ 𝑃𝑥𝑖
𝑛
𝑖=1

𝑛
𝑖=1 (14) 

By substituting Eqs. (14) and (13) into (12), the reference output power of 𝑖𝑡ℎ  VSC is

expressed as follows: 

𝑃𝑔𝑖
∗ = 𝑃𝑔𝑖 + 𝑃𝑒𝑖 −

𝑆𝑖

𝑆𝑜
∑ 𝑃𝑒𝑖

𝑛
𝑖=1          (15) 

As calculated in Eqs. (11)-(15), the DPBS only needs to measure 𝑃𝑔𝑖 and 𝑃𝑒𝑖 to determine 

the reference 𝑃𝑔𝑖
∗  for the related VSCs under P-Q control. When the surge load occurs, the 

reference output power of the VSC may be greater than the rated power. In order to protect 

the converters, the reference values should satisfy the following constraints: 

𝑃𝑔𝑖
∗ = {

−𝑃𝑔𝑚𝑎𝑥.𝑖 𝑃𝑔𝑖
∗ < −𝑃𝑔𝑚𝑎𝑥.𝑖

𝑃𝑔𝑖 + 𝑃𝑒𝑖 −
𝑆𝑖

𝑆𝑜
∑ 𝑃𝑒𝑖

𝑛
𝑖=1  |𝑃𝑔𝑖

∗ | ≤ 𝑃𝑔𝑚𝑎𝑥.𝑖

𝑃𝑔𝑚𝑎𝑥.𝑖 𝑃𝑔𝑖
∗ > 𝑃𝑔𝑚𝑎𝑥.𝑖

(16) 

The parameters of the VSCs in the DPBS are listed in Table 2. The P-Q control scheme is 

applied to VSC1 and VSC2, while VSC3 is operated under the voltage-control scheme to 

regulate the dc link voltage at 800 V.  
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Table 2 VSC Designed Parameters in DPBS 

VSC System Parameters P-Q Controller Parameters

Rated Power 𝑃𝑔𝑚𝑎𝑥,𝑖 80 kW Proportional Coefficient 𝐾𝑗𝑑,𝑞
𝑝

1 

Rated ac Voltage 𝑣𝑑,𝑞 230 V Integral Coefficient 𝐾𝑗𝑑,𝑞
𝑖 10 

Rated dc Voltage 𝑢𝑑𝑐 800 V Voltage Controller Parameters 

Frequency 50 Hz Proportional Coefficient 𝐾′𝑗𝑑,𝑞
𝑝

10 

Component Parameters Integral Coefficient 𝐾′𝑗𝑑,𝑞
𝑖 10 

Inductance 𝐿 6 𝑚𝐻 

Resistance 𝑅 0.02 Ω 

Capacitance 𝐶𝑑𝑐 6 𝑚𝐹 

4. Modelling of EV Charging Loads

The household travel survey performed by [62] indicated that the median daily distance 

travelled for a private vehicle was 23.2 km. Therefore, for private EVs, the mean value 𝜇𝐷 

and standard deviation value 𝜎𝐷  in logarithmic probability distribution function are 

considered to be 3.2 and 0.92, respectively. These are applied to the PDF in Eq. (17) [85]. 𝑀𝑘

represents the daily travel distance of 𝑘𝑡ℎ EV, which is a random variable derived from Eq.

(17). 

𝑓𝐷(𝑀𝑘) =
1

𝜎𝐷√2𝜋
𝑒𝑥𝑝 [−

(𝑙𝑜𝑔𝑀𝑘−𝜇𝐷)
2

2𝜎𝐷
2 ] , 𝑀𝑘 > 0 (17) 

𝑆𝑜𝐶𝑘 = 1 −
𝑀𝑘

𝐷𝑘 , 0.1 ≤
𝑀𝑘

𝐷𝑘 ≤ 0.95 (18) 

All EVs need to be fully charged before the next journey starts. Given the full endurance 

mileage 𝐷𝑘 , the initial state of charge 𝑆𝑜𝐶𝑘  can be estimated by Eq. (18). As real EV

charging data is not publicly available, it is assumed that 80% of private EVs would plug in 

the chargers from 07:00 to 09:00 and from 16:00 to 18:00; the remaining 20% will be 

recharged evenly across working hours 09:00 to 24:00. In Eq. (19), it is assumed that each 

EV immediately starts charging once plugged in at time 𝑡𝑖𝑛
𝑘 . Charging power 𝑃𝐶

𝑘  remains
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constant until the charging process completes at time 𝑡𝑜𝑢𝑡
𝑘 . The 𝑃𝐸𝑉,𝑡

𝑘  represents the power 

charging demand of 𝑘𝑡ℎ EV at time slot 𝑡.

