
 

 

Full citation: MacDonell, S.G., & Gray, A.R. (1996) Software process engineering for 
measurement-driven software quality programs:  realism and idealism, in Proceedings of the Third 
Australian Conference on Software Metrics (ACOSM'96). Melbourne, Australia, ASMA, pp.66-80. 

Software Process Engineering for Measurement-Driven Software Quality 
Programs - Realism and Idealism 

Stephen G. MacDonell and Andrew R. Gray 
Department of Information Science 

University of Otago 
PO Box 56, Dunedin, New Zealand  

email: stevemac@commerce.otago.ac.nz 
 

Abstract 

This paper brings together a set of commonsense 
recommendations relating to the delivery of software 
quality, with some emphasis on the adoption of realistic 
perspectives for software process/product stakeholders in 
the area of process improvement.  The use of software 
measurement is regarded as an essential component for a 
quality development program, in terms of prediction, 
control, and adaptation as well as the communication 
necessary for stakeholders’ realistic perspectives.  Some 
recipes for failure are briefly considered so as to enable 
some degree of contrast between what is currently 
perceived to be good and bad practices.  This is followed 
by an evaluation of the quality-at-all-costs model, 
including a brief pragmatic investigation of quality in 
other, more mature, disciplines.  Several programs that 
claim to assist in the pursuit of quality are examined, 
with some suggestions made as to how they may best be 
used in practice. 
 
1. INTRODUCTION 

Examining any software engineering text is almost certain 
to result in the reader finding a selection of ‘war stories’ 
in the first few pages.  These stories point out the huge 
costs of system development and software failure. It is 
granted here that many of these stories are exaggerations 
or omit certain crucial facts, such as the often cited study 
by The US General Accounting Office (1979) which 
found that about three quarters of expenditure on a set of 
projects never produced or contributed towards any 
working system.  Most citing papers have since failed to 
mention that these projects were selected on the basis of 
already being in difficulty.  The conclusion that most 
projects heading towards failure do in fact fail is less 
significant than some of these authors would have their 
readers believe. 

However, given that there is at least some basis of truth in 
these project management horror stories it may be 
expected that organizations would be greatly concerned 
about the quality of their software development process 
and of the delivered product.  While this concern does 

seem to exist for many companies, few have actually gone 
as far as taking a proactive stance towards improving their 
software quality.  This is despite the trend towards 
maturity accreditation which requires quality 
development processes.  An important question, which 
will be approached later, is why such companies appear to 
pay lip service to something so crucial to their survival.  

For those companies that do wish to measure and improve 
quality, a wide range of guides, methodologies, and 
standards confront them, making the creation of a 
suitable, and customised, quality-improvement program 
difficult.  At the very least setting up such a program is an 
expensive exercise in examining the many alternatives, 
rejecting and altering these to suit the organisation, and 
finally in the actual implementation of the program. 

Even once such a program has been put in place, it 
requires support from a measurement program.  This 
measurement focus can be a subset of the quality 
framework or standalone as providing services to the 
remainder of the organisation.  Either way, the integration 
of measurement and quality improvement is a critical, and 
delicate, task. 

This paper brings together a set of commonsense 
recommendations relating to the delivery of ‘software 
quality’, with an emphasis on measurement-driven quality 
improvement.  The need for realism in such a metrics 
program is also emphasised as necessary to avoid an 
overly theoretical, potentially counter-productive, and 
certainly costly exercise.  The goal of this paper is to 
attempt the formulation of a set of fundamental 
characteristics for successful quality measurement 
programs.  This set of characteristics is based on 
experience reports relating to successes and failures in 
quality improvement, as well as on recent research into 
the various determinants of success in software metrics 
programs.  This could form a baseline, a minimum set of 
characteristics that must exist if a metrics-driven quality 
improvement program is to succeed. 
 
2. DRIVERS OF QUALITY  
There are many aspects of the software development 



 

 

process that affect quality in some way.  These include 
the tools, methods, and development staff used.  While 
there have been found to exist positive relationships 
between the sophistication of tool and methodology 
support and the quality of the eventual system, simply 
‘throwing’ these costly resources at the development 
process is not sufficient.  This ‘shotgun’ approach may 
result in isolated gains in productivity, or one-off project 
successes, but without a disciplined, well-measured, 
software process these gains will most likely be sporadic 
at best.  It is suggested here that a ‘quality software 
process’ is one that is defined, leveled, accepted, used, 
monitored, controlled, reused and improved.  Several of 
these steps require some form of measurement as will be 
discussed later. 
 

