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Abstract 

Estimating the effort required for software process 
activities continues to present difficulties for software 
engineers, particularly given the uncertainty and 
subjectivity associated with the many factors that can 
influence effort.  It is therefore advisable that managers 
review their estimates and plans on an ongoing basis 
during each project so that growing certainty can be 
harnessed in order to improve their management of 
future project tasks.  In this paper we investigate the 
potential of using effort data recorded for completed 
project tasks to predict the effort needed for subsequent 
activities.  Our approach is tested against data collected 
from sixteen projects undertaken by a single organization 
over a period of eighteen months.  Our findings suggest 
that, at least in this case, the idea that there are 
‘standard proportions’ of effort for particular 
development activities does not apply.  Estimating effort 
on this basis would not have improved the management 
of these projects.  We did find, however, that in most 
cases simple linear regression enabled us to produce 
better estimates than those provided by the project 
managers.  Moreover, combining the managers’ 
estimates with those produced by regression modeling 
also led to improvements in predictive accuracy.  These 
results indicate that, in this organization, prior-phase 
effort data could be used to augment the estimation 
process already in place in order to improve the 
management of subsequent process tasks.  This provides 
further confirmation of the value of local data and the 
benefits of quite simple quantitative analysis methods. 
 
 

1. INTRODUCTION 

Obtaining accurate measures and estimates of project size, 
effort and duration early in the software process has been a 
long-term goal of software engineering research and 
practice.  Such measures and estimates are used frequently as 
the basis of tenders or bids for contract development, for 
planning systems development and integration activities, and 
for the ongoing management of these activities as they occur.  
These tasks all have potential implications for any associated 
project budget.  For instance, a successful bid will have an 
impact on expected revenue and expenditure; project plans 
are generally formulated in order to ensure the most efficient 
use of costly resources (principally labor); and monitoring 
and feedback during a project can enable adjustments to be 
made in order to further optimize the performance of the 
project team and/or the organization as a whole.  Given the 
potentially significant impact on an organization’s revenues 
and expenditure, and consequently their ability to earn a 
profit, accuracy in measurement and estimation is highly 
sought after.  In this paper we investigate the potential of re-
estimation during projects for enabling managers to more 
effectively predict the effort required for subsequent project 
tasks. 

The remainder of this paper is structured as follows.  Next 
we review project estimation, planning and management, 
with particular emphasis on the notion of re-estimation and 
re-planning during projects.  We then describe the empirical 
analysis undertaken using data collected in an industrial 
software development setting over a period of eighteen 
months.  The results of this analysis are then discussed in 
relation to project management practice, followed by the 
conclusions of our study and recommendations for future 
work in this area. 
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2. ESTIMATION, PLANNING AND 
MANAGEMENT 

The extensive research conducted to date into the 
prediction of effort and duration has produced mixed 
results.  Initial efforts to build universally applicable 
models, which endeavored to account for sometimes 
substantial variations in project type, scale, personnel and 
environment, generally failed to provide sufficiently 
accurate results in terms of the management needs of 
specific organizations.  As a result the emphasis shifted 
to the development of locally applicable models, built 
using a mix of expert opinion, analogy and statistical 
methods such as least-squares regression [19].  More 
recent research has seen this local focus maintained, but 
alternative modeling techniques have also been 
investigated.  In particular, machine-learning methods 
have become widely employed in both classification and 
prediction tasks, including case-based reasoning, neural 
networks, fuzzy systems and evolutionary modeling.   

Whilst the use of such methods has indeed enabled us to 
overcome some of the limitations of algorithmic and 
statistical techniques, whether they will consistently lead 
to the production of more accurate models remains to be 
seen.  One of the most significant problems that 
continues to confound accurate modeling is the difficulty 
we have in capturing sufficient information in our 
predictor variables to enable accurate models to be built; 
that is, our models may fail to account for one or more of 
the factors that influence effort and duration.  Without 
such information, any model, no matter how 
sophisticated the method used in its construction, is 
unlikely to produce accurate estimates.  Furthermore, 
even if our models do take into account the most 
significant factors, the stability of our measures may be 
low if the values chosen for our predictor variables are 
subject to substantial change over the duration of the 
project.  For instance, the values assigned to measures of 
system size (which are used frequently in such predictive 
models) may be determined in the initial stages of a 
project based on a vague and incomplete requirements 
specification.  As a result there could be a high degree of 
uncertainty associated with our measures, and 
consequently, our estimates [21]. 

