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Abstract. The paper presents a novel clustering method for dynamic Spatio-

Temporal Brain Data (STBD) on the case study of functional Magnetic 

Resonance Image (fMRI). The method is based on NeuCube spiking neural 

network (SNN) architecture, where the spatio-temporal relationships between 

STBD streams are learned and simultaneously the clusters are created. The 

clusters are represented as groups of spiking neurons inside the NeuCube’s 

spiking neural network cube (SNNc). The centroids of the clusters are predefined 

by spatial location of the brain data sources used as input variables. We illustrate 

the proposed clustering method on an fMRI case study STBD recorded during a 

cognitive task. A comparative analysis of the clusters across different mental 

activities can reveal new findings about the brain processes under study. 

1 Introduction 

The human brain is acting as a complex information processing machine [1], [2], that 

processes information throughout communications between billions of neurons. In 

order to analyse STBD, suitable models are needed to trace such complex patterns and 

to understand mental processes that generate the data. In this paper we use the NeuCube 

framework [3] as a rich model for modelling and understanding of STBD. We propose 

a new method for dynamic clustering of STBD in a NeuCube model and illustrate it on 

fMRI data. 

2 The Proposed NeuCube-Based Spiking Neural Network 

Methodology for Learning, Visualisation and Clustering of 

STBD 

2.1 Spiking Neural Networks for Modelling STBD 

Spiking neural networks model operation is based on neuron synaptic states that 

incorporate spiking time. SNNs have become popular computational methods for 
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complex spatio/spectro temporal data analysis [3]. Their neuromorphic highly parallel 

hardware implementations are advancing very fast [4].  

2.2 The NeuCube Architecture [3] 

NeuCube is an evolving spiking neural network (eSNN) architecture for STBD 

learning, modelling, knowledge extraction, and for the analysis of the brain processes 

that generated the data [3]. The NeuCube architecture consists of several modules: 

An Input encoding module for transforming spatio-temporal data into spike trains; A 

3D SNN cube (SNNc) module for unsupervised learning of STBD; An output 

classification/regression module for supervised learning of data; Optimisation module; 

Visualisation and knowledge extraction module. Based on the NeuCube architecture 

we propose here a new clustering method schematically represented in Fig. 1. 

2.3 3D Dynamic Neuronal Clustering in a NeuCube SNN Model   

The proposed STBD clustering method includes the following steps: 

Step 1: STBD recording, i.e. for a given problem, relevant STBD is recorded. 

Step 2: STBD encoding and mapping into a 3D SNNc as part of a NeuCube model. 

Step 3: Unsupervised learning in the 3D SNNc and cluster evolution based on the 

spiking activity and connectivity in SNNc. 

Step 4: Analysis of the connectivity of the trained 3D SNNc as dynamic spatio-

temporal clusters of the STBD. 

Step 5: Mapping SNNc clusters into brain regions. 

Step 6: Functional analysis of the dynamic interaction between SNNc clusters to 

understand brain functional dynamics. 

At Step 2, STBD is encoded into spike trains using an appropriate encoding 

algorithm such as Threshold-Based Representation method (TBR). The spike trains are 

then entered into a 3D SNNc which is created with a suitable size to map the brain 

template relevant to the data, such as Talairach [6], MNI [7], or voxel coordinates of 

individual brain data. Input neurons are allocated in the SNNc to enter input variable 

spike trains. The SNNc is initialised using a small world connectivity rule [7].  

At Step 3, spike trains are learned in a SNNc using Spike-Timing Dependent 

Plasticity (STDP) learning rule [8]. During the learning procedure, spatio-temporal 

relationships within data are captured in the form of evolving connection weights and 

simultaneously neurons are clustered into homogeneous groups with respect to the 

neurons’ activation similarity. Formation of the clusters is based on the intensity of 

spike communication within the SNNc as a similarity measure. The similarity measure 

is not only based on the spatial information of the data, but also on the temporal 

similarity as spike-time relationships. The results are dynamic 3D clusters containing 

the most evoked neurons by the corresponding cluster’s centroid. The clusters represent 

spiking neurons with similar spiking activity at each time, reflecting dynamic spatio-

temporal brain processes. The proposed clustering method differs significantly from 

the existing methods for clustering, such as evolving clustering (e.g. DENFIS [9] which 



method deals with static data and no temporal relationships between input vectors are 

learned) or self-organising maps [10]. 

3 Application of the Proposed Method on a Benchmark fMRI 

STBD  

To demonstrate our clustering method, the known STAR/PLUS fMRI data [11]  is used 

to study how neurons in the SNNc are clustered based on the spatio-temporal similarity 

measure of the neurons’ activation against different sentence polarities. 

3.1 fMRI Data Acquisition Description 

In STAR/PLUS fMRI data, the whole brain volume is recorded every 500 milliseconds, 

while a cognitive task (pictures/sentences stimuli matching) performed by a subject. 

