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Abstract 

 

The complexity and the dynamics of real-world problems, such as large Health 

Informatics data processing, require sophisticated methods and tools for 

building adaptive and knowledge-based intelligent systems.  

 

This research developed intelligent systems for Health Informatics, and focuses 

on those local and personalised modelling which perform better local 

generalisation over new data. The local models are based on the principles of 

local learning, where the data is clustered and for each cluster a separate local 

model is developed and represented as a fuzzy rule as a knowledge 

representation, either of Takagi-Sugeno, or Zadeh-Mamdani types. The 

personalised modelling techniques are based on transductive reasoning. They 

develop individual model for each data vector that takes into account the new 

input vector location in the space. They are adaptive models, in the sense that 

input-output pairs of data can be added to the data set continuously. This type 

of personalised modelling is promising for medical decision support systems 

where a model for each patient is developed to predict an outcome for this 

patient and to rank the importance of the clinical variables for them.  

 

This thesis presents novel local and personalised modelling and illustrates them 

on real world medical case studies of renal function evaluation – an important 

problem of medical decision support. The local and personalised models are 

compared with statistical, neural network and neural fuzzy global models and 

show a significant advantage in accuracy and explanation. 

 

Two representative problems in clinical medicine have been explored using the 

framework of local and personalised modelling. In each case, prediction has 

been made utilising either clinical, laboratory, or a combination of different types 

of data where appropriate. Systems has been developed for the following 

circumstances: (1) prediction appertaining to renal function, using data from 178 

Australasian patients with advanced chronic kidney disease (computing 

procedure GFR-DENFIS, GFR-KBNN, GFR-TWNFI); (2) prediction appertaining 

to patient longevity after the inception of dialysis for end-stage renal failure, 



19 
 

using data from 6010 patients randomly sampled from United States facility 

haemodialysis population (computing procedure DOPPS-TWNFC, DOPPS- 

TTLSC). 

 

The main contribution of this research is to provide immediate and workable 

methods and tools to augment health care, which are of sufficient accuracy to 

support good clinical decision-making. Furthermore, this research resulted in 

technical solutions to the various data modelling problems that exist in health 

care research. More importantly, personalised modelling developed for renal 

disease in this research is an adaptive and evolving technique, in which new 

data sample can be continuously added to the training dataset and 

subsequently contribute to the learning process of personalised models. The 

technique of personalised modelling offers a new tool to give a profile for each 

new individual data sample. Such characteristic makes personalised modelling 

based methods promising for medical decision system, especially for complex 

human disease diagnosis and prognosis. 
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Chapter 1 :  Introduction 

 

 

This chapter introduces background information on Health Informatics, and 

explains the potential of evolving intelligent systems for medical prediction. The 

overall objectives, broad methodology and main contributions of this research 

are described. 

1.1 Background  

 

1.1.1 Motivation of the Research 

 

Health care generates extensive administrative and clinical data from hospital 

bureaucracy, clinical trials, patient electronic records and computer supported 

disease management systems. The recent proliferation of medical information 

systems and databases exacerbates this situation. However, these data tend to 

be undervalued as a strategic resource, partly because traditional approaches 

of data analysis have not allowed their fullest use due to the number, 

complexities and interrelationships of the data. Many clinical problems in health 

care have behaviour that is simply impossible to describe or predict reliably by 

conventional modelling tools. Therefore, traditional approaches to knowledge 

discovery need to be coupled with newer methods for more efficient computer-

assisted analysis. 

 

Advances in health care are facilitated with the use of accurate tools for medical 

prediction within in the various disciplines of Health Informatics. Such tools 

allow health care delivery to be optimised to the patient clinical condition, which 

is in turn critically dependent on three broad requisites at both an individual and 

population level: (1) accurate assessment of patient health status / organ 

function; (2) accurate assessment of risk from any given illness; (3) accurate 

identification of high-risk patients for targeting for either preventative or 

therapeutic purposes. Without such tools, health care administrators and 

funders may not be able formulate effective health service delivery plans, and 

health care providers may misdiagnose the presence and status of disease and 

thereby risk inappropriate investigation and treatment.  
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1.1.2 Health Informatics and Decision Support Systems 

 

Health Informatics is defined as “an evolving scientific discipline that deals 

with the collection, storage, retrieval, communication and optimal use of health 

related data, information and knowledge. The discipline utilizes the methods 

and technologies of the information sciences for the purpose of problem solving, 

decision making and assuring highest quality health care in all basic and 

applied areas of the biomedical sciences” (Graham, 1994). The term covers a 

wide range of applications and research. It is the study of how technology, 

particularly artificial intelligence, computer science, and informational science 

relates to the medical field. This field of study is typically applied to clinical 

care, nursing, public health, and biomedical research, all dedicated to the 

improvement of patient care and population health. It is one of the fastest 

growing areas within the health sector.   

 

In the domain of health informatics, Decision Support Systems (DSSs) are 

defined as computer-based information systems or knowledge based systems 

that support information sciences and decision making activities (Gadomski, 

Bologna, Costanzo, Perini, & Schaerf, 2001). The first generation of Medical 

DSSs that attempted to aid the clinician in making medical decisions appeared 

in the late 1950s. These systems were mainly based on methods that used 

decision trees or truth tables. Systems based on statistical methods appeared 

later, followed by expert systems much later. Most early systems remained only 

prototypes.  

 

DSSs based on evolving intelligence or intelligent agents’ technologies (e.g. 

Evolving Connectionist Systems), which perform selected cognitive decision-

making functions, are called Intelligent Decision Support Systems (IDSSs). 

The concepts of evolving intelligence, Evolving Connectionist Systems and 

related techniques are introduced in the following section.  The main purpose of 

this research is to develop artificial intelligence systems based on local and 

personalised models that might potentially form the basis of practical IDSSs in 

the future.  
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1.1.3 Artificial Intelligence, Evolving Intelligence and Evolving Connectionist 

Systems 

 

 Artificial Intelligence (AI) can be loosely defined as a system that perceives 

its environment and takes actions that maximize its chance of success. This 

research focuses on AI which can continuously evolve structure and 

functionality over time through learning from data and continuous interaction 

with the environment. Such systems can be denoted further as Evolving 

Intelligence (EI), meaning that they induce rules rather than using a predefined 

set; they learn and improve incrementally starting from little knowledge; they 

develop concepts and abstractions in terms of rules; they “explain” their 

behaviour in terms of rules; they accommodate, at any time of their operation, 

knowledge and data – both new and old (N.  Kasabov, 2003).  

 

In AI research, machine learning has been central to its development from the 

very beginning. Machine learning is a branch of computer science that is 

concerned with the development of algorithms that allow computers to learn 

(Luger & Stubblefield, 2004; Nilsson, 1998; Poole, Mackworth, & Goebel, 1998; 

Turing, 1950). More details of the different machine learning techniques are 

explained in Chapter 2. 

 

In the field of machine learning, connectionist learning procedures and 

connectionist systems are important parts of it. The term ‘connectionism’ 

refers to computational systems for machine learning that simulate neural 

processes. There are many different connectionist systems, although neural 

networks (NN) were the first type of connectionist system and are still the most 

common. (Elman et al., 1996; N.  Kasabov, 2003; Marcus, 2001; McClelland & 

Rumelhart, 1986; Pinker & Mehler, 1988; Rumelhart & McClelland, 1986). 

Structurally, a NN is a group of nodes (“artificial neurons”) interconnected by a 

network (“artificial synapses”). A prototypical NN is shown in the Figure 1.1. In 

most cases a NN is an adaptive system that changes its structure based on 

external or internal information that flows through the network. This information 

processing and subsequent change in structure is motivated by the artificial 

neurons based on a connectionist approach, which involves mathematically 

http://en.wikipedia.org/wiki/Connectionism
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Adaptive_system
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defined changes in connection weights over time. Different networks modify 

their connections differently, but conceptually these changes constitute a given 

NN’s "learning algorithm". In more practical terms, NNs are non-

linear statistical data modelling or decision making tools. They can be used to 

model complex relationships between inputs and outputs or to find patterns in 

data.  

 

Figure 1.1  Prototypical neural network architecture. 

(A structure of a multi-layer perceptron NN with two hidden layers) 

 

 

To extrapolate the principles above, the operating characteristics of 

connectionist systems can be further described by attributes usually applied to 

human mental processes: 

 Any mental state can be described as an (N)-dimensional vector of 

numeric activation values over neural units in a network. 

 Memory is created by modifying the strength of the connections between 

neural units. The connection strengths, or "weights", are generally 

represented as an (N×N)-dimensional matrix. 

