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Abstract 

 

 This thesis is a feasibility study of using a Spiking Neural Network (SNN) architecture 

named NeuCube for the classification of electroencephalography (EEG) data related to 

the perception of art. We have performed classification of human brain perception EEG 

data obtained via a set of experiments on originally created audio, video, and audio & 

video mixed stimuli. The analysis of results confirms that the proposed method is 

feasible for further analysis and experimentation, and for the study of art perception and 

creativity.    

Massive amounts of complex Spatio-Temporal Brain Data (STBD) have been 

accumulated recently. As it is critical in many disciplines to rely on proper analysis, 

understanding and utilization of complex spatio-temporal brain data, such as that from 

an EEG, this is a great challenge which this study seeks to contribute to. In this study, 

for classification purposes, a new evolving Spiking Neural Network (SNN) architecture 

called NeuCube will be used. NeuCube is the latest neuroscience software tool 

developed at KEDRI, AUT, for spatio- and spectro -temporal pattern recognition of 

brain data, for the creation of concrete models to map, learn and understand STBD. A 

NeuCube model is based on a 3D evolving SNN that is an approximate map of 

structural and functional areas of interest of the brain related to the modeling of STBD. 

An evaluation of feasibility of NeuCube for classification of Spatio-Temporal EEG 

brain perception data is performed in this study.  

  An authentication methodology is proposed and illustrated on several small-scale 

examples of classification of EEG human brain perception data collected on audio and 

visual stimuli pairs. A methodology for person identification is proposed that uses a 

certain audio and/or video stimulus as a “security key” for the authentication process. 

The stimuli pairs used for experiments in this study were created the following way; an 
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audio pair is highly structural classical music versus disordered / chaotic noise, a visual 

pair is a set of opposing structural repetitive archetypical video patterns from an abstract 

modern art video, and also mixed audio/video pairs are used. The term of “brainprints” 

is offered by the analogy with fingerprints and prospectively having the ability to supply 

similar functionality but with an even higher level of security.  

In addition the following hypotheses on the nature of human creativity are proposed in 

this study: human creativity might be defined as naturally inherited human ability and 

necessity to decipher, digest and transfer the universe global programme (human-

independent) into patterned structures, expressed in some unique distinctive way. 

Therefore the concept of a genius might be defined as human ability to decipher and 

translate “global universe postulates” into human-readable patterns, performed the best 

possible way for the majority of a certain population. 
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Chapter 1  
 

 

 

 

 

 

                                     Motivation 

and objectives of the study  

 

 

1.1 Significance of brain study for the contemporary world 

and its modern challenges 

 

 

The brain is the most mysterious and little-understood organ in the entire human body. 

It monitors and controls everything that happens inside our bodies and it's the source of 

our thoughts, emotions and our memories. Therefore, it's responsible for every 

conscious and subconscious effort or activity we make. It's our supercomputer and we 

must know how it works. 

Studying a human brain taken separately is similar to studying a cell isolated from its' 

surroundings in a body: the picture is too small and the knowledge is too limited for full 
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understanding. In modern individual-oriented society we seem to have forgotten the 

critical fact of mutual dependency of all human beings; an individual isn't capable of 

surviving alone but needs to live in a community. The belonging to a community 

network, the necessity of receiving, processing and transmitting information is vital to a 

human. To understand ourselves, as to who we are, we have to explore and study the 

human network and research its rules and principles. This global networking research is 

extremely complex and arguably infeasible due to the level of abstraction a single 

researcher should possess.  

The amount of various data, which should be collected and analyzed, is enormous and 

the time frame for experimentation would exceed an average human lifetime. But the 

network that is always with us and ready to be explored, is the human brain network. 

When a developing fetus is only four weeks old, brain cells form at a rate of a quarter-

million per minute [3]. The latest study [2] shows that the average human brain has on 

average 86.1 ± 8.1 billion (86.1 x 10
11

) neurons. The number of connections for a 

neuron can range from 1000 to 200000 [1].  Eventually, billions of neurons will interact 

and form trillions of connections. This tremendous human brain network might be just a 

fractal “neuron” of the global network and may be governed by the same rules. Many 

questions might be answered in a variety of science fields from neuroscience and 

microbiology to macro sociology with an increased understanding and modelling of the 

human brain network. 

Human brain networking processes may be used as a reference network model in 

analyzing and better understanding of functioning of a human society network on each 

level starting from a family, or a «nuclear» network through community level network. 

This knowledge might then be generalized for studying of processes underlying 

formation of nationalities and nations networks. Following the fractal theory idea we 

may assume that deeper research into human brain networking would finally bring us to 
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the root question of human self-identification and will fill us with new knowledge and 

deep understanding of our own being. 

 

 

1.2 Definition of a human brain perception  

 

Coming back to the Earth and to the current study, the key factor in the study of human 

abilities to receive, process and transmit information is a phenomenon of human brain 

perception. This phenomenon will be the major object of this study. 

We have to mention that a study of perception shouldn't be taken in isolation. Instead it 

is interesting for us and should be considered as a part of a complex problem of the 

definition of a notion of intelligence. This is widely considered as the main feature 

characterizing and defining a human or if being more precise, a homo sapience.  

Perception is defined in literature as the organization, identification, and interpretation 

of sensory information in order to represent and understand the environment [4], as the 

ability to learn or understand things or to deal with new or difficult situations [7]. 

Perception is not the passive receipt of nervous system signals, but is shaped by 

learning, memory, expectation, and attention [5] [6]. Intelligence is defined as a very 

general mental capability that involves the ability to reason, plan, solve problems, think 

abstractly, comprehend complex ideas, learn quickly and learn from experience [8].  

The key points in the above mentioned definitions is the notion of learning; so ability to 

learn is considered as the core characteristic of intelligence. To understand the main 

principles of human intelligence, we have to discover the mystery of human ability to 

learn, and the research of human brain perception is the essential part of that. 
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The whole field of science that we call artificial intelligence (AI) was founded more 

than half a century ago, on the claim that a central property of humans, intelligence, can 

be precisely described and therefore can be simulated by a machine [9]. 

This arguable statement has been criticized vigorously since then, but now AI has 

become an essential part of the technology industry and helps solve many of the most 

difficult problems in computer science [10][11][12]. Still the central goals of AI 

research include reasoning, knowledge, planning, learning, communication, perception 

and the ability to move and manipulate objects [10]. Contemporary technologies allow 

us to make another qualitative step on this way. Here we may detail the objectives of 

this study. The main purpose is using the newest neuroscience software tool to explore 

experimentally the brain data of human perception. Primarily (and as the first step) the 

classification of the experimentally obtained brain perception data will be targeted. 

In the later stages of the proposed research and if the stage of qualitative collection of 

experimental data is successful, further steps of more detailed comparative research are 

to be undertaken. 

 

1.3 Reasoning for the original stimuli used in the 

experiments  

 

Attempts to describe the phenomenon of human intelligence has brought us to the 

concept of learning which is, in turn, revealing the problem of transmitting or passing 

from one generation to the future generations the information blocks which were 

carefully collected and saved. Our point of interest in this area is to understand the role 

of art in this enigmatic process. 
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The specific audio and video stimuli for experiments were prepared to represent specific 

aspects of human art and in particular to represent the hypothesis of the patterned nature 

of human inspiration and creativity and the hypothesis of information coding nature of 

human creativity, fig.1.3.1. 

Fig.1.3.1 Screenshots of the video stimuli, (a) Natural snowflake, (b) Tibetan mandala 

 

 

 Human art objects might be considered as products of non-verbal, and moreover, as 

pre-verbal coding systems with core objectives of transferring highly important 

information between generations and across generations. The transferred information is 

not part of any linguistic system. The origin of that information lays deeper, it is pre-

linguistic and is supposed to be available for absorption by any human community, 

despite their specific language and religion beliefs. The information is encoded as 

repetitive archetypical symbols (see the appendix A), which persistently exists in almost 

every known culture starting from very deep historical layers. Paradoxically, the same 

symbols have appeared recently with the current era of technological development 

which we suppose, had not been reached by our predecessors and ancestors. An 

unanswered question is how they could generate the patterns, which later on were 

reproducing and repeating through the centuries, the hidden meaning of which we 
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probably have just started to understand? The full understanding of the origin of this 

information is only possible via complete understanding, deciphering and interpretation 

of key postulates encoded inside of the repetitive archetypical symbols of human art. 

Considering art objects from this perspective, we may find a new meaning in such 

categories of art as colour (a certain frequency waves), sound (again a certain frequency 

sound waves), rhythm (time dependence of both mentioned above categories), shape, 

and such philosophical notion as harmony that bond together all the categories. 

Harmony might be defined then as a coded structure, derivative product of the universe 

programme running on the principles given as “global variables” with “read only” or 

“strictly limited” human access. Human creativity might be defined as the ability to 

decipher, digest and transfer the mentioned above running global programme product in 

his or her unique manner. When we are talking about a human ability to receive, process 

or “digest”, and transfer the universe information in some distinctive way, we mean that 

a final art object consists of two compulsory parts: the one is an information “nucleus” 

or the core content message, and another part is an additional surplus delta which is a 

unique “deciphering” manner of a certain human. A theory of a surplus element of an 

art object was declared first by the famous avant-garde artist and philosopher K. 

Malewitsch [13]. The more universal and digestible this deciphering implementation, 

the closer he and his works match the definition of a genius. 

To reflect the declared hypothesis, three sets of audio and video stimuli were composed. 

The first visual stimulus consisted of ancient human art patterns (repetitive patterns of 

ancient Tibetan mandalas [14], one of them is shown in fig.1.3.1(b)). The second 

stimulus employed the natural objects that were perpetually used as inspiration art 

models and as decoration patterns by humans (pictures of snow crystals or snowflakes 

made by professor Kenneth G. Libbrecht at CALTECH, California [15] for the Physics 

of Crystal Growth and Pattern Formation in Ice project; snowflake is a highly structural 
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repetitive pattern reproduced in a range of ancient symbols, fig.1.3.1 (a)). The third 

stimulus was composed of works of modern abstract art (works of S. Dali, A. Warhol 

and V. Kandinsky [16], fig.6.2.2 (a) (b)).  

Audio components were associated accordingly with the video components: for the first 

and the second audio stimuli we used two ingeniously structural pieces of classical 

music of 16
th

 century: music works by Johann Sebastian Bach the Ich ruf’ zu dir, Herr 

Jesu Christ (BWV 639) and the Wachet auf, ruft uns die Stimme (BWV 140). 

 The third stimulus was composed from pure unstructured industrial noise.  
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Chapter 2 
 

 

 

 

 

 

 

 

Literature review of methods of 

measuring of brain signals 

 

2.1 Introduction to the Human Brain 

 

The fundamental principles of the human brain structure and functions are briefly 

highlighted in this section.  

The human brain is divided into two hemispheres, right and left, each of those consists 

of four lobes: the frontal, temporal, parietal, and occipital fig.2.1.1 [17].  
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Fig.2.1.1. Human brain structure. 

 

The human brain has different functional areas that are spatially distributed in a 

constrained 3D space. When the brain processes information obtained through visual, 

auditory, olfactory, somatosensory, emotional or combined stimuli complex 

spatiotemporal paths are activated and patterns are formed across the whole brain, e.g. 

fig.2.1.2 [18].  

 

Fig. 2.1.2 Spatio-temporal signaling paths in the brain. 
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The cognitive functions occur mainly in the cerebral cortex, which is a thin outer layer 

of the human brain with breadth of 2-4 mm. With the assistance of brain imaging 

technologies the brain functions are precisely localized, fig. 2.1.3 [17] 

 

Fig. 2.1.3. Localization of the brain functions. 

When brain signals and brain activities are measured, the most common types of data 

collected are Spatio- and Spectro-Temporal data (SSTD). The processing of information 

by the brain involves many brain areas. The open source EEGLAB experiments and 

simulations illustrate the involvements of several large brain areas, and the sensor-space 

mixing problem fig.2.1.4 [19].  

Fig. 2.1.4 (Left) Simulation of a cm2-scale cortical EEG source representing an area of 

locally synchronized cortical surface-negative field activity, and (right) its broad 

projection to the scalp. 
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The brain activity patterns can be acquired by recording the electrical, metabolic or 

magnetic measurements of the neurons, forming what is called brain data.  

 

 

2.2 Methods for the measurement of brain signals 

 

 

When we are discussing human brain perception research, we need to fully realize what 

type of brain study should be considered for that purpose. The study of the brain has 

already yielded remarkable findings, and advances in brain research have created a 

better understanding of the way we function. But how does contemporary science study 

the brain? 

A broad spectrum of different invasive and non-invasive methods is used in the 

cognitive neurosciences. Each of these methods is used to study a different aspect of the 

brain. Each has its advantages and disadvantages and the method to be used always 

depends on the topic being studied. 

The brain can be scanned with an axial tomography scan machine which will provide a 

researcher with multilayered 3-D images. This will help to detect abnormalities in the 

brain and examine its structure and will demand a specific preparation process and 

expensive tomography laboratory. Positron emission tomography or PET scans allow us 

to see the brain's metabolic functioning in 3D images at a cellular level by injecting a 

subject with a safe dose of radioactive material. This method also demands special 

preparation procedures and a laboratory [20]. 

A researcher can use functional magnetic resonance imaging or fMRI technique to 

measure brain activity by detecting associated changes in blood flow [21]. The FMRI 

procedure is widely used both in the research and clinical world, demanding laboratory 

equipment and having ability to localize activity of grey matter to within millimeters 
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within a time window of a few seconds [21]. This time window is too large to be 

applicable to the analysis of human brain perception where we have to measure changes 

within a few milliseconds. The method which allows us to explore human brain 

perception within this reduced timeframe, is EEG or Electroencephalography. 

