

Full citation: MacDonell, S.G., & Shepperd, M.J. (2003) Using prior-phase effort records for re-
estimation during software projects, in Proceedings of the Ninth International Symposium on Software
Metrics (Metrics'03). Sydney, Australia, IEEE Computer Society Press, pp.73-86.
doi: 10.1109/METRIC.2003.1232457

Using Prior-Phase Effort Records for Re-estimation During Software Projects

 Stephen G. MacDonell Martin J. Shepperd
 SERL Empirical Software Engineering Research Group
 Auckland University of Technology School of Design, Engineering and Computing
 Private Bag 92006 Bournemouth University
 Auckland, 1142, New Zealand Bournemouth, BH1 3LT, UK
 stephen.macdonell@aut.ac.nz mshepper@bmth.ac.uk

Abstract

Estimating the effort required for software process
activities continues to present difficulties for software
engineers, particularly given the uncertainty and
subjectivity associated with the many factors that can
influence effort. It is therefore advisable that managers
review their estimates and plans on an ongoing basis
during each project so that growing certainty can be
harnessed in order to improve their management of
future project tasks. In this paper we investigate the
potential of using effort data recorded for completed
project tasks to predict the effort needed for subsequent
activities. Our approach is tested against data collected
from sixteen projects undertaken by a single organization
over a period of eighteen months. Our findings suggest
that, at least in this case, the idea that there are
‘standard proportions’ of effort for particular
development activities does not apply. Estimating effort
on this basis would not have improved the management
of these projects. We did find, however, that in most
cases simple linear regression enabled us to produce
better estimates than those provided by the project
managers. Moreover, combining the managers’
estimates with those produced by regression modeling
also led to improvements in predictive accuracy. These
results indicate that, in this organization, prior-phase
effort data could be used to augment the estimation
process already in place in order to improve the
management of subsequent process tasks. This provides
further confirmation of the value of local data and the
benefits of quite simple quantitative analysis methods.

1. INTRODUCTION

Obtaining accurate measures and estimates of project size,
effort and duration early in the software process has been a
long-term goal of software engineering research and
practice. Such measures and estimates are used frequently as
the basis of tenders or bids for contract development, for
planning systems development and integration activities, and
for the ongoing management of these activities as they occur.
These tasks all have potential implications for any associated
project budget. For instance, a successful bid will have an
impact on expected revenue and expenditure; project plans
are generally formulated in order to ensure the most efficient
use of costly resources (principally labor); and monitoring
and feedback during a project can enable adjustments to be
made in order to further optimize the performance of the
project team and/or the organization as a whole. Given the
potentially significant impact on an organization’s revenues
and expenditure, and consequently their ability to earn a
profit, accuracy in measurement and estimation is highly
sought after. In this paper we investigate the potential of re-
estimation during projects for enabling managers to more
effectively predict the effort required for subsequent project
tasks.

The remainder of this paper is structured as follows. Next
we review project estimation, planning and management,
with particular emphasis on the notion of re-estimation and
re-planning during projects. We then describe the empirical
analysis undertaken using data collected in an industrial
software development setting over a period of eighteen
months. The results of this analysis are then discussed in
relation to project management practice, followed by the
conclusions of our study and recommendations for future
work in this area.

http://dx.doi.org/10.1109/METRIC.2003.1232457�
mailto:stevemac@infoscience.otago.ac.nz�
mailto:mshepper@bmth.ac.uk�

2. ESTIMATION, PLANNING AND
MANAGEMENT

The extensive research conducted to date into the
prediction of effort and duration has produced mixed
results. Initial efforts to build universally applicable
models, which endeavored to account for sometimes
substantial variations in project type, scale, personnel and
environment, generally failed to provide sufficiently
accurate results in terms of the management needs of
specific organizations. As a result the emphasis shifted
to the development of locally applicable models, built
using a mix of expert opinion, analogy and statistical
methods such as least-squares regression [19]. More
recent research has seen this local focus maintained, but
alternative modeling techniques have also been
investigated. In particular, machine-learning methods
have become widely employed in both classification and
prediction tasks, including case-based reasoning, neural
networks, fuzzy systems and evolutionary modeling.

Whilst the use of such methods has indeed enabled us to
overcome some of the limitations of algorithmic and
statistical techniques, whether they will consistently lead
to the production of more accurate models remains to be
seen. One of the most significant problems that
continues to confound accurate modeling is the difficulty
we have in capturing sufficient information in our
predictor variables to enable accurate models to be built;
that is, our models may fail to account for one or more of
the factors that influence effort and duration. Without
such information, any model, no matter how
sophisticated the method used in its construction, is
unlikely to produce accurate estimates. Furthermore,
even if our models do take into account the most
significant factors, the stability of our measures may be
low if the values chosen for our predictor variables are
subject to substantial change over the duration of the
project. For instance, the values assigned to measures of
system size (which are used frequently in such predictive
models) may be determined in the initial stages of a
project based on a vague and incomplete requirements
specification. As a result there could be a high degree of
uncertainty associated with our measures, and
consequently, our estimates [21].