 

Input
layer

First
hidden
layer

Second
hidden
layer

Output
layer

http://en.wikipedia.org/wiki/Non-linear
http://en.wikipedia.org/wiki/Non-linear
http://en.wikipedia.org/wiki/Statistical
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Decision_making
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Vector_(mathematics)
http://en.wikipedia.org/wiki/Matrix_(mathematics)
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Connectionist systems use a variety of modelling techniques to perform 

machine learning in this way. The most common strategy in connectionist 

learning methods is to incorporate gradient descent over an error surface in a 

space defined by the weight matrix. All gradient descent learning in 

connectionist models involves changing each weight by the partial derivative of 

the error surface with respect to the weight. Back-propagation (BP), first made 

popular in the 1980s, is probably the most commonly known of the 

connectionist gradient descent algorithms. 

 

The AI developed in the thesis is for the most part based on evolving 

connectionist system (ECOS). An ECOS is a neural network or a collection of 

such networks that operate continuously in time and adapt their structure and 

function through a continuous interaction with the environment and with other 

systems(N.  Kasabov, 2003). Each evolving connectionist system contains of 

four main parts: 1. Data acquisition; 2. Pre-processing and feature evaluation; 3. 

Connectionist modelling; 4. Knowledge acquisition (N.  Kasabov, 2003). 

Comparing with other AI systems, ECOS have advantage as: fast learning from 

a large amount of data, real-time incremental adaptation to new data, 

continuous improving, and the ability to analyze and explain themselves through 

rule extraction. All these strengths enable them to be promising for their 

application in health Informatics and medical IDSS.   

 

In this research, ECOS uses a variety of modelling techniques to perform 

machine learning under several different combinations of frameworks: inductive 

versus transductive reasoning, and global versus local modelling. The 

incremental development of different systems ultimately aims to create practical 

IDSSs based on personalised modelling approach; that is, an ECOS that will 

create a local model for each new individual data vector (e.g. a patient), that fits 

the data better than a global model for the whole problem space or a local one 

based on adaptation of pre-existing clusters.  

1.2 Research Objectives and Respective Contributions  

 

This research is in the area of Health Informatics. The main purpose of this 

research is to develop artificial intelligence systems based on local and 

http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Backpropagation
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personalised models that might potentially form the basis of practical IDSSs in 

the future. 

 

In this research,  EI computing procedures are developed, modified and applied 

with a view to improving the health care delivery and outcomes (N. Kasabov, 

Song, & Ma, 2008; Marshall, Song, Ma, MacDonell, & Kasabov, 2005; Qun 

Song & Kasabov, 2006; Q. Song, Kasabov, Ma, & Marshall, 2006; Qun Song, 

Ma, & Kasabov, 2006). The accuracy of prediction with these procedures is 

compared with existing regression formulas, which are the most popular type of 

prognostic and classification models in medicine. Regression formulas are 

derived from data gathered from the whole problem space through inductive 

learning, and are consequently used to deduce the output value for a new input 

vector regardless of where it is located in the problem space. For many 

problems, this can result in different regression formulas for the same problem 

through the use of different datasets and limited accuracy on new data that are 

significantly different from those used for the original modelling. 

 

Two representative problems in clinical medicine have been studied. Modelling 

is undertaken using actual biological rather than simulated patient data. In each 

case, prediction is made using either clinical, laboratory, or a combination of 

different types of data where appropriate. Systems are developed for following 

clinical circumstances: (1) prediction appertaining to renal function, using data 

from 178 Australasian patients with advanced chronic kidney disease 

(computing procedures GFR-DENFIS, GFR-KBNN, GFR-TWNFI); (2) prediction 

appertaining to patient longevity after the inception of dialysis for end-stage 

kidney failure, using data from 6010 patients randomly sampled from United 

States facility haemodialysis population (computing procedures DOPPS-

TWNFC, DOPPS-TTLSC). 

 

For both problems, specific objectives and major research questions of this 

research are as following: 

 

(a) Develop a novel local learning method for prediction of renal function 

based on knowledge-based neural networks: GFR-KBNN 
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The primary aim of this and the following two objectives is to develop computing 

procedures to accurately predict renal function - as assessed by glomerular 

filtration rate (GFR) - using clinical and laboratory patient data, with a degree of 

accuracy that is sufficient for clinical and administrative purposes.  

 

Briefly, the analyses utilise an existing contemporary patient database of 178 

Australasian patients with advanced chronic kidney disease. The database 

includes comprehensive clinical and laboratory data including patients’ actual 

GFR as measured by the gold standard technique of renal radioisotope 

clearance. Prediction algorithms based on a knowledge based neural network 

(KBNN) are developed to create local models for identified and distinct patient 

profiles as defined by commonly available clinical variables. KBNNs incorporate 

and adapt existing knowledge as kernel functions in their structures to improve 

their learning and adaptation ability. Potentially, these systems offer efficient 

use of existing knowledge combined with self learning, reasoning and enhanced 

explanation. In this research, this existing knowledge comprises nine regression 

formulas that are used by clinicians and administrators for the estimation of 

GFR in their routine clinical practice.  

 

The KBNN integrates sub-models and new data in each problem space 

resulting in an incrementally adaptive model and increasing accuracy. Local 

learning is by the fine-tuning of local models (including modification of the nine 

existing regression formulas within each local model), and global learning by a 

gradient descent method on the whole dataset. Training is performed on a 

randomly selected training subset, and validation on the remaining cohort. The 

performance of GFR-KBNN will be compared to the existing standard methods 

for the prediction of GFR in routine clinical practice, again based on 

conventional regression formulas.   

 

The results of this objective have been published in part by Song et al. (Song, 

Kasabov, Ma, & Marshall, 2005)  

 

(b) Develop a novel local learning method for prediction of renal function 

based on fuzzy inference: GFR-DENFIS (Dynamic Evolving Neuro-Fuzzy 

Inference System) 
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As with the previous objective, the primary aim of this objective is to develop 

computing procedures to accurately predict GFR. The same patient database 

as which was used for the previous objective is also used for this one. 

Prediction algorithms based on fuzzy inference are developed to create local 

models for identified and distinct patient profiles as defined by commonly 

available clinical variables. Local learning is by the fine-tuning of each local 

model, and global learning by the proper aggregation of all local models. 

Training is performed on a randomly selected training subset, and validation on 

the remaining cohort. The performance of the novel system will be compared to 

the existing standard methods for the prediction of GFR as described above. 

 

This resulting contribution has been published in part by Marshall et al. 

(Marshall, Song, Ma, Macdonell & Kasabov, 2005) 

 

(c) Develop a novel method for prediction of renal function based on 

transductive personalised modelling: GFR-TWNFI (Transductive Neuro-

Fuzzy Inference System with Weighted Data Normalization) 

 

The primary aim and data source for this objective are the same as the previous 

ones. However, prediction algorithms for this objective are based on a novel 

transductive neural fuzzy procedure and are used to create personalised 

models for renal function evaluation. GFR-TWNFI is transductive (inferential 

reasoning from observed, specific training cases is used to move to specific test 

cases) rather than inductive (reasoning from observed cases is used to move to 

general rules, which are then applied to the test cases). In response to new 

information, the TWNFI therefore estimates the value of a potential new model 

only in a single point of the entire problem space (as defined by the new data 

vector) utilizing additional information related to this point.  

 

Personalised modelling via transductive reasoning is potentially useful for 

prediction in medical applications as it can develop a specific model for each 

data vector (patient) by taking into account the vector’s location in the problem 

space, without the intermediate requirement of solving the more general 

problem. An individual model for individual patient is promising for Health 
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Informatics where the focus is often not only on the health of the population, but 

on the health of the individual. Moreover, the proper aggregation of these 

individual models can potentially yield greater accuracy to the general model 

due to the better account of the particularities of each input. In this research, 

GFR-TWNFI is developed as an adaptive system, in the sense that input-output 

pairs of data can be added to continuously and immediately made available for 

transductive inference and subsequent modelling.  

 

Like GFR-KBNN, GFR-TWNFI is knowledge-based insofar as it utilizes medical 

knowledge in setting initial values for parameters of weighted data 

normalization. For many practical problems including those in medicine, some 

input variables have a known place in the hierarchy of importance and will make 

a different contribution to the model’s output. Therefore, it is necessary to find 

an optimal normalization and assign proper importance factors to the variables. 

This is especially critical in a special class of models – the clustering based 

neural networks or fuzzy systems. In such systems, distance between neurons 

or fuzzy rule nodes and input vectors are usually measured in Euclidean 

distance, so that variables with a wider range will have more influence on the 

learning process and on the output value and vice versa. To assist this 

particular aspect of the model, medical knowledge is used to set the initial value 

of weight for normalization which is the first step of the steepest descent 

algorithm used for subsequent training. 