 

 

2.3 Advantages of EEG method  

 

Electroencephalography is the recording of electrical activity along the scalp. EEG 

measures voltage fluctuations resulting from ionic current flows within the neurons of 

the brain [22]. In clinical contexts, EEG diagnostic applications generally focus on the 

spectral content of EEG, the type of neural oscillations that can be observed in EEG 

signals. In neurology, the main diagnostic application of EEG is in the case of epilepsy 

[23]. A secondary clinical use of EEG is in the diagnosis of coma, encephalopathy, and 

brain death. A third clinical use of EEG is for studies of sleep and sleep disorders. EEG 

can also be used for the diagnosis of tumors, stroke and other focal brain disorders [24], 

and such anatomical imaging techniques as MRI and CT can solve those problems 

better due to high (<1 mm) spatial resolution. 

The derivatives of the EEG techniques such as evoked potentials (EP), which involves 

averaging the EEG activity time-locked to the presentation of visual, somatosensory or 

auditory stimuli and event-related potentials (ERPs), which refer to averaged time-

locked to processing of stimuli EEG responses are widely used in cognitive science, 

cognitive psychology, and psychophysiological research [24]. 

Despite the disadvantage of limited spatial resolution, EEG is a highly valuable tool for 

research and diagnosis, especially when millisecond-range temporal resolution is 
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required which is not possible with CT or MRI; so EEG possesses multiple advantages 

over other techniques: 

• Modern EEG systems are totally non-invasive.  

• EEG has very high temporal resolution so EEG can detect changes over milliseconds, 

which is excellent, considering an action potential takes approximately 0.5-130 

milliseconds to propagate across a single neuron, depending on the type of neuron [27]. 

Other methods, such as PET and fMRI have time resolution between seconds and 

minutes. EEG is commonly recorded at sampling rates between 250 and 2000 Hz in 

clinical and research settings, but modern EEG data collection systems are capable of 

recording at sampling rates above 20,000Hz [26].  

• EEG is relatively tolerant of subject movement, unlike most other neuroimaging 

techniques. The new methods have been presented recently for minimizing, and in some 

cases even eliminating movement artifacts in EEG data [25].   

• EEG is silent, allowing better study of the responses to auditory stimuli, which is 

extremely important for this study. 

• EEG measures the brain's electrical activity directly, while other methods record 

changes in blood flow (e.g., SPECT, fMRI) or metabolic activity (e.g., PET, NIRS), 

which are indirect markers of brain electrical activity. 

• EEG does not involve exposure to high-intensity (>1 Tesla) magnetic fields, as in 

some of the other techniques, especially MRI and MRS. 

• Hardware costs of EEG are significantly lower than those of most other techniques 

[28]. 

Regarding the EEG method in stationary conventional scalp EEG, the recording is 

obtained by placing electrodes on the scalp with a conductive gel or paste. Many 

systems typically use electrodes, each of which is attached to an individual wire. Some 
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systems use caps or nets into which electrodes are embedded; this is particularly 

common when high-density arrays of electrodes are needed fig.2.3.1 [29]. 

 

Fig.2.3.1 EEG system 

Electrode locations and names are specified by the International 10–20 system [30] for 

most clinical and research applications (except when high-density arrays are used), fig 

2.3.2. 

 

Fig 2.3.2 Electrode locations and names specified by the International 10–20 system. 
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This system ensures that the naming of electrodes is consistent across laboratories. 

High-density arrays (typically via cap or net) can contain up to 256 electrodes more-or-

less evenly spaced around the scalp. A typical adult human EEG signal is about 10 µV 

to 100 µV in amplitude when measured from the scalp [31]. 

All methods mentioned above for collecting brain data are constrained by requirements 

of laboratory environment. Contemporary cognitive-state or perceptive human brain 

research sets new challenges and demands to be non-invasive, non-intrusive, non-

tethered, and non-stop. Development of the technologies allows us to make another 

qualitative step in collecting EEG brain data. These technologies enable translation of 

laboratory oriented neuroscience research to study the human brain in real-world 

environments. Modern EEG systems are based on dry sensors and mobile/wireless 

systems for measuring neural and behavioral data from unconstrained subjects in 

ecologically valid environments fig. 2.3.3 [32]: 

Fig. 2.3.3 The EPOC Emotiv neuroheadset 
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Fig.2.3.4 High-Density Mobile & Wireless EEG systems MINDO-32 and -64 

 

These High-Density Mobile & Wireless EEG systems allow us to use real-time data 

processing, fig 2.3.4 [33]; pervasive brain or body telemonitoring with multi-tiered fog 

and cloud computing. One of the critical challenges to be addressed is designing signal-

processing techniques capable of finding statistical relationships among the variations in 

environmental, behavioral, and functional brain dynamics. Therefore methods of 

classification of EEG data represent significant challenges and are of great importance. 

 

2.4 EEG data review 

 

Brain-related electrical potentials are recorded from the scalp in EEG. The difference in 

voltage between the electrodes is measured, and due to weakness of the signal (30-

100μV) it is amplified. Current occurs when neurons communicate fig. 2.4.1. The 

simplest event is called action potential, and a discharge is caused by fast opening and 

closing of Na+ and K+ ion channels in the neuron membrane. If the membrane 

depolarises to some threshold, the neuron will “fire”. Tracking of these discharges over 

time reveals the brain activity [34].   
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Fig. 2.4.1 Action potentials transferring between neurons through synapse 

 

The EEG is typically described in terms of rhythmic activity. A German scientist Hans 

Berger, who discovered electroencephalography (EEG) about 80 years ago found that 

different electrical frequencies could be linked to actions and different stages of 

consciousness by observing subjects performing different tasks while recording their 

EEG [34]. That rhythmic activity is divided into bands by frequency. Figure 2.4.2 [35] 

and tab.2.1 show the frequency bands and their relations to the human brain wave 

activity. 

Fig. 2.4.2 Common oscillatory modes in EEG 
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Signal Frequency Properties 

Delta 1-3 Hz 

 
These waves are of high amplitude and low frequency, 

the slowest waves and occur when sleeping [36]. If these 

waves occur in the wakeful state, it is thought to indicate 

physical defects in the brain. Movement can make 

artificial delta waves, but with an instant analysis (just 

observing raw EEG records), this can be verified. It is 

seen in young children normally. 

Theta 4-7 Hz 

 
Theta waves are linked to inefficiency, daydreaming, and 

the very lowest waves of theta represent the fine line 

between being awake or in a sleep state. Theta arises from 

emotional stress, especially frustration or disappointment 

[37]. It has also been associated with access to 

unconscious material, creative inspiration and deep 

meditation. High levels of theta are considered abnormal 

in adults. This signal is normally observed in young 

children.  

Alpha 8-13 Hz 

 
This is the first wave discovered on the human brain. It 

has high amplitude. Alfa waves are associated with 

relaxation and disengagement. It emerges with eye 

closing, and attenuates with eye opening and mental 

exertion. 

Beta 14-30 Hz 

 
Beta waves are often divided into β1 and β2 to get a more 

specific range. The waves are associated with focused 

concentration and best defined in central and frontal 

areas. When resisting or suppressing movement, or 

solving a math task, there is an increase of beta activity 

[37]. Beta waves can be also called sensorimotor rhythm 

accruing when arms or hand idle. It could be associated 

with anxious thinking. In case of cortical damage this 

wave can be absent. 

Gamma >30 Hz 

 
Gamma waves are in the frequency range of 31Hz and up. 

It is thought that it reflects the mechanism of 

consciousness. The pattern is associated with alertness, 

working and motor movements Beta and gamma waves 

together have been associated with attention, perception, 

and cognition. [38]  

Tab. 2.1 Frequency bands related to the human brain wave activity. 
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Scalp EEG signals appear to be noisy because they each sum a mixture of signals 

generated in many brain areas, fig 2.4.3 [35]. Poor spatial resolution is one of the main 

constraints of EEG.  

Fig. 2.4.3 Mixture of signals 

The generation and modulation of EEG is complex and not well studied. It is 

mathematically impossible to reconstruct a unique intracranial current source for a 

given EEG signal, as some currents produce potentials that cancel each other out [39]. 

This is referred to as the inverse problem. However, much work has been done to 

produce remarkably good estimates of a localized electric dipole that represents the 

recorded currents [35]. 

The nature of the study and the set up tasks let us turn the weak point of poor spatial 

resolution of EEG into a feature that doesn’t prevent solving the problem of personal 

identification based on a personal subjects perception, on unique brainprints. A unique 

subjects background will differently activate different brain areas and will allow the 

NeuCube to build a unique network pattern, which would be possible to recognize and 

identify. As the performed experiments have shown, the person identification 

classification completed with a full set of EEG system channels and accomplished with 

full time stimuli presentation, has a higher level of classification accuracy than in 
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experiments with selected auditory and /or visual brain area channels only, with shorter 

stimuli. This fact allows us to make a suggestion that the brain data collected with the 

use of high-density EEG systems and with presentation relatively long audio/video 

stimuli will give us a more specific neural network for a certain subject and therefore 

will allow higher identification accuracy. The limitation in this case would be the 

computational feasibility or availability of computing resources. 

 

2.5 Methods of classification of EEG data  

 

The analysis of an enormous quantity of spatio-temporal brain data in a format of EEG 

that has been collected recently presents a serious challenge to researchers. To be able 

to make a new qualitative step in classification analysis it is important to understand the 

way the analysis was developed and highlight the core traditional classification models. 

The most applied method for signal processing and analysis is arguably considered to be 

the Fourier Transformation and extraction of band powers [40]. The algorithm is based 

on discrete Fourier transform (DFT) equation 4.1, and by applying that to the EEG 

signal it makes it possible to separate the EEG rhythms. (Tab.2.1). 

Definition of the DFT: 

       

And the inverse of it: 

 

The performance of the DTF is O(N
2
), but there is a more efficient algorithm called 

Fast Fourier Transform (FFT), that can compute the same result in only O(NlogN). 

k=0,…, N-1    (2.1) 

            (2.2) 
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This is a great improvement and one of the reasons why FFT is one of the favourite 

methods of analyzing EEG signals. There are several categories that cover the most 

used algorithms in classification systems, and among them are such traditional methods 

as linear classifiers, nonlinear Bayesian classifiers, nearest neighbor classifiers, neural 

networks, and a combination of classifiers [40].  We will briefly describe some of them: 

Linear Regression is a statistical approach to modelling the relationship between a 

scalar dependent variable y and some explanatory variables, fig. 2.5.1. In linear 

regression data are modelled using linear predictor functions, and unknown model 

parameters are estimated from the data. The basic form of a linear predictor 

function  for data point i (consisting of p explanatory variables), for i = 1, ..., n, is 

 

where  are the regression coefficients, weights, etc. indicating the relative 

effect of a particular explanatory variable on the outcome. Thus the model takes the 

form: 

 

where T denotes the transpose,  so that xi
T
β is the inner product  between vectors 

xi and β. 

 

Fig. 2.5.1 Linear Regression 

 

  (2.3) 

(2.4) 
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Logistic regression or logit regression is a type of probabilistic statistical classification 

model [41]. Logistic regression measures the relationship between a categorical 

dependent variable and independent variables, which are usually continuous, by using 

probability scores as the predicted values of the dependent variable [42]. An explanation 

of logistic regression begins with an explanation of the logistic function, which always 

takes on values between zero and one [43]. 

 

 

We also define the inverse of the logistic function, the logit: 

 

and equivalently:  

 

The input is the value of  and the output is . A graph of the logistic 

function  is shown in fig.2.5.2. 

 

Fig. 2.5.2 The logistic function with  on the horizontal axis and  on the 

vertical axis. 

 

(2.5) 

(2.6) 

(2.7) 
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Support vector machine (SVM) is a concept in computer science for a set of related 

supervised learning methods that analyze data and recognize patterns, used for 

classification and regression analysis [43]. The standard SVM takes a set of input data 

and predicts for each given input which of two possible classes the input is a member 

of. This makes the SVM a non-probabilistic binary linear classifier. A support vector 

machine constructs a hyperplane or set of hyperplanes, fig. 2.5.3, in a high- or infinite- 

dimensional space which can be used for classification, regression, or other tasks. 

 

Fig. 2.5.3 Only hyperplane H3 separates classes with the maximum margin. 

 

The Multilayer perceptron (MLP) is a feed forward artificial neural network model that 

maps sets of input data onto a set of appropriate outputs. An MLP consists of multiple 

layers of nodes in a directed graph, with each layer fully connected to the next one, 

fig.2.5.4. Except for the input nodes, each node is a neuron (or processing element) with 

a nonlinear activation function. The MLP utilizes a supervised learning technique called 

backpropagation for training the network [44], [45]. MLP is a modification of the 

standard linear perceptron and can distinguish data that are not linearly separable [46].   
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Fig.2.5.4 Multilayer perceptron 

Each neuron uses a nonlinear activation function which was developed to model the 

frequency of action potentials, or firing of biological neurons in the brain. This function 

is modeled in several ways, but must always be normalizable and differentiable. The 

two main activation functions used in current applications are both sigmoids, and are 

described by: 

, 

The multilayer perceptron consists of three or more layers, an input and an output layer 

with one or more hidden layers of nonlinearly-activating nodes. Each node in one layer 

connects with a certain weight  to every node in the following layer. Learning 

occurs in the perceptron by changing connection weights after each piece of data is 

processed, based on the amount of error in the output compared to the expected result. 

This is an example of supervised learning, and is carried out through backpropagation, a 

generalization of the least mean squares algorithm in the linear perceptron. 

Hidden Markov Model (HMM) is a statistical Markov model in which the system being 

modelled is assumed to be a Markov process with unobserved (hidden) states [47]. A 

HMM can be considered the simplest dynamic Bayesian network. 