Quality Software 
Development 

Tools 

Experience 

Training 

Standards 

Incentives 

Methodologies 

 

Figure 1. A Sample of Quality-Drivers 

 
3. SOFTWARE PROCESSES FOR 

QUALITY 

A defined software process contains a series of steps 
towards goals, and therefore requires measurement to 
determine the current stage of the process, the 
performance for each stage, and also to identify when the 
process is ready to advance to a subsequent stage.  When 
the process is complete measurements are crucial for 
analysing the strengths and weaknesses of development.  
This is obviously an important aspect of quality-
improvement.  The leveling of the process allows for a 
hierarchy of measurements, so that the process can be 
assessed at any desired magnification. 

One of the first stages of designing such a process is to 
determine what is meant by the term quality.  This is 
difficult since as observed by Juran (1979), quality has 
many meanings and its ambiguity can lead to many 
problems and disagreements.  The Software Engineering 
Technical Committee of the IEEE Computer Society 
(1983) is of little further help when it defines software 
quality as “The degree to which software possesses a 
desired combination of attributes.”  Other definitions 
from the same source add at least some tangible meaning, 
“Totality of features and characteristics of a software 
product that bear on its ability to satisfy given needs; for 
example, conform to specifications” and “The degree to 
which a customer or user perceives that software meets 
his or her composite expectations.”  Still, the ambiguity 
inherent in these definitions is troublesome.  While the 
idea of a single definition of quality is unrealistic, there 

needs to be some idea of what goes towards making up 
quality for a given organisation.  It is these components 
and sub-components of quality that should form the goals 
of any software process. 

Software
Development Process

(amorphous blob
without

measurements)

Decision
Making

Measurement
Probes

Feedback In
Terms Of
Measures

Action

Figure 2. The Role of Measurement in Software Development 

 
 

Functionality 

Correctness 

Robustness 

Performance 

Timeliness 

Documentation 

Satisfaction 
 

 

Figure 3. Some Slices of the Quality Pie 

 
4. SOFTWARE METRICS AS ONE 

ASPECT OF QUALITY SOFTWARE 
PROCESSES 

It has been observed by Jones (1995) that “software 
progress monitoring is so poor that several well-known 
software disasters were not anticipated until the very day 
of expected deployment!".  Measures are therefore vital 
to assess the development on a continuous basis 
throughout its life-cycle.  Similarly, process improvement 
requires longitudinal measurement to determine that some 
improvement has in fact occurred.  In many cases there 
exists no objective basis on which to judge product 
quality.  Thus it then becomes impossible to measure or 
predict.  Monitoring can be carried out incorporating both 
objective and subjective measures and a single measure 
should never be used to answer a question concerning 
performance (Debou et al 1994).  Moreover, measures 
need to be understood and collected across the 
organisation if a comprehensive understanding of status 
and progress is to be attained (Krasner 1994). 

Miscommunication, or "loose language", makes a 
significant contribution to development problems.  A 
good measurement program provides unambiguous 
results that allow for and encourage communication 
between stakeholders (ami 1995).  Blame attributing 
should not be the result of a measurement program.  Both 



 

 

understanding and a willingness to adhere to decisions 
resulting from the measurement program are required 
from all process stakeholders.  The program must be 
supported, both monetarily and personally and its 
importance must be understood by all participants.  While 
many of these statements may appear to be nothing more 
than ‘common-knowledge’ or truisms the difficulty comes 
with the actual implementation. 

Given a monitoring program for a development process, it 
is then possible to assert control. Juran (1979) explains 
that software quality control is the process of measuring 
actual quality, comparing this to some standard, and then 
acting on the discrepancy.  As DeMarco stated, the ability 
to measure is a requisite for control (DeMarco 1982).  
This control can consist of concentrating development 
effort on weaknesses in the quality of the product and 
process.   

Organizations must collect measures of both process and 
product quality.  Data collection should be automated 
wherever possible, and reporting should be focused on 
exceptions (Arthur et al. 1993) rather than continuation of 
norms.  Assessment should be a continuous process 
(Bootstrap Project Team 1993) throughout development, 
not at a small number of pre-specified points.  The early 
identification of anomalies is crucial for minimsing the 
costs of corrective action. 