  

As previously, the performance of the novel system will be compared to the 

existing standard methods for the prediction of GFR as described above. 

  

This resulting contribution has been published in part by Song et al. (Song, Ma, 

& Kasabov, 2005) 

 

(d ) Develop a novel method for prediction of survival of patients on dialysis 

based on transductive personalised modelling: DOPPS-TWNFC 

(Transductive Weighted Neuro-Fuzzy Classifier ) 

 

The primary aim of this objective is to develop computing procedures to 

distinguish between clinical profiles in haemodialysis patients that are 
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associated with different survival rates, with a degree of accuracy that could 

influence clinical or administrative management.  

 

Prediction algorithms for this objective are based on a transductive neural fuzzy 

procedure with weighted data normalization. Using transductive reasoning, the 

system estimates the value of a new classification model (survival) for each 

data vector (patient) only in a single point of the entire problem space (as 

defined by the new data vector) utilizing additional information by taking into 

account the vector’s location in the problem space. The performance of the 

system will be compared to established methods that are based on 

conventional regression analyses. This work has been published in part by Ma 

et al. (Ma, Song, Marshall, & Kasabov, 2005). 

 

The secondary aim of this objective is to compare the resulting models with 

existing medical knowledge. In particular, the predictive clinical variables 

chosen and modelled by the DOPPS-TWNFC were compared with the 

collection of clinical variables that are “known” to be predictive of mortality in 

routine clinical practice or conventional medical research: patient related factors 

(co-morbid medical conditions such as coronary artery disease, lung disease, 

malnutrition; patient demographics such as sex, age, race), treatment related 

factors (haemodialysis practice patterns such as dialysis dose, equipment), and 

health care provider characteristics (private vs. state-funded). The patterns of 

association and predictions of the transductive model are potentially not 

achievable by any traditional approaches to knowledge discovery such as 

conventional regression. There is potential for the patterns of association within 

the DOPPS-TWNFC to allow for knowledge discovery in two ways: one is from 

the identification of high risk patient subgroups based on previously ignored 

clinical variables; another is from the identification of new biological processes 

and potentially new therapeutic targets for clinical care.  

 

This work has been published in part by Song et al. (Song, Ma, & Kasabov, 

2006). 

 

 



30 
 

1.3 Overall Contributions of the Research 

 

The main contribution of this research is to provide workable methods and tools 

to augment health care, which are of sufficient accuracy to support good clinical 

decision-making. Current tools for the above applications are either inadequate 

or wholly lacking, and improved methods are needed. This research provides 

superior modelling strategies and results through the development of EI based 

on progressively more local and finally personalised models (See Figure 1.2).  

 

Personalised models developed for renal decision support system in this 

research is an adaptive and evolving technique, in which new data sample can 

be continuously added to the training dataset and subsequently contribute the 

learning process of personalised modelling. The techniques of personalised 

modelling offer a new tool to give a profile for each new individual data sample. 

They also reveal the most significant input variables (features) for the model 

that might suggest clinical target for intervention and a change in medical 

management. These characteristic makes personalised modelling based 

methods promising for medical decision support system, especially for complex 

human disease diagnosis and prognosis. 

 

Such personalised systems can also be utilised by hospital funders and 

administrators to more accurately assess future population disease burden for 

service planning. 

 

The objectives of this research are concentrate on specific clinical situations 

(prediction of renal function, prediction of patient survival on haemodialysis), but 

they will result in generic modelling frameworks. These can then be 

extrapolated to the future development of other health care applications using 

local and personalised models (e.g. for accurate prediction of cardiovascular 

risk), and will serve to catalyse further applications albeit with some modification 

to methodology.  

 

Furthermore, this research will also result in technical solutions to the various 

data modelling problems that exist in health care research. For instance, most 

patient data collected by hospitals for diagnosis and prognosis are limited by 
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their incompleteness (missing parameter values), incorrectness (systematic or 

random noise in the data), sparseness (few and/or non-representable patient 

records available), and inexactness (inappropriate selection of parameters for 

the given task). To date, there have been few rigorous attempts to develop 

Health Informatics solutions to these problems, and it is anticipated that the 

procedures developed in this project will set the benchmark in this area.   

 

1.4 Organization of the Thesis 

 

This thesis is organized as follows: 

 

Chapter 1 introduces background information on Health Informatics and 

Evolving Intelligence and their importance in developing medical prediction tools 

for decision making. The main objectives, plans and contributions of this 

research are also described in this chapter. 

 

Chapter 2 reviews conventional algorithms and techniques of machine 

learning, with particular emphasis on classic algorithms for global and local 

learning and neural fuzzy inference techniques for both local and personalised 

modelling frameworks are reviewed.  

 

Chapter 3 presents novel algorithms and techniques of evolving connectionist 

systems using both local and personalised modelling frameworks. 

 

Chapter 4 provides the medical and biological background to the 

representative problems which will be modelled. To provide context and clinical 

relevance, the biological role of renal function will be discussed, and the 

difficulties of renal function evaluation using current tools. The chapter will also 

provide corresponding background to the problem of mortality for haemodialysis 

patients, and again the corresponding difficulties with prediction of longevity. 

The two modelling datasets (GFR, DOPPS) will be introduced and described. 

 

Chapter 5 presents the development of GFR- KBNN, a local inductive 

knowledge-based model, and the performance of the system relative to 

conventional methods for GFR prediction. 

http://en.wikipedia.org/wiki/Algorithm
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Chapter 6 presents the development of GFR-DENFIS, a local inductive neural 

fuzzy model, and the performance of the system relative to conventional 

methods for GFR prediction. 

 

Chapter 7 presents the development of GFR-TWNFI, a personalised 

transductive knowledge-based neural fuzzy model, and the performance of the 

system relative to conventional methods for GFR prediction. 

 

Chapter 8 presents the development of DOPPS-TWNFC, a personalised 

transductive neural fuzzy classifier, and the performance of the system relative to 

conventional methods for prediction of survival of Haemodialysis patients. 

 

Chapter 9 presents the development of DOPPS-TTLSC, a personalised 

transductive model, and the performance of the system relative to conventional 

methods for prediction of survival of Haemodialysis patients. 

  

Chapter 10   includes the summary and future work.  
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Figure 1.2  Schema of system development in this research, pertaining to the modelling and reasoning frameworks as 

discussed. 

 



34 
 

Chapter 2 :  Review of Selected Machine Learning Methods 

Relevant to the Thesis  
 

 

In Chapter 1, Health Informatics and Evolving Intelligence were described, 

and their potential roles in the area of medical prediction. The main objectives, 

plans and contributions of this research were also described in the chapter. 

 

This chapter reviews conventional algorithms and techniques of machine 

learning, with particular emphasis on classic algorithms for global and local 

learning and neural fuzzy inference techniques for both local and personalised 

modelling frameworks are reviewed.  

 

2.1 Machine Learning Methods 

  

Machine learning is a scientific discipline concerned with the design and 

development of algorithms that allow computers to evolve behaviours (“learn”) 

based on empirical data. A commonly quoted definition is as follows: A 

computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E (T.  Mitchell, 1997) 

 

A major focus of machine learning research is to automatically learn to 

recognize complex patterns and make intelligent decisions based on data. At a 

general level, there are three types of machine learning approaches: deductive, 

inductive, and transductive.  

 

2.1.1 Deductive, Inductive and Transductive Reasoning Methods.  

 

2.1.1.1 Deductive Approaches 

Deductive approaches (knowledge transmission) apply established models with 

existing facts and knowledge to new data to deduce a prediction. Arguably 

deductive learning does not generate "new" knowledge at all, it simply 

http://en.wikipedia.org/wiki/Algorithm
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memorises the logical consequences of what is known already and applies this 

learning to new data. In this research, examples of deductive methods can be 

found in the existing formulas for prediction of GFR in routine clinical practice.  

 

Figure 2.1 The deductive, inductive and transductive approaches 

(Gammerman & Vovk, 2007)  

 

 

 

2.1.1.2 Inductive Approaches 

In contrast to deductive learning, inductive approaches (knowledge discovery) 

use observed cases and generate hypotheses based on the similarities 

between them. Inductive learning creates computing procedures by extracting 

general rules from patterns of association, which it can then apply to test cases. 

It should be noted that although pattern identification is important to machine 

learning, without rule extraction, the process falls more accurately in the field of 

data mining.  

