
Full citation: MacDonell, S.G., Buckingham, D., Gray, A.R., & Sallis, P.J. (2002) Software
forensics: extending authorship analysis techniques to computer programs, Journal of Law and
Information Science 13(1), pp.34-69.

Software Forensics: Extending Authorship Analysis Techniques
to Computer Programs

Stephen G. MacDonell1 Donna Buckingham2 Andrew R. Gray3 Philip J. Sallis1

1 Auckland University of Technology
Private Bag 92006, Auckland, New Zealand

stephen.macdonell@aut.ac.nz
philip.sallis@aut.ac.nz

2University of Otago
Faculty of Law

PO Box 56, Dunedin, New Zealand

donna.buckingham@stonebow.otago.ac.nz

3 University of Otago
Department of Information Science
PO Box 56, Dunedin, New Zealand

agray@infoscience.otago.ac.nz

Abstract

Software forensics is the analysis of the syntactic,
structural and semantic form of software in order to
identify, characterise and discriminate between the
authors of software products for some legal purpose.
Determining software authorship may be important in
several contexts: civil litigation involving allegations of
software theft or plagiarism or apportioning liability for
software failure; criminal litigation in relation to
computer fraud or software attacks on computer systems
using viruses and other similar means. Our focus is on
forensic analysis of software source code, the structured
English-like implementation of the algorithm selected to
undertake the task at hand. We use a fictionalised version
of a recent case to illustrate the potential of software
forensics to provide evidence and also review in detail the
judicial reception of such material.

Keywords: Software forensics, authorship analysis,
software metrics, source code, evidence

1. INTRODUCTION

Software affects the convenience and safety of our lives
in applications both trivial and critical, from supermarket
checkouts to airliner control systems. Software can also
be used to circumvent or cause disruption in processes
and systems. Sophisticated fraud can be perpetrated in
banking and insurance systems through stealth software
or a virus may be written and disseminated throughout an
organisation by a disgruntled former employee.

Issues of authorship and ownership can therefore arise in
a number of legal contexts, for instance, civil litigation
involving allegations of software theft or plagiarism or
the apportioning of liability for software failure; or
criminal litigation in relation to computer fraud or
software attacks on computer systems using viruses and

other similar means. Analysis of the form and content of
software source code can address these issues. Although
the vocabulary and range of programming structures
available are to a certain extent constrained by the rules of
the underlying language, there remains significant and
sufficient flexibility to allow programmers to express
themselves distinctively. This level of individualism in
program code makes software forensics analysis possible.
Our definition of software forensics is broad – it
incorporates analysis of code in terms of the syntax used,
the form and layout of the code, and the semantics of the
chosen vocabulary and its use.

The remainder of this paper is structured as follows:

- the form and nature of software are described as
a precursor to a discussion of the methods used
in software forensics;

- the possible applications of software forensics
are presented, including the types of inference
that may be made on the basis of the data and
information obtained;

- an example of a litigation context is described
and discussed ;

- the issues this kind of evidence raises in the trial
forum are then considered in detail.

2. THE FORM AND NATURE OF

SOFTWARE

Software is the computer-based realisation of an idea or
task. That idea or task is an abstract notion, which must
be transformed through one or more stages: perhaps a
high level design, a more detailed algorithm and then into
program source code. Source code is generally written
using a programming language, which has vocabulary,
syntax and grammar, like any other language. Programs
can therefore be analysed from several perspectives,

mailto:stephen.macdonell@aut.ac.nz�
mailto:stephen.macdonell@aut.ac.nz�
mailto:stephen.macdonell@aut.ac.nz�
mailto:donna.buckingham@stonebow.otago.ac.nz�
mailto:donna.buckingham@stonebow.otago.ac.nz�
mailto:agray%7d@infoscience.otago.ac.nz�

incorporating aspects of form, structure and semantics.
Programming languages are also characterised by their
generation which generally reflects the time that they
were devised (for instance, assembly language is first-
generation, COBOL third-generation), and their type
(procedural, object-oriented, declarative or functional).

While programming languages are by and large more
formal and restrictive than spoken or written languages,
programmers still retain substantial flexibility when
writing source code. Individual choices can affect the
manner in which the task is achieved (the steps and
ordering of the algorithm used), the layout of the source
code (including spacing, indentation, bordering characters
used to set off sections of code), and the stylistic manner
of algorithm implementation (including the choice of
program statements used or variable names).

This flexibility is illustrated in the two segments of C++
source code in Figure 1.1 Both deliver the same user
functionality: calculating the mathematical function
factorial(n) (or n!) of an integer value provided by the
user. Each author has solved the problem differently.
The first program is a relatively simple reverse loop from
1 to the user-provided value, while the second uses a
more complex recursive definition.2

Although source code is the principal entity for such
analysis, other code products may provide additional
insights into authorship. Source code is generally not
directly executable. It is often compiled into object code
that is then combined (or linked) into the delivered
executable, as shown in Figure 2. This executable is what
end-users ‘see’ and run. Information about authorship
can be extracted from the object/executable code by
decompiling it into source code (albeit with considerable
information loss).

 The stylistic
differences include the use or absence of comments, the
form of variable names, use of white space and
indentation, and overall levels of readability in each
function. These fragments illustrate the fact that
programmers can and do write very different programs to
perform the same task. They are also likely to reflect the
differences that would be commonly evident between the
programs of their respective authors.

3

1 Gray, A.R., Sallis, P.J., and MacDonell, S.G. (1998).
IDENTIFIED (Integrated Dictionary-based Extraction of
Non-language-dependent Token Information for Forensic
Identification, Examination, and Discrimination): A
dictionary-based system for extracting source code
metrics for software forensics. In Proceedings of
SE:E&P'98 - Software Engineering: Education &
Practice. Dunedin, NZ, IEEE CS Press: 252-259.

 This may indicate the development
environment, source language and compiler used, the
platform on which the software was intended to run, any

2 A sequence of instructions that can loop back to the
beginning of itself and continue running until a condition
has been satisfied.
3 Generally, compilers optimise code, removing
programmer-imposed structure and replacing variable
names with symbols. Thus some indicators of authorship
are lost in the process.

libraries incorporated into the program in the compilation
and linking process, and the general efficiency of the code
in terms of memory and processor requirements. All of
these factors reflect decisions taken by programmers,
system architects or managers and thus provide a further
range of indicators that may enable us to differentiate
between authors.

// Factorial takes an integer as an input and returns
// the factorial of the input.
// This routine does not deal with negative values!

int Factorial (int Input)
{

int Counter;
int Fact;
 Fact=1; // Initalises Fact to 1 since factorial 0 is 1
for (Counter=Input; Counter>1; Counter=Counter-1)
 {

Fact=Fact*Counter;
 }
return Fact;

}

int f(int x){
int a, y=1;
if (!x) return 1; else return x*f(x-1);}

Figure 1. Two different C++ program segments
providing identical functionality

Some programming languages and most scripting
languages work on an interpreter system4, instead of
using the compiling process described above. In these
cases the executable is the source code itself, since the
program is executed within an environment that translates
the code into machine-understandable instructions as the
program operates. 5

Irrespective of the form the program takes – source code,
compiled code or linked executable – there is sufficient
potential for variability in the numerous decisions made
when writing code to enable us to characterise, and in
some cases identify, the program author.

6

4 A script is a sequence of instructions that is interpreted
and run via another program rather than directly by the
computer processor (as a compiled program is). In
general, scripting languages are easier and faster to code
in than the more structured and compiled programming
languages and are ideal for programs of very limited
capability or that can reuse and tie together existing
compiled programs. However, a script takes longer to run
than a compiled program since each instruction is handled
by another program first (requiring additional
instructions) rather than directly by the basic instruction
processor.

 The

5 This is less common for programming languages as such
but is very popular for scripting languages. In general,
however, the term executable refers to a compiled
program.
6 In fact, as Sallis et al. note (supra n 1) a reasonable
proportion of the work already carried out in
computational linguistics for text corpus authorship

information available will obviously depend on the
program’s form (source code or object code), and for
different purposes one form may be more useful than
another. Source code generally provides the greatest
amount of information.