It is also acknowledged that estimation in the software 
industry tends not to follow a rational process; managers 
often work to a preset schedule and budget, fitting in all 
that can be achieved within those parameters, rather than 
the reverse. This encourages managers to use ‘political’ 
methods of estimation [13, 14, 23], rather than (or at best 
in addition to) analytical and analogical methods.  This is 
compounded by at least two further factors: in general, 
managers tend to be over-optimistic and over-confident 

in estimation and scheduling [12, 15, 24], and they are 
normally reluctant to move from initial estimates and 
schedules when progress slips [29]:  “In most fields, as the 
project moves forward, estimates are adjusted based on 
actual conditions.  That is, if during the first month of the 
project it becomes obvious that the project is taking twice as 
along as the original estimates, the final target estimates are 
adjusted to accommodate this (unfortunate) piece of reality.  
Does that happen in software development?  Rarely.  
Instead, pressure is put on the developers to make up the 
schedule slack.  One lives – or, more often, dies – by the 
original schedule estimate.” [14 p.2].  Carr [9] contends that 
this is exacerbated by the absence of appropriate methods to 
ensure that a project is periodically reexamined to identify 
new risks. 

We are unlikely to improve our performance in terms of 
estimation, planning and management unless we become 
more effective at proactively managing client expectations, 
particularly in ensuring that users understand that early 
estimates are just that, and are almost certain to change [10].  
A number of strategies may be useful in helping clients to 
accept such a situation.  For instance, projects could be 
managed using a portfolio approach [6, 21, 32, 35], both 
within and across projects, rather than treating phases or 
projects as independent occurrences.  In this way overall 
performance across the portfolio becomes the determinant of 
success or failure, rather than for each element of the 
portfolio.  Other research suggests that managers should 
estimate using ranges of values rather than committing to a 
single point estimate [10, 18, 21], although the acceptability 
of such an approach to industry is yet to be determined.  
Similarly it has been suggested that reliance on a single 
estimation method is potentially risky, so a range of values 
obtained from two or more methods (e.g. expert judgement, 
regression and a neural network) may enable a manager to 
find a less risky compromise estimate [3, 5, 8, 17, 28]. 

If we accept that “[N]o project ever runs exactly to plan.” 
[26 p.22] it would seem essential to compare what has been 
achieved with what was planned during a project [8], not just 
at its completion.  Collier et al. [11] suggest that a schedule-
predictability chart is a useful aid in project post-mortems.  
This is undoubtedly true, but could be supplemented by 
phase post-mortems.  Systems development and 
implementation are inherently uncertain activities, requiring 
project management practices that tolerate and work around 
this situation – managers must be allowed to change a plan 
[21, 23, 31].  The system dynamics approach, publicized by 
Abdel-Hamid [1, 2] and Rodrigues and Williams [34], 
embraces this notion: “In the planning subsystem, you make 
project estimates, revising them as the project progresses.  
For example, when a project is behind schedule, you can 
revise the plan to hire more people, extend the schedule, or 
both” [1 p.73].  An estimate should be dynamic – as the 
project progresses more information becomes available [4, 



  

25].  Significantly, it is also more accurate information 
than was used in previous estimates [16]. 

Thus managers should focus on providing a ball-park 
estimate range at the outset of a project, with clear 
indications of likely risk.  As more information becomes 
available a more detailed estimate can be generated [10].  
Lister [27] goes so far as to suggest that a project plan 
should be revisited publicly once a week, and that the 
plan should be changed in light of new information. 

Much has been written about the desirability of ongoing 
adjustment of project plans.  It is interesting to note then 
that we were able to identify only a few empirical 
investigations of this issue.  Kulkarni et al. [22] describe 
phase-based prediction of size and effort for Ada 
systems, with measures of the outputs of one phase 
providing the predictive inputs to the next.  This relied on 
object measures (e.g. source lines of code, Ada packages, 
data flows) rather than recorded effort values, which is 
the focus of the work presented here.  The impact of 
planning estimates on effort expended has been 
empirically investigated by Jørgensen and Sjøberg [20].  
They found that estimates made very early in the 
software process can take on unwarranted significance, 
even if they are found to be wrong as the project 
progresses.  The most relevant empirical work to that 
undertaken here is that reported by Ohlsson and Wohlin 
[30] and Rainer and Shepperd [33].  Ohlsson and Wohlin 
adopted an approach similar to that used by Kulkarni et 
al. reported above in that they used phase-based data to 
build predictions for the subsequent phase.  Again, 
however, they employed artifact measures (e.g. number 
of requirements, flowcharts, input signals) as predictive 
model inputs.  While they found that these measures did 
not correlate particularly well with effort, they did assert 
that the measures were useful in a more holistic sense in 
enabling managers to build an evolving picture of a 
project’s progress and highlighting the need to re-plan.  
Finally, Rainer and Shepperd [33] describe a longitudinal 
case study of planning and effort expenditure at IBM.  
They illustrated the need for the organisation to 
continually re-plan to cope not so much with external 
events but with the fact that the initial schedule was so 
unrealistic.  It is suggested that the project was successful 
because of the re-planning that was undertaken. 