 

The original theory of inductive inference proposed by(Solomonoff, 1964a, 

1964b) in early 1960s is to predict the new data based on the observations for a 

series of given data. In the context of knowledge discovery, inductive reasoning 

approach is concerned with the construction of a function (a model) based on 

the observations, e.g., predicting the next event (or data) based upon a series 

of historical events (or data) (C. Bishop, 1995; Levey et al., 1999). Plenty of the 

statistical learning methods, such as: Support Vector Machine (SVM), Multi 

Layer Perceptron (MLP) and neural network models, have been developed and 

tested on inductive reasoning problems. 

 

Inductive inference approach is widely used to build models and systems for 

data analysis and pattern discovery in computer and engineering science. This 



36 
 

approach creates the models based upon known historical data vectors and 

applicable to represent the entire problem space. However, the created models 

neglect any information about a particular new data vector. Thus, the inductive 

learning and inference approach is only efficient when the entire problem space 

(global space) is required for the solution of new data vector. Inductive models 

generally neglect any information related to the particular new data sample, 

which raises an issue that whether a global model is suitable for analyzing the 

new input data. 

 

2.1.1.3 Transductive Approaches 

Different from inductive learning, transductive approaches creates computing 

procedures by extracting local or personal rules from these patterns, which are 

then applied to test cases depending on the new data vector’s location in the 

problem space. Transductive methods result in specific models for each data 

vector without the intermediate requirement of solving the more general 

problem.   

 

Transductive inference introduced by (Vapnik, 1998) is a method that creates a 

model to test a specific data vector (a testing data vector) based on the 

observation from a specific group of data vectors (training data). The models 

and methods created from transductive reasoning are concentrated on a single 

point of the space (the new data vector), rather than the given entire problem 

space. Transductive inference systems emphasize the importance of the 

utilization of the additional information related to the new data point, which 

brings more relevant information to suit the analysis of the new data. Within the 

same given problem space, transductive inference methods may create 

different models specific for testing each new data vector. 

 

In a transductive inference system illustrated in Figure 2.2, an individual model 

Mi is trained for every new input vector xi with data use of samples Di selected 

from a data set D, and data samples D0,i generated from an existing model 

(formula) M (if such a model is existing).  Data samples in both Di and D0,i  are 

similar to the new vector xi according to defined similarity criteria. 
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Figure 2.2 A block diagram of a transductive reasoning system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Illustration of a transductive reasoning system. 

In the centre of the system is the new data vector (here illustrated with two of 

them – x1 and x2), surrounded by a fixed number of nearest data samples 

selected from the training data D and generated from an existing model M. 

 

 

 

 

            

 

 

 

● – a new data vector 

○ – a sample from D 

∆ – a sample from M 
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Transductive inference is concerned with the estimation of a function in single 

point of the space only (Vapniak, 1998). In Figure 2.3, for every new input 

vector xi that needs to be processed for a prognostic task, the Ni nearest 

neighbours, which form a sub-data set Di, are derived from an existing data set 

D. If necessary, some similar vectors to vector xi and their outputs can also be 

generated from an existing model M. A new model Mi is dynamically created 

from these samples to approximate the function in the point xi - Figures 2.2 and 

2.3. The system is then used to calculate the output value yi for this input vector 

xi.  

  

Transductive inference systems have been so far applied to a variety of 

classification problems, such as heart disease diagnostics (Wu, Bennett, 

Cristianini, & Shawe-taylor, 1999), promoter recognition in bioinformatics (N. 

Kasabov & Pang, 2004), microarray gene expression data classification(West et 

al., 2001). Other examples using transductive reasoning systems include: 

evaluating the predicting reliability in regression models providing additional 

reliability measurement for medical diagnosis (Kukar, 2002), transductive SVM 

for gene expression data analysis (Pang & Kasabov, 2004) and a transductive 

inference based radial basis function (TWRBF) method for medical decision 

support system and time series prediction (Song & Kasabov, 2004). Most of 

these experimental results have shown that transductive inference systems 

outperform inductive inference systems, because the former have the ability to 

exploit the structural information of unknown data. 

 

Transductive inference approach seems to be more appropriate to build 

learning models for clinical and medical applications, where the focus is not 

simply on the model, but on the individual patient’s condition. In the nature of 

complex problems, a new data vector (e.g. a patient to be clinically treated; or a 

future time moment for a time-series data prediction) may require an individual 

or a local model that best fits the new data vector, rather than a global model 

that does not take into account any specific information from the object 

data(Qun Song & Kasabov, 2006). 
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2.1.2 Supervised Learning vs. Unsupervised Learning 

 

Supervised learning is a machine learning technique for creating a function or a 

model from training data. The training data consist of pairs of input objects 

(typically vectors), and desired outputs. The output of the function can be a 

continuous value (called regression), or can predict a class label of the input 

object (called classification). The task of the supervised learner is to predict the 

value of the function for any valid input object after having seen a number of 

training examples (i.e. pairs of input and target output). To achieve this, the 

learner has to generalize from the presented data to unseen situations in a 

"reasonable" way. The parallel task in human and animal psychology is often 

referred to as concept learning. 

 

Supervised learning can generate models of two types. Most commonly, 

supervised learning generates a global model that maps input objects to desired 

outputs. In some cases, however, the map is implemented as a set of local 

models (such as in case-based reasoning or the nearest neighbor algorithm). 

 

In order to solve a given problem of supervised learning, one has to consider 

various steps: 

 Determine the type of training examples. Before doing anything else, the 

researchers should decide what kind of data is to be used as training 

data.  

 Gathering a training set. The training set needs to be characteristic of the 

real-world use of the function. Thus, a set of input objects is gathered 

and corresponding outputs are also gathered, either from human experts 

or from measurements.  

 Determine the input feature representation of the learned function. The 

accuracy of the learned function depends strongly on how the input 

object is represented. Typically, the input object is transformed into a 

feature vector, which contains a number of features that are descriptive 

of the object. The number of features should not be too large, because of 

the curse of dimensionality; but should be large enough to accurately 

predict the output.  
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 Determine the structure of the learned function and corresponding 

learning algorithm. For example, the researchers may choose to use 

artificial neural networks or decision trees.  

 Complete the design. The researchers then run the learning algorithm on 

the gathered training set. Parameters of the learning algorithm may be 

adjusted by optimizing performance on a subset (called a validation set) 

of the training set, or via cross-validation. After parameter adjustment 

and learning, the performance of the algorithm may be measured on a 

test set that is separate from the training set.  

 

In supervised learning, we are given a set of example pairs  and 

the aim is to find a function  in the allowed class of functions that 

matches the examples. In other words, we wish to infer the mapping implied by 

the data; the cost function is related to the mismatch between our mapping and 

the data and it implicitly contains prior knowledge about the problem domain. 

 

A commonly used cost is the mean-squared error, which tries to minimize the 

average squared error between the network's output, f(x), and the target value y 

over all the example pairs. When one tries to minimize this cost using gradient 

descent for the class of neural networks called multilayer perceptrons, one 

obtains the common and well-known back-propagation algorithm for training 

neural networks. 

 

Tasks that fall within the paradigm of supervised learning are pattern 

recognition (also known as classification) and regression (also known as 

function approximation). The supervised learning paradigm is also applicable to 

sequential data (e.g., for speech and gesture recognition). This can be thought 

of as learning with a "teacher," in the form of a function that provides continuous 

feedback on the quality of solutions obtained thus far. 

 

Unsupervised learning is a method of machine learning where a model is fit to 

observations. It is distinguished from supervised learning by the fact that there 

is no a priori output. In unsupervised learning, a data set of input objects is 

gathered. Unsupervised learning then typically treats input objects as a set of 

random variables. A joint density model is then built for the data set. 

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Mean-squared_error
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Multilayer_perceptron
http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Regression_analysis
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In unsupervised learning, some data  is given and the cost function to be 

minimized, that can be any function of the data  and the network's output, . 

The cost function is dependent on the task (what we are trying to model) and 

our a priori assumptions (the implicit properties of our model, its parameters and 

the observed variables). 

 

As a trivial example, consider the model , where  is a constant and the 

cost . Minimizing this cost will give us a value of  that is equal to 

the mean of the data. The cost function can be much more complicated. Its form 

depends on the application: for example, in compression it could be related to 

the mutual information between  and , whereas in statistical modelling, it 

could be related to the posterior probability of the model given the data. (Note 

that in both of those examples those quantities would be maximized rather than 

minimized). 

 

Tasks that fall within the paradigm of unsupervised learning are in 

general estimation problems; the applications include clustering, the estimation 

of statistical distributions, compression and filtering. 