It is also acknowledged that estimation in the software
industry tends not to follow a rational process; managers
often work to a preset schedule and budget, fitting in all
that can be achieved within those parameters, rather than
the reverse. This encourages managers to use ‘political’
methods of estimation [13, 14, 23], rather than (or at best
in addition to) analytical and analogical methods. This is
compounded by at least two further factors: in general,
managers tend to be over-optimistic and over-confident

in estimation and scheduling [12, 15, 24], and they are
normally reluctant to move from initial estimates and
schedules when progress slips [29]: “In most fields, as the
project moves forward, estimates are adjusted based on
actual conditions. That is, if during the first month of the
project it becomes obvious that the project is taking twice as
along as the original estimates, the final target estimates are
adjusted to accommodate this (unfortunate) piece of reality.
Does that happen in software development? Rarely.
Instead, pressure is put on the developers to make up the
schedule slack. One lives – or, more often, dies – by the
original schedule estimate.” [14 p.2]. Carr [9] contends that
this is exacerbated by the absence of appropriate methods to
ensure that a project is periodically reexamined to identify
new risks.

We are unlikely to improve our performance in terms of
estimation, planning and management unless we become
more effective at proactively managing client expectations,
particularly in ensuring that users understand that early
estimates are just that, and are almost certain to change [10].
A number of strategies may be useful in helping clients to
accept such a situation. For instance, projects could be
managed using a portfolio approach [6, 21, 32, 35], both
within and across projects, rather than treating phases or
projects as independent occurrences. In this way overall
performance across the portfolio becomes the determinant of
success or failure, rather than for each element of the
portfolio. Other research suggests that managers should
estimate using ranges of values rather than committing to a
single point estimate [10, 18, 21], although the acceptability
of such an approach to industry is yet to be determined.
Similarly it has been suggested that reliance on a single
estimation method is potentially risky, so a range of values
obtained from two or more methods (e.g. expert judgement,
regression and a neural network) may enable a manager to
find a less risky compromise estimate [3, 5, 8, 17, 28].

If we accept that “[N]o project ever runs exactly to plan.”
[26 p.22] it would seem essential to compare what has been
achieved with what was planned during a project [8], not just
at its completion. Collier et al. [11] suggest that a schedule-
predictability chart is a useful aid in project post-mortems.
This is undoubtedly true, but could be supplemented by
phase post-mortems. Systems development and
implementation are inherently uncertain activities, requiring
project management practices that tolerate and work around
this situation – managers must be allowed to change a plan
[21, 23, 31]. The system dynamics approach, publicized by
Abdel-Hamid [1, 2] and Rodrigues and Williams [34],
embraces this notion: “In the planning subsystem, you make
project estimates, revising them as the project progresses.
For example, when a project is behind schedule, you can
revise the plan to hire more people, extend the schedule, or
both” [1 p.73]. An estimate should be dynamic – as the
project progresses more information becomes available [4,

25]. Significantly, it is also more accurate information
than was used in previous estimates [16].

Thus managers should focus on providing a ball-park
estimate range at the outset of a project, with clear
indications of likely risk. As more information becomes
available a more detailed estimate can be generated [10].
Lister [27] goes so far as to suggest that a project plan
should be revisited publicly once a week, and that the
plan should be changed in light of new information.

Much has been written about the desirability of ongoing
adjustment of project plans. It is interesting to note then
that we were able to identify only a few empirical
investigations of this issue. Kulkarni et al. [22] describe
phase-based prediction of size and effort for Ada
systems, with measures of the outputs of one phase
providing the predictive inputs to the next. This relied on
object measures (e.g. source lines of code, Ada packages,
data flows) rather than recorded effort values, which is
the focus of the work presented here. The impact of
planning estimates on effort expended has been
empirically investigated by Jørgensen and Sjøberg [20].
They found that estimates made very early in the
software process can take on unwarranted significance,
even if they are found to be wrong as the project
progresses. The most relevant empirical work to that
undertaken here is that reported by Ohlsson and Wohlin
[30] and Rainer and Shepperd [33]. Ohlsson and Wohlin
adopted an approach similar to that used by Kulkarni et
al. reported above in that they used phase-based data to
build predictions for the subsequent phase. Again,
however, they employed artifact measures (e.g. number
of requirements, flowcharts, input signals) as predictive
model inputs. While they found that these measures did
not correlate particularly well with effort, they did assert
that the measures were useful in a more holistic sense in
enabling managers to build an evolving picture of a
project’s progress and highlighting the need to re-plan.
Finally, Rainer and Shepperd [33] describe a longitudinal
case study of planning and effort expenditure at IBM.
They illustrated the need for the organisation to
continually re-plan to cope not so much with external
events but with the fact that the initial schedule was so
unrealistic. It is suggested that the project was successful
because of the re-planning that was undertaken.

It is this same activity of re-estimation that is the focus of
this research. However, we here address the task of re-
estimating later phases of a project using process (rather
than artifact) data already collected. Whilst admittedly
this does not solve the perpetual problem of initial
prediction, this work could still be of substantial benefit
given that (depending on the particular process) there
remains significant effort to be expended in phases such
as systems implementation and testing. So, what do we

know with any degree of certainty as we move through the
software process? Requirements-based size measures may
still be subject to considerable volatility, and more detailed
measures of system structure may not be available until a
substantial amount of resource has been consumed. In
organizations that charge for their software development
service on the basis of labor cost, one of the things we do
know is just that – the effort they expend. The specific
question we address here, then, is whether we can use prior-
phase effort data to generate useful predictions of the effort
required in subsequent phases of development.