(2.8) 
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The mathematics behind the HMM is closely related to an optimal nonlinear filtering 

problem/stochastic processes. Hidden Markov models are especially known for their 

application in temporal pattern recognition such as speech, handwriting, gesture 

recognition [48] musical score following and bioinformatics.  

Fig. 2.5.5 Probabilistic parameters of a hidden Markov model, x – states, y - possible 

observations, a - state transition probabilities, b - output probabilities. 

 

In the standard type of hidden Markov model, fig. 2.5.5,  the state space of the hidden 

variables is discrete, while the observations themselves can either be discrete or 

continuous, typically from a Gaussian distribution. The parameters of a hidden Markov 

model are of two types, transition probabilities and emission probabilities, also known 

as output probabilities. The HMM has a limitation when defining more than a single 

independent variable.  They can only be defined for a process that is a function of a 

single variable, such as time or one-dimensional position [49]. This limitation makes 

HMM inadequate for two-dimensional SSTD patterns.  

With regards to the combination of classifiers the interactive Matlab toolboxes have to 

be mentioned. They are: EEGLAB, created for processing continuous and event-related 

EEG, MEG and other electrophysiological data incorporating independent component 

analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and 

several useful modes of visualization of the averaged and single-trial data [35]; 
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BCILAB, an open source Matlab toolbox for Brain-Computer Interface research; and 

Source Information Flow Toolbox (SIFT). 

Independent Component Analysis. Decomposing data by ICA or any linear 

decomposition method, including Principal component analysis (PCA) and its 

derivatives (PCA is mathematically defined [50] as an orthogonal linear transformation) 

involves a linear change of basis from data collected at single scalp channels to a 

spatially transformed "virtual channel" basis. ICA makes a key assumption: that the far-

field signals produced by the cortical and non-cortical EEG sources are temporally 

distinct and, over sufficient input data, near temporally independent of one another. 

More advanced ICA approaches including complex ICA, if performed on Fourier or 

wavelet transformed EEG data at 10 Hz, might indeed be able to recover, in some cases, 

evidence of near cm-scale potential flow patterns within individual cortical alpha source 

domains. ICA is an effective method for removing stereotype data artifacts including 

eye blinks and lateral eye movements, muscle activities, electrode or line noise, and 

pulse artifacts [51], fig. 2.5.6. 

Fig. 2.5.6 Fifteen seconds of EEG data at 9 (of 100) scalp channels (top panel) with 

activities of 9 (of 100) independent components (ICs, bottom panel). While nearby 

electrodes (upper panel) record highly similar mixtures of brain and non-brain activities, 

ICA component activities (lower panel) are temporally distinct. 
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BCILAB is an EEGLAB plugin for the design, prototyping, testing, experimentation 

with, and evaluation of Brain-Computer Interfaces (BCIs), and other systems in the 

same computational framework [35]. Most of BCILAB's functionality is contained in 

(plugin) components, of which there are five types. Most plugin types reside in their 

own directory and are automatically identified and loaded by BCILAB.  

Signal Processing components are implemented as single MATLAB functions that 

translate input signals into output signals; they can be adaptive or static, linear or non-

linear, causal or non-causal, they can operate both in real time or offline, and on 

continuous or epoched data - thus they can implement arbitrary processing, as long as 

the inputs and outputs are both signals. Signals are represented as extended EEGLAB 

datasets. The majority of signal processing components serve to filter the input signals 

(e.g., spatially, spectrally, or in time), thereby discarding unwanted information and 

"amplifying" information of interest, i.e., improving the signal/noise ratio of the data. 

Other filters may implement more specialized processing, such as re-representing the 

data in a more interpretable basis (ICA, sparse reconstruction, or the Fourier transform). 

Feature extraction components take off where signal processing ends. They accept 

epoched or continuous signals and output sequences of feature vectors, thereby 

transforming segments of data into some abstract domain (referred to as the feature 

space). Feature extraction often simplifies the data and can drastically reduce its 

dimensionality. The processing may be static or adaptive, and, if adaptive, it frequently 

uses information about the value of the variables to be predicted (called supervised 

learning). Typical algorithm choices are certain simple mathematical transformations 

(e.g., PCA, wavelet decomposition, etc.).  

Machine learning components come in two parts, one to learn a predictive model from 

some data, and the other to apply a previously learned model to data, in order to make 

predictions. The learning function ultimately summarizes the data (the pre-processed 
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example data gathered in the calibration session). BCI paradigm components are 

MATLAB functions that tie together all stages of a BCI approach, including any signal 

processing, feature extraction, machine learning functions, as well as their default 

parameters or allowed parameter ranges, fig. 2.5.7 [52]. 

Fig. 2.5.7. EEGLAB BCI tool. 

Source Information Flow Toolbox (SIFT) is an EEGLAB-compatible toolbox for 

analysis and visualization of multivariate causality and information flow between 

sources of electrophysiological (EEG/ECoG/MEG) activity [53]. It consists of a suite of 

command-line functions with an integrated Graphical User Interface for easy access to 

multiple features. There are currently four modules: data preprocessing, model fitting 

and connectivity estimation, statistical analysis, and visualization. 

Methods currently implemented include: Preprocessing routines; Time-varying 

(adaptive) multivariate autoregessive modeling (granger causality; directed transfer 

function (DTF, dDTF); partial directed coherence (PDC, GPDC, PDCF, RPDC); 

multiple and partial coherence; event-related spectral perturbation (ERSP) etc); 



41 

 

Bootstrap/resampling and analytical statistics; a suite of programs for interactive 

visualization of information flow dynamics across time and frequency (with optional 3D 

visualization in MRI-coregistered source-space), fig. 2.5.8. 

Fig. 2.5.8 Still images of SIFT 3D visualization / brainmovie. 

 

  

2.6 Summary 

 

The nature of EEG brain data is spatio- or spectro- temporal and it is an extremely 

difficult task for machine learning to analyse the data successfully. Another feature 

which is especially problematic for analisys is the tight correlation between spatial and 

temporal components of the SSTD. As mentioned above, traditional methods of EEG 

data analysis have been widely used but with limited success [54] for the classification 

of EEG data [40, 55, 56, 57]. This gives priority to either the spatial-, or the temporal 

component of the data, but does not take into account their dynamic interaction. In 

addition, they were able to accommodate multimodal STBD and prior information about 

the source of this data. 

As there are no universal traditional classification methods for EEG brain data analysis, 

the new techniques, inspired by nature, should be explored further. 
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Chapter 3 
 

 

 

 

 

 

Introduction to SNN 

 

3.1 What is ASNN? 

 

The first artificial neural network (ANN), which is a computational mathematical model 

that is capable of machine learning and pattern recognition, was defined by its first 

inventor Alexander Bain [58] in 1873 in his book “Mind and Body. The Theories and 

Their Relation”. It was defined as a model inspired by the brain. The Spiking Neural 

Netorks (SNN) were proposed by Alan Lloyd Hodgkin and Andrew Huxley in 1952. 

Recent SNN models, developed by W. Gerstner, W. Kisler [59] and Izhikevich [60] 

became the third generation of neural network models, increasing the level of realism in 

neural simulation [61]. 
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It is still impossible to reproduce the exact functioning mechanism of the biological 

neuron, the full brain functionality is still a mystery for us. Even a single neuron process 

is extremely complex, fig.3.1.1[62]. 

Fig.3.1.1: Schematics of a biological neuron illustrating signal propagation and 

synapsis. 

 

The brain represents and processes information in the form of many trains of temporal 

electrical potentials that can be considered binary events (spikes) and are transferred 

between neurons through synaptic connections. Through learning from data the synaptic 

connections are modified to reflect more precisely the timing of the data from the 

sensory inputs. To avoid any prior assumptions on neural computation, the processing 

and exchange of information between neurons should be carried out at the level of 

spikes [59]. SNNs are made up of artificial neurons that use trains of spikes to represent 

and process pulse coded information [61]. SNNs use trains of spikes for internal 

information representation [63].  This is one of the principles of brain-inspired spiking 

neural networks [64] resulting in the consideration of SNNs as the new generation of 

neural network models with additional capabilities in a range of fields such as spatio-
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temporal spheres (e.g. time series), complex networks with several thousand neurons 

and areas requiring biological fidelity.  

In summary, Artificial Spiking Neural Networks (ASNN) consist of neuronal models 

with network structure and connectivity which encode information into spikes and use 

learning algorithms to dynamically respond to new input signals. 

 

3.2 SNN models 

 

Traditional ANN’s neural models consisted of synaptic weights and an activation / 

transfer function. The artificial neuron abstraction could be expressed mathematically 

as: 

   

where yj and xi are the neuronal output and input signals respectively, φ is the activation 

function and wij  represents the synaptic connection weight between neurons i and j. 

Biological neurons are described by ion currents that are transmitted through the cell 

membrane when neurotransmitters activate the ion channels in the cell. Many models 

have been proposed in order to simulate a biologically realistic neuron, among them are 

such models as Hodgkin-Huxley’s model [65], Spike Response Models (SRM) [59], 

Integrate-and-Fire Models [61]; [59] Izhikevich models [66, 67, 68, 69]. We briefly 

highlight the main charachteristics of some of them. 

Hodgkin-Huxley is based on the experiments on the giant axon of the squid, Hodgkin 

and Huxley found three different ion channels: sodium, potassium and CI− ions leak 

current [65, 16, 17].  In mathematical terms, this model can be described as an electric 

circuit (see fig.3.2.1) having a capacitance (C), batteries (E), and current sources (I).  

(3.1) 
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Fig.3.2.1 Hodgkin-Huxley type models represent the biophysical characteristic of cell 

membranes. The lipid bilayer is represented as a capacitance (Cm). Voltage-gated and 

leak ion channels are represented by nonlinear (gn) and linear (gL) conductances, 

respectively. The electrochemical gradients driving the flow of ions are represented by 

batteries (E), and ion pumps and exchangers are represented by current sources (Ip). 

Adapted from Hodgkin and Huxley [65]. 

 

The current applied over time (I(t)), (fig.3.2.1), may be distributed as a capacitive 

current (IC) which charges the capacitor (C), and the current (Ik) of each ion channel is: 

 

where the ∑k  represents the sum of all ion channels. The capacitor (C) can be defined as 

C = QIu, where Q and u are the charge and voltage across the capacitor. Thus, charging 

capacitive current can be represented as 

 

According to Eq.3.2 and Eq.3.3: 

 

(3.2) 

(3.3) 

(3.4) 
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Therefore, Eq.2.4 can be used to represent Hodgkin-Huxley’s three ion channel model 

as: 

 

where ENa, EK and EL are reversal potentials obtained from empirical experiments. The 

gating variables m, n and h evolve according to the differential equation 

 

where x represents m, n or h and αx, βx denote exponential function that can be adjusted 

in order to simulate a specific neuron. It can be seen that the Hodgkin-Huxley model 

can reproduce electrophysiological measurements very accurately. However, due to the 

model’s complexity, it is computationally expensive, making it inappropriate for 

simulating large networks of spiking neurons. 

Leaky Integrate and Fire Model (LIF) or the leaky integrate-and-fire neuron is one of 

the best-known examples of a formal spiking neuron model, fig.3.2.2. Generalizations 

of the leaky integrate-and-fire model include the nonlinear integrate-and-fire model. All 

integrate-and-fire neurons can either be stimulated by external current or by synaptic 

input from presynaptic neurons.  

 

Fig. 3.2.2. Schematic diagram of the integrate-and-fire model. The basic circuit is the 

module inside the dashed circle on the right-hand side. A current I(t) charges the RC 

circuit. The voltage u(t) across the capacitance (points) is compared to a threshold . 

If u(t) =  at time ti
(f)

 an output pulse (t - ti
(f)

) is generated. Left part: A presynaptic 

spike (t - tj
(f)

) is low-pass filtered at the synapse and generates an input current 

pulse (t - tj
(f)

) [72]. 

(3.5) 

(3.6) 
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A LIF neuron is a simplified Hodgkin-Huxley model where all the ion channels are 

represented with a single current [72]. The basic circuit of an integrate-and-fire model 

consists of a capacitor C in parallel with a resistor R driven by a current I(t); see fig. 

3.2.2 The driving current can be split into two components, I(t) = IR + IC. The first 

component is the resistive current IR, which passes through the linear resistor R. It can 

be calculated from Ohm's law as IR = u/R where u is the voltage across the resistor. The 

second component IC charges the capacitor C. From the definition of the capacitance as 

C = q/u (where q is the charge and u the voltage), we find a capacitive current IC = C 

du/dt.  Thus, according to Eq.3.3 and IR = u/R (Ohm’s law) we get 

 

On introducing a time constant  m= RC and R in Eq.3.7, we yield the standard form 

 

where u is the membrane potential, I(t) is the input current,  m is the membrane time 

constant of the neuron and R represents soma membrane resistance. Apart from the 

stimulation by the external current I(t) = Iext (t) over time, in a network the neurons can 

also be stimulated by presynaptic neuron j. The synaptic input of neuron i is the 

weighted sum over all the currents generated by the presynaptic neurons and can be 

represented as: 

 

where weight wij reflects the strength of the synapses from neuron j to neuron i, tj
(f)

 

represents the firing time of neuron j, while   represents the time course of the 

postsynaptic current. The LIF models were successfully used use in large-scale 

networks providing efficient simulation due to their relative simplicity.  

