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Abstract

Identification of dangerous road distress on road surfaces is essential to many appli-
cations such as improved driving comfort, safety, the country’s economy and better
traffic efficiency. For these reasons, research around the world has comprehensively
explored strategies for identification of road distress. In this study, two different
state-of-the-art approaches have been implemented and compared for pothole de-
tection. The first approach, focuses on identification of road distress using stereo
vision. Single and multiple 3D frame reconstruction techniques are performed for
3D plane fitting to model the road surface using a digital elevation model. Then
a road manifold is constructed and further investigated for the detection of major
road distress such as potholes.

As potholes might be dry, or snow or water filled, the second approach focuses
on identifying potholes under different weather conditions. Transfer learning based
techniques using Mask R-CNN and YOLOv2 convolutional neural networks focus
on improved pothole identification. The pre-trained convolution layers of Mask R-
CNN and YOLOv2 are trained to identify common natural features in an image such
as edges or corners. This knowledge is adapted and transferred to the task of pot-
hole identification using transfer learning. Potholes are identified with promising
accuracy using a transfer learning based model. This study also serves the purpose
of providing pointers to different datasets recorded on different days and light con-
ditions.

Keywords: stereo vision, digital elevation model, transfer learning, convolu-
tional neural networks.
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Chapter 1

Introduction

In the era of smart cities, internet-of-things, the cloud, and autonomous vehicles, the
road, the basic transportation medium, and road maintenance might seem to be behind in
discussion. Fixing road distress in time can save millions of dollars and increases trans-
portation efficiency. Road distress is a depression on a road surface, mainly in the form of a
pothole. A pothole is usually a bowl-shaped depression in the road surface and is, generally,
an end result of a major crack. With the invention of new technologies, the detection and re-
pair of road distress can be done more efficiently and quickly. These developments, persuaded
this study to achieve the goal of road distress identification.

1.1 Motivation

Potholes are a perennial problem which starts with imperceptible microscopic cracks
in road surfaces (see Fig. 1.1 for an example). Potholes may arise because of traf-
fic overloading or weather affecting the road surface [1]. Due to rain and other
weather factors, these cracks clog water inside which freezes and expands during
cold weather. This void hole shape structure becomes a pothole, either water or
snow filled, or dry.

Potholes cost lives: Currently, of approximately 33, 000 traffic fatalities each
year in the USA, one-third involve poor road conditions; in the UK, about 50 cy-
clists are seriously injured every year because of Britain’s poor roads [2]. In October
2017, Auckland Transport, New Zealand, received 276 requests for compensation
for damages or injuries related to roads [3]. In India alone, potholes have killed
over 11, 000 people in the last four years [4]. In Rome, potholes have caused an
untold number of accidents and shredded the tyres of 15 vehicles [5] in 2018.
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Figure 1.1: A pothole on a road.

Potholes cost money: Potholes put a big dent in driver’s budgets and a coun-
try’s economy. In New Zealand Christchurch spent 525, 000, Wellington 12, 782,
Invercargill 60, 000, and Dunedin around 27, 000 in order to fix potholes [6]. In 2018,
one of the largest pizza chains (Domino) commented that “potholes cause irreversible
damage to pizzas during delivery to homes” and dispensed a $5, 000 grant to fix 53 pot-
holes around 20 locations in the U.S [7]. The UK government announced a budget
of 420 million euros [8] and Rome 17 million euros to fix potholes in 2018 [5].

Hence, potholes cost both lives and money. As discussed above potholes present
grave danger to all transport vehicles, including cyclists.

Automotive industry inventions: Automotive industries use a variety of sys-
tems for road surface scans. For instance, the 2018 Jaguar Land Rover also in-
vested in pothole detection technology. The system measures vibrations caused
in the vehicles and adjusts its suspension for more driving comfort. However, for
this technique of measuring vibrations, the vehicle still drives over the pothole [10].
The 2017 Ford Fusion used 12 high-resolution cameras to adjust computerised con-
trolled dampers in a car for best ride comfort [11]. The 2013 Mercedes Benz S
class uses a stereo-vision system to facilitate a road surface scan. Forward-looking
cameras of the stereo-vision system are mounted near the central rear-view mirror
and facilitates more driving comfort when there is a bump or speed breaker on the
road [12]. Road surface inspection is also done commercially using specialized ve-
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hicles [13, 14].

Unfortunately, all these technologies are equipped with expensive sensors and
are without technology disclosure, therefore limiting its accessibility to the general
public. This thesis aims to fill some gaps in the extensive field of road maintenance
and road distress detection.

In Section 1.1, motivation for the research is introduced. Section 1.2 details our
rationale behind conducting this research. In Section 1.3 we1 define the contribu-
tions of conducting this research. Section 1.4 outlines the organisation of the thesis.

1.2 Research justification

Potholes are broadly classified into two types - shallow potholes or deep potholes.
A shallow pothole is usually just in the top layer of the road, whereas a deep pot-
hole involves failures beneath the road surface and can become very large in a short
span of time. However, the classification of potholes is very subjective and mainly
depends on funding and priority assigned to the road civil authorities [15]. A com-
prehensive technique is needed to identify potholes under different scenarios. A
pothole, usually of irregular shape, can also be dry, water filled or covered with
some material on the road (see Fig. 1.2).

The identification of potholes becomes very challenging under different weather
conditions, such as different intensities of sunlight or in rainy weather. Road dis-
tress analysis can be done manually, i.e. using humans as sensors [16–18]. A study
conducted in Taoyuan, Taiwan, uses a data-analytic approach applying correlation
and regression analysis [16]. The Authors quantify how roads with higher propor-
tions of road potholes result in a larger number of accidents. Several mobile crowd-
sourcing based applications have been developed to report data about road hazards
(e.g. [17]).

With other vehicular sensing solutions such as the accelerometer, a pothole can
be identified while the vehicle drives over it by measuring vibrations [19, 20]. An
accelerometer is used because of its low cost and relatively simple detection proce-
dure. However, there are more chances of false positive occurrences when a vehicle
drives over speed bumps or suddenly swerves.

1The use of “we” throughout this thesis is wilful and is used to involve the reader with the thesis as
recommended by Knuth et al. [9].
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Figure 1.2: Dried leafy pothole on the left, and water filled pothole on the right,
showing different intensities of light

For hazard avoidance, it is often desired to identify distress at a distance. This is
achieved using 2-dimensional (2D) vision-based methods [21, 22], potholes are iden-
tified from imagery data. Process design in this case is highly dependent on the
application for which a 2D dataset is being processed. Road surface distress is gen-
erally of irregular shape.

A more accurate technique is to detect distress in 3-dimensional (3D) space [23,
24]. Advanced automated road-inspection technologies often use specialized vehicle-
mounted 2D laser scanners [25], 3D laser scanners [26], or ground penetrating radar [27]
for producing accurate data. However, these special-purpose devices are expensive,
limited to use in specialized automated vehicles, and not designed for integration
into any vehicle.

We use and compare two techniques based on stereo-vision and transfer learn-
ing. Stereo-vision analyses road environments ahead of the vehicle and provides 3D
measurements to extract geometric features of road distress. Stereo-vision cameras
are cost effective, and their performance capabilities equate to 3D laser scanners,
thus making them a wise choice for real-world applications. However, most of these
techniques use high-resolution datasets for processing which are captured through
specific cameras. The second technique, using neural networks, accepts images or
videos as input and the developed model is useful to identify potholes using any
types of images or videos captured through any camera.
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1.3 Significance and Contributions of this research

For automatic identification of road surface distress, this thesis proposes and com-
pares two different techniques- based on stereo-vision and transfer learning. At the
heart of which is the assumption that automatic pothole detection can save both
money and lives. Below are the key points of my research significance and contri-
butions:

1. This research is of significance for better traffic efficiency, safety, and improved
comfort while driving.

2. These techniques allow identification of potholes from a distance and in an
accurate manner, as supported by experiments.

3. The techniques proposed in this thesis are applicable to monocular vision,
inertial-monocular vision, or monocular LIDAR systems.

4. This thesis also fills the gap of benchmarking pothole detectors by providing
required datasets to conduct pothole identification experiments.

5. This thesis also contributes to a data science field for pothole detection by
collecting pothole data, labelling and training models.

By doing a set of experiments to evaluate the performance of techniques, we con-
tribute to the present best practices for automatic identification of potholes.

1.4 Thesis structure

Chapter 1 serves as an introduction to the thesis as a whole. It explains our mo-
tivation, research justifications and our contributions in related fields. The overall
format is shown in Fig. 1.3.
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Figure 1.3: Thesis structure

Chapter 2 begins with a review of related background studies in the field of road
distress techniques and developments.

Chapter 3 serves to provide brief explanations of basic theories adopted in this
thesis. It also introduces the datasets used for techniques in Chapters 4 and 5.

Chapter 4 details two proposed techniques based on stereo-vision for identifica-
tion of potholes. Chapter 5 presents two techniques of transfer learning using Mask
R-CNN and YOLO networks. Chapter 5 also presents our results obtained by mak-
ing a comparison between stereo vision and transfer learning using Mask R-CNN.

Finally, Chapter 6 summarises the findings of this thesis. It presents the con-
clusions drawn from the results of Chapters 4 and 5. This chapter also addresses
further areas of interest.



Chapter 2

Literature review

Research around the world has comprehensively explored strategies for the identification of
road distress. Current methods use a variety of sensors such as inertial measurements, 3D
scanners, and optical sensors. However, in the already defined digital world, the reporting
and identification of potholes still depends mainly on public reporting. In this chapter, a
general review is given based on various road distress detection techniques.

2.1 Road distress detection techniques

Over time, an extensive literature has developed in the field of pothole detection.
Based on our background study, we have divided road distress techniques as shown
in Fig. 2.1. From the end user's point of view, these technologies can be categorised
based on the sensors being used in the vehicle. In this study, we categorise the
methods mainly based on the used techniques.

Figure 2.1: Classification of road distress detection techniques
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App/Website Countries
FixMyStreet UK, New Zealand
SeeClickFix US
Citizens-Connect Netherlands, Canada
PDX Reporter Portland
Report a Pothole London
BBMP Bangalore, India
Citizen Hotline 1999 Taoyuan, Taiwan

Table 2.1: Public reporting; listed names on the left identify the websites of those
applications (e.g. www.fixmystreet.com). Citizen Hotline 1999 is the name of an
innovative open data platform used in Taiwan; the related research publication was
in 2017 [16].

2.1.1 Public reporting

This type of system enhances civic engagements by government and facilitates par-
ticipation by people in the country. This system uses humans as sensors. The public
can report potholes by capturing its pictures through their phones or other devices
and by uploading or merely sending information about locations to a website or
application. However, this approach is manual and time consuming. Some of the
examples are listed in Table 2.1.

2.1.2 Vibration based techniques

Vibration based techniques include approaches of collecting abnormal vibrations
caused in the vehicles while driving over road anomalies [20]. Vibrations of the ve-
hicle are collected using accelerometer. The main drawback of the vibration based
methods is that the vehicle has to drive over the distress in order to measure the
vibrations caused by the distress on the road. J. Ren et al. [28] used K-Means clus-
tering to detect potholes based on the data collected through an accelerometer and
the global positioning system (GPS). The proposed system lacks with regards to the
isolation of detected potholes from other road anomalies.

M. Ghadge et al. [29] used an accelerometer and GPS to analyse the condition of
roads to detect locations of potholes and bumps using a machine-learning approach
of K means clustering on training data and a random forest classifier for testing
data. K means clustering divides the data in two clusters of pothole or non-pothole.
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Then, a random forest classifier is used to validate the proposed approach of the
clustering algorithm. However, clustering does not perform well when clusters of
different size and severity are involved and here, size and severity of a pothole are
the major factors involved in the system.

M. Badurowicz et al. [30] proposed a road-relative unevenness index scale term
to measure road quality using accelerometer data and informing other users of the
road using crowd-sourcing.

Eriksson et al. [31] proposed a pothole patrol system to detect potholes which
gathers data from vibration and GPS sensors and processes this data to access road
surface conditions.

Other researchers such as K. Chen et al. [32], N. Kalra et al. [33], M. Fekry et al.
[34] and Y. Ren et al. [35] also used an accelerometer to detect road distress.

2.1.3 2D vision based techniques

Vision-based methods use 2D images or video data, captured using a digital cam-
era, and process this data using image or video processing techniques [36, 37]. The
choice of the applied image processing techniques is highly dependent on the appli-
cation for which 2D images are being processed. These methods [21, 22] rely heavily
on manual processing; it appears impractical to define 2D features of potholes due
to their irregular shape.

C. Koch et al. [22] proposed a method aiming at a separation of defect and non-
defect regions in an image using histogram-shape-based thresholds. The authors
consider the shape of a pothole as being approximately elliptical based on a per-
spective view. The authors emphasize on using machine learning in future work,
and claim that the proposed work already results in 86% accuracy along with 86%

recall and 82% precision, with the common definitions of

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

F1 = 2 · Precision · Recall
Precision + Recall

(2.4)
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where TP is the number of true positives, FP of false positives, TN of true negatives,
and FN of false negatives.

A. Tedeschi et al. [38] recently suggested a system for automatic pavement distress
recognition which is able to perform in real time by identifying road distress includ-
ing fatigue cracks, longitudinal and traversal cracks, and potholes. The authors used
a combination of 2D vision-based technologies, and, for the classification, three dif-
ferent types of road distresses. Three classifiers have been used based on local binary
pattern features; they achieved more than 70% for precision, recall, and the
F1-measure. Authors discussed difficulties of defining the severity of considered
kinds of road distresses. For texture classification, the authors used Haralick’s fea-
tures [39] based on gray-level co-occurrence matrices (GLCMs) and then classified
image regions using a tool from [40].

S.-K. Ryu et al. [41] proposed a method to detect potholes both for asphalt or
concrete road surfaces using 2D images collected by a mounted optical device on
a survey vehicle. The system mainly works in three steps of image segmentation,
candidate region extraction and decision. The system fails to detect potholes in
darker images (image regions) due to shadows (e.g. of trees or cars) present in real-
world road recordings.

L. Powell et al. [42] presented a method for the detection of potholes by seg-
menting images into defected or non-defected regions. After extracting the texture
information from defected regions, this texture information is compared with tex-
ture information obtained from non-defected regions. The proposed system consid-
ers shadow effects on the road and aims to remove those effects of shadows using a
shadow-removal algorithm. The system is unable to perform in rainy weather. The
authors concluded that the system should be further extended to perform also on
video data as the system was only tested on 2D images collected using an iPhone
camera with 5 megapixel image resolution.