With the focus on cost minimisation, positive aspects of 
software quality metric processes should be reusable for 
other projects.  This is part of the “maximising lessons 
learned” principle.  The iterative improvement of the 
measurement program should be a stated goal. 

Finally, the measurements extracted during the process 
can be used to improve future development as part of a 
lessons learned philosophy.  Three major principles in 
software quality improvement are, firstly, to understand 
your baseline - an organisation needs to be aware of 
current position in terms of products, processes and goals.  
Secondly, not all software is the same - optimal software 
process for an organisation, or even a project, may not be 
optimal for another organisation/project.  Thirdly, let 
experience drive change - all changes are experiments and 
should be treated as such (McGarry 1995). 
 
5. RECIPES FOR FAILURE, AND EVEN 

SOME FOR SUCCESS 
5.1. Failure of Quality Programs 

Based on practical experience it is possible to identify a 
number of common mistakes and misconceptions that can 
lead to an increased risk of failure for a software quality 
program.  Some of these have already been mentioned in 
sections above. 

Some fairly obvious ways to increase the chance of 
failure are to fail to communicate requirements to 
stakeholders.  Ignore users’ requests for what they need, 
don’t let developers know what is expected of them, and 
assure management that this exact amount of funds are 
necessary and the project will be delivered on this date. 

Johnson (1995) reports the findings of a survey of 365 IT 
executive managers in the USA concerning the 
development of more than 8000 applications.  When 
asked why projects failed, the following breakdown of 
responses was provided: 

 Incomplete requirements  13% 

 Lack of user involvement  12% 

 Lack of resources    11% 

 Unrealistic expectations   10% 

 Lack of management support 9% 

 Changing requirements   9% 

 Lack of planning     8% 

Those factors emphasised (in italics) are directly 
influenced by the adequacy and performance of an 
organisation’s measurement program and serve to 
illustrate the consequences of an absence of effective 
project management.  Furthermore, lack of resources and 
management support are as significant in determining the 
success of a measurement and process improvement 
program as they are for development projects themselves. 

Keil (1995) suggests that a failure to carry out early and 
frequent risk assessment is a common error that leads to 
project escalation.  A further common error in terms of 
process measurement, even under a goal-oriented 
framework, is to measure everything from the outset.  
This can result in an overwhelming volume of 
information without the infrastructure required to analyse 
and use it effectively (SPC 1994; Debou et al. 1994). 
 
5.2. Quality Program Success 

In contrast, successful projects exhibit the following 
characteristics (according to Johnson’s survey (1995)): 

 User involvement   16% 

 Management support   14% 

 Clear requirements   13% 

 Proper planning    10% 

 Realistic expectations  8% 

 Smaller project milestones 8% 

Again the emphasised factors are indicative of the 
influence of effective project management, which is 
inherently based on measurement, for successful software 
development.  Johnson (1995) goes on to suggest a 
‘Success Points’ grading scheme which enables 
organisations to pre-determine whether they are likely to 
successfully develop quality software systems. 

The Metricate framework (SPC 1994) provides the 
following definition of a metrics program:  “A metrics 
program is the formalization of procedures to collect and 
interpret software metrics within an organization.  A 
successful metrics program will have well-defined goals, 
and provide feedback on how the software development 
process can be improved.” 



 

 

5.3. Recommendations 

In order of frequency of occurrence in the literature (see 
the list of references at the end of the paper), the 
following factors are recommended as those that are more 
likely to lead to the development of quality software 
through the application of measurement-driven software 
assessment and improvement programs: 

• Executive management support - contemporary 
opinion clearly rates this factor as the most 
important in implementing and using a 
measurement program as part of a quality 
framework.  Moreover, middle management 
support is also essential if the programs are to 
succeed at the operational level. 

• Adequate resources/funding for assessment and 
improvement - too often measurement and 
improvement are expected to happen in addition 
to the ‘real work’ of development, but experience 
clearly shows that this simply does not happen.  
Separate and adequate funding is essential if these 
programs are to be of real effect. 

• An appropriate corporate culture - the 
measurement function, and the results of 
measurement activities, must be seen to have 
value by all stakeholders.  This may involve the 
breaking down of barriers around information 
sources, barriers based on political rather than 
organisational motivation.  Actions resulting from 
measurement outcomes also need to be monitored 
for impact. 

• Realistic expectations of ‘reward’ - too often 
organisations expect immediate and significant 
payback from the measurement function, but 
these expectations are seldom achieved.  More 
appropriate levels of anticipated benefits need to 
be set out and communicated to all stakeholders. 