Program
Executable

Object
Code 2

Object
Code 1

Source
Code 3

Source
Code 2

Source
Code 1

Figure 2. Program source code being compiled and
linked into an executable

3. SOFTWARE FORENSICS IN

AUTHORSHIP ANALYSIS

There are four principal aspects of code authorship
analysis in terms of software forensics:7

1. Author identification.

The goal here is to determine the likelihood of a particular
author having written a piece of code, usually based on
the characteristics of other code samples from that
programmer. In order to provide a greater level of
confidence in any assertion of identity it may be
necessary to analyse code samples from several
programmers and to determine the likelihood or even the
statistical probability of the piece of code in question
having been written by each. This is very similar to, for
example, the attempts to verify the authorship of the
Shakespearean plays or certain historical passages using
linguistic and structural analysis. A digital example
would be the ascribing of authorship of a new piece of
source code (such as a computer virus) to a specific
programmer, given that its characteristics match those in
other pieces of code written by that author.

analysis has parallels for source code. Similarly, some of
the techniques used in software measurement research
and practice are transferable to software forensics. See
section 4 of this paper.
7 Gray, A.R., Sallis, P.J., and MacDonell, S.G. (1998).
IDENTIFIED (Integrated Dictionary-based Extraction of
Non-language-dependent Token Information for Forensic
Identification, Examination, and Discrimination): A
dictionary-based system for extracting source code
metrics for software forensics. In Proceedings of
SE:E&P'98 - Software Engineering: Education &
Practice. Dunedin, New Zealand, IEEE CS Press: 252-
259.

2. Author discrimination.

This is the task of deciding whether one or more pieces of
code were written by a single author or by a number of
authors, and an estimate of the number involved. It does
not extend, however, to actually identifying the authors,
so large samples of code are not required. Discrimination
involves determining the degree of similarity between the
code segments or programs and the estimation of the level
of between- and within-subject variability. The converse
application can be used to test for plagiarism.8

3. Author characterisation.

Rather than identifying a specific author, the goal of
characterisation is to establish the type of person likely to
have written the code in question. The aim is to
determine certain characteristics of the author of a code
fragment, such as gender, personality and educational
background, based on their programming style. For
instance, the second example shown in Figure 1 is more
likely to have been written by a programmer with greater
exposure to computer programming than the author of the
first example, as it uses a more complex algorithm to
deliver the required functionality.

4. Author intent determination.

It may also be possible to determine whether code that
has had an undesired effect was written maliciously or
was the result of an error. Since the software
development process is never error free and some errors
can have catastrophic consequences, such questions can
arise frequently. This analysis could also be extended to
check for negligence, where erroneous code is found to be
much less rigorous than that normally produced by a
programmer.

4. THE PRACTICE OF SOFTWARE

FORENSICS

Software forensics borrows extensively from the areas of
software measurement (also known as software metrics9)
and computational linguistics.10

4.1 Software measurement/software metrics

In terms of source code, software measurement/metrics
focuses in the first instance on extracting a range of
largely quantitative measures to construct a profile that

8 For extensive discussion of plagiarism detection in
program code, see Whale, G. (1990) Software metrics and
plagiarism detection. Journal of Systems and Software.
13: 131-138 and Krsul, I., and Spafford, E.H. (1997).
Authorship analysis: Identifying the author of a program.
Computers & Security. 16(3): 233-256.
9 The measurement of attributes of products, processes
and resources involved in the development and use of
computer software and systems.
10 The use of automated methods to extract and analyse
characteristics of language expressed either verbally or in
written form.

Measure/Indicator Description

Layout

WHITE Proportion of lines that are blank

SPACE-1 Proportion of operators with white space
on both sides

SPACE-2 Proportion of operators with white space
on left side

SPACE-3 Proportion of operators with white space
on right side

SPACE-4 Proportion of operators with white space
on neither side

LOCCHARS Mean number of characters per line

Style

CAPS Proportion of letters that are upper case

LOC Non-white space lines of code

DBUGSYM Debug variables per line of code (LOC)

DBUGPRN Commented out debug print statements
per LOC

COM Proportion of LOC that are purely
comment

INLCOM Proportion of LOC that have inline
comments

ENDCOM Proportion of end-of-block braces
labelled with comments

Structure

GOTO Gotos per non-comment LOC (NCLOC)

COND-1 Number of #if per NCLOC

COND-2 Number of #elif per NCLOC

COND-3 Number of #ifdef per NCLOC

COND-4 Number of #ifndef per NCLOC

COND-5 Number of #else per NCLOC

COND-6 Number of #endif per NCLOC

COND Conditional compilation keywords per
NCLOC

CCN McCabe’s cyclomatic complexity
number

DEC-IF if statements per NCLOC

DEC-SWITCH switch statements per NCLOC

DEC-WHILE while statements per NCLOC

DEC Decision statements per NCLOC

Table 1. Measures and indicators extracted to enable
software forensic analysis

reflects a programmer’s approach to programming. A
vast number of different stylistic and structural measures
can be extracted. Some examples are shown in Table 1
(for the C++ programming language). These measures
have been chosen not only for their potential in enabling
us to identify, characterise and discriminate between
authors, but also because they can all be extracted

automatically using a code parsing tool.11

 This is an
important pragmatic requirement since, for all but the
smallest programs, the volume of code to be analysed
could be very high, rendering human analysis impractical.

4.2 Computational linguistics

The measures and indicators listed in Table 1 do not
reflect code semantics. This form of analysis falls more
appropriately within the bounds of computational
linguistics12

• writing style, the level of language used, unusual
forms of expression

 and could be especially valuable where
extensive comments are available within or
supplementary to the code. A number of characteristics
may be useful to consider:

• preference for short or long statements/sentences

• frequency and severity of errors in spelling and
grammar

• use of profanities, corrupted forms

• the degree to which comments match the code

• meaningfulness of identifiers and variable names

• the degree of code optimisation

• the complexity of the flow of control through the
code.

It should be evident that it would generally not be
possible to automate collection of such ‘measures’ and an
expert would be needed to determine relevant values for
each.13 Several other measures and indicators could also
be useful, depending on the code available and on the
purpose of the analysis being undertaken.14

11 A code parser is a program that takes each statement
that a developer has written and divides it into parts (for
example, the main command, options, target objects, and
so forth) that can then be used for developing further
actions or for creating the instructions that form an
executable program.

 This might

12 For example, see Ledger, G. (1995) An exploration of
differences in the Pauline epistles using multivariate
statistical analysis. Literary and Linguistic Computing
10:85-98; Waugh, S., Adams, A. and Tweedie, F. (2000)
Computational stylistics using artificial neural networks.
Literary and Linguistic Computing. 15:187-198.
13 In any analysis there is likely to be a trade-off between
the ease of data extraction through automation and the
richness of the resulting data set. Use of only those
measures shown in Table 1 would mean that the entire
data set could be extracted automatically, but the
measures of code semantics could in some cases provide a
much stronger body of potential evidence on the issue of
authorship.
14 These and other similar measures have been suggested
by: Spafford, E.H. (1989). The Internet worm program:
an analysis. Computer Communications Review. 19(1):

include measures of the depth of nesting15 in the code, the
number of each type of data structure16 used and the use
of system and library calls.17

.

4.3 Analysis of code - early studies

‘Software forensics’ was originally coined by the
computer security community to describe the
measurement-based analysis of code specifically written
with malicious intent. The two most discussed incidents
where such code has been examined in order to identify
or characterise the program authors relate to ‘worms’:
stand-alone programs that propagate by making copies of
themselves. These studies illustrate both the viability of
software forensics and the type of information that can be
obtained.

Internet Worm18

Spafford’s analysis of the Internet Worm (released onto
the Internet in November 1988) using a number of
forensics measures led to the following conclusions:

• The code was not well written and contained many
errors and inefficiencies.

• The code contained little error-handling behaviour,
suggesting that the author was sloppy and

17-49; Whale, G. (1990). Software metrics and
plagiarism detection. Journal of Systems and Software.
13: 131-138; Spafford, E.H., and Weber, S.A. (1993).
Software forensics: can we track code to its authors?
Computers & Security. 12: 585-595; Krsul, I. (1993).
Authorship Analysis: Identifying the Author of a
Program. Technical Report CSD-TR-94-030,
Department of Computer Sciences, Purdue University;
Longstaff, T.A., and Schultz, E.E. (1993). Beyond
preliminary analysis of the WANK and OILZ worms: a
case study of malicious code. Computers & Security. 12:
61-77; Thomson, R. and Murachver, T. (2001) Predicting
gender from electronic discourse. British Journal of
Social Psychology 40:193-208; de Vel, O., Anderson, A.,
Corney, M. and Mohay, G. (2001) Mining e-mail content
for author identification forensics. ACM SIGMOD
Record 30(4): 55-64.
15 In programming, ‘nested code’ describes instructions
that perform a particular function and that are contained
within code that performs a broader function. The level of
code nesting describes the depth to which functions are
hierarchically incorporated within one another.
16 The way in which data values are stored, influencing
the time it takes to write and retrieve data – examples are
B-trees and linked lists.
17 Programs can include instructions, or calls, that execute
functions which are available externally as part of the
operating system or from libraries of pre-built
components.
18 Spafford, E.H. (1989). The Internet worm program: an
analysis. Computer Communications Review. 19(1): 17-
49.

performed little testing. Alternatively the worm’s
release may have been premature.