V. Bashkar et al. [43] propose a methodology of detecting mean depth of pot-
holes by using SURF [44] features on uncalibrated stereo pairs of images (without
employing disparity images). A particular methodology has been developed for
this purpose, but appears to suffers from uncalibrated stereo rectification; it is far
from providing good results.

Z. Ying et al. [45] proposed a system which can detect road surface based on
a feature detector which is shadow-occurence optimised. This system uses a con-
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nected component analysis algorithm and other morphological algorithms. The au-
thors had demonstrated their findings using images of datasets provided by KITTI [46]
and ROMA [47].

M. V. Thekkethala et al. [48] used two (stereoscopic) cameras and applied stereo
matching to estimate depth of a pothole on asphalt pavement surface. After per-
forming binarization and morphological operations, a skeleton of a pothole is es-
timated. The system is tested on 24 images. The system can detect skeletons of
potholes of great depression. Authors did not estimate the road manifold.

A. Akagic et al. [49] used 2D vision based method for pothole detection achiev-
ing an accuracy of 82%. The method works by performing image segmentation on
extracted pothole areas from an RGB colour space image. Then, a search is per-
formed in the segmented image which contains the ROI. This method is effective as
a pre-processing stage for a supervised algorithm.

2.1.4 3D scene reconstruction based technique

3D scene reconstruction is the method of capturing the shape, depth, and appear-
ance of objects in the real world; it relies on 3D surface reconstruction which typi-
cally demands more computations than 2D vision. Rendering of surface elevations
helps to understand accuracy during the design of 3D vision systems. 3D scene re-
construction can be based on using various types of sensors, such as Kinect, stereo-
vision cameras, or a 3D laser. Kinect sensors are mainly used in fields of (indoor)
robotics or gaming.

3D lasers define an advanced road-survey technology; compared to camera-
based systems it still comes with higher costs; [50, 51] report survey cycles of (usu-
ally) once in four years. A 3D laser uses a laser source to illuminate the surface and
a scan camera for capturing the created light patterns. The authors of [52] applied
the common laser-line projection; the recorded laser line deforms when it strikes an
obstacle (and supports thus the 3D reconstruction), but does not work well, e.g., on
wet roads or potholes filled with water.

Stereo vision cameras are considered to be cost-effective as compared to other
sensors. Stereo vision aims at effective and accurate disparities, calculated from left-
and-right image pairs, to be used for estimating depth or distance; see, for example,
[55]. commonly, the canonical left-right calibrated stereo camera setup is used while
aiming at a reconstruction dense 3D surfaces. A disparity map represents per-pixel
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Figure 2.2: Recorded road scene with transparent colour-encoded disparity map.
The used colour key is shown on the right; disparity 250 encodes a distance very
close to the host vehicle and 0 encodes “very far away” and not matched.

correspondences for a rectified stereo pair. Figure 2.2 illustrates a recorded 3D scene
with a calculated (colour-encoded) disparity map. We discuss more about stereo
vision in Chapter 3.

The authors of [53] use a stereo vision based system embedded on an unmanned
aerial vehicle (UAV) to inspect road conditions using disparity maps. The authors
concluded that combining disparity maps with other stereo vision algorithms will
help to reconstruct 3D maps.

Table 2.2 summarises a few 3D reconstruction-based methods for detecting road
distress.

T. Garbowski et al. [56] presented a semi-automatic pavement failure detection sys-
tem (PFDS) which is a part of the FEMat [57] road package. It allows a user to inspect
the condition of road pavement based on calculated clouds of 3D points. The pre-
sented system considers a small region of interest (ROI) in reference to a larger region
of a road surface and is able to detect certain types of cracks including “alligator
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Table 2.2: Examples of 3D reconstruction-based methods and used sensors

Authors Year Sensors
Tomasz Garbowski et al. 2017 Stereo-vision

cameras
Aliaksei Mikhailiuk et al. 2016 MicroController

TMS320C6678
DSP

A. Rasheed et al. 2015 Kinect sensors
Marcin Staniek 2015 Stereo-vision

cameras, GPS
and vibration
sensor

Kiran Kumar Vupparaboina et al. 2015 Laser, camera
Zheng Zhang et al. 2014 Stereo-vision

PointGrey Flea
3 cameras

He Youguan et al. 2011 Stereo-vision
cameras and
LED

cracks”, but not potholes.

A. Rasheed et al. [58] presented a technique to stabilize 3D images of pavement
to reduce the effect of noise induced into the data during image acquisition process.
The authors used Kalman filter with affine transformations to stabilize 3D pothole
images which are acquired through kinect sensors.

T. Shen et al. [59] propose the use of Takata’s stereo-vision system for perform-
ing a road surface preview along the host vehicle. Video data recorded with the
used compact stereo-vision sensor (with a baseline of 16.5 cm) is analysed in an em-
bedded system, already tested in various vehicles, also in combination with various
driver assistance systems such as forward collision warning (FCW), automatic emer-
gency breaking (AEB), or lane departure warning (LDW). Authors state that the pro-
posed system achieves satisfactory accuracy; they also state that it does not perform
well when there is glare on the road surface.

Calculated disparities within detected road-surface image segments support the
estimation of a manifold, approximating the road-surface. Commonly the road sur-
face is assumed to be planar (i.e., the manifold is thus a plane). But this planarity
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assumption is often not corresponding to actual uneven road surfaces. To simplify,
the road manifold is often modelled in driving direction by a profile, i.e. a curve
whose parallel translation left-to-right creates the road manifold. A line creates a
plane, and a quadratic polynomial profile creates a quadratic road manifold.

Quadratic road manifolds are discussed by X. Ai et al. [23]. In [23], a stereo
vision-based algorithm is proposed for the detection of obstacles that are protruding
from the road surface. The algorithm applies a quadratic surface fitting technique
on a disparity-derived 3D point cloud to model the road manifold. To build a DEM,
3D points are mapped into discrete 2D grids.

After fitting road surface points into a quadratic surface, an obstacle mask is
attained. A connected component analysis proceeds to segment the derived obstacle
disparity histogram. Obstacles are detected using minimised bounding boxes with
a constraint that no obstacle shall sit underneath the quadratic road surface.

For visualisation, the authors back-projected a high-level descriptor to the image
domain. By using domain representations, a connected component algorithm, and
minimised bounding boxes for object detection, complex objects have been identi-
fied at high accuracy. The authors concluded that their algorithm can be applied to
stereo vision data towards optimised disparity search.

For a consideration of twisting and bending surfaces of roads, see A. Mikhailiuk
et al. [60]; their algorithm has been implemented on a Texas Instrument C6678 multi-
core SoC digital signal processor.

Z. Zhang et al. [61] proposed an efficient algorithm to estimate the size, depth,
position and severity of potholes by modelling the road surface as a quadratic man-
ifold by using a random sample census (RANSAC) approach. Pothole detection and
segmentation are achieved by using a connected-component labelling (CCL) algorithm.

Staniek [62] emphasized on solving the problem of matching points in stereo
images by using a Hopfield neural network which is a form of a recurrent neural
network. The author used stereo-vision cameras, GPS, and inertial sensors; a Hop-
field neural network is studied for detecting depth discontinuities assuming that
they occur due to sudden significant changes in intensities.

The author also considered the subproblem of discontinuities at border frag-
ments in stereo image pairs. The proposed Hopfield neural network is based on
energy minimization in the neural network. The author achieved 66% accuracy

when evaluating matching pixels for 50 image pairs using a CoVar method [63] for
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evaluation.

Other sensors such as ground penetrating radar [27], 2D laser scanners [25], 3D
laser [26], or stereo vision cameras [55] offer an accurate option based on 3D recon-
struction [24]. Ground penetrating radar is mainly used for special purposes. Stereo
vision cameras or a 3D laser are the logical choice for identifying a pothole from a
distance, where a 3D laser is (still) an expensive sensor, also usually not applicable
when a pothole is filled with water.

2.1.5 Learning based techniques

In these techniques, a network is usually trained for the task of object detection
where the choice of the network is dependent highly on the required output. Since
the advancement in technologies such as fast processors and memories, lots of progress
has been achieved in this field. The choice of training a network has shifted from
machine learning in general to deep learning in particular. Deep learning requires
lots of data to be processed, however, using data augmentation processes and trans-
fer learning it is possible to train the deep neural network using less data.

H. Song et al. [64] use a convolutional neural network (CNN) approach to detect
potholes. The authors used a smart phone as a sensor to acquire movement infor-
mation and the Inception V3 [65] classifier; they adapted the final fully connected
layer in the CNN. H. Maeda et al. [66] used a state-of-the-art CNN, trained by us-
ing a vast dataset of road images collected in Japan to detect road-surface damage.
The authors used SSD Inception V2 [67] and SSD MobileNet [68] to identify dif-
ferent sorts of road damages. Detected road damages are identified by generating

Table 2.3: Examples of learning based methods

Authors Type Object
H.Song et al. CNN Potholes
H. Maeda et al. CNN Cracks
A. Zhang et al. CNN Cracks
N. D. Hoang et al. NN and SVM Potholes
Y. Cha et al. CNN Cracks
J. Bray et al. NN Cracks
L. Zhang CNN Cracks
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bounding boxes.

As examples for the second type, A. Zhang et al. [69] suggested a CrackNet to
predict class scores for all the pixels in existing road damage. Detected road dam-
ages are identified within enclosed bounding boxes.

V. Badrinaraynan [70] proposes SegNet, a multiclass deep-encoded-decoder-based
CNN, that is more memory-efficient than the FCN and performs semantic pixelwise
segmentation. SegNet eliminates the need of upsampling, as this decoder uses pool-
ing indices, computed in the max-pooling step of the corresponding encoder, for
non-linear upsampling.

N.-D. Hoang [71] presented pothole detection on asphalt pavement surfaces; the
model is trained using two machine learning algorithms - artificial neural network
and least squares support vector machine. Various image processing algorithms
are first used for feature extraction processes. Experiments show that least-squares-
support-vector-machines perform better than artificial neural networks, with 89%

and 86%, respectively.

Y. Cha et al. [72] proposed a classifier build using a CNN for classifying crack
damage detection using concrete images. The classifier built by the authors is less
influenced under shadow casting and illumination conditions. The authors men-
tioned that the classifier learned feature extraction process automatically without
any dedicated feature extraction process and involved computation as used by con-
ventional approaches.

J. Bray et al. [73] used a NN based binary classifier to classify whether an image
belongs to a crack or normal road image. The network accepts the feature of the
images before classification process.

L. Zhang et al. [74] also proposed a low-cost solution using deep CNN for iden-
tification of road cracks. K. An et al. [75] used various pre-trained CNNs to classify
whether an image has pothole or not. The authors concluded that models achieved
high accuracy when given gray-scale images.

Extensive research has been carried out already for mainly image segmentation
using CNNs (see Table 2.4) such as PSPNet [76], RefineNet [77], or Large-Kernel-
Matters [78]. CNNs for image segmentation may also be of relevance, such as the
fully convolutional neural network (FCN) by Long et al. [79], in which a final fully-
connected layer is replaced by another convolutional layer for a large receptive field
to capture the global context of a scene. However, this results into coarse segmenta-
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Table 2.4: Examples of CNNs for image segmentation, and used data sets

CNN Year Used datasets
FCN 2014 PASCAL VOC
SEGNET 2015 CamVid
DilatedConvolutions 2015 VOC2012, COCO
DeepLab 2014-2017 PASCAL 2012, CityScapes
RefineNet 2016 PASCAL 2012
PSPNET 2016 PASCAL 2012, CityScapes
LargeKernelMatters 2017 PASCAL 2012, CityScapes
MaskR− CNN 2017 COCO

tion maps by upsampling layers of the FCN.

One more class of CNNs, which uses dilated or atrous convolutions, is proposed
in DeepLab by Chen [80]. However, this type of convolutions is computationally
very expensive because of its application for high-resolution feature maps.

The authors [81] have proposed a model to detect potholes based on YOLOv2
architecture. However, their reported architecture differs from our proposed model
in LM2. Also, the tested frames basically show not much more than potholes, while
the real road scene is much complex.

The CNN model proposed by the authors [82] to detect potholes has been trained
on a CPU and experiments shows that CNN based model perform better than Con-
ventional SVM based approach. However, the system is not able detect potholes
under varying illumination conditions.

The authors [83] have proposed a CNN based model mainly to classify a region
on a road as pothole or non-pothole. The author has collected the dataset using
smartphone camera mounted on the front windshield of the vehicle and the authors
have used preprocessed cropped frames with ROI to train the proposed model. The
authors [84] have developed CNN based model using thermal images to classify
whether an image has pothole or not. The thermal images are recorded using a
thermal camera.

The authors of [54] use a UAV to capture road images and classify them into
normal or damaged pave images using four different techniques of SVM, artificial
neural network (ANN), random forest, K-nearest neighbour (KNN). The authors con-
cluded that advanced learning based methods such as CNN has a greater potential
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to assess the road condition.
There is currently strong progress towards object detection and recognition based

on deep learning; a common issue is the lack of training data. Therefore, reflecting
this common problem in our paper, we detect potholes transfer learning based ap-
proach.
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2.2 Multi-sensors based approach

Proposed methods may also follow a multi-sensor approach [85]. Y. -H. Tseng et al.
[86] developed an automated survey robot which performed in simulated test-field
environments to detect five types of distress, namely alligator cracks, small patches,
potholes, rectangular, and circular manhole covers.

F. Seraj et al. [87] used a support vector machine (SVM) as a machine learning
approach to classify road anomalies. The proposed system uses accelerometer, gy-
roscope and Samsung’s galaxy as sensors for data collection; data labelling is per-
formed by a human. A high-pass filter is used to remove the low frequency compo-
nents caused due to turns and accelerations.

Naidoo et al. [88] suggested two prototypes; a first prototype uses stereo-vision
cameras, and a second prototype uses one gigabit ethernet (GigE) high-speed camera.
The authors have designed a two-stage neural-network (NN) based classifier that
takes frequency-transformed hue, saturation, value (HSV) images as input to achieve
pothole classification, and trained the networks using a recorded video of selected
roads in Gauteng, South Africa.

The first NN classifies a section of a road in an image, while the second detects
potholes in that section. The trained NN, however, was not able to perform infer-
ences in real time. The authors tested on two video sequences with 26 and 9 potholes
that were manually counted, and compared with the results of the NN classifiers.
The reported accuracy is 73% for the first video, and 100% for the second video.