• The appointment of a (preferably voluntary) 
measurement sponsor - an individual in middle 
management to act as measurement sponsor can 
be influential regarding the success of the 
program, particularly in terms of maintaining 
momentum after an initial concentration of 
activity at  the beginning of program use. 

• Clearly defined and communicated measurement 
goals - ad hoc measurement is little better than no 
measurement at all in terms of long-term process 
quality improvement.  Much measurement 
literature therefore emphasises the need to specify 
in clearly defined terms the goals and objectives 
of the measurement program. 

• Verification methods - measurement will only 
succeed if the measures as defined are collected 
consistently and effectively according to the 
specified definitions. 

• Adequate analysis methods - data collection is 
one step in the establishment of a successful 
measurement program, but the determination and 

use of appropriate analysis techniques is also 
necessary if progress is to be made. 

• Trade-off awareness - there is a clear trade-off 
between the accuracy and granularity of the data 
collected in a metrics program and the effort 
required for that collection.  Again, unrealistic 
expectations of the value of a cheap metrics 
program can only result in disillusionment with 
the measurement function. 

• Feedback mechanisms - process and product 
measurement can be viewed as unnecessary 
overhead by developers and operations managers 
if they fail to receive adequate feedback on their 
data collection efforts.  Facilities for 
communication in both directions between the 
measurement group or sponsor and developers 
and managers are needed to ensure the continuing 
worth and relevance of the measurement function. 

• Customer orientation - the almost obsessive 
nature of some quality frameworks in terms of 
measuring product and/or process quality can 
mean a lack of attention on the ultimate 
consumers of software, the users and customers.  
Measures of customer and user satisfaction are 
required if organisations are to maintain process 
improvement in a direction that can help to ensure 
the longer term viability of the enterprise. 

• A dynamic nature - the measurement function 
needs to be sufficiently flexible to adapt as the 
needs and goals of the organisation change over 
time. 

• Adequate training (including resources) - those 
responsible for measurement data collection and 
analysis need to be trained in the discipline as 
well as in the rationale for the procedures used.  
Again, funding for such activities is a further 
requirement of a successful program. 

• Tool support - software developers can be 
resistant to change, especially if they perceive the 
change involves extra workload for themselves.  
Implementation of a measurement program can be 
viewed as such a change.  Moreover, self-
reporting of metrics data may not provide 
sufficiently accurate or reliable data to enable an 
organisation to determine current status and levels 
of improvement.  Thus the availability of 
automated tool support for non-intrusive data 
collection is another pre-requisite for successful 
metrics programs.  Management-oriented 
monitoring and control tools are also needed to 
support the administrative tasks associated with 
measurement programs. 

• Non-chaotic development environment - it almost 
goes without saying that a managed software 
process is a necessary foundation on which a 
measurement program can be built.  Chaotic 
development by its very nature does not enable 



 

 

measurement as part of a long term improvement 
framework. 

 
6. QUALITY IN OTHER DISCIPLINES 

An interesting question to pose at this stage is “How does 
the management of quality in software development differ 
from other disciplines”.  A reason for raising this question 
here are that there is always more to be learned from 
other fields.  If software engineering is to live up to the 
second half of its name, then much must be borrowed 
from the engineering field.   

When a building is to be constructed a multitude of 
activities are performed before the foundation is laid to 
ensure the correctness of the structure.  Surveying is 
performed to determine the exact location for the 
structure.  Equations are used to verify the soundness of 
the structure, possibly simulations will be used for the 
same purpose.  The building will be tested against both 
natural hazards such as earthquakes, and also man-made 
such as fires.  Standards must be followed for plumbing 
and electrical work.  All of these drivers of quality are 
used as a matter of course.  No builder would claim to be 
more mature than another simply because he employed a 
certified electrician. 

Why is it then that measurement and quality-improvement 
programs for software development are often regarded as 
significant and a sign of process maturity in both practice 
and much research?  Surely, it should be the lack of such 
basic engineering requirements that attract attention. 
 
7. STANDARDS AND PROGRAMS FOR 

QUALITY 

An important aspect of a measurement-driven quality 
improvement program is the use of quality standards and 
programs, such as: 

• ISO9001 and its guide for software ISO9000-3 
(Huyink and Westover 1994); 

• Software Process Improvement and Capability 
Determination (SPICE) (Dorling 1993); 

• Bootstrap (Bootstrap Project Team 1993); 

• the Software Engineering Institute’s (SEI) 
Capability Maturity Model (CMM) (Paulk et al. 
1993a; 1993b). 