{
𝑃𝐸𝑉,𝑡

𝑘 = 𝑃𝐶
𝑘,   𝑡𝑖𝑛

𝑘 ≤ 𝑡 ≤ 𝑡𝑜𝑢𝑡
𝑘

𝑃𝐸𝑉,𝑡
𝑘 = 0,      𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑚𝑒

(19) 

The parking duration 𝑇𝑘 of 𝑘𝑡ℎ EV is defined by a random function in Eq. (20). It is rounded

to the nearest integer towards infinity in the calculation. 

{
𝑇𝑘 = 5 + 𝑟𝑎 𝑑(−1,1), 𝑇𝑘 ∈ 𝑁

𝑇𝑘 > 𝑡𝑜𝑢𝑡
𝑘 − 𝑡𝑖𝑛

𝑘 (20) 

In the MCS, 𝑡𝑖𝑛
𝑘 , 𝑀𝑘  and  𝑇𝑘  are independent stochastic variables for 𝑘𝑡ℎ  EV, which are

generated from the predefined Table 4. The MCS schematic process is presented in Fig. 8, 

specifying the following steps: 

 Initiate EV modelling PDF parameters listed in Table 4

 Generate stochastic variables regarding EV charging information based on Eqs. (17)-(20)

 Aggregate EVs charging power
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Fig. 8   Schematic process of MCS for EV charging demands [85] 

5. Solution Method and Procedure

The flowchart of the proposed DPBS is generalised into steps in Fig. 9. Initially, the EV 

charging data is obtained from the MCS specified in Section IV. Then, the targeted EV fleets 

are distributed into three feeders within the typical distribution network. Next, two case 

studies specified in Table 3 are carried out to test the robustness and effectiveness of the 

control schemes in DPBS. 

Case study 1: a basic charging scenario consisting of 200 EVs within three feeders. 
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Case study 2: case study 1 plus the installation of a 73 kWp PV system in feeder 1. 

Table 3 Considered Case Studies for DPBS 

Case Studies Feeder 1 Feeder 3 Feeder 3 

1 80 EVs 80 EVs 40 EVs 

2 
80 EVs Plus 

73 kWp PV 
80 EVs 40 EVs 

Update Step 1

Distribute the EVs into three Feeders

Update Step 2

Execute uncontrolled load flow and update 

network parameters

Verify and Save Step

Save the results of both case studies

End

Start

Solution Step 1

Execute the DPBS control scheme into the 

case study 1 and review results

Solution Step 2

Execute the DPBS control scheme into case 

study 2 and review results

Previous Work: Complete the Monte-Carlo 

Simulation specified in Fig. 10 and 11  [1],

EV charging demands modelling

Fig. 9   Flowchart of implementation of the DPBS into the distribution network 
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6. Results and Discussion

The temporal distribution of the 200 EVs’ charging profile is conducted in MCS. The PDFs 

defined in Table 4 are extracted from statistic data [62] to generate EV charging data. All 

results are rounded to the nearest 15 minutes' time slots towards infinity in the calculation, 

as it is easy to split 24 hours into 96 slots, and the time step is appropriate for recording 

vehicle parking events and PV generation. 

As shown in Fig. 10, the charging profile of 200 EVs generated in MCS reveal that 

coincidental charging behaviours normally happen in the early morning and evening. 

According to the statistics in [62], private EV drivers prefer to recharge their vehicles during 

the early on-work and off-work period. The detailed charging durations are displayed in Fig. 

11. The Gantt chart records the charging and parking durations of 200 EVs by red and green

bars respectively. Based on usual driving habits, charging times only take up a minor fraction 

of the total parking duration. 

The typical daily PV generation data is considered in case study 2 to validate the effectiveness 

of the DPBS. The realistic daily generation curve was gathered from a 73 kWp PV plant 

located in the University of Queensland, St Lucia campus (GP South), Australia [146]. As 

presented in Fig. 12, the PV generation peaks at nearly 50 kW around midday. The sharp 

power drop may be caused by clouds floating through the air. 