Hsu et al. presented in [89] a multi-sensor approach to detect potholes and for
measuring a road quality index by integrating laser, camera, GPS, and an inertial
measurement unit (IMU) into an experimental golf-cart system. The analysis is based
on imagery as well as laser-scanned 3D data. Lin and Liu [90] used a collection
of pavement images for an SVM to distinguish potholes from other defects such
as cracks. The authors have proposed an SVM-based method which is used for
classification of distresses on road. The author has extracted histogram based on
texture measure from image region and the experiment has been carried out on 80

images of size 64× 64.
To achieve satisfactory results from the non-linear SVM, image normalization

has been performed. The authors conclude that the system needs further research
as potholes filled with water cannot be identified correctly. A. Kulkarni et al. [91]
proposed a pothole detection algorithm by using a high frequency filter and an NN
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approach.
C. Zhang et al. [92] presented a UAV (unmanned aerial vehicle) based imaging

system that is capable of providing 3D information of unpaved surface distresses
(ruts etc.) for further road condition assessment. For the data acquisition part, the
system itself consists of a camera mounted on a mini UAV helicopter capable of fly-
ing 200 metre above the ground and travelling at a maximum speed of 10 metre per
second. The authors had mainly developed a technique for bundle adjustment in
image orientation and then processed 3D reconstruction and measurement of sur-
face distresses.



Chapter 3

Basics

This chapter covers the basic notations, theories and underlying concepts later adopted in
this thesis. Sections 3.1 to 3.3 cover the fundamentals of computer vision approaches used
in Chapter 4, and Sections 3.6 to 3.8 are dedicated to the basics of deep learning techniques
used in Chapter 5. The chapter also provides an introduction to the different datasets used
in this research.

3.1 Stereo-vision based techniques

Stereo vision is inspired by the human vision system. The two perspective views
of human eyes provide information about the slight visual offsets of objects in the
world. These two views are sent to the brain for the processing of matching sim-
ilarities while also understanding the differences in the two views. The obtained
outcome is a 3D stereo image. Human beings do it several times per second in or-
der to obtain the actual distance to visible objects, which is very important in many
cases such as for driving.

The word stereo originated from the Greek word stereos which means solid. Stereo
vision helps us to see a solid object in the 3D world along with its height, width and
depth information.

The slight visual offset of an object surface point is known as a disparity, which
leads to the phenomenon of depth perception. Depth estimation of the stereo per-
spective views originating from a 3D scene is determined by using pixel correspon-
dences of similar features in different views.

We use a left-hand image coordinate system as shown in Fig. 3.1, where I denotes
an image and (x, y) are the image pixel’s coordinates. According to the left-hand
coordinate system, the image will have its origin at the upper left corner and the
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Figure 3.1: Left hand image coordinate system (picture taken at author’s garden,
Auckland, New Zealand)

positive x points right and y points down. By p = (x, y) we denote the pixel location
in the 2D image grid domain denoted as Ω. The cardinality |Ω| denotes the number
of pixels in the domain Ω. We use upper case bold letters for matrices.

3.1.1 Stereo vision

Stereo vision uses two or more cameras to acquire the 3D information of a scene.
In this study, we detail road distress detection concepts based on two cameras.
To avoid additional difficulties, the two stereo-vision cameras are ideally identi-
cal twins placed on a horizontal bar (see Fig. 3.2). Our experiments throughout
Chapter 4 use calibrated and rectified images, corresponding to such an ideal cam-
era set-up. As we use rectified images, our dataset includes left and right camera
images having the same principal point (xc, yc) and identical focal length f .

The main motive is to obtain two different views of the current scene being ob-
served. For a pixel at (x, y) in the left camera image, we search for a corresponding
pixel at (x− d, y) in the right camera image, where d is the disparity value later de-
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Figure 3.2: Illustration of a stereo image pair. The curved line connects a stereo pair
(i.e. two corresponding pixels) at row y. Here, d denotes the resulting disparity

scribed in Section 3.1.2. The search for a corresponding pixel is performed along a
horizontal line, known as the epipolar line. Using this epipolar line, the search space
is reduced from 2D to 1D. This epipolar line is defined by epipolar geometry which
emerged from the following basic definitions:

• An epipole is a projection of one projection centre into the image plane of the
other camera.

Figure 3.3: Gray-level images (left and right) captured by the left camera as available
in the CCSAD dataset
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• The base line connects the projection centres of both cameras.

• An epipolar plane is defined by both projection centres and a selected pixel
location in one image plane.

• The epipolar plane intersects the second image plane at the epipolar line,
which is the possible search space for the corresponding pixel.

In the ideal camera setting (i.e. rectified epipolar geometry) briefly mentioned
above, the epipolar lines coincide with image rows, thus simplifying the search
for corresponding pixels. This search is, for example, difficult due to large regions
showing only minor differences in intensity textures (see Fig. 3.3).

3.1.2 Disparity map

Disparity calculation is a computationally expensive process as it measures differ-
ences in appearance along epipolar lines in the left image compared to the right im-
age. The epipolar geometry is rectified if image planes are co-planar and the princi-
pal axes of both cameras point into the same direction [55]. The left and right images

Figure 3.4: Disparity map computed for stereo frames illustrated in Fig. 3.3 using
a gray-level key for visualising different disparities (bright is close and dark is far
away)



3.1. Stereo-vision based techniques 25

used in a correspondence process are addressed as reference and matching image re-
spectively. During this correspondence process, all objects are “shifted” in the same
direction and every pixel is assigned a positive value. This “correspondence shift”
is between p = (x, y) and p′ = (x − d, y), where d ∈ R+ is upper-bounded by dmax.
A disparity map is visualised in Fig. 3.4.

The maximum disparity value dmax means that the object is closest to the camera,
whilst d = 0 means that the object is (theoretically) at infinity.

3.1.3 Depth map

An obtained disparity map D is used to derive real-world localisation information,
known as a depth map. The transformation of a pixel at (x, y) with disparity d into
a 3D point (X,Y, Z) is basically a distance assignment to the pixel at (x, y) in the
image plane, where X , Y , and Z denote 3D coordinates, with Z being measured
along the optical axis of the used camera, also called depth. Here, we use a left-
hand image coordinate system where positive rotation is clockwise about the axis
of rotation.

The depth Z at pixel (x, y) is estimated using calibrated camera parameters as
follows:

Z = f · b
d

(3.1)

where f is the focal length, b is the length of the baseline of the two horizontally

Figure 3.5: 3D coordinate estimation using binocular stereo-vision cameras. Coordi-
nates X , Y , and Z are calculated using calibrated parameters fx, b, and coordinates
(x, y) and (x− d, y) of corresponding points in left (L) and right (R) images.
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placed stereo vision cameras (measured in world units) and d is the disparity at
pixel (x, y). Note that a depth map is inversely proportional to the disparity map.

Coordinates X and Y can be calculated similarly to Eq. (3.1) using coordinates
x, x − d and y of two corresponding pixels [55] (see Fig. 3.5). The start pixel has
coordinates (x, y) in the left image, and the matched pixel has coordinates (x− d, y)

in the right image.

3.2 Visual odometry

The term visual odometry (VO) was first introduced by Nister in [93]. Odometry de-
notes the use of motion sensors for estimating the change in position over time. For
example, vehicle odometry may be based on a wheel odometer, the wheel odometer
measuring the number of rotations the wheel goes while driving; and being dis-
played as an odometer reading placed into the dashboard of a car. Likewise, VO
estimates the position of a vehicle by examining the changes induced in images
recorded by its on-board cameras. These changes are induced by the motion of the
vehicle and can be effectively examined under proper illumination.

A wheel odometer is usually affected by wheel movements due to sudden swerves
or uneven surfaces. VO also comes with its own challenges.

VO techniques are often complemented by the use of a global positioning system
(GPS). As GPS usually does not work in extensive tunnels or basements, VO pro-
vides useful additional input. The goal of VO is to solve egomotion estimation of a
vehicle or robot, using recorded video data only.

Research for the estimation of the egomotion of a vehicle, using visual input only,
started in 1980 [93]. Moravec contributed by presenting a first motion-estimation
pipeline using a class of stereo VO algorithms. There have been many developments
over the decades in the two fields of VO – monocular VO and stereo VO.

Monocular VO is a challenging class of VO as an accurate examination of a scene
is not directly recoverable from monocular cameras. In both of these VO classes,
the core components are selecting feature detectors and feature tracking to estimate
different motion correspondences. Motion estimation can be done for 2D-to-2D,
3D-to-3D or 3D-to-2D correspondences. Given,

Ick : Ωc ⊂ R2 → R (3.2)
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Figure 3.6: An example of recovered camera trajectory for CCSAD urban
sequence 1 frames 70− 79.

where I is the image of frame k and Ωc is the image domain of camera c.
An N -camera VO problem is to generate a sequence of transforms (T1, ..., TS)

with a sequence of S images. Here the images are (Ic1 , I
c
2 , ...I

c
S) and 1 ≤ c ≤ N .

By solving a series of two-frame pose estimations subsequently, we obtain Gk, the
“gradient” from the pose of the N cameras at time k − 1 to their pose at time k. To
be precise, Gk defines an affine transform from the pose at time k − 1 to the pose at
k, where an affine transformation is a transformation to preserve collinearity.

The VO problem is mainly solved using the following steps:

• It starts with pre-processing of new frames such as image undistortion, recti-
fication and extraction of features.

• The image correspondence is then established by associating identified key
points with the previously tracked elements. This correspondence is used to
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solve the local transform of a camera.

• Once VO is solved, the new measures are integrated into the current system
state. This process refines the structure of the scene.

The image correspondence acts like a bridge between the structure and motion
of the camera. Mainly two types of techniques are used to establish correspondence
in subsequently recorded images:

1. Direct intensity matching performs direct matching on pixel intensities and
has been researched extensively in computer vision such as [94–96]. We use
the Kanade-Lucas-Tomasi (KLT) method later in the thesis to detect some key
points from a frame and track it as a new frame arrives. In KLT, we constrain
the search space along the epipolar line when camera motion is obtained be-
cause it performs correspondence along an image gradient-guided path. By
constraining, the dimensionality of the search space is reduced from 2D to 1D.

2. Feature descriptor matching is used when the camera pose is not known. In
this case, sparse point correspondence between frames is established in feature
space. The feature descriptor matching obtains a sample of accurate points
even when the image displacement is very large. The epipolar constraint in
feature space is difficult to enforce as feature transformation usually does not
preserve the geometry of an image. Using a robust outlier algorithm, the in-
correct correspondence points can be rejected before motion estimation (see
Fig. 3.6).
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3.3 Speeded up robust features

Speeded up robust features (SURF) is a computationally efficient algorithm for local
similarity invariant representation in images [44]. Interesting keypoints are defined
as salient features such as several other local descriptor-based techniques.

The SURF algorithm uses an approximated box filter second-order derivative
(see Fig. 3.7) computation to locate extrema in the scale space, which is efficiently
implemented using an integral image. The use of box filters enables SURF for fast
real time application including object tracking. The integral image is used for calcu-
lating the accumulated intensity of an image for a pixel value p = (x, y) as follows:

Iint(p) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j) (3.3)

Here Iint(p) is an integral image presenting the sum of all pixels in an image up to
point p. SURF depends on the determinant of Hessian matrix for location and scale.

Given a point p = (x, y), the Hessian matrix M(x, σ) at scale σ is defined as
follows:

M(p, σ) =

[
Cx,x(p.σ) Cx,y(p.σ)

Cx,y(p.σ) Cy,y(p.σ)

]
(3.4)

where the element of the matrix M is are the values produced by the four convo-
lution masks. The (weighted) determinant of the Hessian matrix is calculated as
follows:

Figure 3.7: Approximations illustrated for σ = 1.2 (lowest scale) and 9× 9 Gaussian
partial derivative (Gaussians are discretised and cropped) in xy and yy. Cyy is the
derivative in the y direction with approximation of SURF shown with green arrow.
Similarly, Cxy is the derivative in the diagonal direction starting from lower left side
to the upper side.
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Figure 3.8: Original image on left side and transformed image on right side. The
transformed image is resized at 0.7 times the original image and rotated at an angle
of 10◦ in the counterclockwise direction.

M(p, σ)approx = Cx,x(p.σ) · Cy,y(p.σ)− (w · Cx,y(p.σ))2 (3.5)

where w is a weight optimisation constant following [44]. The local maximum value
of M(p, σ)approx provides a keypoint p. This keypoint is detected in a 3× 3× 3 array
of M -values.

To extract the SURF descriptor, a square region centred around the keypoint is
constructed. This region is divided into 4 × 4 square sub-windows and for each
of these smaller sub-windows a small number of features at regularly spaced sam-
ple points of 5 × 5 are computed. These wavelet responses are added for all the
sub-windows. The SURF descriptor which is a 64-vector of floating point values
combines local gradient information with weighted sums in sub-windows [99].

3.4 Random sample consensus

Random sample consensus (RANSAC) is a non-deterministic iterative algorithm to
remove outliers during model fitting; in our case we apply RANSAC for robust
plane fitting [97]. Random sampling picks a small set of points randomly and fits
the model to them. Eventually, there will be a sample set of points that does not
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contain (many) outliers anymore. The consensus set is the part of the model that
helps to determine the set of data points that best fits with the model. The solution
is the largest consensus set which fits the model under hypothesis.

The assumption of the RANSAC algorithm is that the training data consists of
inliers explained with the model and outliers are erroneous and do not fit the model.
It uses outliers while training the model to increase the final prediction error as it
trains the model only using inliers while ignoring outliers. RANSAC uses small
samples of data to train a model and enlarges this sample set by including samples
within the error tolerance of the training model. For example, two data samples are
enough to determine a linear function. The chosen sample, known as a consensus
set, therefore trains the model using relatively smaller samples. This process is re-
peated for a predefined number of iterations to obtain a model with relatively least
errors among all the generated models.

For example, in Fig. 3.9, we derive a geometric transformation from matched
keypoints extracted using SURF for Fig. 3.8. In an image, the first keypoints are de-
tected and SURF descriptors are extracted using each keypoint. Then two different
samples of descriptors at time k − 1 and k are compared to do the matching. Given
this set of matching keypoints, we use RANSAC for outlier removal.

Figure 3.9: SURF keypoints matched on the left side including outliers. RANSAC
for outliers removal for 1000 iterations on right side.
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3.5 Lucas Kanade tracking

Object tracking is done to locate an object in successive frames. To understand the
motion of the ego-vehicle, the features are detected and tracked in an image se-
quence. The goal is to select good features in a frame at time k − 1 and track it
in a new frame arriving at time k. This feature point tracking is known as sparse
2D correspondence problem. The Kanade-Lucas-Tomasi (KLT) algorithm [96] is a fea-
ture tracking algorithm based on the early work of Lucas and Kanade [94]. This
algorithm tracks the location of some feature points in an image. KLT tracking is
preferred due to its computational benefits in time critical applications.