3. ANALYSIS METHOD

Our analysis is based on the practices employed by the
software provider for a large test equipment manufacturer.
The organization in question develops software-controlled
devices for the global market, and does so in collaborative
projects between Europe and the USA.

Data relating to sixteen custom software development
projects were available for analysis, each project requiring
between 500 and 7800 person-hours of effort. While this is a
relatively small number of projects, there are several factors
that make this data set potentially useful. All sixteen
systems were of the same type, that is, they were all
specialist hardware test systems. The software was
developed for one of only two environments, runtime or
Unix based non-runtime, in either one or a combination of
two languages (C and C++) all using a waterfall-like
development process. Management of the projects was
carried out by eight individuals under the supervision of
three Product Development Managers who were responsible
for software line delivery. Personnel in the organization
were confident in the overall validity of the data, since they
had recently conducted a detailed assessment of their
processes in order to informally benchmark themselves
against SEI CMM-like maturity requirements. This had led
to the establishment of systematic management procedures,
particularly in terms of recording data on aspects of the
development process. Finally, all of the projects had been
completed in the space of eighteen months during 2000 and
2001, reducing learning effects and increasing the
consistency in methods and technologies employed.

For each project a significant amount of data was collected.
The number of core features to be delivered was specified,
and both high-level functional requirements and more
detailed software requirements were counted (but at too
coarse a level to enable them to be used in effort modeling).
Projects were characterized by the intended operational
environment, the type of software to be developed (e.g.
embedded, GUI), and the programming language(s) to be
used. Personnel effort was estimated by expert managers for
each phase (e.g. design, implementation) at least once –

referred to as the original estimate (OE) – and frequently
more than once – leading to a current estimate (CE).
Actual effort data (ACT) was recorded to the same phase
level. Project overhead, for holidays, sickness and
training, was also estimated and recorded. Duration and
overall expenditure on labor and materials were
estimated and data were recorded against each. Data
relating to defects found during both integration/systems
testing and alpha testing were recorded for some of the
more recent projects, as was information on process
auditing and non-compliance against standards.
Extensive explanatory notes were also recorded
alongside variances in performance, particularly for
estimates of effort, duration and expenditure. In many
respects, then, we had at our disposal a very rich set of
data. Although there was insufficient granularity in the
requirements measures to build useful predictive models,
we did have access to both estimates and actuals for
effort data (recorded in person-hours), which enabled us
to address our principal question of interest – whether
effort data collected during the development process
could be used to predict effort requirements for
subsequent phases.

Our analysis comprised two main stages. First, we
examined the distribution of effort across the various
phases of development. We did this in order to explore
the relationships between phases as well as to gain some
insight into the consistency of effort expended in each
phase. Second, we used the collected prior-phase effort
data to fit least squares regression models of effort for
subsequent phases. This approach represents the ‘best
match’ possible, in that we used all the data available to
construct the models. This step enabled us to establish
whether it would even be feasible to build useful models
of later-phase effort using project management records.

In terms of producing a ‘successful’ model our primary
focus was on model accuracy – we wished to minimize
the error between estimates and actuals. In the analysis
described below we consider three aspects of accuracy:
accuracy per se, accuracy of our models when compared
to the expert estimates produced within the organization
(OE and CE), and accuracy of models produced by
combining our prior-phase effort-based predictions with
the expert estimates. In each case we also generate three
benchmark indicators to help us assess the performance
of the various methods: predicting zero for all
observations, and using the average and median effort
expended to date to predict the next in sequence. Such
an approach would be appropriate if, for instance, certain
activities required the same fixed amount of effort
irrespective of project-specific factors. It also reflects the
fact that there is a cost associated with the use of more
complex estimation methods (for instance, in the effort

required for data collection and analysis), and so the
adoption of any method that does not produce sufficient
improvements in accuracy over such naïve benchmark
methods would have to be questioned [21].

4. EFFORT DISTRIBUTION ACROSS

PHASES

As mentioned above the software process employed in the
organization was waterfall-like, incorporating:

• project planning (PP)

• requirements specification (RS)

• design specification and documentation (DES)

• implementation (IMP)

• test specification and testing (TEST)

• release, installation and manuals (RIM) and

• maintenance (MA).

Effort records also accounted for training and learning (TL)
and project management (PM). Distribution of effort for the
sixteen projects shown by development phase is presented in
Figure 1 and summarized over all activities in Table 1. It is
evident from Figure 1 that records are most complete for the
planning, design, implementation and testing phases. In
many cases requirements specification effort (median 0.0%)
was incorporated into planning or design, and release effort
(median 0.9%) was included in the implementation and test
effort records. A component of effort was also recorded as
maintenance for nine of the sixteen projects (median 0.3%).
It is clear from Table 1 that the bulk of project effort is taken
up in the three phases of design, implementation and testing
(median 76.9%), so it is on these phases that we focus our
analysis.