The 200 EVs are randomly distributed into three feeders by three groups 80, 80 and 40 

respectively. Whenever an EV is connected to the charger at time 𝑡, it will start the charging 

process immediately until 𝑆𝑜𝐶𝑘 reaches 100%. The aggregated charging power curves are

recorded in Fig. 13. Without installation of the DPBS, the identical numbers of EVs plugged 

in feeders 1 and 2 result in peak demands of roughly 230 kW. In the same periods, feeder 3 
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with 40 EVs makes its highest power point slightly below 100 kW. The red dashed line 

represents the power curves of feeder 1 in case study 2, which involves 80 EVs plus a 73 

kWp PV generation system. As shown in Fig. 13, the additional PV generation reduces the 

peak power demand, to approximately 150 kW at 9:00, and feeds excess power into the grid 

from 10:00 to 15:00. 

 

Fig. 10   Scatter plot between EV plug-in time and initial SoC 

 

Table 4 Charging Parameters of EVs in MCS 

Plug-in 

Period 

Charging 

Power 

(𝑘𝑊, 𝑃𝐶
𝑘) 

Probability 
Initial 𝑆𝑜𝐶𝑘 

Distribution 
Plug-in time 𝑡𝑖𝑛

𝑘  

07:00~09:00 6.6 40% 

Equation (17) 

based on log N 

(3.2,0.92) 

N(8,0.5) 

16:00~18:00 6.6 40% N(17,1) 

09:00~24:00 11 20% 
Even 
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Fig. 11   EVs’ charging information in Gantt Chart 

 

Fig. 12   Typical power generation curve of a 73kWp PV system [146] 
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The comparison of power curves demonstrates the power imbalance issue in feeders 1 and 2, 

and their corresponding transformers. With identical numbers of EVs and chargers being 

allocated, the resultant power curves have diverse shapes regarding peak power points and 

fluctuations. Such variation may become apparent if more EVs and charging spots are 

considered. In the case of 250 kVA transformers in feeders 1 and 2, the load factors almost 

reach as much as 90% without installation of the DPBS. 

The load profiles of both case studies in Fig. 13 are imported into MATLAB/Simulink 

package. To do so, the 24-hour time horizon is mapped into 1 second in the Simulink 

environment. Then, two case studies are simulated with DPBS installed. Fig. 14 depicts the 

resultant charging power curves among the three feeders. Under the P-Q control scheme, 

feeders 1 and 2 illustrate almost the same variance and smooth effects on power curves. By 

comparing Fig.13 with Fig.14, it is clear that the peak power point drops from 230 kW to 

around 200 kW in both case studies. More importantly, when PV generation reaches spur 

power output, the renewable power is consumed locally in Fig. 14(b) rather than being fed 

into the grid in Fig.13. As all transformers have the same installed capacity of 250 kVA, the 

resultant power curves should be nearly identical according to the P-Q control schemes (see 

Fig. 14).  

It can be seen from Fig. 15 that the transferring powers of VSC1 and VSC2 play an important 

role in balancing power consumptions within feeders 1 and 2. As presented in Fig. 14, feeder 

2 experiences 60 kW more power demand than feeder 1 from 8:00 to 10:00. The controllers 

then assign reference power commands 𝑃𝑔1
∗  at around 30kW for VSC1 and 𝑃𝑔2

∗  at about -30

kW for VSC2, which means that the VSC2 is transferring the extra 30 kW load to VSC1 

through the dc-link spanned across corresponding LV buses. The transferring power aims to 

compensate for the unbalanced EV charging loads among feeders 1 and 2. In the early 
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evening between 17:00 and 20:00, the transferring power flows in the opposite direction, 

from feeder 1 to feeder 2 to balance out the higher EV charging demand in feeder 1 (see Fig. 

15).  

The functionality of VSC3 in feeder 3 is to regulate capacitor voltage. It draws roughly 20 

kW from the grid to maintain the dc voltage at 800 V (see Fig. 16). The voltage and current 

waveforms among feeders 1-3 under the DPBS are presented in Fig. 17. The resultant 

waveforms demonstrate that the currents keep precise track of the reference values assigned 

by P-Q and voltage controllers in the DPBS. 