• The data structures used were all linked lists that
were inefficient and indicated a lack of advanced
programming ability and/or tuition.

• The code contained redundancy of processing.

• A section of the program that performed
cryptographic functions was exceptionally efficient
and provided functionality not used by the worm.
According to Spafford (1989) this did not appear to
have been written by the author of the rest of the
worm.

This impressive list of observations indicates the amount
of knowledge that can be extracted from such source
code. Especially important in terms of author
characterisation are the observations of the lack of ability
of the author, the poor quality of the code and the
evidence of dual or multiple authorship.

The WANK and OILZ worm19

These worms were released in 1989, principally attacking
two US government systems. Both were written in the
same language (DEC’s Digital Command Language, or
DCL), with the WANK worm preceding OILZ by about
two weeks. The fact that the worms were written in DCL,
a scripting language, and were therefore not compiled,
provided much more information than would have been
available from a compiled version. After drawing the
overall conclusion that three distinct authors had worked
on the two worms, Longstaff and Schultz were also able
to suggest the following:

• Author one:

 employed an academic style of programming

 used descriptive and lower case variable names

 produced complex program flow based on variables,
GOTOs, and subroutines

 had a high level of understanding

 was intent on experimentation rather than malice

• Author two:

 wrote malicious code with hostile intent

 made use of profanities in her/his code

 employed capitalisation

 adopted a simple programming style

• Author three:

 combined the others’ code

 employed mixed case

19 Longstaff, T.A., and Schultz, E.E. (1993). Beyond
preliminary analysis of the WANK and OILZ worms: a
case study of malicious code. Computers & Security. 12:
61-77.

 used non-descriptive variable names

 wrote simple code resembling BASIC

 attempted to correct bugs in the code - the OILZ
worm corrected some bugs evident in WANK.

These pieces of evidence could have been of considerable
value in an investigation of the attack. Particularly
important in this regard is the existence of multiple
authors and the differences in both style and intent.

4.4 Feasibility of analysis - recent developments

If software forensics is to be effective or even feasible,
much of the data extraction needs to be automated. To
this end we have constructed a software environment,
called IDENTIFIED, that uses measure/indicator
dictionaries to collect frequency data from programs.20
The IDENTIFIED software parses the code, counting the
number of occurrences of the measures/indicators listed in
a language dictionary file21

MacDonell and Gray

. Once these are extracted, a
number of different modelling techniques, including
cluster analysis, logistic regression, and discriminant
analysis, can be used to derive authorship classification or
prediction models.

22 reported on a study of the
authorship of 351 programs written by seven different
authors using the set of indicators listed in Table 1.
Measurement data was extracted from half of the 351
programs using IDENTIFIED and predictive models were
built using three modelling methods – a neural network,23

20 For a fuller description of the tool set, see Gray, A.R.,
Sallis, P.J., and MacDonell, S.G. (1998). IDENTIFIED
(Integrated Dictionary-based Extraction of Non-language-
dependent Token Information for Forensic Identification,
Examination, and Discrimination): A dictionary-based
system for extracting source code metrics for software
forensics. In Proceedings of SE:E&P'98 - Software
Engineering: Education & Practice. Dunedin, New
Zealand, IEEE CS Press: 252-259.

21 A list of commands, reserved words and characteristics
that are relevant for a specific programming language.
Use of separate dictionary files means that the parser
itself is language-independent.
22 MacDonell, S.G. and Gray, A.R. (2001). Software
forensics applied to the task of discriminating between
program authors. Journal of Systems Research and
Information Systems 10: 113-127.
23 A neural network is a system that approximates the
operation of the human brain. A neural network usually
involves a large number of processors operating in
parallel, each with its own small sphere of knowledge and
access to data in its local memory. Typically, a neural
network is initially trained or fed large amounts of data
and rules about data relationships. Depending on its
structure a program can then tell the network how to
behave in response to an external stimulus, or it may learn
patterns and behaviour from the training data.

multiple discriminant analysis,24 and case-based
reasoning.25

Kilgour et al.

 All three models correctly predicted the
author of between 81% and 88% of the 175 programs
remaining in the test sample.

26 describe a pilot study analysis employing
a combined set of automatically derived objective
measures of form and structure and expert-assigned
subjective indicators of code semantics (including the
degree of match between comments and code), as evident
in a sample of textbook programs written by two authors.
To enable greater differentiation, the assessment of each
subjective factor was expressed using one of five fuzzy
values27

, ranging from ‘Never’ through to ‘Always’. As
this was a pilot study, no predictive models of authorship
were built. The hybrid approach to analysing authorship
did, however, enable a richer and more diverse set of data
to be collected so that greater distinction could be made
between the programs.

5. A LITIGATION EXAMPLE

We have recently applied the techniques of software
forensics to litigation in which there had been an
accusation of code theft.28

24 Multiple discriminant analysis is useful for building a
predictive model of group membership based on observed
characteristics of each instance. It is a statistical
procedure that generates a set of discriminant functions
based on linear combinations of the predictor variables
that provide the best discrimination between the groups.

 A former employee (A) of a
custom systems development company developed a
software product that competed directly with that of his
former employer (B). B asserted that A had stolen source
code from the original product base while employed and
had used it in developing his competing product. The two

25 Case based reasoning is a method for modelling the
relationship between a series of independent variables and
a dependent variable by storing and retrieving cases
(observations) in a database. When presented with a new
observation, the cases that are similar in terms of the
independent variables are retrieved and the dependent
variable calculated from them using either the nearest
neighbour or some form of ‘averaging’ process.
26 Kilgour, R.I., Gray, A.R., Sallis, P.J., and MacDonell,
S.G. (1997). A fuzzy logic approach to computer software
source code authorship analysis. In Proceedings of the
Fourth International Conference on Neural Information
Processing - The Annual Conference of the Asian Pacific
Neural Network Assembly (ICONIP'97). Dunedin, New
Zealand, Springer-Verlag: 865-868.
27 Numbers or labels that are imprecise, such as “about
40”, “always”, or “large”. Use of such numbers or labels
enables better incorporation of uncertainty and
subjectivity in our measurement.
28 As there remains a need for confidentiality we here use
fictional labels to represent the parties involved in the
dispute. Apart from this the facts of the dispute and our
analysis are faithfully reported.

systems were examined to determine the level of evidence
to support or refute this assertion.

Our analysis involved the following four steps:

1. Examination of the fundamental form and structure
of the two systems

2. Comparison of the source code to determine whether
a significant amount of identical code existed in both
products, perhaps implying that one product had been
copied from the other

3. Consideration of the technical implementation of
each product and the distinctions that might have
arisen from any differences in their implementation

4. Stylistic and structural comparisons of the source
code.

Step 1:

Our straightforward review of the form and structure of
the two systems enabled us to draw two overall
conclusions. First, the interfaces of the two systems were
developed using different languages (Pascal and C++),
using different component libraries (VCL and MFC
respectively). The effort to convert between these would
have been prohibitive, implying that each had been
written independently. It was also clear that the structure
of the respective system engines29 was very different. A’s
product principally used C++ and an object-oriented30

Step 2:

style of coding with a small amount of procedural C code,
whereas B’s system was written entirely in C using a
procedural style.