(3.7) 

(3.8) 

(3.9) 
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Spike Response Model (SRM) is a generalization of the leaky integrate-and-fire model, 

or the LIF model can be considered as a special case of the general SRM that defines 

the spike dynamics. In SRM the state of the neuron i is defined by a single parameter 

ui(t) (membrane potential) [73,74, 75, 76, 77]. In the absence of spikes, the variable ui is 

at its resting value, urest = 0. The function   describes the time course of the response to 

an incoming spike, and wij represents synaptic efficacy. If after the summation of the 

effects of several incoming spikes ui reaches the threshold  , an output spike fires. The 

form of the action potential and the after-potential is described by the function   and the 

linear response of the membrane for external input current Iext is represented by kernel 

function k.  Supposing a neuron i has fired its last spike at time    , then after firing the 

evolution of ui is given by  

 

 Compared to the LIF model, the membrane threshold of SRM is not fixed but may 

depend on t −   , therefore 

           

Due to its simplicity the SRM is appropriate for simulating a large number of neurons in 

a network. 

 

 

 

 

 

 

 

(3.10) 

(3.11) 
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3.3 Reservoir NN framework 

 

Reservoir computing (RC) is a neural network based computational framework where 

the input signal is fed into a fixed (random) dynamical system called a reservoir 

resulting in mapping of the input to a higher dimension. RC is an approach to design, 

train, and analyse recurrent neural networks (RNNs). It yields computational and 

sometimes analytical models for biological neural networks. What distinguishes 

reservoir computing from other views on recurrent neural networks are the fundamental 

principles that can be summarized as follows: using a large, random RNN or reservoir, 

such that when driven by input signals, each unit in the RNN creates its own nonlinear 

transform of the input; output signals are produced from the excited RNN by some 

readout mechanism, typically a simple linear combination of the reservoir signals; 

outputs can be trained in a supervised way, typically by linear regression of the teacher 

output on the tapped reservoir signals [78]. 

Reservoir computing includes a number of independently found approaches based on 

this fundamental idea, these are Liquid State Machines [79], [80], Echo State Networks 

[81] Backpropagation Decorrelation and Temporal Recurrent Networks [82]. The 

reservoir comprises a group of recurrently connected neurons. The connectivity is 

generally random, and the units are typically nonlinear. On the whole, the activity in the 

reservoir is driven by the input and is also influenced by the past. The reservoir’s 

dynamical input output mapping provides a crucial benefit over the simple time delay 

neural networks. This approach theoretically allows for real time computation on 

continuous input streams in parallel. Each neuron is stimulated by time varying inputs 

from external sources as well as from other neurons. The recurrent connectivity turns 

the time varying input into a spatio-temporal pattern of activations in the network nodes 

[80]. The reservoir system is partially biologically plausible, since parts of the cerebral 
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cortex have been found to carry out sensory integration in small and homogeneous 

columns of neurons [84]. 

Reservoir computing for SSNs is now regarded as an established paradigm due to 

feasibility of the computational methods for practical applications, and as a model for 

some of the processes in the human brain. Some of the core concepts of reservoir 

computation are briefly explained below. 

Echo State Networks (ESNs) proposed by Jaeger [81] is a recurrent neural network with 

a sparsely connected hidden layer. The connectivity and weights of hidden neurons are 

randomly assigned and are fixed. The weights of output neurons can be learned so that 

the network can reproduce specific temporal patterns. For training the ESNs, a linear 

readout function is often sufficient for achieving good performance when employed for 

practical applications. This is because of the algebraic properties inherent in the 

recurrent neural network that is ESNs. The term dynamical reservoir refers to untrained 

recurrent neural network component of ESNs, and its reservoir states are termed echoes 

since the state reflects the input history [81]. The main interest of this network is that 

although its behaviour is non-linear, the only parameters are the weights of the output 

layer. The error function is thus quadratic with respect to the parameter vector and can 

be differentiated easily to a linear system. The use of weighted sum and nonlinearity 

type of simulated analogue-valued neurons such as the tanh() nonlinearity function 

makes ESNs different from other reservoir computing models [85]. Since the readout 

from the echo state networks is linear, most often for batch training, a liner regression 

method is used for computing the output weights and a similarly computationally 

inexpensive method such as least squares algorithms are employed for the online 

training approach [86].  
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Liquid State Machines (LSMs) was proposed by Maass, Natschl¨ager, and 

Markram [87] and is another reservoir method.  LSM consists of a large collection of 

nodes or neurons. Each node receives time varying input from external sources / inputs 

as well as from other nodes which are randomly connected to each other. The recurrent 

nature of the connections turns the time varying input into a spatio-temporal pattern of 

activations in the network nodes. The spatio-temporal patterns of activation are read out 

by linear discriminant units. Compared to the ESNs which were framed on the basis of 

theoretical computational principles, the Liquid State Machine was developed on the 

basis of computational neuroscience. The foundation of Liquid State Machine allows 

the reservoir system to correspond to the computational properties of neural 

microcircuits [88]. 

 

 

3.4 Summary 

 

SNN methods and engineering systems have been recently developed for the following 

subjects: learning from data [89,64, 65,67]; system design and implementation [90, 91]; 

encoding continuous input data into spike trains, such as the silicon retina and the 

silicon cochlea sensory devices [92, 93]; neurogenetic computation [94, 95]; high 

performance and neuromorphic engineering systems and supercomputers [96, 97]. 

There is a number of promising features of SNN such as: compact representation of 

space and time; fast information processing; time-based and frequency-based 

information representation. Information processing methods based on SNN, such as: 

methods for transformation of continuous input signals into spike trains; computational 

models of spiking neurons; methods for connecting and learning in SNN support the 

paradigm for STBD. Although numerous models of SNNs and their applications have 
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been developed, they have not been fully successful when used for solving large scale, 

complex AI problems of classification, temporal and string sequence pattern recognition 

and associative memory [95].  

Looking for new inspiration, the developers of the latest SNN models are enhancing 

them with probabilistic parameters and evolving features. [98]. 

Lately, novel SNN methods for spatio-temporal pattern recognition were developed 

[99]. Among them are two types of evolving SNN classifiers – the Dynamic Evolving 

Spiking Neural Network (deSNN) [101] and SPAN (Spike Pattern Association Neuron) 

[100] and pilot applications for moving object recognition and for simple EEG data 

classification, recently proposed by the Kasabov framework for STBD – NeuCube [18] 

which will be used for purposes of classification of spatio-temporal EEG brain 

perception data.  The main principles and the framework of the NeuCube as well as the 

more detailed methodology for EEG spatio-temporal data classification in the NeuCube 

environment will be explained later in chapter 4 of this study. 
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Chapter 4 
 

 

 

 

 

 

The NeuCube based methodology of 

the study 

 

4.1 The NeuCube objectives and challenges  

 

The brain is a complex integrated spatio-temporal information-processing machine, 

which deals extremely well with the most common data collected to measure brain 

signals and brain activities- spatio-temporal data. [18]. 

Over recent decades a vast amount of information about structural and functional 

characteristics of the human brain has been accumulated [102, 103, 104, 105, 106]. That 

enormous quantity of Spatio-Temporal Brain Data (STBD) includes 

Electroencephalogram (EEG) [40, 55, 56, 57], Magneto encephalograph data (MEG) 

[107], functional Magnetic Resonance Imaging (fMRI) [108, 109, 110, 111] gene 

expression data related to brain states [112], etc. The analysis of this type of data 
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however still presents a challenge to researchers. Such traditional methods as Multiple 

Linear- and Logistic Regression, Support Vector Machines (SVM), Multilayer 

Perceptron Neural Networks, Hidden Markov Models, rule-based systems, and some 

others have been used with limited success [54] for the classification of EEG data [40, 

55, 56, 57]. All these methods accentuate either the spatial-, or the temporal component 

of the data, but do not take into account their dynamic interaction. They can’t 

accommodate multimodal STBD and prior information about the source of this data.  

Although there are still no universal computational models to integrate all different 

types of data into a single model to analyze brain processes and to recognize brain 

signal patterns, the new EU FP7 Marie Curie IIF EvoSpike project develops methods 

and tools for spatio and spectro-temporal pattern recognition [18]. Within this project 

Kasabov proposed a new evolving spiking model called NeuCube for the creation of 

concrete models to map, learn and understand STBD. The NeuCube is 3D evolving 

Neurogenetic Brain Cube of spiking neurons that is an approximate map of structural 

and functional areas of interest of an animal or human brain. Similar to the human brain 

which processes information through the activation of complex spatio-temporal 

pathways involving many brain areas, the NeuCube is attempting to simulate the same 

principles in a computer model resulting in an improved accuracy of brain signal pattern 

recognition and discovery of new knowledge. 

Summarizing the following principles that are to be utilized in the NeuCube 

architecture: ability to accommodate and integrate various STBD; spatial structure 

mapping the areas of the brain where STBD is collected; spiking information processing 

paradigm used in the model to represent and to process the STBD; brain-like learning 

rules using in the model to learn STBD; evolving ability to learn, recognize and add 

incrementally new STBD patterns, thus following brain cognitive development 
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principle; ability to keep a spatio-temporal associative memory which is a subject to be 

explored, interpreted and to be represented as a spatio-temporal finite automation. 

To train NeuCube different types of brain SSTD can be used including EEG, fMRI, 

video-, image- and sound data and complex multimodal data. In this study EEG brain 

data were used to evaluate the feasibility of the NeuCube for classification of human 

brain perception of video & audio stimuli in a format of STBD.  

 

4.2 The NeuCube Main Principles and Framework for STBD 

 

The main idea of the NeuCube is the creation of a multi-modular integrated system, 

different modules of which consist of different neuronal types and genetic parameters. 

The parameters relate to different parts of the brain and different functions of interest 

such as: vision, sensory information processing, sound recognition or motor-control etc. 

The whole system works in an integrated mode for brain signal pattern recognition. A 

concrete NeuCube architecture model would have been built for every specific problem 

(as classification of EEG signals; recognition of fMRI data; BCI; emotional cognitive 

robotics, etc) and would have a specific structure and a set of algorithms depending on 

the problem or application [18]. 

A NeuCube model learns from STBD and creates connections between clusters of 

neurons that establish chains or trajectories of neuronal activity [113]. After performing 

learning, a NeuCube model can reproduce these trajectories working as an associative 

memory, even if only part of the input STBD or the stimuli data is presented. The 

NeuCube framework can be used as a predictive system of brain activities, discovering 

functional pathways from data and can be used to predict certain events. Analysis of the 

internal structure of a model after training can reveal important spatio-temporal 

relationships ‘hidden’ in the data. NeuCube can be used for personalized modeling 
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purposes allowing the integration in one model of various brain data and other 

information related to a certain subject.  

 

Fig. 4.2.1. A schematic diagram of a general NeuCube architecture, consisting of: input 

encoding module; NeuCube module; output function module; gene regulatory networks 

(GRN) module (optional) 

 

A block diagram of the general EvoSpike NeuCube architecture is shown in fig.4.2.1 

[18], [113]. Consisting of three levels a NeuCube architecture includes a NeuCube 

module at the middle level, gene regulatory networks (GRN) at the lowest level, and a 

classification or evaluation module at the highest level. Neurons from the NeuCube are 

connected to neurons of the output module in a two-way mode, so that the state of the 

NueCube can be recognized, classified and interpreted in the Output Module and the 

result of this can further influence activity of the neurons in the NeuCube as a feedback. 

In detail the functional modules of the NeuCube are the following:  

-Input information encoding module;  

-3D SNN reservoir module (SNNr) or Neurogenetic Brain Cube (NBC) module;  

-Output function module / classification module; 

- Gene regulatory networks (GRN) module, (optional).  
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The steps of the process of creating a NeuCube model for a certain STBD are the 

following: 

1. Encoding the STBD into spike sequences: continuous value input information is 

encoded into trains of spikes; 

2. Constructing and training, in an unsupervised mode, a recurrent 3D SNN reservoir 

(SNNr) to learn the spike sequences that represent individual input patterns; 

3. Constructing and training, in a supervised mode, an evolving SNN classifier to learn 

to classify different dynamic patterns of the SNNr activities that represent different 

input patterns from SSTD that belong to different classes; 

4. Optimizing the model through several iterations of steps 1 to 3 above for different 

parameter values until maximum accuracy is achieved. 

5. Recalling the model on new data. 

We briefly describe the NeuCube modules. 

 

4.3 The NeuCube module architecture 

 

Input data encoding module where continuous value input data can be transformed into 

spikes so that the current value of each input variable (in our case it is EEG channel, but 

it might be pixel or fMRI voxel) is entered into a population of neurons that emit or 

transfer input into trains of spikes. The input information is distributed through a large 

population of neurons and is represented by spike time relatively. The quantity of 

information that can be transmitted by this type of code increases with the number of 

neurons in the population. Spike emitting is based on the level of the membership 

degree of the input to their receptive fields. This method is called population rank 

coding [114] reflecting the principle: the higher the membership degree, the earlier a 

spike is generated, fig.4.3.1.  
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Fig.4.3.1 Population rank order coding of input information 

Another method of encoding of input data is the Address Event Representation (AER) 

[115]. This method is based on thresholding the difference between two consecutive 

values of the same input variable over time, fig.4.3.2 and fig.4.3.3. This method is used 

when the input data is a stream and only the changes in consecutive values can be 

processed (as video and sound stream data). 

Fig.4.3.2 AER of continuous value time series input data into spike trains, the idealized 

pixel encoding and reconstruction of video data. 
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Fig.4.3.3 AER of continuous value time series, the idealized pixel reconstruction of 

video data. 

 

A spike encoder method called Ben’s Spike Algorithm (BSA) has been used for EEG 

data transformation into spike trains [116]. The benefit of using BSA is that the 

frequency and amplitude features are smoother in comparison to some other algorithms, 

and the smoother threshold optimization curve, the less susceptible the algorithm to 

changes in the filter and the threshold, fig.4.3.4. 