The goal is to match a base window Bk of size (2c + 1) × (2c + 1) enclosing a
keypoint p present in the base frame I with window Bk,d in the match frame J ,
where the procedure should be robust to allow for scaling, rotation and translation
between Bk and Bk,d. In Fig. 3.10, d shows the dissimilarity vector combines the
components t (translation) and h (height scaling) of the centre of a keypoint p in base
frame I to match frame J [55]. Figure 3.10 indicates the translation t by moving the
pixel location of keypoint p into a new position defined by translation t. is same
in both frames. The KLT algorithm is robust because it approximates derivatives in
both x and y directions.

Figure 3.10: KLT tracking for pixel location p.

Translation.
To simplify, we assume that p at (x, y) is (0, 0) and the goal is to calculate a trans-
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lation vector t = [t.x, t.y]> where J(x+ t.x+ i, y+ t.y+ j) ≈ I(x+ i, y+ j). The aim
is to approximate a minimum of following loss functions:

L(t) =
c∑

i=−c

c∑
j=−c

[
J(t.x+ i, t.y + j)− I(Bk(i, j))

]2
(3.6)

where −c ≤ i, j ≤ c defines the relative locations in match window Bk,d and base
window Bk.

General warping.

To calculate a dissimilar vector d, we apply an interpolation to J(Bk,d(l)) as
warping does not map a pixel location onto a pixel location. It results from a warp-
ing of the pixel location l = (i, j) with a dissimilar vector d. Thus, to calculate d, the
aim is to minimise the following loss function:

L(d) =
∑
l

[
J(Bk,d(l))− I(Bk(l))

]2
(3.7)

Iterative steepest-ascent algorithm.

Next we estimate the shift sd = [s1, s2, ..., sn]> similar to the mean-shift algorithm
in image segmentation, assuming we are at a parameter vector d = [d1, d2, ..., dn]>

by minimising the following:

L(d + sd) =
∑
l

[
J(Bk,d+sd(l))− I(Bk(l))

]2
(3.8)

To solve this approximation, a Taylor expansion of J(Bk,d(l)) is used as follows:

J(Bk,d+sd(l)) = J(Bk,d(l)) + s>d · ∇J ·
∂Bk,d

∂d
+ e (3.9)

The term s>d · J ·
∂Bk,d

∂d + e results in a scalar as we have scalar on left hand side. We

use Jacobian matrix [98] of the warp calculated as:

∂Bk,d

∂d
(l) =

[
∂Bk,d(l).x

∂x
∂Bk,d(l).x

∂y
∂Bk,d(l).y

∂x
∂Bk,d(l).y

∂y

]
(3.10)

Combining Equations ( 3.9) and (3.10), we obtain the minimization problem as:
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∑
l

[
J(Bk,d(l)) + s>d · ∇J ·

∂Bk,d

∂d
− I(Bk(l))

]2
(3.11)

Derivation of Equation 3.11 with respect to sd leads to:

2
∑
l

[
∇J · ∂Bk,d

∂d

]>[
J(Bk,d(l)) + s>d · ∇J ·

∂Bk,d

∂d
− I(Bk(l))

]
= 0 (3.12)

Considering 2 × 1 vector of zeroes on the right-hand side of Equation ( 3.12), and

using the Hessian matrix:

H =
∑
l

[
∇J · ∂Bk,d

∂d

>][
∇J · ∂Bk,d

∂d

]
(3.13)

Using Equation ( 3.12) and (3.13), the shift vector sd of the dissimilarity vector d
is updated to d + sd by:

s>d = H−1
∑
l

[
∇J · ∂Bk,d

∂d

>][
I(Bk(l))− J(Bk,d(l))

]
(3.14)
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3.6 Basics of transfer learning techniques

Deep learning is a prominent field of artificial intelligence, employing various dis-
tinct deep layered neural networks. Deep learning architecture has been in existence
since the 1980s; however, it became famous due to recent advancements in hardware
technologies. In this section, we discuss the basics of transfer learning techniques
used in Chapter 5.

3.6.1 Convolutional neural networks

CNN represents the state of the art because of various improvements in the field of
image segmentation, image localisation, and image classification. CNN has derived
its inspiration from assumed working principles of the human brain (see Fig. 3.11).
CNN is a class of deep learning algorithm which accepts an input image and shares
learnable parameters. A basic CNN mainly consists of the following components:

Figure 3.11: The processing of a deep neural network deriving its inspiration from
human brain.
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Figure 3.12: I is an input image, K is a kernel and F is an obtained feature map.

• Convolution layer.

Convolution is a term used for the comparison of two functions I ∗ K , here
input image I is convolved with kernel function K resulting into feature map
F.

The kernel is mainly a collection of numbers known as weights (see Fig. 3.12,
the second matrix of numbers, where kernel size is 3 × 3). This kernel uses a
stride value, by which it slides over the image such as in Fig. 3.13, where the
stride value is 1. The convolutional layer aims at extracting high-level features
present in the image resulting in a (see Fig. 3.12, right matrix) feature map.

• Pooling layer.

Pooling layers decrease the number of parameters and computation required
by reducing the dimensionality of each feature map F while retaining impor-
tant information. Figure 3.13 illustrates the concept of max pooling. This layer
works by placing a 2× 2 matrix over the feature map and picks the maximum
value. This maximum value represents the most present feature in the patch.
Average pooling is another type of pooling technique which picks the average
value in a feature map.

• Activation function layer.

In neural networks, it is difficult to know the right set of weights at the be-
ginning. Backpropagation is an algorithm to approximate a function with an
optimal set of weights. It uses a loss function to compare the predicted re-
sults with the actual results by determining the error caused by the individual
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Figure 3.13: Max pooling and flattening.

weight. It does this by backpropagation through the network. The weights are
also adjusted during this process. The activation function layer exists between
the convolution and the pooling layer. This layer is responsible for transform-
ing the input of summed weights of the node in the network into the output
of that node. Activation functions are used to determine the output of the net-
work by introducing non-linearity transformation in CNNs. This transformed
output is sent to the next layer for processing. After several layers of convolu-
tion with the activation function and pooling layers, the reduced feature size
is obtained with extracted complex features. We discuss activation functions
later adopted in this research, i.e. rectified linear unit (ReLU) and leaky ReLU,
which are widely preferred for deep network. The ReLU function is as follows:

R(x) = max(0, x) (3.15)

where x is an input value of the node. In the case of leaky ReLU, the negative
value has some scope such as for x ≤ 0 and it can be set as 0.01x.

• Flattening process.

During this step, the pooled feature map is flattened into a one-dimensional
column vector in order to feed to the neural network for further processing
(see Fig. 3.13).
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Figure 3.14: Image illustrating the concept of knowledge transfer, where a dad is
transferring his knowledge of riding skill to his young one.

3.6.2 Transfer learning

The learning and training process in traditional machine learning algorithms hap-
pen in isolation without the transfer of knowledge from one domain to other do-
main. Transfer learning is motivated by the capability of human beings to trans-
fer knowledge (see Fig. 3.14). Transfer learning enables to leverage the knowledge
gained from learned tasks and transfer it to the newer tasks. In computer vision,
low-level features such as corners or edges can be shared among multiple tasks.
The concept of transfer learning goes back to 1995 [100] and it is still an active area
of research. Andrew Ng mentioned in his course 1 that “After supervised learning,
transfer learning is the next driver of the machine learning success”.

Transfer learning involves the notions of domain and task [101]. The knowledge
gained from a source domain Ds is transferred to a target domain Dt.

A domain D is defined by two components D = f and P (m) where P (m) is the

1https://media.nips.cc/Conferences/2016/Slides/6203-Slides.pdf



3.6. Basics of transfer learning techniques 39

marginal probability distribution over the feature space f and m = [x1, x2, ..., xn]> ∈
f .

The f is the space of the data representations, xi is the i-th component of vector
m. The sample of data used for training is denoted by m. The source and the task
domains are as follows:

Ds = fs, Ps(m) (3.16)

Dt = ft, Pt(m) (3.17)

where fs and ft are feature spaces and Ps(m) and Pt(m) are the probability distri-
bution for the source and the target.

For each domain i.e. source s and target t, the task T is defined as T = y, P (c|m)

using label space y and a conditional probability distribution P (c|m). The P (c|m)

is learned from training data having pairs of xi in m and yi in y, where y is the set
of all the labels.

GivenDs, Ts, the aim of transfer learning is to learn the Tt inDt, using the knowl-
edge gained from Ds and Ts, where Ds 6= Dt or Ts 6= Tt:

Ts = ys, Ps(c|m) (3.18)

Tt = yt, Pt(c|m) (3.19)

where ys and yt are feature spaces and Ps(c|m) and Pt(c|m) are the probability
distribution for the source and the target.

The transfer learning techniques are different depending upon the source and
target domains [101]. Later in Chapter 5, we use inductive transfer learning using
parameter transfer. In inductive transfer learning, the source and target domains are
the same; however, tasks in both domains are different (for more details, please
see [101].

At the granular level, the neural networks approximate a function by mapping
input values to their corresponding values, which involves several arithmetic com-
putations. This function becomes complex when used with non-linear transforma-
tions and stacks of layers. Using this functionality of machine learning, networks
are trained to learn anything when provided with enough data and robust compu-
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tation. Transfer learning is particularly useful when CNN cannot be trained from
scratch, usually due to the lack of massive training datasets. To use transfer learn-
ing, one of the following two strategies is used:

1. Pre-trained model as feature extractor. The different features are learned at
different layers of deep learning model architecture. A fully connected layer
is added as last layer to get the final output. The various layered architecture
such as ResNet [106] can be used as a feature extractor across many domains.
To use a pre-trained model as an architecture, we replace the last layer accord-
ing to the new task.

2. Fine-tuning pre-trained model. In a CNN, the process of feature extraction
is coarse in earlier layers and becomes subtle in later layers. In the case of
object detection, the later layers extract the information about the position of
the object whereas, for object recognition, all layers of CNN serve the common
purpose of extracting features of the object being identified. So, depending
upon the new task, the layers of the deep learning model are retrained by
optimizing different hyper-parameters (see Section. 3.6.3).

3.6.3 Hyperparameters

The models for source and target domains share some hyperparameters, which are
some parameters of CNN that are usually tuned in order to have an unprecedented
performance of the model being developed. Transfer learning often entails deter-
mining the hyperparameters that share an orthogonal relationship with the model.
Some of the hyperparameters are:

• Learning rate. A learning rate or regularisation parameter defines the learn-
ing progress of a model to optimise its capacity. As shown in Fig. 3.15, a high
learning rate accelerates the learning process by updating weights with larger
values but does not converge, whereas a low learning rate is slow but con-
verges. A model performing well on training data but not on testing data is
a sign of - overfitting. A solution to avoid overfitting is to use regularisation
techniques. Regularisation helps to generalise the prediction from training to
test data. Using regularisation, we penalise the loss function while encourag-
ing the learning algorithm to keep the weights small. Weights in a neural net-
work are real values that are positive or negative and to regularise the weights
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in a network, we use a regularisation parameter. At each iteration of training,
the network penalises its weights using a loss functions as follows:

L(x, y) =
n∑

i=1

(
yi − f(xi)

)2

(3.20)

where L(x, y) is the loss function, i is ≤ n with n as maximum number of
iterations and f(xi) is:

f(xi) = w0 + w1x1 + w2x2 + ......+ wmxm

where w represents weights and x denotes a number of input variables.

With the increase in number m the complexity of the network increases. To
avoid overfitting, w is kept smaller and while penalising the weights, some of
the weights become close to zero. However, to ensure all the input variables
are taken into account, a regularisation term is added to Equation (3.20). This
regularisation term is added to avoid overfitting by keeping all the weights
small. We consider:

Figure 3.15: The left image with high learning rate shows gradient descent vector
oscillating a lot and the right image with slow learning rate shows the gradient
vector converging.
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Figure 3.16: Gradient vector got stuck in local minima.

L(x, y) =

n∑
i=1

(
yi − f(xi)

)2

+ λ

n∑
i=1

| wm |

or

L(x, y) =

n∑
i=1

(
yi − f(xi)

)2

+ λ

n∑
i=1

w2
m

where

λ

n∑
i=1

| wm | (3.21)

represents regularisation term using L1 regularisation which penalises the ab-
solute value of weights, and

λ
n∑

i=1

w2
m (3.22)

representsL2 regularisation which penalises the sum of squared value of weights.

• Learning momentum. The purpose is to converge to global minima in order
to reduce error for the predicted target and ground truth target. The error
surface is not smooth, as shown in Fig. 3.15, instead it is usually comprised of
many local minima. Figure 3.16 shows an algorithm that can get stuck in local
minima.
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To avoid such a situation, momentum value is used, which decides the direc-
tion of the gradient vector by preventing oscillations during optimisation of
the weights. The learning momentum is usually kept higher in order to jump
from local minima.

• Epochs. This is an integer number specifying the number of times the whole
dataset is passed through the network while training.

The task of identifying the location of an object as well as predicting the class of
an object in an image, is known as object detection. To detect an object in an image,
an algorithm for CNN can be broadly divided into the following two types:

1. Classification based algorithms are used to generate several proposals in an
image by sliding a fixed sized window at all the possible locations in the input
image. The obtained proposals are fed to the image classifier to predict the
class of an object. Usually, this algorithm is very slow because first various
ROIs are selected in an image. Then these ROIs are classified using CNNs and
predictions are made for every selected region. Mask R-CNN comes under the
category of classification-based algorithms.

2. Regression based algorithms treat object detection as a regression problem by
passing the whole image through CNN once and generating class probabili-
ties. This algorithm predicts a continuous quantity of class probabilities as an
output. YOLO network uses a regression-based algorithm. This algorithm is
usually fast as the whole image is seen by the CNN in one run of the algo-
rithm instead of dividing and passing several generated proposals of an input
image.
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3.7 Mask R-CNN

For the purpose of feature extraction, object detection and object localisation, mul-
tiple layers are combined to work together in a CNN such as a region-based convolu-
tional neural network (R-CNN) by [102]. However, R-CNN involves computational
expense as well as time-consuming training time. The R-CNN consists of three in-
dependent models including a CNN based feature extraction, an SVM classifier and
finally a regression model for object location identification based on bounding boxes
(also known as a region of interest (ROI)).