In some of these, measurement is binary (in other words 
no partial achievements are recognised).  This is 
obviously not adequate in rewarding an organisation in 
the early stages of quality improvement when many 
significant building blocks may be in place, but none are 
entirely completed.  The use of such programs is often 
politically motivated, rather than installed by a genuine 
desire to improve quality through the use of the program, 
the accreditation or implementation being used as a 
marketing tool.  For example, Dion (1995, p.2) remarks 
that “One of the reasons that companies were (and still 
are) driven by the desire to achieve a particular [maturity] 
level by a specific date is the knowledge that some 

government contracts are being awarded using SEI level 
as a selection criteria.”  Thus the motivation is really not 
one of quality per se but of competitiveness (Krasner 
1994).  Whilst there can be no argument that all 
organisations should wish to maintain and extend their 
competitiveness, quality may begin to take a less 
important role if the often significant costs of a quality 
program are seen as dispensable as contract bids become 
more and more cut-throat. 

An important determinant of whether a standard or 
program is suitable for a given organisation is the type of 
development.  There are several different types of 
software as described by McManus (1992), namely, 
operating systems, mission-critical, real-time, interactive, 
and business.  Each of these has its own quality 
requirements and any standard or program adopted should 
provide this level of quality.   

The implication of adherence to a standard is that 
measurement and software quality will follow: “If they 
are certified for ISO9001 or have a well defined process, 
organisations will normally have procedures in place that 
can be used in measurement data analysis.” (ami 1995).  
This is by no means certain, however, particularly as the 
existence of procedures does not guarantee appropriate 
use or subsequent analysis and improvement. 

Campbell (1995) also suggests that, since these quality 
assessment frameworks are centred around the 
interview/audit approach, realistic outcomes are far from 
certain for a number of reasons: 

• the approach fosters a lack of trust between the 
participants 

• organisations tend to hide problems from 
assessors 

• organisations may be subjected to several 
customer-sponsored audits in a relatively short 
period, using different instruments and producing 
different outcomes 

• the processes are subject to wide interpretation 

• the results are not optimised to business goals or 
organisational needs 

• the costs of assessment and improvement can be 
prohibitive. 

It is an indication of the inherent link between 
measurement programs and general quality improvement 
frameworks that an almost identical list could be drawn 
up as describing those factors that result in measurement 
program failure. 

The inconsistencies between the various quality programs 
can also be disconcerting for organisations wishing to 
improve their processes via measurement.  The two most 
widely used frameworks, the SEI’s CMM and the 
ISO9000 set of standards, are substantially different in 
terms of expectations of the measurement function.  This 
is to be expected, given the difference in focus of the two 
approaches - the CMM is an evaluation of the ‘maturity’ 
of an organisation’s software function, whereas the ISO 



 

 

standards are concerned with organisational quality 
management systems.  The fact remains, however, that 
software organisations need to be aware of both 
approaches, and some means of matching between the 
two is useful.  Paulk (1994, p.11) provides the following 
assertion regarding measurement in the ISO standards:  
“ISO 9001 is somewhat ambiguous about the role of 
measurement in the quality management system... ISO 
9001 requires that quality objectives be defined and 
documented, not that they be quantitative.”  Although this 
may be perceived as a somewhat biased view of the ISO 
framework - Paulk was one of the main proponents of the 
CMM - there is certainly some evidence that the ISO 
standards are more static and binary in their assessment. 