It is this same activity of re-estimation that is the focus of 
this research.  However, we here address the task of re-
estimating later phases of a project using process (rather 
than artifact) data already collected.  Whilst admittedly 
this does not solve the perpetual problem of initial 
prediction, this work could still be of substantial benefit 
given that (depending on the particular process) there 
remains significant effort to be expended in phases such 
as systems implementation and testing.  So, what do we 

know with any degree of certainty as we move through the 
software process?  Requirements-based size measures may 
still be subject to considerable volatility, and more detailed 
measures of system structure may not be available until a 
substantial amount of resource has been consumed.  In 
organizations that charge for their software development 
service on the basis of labor cost, one of the things we do 
know is just that – the effort they expend.  The specific 
question we address here, then, is whether we can use prior-
phase effort data to generate useful predictions of the effort 
required in subsequent phases of development. 

 
3. ANALYSIS METHOD 

Our analysis is based on the practices employed by the 
software provider for a large test equipment manufacturer.  
The organization in question develops software-controlled 
devices for the global market, and does so in collaborative 
projects between Europe and the USA.   

Data relating to sixteen custom software development 
projects were available for analysis, each project requiring 
between 500 and 7800 person-hours of effort.  While this is a 
relatively small number of projects, there are several factors 
that make this data set potentially useful.  All sixteen 
systems were of the same type, that is, they were all 
specialist hardware test systems.  The software was 
developed for one of only two environments, runtime or 
Unix based non-runtime, in either one or a combination of 
two languages (C and C++) all using a waterfall-like 
development process.  Management of the projects was 
carried out by eight individuals under the supervision of 
three Product Development Managers who were responsible 
for software line delivery.  Personnel in the organization 
were confident in the overall validity of the data, since they 
had recently conducted a detailed assessment of their 
processes in order to informally benchmark themselves 
against SEI CMM-like maturity requirements. This had led 
to the establishment of systematic management procedures, 
particularly in terms of recording data on aspects of the 
development process. Finally, all of the projects had been 
completed in the space of eighteen months during 2000 and 
2001, reducing learning effects and increasing the 
consistency in methods and technologies employed. 

For each project a significant amount of data was collected.  
The number of core features to be delivered was specified, 
and both high-level functional requirements and more 
detailed software requirements were counted (but at too 
coarse a level to enable them to be used in effort modeling).  
Projects were characterized by the intended operational 
environment, the type of software to be developed (e.g. 
embedded, GUI), and the programming language(s) to be 
used.  Personnel effort was estimated by expert managers for 
each phase (e.g. design, implementation) at least once – 



  

referred to as the original estimate (OE) – and frequently 
more than once – leading to a current estimate (CE). 
Actual effort data (ACT) was recorded to the same phase 
level.  Project overhead, for holidays, sickness and 
training, was also estimated and recorded.  Duration and 
overall expenditure on labor and materials were 
estimated and data were recorded against each.  Data 
relating to defects found during both integration/systems 
testing and alpha testing were recorded for some of the 
more recent projects, as was information on process 
auditing and non-compliance against standards.  
Extensive explanatory notes were also recorded 
alongside variances in performance, particularly for 
estimates of effort, duration and expenditure.  In many 
respects, then, we had at our disposal a very rich set of 
data.  Although there was insufficient granularity in the 
requirements measures to build useful predictive models, 
we did have access to both estimates and actuals for 
effort data (recorded in person-hours), which enabled us 
to address our principal question of interest – whether 
effort data collected during the development process 
could be used to predict effort requirements for 
subsequent phases. 

Our analysis comprised two main stages.  First, we 
examined the distribution of effort across the various 
phases of development.  We did this in order to explore 
the relationships between phases as well as to gain some 
insight into the consistency of effort expended in each 
phase.  Second, we used the collected prior-phase effort 
data to fit least squares regression models of effort for 
subsequent phases.  This approach represents the ‘best 
match’ possible, in that we used all the data available to 
construct the models.  This step enabled us to establish 
whether it would even be feasible to build useful models 
of later-phase effort using project management  records. 