This problem of unifying three different models was solved and evolved into a
new network known as Fast R-CNN [103]. Fast R-CNN improved the training time
of R-CNN by introducing region of interest pooling (RoI Pool) layer. This layer shares
the forward pass of an image and its subregions in a CNN. In this, the CNN features
are obtained for each region using a corresponding region of a CNN 's feature map.
Using max-pooling features are pooled for each image region. However, the region
proposals were still generated by the selective search [104]. Hence, the training is
still expensive.

Faster R-CNN removed this limitation of a generation of region proposals by a
separate model and integrated the region proposal algorithm into the CNN model.
Thus, Faster-R-CNN is a single, unified model composed of a region-proposal network
(RPN) and Fast R-CNN with shared convolution feature layers. The Faster R-CNN
reuses the same CNN feature which is calculated during the forward pass of the
CNN in Fast R-CNN. So, Faster R-CNN generates region proposals using CNN fea-
tures by adding a fully convolutional network on top of the CNN features, which is
known as the Region Proposal Network. This network uses a sliding window over
a CNN features map, which outputs bounding boxes and scores at each window.

Mask R-CNN [105] is an extension of Faster R-CNN to pixel-level instance seg-
mentation (see Fig. 3.17). Mask R-CNN separated the classification and pixel-level
mask prediction step and added a third branch to predict an instance level segmen-
tation along with the other two branches of classification and localisation.

To predict a pixel level segmentation mask, a small fully-connected network is
applied to each ROI. In Mask R-CNN, the features selected using RoI Pool layer
were misaligned with the original image. So, the RoI Align layer is used for precise
alignment of the mask with the original image.
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Figure 3.17: Mask R-CNN, source [105], where the green box encloses Faster R-CNN
and the orange box encloses FCN.

The Mask R-CNN implementation uses a residual neural network (ResNet101) [106]
and feature pyramid network [107] (FPN). A ResNet is a standard feature extractor
which detects low-level features at early layers, and high-level features at later lay-
ers. The network accepts an image of 1024×1024 pixels. A smaller image is padded
with zeroes to match with the expected image resolution. FPN is another improved
feature extractor, a second pyramid that allows features at every level to have access
to both lower- and higher-level features.
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3.8 YOLOv2

YOLO is an object detection network which uses a single regression problem [108].
YOLO consists of 24 convolutional layers, which are followed by two fully con-
nected layers (Fig. 3.18). YOLO has a limitation of one object rule which limits how
close detected objects can be.

We have used YOLO version 2- (YOLOv2) [109] for our experiments in Chap-
ter 5. YOLOv2 is better and faster than YOLO. YOLOv2 uses batch normalisation
at all convolutional layers, thus eliminating the need of other regularisation tech-
niques. The one less pooling layer in YOLOv2 produces higher resolution output
from the network. YOLOv2 operates on an input image of 416 × 416 to have one
single centre cell in a feature map. This is done because usually large objects occupy
the centre of the image. Also, the fully connected layer is removed in YOLOv2. To
predict bounding boxes, anchor boxes are used and for every anchor box, a class
and objectness [110] are predicted. The anchor boxes help to remove the limitation
of YOLO where spatially close objects are not detected. It is an improved version of

Figure 3.18: YOLO, source [108].
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YOLO [108] as it generalises better over image size.
An input image of size [n× n] pixel is passed through a CNN and output is a

vector of bounding boxes (b). The input image gets divided into a grid of g × g cells
where, g = n

sp is computed from stride s and maxpool layers p.

For example, in YOLOv2 the input image size is [n× n] = [416× 416] pixels with
s = 2 and p = 5 so, the grid cell size is 13.

These grid cells produce N bounding boxes along with their confidence scores.
The next step in YOLO is to perform non-max suppression, which is a process of
removing bounding boxes with low object probability and highest shared area.

The bounding box consists of five numeric predictions: confidence, x, y, width,
and height where, the confidence score represents intersection over union IoU be-
tween predicted and ground truth box and x, y are coordinates centre of the box
relative to the grid cell, width and height are relative to the input.

During testing the confidence score represents how likely and accurately the
bounding box has the object. YOLO produces several bounding boxes per grid cell,
but only one of them is responsible for the object being detected. So, the bounding
box with the higher IoU is selected. The loss function in YOLO mainly comprises of
classification, localisation and confidence loss.
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3.9 Datasets

Authors of [66] state that “there is no uniform road damage dataset available openly,
leading to the absence of a benchmark for road damage detection”. Existing datasets
on websites of the KITTI [46], EISATS [111] projects, or of Middlebury College [112]
have been recorded in countries where distress on roads typically occurs rarely, and
they are not benchmarks for road distress. Under these circumstances, we decided
on the use of the following data and images from each dataset is shown in Fig. 3.19:

1. CCSAD. J. B. Hayet et al. [113] has introduced a dataset of challenging sequences
for autonomous driving (CCSAD) that is exceptionally utilitarian to execute strategies
for detection of road potholes in Mexico. The CCSAD dataset has been split into four
parts, Colonial Town Streets, Urban Streets, Avenues and Small Roads, and
Tunnel Network which accounts for 500 GB of data that incorporates calibrated and
rectified pairs of stereo images, videos and meta-data.

The CCSAD Urban Streets dataset is an extensive collection of road potholes.
The data has been acquired at 20 fps using two Basler Scout scA1300-32fm firewire
greyscale cameras mounted on the roof of a car. The image resolution of CCSAD is
1096× 822.

2. DLR. This dataset has been recorded while using the integrated positioning sys-
tem (IPS) [114, 115], developed by the German Aerospace Centre (DLR), installed
on a car. The collected dataset accounts for 288 GB with image dimensions as
1360 ∗ 1024.

3. Japan. This dataset comprises of 163, 664 road images of dimensions 600×600

collected in seven different cities of Japan [66]. The dataset contains 9, 053 damaged-
road images and 15, 435 instances of damaged road surfaces such as (mainly) cracks
and (rarely) potholes. Images are captured at an interval of one second under dif-
ferent weather and lighting conditions.2

4. Sunny. Authors of [116] provided a dataset of 48, 913 images of size 3, 680 ×
2, 760 recorded using a GoPro camera, mounted inside a car on its windscreen. The
camera was set to a 0.5 second time lapse mode and car was moving at an average
speed of 40 km/h while scanning the road surface. The total data available is 2.70

GB.

5. PNW. PNW is an extensive video recorded on the Pacific northwest highway [117].

2In late 2018, these data were used in a competition, see bdc2018.mycityreport.net/
overview/.



3.9. Datasets 49

It shows the highway with patches of snow and water. We used 19, 784 extracted
frames of dimension 1280× 720 from this video.

Figure 3.19: Top left - CCSAD, Top right - DLR, middle left - Japan, middle right-
Sunny, bottom - PNW.





Chapter 4

Stereo-vision based methods

This chapter proposes two stereo-vision based novel techniques for pothole detection. The
first section presents a single-frame stereo-vision based method and the second section presents
a multi-frame fusion based method. The third section discusses the value of the proposed
methods for road-surface distress analysis. The chapter ends with a brief summary. The two
novel methods have been published in [118] in 2017 and in [119] in 2018.

4.1 Single-frame stereo-vision based method - SV1

Stereo cameras are considered to be cost-effective compared to other sensors. Their
application involves effective and accurate disparity computation using disparity
images calculated from a stereo frame (as discussed in Chapter 3).

This section presents a single-frame stereo vision based method; the presenta-
tion of the method and the experiments use the CCSAD dataset for illustration and
verification. The CCSAD dataset was recorded in Mexico showing various examples
of road surface distress [113]; (see Fig. 4.1 for examples of the used dataset). An ex-
ample of calculated disparity maps for frames shown in Fig. 4.1 is shown in Fig. 4.5
by setting the maximum disparity value as 128.

The proposed method starts with deriving a disparity map from the left and
right frames of a stereo pair. For example, on the CCSAD dataset, see a calculated
disparity map in Fig. 4.2. Based on the shown disparity map, two columns are
profiled at x = 200 (green) and x = 400 (red) and shown in the fused image in
Fig. 4.2.

From the profiles, we see in Fig. 4.3 the distressed region around y = 330 shows
a sudden change in disparity values, due to an unevenness on the road. To examine
such changes, we differentiated the disparity map along the y-axis, as shown in
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Figure 4.1: Intensity images captured by the left camera as available in the CCSAD
dataset.

Figure 4.2: Calculated disparity map using the CCSAD left and right frames of the
stereo frame illustrated in the upper left of Fig. 4.1.



4.1. Single-frame stereo-vision based method - SV1 53

Figure 4.3: Distressed region showing an unevenness on the road.

Figure 4.4: Disparity map differentiated along the y- axis.
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Fig. 4.4. Such findings motivated us to detect discontinuities on road manifolds
based on changes in the disparity map, without back-projecting disparities into 3D
space. This is done to avoid the transformation from xyd to XY Z space which is
nonlinear [120].

We propose a strategy that performs road-plane modelling directly in the image-
disparity space, without back-projecting a disparity image into 3D space. The mod-
elling is based on a RANSAC process that finds the dominating plane [121] for locat-
ing potholes being below surface level. In short, we address this dominating-plane
method by SV1 (i.e. stereo-vision method 1).

We also formulate an alternative implementation using a common y-disparity
technique based on straight-line estimation in y-disparity space [122]. Both imple-
mentations are evaluated on the CCSAD urban dataset; our experiments indicate a
better accuracy of our dominating-plane method in terms of pothole detection com-
pared to the linear y-disparity technique.

4.1.1 Planar road surface approximation

This section details the two approaches briefly mentioned above of estimating the
road manifold from disparity images using 3D planes in disparity space, or of line
fitting in y disparity space.

3D planes in disparity space

Consider a plane a0X + a1Y + a2Z + a3 = 0 in 3D Euclidean space with plane
coefficients a0, . . . , a3 ∈ R. A point (X,Y, Z) in 3D space is mapped onto an image
pixel (x, y) following the pinhole projection model:

x = fx ·
X

Z
+ xc, y = fy ·

Y

Z
+ yc (4.1)

where (fx, fy) are the focal lengths, and (xc, yc) is the principal point.

Two calibrated and horizontally rectified pinhole cameras introduce a disparity
space, where every pixel (x, y) in the (say) left image is mapped to (x − d, y) in the
right image via d ∈ [0, dmax), the disparity value bounded by dmax. The disparity-to-
depth conversion follows

Z = fx ·
b

d
(4.2)
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where b is the length of the baseline (connecting the focal points of the two cameras)
in world units.

Planarity in 3D space is well preserved in the image-disparity space (x, y, d) by
the related conversion. It can be verified by first substituting (4.1) into the plane
equation, resulting in

a0 ·
Z

fx
(x− xc) + a1 ·

Z

fy
(y − yc) + a2Z + a3 = 0 (4.3)

and then (4.2) into (4.3) producing

a0 ·
x− xc
fx

+ a1 ·
y − yc
fy

+ a2 + a3
d

bfx
= 0 (4.4)

Figure 4.5: Disparity maps computed by OpenCV’s SGBM stereo matcher for stereo
frames illustrated in Fig. 4.1 using a grey-level key for visualising different dispari-
ties.
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This equation can be rewritten as

a′0x+ a′1y + a′2d+ a′3 = 0 (4.5)

in terms of a′0 = (bfy)a0, a′1 = (bfx)a1, a′2 = fya3 and a′3 = (bfxfy)a2 − (bfyxc +

bfxyc), which also models a plane, but in the image-disparity space. [Note that a2
and a3 move basically into a′3 and a′2 from Eq. (4.4) to Eq. (4.5).]

Based on the described linearity, we find the road plane without any need of
back-projecting a disparity map into the 3D Euclidean space by applying the fol-
lowing RANSAC procedure.

RANSAC-based plane fitting
A plane is not uniquely parametrized by (4.5), as any multiple of (a′0, a

′
1, a
′
2, a
′
3),

in fact, defines the same plane. In this study, we adopt the normal-offset parametriza-
tion where a plane is uniquely defined by a unit 3-vector n and an offset δ ∈ R+,
where

δ =
|a′3|√

a′0
2 + a′1

2 + a′2
2

(4.6)

and
n =

δ

a′3
· (a′0, a′1, a′2)> (4.7)

A point p = (x, y, d)> is in a plane (n, δ) if and only if

p>n− δ = 0 , (4.8)

and the signed distance from an off-plane point p to the plane is defined by

ε(p,n, δ) = p>n− δ (4.9)

If ε > 1 then the point is above the plane, with an up-vector defined by n; ε < 1

means that the point is below the plane.
As point clouds converted from the real-world data are noisy, so we define a

threshold εmax ∈ R+ such that a point is considered to be an inlier with respect to a
plane hypothesis (n̂, δ̂) if

|ε(p, n̂, δ̂)| ≤ εmax (4.10)

According to (4.10), we deploy a RANSAC process. It first draws a minimum set
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Figure 4.6: Rendering of a scene in image-disparity space.

of points from the whole image, based on which the best-fit-plane problem is solved.
The hypothesis is verified by finding all the inliers from the image. A hypothesis,

Figure 4.7: Signed distances to the best-fit plane. Note that several regions have
negative distances, meaning that they are below the found plane.
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Figure 4.8: Road manifold supported by the inliers with εmax set to 1.

supported by significantly many inliers (say, 50%) is considered to be a candidate
model. The process is repeated for a predefined number of iterations. In the end, the
candidate which is supported by the highest number of inliers wins the selection. A
3D representation of the disparity map in the image-disparity space is visualized by
Fig. 4.6.

Following the described RANSAC process, a dominating plane is found. We fur-
ther calculate the signed distance from each pixel to the plane and have it rendered
in Fig. 4.7, where the blue colour represents the pixels being below the road surface.
The inliers are considered to be the road manifold, as shown in Fig. 4.8.
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4.1.2 Line fitting in y-disparity space

The RANSAC plane-fitting process can be reduced to a 2D line fitting problem under
certain conditions. For y-disparities, readers are referred to the original source [122]
(which used v for vertical coordinates), or a current application in [123].

A y-disparity map is computed by using an image D of a disparity map as fol-
lows:

V (y, d) = card{x : 1 ≤ x ≤ Ncols ∧D(x, y) = d} (4.11)

whereNcols is the width of the input images in pixels, and d ∈ [0, dmax) is a disparity
bounded by the maximum value dmax. V (y, d) gives the number of pixels sharing
the same disparity d in the y-th row of the disparity map.

Using this, we implemented a y-disparity-based road manifold detection tech-
nique. The line found in the y-disparity space can be used to define a threshold for
each row so we can do a row-wise threshold to find the road manifold.