When the subject reads a sentence, the brain activity patterns are performed differently 

depending on the sentence polarity (affirmative vs. negative). In this experiment, fMRI 

STBD is divided into two time series corresponding to the two classes: Class 1, reading 

affirmative sentences; Class 2, reading negative sentences. In this study, the most 

activated voxels against sentence stimuli are selected using Signal-to-Noise Ratio 

(SNR) feature selection as reported in Table I. 

Table 1. The more activated ROIs are presented in decreasing order of SNR values. In bracket 

is the number of voxels located in every region 

Activated brain region (number of selected voxels) 

1 'LT' (3)      4 'LDLPFC' (6) 7 'RDLPFC'(1) 

2 'LOPER' (3) 5 'RT'(2) 8 'RSGA' (1) 

3 'LIPL'(1) 6 'LSGA'(1) 9 'RIT'(1) 

 

Fig. 1. The steps performed as part of the STBD clustering procedure 



3.2 fMRI Data Mapping, Learning and Visualisation in a SNNc  

The whole fMRI set of voxels is spatially mapped into the SNNc. The spatio-temporal 

patterns of the 20 pre-selected voxels are encoded to sequences of spikes using TBR 

and later transferred to the SNNc via 20 spatially allocated input neurons. During the 

NeuCube training, the post synaptic potential of each neuron  𝑛𝑖   at time t, PSPi(t),  

increases by every input spike received from all pre-synaptic neurons [12]. Once the 

PSPi (t) exceeds a firing threshold, neuron  𝑛𝑖  emits a spike. Based on the STDP 

learning rule, if neuron  𝑛𝑖  spikes first and then  𝑛𝑗 spikes, the connection weight 

between these neurons increases, otherwise it decreases. After the NeuCube 

unsupervised learning is completed, the spatio-temporal relationships between fMRI 

input streams are reflected on the created neuronal connections (Fig. 2). These 

connections are generated differently for each of the two stimuli revealing the fact that 

the subject is performing differently when processing affirmative versus negative 

sentences. Fig. 2 shows that more and stronger neural connections are created in the 

left hemisphere (LDLPFC and LT) than in the right hemisphere (RDLPFC and RT) 

while reading negative sentences. 

 

Fig. 2. Mapping of 5062 fMRI voxels to the SNNc and the spatio-temporal connections which 

evolved around 20 input voxels against affirmative /negative sentence presentation. Blue lines 

represent positive connection weights while red lines represent negative weights. The brighter 

the colour of a neuron, the stronger its activity is with neighbouring neurons. Thickness of the 

lines also identifies the neuron’s enhanced connectivity. (a) 3D visualisation of the initial 

connections before the NeuCube training process; (b) Connections after the NeuCube training 

process; (c) 2D visualisation of the spatio-temporal connections after the NeuCube training 



3.3 Dynamic Cluster Evolution in a NeuCube Model on the fMRI Case Study 

STBD  

During the learning procedure, 3D neuronal clusters are evolved when new input fMRI 

vectors are entered and learned in the SNNc. Step-wise visualisation of the clusters 

evolution reveals differences of spike-time relationships between fMRI voxel activity 

patterns against sentence polarities. Fig. 3 shows the process of cluster creation over 

time for 16 selected time points during unsupervised learning of fMRI data.  
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Fig. 3.  (a) Step-wise visualisation of the dynamic neuronal cluster evolution corresponding to 

20 voxels, while the subject was reading affirmative sentences. The first neuronal cluster is 

created at the 3rd time frame of the fMRI data during the unsupervised learning in a SNNc and is 

associated with the RDLPFC brain region; (b) Dynamic neuronal cluster evolution while the 

subject was reading negative sentences. The first neuronal clusters are created at the 3rd time 

frame of the learning procedure associated with the RDLPFC and LOPER brain regions 



During the NeuCube learning, there are step-wise changes in the evolution of the clusters. When 

a SNNc was training with fMRI data of affirmative sentences, the first produced clusters 

corresponded to the RDLPFC brain region after the 3rd fMRI time frame was learned. In the case 

of negative sentences, the first created neuronal clusters related to RDLPFC and LOPER regions 

and were created after the 3rd fMRI data frame was learned. Fig. 4 illustrates how the size of the 

cluster is changing in terms of the number of neurons belong to each cluster.  

 

Fig. 4. Changings of the neuronal cluster size during their creation in the NeuCube SNNc while 

training on fMRI STBD against (a) affirmative versus (b) negative sentences 

4 Conclusion 

In this study, a generic SNN methodology was proposed as a novel method for 3D 

dynamic neuronal clustering of STBD. The method is based on the following scheme: 

Brain processes STBD 3D NeuCube model creation  3D NeuCube model 

clustering  Analysis of STBD  Analysis of spatio-temporal brain processes. 



The method is illustrated on a benchmark fMRI STBD. The clustering procedure 

uses STDP learning rule as part of unsupervised learning in a 3D SNN NeuCube -based 

model. The proposed method for dynamic clustering of STBD is illustrated on fMRI 

data, but can be applied on EEG and other STBD to study dynamic functional processes 

in the brain during cognitive tasks.     
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