In terms of producing a ‘successful’ model our primary 
focus was on model accuracy – we wished to minimize 
the error between estimates and actuals.  In the analysis 
described below we consider three aspects of accuracy: 
accuracy per se, accuracy of our models when compared 
to the expert estimates produced within the organization 
(OE and CE), and accuracy of models produced by 
combining our prior-phase effort-based predictions with 
the expert estimates.  In each case we also generate three 
benchmark indicators to help us assess the performance 
of the various methods: predicting zero for all 
observations, and using the average and median effort 
expended to date to predict the next in sequence.  Such 
an approach would be appropriate if, for instance, certain 
activities required the same fixed amount of effort 
irrespective of project-specific factors.  It also reflects the 
fact that there is a cost associated with the use of more 
complex estimation methods (for instance, in the effort 

required for data collection and analysis), and so the 
adoption of any method that does not produce sufficient 
improvements in accuracy over such naïve benchmark 
methods would have to be questioned [21]. 
 
4.  EFFORT DISTRIBUTION ACROSS 

PHASES 

As mentioned above the software process employed in the 
organization was waterfall-like, incorporating: 

• project planning (PP) 

• requirements specification (RS) 

• design specification and documentation (DES) 

• implementation (IMP) 

• test specification and testing (TEST) 

• release, installation and manuals (RIM) and 

• maintenance (MA). 

Effort records also accounted for training and learning (TL) 
and project management (PM).  Distribution of effort for the 
sixteen projects shown by development phase is presented in 
Figure 1 and summarized over all activities in Table 1.  It is 
evident from Figure 1 that records are most complete for the 
planning, design, implementation and testing phases.  In 
many cases requirements specification effort (median 0.0%) 
was incorporated into planning or design, and release effort 
(median 0.9%) was included in the implementation and test 
effort records.  A component of effort was also recorded as 
maintenance for nine of the sixteen projects (median 0.3%).  
It is clear from Table 1 that the bulk of project effort is taken 
up in the three phases of design, implementation and testing 
(median 76.9%), so it is on these phases that we focus our 
analysis. 

The histograms in Figure 1 also show that there is 
considerable variation in the distribution of phase effort 
among the sixteen projects – it does not appear that there is 
any sense of a ‘standard’ proportion of effort per phase.  This 
is in contrast to the notion that we can accurately 
characterize the distribution of project effort using a typical 
breakdown [7, 32] (although we acknowledge that this 
outcome may not apply to all data sets).  Note that for ease 
of viewing each histogram has a different scale y-axis.  We 
therefore provide an alternative view of this data (for the 
core planning, design, implementation and test phases) in a 
single graph, shown in Figure 2.  For this representation we 
have normalized the effort values for each phase to the scale 
0 to 1, by dividing each observation by the maximum value 
per phase. 



  

 
Figure 1. Distribution of effort per phase 

 
 

Table 1. Summary of effort distribution per phase 
 

 PP RS DES IMP TEST RIM MA TL PM 
Median 2.9% 0.0% 18.6% 27.2% 23.0% 0.9% 0.3% 5.4% 7.7% 
Maximum 13.9% 11.0% 37.7% 77.3% 44.0% 7.1% 10.9% 27.2% 17.5% 
Range 13.9% 11.0% 33.6% 57.9% 40.5% 7.1% 10.9% 26.6% 13.9% 
Interquartile Range 4.1% 1.1% 15.0% 20.2% 12.2% 2.2% 1.3% 6.8% 5.7% 
Outliers 2 1 0 1 1 1 1 0 0 
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Figure 2. Normalized volatility of effort per phase 

 
Figure 2 enables us to get a sense of the relative use of 
labor in each phase for the sixteen projects in the data set.  
For instance, we can see that the extent of planning 
undertaken for projects 1 and 13 was relatively much 
greater than for the other fourteen projects.  Design effort 
varies significantly from one project to another, with no 
discernible consistency or pattern over the projects.  
Normalized test effort exhibits several highs and lows 
(projects 6, 11 and 16, and projects 1, 7, 8 and 15, 
respectively) although the remaining nine projects exhibit 
slightly greater consistency, all falling between 0.40 and 
0.59 on our normalized relative scale of 0 to 1.  A more 
consistent pattern of relative effort appears to occur for 
the implementation phase, with ten of the normalized 
values falling between 0.25 and 0.36 and one clear 
outlier project (project 15).  Overall, however, it appears 
that on the basis of the data set analyzed here, the 
distribution of effort over the life of a project varies 
substantially from one development to another, certainly 
until the bulk of effort has been expended.  As a result 
we are not able to estimate the effort required for each 
phase using standard proportions.   