Fig. 13   Power curves without installation of the DPBS 
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(a) 

 

(b) 

Fig. 14   Resultant power of feeders with installation of the DPBS: (a) case study 1 and (b) 

case study 2 
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(a) 

(b) 

Fig. 15   Resultant power transition of VSCs via the dc-link: (a) case study 1 and (b) case 

study 2
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Fig.16   Voltage waveforms of dc-link in case study 2 

 

Fig. 17   Voltage and current waveforms among the three feeders in case study 2 
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7. Conclusions

In this paper, the proposed DPBS is presented to solve the dynamic power imbalance 

problem that originates from the integration of EVs and PV. The imbalanced power flow 

among adjacent feeders is investigated by modelling EV charging loads and PV 

generation into the distribution network. The aggregated EV charging loads are 

implemented in MCS, taking into account several factors that may affect the load profile. 

Two elaborate case studies are adopted in the simulation in an attempt to demonstrate the 

effectiveness of the proposed control scheme. In case study 1, the peak charging demand 

as a result of the coincidental EV charging behaviours has been mitigated by the DPBS. 

At the same time, the power flow in feeders 1 and 2 is well managed to share fluctuation 

and unbalanced power, so as to smooth the power consumption curves. Furthermore, case 

study 2 demonstrates that the excess PV power could be consumed locally to charge EVs 

instead of being injected back into the network. With the DPBS installed, the bidirectional 

power flow is observed between the VSCs to transfer excess power to where it is needed. 

The effectiveness and robustness of the P-Q and voltage control schemes are verified in 

the two case studies. The simulation results validated that the coordinated control scheme 

achieves proper operation in the typical distribution network. 

The proposed DPBS is installed as additional components to the existing distribution 

network to minimise network reinforcement. It provides a potential upgrading solution 

for conventional LV radial network. The control scheme could be used in the grid to adapt 

to the possible appearance of the imbalanced power in the future. 
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Chapter 5  Conclusions and Future Work 

1. Introduction

This chapter concludes the thesis, outlines the contributions of this research and also 

discusses future work. The goal of this thesis was to investigate the optimisation and 

control techniques that could be applied to distribution networks to better manage EV 

charging loads. Elaborated scheduling strategies and control schemes were proposed to 

solve EV integration issues regarding both technical and economic aspects. First, Section 

5.2 summarises the conclusions and contributions made in this study. Second, Section 5.3 

discusses the future work needed to enable the adoption of EVs integration. Finally, 

Section 5.4 summarises the research statement of this study.  

2. Conclusions and Contributions

In order to obtain the smart management of EV charging loads, it is vital to gain a 

comprehensive understanding of charging behaviours and desired control targets. The 

design process of scheduling strategies and control schemes have been conducted step-

by-step in a research pathway, where it begins with modelling of large-scale EV charging 

loads, smart scheduling strategies, and then the control schemes for DPBS.  

The following contributions have been made in this thesis: 

(1) In manuscript 1, a large-scale EV charging model was built to fill the gap in cross-

sector analysis (transport and energy sectors) regarding the temporal distribution of

charging behaviours and charging strategies. The modelling technique made use of

MCS to estimate aggregated EV charging loads considering randomness and

heterogeneity based on transportation statistics data. In this way, the problems of

uncertainty regarding distribution network planning with the integration of EVs were

addressed. The randomness and heterogeneous characteristics were detailed by the
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proposed methodology. A case study consisting of four main EV fleets was carried 

out to test the effectiveness of non-smart and smart charging strategies regarding the 

impact of peak-shaving and valley-filling. The results demonstrated that the peak 

power points caused by the coincidence of EV charging demands were mitigated by 

the proposed coordinated charging strategies. These targeted EV fleets were 

rescheduled to flatten the load curve to enable the postponement of the investment 

into network reinforcement. 

(2) Manuscript 2 developed an online economic scheduling strategy according to 

manuscript 1’s model, which could be used to coordinate energy trading between 

DNOs and EVs for a win-win ecosystem. The proposed online EV scheduling strategy 

enabled the plug-and-play system to optimise the aggregated EV charging parameters, 

i.e. charging power and charging costs. As a result, both EVs and DNOs that 

participated in the energy market can benefit from the proposed rolling horizon 

scheduling strategy by satisfying cost-effective goals. The online scheduling results 

based on the proposed tariff demonstrated that the interaction between price-based 

signals and charging behaviours is a key factor in the effectiveness of peak load 

shifting under market mechanisms. The rolling prediction of wholesale electricity 

prices offered a certain level of perception to the proposed charging strategy to make 

proper decisions on opportunity charging.  