To illustrate the problems of inconsistency between 
quality frameworks, Paulk (1994) states that there are 
organisations with ISO certification (implying quality) but 
that are at just Level 1 (the ad hoc or chaotic level) of the 
CMM capability framework.  Furthermore, Paulk et al. 
(1995, p.11) remark that “Although the SEI is working 
with ISO’s SPICE project to build the best possible 
international standard, our participation does not imply a 
commitment to use the standards eventually approved.”  
This may be bewildering to software development 
organisations looking to adopt the ‘best’ quality 
framework.  On the other hand, the CMM approach has 
been criticised for its absence of attention to quality from 
a customer perspective - this is surely equally important 
for an organisation’s long term prospects as the adequacy 
and improvement of software processes (Denning 1992).  
Supporters of the CMM will suggest that a quality process 
will inevitably lead to satisfied customers, but the 
determinants of quality from each perspective are quite 
distinct.  It is this absence of a customer focus in the 
CMM that has been addressed, for instance, in the 
Trillium model for telecommunications software (Bell 
Canada 1994).  Denning (1992) provides further 
comment in this regard, suggesting that there is now too 
much emphasis on quality from the developer perspective, 
to the detriment of customer-centred quality.  The 
assertion is that, since it is the customer that evaluates 
product quality based on the work they do with software, 
measurement should be focused on assuring customer 
oriented satisfaction.  In a similar vein, Dion (1995) and 
Hon (1990) suggest that, particularly for organisations at 
the lower levels of software process maturity, the focus of 
improvement should be on customer- and/or shareholder-
oriented activities.  Dion acknowledges that these are 
difficult to measure, but this can be achieved through 
consistent and objective definition. 

The existence of quality frameworks has yet to have the 
expected impact.  The ISO standards have been long 
established, with assessment and certification becoming 
particularly popular in the last eight years.  The CMM 
framework has been evolving for a similar period.  
However, Dion (1995) reports that in 1994 the SEI 
suggested that 73% of organisations involved in software 
development in the USA (the market most influenced by 
the CMM) were still at Level 1 (the ad hoc level) 
maturity.  The reasons for the poor extent of infiltration of 
such frameworks, that may be equally applied to the use 

of measurement programs, are as follows: 

• Cost - there is still little empirical evidence of the 
costs incurred as a result of adopting a 
measurement-driven quality approach (Jones 
1996), although some information has been made 
available through the SEI (Goldenson and 
Herbsleb 1995).  They report that two thirds of 
138 respondents who had undergone process 
appraisals had found the costs of process 
improvement to be greater than they had 
expected.  Moreover, this does not consider the 
costs of assessment preparation or those 
associated with the appraisal itself.  In this area, 
Herbsleb et al. (1994) report a median cost of  
US$1375 per software engineer per year of 
process improvement. 

• Scale of assessment - the CMM is more than 500 
pages long, with potentially 316 clauses to 
consider; the Trillium model developed by Bell 
Canada includes more than 500 clauses for 
assessment at various levels; the Bootstrap 
framework is applied over a period of a week; the 
Basic Practices Guide of the SPICE framework 
includes potentially more than 900 issues to be 
considered; and quality management systems due 
for ISO certification must be assessed across the 
entire organisation.  These factors tend to 
illustrate the significant scale of each quality 
assessment framework, making their applicability 
for small projects and small organisations 
(common in Australasia) less certain.  The 
People-CMM (Curtis et al. 1995) and the 
Personal Software Process (Humphrey 1996), 
which have been developed to in part address this 
issue, are even less prominent in industry.  
Analysis of organisations undergoing Bootstrap 
assessment also suggests that there is a positive 
relationship between organisation size and 
capability level (Lebsanft 1996), providing 
seemingly little encouragement for small software 
organisations.  It seems equally plausible, 
however, that small organisations are equally 
likely to achieve quality as their larger 
counterparts - a different method of assessment 
may be required in these cases. 

• Return - the payback has been longer in coming 
than expected for those involved in CMM 
appraisal - approximately two to three years pass 
before benefits are obtained (Curtis et al 1992; 
Hayes and Zubrow 1995).  Given the scale of 
investment, this may be a significant deterrent for 
those considering program adoption.  Many felt 
that assistance on how to improve was needed 
after appraisal.  Similarly, many of those who had 
undergone assessment felt that the 
recommendations that were made as a result were 
too ambitious to achieve in a reasonable time 
period. 



 

 

• Inadequate coverage - discussion relating to some 
of the inadequacies of the ISO standards in terms 
of measurement (from a CMM perspective) 
appeared above.  Thirty-eight percent of CMM 
survey respondents, however, felt that the 
assessment missed important operational areas. 
 