This leads us to consider whether useful significant 
relationships might exist among the proportions of effort 
required for project phases.  For instance, a high 
proportion of effort in implementation might imply the 
need for a high proportion of testing effort; or, 
conversely, a larger proportion of effort expended in 
planning or requirements analysis may mean that a lesser 
proportion of effort is needed in later phases.  We 
examined this issue by first transforming all sixteen 
projects to the same scale by multiplying all data values 

so that total effort on the sixteen projects was the same, an 
approach that is appropriate given that here we were 
considering proportions rather than absolute values.  We 
then examined the correlation values among the various 
proportions of effort, reported in Table 2.  Significance at the 
0.05 level is indicated by a single asterisk, a double asterisk 
(**) indicating significance to the 0.01 level.  In this case we 
employed two-tailed tests, as we were unsure of the direction 
of any relationships that might be identified. 

Table 2 indicates that there are four significant relationships 
among the data for proportional effort per phase.  The single 
positive relationship is that between planning and design 
effort, implying that as the proportion of planning effort 
changes so the proportion of design effort tends to change in 
the same direction.  In contrast, increased planning effort 
implies reduced effort expended in implementation (as a 
proportion of total effort), as does increased design effort.  
These relationships can be seen graphically in Figure 3.  
(The significant relationship between requirements 
specification and testing should be treated with caution, as 
only eight of the sixteen projects had non-zero values for 
requirements specification effort.) 

These initial results suggest that there appears to be some 
potential benefit in investigating the relationships among 
effort expended over the various phases of a software 
project, although the precise nature of the relationships and 
their predictive capabilities is not known at this stage.  In the 
absence of any standard proportions for effort in this data set 
we turn our attention to considering whether useful models 
might alternatively be produced using standard linear 
regression methods. 



  

Table 2. Kendall’s tau correlation values for proportional effort per phase 
 

 PP RS DES IMP TEST RIM 
RS .17**      
DES .50** .31**     
IMP -.42** -.27** -.48**    
TEST -.15** -.40** -.32** -.10**   
RIM -.17** .09** -.14** -.12** .06**  
MA -.05** -.08** .03** -.28** .36** .12** 
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Figure 3. Proportion of total development effort per phase 

 
 

5. MODEL FITTING 

The starting point for our regression-based modeling is 
bivariate correlation analysis.  As stated in the previous 
section, our focus here is on the design, implementation 
and testing phases, as it is during these phases that effort 
requirements are greatest, and therefore where the need 
for accuracy is of most importance.  We also include in 
our analysis the data on planning effort as this may be 
worth considering in terms of its relationship with design 
effort, and the records for planning are far more complete 
than those for requirements analysis.  Descriptive 
statistics for these four variables are shown in Table 3. 

There is some evidence of asymmetry in the distributions 
of planning and test effort data, indicated by both the 

skewness values and the existence of outliers.  As a result we 
performed two-tailed correlation analysis using Kendall’s tau 
(reported in Table 4).  Significance at the 0.05 level is 
indicated by a single asterisk, a double asterisk (**) 
indicating significance to the 0.01 level.   

 
Table 3. Descriptive statistics –  effort per phase 

 PP DES IMP TEST 
Mean 103.4 556.0 870.7 673.9 
Standard Deviation 119.7 474.4 620.1 772.1 
Median 64.0 398.0 844.0 328.0 
Interquartile Range 104.4 806.0 970.4 1004.5 
Skewness 1.8 0.8 0.5 1.7 
Outliers 2 0 0 1 



  

Table 4. Kendall’s tau correlation values for phase effort 
data 

 
 PP DES IMP 
DES 0.62**   
IMP 0.25** 0.48**  
TEST 0.40** 0.58** 0.53** 

 
On the basis of the correlation analysis it appeared that it 
might be possible to fit a number of models relating 
effort expended in earlier phases to that required in later 
stages of a project.  The most straightforward approach 
would be to construct a model for each significant 
relationship, simply mapping one effort variable to 
another.  However, this ignores the potential contribution 
of other variables in combination with the effort data, 
something that cannot be assessed using simple bivariate 
correlation analysis.  We had two other potential 
predictor variables available in the data set – the intended 
operational environment, and the primary programming 
language to be used in development.  Exploratory 
analysis of the potential contribution of phase effort with 
each of these two variables indicated that the likely 
software environment category would be useful in terms 
of fitting models of effort across phases.  Further 
investigation revealed that in fact the two were very 
strongly related, in that in twelve of the sixteen projects 
the combination of intended environment and language 
was the same – software to be deployed in a non-runtime 
Unix environment was almost always developed 
primarily in C++, whereas runtime software was 
normally developed in C.  As a result, we decided to use 
the four effort variables and the category indicator (a 
dummy variable, with value 0 for non-runtime software 
and value 1 for runtime) in the remainder of our analysis. 