Fig.4.3.4. Actual one EEG channel signal (top); the spike representation of the above figure 

obtained using BSA (middle); and the bottom –the actual one EEG channel signal (red) plus 

superimposed with representation of the reconstructed EEG signal from the BSA encoded 

spikes (dashed). 
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Any of the mentioned above spike encoders may be realized in the NeuCube, the choice 

will depend on the existing problem. The transformed spike series input data is mapped 

into spatially located neurons from the SNNr. Here the brain data sequences in their 

temporal order are continuously fed into spatially located neurons in the SNNr that 

represent brain areas where data is collected.  

3D SNN reservoir module (SNNr) or Neurogenetic Brain Cube (NBC) module is an 

approximate map of relevant brain regions for which STBD, and/or relevant genetic 

information available which has a 3D spiking neuronal structure. Small world 

connections are used for initialization, where neurons within a functional area of interest 

from the cube (e.g. visual area) are more densely connected than neurons across areas, 

depending on the distance between the neurons [117]. The initial structure of the SNNr 

is defined based on the available brain data and the problem, but this structure can be 

evolving through the creation of new neurons and new connections based on the STBD 

using the ECOS principles [118]. The new neurons are connected with the rest 

following the initial small-world principle. 

Fig. 4.3.5 (a)–(c) illustrate the spiking activity (a) and connectivity of 1471 neurons 

SNNr before training (b) and after training—(c) on SSTD. It can be seen that as a result 

of training new connections have been created that represent spatio-temporal interaction 

between input variables captured in the SNNr from the data. 

Fig.4.3.5 Visualization of connectivity and spiking activity of a SNNr: (a) spiking 

activity—active neurons are represented in red color and large size; (b) connectivity 

before training – small world connections – positive connections are represented in blue 

and negative—in red; (c) connectivity after training. 
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In this implementation, the SNNr has a 3D structure connecting leaky-integrate and fire 

model (LIFM) spiking neurons with recurrent connections, fig. 4.3.6 and 4.3.7. 

      Fig.4.3.6. The structure of the LIFM       Fig.4.3.7. Functionality of the LIFM 

 The input STBD is propagated through the SNNr and a method of unsupervised 

learning is applied, such as Spike Timing Dependent Plasticity (STDP). The neuronal 

connections are adapted and the SNNr learns to generate specific trajectories of spiking 

activities when a particular input pattern is entered. 

Different learning rules for SNN have been already introduced. The STDP learning rule 

[119] utilizes Hebbian plasticity [120] in the form of long-term potentiation (LTP) and 

depression (LTD). Based on the timing of post-synaptic action potential in relation to 

the pre-synaptic spike efficacy of synapses the connection weight is strengthened or 

weakened. If the difference in the spike time between the pre-synaptic and post-synaptic 

neurons is negative, this means that pre-synaptic neuron spikes first, then the connection 

weight between the two neurons increases, otherwise it decreases. Connected neurons, 

trained with STDP learning rule, learn consecutive temporal associations from data. 

New connections can be generated based on the activity of consecutively spiking 

neurons. 

The rank-order learning rule [121] uses important information from the input spike 

trains, namely the rank of the first incoming spikes on the neuronal synapses, fig.4.3.8. 

It establishes a priority of inputs (synapses) based on the order of the spike arrival on 

these synapses for a particular pattern. Used in SNN the rank-order learning has 
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advantages in being fast one-pass learning (as it uses the extra information of the order 

of the incoming spikes) and asynchronous data entry.  

Fig. 4.3.8 Rank-order learning neuron 

The dynamic eSNN (deSNN) [122] combines rank-order and temporal (e.g. STDP) 

learning rules. The initial values of synaptic weights are set according to the rank-order 

learning assuming the first incoming spikes are more important than the rest. The 

weights are further modified to accommodate following spikes activated by the same 

stimulus, with the use of a temporal learning rule—STDP. 

SPAN is an algorithm for both classification and spike pattern association [123]. The 

connection weights of a neuron are updated after the presentation of the whole spatio-

temporal spiking pattern, rather than spike-by-spike as it is in the deSNN model. SPAN 

learns to generate an output spike at a certain time, or a pattern of temporally distributed 

spikes over time, when a certain spatio-temporal pattern of input spikes is recognized. 

 All these briefly described learning principles can be implemented in the NeuCube. 

Different types of neurons and learning rules can be used in different areas of the 

evolving NeuCube architecture. 

Output function module / classification module: After the SNNR is trained on the STBD 

in an unsupervised model, the same input data is propagated again through the SNNr, 

pattern by pattern, the state of the SNNr is measured for each pattern and an output 

classifier is trained to recognize this state in a predefined output class for this input 

pattern. Feedback connections from the Output Module to the NeuCube are possible to 

establish reinforcement learning. In this realisation, all spiking neurons from the 
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NeuCube are connected to each of the output neurons. Two different methods are 

developed in the EvoSpike project: deSNN for classification of NeuCube states; SPAN 

for generating motor control signals in response to certain patterns of activity of the 

NeuCube. The recall procedure can be performed using different recall algorithms 

applying different methods: 

(1) The first method is called eSNNm (deSNNm). A spike sequence (the response of the 

trained SNNr) is propagated to all trained output neurons and the first neuron that spikes 

defines the output. The assumption is that the neuron that best matches the input pattern 

will spike earlier, based on the PSP threshold (membrane potential).  

(2) The second method, called eSNNs (deSNNs), implies the creation of a new output 

neuron in the eSNN for each new input pattern from the SNNr and then comparing the 

connection weight vector of the new one to the already existing neurons using 

Euclidean distance. The closest output neuron in terms of synaptic connection weights 

is the ‘winner’. This method uses the principle of transductive reasoning and nearest 

neighbour classification in the connection weight space. It compares spatially 

distributed synaptic weight vectors of a new neuron that captures a new input pattern 

with an existing neuron.  

  The main advantage of the eSNN compared with other supervised or unsupervised 

learning and classification SNN models, that makes the eSNN suitable for on-line 

learning and early prediction of temporal events, is the importance of the order in which 

input spikes arrive, and its low computational cost.  

Gene regulatory networks (GRN) module, (optional) The GRN module uses as a main 

principle the analogy between biological facts about the relationship between spiking 

activity and gene/protein (neuro-transmitter, neuro-receptor, ion channel, neuro-

modulator) dynamics in order to control the learning and spiking parameters in a SNN. 

Biological support of this can be found in numerous publications (e.g. [124, 125]). 
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Chapter 5 
 

 

 

Experimental case study of EEG 

STBD classification in the NeuCube 

model with audio stimuli 

 

 

5.1 Audio perception review 

 

 

 

The second main source of incoming information for a human is the information 

obtained via the auditory system. The primary auditory cortex is the first region of the 

cerebral cortex to receive auditory input. The auditory cortex is the most highly 

organized processing unit of sound in the brain. This cortex area is the neural crux of 

hearing, and—in humans—language and music. The auditory cortex is divided into 

three separate parts: the primary, secondary, and tertiary. These structures are formed 
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concentrically around one another, with the primary cortex in the middle and the tertiary 

cortex on the outside [126], fig.2.1.1 and fig.2.1.2. 

The primary auditory cortex is a region of the brain that processes sound contributing to 

our ability to hear. Corresponding roughly with Brodmann areas 41 and 42 of the 

cerebral cortex [127], it is located on the temporal lobe, and performs the basics of 

hearing—pitch and volume. Besides receiving input from the ear and lower centers of 

the brain, the primary auditory cortex also transmits signals back to these areas, fig.5.1.1 

(a) and (b). 

          

Fig.5.1.1 (a) Brodmann areas 41 & 42 of the human brain; (b) The Primary Auditory Cortex 

is highlighted in magenta, and has been known to interact with all areas highlighted on 

this neural map. 
 

Neurons in the auditory cortex are organized according to the frequency of sound to 

which they respond best. Neurons at one end of the auditory cortex respond best to low 

frequencies; neurons at the other respond best to high frequencies. There are multiple 

auditory areas (much like the multiple areas in the visual cortex), which can be 

distinguished anatomically and on the basis that they contain a complete "frequency 

map." The purpose of this frequency map (known as a tonotopic map) is not yet clearly 

defined, and is likely to reflect the fact that the cochlea is arranged according to sound 

frequency. The auditory cortex is involved in tasks such as identifying and segregating 

auditory "objects" and identifying the location of a sound in space [128]. Human brain 

scans have indicated that a peripheral unit of this brain region is active when trying to 
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identify musical pitch. Individual cells are consistently excited by sounds at specific 

frequencies, or multiples of that frequency. 

In the hearing process, multiple sounds are absorbed simultaneously. The role of the 

auditory system is to decide which components form the sound link. Many have 

surmised that this linkage is based on the location of sounds. However, there are 

numerous distortions of sound when reflected off different mediums, which makes this 

possibility unlikely. Instead, the auditory cortex forms groupings based on more reliable 

fundamentals; in music; for example, this would include harmony, timing, and pitch 

[129], [83]. 

The primary auditory cortex is located in the temporal lobe. There are additional areas 

of the human cerebral cortex that are involved in processing sound, in the frontal and 

parietal lobes. The auditory cortex is composed of fields, which differ from each other 

in both structure and function [130]. 

When each instrument of a symphony orchestra or the jazz band plays the same note, 

the quality of each sound is different — but the musician perceives each note as having 

the same pitch. The neurons of the auditory cortex of the brain are able to respond to 

pitch. This location of a pitch-selective area has also been identified in recent functional 

imaging studies in humans [131, 132]. 

Areas of brain activation for reading and listening comprehension are highlighted in 

fig.5.1.2 [133]. 

Fig.5.1.2. Areas of brain activation for reading and listening comprehension 
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Studies suggest that individuals are capable of automatically detecting a difference or 

anomaly in a melody such as an out of tune pitch which does not fit with their previous 

music experience. The findings of Brattico et al. suggest that there is automatic and 

rapid processing of melodic properties in the secondary auditory cortex [134]. The 

findings that pitch incongruities were detected automatically, even in processing 

unfamiliar melodies, suggests that there is an automatic comparison of incoming 

information with long term knowledge of musical scale properties, such as culturally 

influenced rules of musical properties (common chord progressions, scale patterns, etc.) 

and individual expectations of how the melody should proceed. The better 

understanding of the origin of human inherited long-term knowledge is seen as one of 

importance in future research.  

 

 

 

5.2 EEG NeuCube model and mapping structure 

 

 

 

EEG brain data can be obtained with the use of a wide range of different wired and 

wireless recording tools. The problem of mapping is vital for any existing device and it 

is attempting to be solved based on a universal internationally recognized system [135]. 

All EEG channels of any device are spatially distributed on the scalp. An example of the 

positioning of 64 EEG channels on a human head and channel representation in a 3D 

space is shown in Fig.5.2.1 (a and b).  
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Fig.5.2.1 Positioning of 64 EEG channels on a human head (a); EEG channels 

representation in a 3D space (b) 

 

 

The spatially defined positions of the channels can be mapped into a SNNr using 

different approaches. One of them is using the Talairach template, fig.5.2.2. 

The neurons in the SNNr are located following the same (x, y, z) coordinates of the 

Talairach template and the EEG channels are mapped according to the standard 

mapping given in the “Anatomical locations of international 10–10 EEG cortical 

projections into Talairach coordinates” [135]. The same coordinates are used in a 

SNNr of a NeuCube model. The spiking sequences that represent EEG channels, after 

transformation of continuous value signals into spike trains, are entered into the 

correspondingly located neurons before a training procedure (e.g. STDP) is applied. 

 

Fig.5.2.2 The Talairach template development and mapping 
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The whole NeuCube framework employed in this study for classification of STBD 

based on evolving  probabilistic spiking neural network reservoir (epSNNr) paradigm is 

presented in fig.5.2.3. At first, each channel of spatial-temporal data (EEG) is 

transformed into trains of spikes by the encoder module. An AER input data encoding 

method is used for this study. Then the trains of spikes are distributed into 

spatiotemporal filter which employs the reservoir paradigm of LIFM neurons, located 

according to the Talairach template and the Koessler [135] mapping.  

Fig.5.2.3 The whole framework for classification of STBD 

 

STDP learning is applied in the NeuCube to establish the connection weights of spatial-

temporal patterns of pathway connectivity. Then the states are fed into a classifier for 

training and testing the classification performance using a pre-defined type of classifier. 

For the purposes of further experimental optimisation of a certain NeuCube model 

different classifiers were tested (deSSNm, deSNNs, SPAN) within the set of 

experiments and the results of this tuning will be given later in this chapter. 

A NeuCube model was trained and tested with the parameters shown in the NeuCube 

screenshot, fig.5.2.4. 
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Fig.5.2.4 The NeuCube. 

 

 

 

 

 

5.3 EEG brain perception data and experiment description 

 

 

The experimental case study of EEG perception STBD classification with audio stimuli 

in a NeuCube model was performed using the EEG data collected using a 14-channel 

EEG recording device [32] and original software, fig.5.3.1. The Emotiv EEG recording 

device has 14 EEG channels labeled based on the “Anatomical locations of international 

10–10 EEG cortical projections into Talairach coordinates” [135] which are: AF3, F7, 

F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4; plus 2 reference channels which 

offer optimal positioning for accurate spatial resolution.  
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Fig.5.3.1 Emotiv software GUI screenshot 

 

The following audio stimuli were prepared for experiments to represent specific aspects 

of the nature of human art and of human art perception. The set of three audio stimuli 

were composed: the first and the second stimuli were using two ingeniously structured 

pieces of classical music of the 16
th

 century and the third stimuli was composed from 

unstructured chaotic irritating noise, mostly of industrial origin: 

1) 85 seconds extract from the Ich ruf’ zu dir, Herr Jesu Christ (BWV 639) by Johann 

Sebastian Bach; (related further in the chapter as “M1”) 

2) 54 seconds extract from the Wachet auf, ruft uns die Stimme (BWV 140) by Johann 

Sebastian Bach; (related further in the chapter as “M2”) 

3) 30 seconds of unstructured chaotic irritating industrial noise; (related further in the 

chapter as “N”). 