We then undertook a detailed comparison of the lines of
code in the two systems. The degree of correspondence of
code was minimal, at approximately 3.5% of the total
lines of source code. This was no more than could have
been expected to occur by (i) coincidental matching
(which occurs when possibilities for expression are
constrained by limited syntax as they are in programming
languages); and (ii) the fact that both systems had at their
foundation fundamental public domain programming
work done by yet another set of authors in the early to

29 The part of a software system that processes data. This
may be contrasted with a system interface, which handles
input and output, or a database, which can be used to store
the data.
30 Object-oriented programming (OOP) is organized
around ‘objects’ rather than ‘actions’, data rather than
logic. Historically, a program was viewed as a logical
procedure that took input data, processed it, and produced
output data. The programming challenge was seen as how
to write the logic, not how to define the data. Object-
oriented programming takes the view that what we really
care about are the objects we want to manipulate rather
than the logic required to manipulate them. Examples of
objects range from human beings (described by name,
address, and so forth) to buildings and floors (whose
properties can be described and managed) down to the
little widgets on your computer desktop (such as buttons
and scroll bars).

mid 1990s (public A and B respectively). The degree of
correspondence in lines of code is represented in Figure 3.

Public B

A

B

Public A

4%

3%

8%

4%

4%

3%

44%

Figure 3. Extent of source code correspondence between
products of parties A and B

Step 3:

The fundamental differences in form and structure and the
lack of correspondence of source code indicated entirely
different implementations of, admittedly, a similar set of
functional modules. However, even given a similar
overall aim for the two systems, a number of significant
differences in the technical configuration of the two
systems were evident:

• the clear and deliberate separation of interface and
implementation in A’s product was in direct
contrast to the move towards integration evident in
B’s product

• the distinct use of structured tables in A’s product

• B’s product relied on objects being checked at the
time they were run, an approach not evident in A’s
product.

• the basic data type sets31

Step 4:

 in the two products were
different.

It is in this step that the forensics methods were applied.
Stylistic and structural examination used 24 of the 26
indicators listed in Table 1, extracted automatically using
the IDENTIFIED product. (As the products were written
in different languages use of the LOCCHARS and LOC
measures was not appropriate.) A summary of the results
compiled from the 175 files in A’s product and the 28 in
B’s product are shown in Table 2. All values are
percentages except for CCN, the mean number of unique
execution paths though a program or system.

In terms of this analysis the following differences in style
were observed:

• B’s code contained proportionally more white
space lines than A’s code

31 A basic data type in a programming language is a set of
data with values having predefined characteristics.
Examples of data types are: integer, character, string, and
pointer. Usually, a limited number of such data types
come built into a language. The language usually
specifies the range of values for a given data type, how
the computer processes the values, and how they are
stored.

• different patterns of white space around operators
were evident, with B’s code especially more likely
to have spaces on both sides or the right side
(although the median values are greater for all
space patterns apart from no space)

• B’s code contained proportionally more upper case
characters than A’s code

• A’s code contained proportionally more comments

• the comments in B’s code were more likely to be
inline comments than block comments.32

The following differences in structure and flow were
observed:

• B’s code made proportionally greater use of
compiler directive conditionals than A’s source
code

• the cyclomatic complexity33

• B’s code made proportionally greater use of
conditional decisions, specifically the IF and
WHILE statements.

 of B’s code was much
higher than A’s code

The structural and stylistic analysis enabled us to
conclude that the two sets of code followed different
conventions for comments and white space. Further, B’s
code contained proportionally more branching and
looping structures, thus producing higher values for
cyclomatic complexity at the program module level.

We found virtually no evidence to support the assertion
that A had stolen source code from the original product
base while employed by B and had then used it in the
development of his competing product. When this
information was presented, B elected to withdraw from
litigation.

5.1 Confounding issues from the software analyst’s
perspective

While there is significant and increasing potential in the
application of software forensics to legal issues, there are
several factors that could confound such analyses.

• There is an undetermined lower limit in terms of
the volume of code written by various authors that
is required in order to enable an author to be
identified.

• It is almost certain that novice programmers who
have undertaken some form of tuition (either self-

32 Inline comments: normally brief notes written by the
programmer that are included on the same line as a
program instruction. Block comments: documentation
included within the code but on lines separate from the
program’s executable instructions.
33 A measure which reflects the number of paths through a
set of code instructions. It was formulated from graph
theory by McCabe in 1976, and is said to reflect the
structural complexity of code resulting from jumps,
branches and loops.

taught or via instruction) adopt the approaches and
styles learned during their training. Their programs
are therefore likely to reflect the characteristics of
code seen in textbooks or help files or as taught to
them. Similarly, an organisation may have a strict
set of coding standards to which all programmers
adhere, thus reducing the distinctions that might
arise if programmers were allowed to use their
‘natural’ approach.

• While the degree to which source code reuse is
actually practised remains unclear, the influence of
reused code does need to be borne in mind.

• Authors may collaborate on the production of a
piece of source code, perhaps blurring the
particular characteristics of an individual
programmer.

Measure/Indicator Mean Median

 Party
A

Party
B

Difference Party
A

Party
B

Difference

Layout

WHITE 11.7 14.3 -2.6 10.6 13.6 -2.9

SPACE-1 9.5 16.1 -6.6 6.7 14.9 -8.2

SPACE-2 21.6 21.4 0.2 14.4 19.6 -5.1

SPACE-3 17.5 34.3 -16.8 17.1 34.0 -16.9

SPACE-4 58.3 33.8 24.4 57.8 34.7 23.2

Style

CAPS 21.8 24.1 -2.3 19.6 20.8 -1.3

DBUGSYM 1.3 0.1 1.2 0.0 0.0 0.0

DBUGPRN 0.0 0.0 0.0 0.0 0.0 0.0

COM 34.0 27.8 6.2 31.7 23.4 8.3

INLCOM 3.9 10.4 -6.5 1.1 1.8 -0.8

ENDCOM 0.0 0.2 -0.2 0.0 0.0 0.0

Structure

GOTO 0.0 0.0 0.0 0.0 0.0 0.0

COND-1 0.1 0.7 -0.7 0.0 0.0 0.0

COND-2 0.1 0.2 -0.2 0.0 0.0 0.0

COND-3 0.4 2.2 -1.8 0.0 0.6 -0.6

COND-4 1.9 0.9 1.0 0.8 0.0 0.8

COND-5 0.2 0.5 -0.3 0.0 0.0 0.0

COND-6 2.4 3.8 -1.5 1.5 2.0 -0.5

COND 5.0 8.5 -3.5 3.0 4.5 -1.5

CCN 28.4 47.0 -18.7 5 6.5 -1.5

DEC-IF 1.8 5.4 -3.6 0.0 4.1 -4.1

DEC-SWITCH 0.1 0.1 0.0 0.0 0.0 0.0

DEC-WHILE 0.2 0.5 -0.3 0.0 0.0 0.0

DEC 2.1 6.0 -4.0 0.0 4.2 -4.2

Table 2. Differences in style and structure between
products of parties A and B

• Some measures of coding style (such as WHITE,
COM, and the SPACE- measures) are fairly trivial

(although relatively time consuming) to
manipulate. In this way a programmer may be able
to disguise their code so that it has a different
profile to that which they normally produce. It is
therefore important that other measures related to
code semantics, programming structure and style,
which are more difficult to manipulate without
affecting the functionality of the software (such as
the DEC- measures and CCN), are also included
alongside the layout-oriented indicators to provide
as comprehensive a profile as possible.

The fundamental assumption of software forensics is that
programmers tend to have coding styles that are distinct,
at least to some degree. As such, these styles and features
are often recognisable to their colleagues, or to experts in
source code analysis who are provided with samples of
their code.34

 This leads to the evidentiary question: is
there sufficient information available using these
techniques to provide adequate authorship evidence for
use at trial?

6. THE RECEPTION OF SOFTWARE
FORENSICS EVIDENCE IN
LITIGATION

Code authorship, as an aspect of software forensics, has
yet to figure large in New Zealand case law. In both the
civil35 and criminal36

34 Spafford and Weber (1993) comment that evidence of
identity may remain even after the attempt to disguise;
some aspects of a programmer’s style cannot be changed
if they are to program in an effective manner.

 contexts, litigation has tended to

35 For example, Pacific Technology Ltd v Perry Group
Ltd [2004] 1 NZLR 164 (CA) considers ownership but
only on the formally agreed basis of whether an order for
delivery up of the source code was appropriate and
includes discussion of the technical issues inherent in
establishing authorship. The central issue was whether, in
the context of the commissioning of the source code, prior
copyright in some incorporated elements still subsisted.
36 As in other jurisdictions, classifying electronic acts
within existing offences has challenged existing criminal
law and reform has been necessary. The New Zealand
Law Commission provided impetus in Computer Misuse
(1999) NZLC R 54. The Crimes Amendment Act 2003
creates the offences of accessing a computer system for a
dishonest purpose, damaging or interfering with a
computer system, making, selling or distributing software
for unauthorised access to a computer system in order to
commit crime, and accessing a computer system without
authorisation. Until its coming into force on 1 October
2003, the existing provisions of the Crimes Act 1961
were flexed to sanction digital offences. Much of the
judicial discussion focused on the interpretation of
‘document’ in a digital context. In R v Misic [2001] 3
NZLR 1 the NZ Court of Appeal ruled that using a
computer program to make unpaid international toll calls
constituted fraudulently using a ‘document’ to obtain a
pecuniary advantage. A computer password and log-in

focus on ownership or establishing the presence of
unauthorised material on a defendant’s computer or
proving that it was used to access particular information.