Four relationships were therefore evaluated: design effort 
based on planning effort (DES), implementation effort 
based on design effort (IMP), testing effort based on 
design effort (TEST(D)), and testing effort based on 
implementation effort (TEST(I)).  Our approach to model 
fitting for each relationship was as follows: 

1. construct three benchmark models 

a. set all observations in the subsequent phase to zero 

b. use the average effort expended on projects to date 
to generate the next in sequence 

c. use the median effort expended on projects to date 
to generate the next in sequence 

2. use linear regression to construct four models 

a. univariate (effort for the prior phase) plus constant 

b. univariate (effort for the prior phase), no constant 

c. multivariate (effort for the prior phase and software 
category indicator) plus constant 

d. multivariate (effort for the prior phase and software 
category indicator), no constant 

3. construct combined models 

a. for each observation take the arithmetic mean of the 
original estimate (OE) and the value estimated using 
the benchmark and linear regression models 

b. for each observation take the arithmetic mean of the 
current estimate (CE) and the value estimated using 
the benchmark and linear regression models 

4. determine the sum of error and sum of absolute error of 
each model 

5. compare the performance of each model to that achieved 
using expert estimates OE and CE. 

 

Tables 5 to 8 summarize the comparative performance of the 
expert, regression and combined expert/regression models 
where in every case the best regression or expert/regression 
model (that is, the model with the lowest error) is chosen.  
Values less than zero in the ‘OE/CE Sum of Error’ and 
‘Model Sum of Error’ columns indicate that effort was 
overestimated in comparison to the actual values, whereas 
positive numbers indicate that effort was underestimated by 
the technique.  A positive value in the ‘Difference’ column 
indicates that the chosen regression or combined 
expert/regression model is more accurate than the 
corresponding OE/CE ‘model’, whereas a negative value 
indicates that in general the expert estimates are closer to the 
actual effort records.  The ‘Change in Error’ column shows 
the degree to which accuracy has improved (positive value) 
or deteriorated (negative value) relative to the expert model 
error, as a percentage.  We also consider the change in error 
in relation to the amount of effort actually expended – if 
accuracy has improved through the use of regression 
modeling, is that improvement sufficiently large to warrant 
using such an approach?  This is indicated as a percentage 
value in the ‘Gain/Loss’ column.  The final item in each 
table is the number of individual observations that incur a 
lower error when determined using the model rather than the 
expert approach.  The number of observations per phase is 
sixteen, meaning that the total number of ‘Improved 
Estimates’ possible across the three phases is 48.  Note that 
in each table two sets of results are provided, reflecting the 
impact of a choice between using design or implementation 
effort in modeling test effort (i.e. TEST(D) or TEST(I)). 

If an organization manages projects under a portfolio 
approach then their goal may be to simply minimize the sum 



  

of error – in other words, as long as over-expenditure of 
labor on one project task is compensated for by under-
utilization on another, this is considered to be successful 
management of resources.  Table 5 shows that at the 
beginning of the sixteen projects the managers 
underestimated implementation effort by 1982 person-
hours but overestimated testing effort by about the same 
amount (2234 person-hours).  This could be interpreted 
as indicating an effort allocation problem – that is, the 
error was in the split of effort over the two phases (either 
estimated or recorded), rather than in the total amount of 
effort predicted.  This is not supported, however, by the 
comments recorded by the managers, or in fact by the 
revised estimates (CE) produced later in the projects (see 
Table 7).  Furthermore, whilst accuracy over an entire 
project is desirable, it is also important to have accurate 
phase estimates to enable effective management during 
projects.  Given that the organization had recently 
revised their project management systems to enable more 
accurate records to be collected, it seems reasonable to 
consider the underlying data to be both correct and 
realistic.  The original effort (OE) and revised effort (CE) 
figures therefore provide a useful benchmark against 
which to compare the alternative models. 

The models produced using prior-phase effort and the 
software category indicator resulted in error totals close 
to zero in all cases (see ‘Model Sum of Error’ in Table 
5), an expected outcome given that regression models are 
built with the intention of minimizing error.  Perhaps 
more useful is the fact that each of the models produced 
more accurate phase effort values than those provided by 
the project managers for a number of individual projects.  
It is interesting to note that the regression model that 
mapped design effort to testing effort (TEST (D)) was 
more accurate in nine of the sixteen cases whereas the 
model employing implementation effort as a predictor 
(TEST (I)) led to more accurate values in only four cases.  
Given that design records are available earlier in the 
process the first set of models would appear to be 
preferred in this case.  Also worth noting is the 
comparatively low gain achieved in modeling design 
effort using planning effort – only a very slight reduction 
in error is achieved, and in fact the best regression model 
is outperformed by the project managers’ OE values for 
ten of the sixteen projects. 