 

Unsupervised learning can be used in conjunction with Bayesian inference to 

produce conditional probabilities (i.e. supervised learning) for any of the random 

variables given the others. 

 

Unsupervised learning is also useful for data compression: fundamentally, all 

data compression algorithms either explicitly or implicitly rely on a probability 

distribution over a set of inputs. 

 

Another form of unsupervised learning is clustering, which is sometimes not 

probabilistic. 

 

Evaluated with respect to known knowledge, an uninformed (unsupervised) 

method will easily be outperformed by supervised methods, while in a typical 

Knowledge Discovery in Databases (KDD) task, supervised methods cannot be 

used due to the unavailability of training data (C. M. Bishop, 2006). 

http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Mutual_information
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Estimation
http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Statistical_distributions
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Bayesian_spam_filtering
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2.2 Global, Local and Personalised Modelling: A Review 

  

Global, local and personalised modelling are currently three main approaches 

for modelling and pattern discovery in machine learning area. These three types 

of modelling are derived from inductive and transductive inference that are the 

most commonly used learning techniques for building the models and systems 

in the area of data analysis and patter recognition (N.  Kasabov, 2007).  

 

• Global modelling builds a model from the data which covers the entire problem 

space. The model is represented by a single function, e.g. a regression formula, 

a NN of MLP (Multi-Layer Perceptron) or RBF (Radial Basis Function), Support 

Vector Machine (SVM), etc. The global model gives the big picture but not the 

individual profile. It has difficulty in adapting to new data. 

 

• Local modelling creates a set of local models from data, each representing a 

sub-space (e.g. a cluster) of the whole problem space. These models can be a 

set of local regressions or a set of rules, etc. 

 

• Personalised modelling uses transductive reasoning to create a model 

specifically for each single data point (e.g. a data vector, a patient record) within 

a localized problem space. 

 

A personalised model is created “on the fly” for every new input vector and this 

individual model is based on the closest data samples to the new samples 

taken from a data set. The K-nearest neighbours (K-NN) method is one 

example of the personalised modelling technique. In the K-NN method, for 

every new sample, the nearest K samples are derived from a data set using a 

distance measure, usually Euclidean distance, and a voting scheme is applied 

to define the class label for the new sample (T. Mitchell, Keller, & Kedar-Cabelli, 

1986; Vapnik, 1998).  

 

All the three approaches are useful for complex modelling tasks and all of them 

provide complementary information and knowledge, learned from the data. For 
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each individual data vector (e.g. a patient), an individual, local model that fits 

the new data is needed, rather than a global model, in which the data is 

matched without taking into account any specific information about the new 

data.  

 

2.2.1 Algorithms for Global Learning - Linear Least Square Estimator  

 

The method discussed in this section, called Linear Least Square Estimator 

(LLSE), is used as part of learning algorithms presented later in the thesis. 

 

For a learning data set composed of data pairs [xi ; yi] = {([xi1, xi2, …, xiq], yi), i 

= 1, 2, …, m}, which represent desired input-output pairs of the target system to 

be identified, yi can be defined by a set of m parameterised linear expressions:  

 

 β0 + β1x11 + β2x12 + … + βqx1q = y1, 

β0 + β1x21 + β2x22 + … + βqx2q = y2,                                                           (2.1) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .       

  β0 + β1xm1 + β2xm2 + … + βqxmq = ym,  

 

where xij’s, i = 1, 2, …, m; j = 1, 2, …, q, are elements of input and βj’s, j = 0, 1, 2, 

…, q, are unknown parameters to be estimated. In statistics, the task of fitting 

data using a linear model is referred as a linear regression problem. Thus 

equation set (2.1) is called the regression function set, and βi’s are called the 

regression coefficients. 

Using matrix notation, the preceding equation is set in a concise form: 

 A β  =  y,                          (2.2) 

 

where A is a m × (q + 1) matrix: 
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   1 x11 x12 … x1q 

   1 x21 x22 … x2q 

  ` . . . . . 

   . . . . .     (2.3) 
   . . . . . 

 

   1 xm1 xm2 … xmq 
 

 

β is a (q + 1) × 1 unknown parameter vector: 

 

  β = [β0,  β1, β2, …,  βq]
 T,                             (2.4) 

 

and y is a m × 1 output vector:  

 

  y = [y1, y2, …, ym]T.              (2.5) 

 

The i-th row of the joint data matrix [A;  y], denoted by [ai ;  yi], is related to the i-

th input-output data pair ([xi1, xi2, …, xiq], yi), through 

 

  ai = [1, xi1, xi2, …, xiq].                                                        (2.6) 

 

Sometimes [ai
 ; yi] is referred as the i-th data pair of the learning data set. 

Usually, there are more data pairs than the fitting parameters, i.e., m is greater 

than q + 1. To obtain uniquely the unknown vector β, Equation (2.7) is modified 

by incorporating an error vector e to account for random noise or identifying 

error as follows: 

 

  A β + e = y.                   (2.7) 

 

Now, instead of finding β as the exact solution to Equation (2.7), a vector β = b 

which minimises the sum of squared error is defined by 

 

  E(β) =        

 

where e = y – A β is the error vector produced by a specific choice of β.     (2.9) 

The theorem of least square estimator is given in(Draper & Smith, 1981; Hsia, 

1977; Kalman, 1960): 

 

 m 

∑ (yi - ai
  β)2 = eTe = (y – A β)T(y – A β),                     (2.8)        

      (3.4)        

i = 1 

A = 
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The square error in Equation (2.8) is minimised when β = b, called the Least 

Square Estimator (LSE), which satisfies the normal equation 

 

  ATA b = ATy.                 (2.10) 

 

If ATA is nonsingular, b is unique and is given by 

 

  b = (ATA)-1 ATy.                (2.11) 

 

2.2.2 Fuzzy Logic Systems  

 

Why do we need fuzzy logic in this research? 

 

Fuzzy logic is one way to represent human-like knowledge in linguistically 

interpretable concepts and rules. Knowledge representation, in its different 

forms of global-, local- and personalised-, is one of the goals of this study in 

relation to renal DSSs (Kaufmann & Gupta, 1985; Kawahara & Saito, 1996; L.A. 

Zadeh, 1973; H. J. Zimmermann, 1985).  

 

2.2.2.1 Fuzzy Sets and Membership Functions  

 

If X denotes a universal set, a fuzzy set A is defined by a membership function 

μA: X  [0, 1] which describes the membership degree of the elements of A. 

Larger values denote higher membership degrees. 

Some widely used membership functions are shown in Figure 2.4 

 

Figure 2.4  Examples of fuzzy membership functions 
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 Gaussian membership function  

The Gaussian membership function depends on two parameters σ and c, 

given by 

 

  – (x – c)
2
 

μ(x) =  exp   ––––––––   .                                                (2.12) 

          σ    

 

 Triangular membership function  

Triangular membership function depends on three parameters, a; b; c, given 

by 

 

    0,  x ≤ a 
 
    x – a 
    –––– ,  a ≤ x ≤ b 
    b – a 
μ(x) = f(x; a, b, c) =              (2.13) 
    c – x 
    –––– ,  b ≤ x ≤ c 
    c – b 

 
    0.  c ≤ x 
  

The parameters a and c locate the “feet” of the trapezoid and the parameters 

b and c locate the “shoulders”. 

 

 Trapezoidal membership function  

                                    

                                    0 ,                         x < a and x > d  

                                       (x - a) / (b - a)         a <= x <= b     

μ(x) = f(x; a, b, c) =        1                             b <= x <= c                             (2.14) 

                                        (d - x) / (d - c)         c <= x <= d 

 

2.2.2.2 Operations on Fuzzy Sets 

The operations between two fuzzy sets are actually the degree’s operators to 

each point (Dubois & Prade, 1980; L.A. Zadeh, 1973; L.A.  Zadeh, 1988; H. J. 

Zimmermann, 1985). Let µA and µB be two membership functions that define 

two fuzzy sets, A and B respectively. There are four fuzzy operations given as 

follows(Kaufmann & Gupta, 1985; Kawahara & Saito, 1996): 
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 Subset 

A is contained in B or A is a subset of B, denoted by  

 

A ⊆ B,  if µA(x) ≤ µB(x),  ∀x ∈ X;  

or  

A ⊂ B,  if µA(x) < µB(x),   ∀x ∈ X. 