Here we have a y-disparity space (on the left) constructed from the disparity map
D on the right 4.9. Here the green cut d = f(y) in the y-disparity space indicates the
disparity of road manifold for each row. Then the green cut is expanded in the image
space to obtain the following mask M 4.10.

Here the values in each row are filled by the disparity of the green curve at the
same row in the y-disparity space, i.e. M(x, y) = f(y). Then we compared the

Figure 4.9: y-disparity map computed from the disparity map on the right.
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Figure 4.10: Green cut shown in Fig. 4.9 is expanded to obtain this mask M.

disparity map with the resulting mask; if the difference is less than a tolerance, say
5 pixels, we consider the pixel on the road manifold. Such a thresholding process
produces the binary image R, see Fig. 4.11. Fig. 4.12 is obtained after applying the
mask to it.

Figure 4.11: Obtained binary image R after thresholding.
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Figure 4.12: Obtained image after applying mask. Note the pixels from y= 0 to 100
are also masked out as they are too far.

Now, as the potholes are lower than the road manifold, we find them by iden-
tifying those pixels below the surface of the road. To identify these pixels, we cal-

Figure 4.13: The brighter pixels indicate disparities that significantly smaller than
the road manifold’s disparities.
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culated the difference M − D and have it visualised with the intensity image 4.13.
Here the brighter pixels indicate disparities that are significantly smaller than the
road manifold’s disparities. We marked two regions of interest enclosed in a circle.
The rationale is based on the fact that the surface of a pothole is slightly farther than
the surface of road in the same row. (We may find a pencil and do some drawing to
verify this.)

This encouraged us to implement the same following the RANSAC way to im-
prove the found curve, which is not smooth. That possibly causes the awkward
stairwell looking artefact in the Fig. 4.13.

Therefore, a RANSAC-based line-fitting process is used to implement a variation
of the general sparse 2D line-fitting technique for y-disparity maps. As values in
the map define a density distribution, we make direct use of Eq. 4.11 to weight the
fitness for each line hypothesis that takes (y, d) as an inlier. The process is closely
related to the well-known Hough transform method [55]. Figure 4.14 visualises
a computed y-disparity map, and the best-fit model found in 100 iterations. The
estimated line model d = f(y) is then applied to the disparity map D. A pixel (x, y)

is considered to show a 3D point on the road if |D(x, y) − f(y)| is smaller than a
predefined threshold, say 1 pixel. An epsilon map defined by the signed difference
this way is shown in Fig. 4.15; for detected road pixels (see Fig. 4.16). Compare with
Fig. 4.8.

Figure 4.14: y-disparity map with a line fit for the lower envelope.
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ch_stereo/eps-vdsp.jpg

Figure 4.15: Obtained epsilon map using best-line fit in y-disparity space.

Figure 4.16: Obtained road manifold using the alternative y-disparity approach.
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4.1.3 Pothole detection using SV1

The extracted road manifold is used to guide the pothole detection process. Pixels
lower than the detected plane, for more than 1 unit, are considered to be pothole
candidates and worthy of further investigation.

To remove noise from the pothole candidates, we apply a threshold operation
to remove shallow pothole candidates, which is then followed by a morphological
opening operation [124, 125] to fractional pieces in the binary mask.

Observing that a pothole pixel location (x, y) usually shares similar gradients
with its neighbourhood in the disparity image, we perform an 8-adjacency connect-
edness analysis [124, 125] to group pixels in the disparity image masked by the
filtered pothole candidates. We remove connected small regions to suppress the
detection of minor distress. Some regions larger than a reasonable size are also re-
moved if they are edges of a curved road surface.

The proposed pothole-detection methods, using either 3D plane estimation or y-
disparities, have been implemented in MATLAB version R2017b (using the built-in
image processing and computer vision toolbox).

We choose sequences from the Urban Streets sequence 1 category as it presents
an extensive collection of road distresses. It is remarkable how consistently the pot-
holes are being identified in the given challenging CCSAD. To evaluate compara-
tively the performance of both techniques, we use precision and recall.

Table 4.1 shows the scores that have been calculated pixel by pixel compared to
the ground truth. Since the dataset does not come with pothole ground truth, it was
established by two independent markers, with each marker’s labelling shown in a
different colour in Fig. 4.17.

The comparison between the performance of the 3D-plane-estimation method
with the y-disparity line fit shows the capability of the 3D-plane technique of pro-

Table 4.1: Classification measures in percentage.

Measure Plane fit Line fit
Precision 62.0 27.8
Recall 25.8 8.2
TNR 99.6 99.7
Accuracy 98.2 97.9
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Figure 4.17: From left to right: Epsilon map, potholes using plane fitting, potholes
using y-disparity line fitting, manually labelled ground truth. The ground truth
was established independently by two markers, with each marker’s labelling, or
differences between labelling, shown in different colours.

viding good performances; a detailed analysis of results shows an overall accuracy
of 98% with 62% precision and 25% recall in detecting potholes using the pro-
posed 3D-plane technique.

Experiments illustrated by Fig. 4.17 are for randomly selected 6 stereo images
of CCSAD. Using the 3D-plane technique, it remains difficult to distinguish between
major cracks and potholes. Therefore, more processing is needed if such a decision
is required.
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4.1.4 Summary

Section 4.1 presented two variants of a pothole detection method by using a compu-
tationally efficient and robust disparity calculation algorithm.

To obtain the road manifold, we either fit a 3D plane in the image-disparity space
using RANSAC, or we use line fitting for the lower envelope of y-disparities.

Potholes have been modelled considering the fact that they would be always
lower than the estimated road surface. Using the fitted 3D plane for the road mani-
fold, potholes have been identified with reasonable accuracy, and with less accuracy
when using y-disparity for the line fit and road manifold estimation. A reason might
be that the cameras, when recording the CCSAD data set, have been slightly tilted
about the car’s forward coordinate axis. Because this cannot be avoided in general,
the 3D plane fit appears to be the more appropriate way to go. Because the road
surface is not perfectly angled to the camera’s y-axis, the y-disparity model assumes
the slope of the road manifold doesn’t change w.r.t. the y-axis. The sample images
we have been working on so far; however, do not follow that principle. A clear evi-
dence can be found in the y-disparity map, which shows a dispersed distribution of
disparities as visualised by 4.18.

The shift of road slope can also be found in the per-row profiles of the disparity
map, see Fig. 4.19. Obtained results are altogether promising and the information
obtained using the 3D-plane technique can be used to alert drivers as well as for a

Figure 4.18: Visualisation of dispersed distribution of disparities.
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Figure 4.19: The profile shows the disparity values along row 250. The disparity
drops as the road is not perfectly angled.

preliminary maintenance report for roads. The proposed 3D-plane technique has a
better performance when combined with multiple frames and tracking of pothole
features. The next Section 4.2 experiments with multiple frame accumulation and
tracking features.
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4.2 Multi-frame fusion based method - SV2

The novelty of the proposed method is credited by the accumulation of multiple-
frame 3D reconstructions which are properly aligned to a road-centred coordinate
system. A 3D plane-fitting technique is first carried out to approximate the road
manifold at the beginning of accumulation, followed by the construction of a digital
elevation model (for the road being analysed) from multiple frames that are inte-
grated using a stereo visual odometry algorithm. Potholes are detected as “valleys”
from the built digital elevation model by means of connectedness analysis.

In this section, we describe a novel method to build a digital elevation model of
the road from multiple stereo frames, by extending the approach described in the
previous section. We address this multi-frame fusion based method using SV2.

4.2.1 Digital elevation model

It is computationally inefficient to process the complete 3D model of an environ-
ment. Therefore, we model the geometry of a scene using the digital elevation model
(DEM) index representation, a regular grid of squares representing heights to a zero-
plane.

Given G a set of 3D points, the construction of a DEM M is as follows. For
each point (X,Y, Z) ∈ G within a defined range of interest X ∈ [Xmin, Xmax] and
Z ∈ [Zmin, Zmax], a corresponding cell (i, j) ∈ Z2 is found by

i =

[
Z − Zmin

W

]
, j =

[
X −Xmin

W

]
(4.12)

where W is a chosen size of grid such that every cell spans an area of W ×W in the
space, and [x] denotes the nearest integer to real number x.

The value of M(i, j) is decided by all the points assigned to cell (i, j). Thanks to
the known structural information of the road, it allows the elevation to be properly
defined with respect to the road manifold. In this study, we use the averaged signed
distances of cell points to the road plane to build M(i, j).

We also deployed a principal component analysis (PCA) technique to find a rigid
transformation that normalises point cloud G in a way that the z-axis aligns to the
primal axis of the road and y-coordinates of each point being the signed distance to
the road plane (i.e. the y-axis is parallel to n, the normal vector of the plane) after the
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Figure 4.20: Visualisation of a digital elevation model that shows elevation profile
of the road surface in a cell resolution of 10 × 10 cm2 (top) and a closer look on a
pothole in an enhanced resolution of 1× 1 cm2 (bottom).

transformation is applied to G. We define the transformed space as the road-centred
space (RCS), on which the DEM is constructed. The adoption of RCS allows the road
to be modelled in a view-independent manner, as the transformation is intrinsic to
the geometry of the road being analysed.
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4.2.2 Visual odometry

To accumulate 3D data measured in different frames, their poses have to be recov-
ered with respect to the reference coordinate system. In this study, we use visual
odometry (VO), a technique to recover the camera’s egomotion1 from a video se-
quence, to achieve this goal. The state-of-the-art implementations use either direct
intensity matching or feature descriptor matching to establish inter-frame corre-
spondences [93]. In this study, we implemented a 3-stage hybrid model as described
in this section.

In the first stage, some key points are detected from a frame and tracked as a new
frame arrives, by means of the Kanade–Lucas–Tomasi (KLT) algorithm. The tracking
yields a set of the image correspondences (x, y) → (x′, y′) where (x, y) denotes the
location of a key point in the last frame, and (x′, y′) is its tracked location in the
new frame. Given the triangulated coordinates of (x, y) in the last frame, a set of
3D-to-2D mapping (X,Y, Z)→ (x′, y′) is acquired.

Given such a mapping, an initial pose (R, t) consisting of R ∈ SO(3), a rotation
matrix, and t ∈ R3 a translation vector, is computed using an efficient perspective-
from-n-point (PnP) algorithm [126]. To enhance the robustness, we deploy a RANSAC
strategy similar to the one described in Section 4.1.1 on the established correspon-
dences to exclude outliers.

In the second stage, a nonlinear refinement is carried out to improve (R, t). We
further extract feature descriptors for the detected key points. A descriptor match-
ing process is then performed in the feature space. The initial pose estimate is used
to filter outliers. We use the estimate and camera intrinsic to derive an essential ma-
trix, based on which the Sampson distance is calculated for each pair of matched
key points (see [127] for details). Subject to the filtered correspondences, the re-
projection error is minimized in the sum-of-squares form:

ϕRPE(R, t) =

P∑
i

∥∥∥∥∥∥∥π
R

Xi

Yi

Zi

+ t

− [x′i
y′i

]∥∥∥∥∥∥∥
2

(4.13)

where P denotes a set of sparse 3D-to-2D correspondences and π : R3 → R2 sym-
bolises the pinhole projection function defined by (4.1). The function is minimised

1ego, Latin, means self. Egomotion, therefore, means self-motion of the camera.
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using the Levenberg-Marquardt (LM) method [128]. In this work, we adopt SURF
feature detector and descriptor extractor [44] for the second stage.

In the third stage, we fine-tune the optimised pose estimate following a photo-
metric error minimisation process. It warps IL, the left image of last frame, to the
current frame using a pose hypothesis being tuned, and iteratively reduces the sum-
of-squares difference in intensities, between the warped image and I ′L the left image
observed in the current frame. In particular, the objective function is defined as

ϕINT(R, t) =
Q∑
i

I ′L(π

R

Xi

Yi

Zi

+ t

)− IL(xi, yi)


2

(4.14)

where Q is a set of pixels with valid depth data. Note Q has many more elements
than P thus useful to further improve the estimation. We use LM algorithm again
to approach a local- minima of (4.14), starting with the pose previously minimised
subject to (4.13).

4.2.3 Weight assignment and multi-frame fusion

To improve the robustness of the DEM construction process, weighted averaging
is adopted. We derive the weight for each data point by evaluating the quality of
its disparity. In this study, we adopt a block-wise correlation-based evaluation on a
disparity map solved by a stereo matcher.

The evaluation first reconstructs the left image from the right image IR and a
computed disparity map D. Let I ′L be the reconstructed image, it follows:

I ′L (x, y) = IR (x−D(x, y), y) (4.15)

Given the observed right image IL, the block-wise correlation is defined as

C(x, y) =
∑

p∈A(x,y)

(IL(p)− µxy)
(
I ′L(p)− µ′xy

)
σxyσ′xy

(4.16)

whereA(x, y) denotes neighbours centring at pixel (x, y), µxy and σxy are local mean
and standard deviation calculated from A(x, y) in image IL, respectively, and µ′xy

and σ′xy are those calculated from the reconstructed image I ′L.
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For a good disparity estimate in (x, y), the correlation C(x, y) will be close to
1, while an inaccurate estimate will lead to low coefficient as low as −1. We use
normalised indicator W (x, y) = (C(x, y) + 1)/2 to weight each point during the
accumulation process.

For multi-frame integration, we first solve camera poses with respect to a refer-
ence frame using the VO technique described in Section 4.2.2. After point clouds
from different frames are aligned to the reference frame, we further transform them
to RCS, using the rigid transformation solved by means of PCA.

In Fig. 4.21 accumulations over 1, 2, 5, 10, and 20 frames of a tested sequence
are rendered. As can be seen, as depth data from more frames are integrated, the
resulted DEM becomes denser and presents fewer missing cells. Compare to the
single-frame approach described in Section 4.1, the multi-frame DEM approach not
only models the road manifold in a more reliable way, but also provides more accu-
rate geometric measures such as depth and size of each pothole.

4.2.4 Pothole detection using SV2

This section describes the process to identify defects on the road surface from grids
of 2.5D DEM introduced in the previous section.

Potholes are indicated by those major valleys present in the height map. Due to
occlusion, these valleys usually come with missing cells. As can be seen in Fig. 4.21,
the edge closer to the camera of each deep road distress is occluded and cannot be
measured despite the multi-frame accumulation technique. Hole-filling is therefore
required before locating these valleys. In this study, we deploy bilinear interpolation
to decide the height of a missing cell from its neighbours.