Organizations that are concerned about the scale of error 
in estimation more than the direction of that error 
(through over- or underestimation) are likely to prefer to 
use the sum of the absolute error as a measure of overall 
accuracy.  Assessment of the models against this 
criterion is shown in Table 6.  Using this criterion the 
original estimates were more than 17000 person-hours 
adrift of the effort that was actually expended over the 
three core phases of the sixteen projects.  The alternative 

models produced by regression analysis improved this by a 
factor of more than one third (6040 person-hours), also 
resulting in more accurate values  for  29  of  the  48  
observations.  In  this case  the model that utilized 
implementation effort to determine testing effort proved to 
be more accurate than its design-based counterpart.  It is 
clear from Table 6 that in general the gains in accuracy 
achieved through regression modeling are substantial, with 
that related to implementation effort being particularly 
strong at 30%.  Design effort modeling is once more the 
exception, however, with a gain of just 1% in relation to total 
design effort. 

We now examine performance in relation to the managers’ 
revised effort estimates (CE) produced to reflect the impact 
of negotiated changes in software requirements.  As these are 
normally produced as new information is gathered, it seems 
reasonable to expect that in general the current estimates 
(CE) would be more accurate than their OE predecessors.  
Taking the sixteen projects as a portfolio, however, we find 
that this is not the case (see Table 7).  The revised estimates 
for design, implementation and testing effort resulted in a 
larger overall error than that achieved with the original 
estimates (2994 person-hours using CE vs -329 person-hours 
using OE).  Testing effort accuracy was in fact improved in 
the revision process (by 469 person-hours), but this 
improvement was more than offset by substantially greater 
underestimation of design and implementation effort.   As 
expected, regression-based models proved to be effective in 
minimizing overall error to close to zero, but in general this 
did not result in more accurate values for individual effort 
observations.  In particular, just three of the sixteen design 
effort values were estimated more accurately using the 
alternative model even though overall error was reduced. 

In terms of the absolute error criterion (Table 8), the 
regression-based model for design effort performed worse 
than its CE counterpart, further bringing into question the 
advantage of regression modeling for this phase.  This is in 
stark contrast to the improvements made in relation to 
implementation and testing, where the experts’ current 
estimates were significantly outperformed by the 
alternatives.  The implementation model is particularly 
strong in that the selected model leads to a lower error for 
eleven of the sixteen project observations. 
 
6. DISCUSSION 

In the absence of standard effort proportions for 
development phases the object of the above analysis was to 
determine whether it was feasible to improve on project 
managers’  estimates  using   prior-phase   effort   records. 



  

Table 5. Minimizing sum of error against OE 
 

  OE Model Difference Change in Gain/Loss Improved 
  Sum of 

Error 
Sum of 
Error 

  Error   Estimates 

DES -77 1 76 99% 1% 6/16 
IMP 1982 4 1978 100% 14% 10/16 
TEST (D) -2234 0 2234 100% 21% 9/16 
Total     4288   13% 25/48 
              
DES -77 1 76 99% 1% 6/16 
IMP 1982 4 1978 100% 14% 10/16 
TEST (I) -2234 -4 2230 100% 21% 4/16 
Total     4284   13% 20/48 

 
 

Table 6. Minimizing sum of absolute error against OE 
 

  OE Model Difference Change in Gain/Loss Improved 
  Sum of 

Absolute 
Error 

Sum of 
Absolute 
Error 

  Error   Estimates 

DES 3243 3160 83 3% 1% 8/16 
IMP 7888 3688 4200 53% 30% 11/16 
TEST (D) 6351 4594 1757 28% 16% 10/16 
Total     6040   18% 29/48 
              
DES 3243 3160 83 3% 1% 8/16 
IMP 7888 3688 4200 53% 30% 11/16 
TEST (I) 6351 4245 2106 33% 20% 10/16 
Total     6389   19% 29/48 

 
 
 

Table 7. Minimizing sum of error against CE 
 

  CE Model Difference Change in Gain/Loss Improved 
  Sum of 

Error 
Sum of 
Error 

  Error   Estimates 

DES 986 1 985 100% 11% 3/16 
IMP 3773 4 3769 100% 27% 9/16 
TEST (D) -1765 0 1765 100% 16% 8/16 
Total     6519   19% 20/48 
              
DES 986 1 985 100% 11% 3/16 
IMP 3773 4 3769 100% 27% 9/16 
TEST (I) -1765 -4 1761 100% 16% 4/16 
Total     6515   19% 16/48 

 
 