 

 Complement, Negation 

The membership function µĀ (x) of the complement of A (denoted by Ā ) is 

defined by: 

 

   µĀ (x) = 1 – µA(x), ∀x ∈ X.                                              (2.15) 

 

The relative complement of A with respect to B is defined by: 

 

  µĀB(x) = µB(x) – µA(x), ∀x ∈ X   if µB(x) > µA(x).       (2.16) 

 

 Intersection 

The intersection of A and B is defined by: 

 

  A ∩ B = {x|x ∈ A ∧ x ∈ B};    ∀x ∈ X.     (2.17) 

Extreme operator: µA∩1 B(x) =  µA(x) ∧ µB(x) = min{µA(x), µB(x)}; ∀x ∈ X. 

Product operator: µA∩2 B(x) =  µA(x) µB(x);   ∀x ∈ X. 

 

 Union   

The union of A and B is defined by: 

 

  A ∪ B = {x|x ∈ A ∨ x ∈ B}.              ∀x ∈ X. 

Extreme operator: µA∪1 B(x) =  µA(x) ∨ µB(x) = max{µA(x), µB(x)}; ∀x ∈ X. 

Sum operator: µA∪2 B(x) =  µA(x) + µB(x) – µA(x) µB(x);  ∀x ∈ X. 

2.2.2.3 Fuzzy Relations 

A relation represents the presence or absence of association, interaction or 

interconnection between the elements of two or more sets. A fuzzy relation R(x, 

y) is a fuzzy subset of X × Y (Kaufmann & Gupta, 1985; Kawahara & Saito, 

1996; L.A.  Zadeh, 1988). 
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For membership function µ(x, y) 

 

  R  = {µ(x, y): X × Y  [0, 1]}                                         (2.22) 

or 

  R = {(x, y), µR(x, y)} = ∪ (x, y) µR(x, y).                                   (2.23) 

 

A fuzzy relation R(x1, x2, …, xn) on sets X1, X2, …, Xn, is a fuzzy subset of X1 × 

X2 × … × Xn. 

 

  R  = {µ(x1, x2, …, xn): X1 × X2 × … × Xn  [0, 1]}.                  (2.24) 

or  

  R = ∪{ ( x1, x2, …, xn) µR(x1, x2, …, xn)}: X1 × X2 × … × Xn  [0, 1]. 

 

A composition relation of fuzzy relations R(x, y) and S(y, z) is a relation C(x, z) 

obtained after applying relations R and S one after another. 

Given: 

 

  R(x, y), (x, y) ∈ X × Y, R: X × Y  [0, 1],  

  S(y, z) , (y, z) ∈ Y × Z ,  S: Y × Z  [0, 1], 

 

Composition C(x, z) 

 Max min composition: 

µc(x, z) = max{min(µR(x, y), µs(y, z))};  x ∈ X, y ∈ Y, z ∈ Z.         (2.26) 

 Max product composition: 

µc(x, z) = max{µR(x, y) ∙ µs(y, z)};  x ∈ X, y ∈ Y, z ∈ Z.         (2.27) 

 

2.2.2.4 Fuzzy If-Then Rules 

A fuzzy if-then rule assumes the form 

 

  if x is A then y is B, 

where A and B are linguistic values defined by fuzzy sets on universes of 

discourse X and Y respectively. Usually, “x is A” is called an antecedent or a 

premise, while “y is B” is called a consequence or a conclusion. 

 



49 
 

A linguistic variable is defined by Lotfi Zadeh as follows: “By a linguistic variable 

we mean a variable whose values are words or sentences in a natural or 

artificial language. For example, ‘Age’ is a linguistic variable if its values are 

linguistic rather than numerical, i.e. young, not young, very young, quite young, 

old, not very old and not very young, etc, rather than 20, 21, 22, …” (L.A. 

Zadeh, 1973). 

 

Several types of fuzzy rules have been used so far (N.  Kasabov & Woodford, 

1999). Different fuzzy rules will result in different fuzzy inference systems. There 

are several kinds of fuzzy rules including: 

 

 Zadeh-Mamdani fuzzy rules: 

 

A generalised form of Zadeh-Mamdani fuzzy rules(L.A.  Zadeh, 1988) is: 

 

if x1 is A1 and x2 is A2 and … and xn is An, then y is B, 

where “x1 is A1”, “x2 is A2”, … , “xn is An” are n fuzzy propositions as the 

antecedent of the fuzzy rule; xi, i = 1, 2, …, n, and y is a fuzzy variable 

defined over universes of discourse Xi, i = 1, 2, …, n, and Y respectively; 

and Ai, i = 1, 2, …, n, and B are fuzzy sets defined by their fuzzy 

membership functions µAi: Xi  [0, 1], i = 1, 2, …, n, and µB: Y  [0, 1]. 

 

 Fuzzy rules with confidence degrees (N.  Kasabov & Woodford, 1999) :  

Apart from the simple form of Zadeh-Mamdani fuzzy rules mentioned above, 

fuzzy rules having coefficients of uncertainty have often been used in 

practice. A fuzzy rule that contains a confidence factor of the validity of the 

consequence has the form of: 

 

if x is A then y is B (with a CF).  

 

 Takagi-Sugeno fuzzy rules:  

 

This kind of fuzzy rules was introduced by Takagi and Sugeno in 1985 

(Tuck, Song, Kasabov, & Watts, 1999). In the consequent part, a crisp 

function is used. A generalised form of Takagi-Sugeno fuzzy rules is: 

 

if x1 is A1 and x2 is A2 and … and xn is An, then y is f(x1, x1, …, xn). 
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if f(x1, x1, …, xn) is C which is a crisp constant, it is called a zero order 

Takagi-Sugeno fuzzy rule; if function f(x1, x1, …, xn) is linear, the rule is 

called a first order Takagi-Sugeno fuzzy rule; and, such rule is called a high-

order Takagi-Sugeno fuzzy rule if the non-linear function is taken in this rule.   

 

 Generalised fuzzy production rules (N.  Kasabov & Woodford, 1999): 

These kinds of rules can be seen as weighted rules, where each of the rules 

contributes to a certain degree to the final decision. Very often the fuzzy 

propositions in the antecedent part of the rule are not equally important for the 

rule to infer an output value.  A generalised fuzzy production rule with degrees of 

importance (DIi) of the fuzzy propositions in the antecedent part and certainty 

factors (CF) of the validity of the consequent part has the form of: 

 

if x1 is A1 (DI1) and x2 is A2 (DI2) and … and xn is An, (DIn), then y is B (CF). 

 

2.2.2.5 Fuzzy Inference Systems  

The Figure 2.5 shows a block diagram of a basic fuzzy inference system, which 

is composed of four functional parts: 

 

 Fuzzification 

Fuzzification is a process of finding the membership degrees to which input 

data belong to the fuzzy sets in the antecedent part of a fuzzy rule. 

 Fuzzy rule set 

This set contains a number of ‘if-then’ fuzzy rules. 

 Aggregation 

Aggregation performs a fuzzy reasoning operation by aggregating the fuzzy 

values within the rules with connective operations. 

 Defuzzification  

Defuzzification is a process of calculating a single-output numerical value to a 

fuzzy output variable on the basis of the inferred resulting membership function 

for this variable. 
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Figure 2.5  A block diagram of a fuzzy inference system 

 

 

There are several types of fuzzy inference systems, which have been used in 

various areas. The differences among them lie with the types of fuzzy 

inferences and the fuzzy if-then rules employed. Two most popular types of 

fuzzy inference are described as follows: 

 

 Mamdani inference engine (H. J. Zimmermann, 1985, 1987) 

 

Zadeh-Mamdni fuzzy rules are used. The overall fuzzy output is derived by 

applying the union operation to the qualified fuzzy outputs (each of which is 

equal to the minimum of firing strength and the output membership function 

of each rule). This relational type inference engine feature linguistic 

premises and consequences.  

 

Figure 2.6 The Takagi-Sugeno fuzzy inference 
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 Takagi-Sugeno inference engine (Uchino, Yamakawa, Miki, & Nakamura, 

1992) 

Takagi-Sugeno fuzzy rules are used. The output of each rule is a function of 

input variables, and the final output is the weighted average of each rule’s 

output. This type inference engine uses a crisp function in the  

consequences, in contrast to relational type inference engine. 

 

Figure 2.6 shows a Takagi-Sugeno fuzzy inference engine using two rules with 

two inputs. 

 

2.2.2.6 Input Space Partitioning 

It is known from the preceding sections that different fuzzy inference systems 

have nearly the same antecedents in their fuzzy rules though their consequent 

constituents are different. There are three major methods of input space 

partitioning described as follows and they are suitable for all types of fuzzy 

inference systems mentioned in preceding section. 