Five evidentiary rules37

• Common knowledge rule: does the tribunal of
fact need expert help on this issue or can it rely
on its general knowledge and common sense?

 will be triggered by the eventual
tender of evidence which analyses the
similarities/differences between code incontrovertibly
created by a particular author and the code under forensic
scrutiny:

• Expertise rule: does the witness have
knowledge and experience sufficient to entitle
them to express an opinion on this issue?

• Area of expertise rule: is the proposed content
of the opinion sufficiently accepted or
recognised by others capable of evaluating its
theoretical basis?

• Ultimate issue rule: is the effect of the opinion
equivalent to subverting the function of the
tribunal of fact in determining the issue before
the court?

• Basis rule: to what extent can the opinion
found itself on matters not directly within the
expert’s own observations?

6.1 The common knowledge rule

In New Zealand, the rule is a matter of degree rather than
a rigid exclusionary regime:38

were also ruled a ‘document’ in R v Garrett (No 2) [2001]
DCR 912.

37 This comment in R v Flaws (1998) 16 CRNZ 216, 219
neatly captures the rules: "Generally it will be appropriate
to instruct the jury that expert evidence is an exception to
the rule that witnesses must speak only as to observed
facts and are not permitted to express their opinions or
beliefs. We would normally expect a jury to be directed
about the fact that opinion evidence is received on a
subject which requires special study or experience (being
beyond the ordinary experience of jurors) and that the
expert witness has particular qualifications which enable
that person to express an opinion. Also that the expert's
opinion to be of probative value must be based on a
properly established evidential foundation. The jury will
be reminded that it is for them to be satisfied about the
essential ingredients and that they are not bound to accept
the opinion even of the most highly qualified expert."
38 R v Decha-Iamsakun [1993] 1 NZLR 141, 145 where
the NZ Court of Appeal ruled admissible expert evidence
of a language difficulty. Other examples include R v
Tipene (2001) 19 CRNZ 93 where the same Court ruled
that the jury was legitimately assisted on identification by
expert evidence in relation to still photographs taken from
a bank video; Attorney General v Equiticorp Industries
Ltd [1995] 2 NZLR 135 where expert evidence on
professional legal standards was regarded as helpful in
focusing the issue. In Police v Sinclair [1991] 3 NZLR

Matters which to a considerable extent are within
the experience of a Judge trying the facts or a jury
can arise, yet expert evidence may help materially in
coming to a conclusion. The ordinary experience
test not need be interpreted so as to exclude some
evidence. The information provided may well be
outside ordinary experience and cause the Judge or
jury to review impressions or instinctive judgments
based on ordinary experience, and to do so in the
direction of either confirmation or doubt of what
ordinary experience suggests.

The trigger for questioning the tribunal of fact’s own
resources is often the issue of ‘usual’ human behaviour or
‘normal’ personality characteristics or the psychiatric
evaluation of credibility of testimony.39 Forging the
evidentiary lines between what is admissible and what
should be excluded has drawn on substantial reserves of
judicial (and sometimes legislative40) energy in an
attempt to regulate admissibility on some principled
basis.41 However, profiling the construction of computer
source code is an area far removed from the common
knowledge of a tribunal of fact. Given that the underlying
basis of this stage of the admissibility enquiry is whether
or not the fact-finder can form a conclusion without help,
the need for particular expertise would seem self-evident.
If fingerprint or voice identification is beyond common
knowledge42

569 Tipping J suggested expert evidence of the driving
standard required in an off-road rally would have been
desirable rather than ‘judicial intuition’ being used to
determine the driver’s degree of care.

 then the kind of digital ‘fingerprinting’

39 E.g. in R v Mesui CA 471/99, 2/12/1999, the Court of
Appeal supported the trial judge’s decision in a murder
trial to receive expert evidence of the effect on a Tongan
person, in a cultural context, of the victim’s offensive
statements about the accused and his family at a church
function in the presence of other Tongan men.
40 In relation to child complainants in sexual cases, s 23G
Evidence Act 1908 provides for expert evidence relating
to: the intellectual attainment, mental capability and
emotional maturity of the complainant based upon pre-
trial examination or upon observation of the complainant
giving evidence; the general developmental level of
children of the same age group; and whether evidence
given by any other witness about the child’s behaviour is
consistent or inconsistent with that of sexually abused
children of the same age group.
41 R v Makoare [2001] 1 NZLR 318, 323 is the most
recent redrawing of common knowledge parameters in the
context of human behaviour by the NZ Court of Appeal,
endorsing expert evidence in relation to ‘counter-
intuitive’ behaviour (that which ‘does not conform with
what a layperson might expect’). It was again endorsed in
R v Hurihanganui CA 81/03, 24 October 2003 in relation
to Asperger’s syndrome and schizo-affective disorder and
their relevance to the jury’s assessment of the reliability
and credibility of a confession.

inherent in the comparison of code is even further
removed.

6.2 The expertise rule

Computing expertise has been received in a number of
trial contexts.43 None involve code authorship as a fact in
issue, although the principle of qualification remains the
same. The New Zealand Court of Appeal has recently
reaffirmed that a proposed witness may acquire expertise
by a formal or informal route: “A witness need not
undertake a course of scientific study to qualify as an
expert and that his or her knowledge may be acquired
from experience, as distinct from a professional course of
studies. … [P]ersons may qualify themselves in respect of
the subject matter of a particular case.”44

 Where code
authorship is at issue, such an approach might precipitate
interesting forays into the world of ‘geeks’, although there
is no case law in which this has yet occurred. It is
certainly not a closed possibility.

6.3 The area of expertise rule

The New Zealand Court of Appeal in R v B45

As a precondition of admissibility the subject-matter
to which the expert opinion relates must be a

 has
explored the requirement that the content of the opinion
lies within an accepted area of expertise:

42 R v Buisson [1990] 2 NZLR 542 (fingerprint analysis).
In R v Carroll (No 28) HC Auckland T002481 2 May
2003, Williams J provides a review of the current NZ
approach to voice identification, particularly in relation to
the production of an evidential transcript from tapes
obtained via an interception warrant.
43 Examples include the description of the operation of a
program: R v Garrett [2001] DCR 955; the analysis of
computer use in relation to the behaviour of news groups:
R v Millwood [2000] DCR 633.
44 R v Tipene (2001) 19 CRNZ 93, 97 citing R v Menzies
[1982] 1 NZLR 40, 49 and R v Howe [1982] 1 NZLR
618, 627 together with a number of Canadian and English
decisions. An unusual example of informal expert witness
qualification is offered by R v MacDonald CA 55/95, 6
July 1995 where 2 prosecution witnesses testified that
they had seen and used cannabis before and that the
substance at issue in the trial looked like cannabis.
However the Court of Appeal did concede it was
somewhat artificial to label the two as ‘experts’. More
recently in Hume v Police AP 24/99 High Court
Invercargill 2 September 1999, the High Court accepted
expertise in the development of bruising could arise from
an amateur undertaking (here world class expertise in
marital arts) rather than arising from a profession or a
course of scientific study. Recently, the NZ Court of
Appeal has held that there is no rule that evidence of a
well-qualified expert becomes inadmissible simply
because a better-qualified person exists who could have
given evidence: R v Lapalapa (2003) 20 CRNZ 115.
45 [1987] 1 NZLR 362, 367

sufficiently recognised branch of science at the time
the evidence is given. For this reason the fields on
which expert evidence will be allowed may be
expected to be enlarged as research establishes the
accuracy of knowledge in that field. Whether the
area on which the witness seeks to express an
opinion is properly the subject of expert opinion and
whether an individual witness is an expert in a field
will be for the Court to decide in the light of the
knowledge prevailing at the time the opinion is
proffered.