8. REALISM IN THE DRIVE FOR 
QUALITY 

The goal of this paper is not to suggest that quality should 
not be a goal.  It should in fact be paramount amongst the 
targets of any software development organisation.  
However, the organisation needs to keep a larger 
perspective - realistic expectations form the basis for 
realistic plans and estimates, leading to real satisfaction 
from quality software development.  Schedules and 
budgets are indeed routinely exceeded, but often because 
they are based on unrealistic measurements and estimates.  
Moreover, for all the attention we can place on the 
software process, there is still extensive uncertainty in 
large scale software development that we simply cannot 
always control (Kraut and Streeter 1995; Mackey 1996).  
Human nature means that there is a focus on failure - 
success is expected and generally not so widely reported.  
But there have been many successes in software 
development, particularly when it is considered that 
software systems are so pervasive in spite of the fact that 
this is an extremely young industry.  Finally, software 
development is at least in part a social activity that cannot 
always be modelled and constrained as we would prefer - 
thus even the most comprehensive measurement-driven 
software quality framework cannot ensure success (King 
and Galliers 1994). 
 
9. CONCLUSIONS 

This paper has considered the many available means of 
trying to improve the quality of a software development 
process.  While many different tools and methods are 
available, along with a multitude of standards and quality-
improvement programs, one essential element is that of 
measurement.  It is simply unfeasible and unrealistic to 
expect a processes quality to improve without some form 
of assessment and feedback. 
 
BIBLIOGRAPHY 

ami (ami Consortium) (1995). ami - Application of 
Metrics in Industry, ami Consortium, London. 

Arthur, J.D., Nance, R.E., and Balci, O. (1993).  
Establishing Software Development Process Control: 
Technical Objectives, Operational Requirements, and the 
Foundational Framework.  Journal of Systems and 
Software 22: 117-128. 

Bell Canada (1994).  Trillium: Model for Telecom 
Product Development and Support Process Capability.  
Bell Canada, Quebec, 1994. 

Bootstrap Project Team (1993).  Bootstrap: Europe’s 
Assessment Method.  IEEE Software May: 93-95. 

Campbell, M. (1995).  Tool Support for Software Process 
Improvement and Capability Determination: Changing the 
Paradigm of Assessment. Software Process Newsletter 4: 
12-15. 

 Curtis, B., Kellner, M.I., and Over, J. (1992).  Process 
Modeling.  Communications of the ACM 35(9): 75-90. 

Curtis, B., Hefley, W.E., Miller, S., and Konrad, M. 
(1995).  The People-CMM. Software Process Newsletter 
4: 7-10. 

DeMarco, T. (1982).  Controlling Software Projects.  
Yourdon, New York. 

Debou, C., Liptak, J., and Schippers, H. (1994).  Decision 
Making for Software Process Improvement: A 
Quantitative Approach.  Journal of Systems and Software 
26: 43-52. 

Denning, P.J. (1992).  Editorial - What is Software 
Quality? Communications of the ACM 35(1): 13-15. 

Dion, R. (1995).  Starting the Climb Towards the CMM 
Level 2 Plateau. Software Process Newsletter 4: 1-2. 

Dorling, A. (1993).  SPICE: Software Process 
Improvement and Capability Determination.  Information 
and Software Technology 35(6/7): 404-406. 

Goldenson, D.R., and Herbsleb, J.D. (1995).  After the 
Appraisal: A Systematic Survey of Process Improvement, 
its Benefits, and Factors that Influence Success. Technical 
Report CMU/SEI-95-TR-009, Software Engineering 
Institute, Pittsburgh. 

Gottesdiener, E. (1996).  What Is Your Development 
Maturity?  Application Development Trends March: 60-
73. 

Hayes, W., and Zubrow, D. (1995).  Moving On Up: Data 
and Experience Doing CMM-Based Process 
Improvement.  Technical Report CMU/SEI-95-TR-008, 
Software Engineering Institute, Pittsburgh. 

Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., and 
Zubrow, D. (1994). Benefits of CMM-Based Software 
Process Improvement: Initial Results.  Technical Report 
CMU/SEI-94-TR-14, Software Engineering Institute, 
Pittsburgh. 

Hollom, J.H., and Pulford, K.J.  Experience of Software 
Measurement Programmes and Application of the ami 
Method Within GEC.  GEC Journal of Research 12(1): 
17-25. 

Hon, S.E. III, (1990).  Assuring Software Quality through 
Measurements: A Buyer’s Perspective.  Journal of 
Systems and Software 13: 117-130. 

Humphrey, W.S. (1996).  Using a Defined and Measured 
Personal Software Process.  IEEE Software May: 77-88. 

Huyink, D., and Westover, C. (1994).  ISO 9000. Irwin, 
New York. 