 Grid partitioning (shown in Figure 2.7 (a)) 

This method is easy to use and usually is chosen for a fuzzy controller, and 

in some cases, it can be taken as an initial state of partition for some 

adaptive partitioning methods. Because the number of rules increases 

exponentially with the number of inputs, if the tasks have comparative large 

number of inputs, “the curse of dimensionality” will occur. 

 

Figure 2.7 Three methods of input space partitioning 

(a) grid partition; (b) tree partition; (c) scatter partition.  

 

( a ) ( b )  ( c )
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 Tree partitioning (shown in Figure 2.7 (b)) 

The tree partition can alleviate the problem mentioned above to some 

extent. In this partition method each region can be uniquely specified along 

a corresponding decision tree. Usually, it is difficult to express linguistic 

meanings for the membership functions. 

 Scatter partitioning (shown in Figure 2.7 (c)) 

The scatter partition has relatively small number of membership functions 

covering a subset of the input space that characterises a region of possible 

occurrence of the input vectors. The scatter partition is usually dictated by 

desired input-output data pairs and generally, orthogonality does not hold 

(N.  Kasabov, 1996). Scatter partitioning is used in DENFIS. 

 

2.2.3 Multi-Layer Perceptron Neural Network with Back- Propagation 

Algorithm 

 

This class of neural networks consists of multiple layers of computational units, 

usually interconnected in a feed-forward way. Each neuron in one layer has 

directed connections to the neurons of the subsequent layer. In many 

applications the units of these networks apply a sigmoid function as an 

activation function. 

 

The universal approximation theorem for neural networks states that every 

continuous function that maps intervals of real numbers to some output interval 

of real numbers can be approximated arbitrarily closely by a multi-layer 

perceptron with just one hidden layer.  

 

Multi-layer networks use a variety of learning techniques, back-propagation 

being the most popular. Here the output values are compared with the correct 

answer to compute the value of some predefined error-function. By various 

techniques the error is then fed back through the network. Using this 

information, the algorithm adjusts the weights of each connection in order to 

reduce the value of the error function by some small amount. After repeating 

this process for a sufficiently large number of training cycles the network will 
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usually converge to some state where the error of the calculations is small. In 

this case one says that the network has learned a certain target function. To 

adjust weights properly one applies a general method for non-linear 

optimization task that is called gradient descent. For this, the derivative of the 

error function with respect to the network weights is calculated and the weights 

are then changed such that the error decreases (thus going downhill on the 

surface of the error function). For this reason back-propagation can only be 

applied on networks with differentiable activation functions. 

 

In general the problem of teaching a network to perform well, even on samples 

that were not used as training samples, is a quite subtle issue that requires 

additional techniques. This is especially important for cases where only very 

limited numbers of training samples are available (Balabin, Safieva, & 

Lomakina, 2007). The danger is that the network overfits the training data and 

fails to capture the true statistical process generating the data. Computational 

learning theory is concerned with training classifiers on a limited amount of 

data. In the context of neural networks a simple heuristic, called early stopping, 

often ensures that the network will generalize well to examples not in the 

training set. 

 

Other typical problems of the back-propagation algorithm are the speed of 

convergence and the possibility of ending up in a local minimum of the error 

function. Today there are practical solutions that make back-propagation in 

multi-layer perceptrons the solution of choice for many machine learning tasks.  

 

2.2.3.1 Artificial Neurons and Activation Functions 

 

An artificial neural network (ANN), usually simply called a neural network (NN) 

(Amari & Kasabov, 1998; C. Bishop, 1995; Mackey & Glass, 1977) is a 

biologically inspired computational model. It consists of processing elements 

called neurons, and connections between them with coefficients, or weights, 

which constitute the neuronal structure, and training and recall algorithms 

attached to the structure (N.  Kasabov, 1996; Minsky & Papert, 1969; 

Rumelhart, Hinton, & Williams, 1986; Saad, 1999). The neurons are created 



55 
 

based on the model of a real neuron. This simple neural model can be seen in 

Figure 2.8 and expressed in the following form: 

   n 

  o = f ( ∑  wi xi )      (2.28)  

            i = 1  

 

where f(•) is the activation function, xi are the inputs and wi are the weights of 

the neuron.  

Some common activation functions are given as follows: 

 Linear function (Figure 2.9 (a)): 

 

o = u        (2.29) 

 

Figure 2.8  A model of an artificial neuron 

 

 

 

 Saturated function (Figure 2.9 (b)): 

 

+1            if   u > 1 

                      o =     u            if   u ∈ [-1, 1]              (2.30) 

                – 1            if u < –1 

 

 Sigmoid function (Figure 2.9 (c)): 

 

   1 

  o =  –––––––––––      (2.31) 

          1 + exp(–u) 

 Hyperbolic tangent function (Figure 2.9 (d)): 

 

         exp(u) – exp(–u) 

o =  ––––––––––––––     (2.32) 

         exp(u) + exp(-u) 
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 Gaussian (bell shape) function (Figure 2.9 (e)): 

 

       – (u – c)2 

o =  exp   ––––––––        (2.33) 

            σ    

 

 

 

 

Figure 2.9  Five common activation functions of a neuron 

fucntionsfunctions 
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2.2.3.2 Error Back-Propagation Learning in Neural Networks 

 

Several kinds of ANNs have been used to solve various problems (N. Kasabov, 

1996; N.  Kasabov & Woodford, 1999). The multi-layer perceptron trained with 

back-propagation algorithm (MLP-BP) is one of the most common models (Mitra 

& Pal, 1995; Rumelhart et al., 1986; Saad, 1999). The Figure 2.10 shows a 

structure of a multi-layer perceptron with two hidden layers. Two basic signal 

flows, i.e. function signal flow and error signal flow, in a multi-layer perceptron 

are shown in Figure 2.11.  

 

Figure 2.10  A structure of a multi-layer perceptron NN with two hidden 

layers 
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Figure 2.11 Two basic signal flows in a multi-layer perceptron 

 

 

 

 

Figure 2.12  A three-layer back-propagation neural network 
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A typical back-propagation training algorithm employed in a three-layer 

perceptron is described as follows (Figure 2.12): 

 

Here, x (p) and t (p) denote the p-th training data pair; z (p) denotes the actual 

output of the network; wji
(l) denotes the weight from neuron i to neuron j, and 

wkj
(h) denotes the weight from neuron j to neuron k. A sigmoid transfer function 

(Equation 2.31) is taken as the activation function in the neurons of hidden layer 

and output layer. The goal of training is to get the minimum value of error E: 

            p                   p         m 

  E = ∑ E (p)  = ∑ { ∑ ( tk
(p) – zk

(p) ) 2 / 2 }.     (2.34) 

        p = 1                p = 1    k = 1 

 step 1: initiation 

Set the maximum error emax; the maximum number of training epochs 

epsmax; the current number of training epochs Eps = 0; the learning rate  ; 

and the initial values of the weights.   

 step 2: input 

Select one data pair [x (p), t (p) ] from the training data set as current input and 

desired output, and set Eps = Eps + 1. 

 step 3: forward calculation 

Calculate y (p) and z (p), outputs of the hidden layer and output layer 

 

   yj
(p)  =  f (vj) = 1 / (1 + exp(–vj))                           (2.35) 

   zk
(p)  =  f (ui) = 1 / (1 + exp(–ui)) 

where          

   vj  =  ∑ wji
(l) xi

(p)                                                                             (2.36) 

                   i 

   uk  =  ∑ wkj
(h) yj

(p) 

                    j 

 step 4: backward calculation (1) 

Update the weights w (h) between hidden layer and output layer 

 

    k 
(h) = (tk

(p) – zk
(p) ) zk

(p) (1 – zk
(p) ) 

   wkj
(h) =    k 

(h) yj
(p)      (2.37) 

   wkj
(h)    wkj

(h) + wkj
(h)  
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 step 5: backward calculation (2) 

Update the weights w (l) between the hidden later and input later using the 

updated w (h)  

 

    j 
(l)  = ( ∑  k 

(h) wkj
(h) ) yj

(p) (1 – yj
(p) ) 

                                                                    k  

   wji
(l)  =  j 

(l) xi
(p)      (2.38) 

   wji
(l)    wji

(l)  + wji
(l)  

  

if there are more hidden layers, the step 5 will be repeated to calculate the 

weights. 

 step 6: terminal decision 

The training session is terminated if E < emax or , Eps > epsmax, and 

otherwise, a new training epoch is initiated by going  to step2. 