After filling the holes in the height map, we locate local minima by comparing
each cell to its 8-connected neighbourhood. From each of these extrema, a region
growing search is performed. The search floods to a cell’s neighbours that are either
lower, equal or slightly higher (within a tolerable range) than the cell. If the growth
of a region reaches another region grown from a different starting cell, two regions
are merged to form a larger valley. Such a process is repeated until all the extrema
have been grown. Note a Gaussian filter is applied prior to the search process to
accelerate it by suppressing non-significant valleys.

Following the region growing search, a size check is carried out. Regions that
are either under- or over-sized are rejected. Those under-sized regions are usually
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Figure 4.21: Here the vertical axis is z(meters) ranges from 5 to 10 and the horizontal
bar ranges from −1.5 to +1.5. These are the road surface profiles. Top row, from left
to right: profile from 1, 2, 5, and 10 subsequent frames. Bottom row, from left to
right: profile from 20 accumulated frames before and after hole filling, identified
local minima (as annotated by white crosses) and extracted valleys.
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Figure 4.22: Outline of potholes identified from a multi-frame DEM, after projecting
the valley cells into image domain and triangulating the vertices using alpha shapes.

small road distresses caused by unevenness, and over-sized regions are structures
of the road drainage system on the sides. We also remove shallow regions that are
not causing safety issues. In the end of this stage, potholes are identified.

To visualise the detected potholes in an image, we project the vertices of valley
cells into the image domain. These vertices are then triangulated using 2D alpha
shapes [129] to form polygons (either convex or non-convex). Figure. 4.22 shows the
outline of a detected pothole.

The tested implementation accumulates frames in captured one second. The
working volume is set to 10 metres wide and ranges from 5 to 15 metres in front of
the vehicle.

The multi-frame DEM approach is compared with a single-frame plane based
method. The detected potholes are shown in Fig. 4.23.

The proposed method is able to correctly identify all 14 potholes in the tested
frames. These pairs are of identical size for calculating disparities among left and
right images in the i-th (left image) and j-th (right image), respectively. In the best
case, 92.5% of pixels from detected potholes are also annotated by the labellers, and
more than 50% of labelled pixels are correctly detected. It also achieves an overall
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Table 4.2: Evaluation of the proposed SV2 and SV1 approaches described in Sec-
tion 4.1 and Section 4.2 in percentages.

Frame Precision Recall Accuracy
SV1 SV2 SV1 SV2 SV1 SV2

0078 67.4 65.2 46.6 53.2 99.4 99.4
0093 57.3 64.0 69.2 61.4 99.1 99.2
0278 78.2 63.1 41.0 52.9 99.6 99.5
0304 76.5 92.5 72.8 57.6 99.4 99.5
0547 37.1 81.5 24.0 34.7 98.8 99.2
0935 24.2 69.7 45.1 49.1 98.9 99.6
Overall 45.8 67.4 45.8 51.2 99.1 99.5

accuracy of 99.5%. Compared to the single-frame approach, the multi-frame DEM
shows improvements of 32.1% and 10.6% in terms of precision and recall rate.
The results are listed in Table 4.2.
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Figure 4.23: Tested frames and detected potholes. The potholes found using SV1
and SV2 approaches are marked in red and green respectively, while the manually
labelled ground truths are marked in blue.
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4.3 Summary

In Section 4.2, we presented a novel digital road profiling tool using a multi-frame
depth data integration technique for DEM. The construction of DEM is performed
in the view-independent road-centred coordinate system derived from the geom-
etry of the road itself, and depth data from multiple frames are registered to the
frame using a three-stage VO technique. The proposed approach can be applied
to monocular vision, inertial-monocular vision [130], and monocular-LiDAR sys-
tems [131], and have great potential in road surface digitisation for a number of
real-world applications [132].





Chapter 5

Deep-learning based methods

In this chapter, pothole detection has been achieved by using state-of-the-art deep learning
based methods. Obtained results can be used for determining primary maintenance (fixing of
potholes) or can be embedded into an application to alert drivers. The first method identifies
potholes at the pixel level and produces quite an accurate mask which can be further used for
analysis or annotation. The second method facilitates pothole identification using video data
and the developed model has the potential for real-time scenarios. Conducted experiments
aim to assess the performance of two state of the art object detection networks to detect
potholes in our limited computational environment.

5.1 Computing setup

The assumption of machine learning algorithms that source and target data must
be of the same feature space and distribution is not valid in real-world applications.
Authors of [133] report that data under different distribution and feature space ben-
efit from transfer learning techniques. An objective of this study is to implement
and test CNN object detectors, to see how accurately a CNN trained on general
source data can perform on a specific target task. This task of pothole detection is
also coupled with varying illumination and weather conditions. These objectives
altogether determined the selection criteria for the CNN and datasets. The available
hardware and software setup influence the performance of a CNN, (see Table. 5.1
for environment setup) where LM1 is used for transfer learning with Mask R-CNN
and LM2 is used for transfer learning with YOLOv2. As the environment setups
for both networks are different, we chose not to use execution time as an evaluation
metric. Execution time metric requires standardisation and the same environment
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Table 5.1: Computing information for LM1 and LM2.

Network GPU RAM Framework Machine

LM1 GTX 1080 32 GB TensorFlow, Keras, HP Z440 E5-1680v4
Python, OpenCV (local workstation)

LM2 Tesla K80 12 GB C, CUDA, Google Colab
OpenCV, Python (free cloud service)

setup to produce one exact number, which is not possible in our case. We do report
about training time for both of the techniques.

5.1.1 Ground truth annotation
Previous studies have demonstrated that “there is no uniform road damage dataset
available openly, leading to the absence of a benchmark for road damage detec-
tion” [66]. Manual labelling of irregular potholes for marking ground truth is a
laborious and tedious task. For pixel-wise annotation in an image, it takes around
30−50 seconds to annotate a smallest pothole depending upon the choice of tool and
network. Annotating a pothole using a bounding box is difficult as a pothole can be
of any shape: circular, longitudinal or multiple potholes adjacent to each other (see
Fig. 5.1).

Furthermore, the potholes marked in purple colours can be perceived as one big
pothole or several smaller potholes. For instance, see Fig. 5.2, two potholes in the
left image, six potholes in the right image (both images are the same), other potholes
are not marked here, but considered in experiments. We put our best efforts into
tackling the above mentioned two issues in this study.

5.1.2 Training and testing datasets

The dataset is the essential part when training a CNN. A well architectured CNN
can achieve reasonably good results only when provided with a proper training and
testing dataset. For a training dataset, we used a collection of 247 images, where
50 of the CCSAD’s urban sequence 1, 100 of DLR, 48 Japan and 49 of Sunny
dataset. The validation dataset comprised of 50 frames are also selected using the
same datasets. We excluded 6 frames from CCSAD’s urban streets sequence
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Figure 5.1: Images from sunny (first row first image), Japan (first row second im-
age, second row first image and last row) and DLR (second row second image) show-
ing the complex polynomial shape of potholes such as irregular circular, longitudi-
nal.

1 for comparison purpose with SV2. The frames for training, validation and testing
datasets are chosen on the basis of challenging scenarios such as shadow, varying
illumination and weather conditions present in the scene. Data augmentation tech-
niques are used to compensate for less training data. The test dataset is comprised
of 50 images from CCSAD’s sequence 2 and a weather challenging PNW dataset.
The weights trained on the COCO [134] dataset are used as the base model and these
weights are adapted to identify potholes.
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5.2 Using transfer learning with Mask R-CNN - LM1

To identify potholes at the pixel level, we use transfer learning with Mask R-CNN
(LM1). To preserve the aspect ratio of uniform size 1, 024 × 1, 024, zero padding is
added to the top and bottom of an image, as shown in Fig. 5.3, top left. It is done
to support the originality of different datasets used in our experiments, as resiz-
ing the original image would shrink or expand the original pothole. Accordingly,
this would require changes in ground truth while labelling different frames from
datasets. The working of our LM1 model is composed of a three-stage framework.
The first stage scans the whole image for generating proposals, the second stage clas-
sifies the proposals, creates bounding boxes, and the third stage produces masks of
an object. The detailed working is below:

Stage 1: Region proposal network. The backbone of LM1 model uses a Residual
neural network (ResNet101) [106] and Feature pyramid network (FPN) [77]. A ResNet
is a standard feature extractor which detects low-level features at first layers, and
high-level features at later layers. The FPN feeds the ResNet with extracted feature
maps. Region proposal network (RPN) is a lightweight neural network that scans over
the backbone’s feature map. A sliding window is used to generate anchors that are
typically boxes distributed over the image area. Its convolutional nature handles

Figure 5.2: Annotation challenge while labelling ground truth (Images from DLR
dataset).
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the sliding window operation, and this is very fast on a GPU. The output of the
RPN is an anchor class (see Fig. 5.3, top row, second image) at different scales and a
bounding-box refinement.

We fine-tune the RPN end-to-end for a region proposals, initialised by a pre-
trained CNN image classifier and IoU > 0.7 and < 0.3 define positive or negative
samples, respectively. A small n×n window slides over the convolved feature map
of the entire image. The anchor is produced to predict the multiple regions, at each
sliding position. We used 256 anchors per image for RPN training.

Stage 2: Refined bounding boxes. Bounding boxes are mapped precisely to the
regions of an image using an improved RoIAllign layer of the network for pixel-level
segmentation. It removes the harsh quantisation of the RoIPool layer to encapsulate
the extracted features with the input correctly. This stage accepts the refined anchors
from the RPN and classifies the anchors, as shown in Fig. 5.3, top row, third image.
A refined bounding box with a final detection is shown in Fig. 5.3, bottom row, first
image. It trains the object detection model by using the proposals obtained by RPN.

Stage 3: Instance masks. The mask branch is a CNN that accepts positive regions

(a) Padded image (b) Predictions of RPN (c) Background with dotted,
and pothole with solid an-
chors

(d) Target of RPN (e) Mini mask (f) Final detection

Figure 5.3: Illustration of LM1 framework.
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Figure 5.4: LM1 model configurations.
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as input generated by the classifier during Stage 2 and predicts a low resolution
28 × 28 soft mask for it(see Fig. 5.3, bottom row). A soft mask differs from a binary
mask as float numbers represent a soft mask and hold more details. We set the object
class name as “pothole”.

5.2.1 Hyper-parameters setting

For the LM1 model, per pixel manually labelled ground truth images and left-right
flips for data augmentation are used. A grid search is employed to find an optimal
learning rate value. The learning rate values from 1 to 0.000001 are used and we
realised that the majority of the learning rates failed to train LM1 model. A low
learning rate such as 0.00001 or a very high one such as 1 never converged, thus
causing instability while updating weights.

So we used a learning rate of 0.001 as it helps to avoid the problem of an ex-
ploding gradient. The L2 regularisation technique is used in LM1 to prevent over-
fitting [135]. We train the network using stochastic gradient descent with a learning
momentum of 0.9 to identify an object class as a pothole. A snapshot of LM1 archi-
tecture is shown in Fig. 5.4.

The batch size is 2 and the network is trained for 30 epochs, which took 14 hours
on our Ge Force GTX 1080 GPU. The LM1 model achieved an overall precision
and recall on the testing dataset as 88.7 and 84.6 respectively. .

Loss. Loss function is used to measure how inaccurate the obtained output is
compared to the desired outcome. In the LM1 model, the loss is defined and calcu-
lated using the following equations [105]:

LM1loss = LM1class + LM1bbox + LM1mask (5.1)
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where

LM1class =
1

Nclass

∑
i

−a∗i logai − (1− a∗i )log(1− ai) (5.2)

LM1bbox =
λ

Nbbox

∑
i

a∗i · Lsmooth
1 (bi − b∗i ) (5.3)

LM1mask = − 1

m2

∑
16i,j6m

[lij logl̂
t
ij + (1− lij)log(1− l̂tij)] (5.4)

where LM1class is a loss function over two classes, LM1bbox is bounding box loss,
andLM1mask is a mask loss. Nclass is a normalisation parameter, ai, a∗i are predicted
and ground truth probability of an object being detected, respectively.

λ is a learning rate constant and bi, b∗i are predicted and ground truth four coor-
dinate values. lij is the label of cell(i, j) in the true mask and l̂tij is predicted value

Figure 5.5: LM1box + LM1class + LM1mask during training (upper row) and vali-
dation (bottom row). Here the horizontal axis represents the number of epochs and
the vertical axis represents loss.
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Figure 5.6: LM1loss during training and validation. Here the horizontal axis repre-
sents the number of epochs and the vertical axis represents loss.

of same cell for ground-truth class t.

The LM1class + LM1bbox + LM1mask during training and validation is shown
in Fig. 5.5. The plots in this figure show that the parameters for the models are
chosen sensibly. The parameters are converged to a stable set of weights, which is
a desirable property for a model at the end of a training run. The average training
and validation losses in Fig. 5.6 show that, after a certain number of iterations, loss
does not increase further.

The loss values shown in Figs. 5.7, 5.8, and 5.9 show decreasing loss values at
iterations of epochs 1, 15 and 30. The decreasing loss values are highlighted with

Figure 5.7: First epoch
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Figure 5.8: Second epoch

Figure 5.9: Third epoch

purple colour marking. The LM1loss at the start of epoch 1 is 2.7060 and at the
end of 30 epochs it is 0.1874. Each epoch consists of 100 iterations and in the above
figures, last iterations values form 90 − 100 are shown for epochs 1, 15 and 30. The
decreasing loss values are evidence that selected hyper parameters work in a stable
manner while updating various parameters in the LM1 model during training.
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5.2.2 False detections of LM1

Frames shown in Fig. 5.10 and evaluation measures listed in Table 5.2 are from the
validation dataset. All the images from the validation dataset show potholes are
identified with a high level of accuracy.

Figure 5.10 shows that, for the validation dataset pothole instances are correctly
identified while a false positive was detected in the third image (from the bottom).
Under bright sunshine, a tree is miss-classified as a pothole in this case which could

Figure 5.10: Detected “potholes” from the validation dataset using LM1, shown in
two columns with original image on the left and predicted results on the right. Top
to bottom, left to right. Ten frames in order as listed in Table 5.2.
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Table 5.2: Evaluation measures (in percentage) for the validation dataset using tech-
nique LM1 as shown in Fig. 5.10.

Dataset Frame Precision Recall
Japan 20170912135214 72.8 65.7
DLR 472000 67.7 88.3
DLR 572000 100.0 100.0
DLR 749000 100.0 92.2
DLR 449000 91.0 36.1
Japan 20170906135035 76.8 86.9
Japan 20170906135037 96.4 72.8
Sunny G0010116 73.9 26.6
Sunny G0010118 100.0 100.0
Sunny G0011873 78.5 50.0

be excluded by identifying a ground manifold first.