(3) A novel control scheme was proposed in manuscript 3 to cope with the dynamic 

power imbalance issue that was derived from the integration of EV and PV in 

distribution networks. The control scheme was deployed in the DPBS to regulate 

bidirectional power flow among adjacent feeders with EV chargers and PV generation 

installed. The power transfer of EV charging loads and PV generation was performed 

through three tie-line VSCs installed in corresponding feeders. This enabled the 

suppression of power deviations and peak demands within a threshold level within 
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network operation limits. The proposed DPBS made use of multiple control schemes 

(P-Q and voltage control) to drive VSCs to mitigate the dynamic power imbalance 

issue so that excess PV power could be consumed locally to charge EVs instead of 

being injected back into the network. At the same time, the power flow among feeders 

was well managed to share fluctuation and unbalanced power so that the power 

consumption curves were smoother. The effectiveness and robustness of the proposed 

control scheme were verified by the two case studies. Simulation results validated that 

the coordinated control scheme achieves proper operation in the typical distribution 

network. The proposed DPBS provided a potential upgrading solution for 

conventional LV radial networks to adapt the possible appearance of power imbalance 

in the future. 

3. Future Work

Based on the limitations of the current study, the following recommendations are made 

for the consideration of future study related to this subject area. 

3.1 EV data analysis 

This research makes use of ICEV travelling data to investigate EV travelling and charging 

demands because the realistic data of EV usage is not publicly available due to privacy 

concerns. To make a more realistic assumption, realistic EV charging data needs to be 

obtained to analysis charging behaviours. This requirement highlights the importance of 

data acquisition. It could be periodically retrieved from the real-time status information 

of each charger. Big data technology could be used in both the power and transport sectors 

to collect EV parking, travelling and charging data. After combining a variety of statistical 

and machine learning techniques to understand the demand pattern of electric vehicle 

charging, they can be used to develop policies for siting charging stations, evaluating the 

capability of the power grid and determining the market value for the services provided 

for EVs. It would be interesting to engage with leading stakeholders in the transport and 
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power sectors to collaborate on EV data so that all participants can reap the societal 

benefits of future EV uptakes identified by the government.  

3.2 Vehicle-to-Grid (V2G) 

Vehicle-to-grid (V2G) is considered one of the most advanced and valuable forms of 

smart charging in the distribution network, which further complicates the charging 

process by deploying bidirectional power flow. The focus of this research is mainly 

placed on one-way charging from the grid to the EV while ignoring the feasibility brought 

by V2G. Two-way charging allows batteries to discharge the power back to the grid when 

required, making the batteries an additional energy storage resource. The aggregated V2G 

capability could contribute to a virtual power plant (VPP) to enhance the stability of the 

power grid. With full V2G capability, EVs can potentially provide better peak-shaving 

and valley-filling as well as the possibility to control two-way charging, according to 

electricity tariffs, to gain more financial benefits for EV customers. Therefore, immediate 

future work will be developing an optimised scheduling strategy considering V2G in the 

energy trade market.  

3.3 Three-phase imbalance charging  

This research investigates the power imbalance issue among adjacent feeders because of 

the stochastic characteristic of EV charging behaviours. With the increased mixture of 

single-phase and three-phase loads, the phenomenon of voltage imbalance will be more 

severe in distribution networks. In a practical scenario, EVs as mobile single-phase loads 

will be randomly plugged in nearby residential, commercial and industrial areas where 

charging facilities are connected to either a single-phase or three-phase power supply in 

distribution networks. The three-phase imbalance problem may be further complicated 

by a massive single-phase distributed PV. It is a challenge to develop a control technique 

that could be utilised to alleviate the voltage imbalance with the integration of EVs and 

PV. 
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4. Summary

This research aimed to develop a smart charging strategy and control technique to prevent 

EVs from stressing distribution networks. It may provide insights for power system 

regulators to formulate and evaluate EV policies that will encourage EVs and distributed 

PV deployments. The possible business potential in charging services could be backed by 

various participants in the energy market. Within this Chapter, the conclusion and 

contribution of this research are provided. Furthermore, possible future work in 

continuum with this research are suggested. 
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