In R v Makoare46 the same Court stated: “It is not enough
for a witness, however eminently qualified in his or her
field, simply to advance a theory or offer an explanation
in the absence of supporting literature or other
verification of the pedigree of their opinion.” These
observations presage the issue of ‘novel’ scientific
evidence, which will arise if the Court were to treat the
practice of software forensics as new scientific theory or
methodology.47

R v Calder

48

a) Does the evidence logically tend to show that a fact in
issue is more or less likely? This governs all
admissibility inquiries and is trial context dependent.

 reflects the current position on ‘novel’
scientific endeavour. Charges of attempted murder and
of causing poison to be taken with intent to cause
grievous bodily harm were based on the alleged
administration of acrylamide (a poison). The Crown
sought to rely on both clinical symptoms and hair and
blood analysis. The defence objected to admission of the
hair analysis, arguing it breached the area of expertise
rule as novel scientific evidence. The novelty arose from
the technique being applied to a body part other than
blood. Tipping J adopted the concept of the judge as
‘gatekeeper’ of an evidentiary threshold which is crossed
in discrete steps:

b) Does the proposed evidence show a sufficient claim
to reliability? This involves ascribing a quality of
helpfulness. The decision cites as useful factors
listed in the Canadian cases of R v Johnston49 and R v
Melaragni50

46 [2001] 1 NZLR 318, 324

 although these were not reproduced or
individually applied.

47 The NZ Court of Appeal observed in R v Zhang CA
216/98, 12 August 1998: “We do not consider evidence of
the observance of actions by card players gives rise to the
same issues as evidence drawing upon new fields of
science, technology, psychology and the like”. The
reference to ‘technology’ suggests that novel methods of
computer forensics may well fall on the other side of the
line.
48 High Court, Christchurch, T 154/94, 12 April 1995,
Tipping J.
49 Regina v Johnston (1992) 69 CCC (3d) 395 (DNA
profiling going to the issue of identification).
50 Regina v Melaragni (1992) 73 CCC (3d) 348 (the
approximate bullet entry point through the rear vehicle
window).

c) Is the evidence more probative than prejudicial?

This overarching exclusionary jurisdiction applies to all
admissibility questions, although Tipping J indicated that
it would be rare51 for evidence which crosses the
relevance/helpfulness threshold nonetheless to be
excluded.52

R v Calder echoes the general judicial criticism of a
stricter test of ‘general acceptance of the technique or
theory within its scientific community’, a standard set by
Frye v US.

53 This requirement dogged United States case
law until 1993 when its influence was moderated, at least
in terms of the Federal Rules of Evidence, by the United
States Supreme Court decision in Daubert v Merrill Dow
Pharmaceuticals.54 The decision also incorporates the
position of the New Zealand Law Reform Commission:55

51 Supra n 847, page 13. R v Iese CA 96/02, 29 August
2002 is a recent example of exclusion of evidence while
acknowledging its helpfulness and probative force. The
expert was a police officer and the area of expertise was
the operation of and gang participation in ‘tinnie’
(cannabis) houses. The NZ Court of Appeal adverted to
the danger that, in the absence of other evidence, a jury
might treat the evidence of a tendency of a particular
group to commit such crimes as probative of the charge
against one accused (an admitted gang member).

“[T]he theory need not be accepted by all or most
scientists working in the area. That is too high a standard.
Theories which are newly developed or which represent
the views of a minority may still be reliable and helpful.”
Therefore the innovative nature of the methodology for
attributing code authorship will not of itself preclude
forensic consideration.

52 Applying this analysis, Tipping J ruled the evidence
admissible. It was ‘relevant’ in that it showed the
putative victim had a much higher hair concentration of
CEC than the control group and therefore logically tended
to establish the ingestion of acrylamide. The following
factors were relevant to ‘helpfulness’ (the sufficient claim
to reliability): hair analysis had been performed many
times worldwide for other chemical compounds; neither
the accused’s blood analysis nor that of the control group
was challenged; the extension of the isolating technique
from blood to hair rested on ‘perfectly intelligible
scientific reasoning’ (supra, note 47, page 9). The
submission that the evidence was more prejudicial than
probative (because it could not demonstrate any link
between CEC in the hair and the alleged oral ingestion of
acrylamide) failed since the medical evidence in
particular excluded any external cause for the presence of
CEC.
53 (1923) 293 F 1013
54 (1993) 509 US 579. Daubert established that general
acceptance was not a necessary pre-condition to
admissibility, simply one factor.
55 Evidence Law: Expert Evidence and Opinion Evidence
(1991) NZLC PP18

Assuming the need for a Calder style analysis, an opinion
on code authorship will be highly relevant. It would go
directly to identity, the likely fact in issue in any
proceedings in which it is offered (whether civil or
criminal). In terms of helpfulness/sufficient claim to
reliability, the issue becomes less straightforward. The
factors enumerated in the Canadian cases of R v
Johnston56 and R v Melaragni57 or drawn from the
general guidelines in Daubert58 relate to evidence based
on scientific theory or technique (e.g. falsification by
empirical testing or rate of error). This is qualitatively
different from evidence based on specialised knowledge
or skills.59

Certainly some of the factors in those cases could be
adapted relatively painlessly to help determine threshold
reliability. For example, relevant Johnston factors might
include:

 For example, evidence of DNA profiling
(Johnston) or the analysis of a bullet’s trajectory
(Melaragni) is designed to help the fact finder deal
appropriately with a piece of real evidence. The
techniques are capable of replication. Can this be said of
expert opinion as to code authorship, based on a
comparative analysis between code whose authorship is
known and the code which is itself a material fact?

- the existence and maintenance of standards;

- the expert’s qualifications and stature;

- the existence of specialised literature;

- the nature and breadth of the inference adduced;

- the clarity with which the technique may be
explained;

- the extent to which the basic data may be
verified by the court and jury;

- the availability of other experts to evaluate the
technique;

- the probative significance of the evidence.

The relevant Melaragni factors bear a more direct fact-
finder focus, but raise similar issues:

- is the evidence likely to assist fact-finding or to
confuse and confound?

- is the jury likely to be overwhelmed by the
mystic infallibility of the evidence, or will it be
able to objectively assess worth?

- will the evidence, if accepted, conclusively prove
an essential element of the crime which the

56 Supra, n 948
57 Supra, n 50
58 Supra, n 54
59 The distinction between evidence based on scientific
theory or technique and evidence based on specialised
knowledge and skills and the applicability of the
guidelines on the former to the latter is recognized by the
Law Commission in its commentary on the proposed
Evidence Code: Evidence: Evidence Code and
Commentary NZLC R 55 Volume 2 C100 – 101.

defence is contesting or is it part of a larger
puzzle?

- what degree of reliability has the proposed
scientific technique or body of knowledge
achieved?

- are there sufficient experts available so that the
defence can retain its own?

- can the defence independently test the scientific
technique or body of knowledge?

- are there clear policy or legal grounds which
would render the evidence inadmissible despite
its probative value?

- will the evidence cause undue delay or result in
the needless presentation of cumulative
evidence?

Most of these factors would present as relevant whether
the fact finder is a jury or a judge sitting alone and are
capable of adaptation to the civil context (where the judge
almost always sits alone and will therefore assume the
fact finding function).

In terms of the final probative value/prejudice inquiry, R v
Calder notes that the capacity of the evidence to provide a
logical step against the accused is not sufficient for the
exercise of the exclusionary discretion; the prejudice must
be illegitimate. For example, “where the impugned
evidence has little probative value but may lead the jury
to an erroneous process of reasoning or may lead the jury
to conclude that the accused is guilty on an insecure or
improper basis.”60

This is redolent of the ‘mystic infallibility’ reference in
Melaragni. R v Calder finally observes that the precise
weight to be given to the evidence, once admitted,
depends upon its testing by cross-examination and
counter evidence. “By admitting the testimony the Court
is not warranting that it is necessarily accurate or reliable.
The Court, acting as gatekeeper, must simply decide
whether the material is worthy of consideration.”

61

 This
observation introduces the ultimate issue rule, designed to
preserve the exclusive domain of the court as arbiter of
fact.