Table 8. Minimizing sum of absolute error against CE 
 

  CE Model Difference Change in Gain/Loss Improved 
  Sum of 

Absolute 
Error 

Sum of 
Absolute 
Error 

  Error   Estimates 

DES 2320 2349 -29 -1% 0% 6/16 
IMP 5651 3688 1963 35% 14% 11/16 
TEST (D) 5770 4268 1502 26% 14% 9/16 
Total     3436   10% 26/48 
              
DES 2320 2349 -29 -1% 0% 6/16 
IMP 5651 3688 1963 35% 14% 11/16 
TEST (I) 5770 3847 1923 33% 18% 9/16 
Total     3857   11% 26/48 

 



  

The model fitting analysis illustrates that (at least for our 
data set) there are potentially useful and consistent 
mappings from prior-phase   effort   data   to   that   
required   in   later   phases.  Retrospective fitting of 
regression and combined expert/regression models to the 
sixteen projects indicates that significantly better 
projections of effort could have been possible, enabling 
the organization to plan activities and allocate resources 
in a more cost-efficient way.   

Of interest is the extent to which the alternative (non-
expert)  models contributed to reduction in error, either 
on their own or in combination with the expert estimates.  
In attempting to minimize the sum of error, multivariate 
regression models with a constant term proved to be the 
best (of the expert, benchmark, regression and combined 
expert/regression models) in all cases.  When assessed 
using the sum of absolute error, the combined 
expert/regression approach proved to be the most 
accurate in the majority of cases.  In only one instance – 
that of mapping planning effort to design effort – did the 
expert model using revised values (CE) outperform the 
alternative models.  Overall then, these outcomes 
confirm that the use of more than one modeling method 
can provide some benefit in reducing overall error. 

Looking particularly at the data set analyzed here, it 
appears that modeling both implementation and testing 
effort on the basis of actual design effort could be 
especially beneficial, leading potentially to a reduction in 
error by thousands of person-hours over a project 
portfolio.  In contrast, the relatively poor performance of 
the alternative models in determining design effort from 
planning effort suggests that there is little to be gained 
over expert estimation for this phase of development. 

But what of the general case?  Artifact-based models – 
those based on product attributes such as the number of 
lines of code, the number of features, the number of 
function points and the like – have been used extensively 
in effort and schedule estimation.  Questions remain, 
however, as to whether these approaches are sufficient to 
capture the factors that influence effort.  Furthermore, the 
costs of data collection, analysis, training and so on 
associated with some of these methods can be non-trivial.  
While there is no doubt that there remains a real need for 
early effort predictions, which the approach advocated 
here cannot address, it may be that process-based models 
using actual effort and duration data could provide more 
accurate estimates as a project progresses. 

This analysis is not without its limitations. As this was a 
model-fitting exercise (to determine the feasibility of the 
approach) we used the complete data set to both 

determine the most useful models and to assess their 
potential worth in terms of improved estimates.  As a 
result the analysis is optimistic and likely overstates the 
effectiveness of the approach.  We were also constrained 
in our analysis by only having access to the data – 
unfortunately because of demands on staff time we were 
not able to obtain detailed information on the projects and 
their progress.  In particular, we were not able to ascertain 
the reasons for errors in estimation or unexpected 
progress outcomes.  Such information would have 
enabled us to consider specific downstream effects – was 
the remainder of the schedule left as is? was functionality 
constrained in order to meet a fixed schedule? were effort 
and duration allocated for later phases adjusted? and if so, 
up or down, and by what amounts?  That said, the 
magnitude of the improvements achieved using these very 
simple analysis methods justifies further investigation, 
even in the absence of project knowledge. 

 
7. CONCLUSIONS 

In this paper we have described an empirical analysis 
based on the phase effort data derived from sixteen 
projects.  There are three sets of findings: 

• There is little support for the idea of standard 
proportions of effort distributed between phases.  Whilst 
this is only one study, it is potentially important, as it does 
not support the ideas of some software engineering 
researchers and commentators. 

• Our results verify that expert estimates can be 
improved upon through the use of models generated on 
the basis of prior-phase effort data.  Importantly, these are 
models built using simple techniques and ideas that are 
accessible to busy professionals. 

• We provide further evidence to support the assertion 
that the use of more than one prediction technique can 
lead to more accurate estimates than if we rely on a single 
method. 

The next stage of this work is to consider the impact of 
the sequence in which projects are completed.  In order to 
consider the usefulness of prior-phase effort models in a 
predictive setting we could use information on project 
completion to replicate the situation in which the data set 
grows over time as projects end.  This would allow us to 
build predictive models that use only the records available 
at a given point in time to produce an estimate for the next 
project in the sequence.  

So to conclude, in terms of the wider significance of this 
research, the main observation to make is that yet again 



  

we have support for the value of local data, even when 
limited to only a few data points and relatively 
straightforward analysis methods. 
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