The juxtaposition of two contrast stimuli was used as a base for experiments. The core 

meaning of this juxtaposition should be understood as a contradiction between two polar 

notions, which in human perception is defined as “harmony”, and “chaos”. They are 

represented here with an exemplar of highly structured canonical religious music used 

as music for meditation by many generations of people, and an exemplar of amorphous 
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irritating industrial noise; these stimuli are labeled “M1” for the first music pattern, 

“M2” for the second music pattern and “N” for noise consecutively. 

The EEG data was recorded from a small group of healthy male and female subjects in 

the age category of 20 – 40 years old. All the experiments with audio perception were 

recorded with closed eyes, in order to avoid EEG artifacts from blinking. The recorded 

data was not used previously. The length of a whole session of each of three stimuli 

(M1 of 85 sec, M2 of 54 sec and N of 30 sec) was later divided into equal samples of 1 

sec length due to a certain experiment objectives. The data was collected and classified 

following four scenarios each of which set distinct goals: 

 

Scenario 1: The primary goal for the Scenario 1 was defined as classification of 

subjects based on their perception of one of the stimuli M1, M2 or N. Each of the three 

experiments performed within this scenario was utilizing one of these stimuli. 

Experiment 4-1 classified subjects 1, 2, 3 and was based on stimulus M1 presented to 3 

subjects; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 M1 100       

2 2 M1 93.33     

3 3 M1 93.33      

Overall accuracy of experiment is 95.55%. 

 

Experiment 4-2 classified subjects 1, 2, 3 and was based on stimulus N presented to 3 

subjects; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 N 79.67      

2 2 N 68.40       

3 3 N 74.81       

Overall accuracy of experiment is 74.29%. 
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Experiment 4-3 classified subjects 1, 2, 3 and was based on stimulus M2 presented to 3 

subjects; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 1 M2 96.30   

2 2 M2 98.43      

3 3 M2 92.54      

Overall accuracy of experiment is 95.75%. 

 

Scenario 2: The primary goal for the Scenario 2 was defined as classification of stimuli 

based on perception of one of the subjects 1, 2 or 3. 

Experiment 9-1 classified stimuli M1, M2, N and was based on Subject 1 perception of 

the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 M1 1 73.49 

2 N 1 35.93       

3 M2 1 83.67       

Overall accuracy of experiment is 64.36%. 

 Experiment 9-2 classified stimuli M1, M2, N and was based on Subject 2 perception of 

the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 M1 2 80.00 

2 N 2 48.93 

3 M2 2 66.67 

Overall accuracy of experiment is 65.2%. 

Experiment 9-3 classified stimuli M1, M2, N and was based on Subject 3 perception of 

the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 M1 3 96.30 

2 N 3 26.67       

3 M2 3 81.40 

Overall accuracy of experiment is 68.12%. 
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Scenario 3: The primary goal for the Scenario 3 was more complex and defined as 

classification of the stimuli M1, M2 and N based on mixed samples of perception of all 

three subjects 1, 2 and 3. 

Experiment 14 classified the stimuli M1, M2, N and was based on the mixed samples of 

perception of all three subjects 1, 2, 3; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 M1 1 

2 

3 

60.59       

2 N 1 

2 

3 

28.89       

3 M2 1 

2 

3 

58.53       

Overall accuracy of experiment is 49.34%. 

 

Scenario 4: The primary goal for the Scenario 4 was more complex and defined as 

classification of the subjects 1, 2 and 3 based on the mixed samples of all three stimuli 

M1, M2 and N perception. 

Experiment 14-1 classified subjects 1, 2, 3was based on the mixed samples of all three 

stimuli M1, M2 and N perception; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 

 

M1 

N 

M2 

65.87       

2 2 

 

M1 

N 

M2 

61.23       

3 3 

 

M1 

N 

M2 

73.55       

Overall accuracy of experiment is 66.88%. 

 

Summarizing the experiments with audio stimuli we can see that the level of 

classification accuracy is noticeably high with overall accuracy up to 95.75% and for 
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selected classes up to 100%, which illustrates the feasibility of the NeuCube 

architecture for classification of EEG brain data related to perception of audio art or 

music. The highest 95% accuracy of classification of subjects also shows the feasibility 

of person identification based on the proposed methodology of using the structured 

audio stimulus as a “security key”.   The level of accuracy of only 74% is also obtained 

on classification of subjects, but with irregular noise stimulus in a role of “security key”. 

Such a low level of accuracy confirms our supposition of a lesser level of 

personification of human perception of chaotic structures; in other words the human 

perception of irregular noise is more “irregular” as well, which makes the NeuCube 

identification process less reliable. 

The results of classification of stimuli also support this assumption with significant 

difference in classification accuracy: between 83% of average accuracy for music 

stimulus M1 and only 37% of average accuracy for noise stimulus N. 

The full analysis of results of audio experiments will be given later in this chapter in the 

conclusion section 5.5. 
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5.4 Visualization of EEG recorded data 

  

For the visualization purposes of the recorded EEG brain data different tools were used. 

The primary visualization tool is the embedded visualization function of the NeuCube 

that allows us following the processing of the EEG data in “live” mode step by step, and 

finally showing the full network representing the certain processed EEG data, fig.5.4.1.  

Fig.5.4.1 NeuCube Exp 4-3 visualization of connectivity and spiking activity after 

training of a SNNr; positive connections are represented in blue and negative—in red;  

 

The network is highlighting the specific brain areas that relate to the Emotiv 14 

channels [135] and shown as yellow circles with numbers from 1 to 14. The intensity of 

excitation of the brain areas that relatively correlated with the mentioned above 

channels can be evaluated due to the density of network activity represented by blue and 

red connections between neurons. The NeuCube is building the unique network for 

every dataset collected on a certain stimulus. By comparing different experiment 

visualizations, we can study the difference between networks built for different stimuli. 

We can therefore explore deeper the brain reaction on various stimuli while taking in 

account the high level of simplification of the existing system. Fig. 5.4.2 and fig.5.4.3 



77 

 

illustrate the difference in levels of complexity of the networks built for two 

experiments with three types of stimuli, and also the difference in brain areas involved 

in processing. 

Fig.5.4.2 The visualization of simple network of Experiment 4-1 for classification of 

three subjects 1, 2, and 3 with stimuli length of 1 sec.  

 

Fig.5.4.3 The visualization of more complex Experiment 14 which classified the stimuli 

M1, M2, N and based on the mixed samples of perception of all three subjects 1, 2, 3 in 

each class with stimuli length of 1sec. 
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 Another visualization tool used is the EEGLAB [35], an interactive Matlab toolbox for 

processing continuous and event-related EEG, MEG and other electrophysiological 

data. Below there are the EEGLAB visualizations of the measured EEG data (all 14 

channels) represented as 2 or 3 dimensional EEG scalp maps of prepared dataset / EEG 

epochs. The first set, fig.5.4.4, is representing the subject 1 brain activity recorded with 

structured music stimulus M1: 

Fig.5.4.4 2D EEG scalp maps of dataset EEG epochs; subject 1, stimulus M1 
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Fig.5.4.5 is representing the subject 1 brain activity recorded with irritating industrial 

noise stimulus N: 

Fig.5.4.5. 2D EEG scalp maps of dataset EEG epochs; subject 1, stimulus N. 

3D visualization can be seen in fig.5.4.6 representing the subject 1 brain activity 

recorded with structured music stimulus M2: 

Fig.5.4.6 3D visualization of subject 1, music stimulus M2 
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The EEGLAB plots of the normalized spectrogram are widely used in the EEG 

literature to visualize continuous and event-related changes in spectral power over time 

in a broad frequency range [136]. The color at each image pixel then indicates power (in 

dB) at a given frequency. For computation, EEGLAB widely uses the short-time Fourier 

transform, a sinusoidal wavelet (short-time DFT) transform that provides a specified 

time and frequency resolution. 

If we look at the plots of specifically chosen channels representations T7 and T8 which 

correspond roughly with Brodmann areas 41 and 42 auditory cortex areas, fig.5.4.7 

represents the spectral power and frequency resolution of EEG data with M1 music 

stimuli and fig.5.4.8 is representation of that for N Noise stimuli. The spectral power 

and frequency of the plots are significantly different. This might reflect the difference in 

human perception of structured versus chaotic stimuli. 

 

 Fig.5.4.7 2D and 3D plotting of sensor T7 and sensor T8 which are corresponding 

roughly with Brodmann areas 41 and 42 /auditory cortex areas; recorded with 

M1/Music stimuli 
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Fig.5.4.8 2D and 3D plotting of sensor T7 and sensor T8 which are corresponding 

roughly with Brodmann areas 41 and 42 /auditory cortex areas; recorded with N Noise 

stimuli 

 

Finally for illustration of training and testing processes running in the NeuCube the 

following reservoir-like Spike state visualization are presented, fig.5.4.9 

Fig.5.4.9 Spike state of NeuCube on training (up) and testing (bottom) samples. 
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5.5 Conclusion 

 

 

The classification accuracy analysis based on the sets of described above experiments, 

performed on the application of the specific group of audio stimuli proposed for a small 

group of subjects, led to the following conclusions. 

The performed experiments, which are utilizing the features of a novel software frame 

of the NeuCube show the feasibility of solving assigned tasks of human perception 

classification. 

The level of classification accuracy reached in the experiments appeared to be 

noticeably high with maximums of overall accuracy for selected experiments rising to 

95.75% and for selected classes up to 100%.  

The highest accuracy of 100% for selected classes and 95.75% of overall accuracy is 

reached in the experiments designed for classification of subjects (or personal 

identification).   

The accuracy of experiments designed for classification of stimuli drops considerably to 

its minimums of 68% for selected classes and to 74.29% for overall accuracy of an 

experiment. 

Within the experiments of subjects’ classification we may obviously highlight the 

descent of accuracy on Noise stimulus for all subjects. This illustrates the problematic 

issues when we are classifying perception of chaotic audio noise, so human perception 

of noise tends to be more “noisy” and therefore more difficult to classify than structural 

music perception. 

In the analysis of complicated experiments designed for classification of subjects and 

for classification of stimuli but with classes consisted of mixed samples (scenarios 3 and 

4), we can see the absolute minimum of accuracy fallen to 49.34% in the classification 

of stimuli (experiment 14); while the similarly designed experiment 14-1 for the 

classification of subjects still shows relatively higher accuracy of 66.88%. 

The next step in this study will be the evaluation of the NeuCube classification 

feasibility with utilization of video stimuli. 
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Chapter 6 
 

 

 

 

 

 

Experimental case study of EEG 

STBD classification in the NeuCube 

model with video stimuli 

 

6.1 Visual perception review 

 

 

The visual cortex of the brain is the part of the cerebral cortex responsible for 

processing visual information. It is located in the occipital lobe, in the back of the brain. 

The primary visual cortex is anatomically equivalent to Brodmann area 17. The 

extrastriate cortical areas consist of Brodmann area 18 and Brodmann area 19 [127]. 

There is a visual cortex in each hemisphere of the brain. The left hemisphere visual 

cortex receives signals from the right visual field and the right visual cortex from the 

left visual field, fig.6.1.1. 
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Fig.6.1.1.The visual dorsal stream (green) and ventral stream (purple) are shown. Much 

of the human cerebral cortex is involved in vision. 

 

Arguably the visual information is delivering about 80 percent of the total information 

stream which is received by humans. It is still not clear enough when the visual function 

has triggered, for example, newborns show a preference for following moving faces 

within the first 30 minutes of life [137] expressing quite mature ability for face 

recognition. Obviously visual perception is a key point in human ability to perceive 

incoming information. 

 

 

 

 

6.2 EEG brain perception data and experiment description 

 

To obtain EEG brain perception data of visual areas of human brain the same equipment 

and EEG recording device and software was used as for the experiments with audio 

stimuli [32], with addition of a monitor to present the video stimuli. 

The core reasons for preparation of video stimuli were kept the same: collecting human 

brain perception data recorded on contradictory stimuli representing the notions 

“harmony” versus “chaos”. 
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The sets of video stimuli (moving images) for experiments were prepared to represent 

archetypical and patterned aspects of human art.  Two video samples were produced: 

the first was using ancient human art patterns of Tibetan mandalas, fig.6.2.1 (b). [14]; 

the second stimulus employed natural objects, snow crystals or snowflakes [15] 

fig.1.3.1(a) and fig.6.2.1(a), which have been used as inspiration art models and as 

decoration patterns by many generations of humans.  As a contradiction to 

structured/patterned stimuli the third was composed from works of modern abstract art 

of V. Kandinsky, S. Dali, A. Warhol [16], fig.6.2.2 (a and b). 

Fig.6.2.1.(a) Natural snowflake crystal; (b) Tibetan mandala Chakrasamvara; 

Fig.6.2.2.(a) abstract art of V. Kandinsky; (b) surrealism art work of S. Dali  
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The video stimuli were labeled “P1” for the first patterned sample with mandalas, “P2” 

for the second patterned sample with snowflakes, and “A” for abstract art sample.  

The EEG data was recorded from a small group of healthy male and female subjects in 

the age category of 20 – 40 years old. The recorded data was not used previously. The 

length of a whole session of each of three stimuli (P1 of 85 sec, P2 of 54 sec and A of 

30 sec) was later divided into equal samples of 1 sec length. The data was collected and 

classified following five scenarios each of which set distinct goals: 

Scenario 1: The primary goal for the Scenario 1 was defined as classification of 

subjects based on their perception of one of the stimuli P1, P2 or A. Each of the 

experiments performed within this scenario was utilizing only one of these stimuli. 

 Experiment 2-1 classified subjects 1, 2, 3 and was based on stimulus P1 presented to 

subjects; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 P1 98.75 

2 2 P1 100 

3 3 P1 100 

Overall accuracy of experiment is 99.58%. 