6.4 The ultimate issue rule

Evidence law demarcates the function of providing
evidence from the function of ascribing evidentiary
value.62

60 Supra n 847 at page 13

 In principle therefore the expert must not express

61 Supra n 847 at page 6
62 The rationales for this exclusionary regime include
avoiding unstated assumptions about matters in dispute,
avoiding the expert effectively becoming an advocate,
preventing the proliferation of opinions, overwhelming or
confusing the tribunal of fact or going beyond the
witness’ area of expertise. See Freckleton & Selby,
Expert Evidence, The Law Book Company 1993- para
10.10

an opinion on an issue which is for the tribunal of fact to
decide. Where code authorship is in issue as a material
fact, the expert opinion therefore runs the risk of being
denied admission.63 However, in New Zealand the
potentially rigid exclusionary effect of the ultimate issue
rule has been largely sidelined.64 Two decades ago, the
Court of Appeal in R v Howe65 began to describe it as
‘very much eroded’. In Attorney-General v Equiticorp
Industries Group Ltd66 the same Court again downplayed
the absolute exclusionary nature of the rule in favour of a
focus on the ‘helpful’ quality of the proposed evidence.
The rule now focuses on whether the proposed expert
evidence brings the ultimate issue into sharper relief or
avoids the court inappropriately becoming its own expert.
Only where the evidence of the expert is untested (for
example by the absence of conflicting expert opinion)
will the Court feel uneasy and perhaps retreat to the over-
arching exclusionary discretion. There are hints of this in
the Equiticorp decision where the Court was careful in the
civil context to preserve the discretion to exclude where
there is a risk of true usurpation.67

63 The only case where computer expertise has directly
arisen is Advanced Management Systems Ltd v Attorney
General HC Auckland, CP 371-SW/00, 27 April 2001,
Potter J. Here application was made under Rule 324 of
the High Court Rules which permits the Court to appoint
an independent expert. The area of opinion would have
involved the isolation of the original source code in a
piece of software which had since been modified – a
material issue in a case on ownership of software.
However the application was declined on the basis that
the request presupposed a particular legal view of the
contractual arrangements under which the modifications
had been done and these had yet to be established in the
litigation.
64 The New Zealand Law Commission recommends
abolition of the common knowledge and ultimate issue
rules (adopting a similar approach to that of the Evidence
Act (Cth) 1995 in Australia). The Commission’s draft
Evidence Code (yet to be enacted) would replace the
filtering function with a test as to whether the proposed
evidence is likely to “substantially help” the fact finder to
understand other evidence or ascertain a material fact. It
is considered that this will more consistently fulfill the
function of these two rules (to prevent usurping the fact-
finding function and time wasting): Evidence: Reform of
the Law (1999) NZLC R55 – Volume 1.
65 R v Howe [1982] 1 NZLR 618, 627
66 [1995] 2 NZLR 135
67 Supra n 6, p 140. The decision acknowledges the line
between expert evidence on matters outside the Court’s
knowledge and argument by an expert. Recent examples
in the criminal context include: R v J CA 51/03 4 August
2003 where the psychiatrist-expert in a sexual offences
trial effectively commented on the complainants’
credibility; R v A CA 136/03 24 July 2003 where a
doctor’s impermissible opinion on the issue of consent in
a rape trial was partly the basis of a successful appeal.

6.5 The basis rule

The essence of the role of the expert is to give an opinion
based on certain facts. Consequently the expert must
either prove the facts on which the opinion is based or
state the factual assumptions inherent in it (for which an
evidential foundation is laid by other evidence). The rule
is directed to the need for the tribunal of fact to critically
evaluate the opinion and give it due weight. Where the
expert relies on the knowledge or experience of someone
who is unavailable to the court to establish a fact on
which the opinion is based, the hearsay rule is then
triggered and the expert evidence becomes vulnerable to
exclusion. However again this rule is not absolute in its
effect in New Zealand.

Courts accept the use of factual information which is not
personal to the expert but which is part of the received
knowledge in the area of expertise:68

In terms of unacceptable reliance (where another’s
knowledge of facts particular to the litigation are relied
upon by the expert), discrete exceptions have been carved.
This has been particularly so with diagnostic history
(statements of fact made by a patient to enable a medical
witness to form an opinion). R v Rongonui rehearses the
current position:

 “It is true that expert
evidence, founded as it is on study and experience,
necessarily involves the acceptance by the expert of the
opinions of others. In that sense his expertise and so his
opinions are based to a significant extent on hearsay
information.” Therefore it is acceptable to rely on
material which has been peer reviewed and then
published.

69

The inclusion of hearsay evidence in expert
testimony is not necessarily fatal to its admission.
…. If it is largely non-contentious and the
surrounding circumstances make it probable that it
is true, it may be unduly technical to exclude it.
That will often be the case with medical and family
histories given to a psychiatrist or psychologist by
the accused. … The proper course is not to exclude
the opinion evidence and statement of the facts upon
which it is based, but to admit it subject to a
warning to the jury that the absence of direct
evidence to prove the diagnostic facts may affect the
weight to be given to the opinion evidence based
upon them.

Whether this ‘non technical’ approach can be exported in
an untrammelled fashion to areas outside the diagnostic
history context is moot. There is no case law which
touches even tangentially on the kind of research process
inherent in determining code authorship and the extent to

68 Holt v Auckland City Council [1980] 2 NZLR 124, 127.
The proposed Evidence Code would preserve this
differentiation between the general body of
knowledge/skill comprising the witnesses’ expertise (not
necessary to prove) and particular facts upon which the
opinion is based (requiring proof): Evidence: Evidence
Code and Commentary NZLC R 55 Volume 2, C104 –
105.
69 [2000] 2 NZLR 385, 403

which the so-called ‘basis rule’ might activate a hearsay
objection. Reliance on the published work of others to
establish the genesis of the methodology used would
certainly be acceptable. Less acceptable might be the
reliance on the work of a colleague in relation to
particular litigation who is potentially available to the
court but who is not called. There is persuasive authority
which suggests that where scientific tests are run by
assistants (who are available to the court), they must be
called to give evidence as to their results as a necessary
precondition of an expert giving evidence thereon.70
However even in this situation, the matter is not free from
doubt. In passing, the Court of Appeal has observed:71

Scientific conclusions are frequently the result of
team activity. It is conceivable that there is, or
should be, a common law exception to the hearsay
rule in circumstances where a conclusion is
expressed by an informed and responsible member
of a scientific team and where the opposing party
has not objected to evidence in that form after
adequate prior notice.

Since this observation was made without the benefit of
argument, the wisest course might be to make available
each team member where it is clear that the work of one
relies on that of another.72 Of course, the inclusion of
hearsay evidence in expert testimony is also permissible if
the Court can find an existing exception to the hearsay
rule to justify admission. Such exceptions are numerous,
both at common law and resulting from statutory
intervention.73

70 R v Jackson [1996] 2 Cr App Rep 420, quoting the
Report on the Royal Commission on Criminal Justice
(UK) 1993 (voicing concern that the rule be changed) and
rehearsing alternative pre-trial strategies available to
avoid such a difficulty.

71 R v Mokaraka [2002] 1 NZLR 793, 802. The litigation
concerned fingerprint identification and the expert
referred in evidence-in-chief to ‘peer review’, effectively
a check of her work by three other members of an
identification team whom the Crown elected not to call.
The Court of Appealaccepted that the evidence was
hearsay (the purpose of tender was to imply that these
peers had supported the conclusions of the witness) but
felt that the judge had dealt adequately with the issue in
summing up.
72 See post, for a discussion of the High Court
Amendment Rules 2002 in relation to expert evidence in
civil proceedings. Clause 3(g) of the Code of Conduct for
Expert Witnesses requires the expert to identify and give
details of the qualifications of persons who carried out
examinations, tests or other investigation upon which the
expert relies. This seems an implicit endorsement of the
Court of Appeal’s obiter comment.
73 For example, the Evidence Amendment Act (No 2)
1980 establishes a general statutory regime for admission
of documentary or oral hearsay in both civil and criminal
proceedings, while preserving the common law
exceptions including statements against interest,
statements in the course of a duty, pedigree statements,

7. RECENT DEVELOPMENTS

In civil proceedings an exchange of witness briefs will
almost always occur prior to trial.74 In mid-2002 a Code
of Conduct was introduced, setting out the expert’s duty
to the Court in High Court proceedings (to impartially
assist and to refrain from advocacy) and the matters their
evidence must address.75

To ensure transparency, the Code also requires that the
expert state any qualification upon their evidence which
may affect its completeness or accuracy; likewise if the
opinion is not conclusive because of insufficient research
or data or for any other reason.