The histograms in Figure 1 also show that there is
considerable variation in the distribution of phase effort
among the sixteen projects – it does not appear that there is
any sense of a ‘standard’ proportion of effort per phase. This
is in contrast to the notion that we can accurately
characterize the distribution of project effort using a typical
breakdown [7, 32] (although we acknowledge that this
outcome may not apply to all data sets). Note that for ease
of viewing each histogram has a different scale y-axis. We
therefore provide an alternative view of this data (for the
core planning, design, implementation and test phases) in a
single graph, shown in Figure 2. For this representation we
have normalized the effort values for each phase to the scale
0 to 1, by dividing each observation by the maximum value
per phase.

Figure 1. Distribution of effort per phase

Table 1. Summary of effort distribution per phase

 PP RS DES IMP TEST RIM MA TL PM
Median 2.9% 0.0% 18.6% 27.2% 23.0% 0.9% 0.3% 5.4% 7.7%
Maximum 13.9% 11.0% 37.7% 77.3% 44.0% 7.1% 10.9% 27.2% 17.5%
Range 13.9% 11.0% 33.6% 57.9% 40.5% 7.1% 10.9% 26.6% 13.9%
Interquartile Range 4.1% 1.1% 15.0% 20.2% 12.2% 2.2% 1.3% 6.8% 5.7%
Outliers 2 1 0 1 1 1 1 0 0

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1 3 5 7 9 11 13 15

Project

Proportion PP of
ACT (N)

Proportion DES
of ACT (N)

Proportion IMP
of ACT (N)

Proportion TEST
of ACT (N)

Figure 2. Normalized volatility of effort per phase

Figure 2 enables us to get a sense of the relative use of
labor in each phase for the sixteen projects in the data set.
For instance, we can see that the extent of planning
undertaken for projects 1 and 13 was relatively much
greater than for the other fourteen projects. Design effort
varies significantly from one project to another, with no
discernible consistency or pattern over the projects.
Normalized test effort exhibits several highs and lows
(projects 6, 11 and 16, and projects 1, 7, 8 and 15,
respectively) although the remaining nine projects exhibit
slightly greater consistency, all falling between 0.40 and
0.59 on our normalized relative scale of 0 to 1. A more
consistent pattern of relative effort appears to occur for
the implementation phase, with ten of the normalized
values falling between 0.25 and 0.36 and one clear
outlier project (project 15). Overall, however, it appears
that on the basis of the data set analyzed here, the
distribution of effort over the life of a project varies
substantially from one development to another, certainly
until the bulk of effort has been expended. As a result
we are not able to estimate the effort required for each
phase using standard proportions.

This leads us to consider whether useful significant
relationships might exist among the proportions of effort
required for project phases. For instance, a high
proportion of effort in implementation might imply the
need for a high proportion of testing effort; or,
conversely, a larger proportion of effort expended in
planning or requirements analysis may mean that a lesser
proportion of effort is needed in later phases. We
examined this issue by first transforming all sixteen
projects to the same scale by multiplying all data values

so that total effort on the sixteen projects was the same, an
approach that is appropriate given that here we were
considering proportions rather than absolute values. We
then examined the correlation values among the various
proportions of effort, reported in Table 2. Significance at the
0.05 level is indicated by a single asterisk, a double asterisk
(**) indicating significance to the 0.01 level. In this case we
employed two-tailed tests, as we were unsure of the direction
of any relationships that might be identified.

Table 2 indicates that there are four significant relationships
among the data for proportional effort per phase. The single
positive relationship is that between planning and design
effort, implying that as the proportion of planning effort
changes so the proportion of design effort tends to change in
the same direction. In contrast, increased planning effort
implies reduced effort expended in implementation (as a
proportion of total effort), as does increased design effort.
These relationships can be seen graphically in Figure 3.
(The significant relationship between requirements
specification and testing should be treated with caution, as
only eight of the sixteen projects had non-zero values for
requirements specification effort.)

These initial results suggest that there appears to be some
potential benefit in investigating the relationships among
effort expended over the various phases of a software
project, although the precise nature of the relationships and
their predictive capabilities is not known at this stage. In the
absence of any standard proportions for effort in this data set
we turn our attention to considering whether useful models
might alternatively be produced using standard linear
regression methods.

Table 2. Kendall’s tau correlation values for proportional effort per phase

 PP RS DES IMP TEST RIM
RS .17**
DES .50** .31**
IMP -.42** -.27** -.48**
TEST -.15** -.40** -.32** -.10**
RIM -.17** .09** -.14** -.12** .06**
MA -.05** -.08** .03** -.28** .36** .12**

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15

Project

Pr
op

or
tio

n

Proportion PP
Proportion RS
Proportion DES
Proportion IMP
Proportion TEST
Proportion RIM
Proportion MA

Figure 3. Proportion of total development effort per phase

5. MODEL FITTING

The starting point for our regression-based modeling is
bivariate correlation analysis. As stated in the previous
section, our focus here is on the design, implementation
and testing phases, as it is during these phases that effort
requirements are greatest, and therefore where the need
for accuracy is of most importance. We also include in
our analysis the data on planning effort as this may be
worth considering in terms of its relationship with design
effort, and the records for planning are far more complete
than those for requirements analysis. Descriptive
statistics for these four variables are shown in Table 3.