Experiment2-2 classified subjects 1, 2, 3 and was based on stimulus A presented to 

subjects; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 A 96.80 

2 2 A 96.97 

3 3 A 89.76 

Overall accuracy of experiment is 94.51%. 

 

 

 

Experiment 2-3 classified subjects 1, 2, 3 and was based on stimulus P2 presented to 

subjects; contained 3 classes: 
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Class # Stimulus Subject Class Accuracy % 

1 1 P2 98.84 

2 2 P2 100 

3 3 P2 99.55 

Overall accuracy of experiment is 99.46%. 

 

Scenario 2: The primary goal for the Scenario 2 was defined as classification of stimuli 

based on perception of one of the subjects 1, 2 or 3. 

Experiment 12-1 classified stimuli P1, P2, A and was based on Subject 1 perception of 

the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 P1 1 98.00 

2 A 1 78.90 

3 P2 1 91.48 

Overall accuracy of experiment is 89.46%. 

 

 Experiment 12-2 classified stimuli P1, P2, A and was based on Subject 2 perception of 

the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 P1 2 71.18 

2 A 2 70.03 

3 P2 2 83.62 

Overall accuracy of experiment is 74.94%. 

 

Experiment 12-3 classified stimuli P1, P2, A and was based on Subject 3 perception of 

the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 P1 3 91.01 

2 A 3 74.87 

3 P2 3 80.05 

Overall accuracy of experiment is 81.98%. 
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Scenario 3: The primary goal for the Scenario 3 was more complex and defined as 

classification of the stimuli P1, P2, A based on mixed samples of perception of all three 

subjects 1, 2 and 3. 

Experiment 13-1 classified the stimuli P1, P2, A and was based on the mixed samples of 

perception of all three subjects 1, 2, 3; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 P1 1 

2 

3 

79.19 

2 A 1 

2 

3 

69.44 

3 P2 1 

2 

3 

67.94 

Overall accuracy of experiment is 72.19%. 

 

Scenario 4: The primary goal for the Scenario 4 was more complex and defined as 

classification of the subjects 1, 2 and 3 based on the mixed samples of all three stimuli 

P1, P2 and A perception. 

Experiment 13-2 classified subjects 1, 2, 3 was based on the mixed samples of all three 

stimuli P1, P2 and A perception; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 

 

P1 

A 

P2 

84.95 

2 2 

 

P1 

A 

P2 

90.10 

3 3 

 

P1 

A 

P2 

77.23 

Overall accuracy of experiment is 84.09%. 
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Scenario 5: The primary goal for the Scenario 5 was the most complex and defined as 

classification of the combination of a certain subject plus a certain stimulus. 

Experiment 13: two contradictory stimuli P1 and A were presented to three subjects 1, 

2, 3; the experiment contained 6 classes: 

 

Class # Subject/Stimulus Class Accuracy % 

1 1/P1 89.97 

2 2/P1  73.16 

3 3/P1 83.78 

4 1/A 40.20 

5 2/A 68.20 

6 3/A 73.02 

Overall accuracy of experiment is 71.38%. 

 

Summarizing the video stimuli we can state the following:  

1) Despite the relative variability in accuracy of video stimuli experiments, we can 

confirm again the feasibility of perception classification and would like to emphasize 

that this is similar to the audio experiments general trend. The classification accuracy on 

patterned stimuli is higher than on unstructured.  

2) The second general tendency is that average accuracy of experiments with video 

stimuli is higher than in experiments with audio stimuli.  

The detailed analysis will be given later in the summary section 6.4. 
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6.3 Visualization of EEG recorded data 

 

The same visualization tools are used for video stimuli perception, the EEGLAB 

toolbox for processing continuous and event-related EEG, fig.6.3.1 and fig.6.3.2.  

 

Fig.6.3.1 2D EEG scalp maps of dataset EEG epochs; subject 1, P2 Patterned video 

stimulus  

 

 

Fig.6.3.2 2D EEG scalp maps of dataset EEG epochs; subject 1, A Abstract video 

stimulus  
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Fig.6.3.3 2D plotting of sensor O1 and sensor O2 that are corresponding roughly with 

visual dorsal and ventral stream areas; recorded with A/Abstract video stimuli 

 

Fig.6.3.4 2D plotting of sensor O1 and sensor O2 that are corresponding roughly with 

visual dorsal and ventral stream areas; recorded with P2/Patterned video stimuli 

 

Attempts to analyze the spectral power and frequency resolution of EEG data, 

comparison of visualizations of EEG data collected on video stimuli is looking 

noticeably less clear than collected on audio stimuli. It might reflect the fact of more 

complex structure of visual perception, and numerous brain areas involved into visual 

perception brain processing. Similar conclusions might be assumed with the NeuCube 

visualizations, fig.6.3.5. The networks built on video perceptions have more complex 

structure in general. 

 

Fig.6.3.5 NeuCube visualizations of Experiment 2-1 (left) and Experiment 2-2 (right) 

EEG data classification of subjects with video stimuli. 
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6.4 Summary 

 

Analyzing the classification accuracy of the whole set of the experiments performed 

with the use of three types of video stimuli (two different patterned stimuli P1 and P2 

and one unstructured abstract stimulus A) we may mention that in general the 

classification accuracy of perception of video samples is higher if compared with the 

classification accuracy obtained with the use of audio stimuli. While the general 

tendency in reaching higher results in the experiments designed for classification of 

subjects to compare with the experiments for classification of stimuli remained the same 

(up to 99.58% for subjects compared with only 89.46% for stimuli), there is a noticeable 

distinction. 

 The classification of subjects based on the Abstract stimulus A has reached fairly high 

accuracy of 94.51% and it’s just slightly lower accuracy obtained on patterned and 

structural stimuli P1 and P2. This fact should be investigated further but as we presume, 

the color component plays one of the most important roles in visual perception, 

therefore the choice of the stimulus A abstract art samples haven’t met the assigned 

requirements for this sort of stimuli to be totally noisy and chaotic. Thus this fact should 

be taken into account for further study. Here we have to mention that the perception of 

irregular with bright clear colors video art samples might be classified possibly with a 

higher level of accuracy, which suggests further investigation and additional 

experiments. 

The perception accuracy on combinations of audio and video (in a single stimulus) will 

be explored in chapter 7.  
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Chapter 7 
 

 

 

 

Experimental case study of EEG 

STBD classification in the NeuCube 

model with mixed audio/video 

 stimuli 

 

 

 

7.1 EEG brain perception data and experiment description 

 

 

Collecting of EEG brain perception data of visual and auditory areas of human brain 

demands the same equipment and EEG recording device and software that was used for 

the experiments with video stimuli [32].  
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The main ideas of collecting human brain perception data recorded on contradictory 

stimuli representing the notions of harmony versus chaos were also kept for the 

combined audio/video stimuli.  

The suggestion was made about the possibility to gain higher accuracy of classification 

of perception with stimuli presented as combination of audio and video components 

being logical extensions of each other. In other words, for the patterned video stream the 

structural classical music was chosen as combination and for the amorphous noise 

sample the abstract shapeless art works were chosen as video component: 

The audio/video stimuli were combined and labeled in the following way: 

1) 85 seconds extract from the Ich ruf’ zu dir, Herr Jesu Christ (BWV 639) by Johann 

Sebastian Bach was completed with mandalas video (related further in the chapter as 

“PM1”); 

2) 54 seconds extract from the Wachet auf, ruft uns die Stimme (BWV 140) by Johann 

Sebastian Bach was completed with snow crystals video (related further in the chapter 

as “PM2”); 

3) 30 seconds of unstructured chaotic irritating industrial noise was completed with 

abstract art video (related further in the chapter as “AN”). 

The EEG data was recorded from several healthy male and female subjects in the age 

category of 20 – 40 years. The recorded data was not used previously. The length of a 

whole session of each of three stimuli (PM1 of 85 sec, PM2 of 54 sec and AN of 30 sec) 

was later divided into equal samples of 1 sec length. The data was collected and 

classified following five scenarios each of which set distinct goals: 

Scenario 1: The primary goal for the Scenario 1 was defined as classification of 

subjects based on their perception of one of the stimuli PM1, PM2 or AN. Each of the 

experiments performed within this scenario was utilizing only one of these stimuli. 

 Experiment 1-1 classified subjects 1, 2, 3 and was based on stimulus PM1presented to 

subjects; contained 3 classes: 
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Class # Subject Stimulus Class Accuracy % 

1 1 PM1 100 

2 2 PM1 95.19       

3 3 PM1 100 

Overall accuracy of experiment is 98.40%. 

 

Experiment 1-2 classified subjects 1, 2, 3 and was based on stimulus AN presented to 

subjects; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 AN 79.06     

2 2 AN 87.67       

3 3 AN 83.02     

Overall accuracy of experiment is 83.25%. 

 

Experiment 1-3 classified subjects 1, 2, 3 and was based on stimulus PM2 presented to 

subjects; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 1 PM2 100 

2 2 PM2 100 

3 3 PM2 100 

Overall accuracy of experiment is 100%. 

 

Scenario 2: The primary goal for the Scenario 2 was defined as classification of stimuli 

based on perception of one of the subjects 1, 2 or 3. 

Experiment 5-1 classified stimuli PM1, PM2, AN and was based on Subject 1 

perception of the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 PM1 1 80.37       

2 AN 1  69.07      

3 PM2 1 86.67   

Overall accuracy of experiment is 78.70%. 

 Experiment 5-2 classified stimuli PM1, PM2, AN and was based on Subject 2 

perception of the stimuli; contained 3 classes: 
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Class # Stimulus Subject Class Accuracy % 

1 PM1 2 75.56       

2 AN 2 40.00       

3 PM2 2 72.09 

Overall accuracy of experiment is 62.55%. 

 

Experiment 5-3 classified stimuli P1, P2, A and was based on Subject 3 perception of 

the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 PM1 3 84.07       

2 AN 3 72.67       

3 PM2 3 86.09 

Overall accuracy of experiment is 80.94%. 

 

Scenario 3: The primary goal for the Scenario 3 was more complex and defined as 

classification of the stimuli PM1, PM2, AN based on mixed samples of perception of all 

three subjects 1, 2 and 3. 

Experiment 7 classified the stimuli PM1, PM2, AN and was based on the mixed 

samples of perception of all three subjects 1, 2, 3; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 PM1 1 

2 

3 

50.25       

2 AN 1 

2 

3 

36.25       

3 PM2 1 

2 

3 

70.31 

Overall accuracy of experiment is 52.27%. 
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Scenario 4: The primary goal for the Scenario 4 was more complex and defined as 

classification of the subjects 1, 2 and 3 based on the mixed samples of all three stimuli 

PM1, PM2, AN perception. 

Experiment 7-1 classified subjects 1, 2, 3was based on the mixed samples of all three 

stimuli PM1, PM2, AN perception; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 

 

PM1 

AN 

PM2 

84.44       

2 2 

 

PM1 

AN 

PM2 

84.00     

3 3 

 

PM1 

AN 

PM2 

86.43     

Overall accuracy of experiment is 84.96%. 

 

Scenario 5: The primary goal for the Scenario 5 was the most complex and defined as 

classification of the combination of a certain subject plus a certain stimulus. 

Experiment 8: two contradictory stimuli PM1 and AN were presented to three subjects 

1, 2, 3; the experiment contained 6 classes: 

Class # Subject/Stimulus Class Accuracy % 

1 1/PM1 100 

2 2/PM1 85.13 

3 3/PM1 94.06 

4 1/AN 67.54 

5 2/AN 80.05 

6 3/AN 73.76 

Overall accuracy of experiment is 83.42%. 
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  7.2 EEG data samples’ length experiment 

 

A separate classification session was performed on the same audio/video stimuli but 

with different sample length arrangements. 

The length of a whole session of each of three stimuli (PM1 of 85 sec, PM2 of 54 sec 

and AN of 30 sec) was divided into equal samples of 10 sec length versus 1 sec in all 

previous experiments. The aim of this experiment was to define any possible influence 

of the sample length on the level of accuracy. The suggestion was made about a possible 

direct dependence of the level of accuracy on the length of data sample.         

Scenario 1/10: The primary goal for the Scenario 1/10 was defined as classification of 

subjects based on their perception of one of the stimuli PM1, PM2 or AN. Each of the 

experiments performed within this scenario was utilizing only one of these stimuli. 

 Experiment 15-1 classified subjects 1, 2, 3 and was based on stimulus PM1presented to 

subjects; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 PM1 100 

2 2 PM1 100 

3 3 PM1 100 

Overall accuracy of experiment is 100%. 

 

Experiment 15-2 classified subjects 1, 2, 3 and was based on stimulus AN presented to 

subjects; contained 3 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 AN 100 

2 2 AN 83.66 

3 3 AN 91.60 

Overall accuracy of experiment is 91.75%. 

 

 



99 

 

Experiment 15-3 classified subjects 1, 2, 3 and was based on stimulus PM2 presented to 

subjects; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 1 PM2 100 

2 2 PM2 100 

3 3 PM2 100 

Overall accuracy of experiment is 100%. 

 

Scenario 2/10: The primary goal for the Scenario 2/10 was defined as classification of 

stimuli based on perception of one of the subjects 1, 2 or 3. 

Experiment 16-1 classified stimuli PM1, PM2, AN and was based on Subject 1 

perception of the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 PM1 1 96.60 

2 AN 1 73.88 

3 PM2 1 97.31 

Overall accuracy of experiment is 89.26%. 

 

 Experiment 16-2 classified stimuli PM1, PM2, AN and was based on Subject 2 

perception of the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 PM1 2 81.39 

2 AN 2 61.54 

3 PM2 2 95.00 

Overall accuracy of experiment is 79.31%. 