A pothole in Fig. 5.11 presents a complex situation of a pothole filled with water
and tree shadow (this is frame number 3074). Examples of false detections using
LM1 are shown in Fig. 5.12. Here frames in the top two rows are from continuous
frame number 3070 to 3076. Frames in this range have only one pothole yet it has

Figure 5.11: Pothole marked in red colour presents a very complex situation as it is
filled with water and shadow of a tree.
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been detected accurately in frame number 3073 (second-row first frame). The bot-
tom row shows frames where some potholes are identified on the side of the road,
especially where a region is mainly a combination of snow and different concrete
colours. In general, the LM1 results are good, keeping in mind that Mask R-CNN
has been trained on an entirely different pothole dataset. Many interesting observa-
tions of false detections are presented in this section. The reasons for false-positives
resulting in these frames is because the LM1 model tried to identify a pothole which
might be a patch or an emerging pothole. As a pothole has no defined shape or
features, it is hard to identify and label them manually.

Figure 5.12: Examples of false detections from test PNW dataset using LM1. The de-
tection of potholes including false positives varies from 3070 to 3076 frames shown
in top two rows.



92 5. Deep-learning based methods

5.2.3 Obtained results using LM1

In order to measure the accuracy of our models, we calculate standard classification
measures precision and recall. On a per-pixel basis, Precision measures
the correctness among all positive pothole instances, recall measures how many
positive pothole instances are successfully identified among all positive pothole in-
stances. Figures. 5.13 and 5.14 show some randomly selected frames from testing
dataset and Table 5.3 shows precision and recall values for these frames.

Figure 5.13: Detected road potholes of CCSAD Urban sequence 2 in upper figure
LM1, with original image on the left and obtained results on the right. Top to bottom,
left to right: Frames in order as listed in Table 5.2.
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Figure 5.14: Detected road potholes of PNW dataset using LM1, with original image
on the left and obtained results on the right. Top to bottom, left to right: Frames in
order as listed in Table 5.2.

This method misclassifies a pothole in PNW frame 720. The reason is that the net-
work identified a region as a pothole, which is a darker region on the side of the pot-
hole. The precision and recall values in Table 5.2 also shows that precision
drops drastically for frames 779 and 282. The reasons for false-positives in these
two frames are that our network tried to identify a pothole which might be a patch
or an emerging pothole. However, the LM1 method has great potential to identify
potholes whether they are dry, or filled with water or snow. The overall precision
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Table 5.3: Evaluation metric for test dataset; in percentage.

Dataset Frame Precision Recall
CCSAD 2 282 60.3 92.4
CCSAD 2 345 96.4 80.2
CCSAD 2 382 88.6 79.1
CCSAD 2 740 100.0 94.1
CCSAD 2 779 42.0 86.9
CCSAD 2 831 100.0 56.3
CCSAD 2 958 100.0 83.7
CCSAD 2 1020 82.7 77.6
CCSAD 2 1043 100.0 65.0
CCSAD 2 1119 100.0 97.8
PNW 266 100.0 100.0
PNW 720 41.2 76.6
PNW 1710 84.7 81.7
PNW 1756 82.9 84.3
PNW 1844 100.0 100.0
PNW 1871 100.0 100.0
PNW 2159 100.0 70.7
PNW 2832 100.0 67.1
PNW 18343 100.0 100.0
PNW 19388 96.9 100.0
Overall 88.7 84.6

and recall for randomly chosen 50 frames from our testing dataset are 88% and
84% respectively.
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5.3 Comparision of LM1, SV1, SV2

We comparatively tested the LM1 and SV1, SV2 techniques. Results of LM1, are
great improvement compared to the same example-frames as shown in Figs. 5.15
and 5.16 when using the SV2 or SV1 approaches.

Table 5.4 lists results for a few frames of the tested CCSAD Urban Sequence 1,
comparing pixel-wise detected potholes with the manually labelled ground truth.

Figure 5.15: The potholes found using SV1 and SV2 approaches are marked in red
and green respectively, while the manually labeled ground truths are marked in
blue.
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Figure 5.16: The potholes found using LM1 model and frames are same as Fig. 5.15.

The table shows that there is a case for frame 304 where the SV2 method pro-
vides a slightly better result. In general, this is very hard to identify and annotate
whether there is actually a pothole(see Fig. 5.17). It could benefit by having more
than one human annotator. This also demonstrates the general observation that the
LM1 method outperforms the SV1 method in a majority of cases, and typically by
providing much better results.
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Figure 5.17: Pothole candidate marked with orange colour is hard to identify for
annotation.

Table 5.4: Comparative evaluation of the proposed LM1, SV1 and SV2 in the table
(in percentages).

Frame Precision Recall
LM1 SV1 SV2 LM1 SV1 SV2

0078 96.2 67.4 65.2 92.2 46.6 53.2
0093 93.1 57.3 64.0 93.7 69.2 61.4
0278 84.6 78.2 63.1 94.1 41.0 52.9
0304 80.7 76.5 92.5 84.4 72.8 57.6
0547 89.0 37.1 81.5 95.6 24.0 34.7
0935 95.4 24.2 69.7 97.1 45.1 49.1
Means 89.8 45.8 67.4 92.8 45.8 51.2



98 5. Deep-learning based methods

5.4 Using Transfer learning with YOLOv2 - LM2

For real-time detection of potholes, we used transfer learning using another object
detector, You only look once (YOLO), addressed in this work as LM2. The training
dataset for LM2 is the same as for LM1. The annotation format is different in the case
of LM2, which is a bounding box and not a mask. The layer architecture screen-shot
of LM2 [136] is shown in Fig. 5.18.

Figure 5.18: LM2 layer architecture.
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This consists of 22 convolutional layers and 5 maxpool layers at layers 1, 3, 7, 11, 17.
The route layer at 25 combines the output of finer grained features from the previous
output of layers 16. The output of layer 26 and 24 is concatenated using a reorgani-
zation layer at 25.

5.4.1 Hyper-parameters setting

We started with setting the input image subdivision value as 8, but due to a resulting
high memory requirement, we changed it to 32. We used 64 images per batch1. To
optimize the produced weights, this LM2 model uses three loss values as functions
as

LM2loss = LM2class + LM2bbox + LM2conf (5.5)

LM2class =

g2∑
i=0

Iobji

∑
c∈classes

(pi(c)− p̂(c))2 (5.6)

LM2bbox = λbbox

g2∑
i=0

b∑
j=0

Iobjij [(xi − x̂i)2 + (yi − ŷi)2] +

λbbox

g2∑
i=0

b∑
j=0

Iobjij [(
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2] (5.7)

LM2conf =

g2∑
i=0

b∑
j=0

Iobjij [(ci − ĉi)2 +

λnobj

g2∑
i=0

b∑
j=0

Inobjij [(ci − ĉi)2 (5.8)

whereLM2class, LM2bbox, LM2conf are classification, bounding box and confidence
loss, respectively. Iobji is one when a pothole is present otherwise it is 0. pi(c) is
conditional probability for class c in cell i. p̂ is conditional class probability. (x, y)

1The batch size in LM2 is bigger compared to batch size as 2 in LM1, this is because of the implemen-
tation of the different architecture of used frameworks for LM1 and LM2
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is the predicted and (x̂, ŷ) is the actual bounding box position, similarly (w, h) is
width and height of the bounding box. λ is a constant to penalize bounding box
predictions. c is the confidence score associated with the bounding box predictor
and ĉ is the IoU of the predicted to the ground truth bounding box.

Initially, the learning rate was set to 0.01. However, after 1, 000 iterations, the
average loss kept on increasing. Therefore, we used 0.0001 for learning rate to avoid
fast model divergence to unstable gradients. A snapshot of loss values at different

Figure 5.19: Highest LM2loss value in the first stage (highlighted as avg loss).

Figure 5.20: Decreasing LM2loss value in middle stage with learning rate 0.01.

Figure 5.21: Last stage with lowest LM2loss value.
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stages of LM2 model training is shown in Fig. 5.21. The average loss drops from
14.246600 to 0.209380 in the first 100 iterations; therefore, after 100 iterations, we
increased the learning rate from 0.0001 to 0.001. The learning momentum is set as
0.9.

5.4.2 False detections of LM2

For the real-world applicability of LM2, the different false positives and false nega-
tives are studied. The failed predictions of potholes generally do not have negative
consequences. This is avoidable by having camera recordings of mainly the road
ahead while ignoring anything above and on the side of the road. Figures 5.22 and
5.23 show various false detections, both false positives and false negatives. The
proposed LM2 model enclosed the utility hole (see in Fig. 5.22, second row) with a

Figure 5.22: False detections identified using LM2 from CCSAD test dataset.



102 5. Deep-learning based methods

Figure 5.23: False detections identified using LM2 from PNW test dataset.

bounding box, the reason might be the road around the utility hole does not appear
smooth.

Another challenge is the shadow of the tree (see in Fig. 5.22, first row) at the
end tips that might be because of the darker region. Notably, there is no false de-
tection (see in Fig. 5.22, third row, first image) due to the shadow of the tree. Fig-
ure 5.23 shows some interesting false positive examples identified particularly in
some frames (not all) such as snow, tree and marked arrows. These false positives
are avoidable by training it using some false negatives or by embedding this model
into another road scene understanding model.
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Figure 5.24: Example of some randomly selected frames and detected road potholes
using LM2.

5.4.3 Obtained results using LM2

We trained the network for around 8, 000 iterations and saved the weights at every
1000 iterations. The mean average precision mAP [137] value for different iterations
at 5, 400, 6, 400, 7, 400 are examined. As the mAP value of 5, 400 iterations was
higher than other iteration weights and also LossLM2 did not decrease further from
0.090189 after five thousand iterations, using Early Stopping Point, the model was
selected after 5, 400 iterations. A sample of frame is shown in Fig. 5.24 from the
testing dataset.
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Table 5.5: Evaluation measures (in percentage) for LM2 results shown in Fig. 5.10;
note that bb1 represents bounding box 1, and bb2 bounding box 2 for different in-
stances of potholes.

Frame IoU Frame IoU
122 66 8464 68
4667 66 8527(bb1) 76
4685 79 8527(bb2) 79
4691 90 8540 55
7044(bb1) 76 8664 67
7044(bb2) 75 8874(bb1) 45
7335 60 8874(bb2) 55
7337 60 10064 83
7476 52 10595 90
8133 51 12601 89
Averaged 69

Video testing using LM2.

The LM2 is fast enough to process videos at a fps rate of 25, 29, 31. The short
video results of PNW test dataset using LM2 can be seen using this link - https:
//vimeo.com/337886918. This video is 29 fps. Another video [138] tested is also
available at https://vimeo.com/340338524.

The Table 5.5 lists IoU values for some of the randomly chosen frames, see
Fig. 5.24. The mean is 69% because to annotate potholes which are always of ir-
regular shape, using the bounding box is complicated. Using the LM2 method, the
developed model is applicable for real time scenarios. In Table 5.5 IoU is greater
than 0.5 (which is a standard value), we can say that results are promising. We also
tested 50 randomly selected PNW frames at different IoU values 0.5, 0.6 and 0.7 and
the obtained average precision values are 60%, 52% and 45%, respectively.

The PNW test frame gets divided into the same number of grids as selected during
the training period, i.e. 13× 13. The model can predict multiple bounding boxes in
each grid, so we kept one with the highest IoU value. This leads to the enforcement
of spatial diversity in making predictions.

The originality of our work lies in focusing on pothole identification under chal-
lenging illumination and weather conditions. The recent advancements in the area
of deep learning hugely improved the field of object detection. The LM2 model
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saves identified pothole images separately, which can be used for analysing to plan
in advance to patch up potholes. This will help to automate the laborious and expen-
sive task of manual pothole identification. Though the accuracy of the LM2 model
is not as high as LM1 model, it still shows the interesting trade-off between speed
and accuracy.

5.5 Summary

The prediction accuracy of both LM1 and LM2 can be increased by using more train-
ing datasets. However, annotating potholes is a tedious task, especially pixel-wise,
which requires a lot of time. The LM2 model has the potential of real-world appli-
cation as supported by video experiments. For pothole detection, we had imple-
mented the models with a relatively small dataset. By studying the false detections
of both the models, the additional training dataset can be selectively chosen to make
the LM2 model ready for commercial use.

We utilised modern approaches for object detection and demonstrated that pot-
hole identification could be automated in real time. This work also fills the gap of
different datasets recording under different scenarios. We found out that the LM1
method performs better than the LM2 method with high accuracy, but it is much
slower than LM2. In this study LM1 served as a proof of concept and encouraged the
implementation of the LM2 model. However, with more training, labelled datasets
and use of more than one GPU, the reliability of the models can be increased. Our
models allow for future possibilities in numerous ways, such as using the output
of the LM1 method as an annotated image to train the LM2 method. With more
training data, there is definitely a scope for trying YOLO version 3 (YOLOv3) [139].
YOLOv3 is an incremental improvement of YOLOv2 and consists of 53 convolution
layers.

While this research provides promising steps toward pothole identification, one
could extend these models to extract a variety of other metrics such as depth and
size of identified potholes. The reported research was motivated by collaboration
with Northland Innovation Centre’s N3T project; see [140–142] for joint publications
so far, also including the German Aerospace Centre (DLR) in the context of their IPS
[114, 115].





Chapter 6

Conclusion

The gravity of pothole related accidents can be understood by the increase in the
number of accidents around the world due to potholes. In this research, four differ-
ent techniques are proposed and tested against one another. Each technique has its
own benefits and can provide different pathways to a number of applications. The
LM1 model can identify a pothole under challenging weather conditions with high
precision and recall whereas the LM2 model is capable of real time pothole
identification. Further work using a more comprehensive dataset and analysis in-
cluding false positives is needed for the applicability of the model in the real world.
The SV2 model can identify potholes and road manifolds when used with stereo
vision cameras. The findings that we have presented here suggest that it is very
difficult to define the irregular shape of a pothole which further makes it difficult to
annotate ground truth. This in turns presents a complex process of matching results
with ground truth. To date, there is no platform or benchmark available for pothole
identification. As a result of conducting this research, we put forward six datasets
specifically for pothole identification and discuss applications of two different ar-
eas of research such as computer vision and deep learning. It would be fruitful to
pursue further research in order to combine the output of LM1 for annotating pot-
hole data and use it to train more LM2 in order to increase its accuracy for real time
purposes.
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