Jeffery, R., and Berry, M. (1993).  A Framework for 
Evaluation and Prediction of Metrics Program Success.  
In Proceedings of the First International Software Metrics 
Symposium, Baltimore MA, IEEE Computer Society 



 

 

Press, pp. 28-39. 

Johnson, J. (1995).  Chaos: The Dollar Drain of IT 
Project Failures.  Application Development Trends 
January: 41-47. 

Jones, C. (1995).  Patterns of Large Software Systems: 
Failure and Success.  Computer March: 86-87. 

Jones, C. (1996).  The Pragmatics of Software Process 
Improvements. Software Process Newsletter 5: 1-4. 

Juran, J.M. (1979). “Basic Concepts” in Quality Control 
Handbook, ed. Juran, J.M., Gryna, F.M., and Bingham, 
F.M., 3rd Edition, New York: McGraw-Hill, pp. 2-5. 

Keil, M. (1995).  Pulling the Plug: Software Project 
Management and the Problem of Project Escalation.  MIS 
Quarterly December: 421-447. 

King, S., and Galliers, R. (1994).  Modelling the CASE 
Process:  Empirical Issues and Future Directions.  
Information and Software Technology 36(10): 587-596. 

Koch, G.R. (1993).  Process Assessment: the Bootstrap 
Approach.  Information and Software Technology 
35(6/7): 387-403. 

Krasner, H. (1994).  The Payoff for Software Process 
Improvement (SPI): What it is and How to get it. 
Software Process Newsletter 1: 3-8. 

Kraut, R.E., and Streeter, L.A. (1995).  Coordination in 
Software Development.  Communications of the ACM 
38(3): 69-81. 

Lebsanft, E. (1996). BOOTSTRAP: Experiences with 
Europe’s Software Process Assessment and Improvement 
Method. Krasner, H. (1994). Software Process Newsletter 
5: 6-10. 

Mackey, K. (1996).  Why Bad Things Happen to Good 
Projects.  IEEE Software May: 27-32. 

McGarry, F. E. (1995).  Product-Driven Process 
Improvement.  Software Process Newsletter 3:1-3. 

McManus, J.I. (1992), “How Does Software Quality 
Assurance Fit In?”, in Handbook of Software Quality 
Assurance, ed. Schulmeyer, G.G., and McManus, J.I., 
New York: Van Nostrand Reinhold, pp. 14-24. 

Paulk, M.C., Curtis, B., Chrissis, M., and Weber, C.V. 
(1993a), Capability Maturity Model for Software (Ver 
1.1), Technical Report CMU/SEI-93-TR-24, Software 
Engineering Institute, Pittsburgh. 

Paulk, M.C., Weber, C.V., Garcia, S.M., Chrissis, M., 
and Bush, M. (1993b). Key Practices of the Capability 
Maturity Model (Ver 1.1), Technical Report CMU/SEI-
93-TR-25, Software Engineering Institute, Pittsburgh. 

Paulk, M.C. (1994).  A Comparison of ISO 9001 and the 
Capability Maturity Model for Software. Technical 
Report CMU/SEI-94-TR-12, Software Engineering 
Institute, Pittsburgh. 

Paulk, M.C., Konrad, M.D., and Garcia, S.M. (1995).  
CMM Versus SPICE Architectures.  Software Process 
Newsletter 3: 7-11. 

Rada, R. (1996).  ISO 9000 Reflects the Best in 
Standards.  Communications of the ACM 39(3): 17-20. 

Schwaber, K. (1996).  Defining Process vs. Problem-
Solving.  Application Development Trends March: 76-81. 

Software Engineering Technical Committee of the IEEE 
Computer Society (1983). IEEE Standard Glossary of 
Software Engineering Terminology, IEEE-STD-729-
1983, New York: IEEE, p.32. 

SPC (Software Productivity Centre) (1994). Metricate: 
Metrics Implementation Guide for Software Quality 
Professionals, Software Productivity Centre, Vancouver. 

US Government Accounting Office (1979).  Contracting 
for Computer Software Development-Serious Problems 
Require Management Attention to Avoid Wasting 
Additional Millions.  Report FGMSD-80-4.  November. 


	Abstract
	2. Drivers of Quality
	3. Software Processes for Quality
	4. Software Metrics as one Aspect of Quality Software Processes
	5. Recipes for Failure, and Even Some for Success
	6. Quality in other Disciplines
	7. Standards and Programs for Quality
	8. Realism in the Drive for Quality
	9. Conclusions
	Bibliography