 Some effectively incorporate
aspects of the five common law rules which regulate
admissibility: e.g. to state the witness’ qualifications as
expert; to state that the evidence the witness addresses is
within this area of expertise; to state the facts and
assumptions upon which the opinion is based; to specify
literature or other material used or relied on in support of
that opinion and to describe examinations, tests or other
investigations relied upon and identify and give the
qualifications of the person who carried them out.

76 These are matters which
previously might only be elicited in cross-examination.
In addition the Court may direct that expert witnesses
confer to attempt agreement on matters in issue and to
prepare a joint witness statement which sets out areas of
agreement and disagreement and reasons for the latter.77
A panel approach to the presentation of expert evidence is
provided, once both parties have elicited the facts.78

statements of public or general right and dying
declarations.

74 Rules 441A to 441I High Court Rules provide a
specialized procedure. Rule 434(3) District Court Rules
1992 is the correlative general power in the District
Court.
75 High Court Amendment Rules 2002 (SR 2002/132).
The changes occurred after wide consultation by the
Rules Committee established under s 51B Judicature Act
1908. The Code of Conduct (Schedule 4) overlaps with
the guidelines issued by the Federal Court of Australia as
part of a practice direction. The ultimate source for these
is the judgment of Creswell J in Ikranian Reefer [1993] 2
Lloyds Rep 68, 81. Clauses 1 and 2 state the duty to the
Court. Clause 3 contains the 7 matters which the expert
must address in their evidence (including an
acknowledgement of the Code and agreement to abide by
its provisions). Clauses 4 – 5 require the expert to state
any qualifications upon their evidence or the
conclusiveness of their opinion. Clauses 6 – 7 incorporate
the duty to confer with another expert witness where so
directed by the Court. Corresponding provisions are not
yet in force in the District Court although the Rules
Committee proposed similar change in that jurisdiction.
76 Clauses 4 – 5, Code of Conduct for Expert Witnesses
77 Rule 330B High Court Rules
78 Rule 330D High Court Rules. This has been dubbed
the ‘hot tub’ and was developed by the Australian
Competition Tribunal, and adopted by the Federal Court
of Australia in Order 34A, Rule 3(2). The procedure is

There are few decisions yet on the new Rules79 and there
are opposing views of their potential as an instrument of
change in truly educating the court and avoiding the ‘gun
for hire’ syndrome.80

While in criminal proceedings expert evidence can be
supplied in advance so that the other party can elect
whether to challenge admissibility,

81

 there is no
equivalent Code which regulates both the content and
manner of presentation. However, given the current
procedural climate of limited pre-trial disclosure
obligations on the defence, it is understandable that this
has not occurred.

8. CONCLUSION

Expert opinion as to code authorship will variously
enliven the five exclusionary rules. The common
knowledge rule requires little flexing as the arcane world
of computer code resides well beyond the resources of the
trier of fact. Whether the proposed witness has the
requisite knowledge and skill is an issue of fact, but
unconventional routes to such expertise do not disqualify.
Computer code analysis is a recognised field and so the
area of expertise is legitimately ‘expert’. But the forensic
methodology proposed here may in itself be ‘novel’ and
therefore attract the tripartite Calder analysis
(relevant/helpful/more probative than prejudicial).
Certainly addressing some of the factors in that case and
those it relied upon may smooth the path to admissibility
since these may provide rational tools for evaluating the
evidence. Expert opinion on code authorship might
appear to run foul of the ultimate issue rule in some trial
contexts. However an opinion coextensive with the
essential question for decision is not a fatal characteristic.

directed to ensuring the experts deal with the case on the
basis of the evidence adduced. Robert Hicks Pty Limited
v Melway Publishing Pty Limited (1999) 21 ATPR 41-
668 is an example of the process. At first instance, each
part was directed to close its case subject to the calling of
expert witnesses. The experts were informed of the
evidence given and sworn. Each was then examined and
cross-examined.
79 Air Chathams Ltd v Civil Aviation Authority of New
Zealand (2003) 16 PRNZ 676 is one of the first decisions
to consider the obligations under the common law (see n.
75) and their correlatives in the Code of Conduct, finding
that almost all were breached by the expert’s brief and
ruling it inadmissible.
80 The Role and Use of Expert Witnesses, Legal Research
Foundation Seminar Series, Auckland, 7 November 2002.
See in particular Baragwanath J, The New Rules: Judicial
thought on the changes; Tom Weston QC, The new High
Court Rules.
81 Section 344A Crimes Act 1961 provides for an
interlocutory order relating to the admissibility of
evidence on the application of either party. In R v Yu
[1998] DCR 1077 the Crown applied pre-trial to
determine the admissibility of proposed expert evidence
on the basis of the proposed defence objection.

Finally, the intellectual basis of the opinion must be
clearly addressed, either in the evidence of the expert or
that of other witnesses or by admissible hearsay.

SCIENTIFIC REFERENCES

de Vel, O., Anderson, A., Corney, M. and Mohay, G.
(2001) Mining e-mail content for author identification
forensics. ACM SIGMOD Record 30(4): 55-64.

Gray, A.R., Sallis, P.J., and MacDonell, S.G. (1998).
IDENTIFIED (Integrated Dictionary-based Extraction of
Non-language-dependent Token Information for Forensic
Identification, Examination, and Discrimination): A
dictionary-based system for extracting source code
metrics for software forensics. In Proceedings of
SE:E&P'98 - Software Engineering: Education &
Practice. Dunedin, New Zealand, IEEE CS Press: 252-
259.

Kilgour, R.I., Gray, A.R., Sallis, P.J., and MacDonell,
S.G. (1997). A fuzzy logic approach to computer software
source code authorship analysis. In Proceedings of the
Fourth International Conference on Neural Information
Processing - The Annual Conference of the Asian Pacific
Neural Network Assembly (ICONIP'97). Dunedin, New
Zealand, Springer-Verlag: 865-868.

Krsul, I. (1993). Authorship Analysis: Identifying the
Author of a Program. Technical Report CSD-TR-94-030,
Department of Computer Sciences, Purdue University.

Krsul, I., and Spafford, E.H. (1997). Authorship analysis:
Identifying the author of a program. Computers &
Security. 16(3): 233-256.

Ledger, G. (1995). An exploration of differences in the
Pauline epistles using multivariate statistical analysis.
Literary and Linguistic Computing. 10: 85-98.

Longstaff, T.A., and Schultz, E.E. (1993). Beyond
preliminary analysis of the WANK and OILZ worms: a
case study of malicious code. Computers & Security. 12:
61-77.

MacDonell, S.G. and Gray, A.R. (2001). Software
forensics applied to the task of discriminating between
program authors. Journal of Systems Research and
Information Systems 10: 113-127.

Sallis, P.J. (1994). Contemporary computing methods for
the authorship characterisation problem in computational
linguistics. New Zealand Journal of Computing. 5(1):
85-95.

Sallis P., Aakjaer, A., and MacDonell, S. (1996).
Software forensics: old methods for a new science. In
Proceedings of SE:E&P’96 - Software Engineering:
Education & Practice. Dunedin, New Zealand, IEEE CS
Press: 367-371.

Spafford, E.H. (1989). The Internet worm program: an
analysis. Computer Communications Review. 19(1): 17-
49.

Spafford, E.H., and Weber, S.A. (1993). Software
forensics: can we track code to its authors? Computers &
Security. 12: 585-595.

Thomson, R. and Murachver, T. (2001) Predicting gender
from electronic discourse. British Journal of Social
Psychology 40:193-208

Waugh, S., Adams, A. and Tweedie, F. (2000)
Computational stylistics using artificial neural networks.
Literary and Linguistic Computing. 15:187-198.

Whale, G. (1990). Software metrics and plagiarism
detection. Journal of Systems and Software. 13: 131-
138.

Wolfe, H.B. (1994). Viruses: what can we really do? In
Proceedings of the 10th Annual IFIP Security
Conference. Curacao, Netherland Antilles, IFIP: 692-706.

Wolfe, H.B. (1996) The Internet: sources of threat and
protection. In Proceedings of the Surveillance Exp “96.
McLean VA, USA, Ross Engineering: 98-118.

	Software Forensics: Extending Authorship Analysis Techniques to Computer Programs
	1. Introduction
	2. THE FORM AND NATURE OF SOFTWARE
	3. Software Forensics in authorship analysis
	Internet Worm17F
	The WANK and OILZ worm18F

	SCIENTIFIC REFERENCES