There is some evidence of asymmetry in the distributions
of planning and test effort data, indicated by both the

skewness values and the existence of outliers. As a result we
performed two-tailed correlation analysis using Kendall’s tau
(reported in Table 4). Significance at the 0.05 level is
indicated by a single asterisk, a double asterisk (**)
indicating significance to the 0.01 level.

Table 3. Descriptive statistics – effort per phase

 PP DES IMP TEST
Mean 103.4 556.0 870.7 673.9
Standard Deviation 119.7 474.4 620.1 772.1
Median 64.0 398.0 844.0 328.0
Interquartile Range 104.4 806.0 970.4 1004.5
Skewness 1.8 0.8 0.5 1.7
Outliers 2 0 0 1

Table 4. Kendall’s tau correlation values for phase effort
data

 PP DES IMP
DES 0.62**
IMP 0.25** 0.48**
TEST 0.40** 0.58** 0.53**

On the basis of the correlation analysis it appeared that it
might be possible to fit a number of models relating
effort expended in earlier phases to that required in later
stages of a project. The most straightforward approach
would be to construct a model for each significant
relationship, simply mapping one effort variable to
another. However, this ignores the potential contribution
of other variables in combination with the effort data,
something that cannot be assessed using simple bivariate
correlation analysis. We had two other potential
predictor variables available in the data set – the intended
operational environment, and the primary programming
language to be used in development. Exploratory
analysis of the potential contribution of phase effort with
each of these two variables indicated that the likely
software environment category would be useful in terms
of fitting models of effort across phases. Further
investigation revealed that in fact the two were very
strongly related, in that in twelve of the sixteen projects
the combination of intended environment and language
was the same – software to be deployed in a non-runtime
Unix environment was almost always developed
primarily in C++, whereas runtime software was
normally developed in C. As a result, we decided to use
the four effort variables and the category indicator (a
dummy variable, with value 0 for non-runtime software
and value 1 for runtime) in the remainder of our analysis.

Four relationships were therefore evaluated: design effort
based on planning effort (DES), implementation effort
based on design effort (IMP), testing effort based on
design effort (TEST(D)), and testing effort based on
implementation effort (TEST(I)). Our approach to model
fitting for each relationship was as follows:

1. construct three benchmark models

a. set all observations in the subsequent phase to zero

b. use the average effort expended on projects to date
to generate the next in sequence

c. use the median effort expended on projects to date
to generate the next in sequence

2. use linear regression to construct four models

a. univariate (effort for the prior phase) plus constant

b. univariate (effort for the prior phase), no constant

c. multivariate (effort for the prior phase and software
category indicator) plus constant

d. multivariate (effort for the prior phase and software
category indicator), no constant

3. construct combined models

a. for each observation take the arithmetic mean of the
original estimate (OE) and the value estimated using
the benchmark and linear regression models

b. for each observation take the arithmetic mean of the
current estimate (CE) and the value estimated using
the benchmark and linear regression models

4. determine the sum of error and sum of absolute error of
each model

5. compare the performance of each model to that achieved
using expert estimates OE and CE.

Tables 5 to 8 summarize the comparative performance of the
expert, regression and combined expert/regression models
where in every case the best regression or expert/regression
model (that is, the model with the lowest error) is chosen.
Values less than zero in the ‘OE/CE Sum of Error’ and
‘Model Sum of Error’ columns indicate that effort was
overestimated in comparison to the actual values, whereas
positive numbers indicate that effort was underestimated by
the technique. A positive value in the ‘Difference’ column
indicates that the chosen regression or combined
expert/regression model is more accurate than the
corresponding OE/CE ‘model’, whereas a negative value
indicates that in general the expert estimates are closer to the
actual effort records. The ‘Change in Error’ column shows
the degree to which accuracy has improved (positive value)
or deteriorated (negative value) relative to the expert model
error, as a percentage. We also consider the change in error
in relation to the amount of effort actually expended – if
accuracy has improved through the use of regression
modeling, is that improvement sufficiently large to warrant
using such an approach? This is indicated as a percentage
value in the ‘Gain/Loss’ column. The final item in each
table is the number of individual observations that incur a
lower error when determined using the model rather than the
expert approach. The number of observations per phase is
sixteen, meaning that the total number of ‘Improved
Estimates’ possible across the three phases is 48. Note that
in each table two sets of results are provided, reflecting the
impact of a choice between using design or implementation
effort in modeling test effort (i.e. TEST(D) or TEST(I)).

If an organization manages projects under a portfolio
approach then their goal may be to simply minimize the sum

of error – in other words, as long as over-expenditure of
labor on one project task is compensated for by under-
utilization on another, this is considered to be successful
management of resources. Table 5 shows that at the
beginning of the sixteen projects the managers
underestimated implementation effort by 1982 person-
hours but overestimated testing effort by about the same
amount (2234 person-hours). This could be interpreted
as indicating an effort allocation problem – that is, the
error was in the split of effort over the two phases (either
estimated or recorded), rather than in the total amount of
effort predicted. This is not supported, however, by the
comments recorded by the managers, or in fact by the
revised estimates (CE) produced later in the projects (see
Table 7). Furthermore, whilst accuracy over an entire
project is desirable, it is also important to have accurate
phase estimates to enable effective management during
projects. Given that the organization had recently
revised their project management systems to enable more
accurate records to be collected, it seems reasonable to
consider the underlying data to be both correct and
realistic. The original effort (OE) and revised effort (CE)
figures therefore provide a useful benchmark against
which to compare the alternative models.