 

Experiment 16-3 classified stimuli P1, P2, A and was based on Subject 3 perception of 

the stimuli; contained 3 classes: 

Class # Stimulus Subject Class Accuracy % 

1 PM1 3 95.13 

2 AN 3 74.36 

3 PM2 3 98.33 

Overall accuracy of experiment is 89.27%. 
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Scenario 3/10: The primary goal for the Scenario 3/10 was the most complex and 

defined as classification of the combination of a certain subject plus a certain stimulus. 

Experiment 17: two contradictory stimuli PM1 and AN were presented to three subjects 

1, 2, 3; the experiment contained 6 classes: 

Class # Subject/Stimulus Class Accuracy % 

1 1/PM1 100 

2 2/PM1 94.14 

3 3/PM1 83.09 

4 1/AN 81.10 

5 2/AN 47.70 

6 3/AN 70.15 

Overall accuracy of experiment is 79.36%. 

 

 The top overall accuracy of 100% for classification of subjects is reached here with 

combined patterned audio plus video stimulus PM2. The extending of the duration of 

the stimuli has increased the accuracy level and allowed us to extend the 100% accuracy 

on both patterned stimuli PM1 and PM2 and also to obtain the highest accuracy for 

irregular stimulus AN. The highest accuracy is also achieved for stimuli classification 

experiments as well as in the complex experiments with 6 classes (concurrent 

classification of subjects and stimuli). 

The detailed analysis of the results will be given later in this chapter in the summary 

section 7.5. 
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7.3 Special case of EEG STBD classification in the 

NeuCube model with mixed audio/video 

 contradictory pairs stimuli  

 

 

 

To verify the suggestion made earlier about the possibility of obtaining higher accuracy 

of classification with mixed audio/video stimuli combined as being logical extensions of 

each other, (combinations of structural video stream with structural classical music 

versus amorphous noise samples with shapeless abstract art), the following experiments 

with “broken pairs” stimuli were performed. The previously used polarizing or 

contradictory logic for pairs of audio plus video combinations was changed to opposite, 

and new pairs were composed and labeled in the following way: 

1) 54 seconds extract from the Wachet auf, ruft uns die Stimme (BWV 140) by Johann 

Sebastian Bach was combined with shapeless abstract art video (related further in the 

chapter as “AM”). 

2) 30 seconds of unstructured chaotic irritating industrial noise was completed with 

snow crystals video (related further in the chapter as “PN”); 

The EEG data was recorded from a small group of healthy male and female subjects in 

the age category of 20 – 40. The length of a whole session of each of two stimuli (PN of 

54 sec and AM of 30 sec) was later divided into equal samples of 1 sec length. The data 

was collected and classified following three scenarios: 

 

Scenario 1: The primary goal for the Scenario 1 was defined as classification of 

subjects based on their perception of one of the new “broken pairs” stimuli, PN or AM.  

 Experiment 3-1 classified subjects 1, 2 and was based on stimulus PM1 presented to 

subjects; contained 2 classes: 
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Class # Subject Stimulus Class Accuracy % 

1 1 PN 83.32 

2 2 PN 72.34 

Overall accuracy of experiment is 77.83%. 

 

Experiment 3-2 classified subjects 1, 2 and was based on stimulus AN presented to 

subjects; contained 2 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 AM 71.31 

2 2 AM 72.46 

Overall accuracy of experiment is 71.88%. 

 

 

Scenario 2: The primary goal for the Scenario 2 was defined as classification of stimuli 

based on perception of one of the subjects 1, 2. 

Experiment 11-1 classified stimuli PN, AM and was based on Subject 1 perception of 

the stimuli; contained 2 classes: 

Class # Stimulus Subject Class Accuracy % 

1 PN 1 55.77 

2 AM 1 35.18 

Overall accuracy of experiment is 45.47%. 

 

Experiment 11-2 classified stimuli PM1, PM2, AN and was based on Subject 2 

perception of the stimuli; contained 2 classes: 

Class # Stimulus Subject Class Accuracy % 

1 PN 2 53.29 

2 AM 2 49.09 

Overall accuracy of experiment is 51.19%. 

 

Scenario 3: The primary goal for the Scenario 3 was more complex and defined as 

classification of the stimuli PN and AM based on mixed samples of perception of both 

two subjects 1 and 2. 
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Experiment 10 classified the stimuli PN and AM and was based on the mixed samples 

of perception of both two subjects 1, 2; contained 2 classes: 

Class # Stimulus Subject Class Accuracy % 

1 PN 1 

2 

 

35.72 

2 AM 1 

2 

 

60.05 

Overall accuracy of experiment is 47.88%. 

 

Experiment 10-1 classified subjects 1, 2, was based on the mixed samples of both two 

stimuli PN and AM perception; contained 2 classes: 

Class # Subject Stimulus Class Accuracy % 

1 1 

 

PN 

AM 

 

47.02      

2 2 

 

PN 

AM 

 

61.08     

Overall accuracy of experiment is 54.05%. 

 

The experiments of this section with mixed contradictory pairs stimuli has shown the 

instability of classification and accuracy volatility. Similar experiments should be 

repeated in future research to investigate the nature of these findings. 
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7.4 Visualization of EEG recorded data 

For visualization purposes of EEG brain data perception of audio/video stimuli the 

novel software EEGLAB tool SIFTS [138] was used. The visualization feature allows 

us to simulate step by step the flow of the signals, which activate certain brain areas so 

that all the brain states combined one by one into the “brainmovie” will let us watch 

time dependent brain signal processing. Below selected pictures of the “brainmovie” are 

shown, fig.7.4.1. 

 

 

Fig.7.4.1 BrainMovie3DVisualization of EEG data with mixed audio/video 1/MP2 

patterned stimuli; SIFT Matlab/EEGLAB plugin 
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For illustration of the complexity of the NeuCube processing of complicated 

experiments 8 and 17 (with classification of the combination of a certain subject plus a 

certain stimulus), fig 7.4.2 shows the network produced by the NeuCube after the 

training of the system. 

Fig 7.4.2. The NeuCube network after training of complicated experiments 8 and 17. 

 

 

 

7.5 Summary 

 

The analysis of the results obtained using a combination of audio and video samples in a 

single stimulus confirms the existing tendency: gaining higher classification accuracy in 

the experiments designed for classification of subjects in comparison with the 

experiments for classification of stimuli. 

In this set of experiments with video/audio stimuli we achieved the highest percentage 

of accuracy - 100% for selected classes and for overall accuracy for classification of 

subjects. However we have to mention that the addition of Noise audio to the Abstract 

video (in the stimulus AN) decreases an achievement of “pure video” A stimulus 

accuracy dropping it from 94.51% (for A) to 83.25% (for AN). It may illustrate the 

negative influence of Noise audio component on the combined audio/video AN 

stimulus.  
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We observed unexpectedly low accuracy results for stimuli classification in complex 

scenarios (mix of 3 subjects data) e.g. the lowest 36.25% for the AN (Abstract/Noise) 

stimulus. These were compensated with surprisingly high accuracy in the most complex 

experiment design with 6 classes (experiments 8 and 17) gaining there 100% accuracy 

for one class in each experiment with overall accuracy of 83.42% and 79.36% 

respectively. The relative success of those fairly complicated experiments lets us make a 

suggestion of feasibility of “subjects plus stimuli” concurrent classification. 

As articulated above in this chapter the assumption about a direct dependence in level of 

accuracy on a duration of a stimulus was confirmed with experiments 15-1, 15-2, 15-3, 

16-1, 16-2, 16-3 and 17, where the duration of the proposed stimuli was increased from 

1 sec to 10 sec which produced an increase in the accuracy for the whole range of these 

experiments. 

The special case of experiments 3-1, 3-2, 10, 10-1, 11-1 and 11-2 with contradictory 

pairs of audio/video stimuli has also confirmed the assumption about lesser 

classification abilities of contradictorily combined stimuli. The highest accuracy 

reached in these experiments was only 77.83% compared to 100% in similar 

experiments but with logically combined audio and video components. The stimuli 

classification on contradictory pairs gave an even worse result of 45.47% against 

80.94% on logical stimuli. It is drastically lower, especially taking into account the fact 

of only 2 existing classes in contradictory experiment design. This case illustrates the 

instability of brain perception of information consisting of contradictory components 

(e.g. audio versus video) and as a result a high volatility of classification accuracy. 
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Chapter 8 
 

 

 

 

 

 

Conclusion and future work 

 

 

 

The range of performed experiments gives us the possibility to make several 

conclusions. First of all the results of experiments have shown the feasibility of using 

human brain data recorded as plain EEG brain data on specific stimuli for purposes of 

data classification and in particular for person identification. Classification of human 

brain perception data of a number of subjects recorded with the use of video, audio and 

combination of audio and video stimuli performed on the Neucube software tool has 

shown promisingly high levels of accuracy.  

A methodology for spatio-temporal EEG brain data classification, based on the 

collected auditory data, in the NeuCube 3D SNN environment has been developed and a 

paper had been submitted to the 20
th

 ICONIP conference (November 2013) in Daegu, 

Korea. 
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A methodology for visual STBD and combined auditory and visual STBD data 

classification has been proposed and a paper is in preparation to be published by 

Springer later in 2014. 

A methodology for person identification has been successfully tested and a procedure of 

using specific audio, video and mixed stimuli with the function of a security key for the 

authentication process has been proposed. The term of brainprints is offered by analogy 

with fingerprints and prospectively having the ability to supply similar functionality but 

with a higher level of security. The obtained classification results also allow us to make 

initial evaluation of stimuli regarding its appropriateness for the authentication 

purposes. The combination of structured music audio with patterned video sample has 

provided a stimulus with its best qualities necessary for consistent and trustworthy 

person identification. Therefore we may define an “ideal” stimulus which would possess 

the best qualities of a security code providing the appropriate level of accuracy of 

classification and being relatively fast. It would be a sample of highly structural audio 

combined with dedicated video string of reasonably long duration (still feasible for fast 

computation, in a range of seconds). 

Most problematic for person identification, appeared to be the stimuli of chaotic 

irregular noise in the audio only format. Classification of human perception recorded 

showed a minimum of 68.4% accuracy. For the identification of stimuli these noisy 

samples were critically problematic with a sharp decline to 28.89%. 

The experiments with scenarios of stimuli identification demonstrated the feasibility of 

this type of classification although reaching in general lower classification accuracy.  

We have to mention some limitations of this study such as: limited amount of available 

perception data, and the availability of only 14 channels EEG equipment. These 

limitations have constrained the possibility of the study to some extent. For the 

prospective future research new opportunities will be opened with accessibility of the 
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full 64 channels EEG equipment. Also to prove proper repeatability of the classification 

accuracy the experiments should be performed with a larger number of subjects. 

Another aspect that should be addressed in a future work is the analysis of classification 

accuracy dependence on the length of data samples used for experiments with an 

objective of defining a possible minimum optimal length for a data sample.  

At last, regarding the evaluation of the NeuCube feasibility for classification of plain 

EEG data we have to state its success even for classification of complex data given the 

task to identify combinations of subjects and stimuli together.  

While the level of accuracy was less stable in that case, the further research would be 

beneficial. 

Summarizing, we may say that the classification of human brain perception is only one 

of the very first steps on the way of human creativity research. Evaluation and 

verification of the hypothesis of the patterned nature of human inspiration and creativity 

will demand many experiments to be performed and vast amounts of data to be 

collected.  To define any special cases in human perception, to differentiate the 

perception of archetypical symbols, discussed in chapter 1, we will need to explore 

deeply the streams of human perception with a wide range of experimental methods. 

   Another important aspect for future research involves experimenting with dynamic 

network processing within the 3D SNN NeuCube environment and that should define 

new horizons for this field of research. 
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Appendix A 

# A                 Natural Pattern B                     Human Art Pattern 
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11 

  

 

1A    The carbon monoxide molecule, the picture is made b IBM team in Zurich. [145] 

1B    Drawing by Leonardo da Vinci (Codex Atlanticus, fol. 307v), [144] 

2A A picture of H2O molecular structure, [146] 

2B Vajra; it is used symbolically by the Dharma traditions of Buddhism, Jainism and 

Hinduism, often to represent firmness of spirit and spiritual power [14] 

3A LCPD images of naphthalocyanine on NaCl(2 ML)/Cu(111) measured with a CO-

terminated tip.[139]      

3B Celtic Cross, Ireland, XII century, [147] 

4A Typhoon Muifa (International designation: 1109, JTWC designation: 11W, 

PAGASA name: Kabayan), [143] 

4B A decoration fragment of a spinning wheel. North of Russia, XVIII century. [148] 

5A The Richat Structure, also known as the Eye of the Sahara and Guelb er Richat, is a 

prominent circular feature in the Sahara desert of west–central Mauritania near 

Ouadane. [142] 

5B Maori Art, wood carving, fragment of canoe decoration, XVIII century, 

6A Moscow at night from a satellite, [141] 

6B Native American Mandala; Traditional Mexican Art. [149] 

7A Ice floes along the Kamchatka coastline seen from ISS. [150] 

7B Greek meander ornament. [151] 

8A Snow Crystals [15] 

8B Vologda lace. [152] 

9A Snow Crystals [15] 

9B Cathedral in France, French gothic, XIII century. [153] 
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10A Schematic molecule structure. [156] 

10B Celtic art, Book of Kells, Dublin, Trinity College Library, MS A. I. (58)  It's 

believed to have been created ca. 800 AD. [154] 

11A The large spiral galaxy NGC 1232, as seen on 21 September 1998. NGC 1232 is 

located 20 degrees south of the celestial equator, in the constellation Eridanus (The 

River). The distance is about 100 million light-years. © ESO [140] 

11B Islamic Art. Mosque in Iran, XI - XII century. 

 

 

 

 

 