The models produced using prior-phase effort and the
software category indicator resulted in error totals close
to zero in all cases (see ‘Model Sum of Error’ in Table
5), an expected outcome given that regression models are
built with the intention of minimizing error. Perhaps
more useful is the fact that each of the models produced
more accurate phase effort values than those provided by
the project managers for a number of individual projects.
It is interesting to note that the regression model that
mapped design effort to testing effort (TEST (D)) was
more accurate in nine of the sixteen cases whereas the
model employing implementation effort as a predictor
(TEST (I)) led to more accurate values in only four cases.
Given that design records are available earlier in the
process the first set of models would appear to be
preferred in this case. Also worth noting is the
comparatively low gain achieved in modeling design
effort using planning effort – only a very slight reduction
in error is achieved, and in fact the best regression model
is outperformed by the project managers’ OE values for
ten of the sixteen projects.

Organizations that are concerned about the scale of error
in estimation more than the direction of that error
(through over- or underestimation) are likely to prefer to
use the sum of the absolute error as a measure of overall
accuracy. Assessment of the models against this
criterion is shown in Table 6. Using this criterion the
original estimates were more than 17000 person-hours
adrift of the effort that was actually expended over the
three core phases of the sixteen projects. The alternative

models produced by regression analysis improved this by a
factor of more than one third (6040 person-hours), also
resulting in more accurate values for 29 of the 48
observations. In this case the model that utilized
implementation effort to determine testing effort proved to
be more accurate than its design-based counterpart. It is
clear from Table 6 that in general the gains in accuracy
achieved through regression modeling are substantial, with
that related to implementation effort being particularly
strong at 30%. Design effort modeling is once more the
exception, however, with a gain of just 1% in relation to total
design effort.

We now examine performance in relation to the managers’
revised effort estimates (CE) produced to reflect the impact
of negotiated changes in software requirements. As these are
normally produced as new information is gathered, it seems
reasonable to expect that in general the current estimates
(CE) would be more accurate than their OE predecessors.
Taking the sixteen projects as a portfolio, however, we find
that this is not the case (see Table 7). The revised estimates
for design, implementation and testing effort resulted in a
larger overall error than that achieved with the original
estimates (2994 person-hours using CE vs -329 person-hours
using OE). Testing effort accuracy was in fact improved in
the revision process (by 469 person-hours), but this
improvement was more than offset by substantially greater
underestimation of design and implementation effort. As
expected, regression-based models proved to be effective in
minimizing overall error to close to zero, but in general this
did not result in more accurate values for individual effort
observations. In particular, just three of the sixteen design
effort values were estimated more accurately using the
alternative model even though overall error was reduced.

In terms of the absolute error criterion (Table 8), the
regression-based model for design effort performed worse
than its CE counterpart, further bringing into question the
advantage of regression modeling for this phase. This is in
stark contrast to the improvements made in relation to
implementation and testing, where the experts’ current
estimates were significantly outperformed by the
alternatives. The implementation model is particularly
strong in that the selected model leads to a lower error for
eleven of the sixteen project observations.

6. DISCUSSION

In the absence of standard effort proportions for
development phases the object of the above analysis was to
determine whether it was feasible to improve on project
managers’ estimates using prior-phase effort records.

Table 5. Minimizing sum of error against OE

 OE Model Difference Change in Gain/Loss Improved
 Sum of

Error
Sum of
Error

 Error Estimates

DES -77 1 76 99% 1% 6/16
IMP 1982 4 1978 100% 14% 10/16
TEST (D) -2234 0 2234 100% 21% 9/16
Total 4288 13% 25/48

DES -77 1 76 99% 1% 6/16
IMP 1982 4 1978 100% 14% 10/16
TEST (I) -2234 -4 2230 100% 21% 4/16
Total 4284 13% 20/48

Table 6. Minimizing sum of absolute error against OE

 OE Model Difference Change in Gain/Loss Improved
 Sum of

Absolute
Error

Sum of
Absolute
Error

 Error Estimates

DES 3243 3160 83 3% 1% 8/16
IMP 7888 3688 4200 53% 30% 11/16
TEST (D) 6351 4594 1757 28% 16% 10/16
Total 6040 18% 29/48

DES 3243 3160 83 3% 1% 8/16
IMP 7888 3688 4200 53% 30% 11/16
TEST (I) 6351 4245 2106 33% 20% 10/16
Total 6389 19% 29/48

Table 7. Minimizing sum of error against CE

 CE Model Difference Change in Gain/Loss Improved
 Sum of

Error
Sum of
Error

 Error Estimates

DES 986 1 985 100% 11% 3/16
IMP 3773 4 3769 100% 27% 9/16
TEST (D) -1765 0 1765 100% 16% 8/16
Total 6519 19% 20/48

DES 986 1 985 100% 11% 3/16
IMP 3773 4 3769 100% 27% 9/16
TEST (I) -1765 -4 1761 100% 16% 4/16
Total 6515 19% 16/48

Table 8. Minimizing sum of absolute error against CE

 CE Model Difference Change in Gain/Loss Improved
 Sum of

Absolute
Error

Sum of
Absolute
Error

 Error Estimates

DES 2320 2349 -29 -1% 0% 6/16
IMP 5651 3688 1963 35% 14% 11/16
TEST (D) 5770 4268 1502 26% 14% 9/16
Total 3436 10% 26/48

DES 2320 2349 -29 -1% 0% 6/16
IMP 5651 3688 1963 35% 14% 11/16
TEST (I) 5770 3847 1923 33% 18% 9/16
Total 3857 11% 26/48

The model fitting analysis illustrates that (at least for our
data set) there are potentially useful and consistent
mappings from prior-phase effort data to that
required in later phases. Retrospective fitting of
regression and combined expert/regression models to the
sixteen projects indicates that significantly better
projections of effort could have been possible, enabling
the organization to plan activities and allocate resources
in a more cost-efficient way.

Of interest is the extent to which the alternative (non-
expert) models contributed to reduction in error, either
on their own or in combination with the expert estimates.
In attempting to minimize the sum of error, multivariate
regression models with a constant term proved to be the
best (of the expert, benchmark, regression and combined
expert/regression models) in all cases. When assessed
using the sum of absolute error, the combined
expert/regression approach proved to be the most
accurate in the majority of cases. In only one instance –
that of mapping planning effort to design effort – did the
expert model using revised values (CE) outperform the
alternative models. Overall then, these outcomes
confirm that the use of more than one modeling method
can provide some benefit in reducing overall error.

Looking particularly at the data set analyzed here, it
appears that modeling both implementation and testing
effort on the basis of actual design effort could be
especially beneficial, leading potentially to a reduction in
error by thousands of person-hours over a project
portfolio. In contrast, the relatively poor performance of
the alternative models in determining design effort from
planning effort suggests that there is little to be gained
over expert estimation for this phase of development.

But what of the general case? Artifact-based models –
those based on product attributes such as the number of
lines of code, the number of features, the number of
function points and the like – have been used extensively
in effort and schedule estimation. Questions remain,
however, as to whether these approaches are sufficient to
capture the factors that influence effort. Furthermore, the
costs of data collection, analysis, training and so on
associated with some of these methods can be non-trivial.
While there is no doubt that there remains a real need for
early effort predictions, which the approach advocated
here cannot address, it may be that process-based models
using actual effort and duration data could provide more
accurate estimates as a project progresses.

This analysis is not without its limitations. As this was a
model-fitting exercise (to determine the feasibility of the
approach) we used the complete data set to both

determine the most useful models and to assess their
potential worth in terms of improved estimates. As a
result the analysis is optimistic and likely overstates the
effectiveness of the approach. We were also constrained
in our analysis by only having access to the data –
unfortunately because of demands on staff time we were
not able to obtain detailed information on the projects and
their progress. In particular, we were not able to ascertain
the reasons for errors in estimation or unexpected
progress outcomes. Such information would have
enabled us to consider specific downstream effects – was
the remainder of the schedule left as is? was functionality
constrained in order to meet a fixed schedule? were effort
and duration allocated for later phases adjusted? and if so,
up or down, and by what amounts? That said, the
magnitude of the improvements achieved using these very
simple analysis methods justifies further investigation,
even in the absence of project knowledge.

7. CONCLUSIONS

In this paper we have described an empirical analysis
based on the phase effort data derived from sixteen
projects. There are three sets of findings:

• There is little support for the idea of standard
proportions of effort distributed between phases. Whilst
this is only one study, it is potentially important, as it does
not support the ideas of some software engineering
researchers and commentators.

• Our results verify that expert estimates can be
improved upon through the use of models generated on
the basis of prior-phase effort data. Importantly, these are
models built using simple techniques and ideas that are
accessible to busy professionals.

• We provide further evidence to support the assertion
that the use of more than one prediction technique can
lead to more accurate estimates than if we rely on a single
method.

The next stage of this work is to consider the impact of
the sequence in which projects are completed. In order to
consider the usefulness of prior-phase effort models in a
predictive setting we could use information on project
completion to replicate the situation in which the data set
grows over time as projects end. This would allow us to
build predictive models that use only the records available
at a given point in time to produce an estimate for the next
project in the sequence.

So to conclude, in terms of the wider significance of this
research, the main observation to make is that yet again

we have support for the value of local data, even when
limited to only a few data points and relatively
straightforward analysis methods.

ACKNOWLEDGEMENTS

We are grateful to the company that provided the data for
this research. This work was undertaken while Dr
MacDonell was a Visiting Researcher in the Empirical
Software Engineering Research Group, School of
Design, Engineering and Computing at Bournemouth
University, with support from Auckland University of
Technology and Bournemouth University. We are also
grateful to the referees for their useful and constructive
comments on the paper.

REFERENCES

[1] T.K. Abdel-Hamid, "On the utility of historical
project statistics for cost and schedule estimation:
results from a simulation-based case study", Jnl of
Sys. & Soft. 13, (1990): 71-82.

[2] T.K. Abdel-Hamid, "Adapting, correcting, and
perfecting software estimates: a maintenance
metaphor", Computer (Mar 1993): 20-29.

[3] T.R. Adler, J.G. Leonard and R.K. Nordgren,
"Improving risk management: moving from risk
elimination to risk avoidance", Info. & Soft. Tech.
41, (1999): 29-34.

[4] N. Ahituv, M. Zviran and C. Glezer, "Top
management toolbox for managing corporate IT",
Comm. ACM 42(4), (1999): 93-99.

[5] R. Baines, "Across disciplines: risk, design, method,
process, and tools", IEEE Software (Jul/Aug 1998):
61-64.

[6] R. Betteridge, "Successful experience of using
function points to estimate project costs early in the
life-cycle", Info. & Soft. Tech. 34(10), (1992): 655-
658.

[7] J.D. Blackburn, G.D. Scudder and L.N. Van
Wassenhove, "Improving speed and productivity of
software development: a global survey of software
developers", IEEE Trans. Soft. Eng. 22(12), (1996):
875-885.

[8] N. Brown, "Industrial-strength management
strategies", IEEE Software (Jul 1996): 94-103.

[9] M.J. Carr, "Risk management may not be for
everyone", IEEE Software (May/Jun 1997): 21,24.

[10] J. Charles, "CPM offers certificate in software
estimating", IEEE Software (Nov 1996): 104-105.

[11] B. Collier, T. DeMarco and P. Fearey, "A defined
process for project postmortem review", IEEE
Software (Jul 1996): 65-72.

[12] E.H. Conrow and P.S. Shishido, "Implementing risk
management on software intensive projects", IEEE
Software (May/Jun 1997): 83-89.

[13] T. DeMarco Controlling Software Projects. New
York NY, USA, Yourdon Inc. (1982)

[14] R.L. Glass, "Software estimation is not a rational
process", Jnl of Sys. & Soft. 23, (1993): 1-2.

[15] R.L. Glass, "Short-term and long-term remedies for
runaway projects", Comm. ACM 41(7), (1998): 13-
15.

[16] F.J. Heemstra, "Software cost estimation", Info. &
Soft. Tech. 34(10), (1992): 627-639.

[17] G. Horgan, S. Khaddaj and P. Forte, "Construction of
an FPA-type metric for early lifecycle estimation",
Info. & Soft. Tech. 40, (1998): 409-415.

[18] M. Höst and C. Wohlin, "A subjective effort
estimation experiment", Info. & Soft. Tech. 39,
(1997): 755-762.

[19] R. Jeffery, M. Ruhe, and I. Wieczorek, “Using public
domain metrics to estimate software development
effort”, In Proc. 7th Intl Software Metrics
Symposium. London, (2001): 16-27.

[20] M. Jørgensen and D.I.K. Sjøberg, “Impact of effort
estimates on software project work”, Info. & Soft.
Tech. 43, (2001): 939-948.

[21] B. Kitchenham, "The certainty of uncertainty", In
Proc. FESMA 98. The Netherlands (1998): 17-25.

[22] A. Kulkarni, J.B. Greenspan, D.A. Kriegman, J.J.
Logan and T.D. Roth, "A generic technique for
developing a software sizing and effort estimation
model", In Proc. COMPSAC '88. (1988): 155-161.

[23] A.L. Lederer, R. Mirani, B.S. Neo, C. Pollard, J.
Prasad and K. Ramamurthy, "Information system cost
estimating: a management perspective", MIS Quart.
(June 1990): 159-176.

[24] H. Lee, "A structured methodology for software
development effort prediction using the analytic

hierarchy process", Jnl of Sys. & Soft. 21, (1993):
179-186.

[25] W.E. Lehder, Jr., D.P. Smith and W.D. Yu,
"Software estimation technology", AT&T Tech. Jnl,
(1988): 10-18.

[26] T. Lister, "Risk management is project management
for adults", IEEE Software (May/Jun 1997): 20,22.

[27] T. Lister, "Hallucinations at 37,000 feet", IEEE
Software (May/Jun 1998): 105-107.

[28] S.G. MacDonell and M.J. Shepperd, “Combining
techniques to optimize effort predictions in software
project management”, Jnl of Sys. & Soft. 66(2): 91-
98.

[29] S. McConnell, "Avoiding classic mistakes", IEEE
Software (Sept 1996): 112, 111.

[30] M.C. Ohlsson and C. Wohlin, "An empirical study
of effort estimation during project execution", In
Proc. 6th Intl Software Metrics Symposium. Boca
Raton FL, (1999): 91-98.

[31] A. Poulymenakou and A. Holmes, "A contingency
framework for the investigation of information
systems failure", Eur. Jnl Info. Sys. 5, (1996): 34-46.

[32] L.H. Putnam and W. Myers Industrial Strength
Software: Effective Management Using
Measurement. Los Alamitos CA, IEEE Computer
Society Press (1997)

[33] A. Rainer and M. Shepperd, "Re-planning for a
successful project schedule", In Proc. 6th Intl
Software Metrics Symposium. Boca Raton FL,
(1999): 72-81.

[34] A.G. Rodrigues and T.M. Williams, "System
dynamics in software project management: towards
the development of a formal integrated framework",
Eur. Jnl Info. Sys. 6, (1997): 51-66.

[35] I. Stamelos and L. Angelis, “Managing uncertainty
in project portfolio cost estimation”, Info. & Soft.
Tech. 43, (2001): 759-768.

	7. Conclusions
	Acknowledgements
	References