 

The derivation, which leads to the preceding algorithm, is described in the next 

lines: 

To decrease the error E (p) (Equation 2.34), it is necessary to adjust w (h) and w 

(l) and the steepest descent method is used for this. In order to obtain the 

increasing value of weights w : 

 

            E (p)  

  wkj
(h) =    ––––––         (2.39) 

            wkj
(h)  

 

            E (p)  

and  wji
(l) =    ––––––         (2.40) 

            wji
(l)  

 

From Equation 2.35, then 

 

     E (p)     E (p)        uk
  

  – ––––––  =   – –––––– –––––––    (2.41) 

      wkj
(h)       uk        wkj

(h) 
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     E (p)     E (p)       zk
(p)  

  – ––––––  =   – –––––– –––––––                                  (2.42) 

        uk
                       

 zk
(p)        uk  

 

        =   (tk
(p) – zk

(p) ) f ‘ (uk) 

        =   (tk
(p) – zk

(p) ) zk
(p) (1 – zk

(p) )  =  k 
(h) . 

 

Form Equation 2.39, 2.40, and 2.41, then 

 

   uk
  

  ––––––  =  yj
(p)                         (2.43) 

    wkj
(h)   

 

 

the next equation can be obtained as:  

     

  wkj
(h) =    k 

(h) yj
(p) =  (tk

(p) – zk
(p) ) zk

(p) (1 – zk
(p) ) yj

(p).      (2.44) 

 

The output of the neurons in the hidden layer can be expressed as Equation 

2.35: 

 

  vj  =  ∑ wji
(l) xi

(p)  

                 i 

  yj
(p)  =  f (vj) 

in this case 

     E (p)     E (p)        vj
  

  – ––––––  =   – –––––– ––––––– =   j 
(l) xi

(p)    (2.45) 

      wji
(l)       vj        wji

(l)  

   

       E (p)      E (p)    yj
(p)            E (p) 

   j 
(l)  =  – ––––––  =   – –––––– –––––  =  – ––––––  yj

(p) (1 – yj
(p) )   

          vj                 yj
(p)      vj             yj

(p)  
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   E (p)    E (p)     uk                 

   ––––––  =   ∑ –––––  –––––  =  – ∑  k 
(h) wkj

(h)  

     yj
(p)               k     uk      yj

(p)          k  

 

so  

 

   j 
(l)  =  ( ∑  k 

(h) wkj
(h) ) yj

(p) (1 – yj
(p) )    (2.46)  

       k  

 

From Equation 2.40, 2.45 and 2.46, then 

 

 

  wji
(l)  =  j 

(l) xi
(p) =  ( ∑  k 

(h) wkj
(h) ) yj

(p) (1 – yj
(p) ) xi

(p) (2.47) 

        k  

 

2.2.4 Neuro-fuzzy Networks 

 

A neuro-fuzzy network is a fuzzy inference system (FIS) in the body of an 

artificial neural network. Depending on the FIS type, there are several layers 

that simulate the processes involved in a fuzzy inference like fuzzification, 

inference, aggregation and defuzzification. Embedding an FIS in a general 

structure of an ANN has the benefit of using available ANN training methods to 

find the parameters of a fuzzy system.  

 

2.3 Summary 

 

This chapter reviews some classic algorithms for global and local learning. Main 

neural fuzzy inference techniques are presented in details. They are the basic 

functions for both local and personalised modelling developed in this thesis. 

 

In Chapter 3, novel algorithms and techniques of evolving connectionist 

systems will be presented, with particular emphasis on local and personalised 

modelling frameworks. 
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Chapter 3 :  Evolving Connectionist Systems (ECOS) 

 

 

In Chapter 2, conventional algorithms and techniques of machine learning were 

reviews, with particular emphasis on classic algorithms for global and local 

learning and neural fuzzy inference. 

 

In this chapter, novel algorithms and techniques called ECOS are reviewed, 

with particular emphasis on local and personalised modelling frameworks. 

These generic techniques are further developed as specific methods applied on 

renal data.  

 

3.1 Introduction 

 

The complexity, uncertainty and the dynamics of real-world problems, such as 

adaptive speech recognition and language acquisition (Furlanello, Giuliani, & 

Trentin, 1995; N. Kasabov, 1998b; N. Kasabov et al., 1999), adaptive intelligent 

prediction and control systems (Albus, 1975), intelligent agent-based systems 

and adaptive agents on the Web(Woldrige & Jennings, 1995), mobile 

robots(Fukuda, Komata, & Arakawa, 1997), visual monitoring systems and 

multi-modal information processing(N. Kasabov, 1998a; Massaro & Cohen, 

1983), large Bio-informatics data processing, and many more(Amari & Kasabov, 

1998; Arbib, 1995), require sophisticated methods and tools for building on-line, 

adaptive, knowledge-based intelligent systems (IS). Such systems should be 

able to: (1) learn fast from a large amount of data (using fast training); (2) adapt 

incrementally in an on-line mode; (3) dynamically create new modules – have 

open structure; (4) memorise information that can be used at a later stage; (5) 

interact continuously with the environment in a “life-long” learning mode; (6) 

deal with knowledge (e.g. rules), as well as with data; (7) adequately represent 

space and time(Amari & Kasabov, 1998; Blanzieri & Katenkamp, 1996; N. 

Kasabov, 1996; N.  Kasabov, 1998; N. Kasabov, 1998a; Platt, 1991; Schaal & 

Atkeson, 1998)  

 

http://en.wikipedia.org/wiki/Algorithm
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Evolving connectionist systems (ECOS) are multi-modular connectionist 

architectures that facilitate modelling of evolving processes and knowledge 

discovery.  Each evolving connectionist system contains of four main parts: 1. 

Data acquisition; 2. Pre-processing and feature evaluation; 3. Connectionist 

modelling; 4. Knowledge acquisition (N.  Kasabov, 2003). Comparing with other 

AI systems, ECOS have advantage as: fast learning from a large amount of 

data, real-time incremental adaptation to new data, continuous improving, and 

the ability to analyze and explain themselves through rule extraction. All these 

strengths enable them to be promising for their application in health Informatics 

and medical IDSS.   

3.2 Methods and Techniques 

 

3.2.1 Local Learning in ECOS   

 

Evolving connectionist systems (ECOS) are modular connectionist-based 

systems that evolve their structure and functionality in a continuous, self-

organised, on-line, adaptive, interactive way from incoming information; they 

can process both data and knowledge in a supervised and/or unsupervised 

way(N.  Kasabov, 2001).    

 

ECOS learn local models from data through clustering of the data and 

associating a local output function for each cluster. Clusters of data are created 

based on similarity between data samples either in the input space (this is the 

case in some of the ECOS models, e.g. the Dynamic Neuro-fuzzy Inference 

System (DENFIS)(N.  Kasabov & Song, 2002), or in both the input space and 

the output space (this is the case in the EFuNN models)(N.  Kasabov, 2001). 

Samples that have a distance to an existing cluster centre (rule node) N of less 

than a threshold Rmax (for the EfuNN models it is also needed that the output 

vectors of these samples are different from the output value of this cluster 

centre in not more than an error tolerance E) are allocated to the same cluster 

Nc. Samples that do not fit into existing clusters, form new clusters as they 

arrive in time. Cluster centres are continuously adjusted according to new data 

samples, and new clusters are created incrementally.  
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The similarity between a sample S = (x,y) and an existing rule node N = 

(W1,W2) can be measured in different ways, the most popular of them being the 

normalized Euclidean distance:  

 

d(S,N) = [ (i=1,..,n)  (xi – W1(i)) 
2 ] /n    (3.1) 

 

 where n is the number of the input variables.   

 

ECOS learn from data and automatically create a local output function for each 

cluster, the function being represented in the W2 connection weights, thus 

creating local models. Each model is represented as a local rule with an 

antecedent – the cluster area, and a consequent – the output function applied to 

data in this cluster, e.g.: 

 

IF (data is in cluster Nc)  

THEN (the output is calculated with a function Fc  (3.2)            

     

Implementations of the ECOS framework require connectionist models that 

support these principles. Such model is the evolving fuzzy neural network 

(EFuNN). 

 

3.2.2 The Evolving Fuzzy Neural Network (EFuNN) Model 

 

3.2.2.1 The Principles and Architecture of Evolving Fuzzy Neural Networks 

(EFuNNs)  

 

EFuNNs adopt some known techniques from(N. Kasabov, Kim, Watts, & Gray, 

1997), but here all nodes in an EFuNN are created /connected during learning. 

The nodes representing membership functions (MF) can be modified during 

learning. In EFuNNs, each input variable is represented here by a group of 

spatially arranged neurons to represent a fuzzy quantization of this variable. For 

example, three neurons can be used to represent “small”, “medium” and “large” 

fuzzy values of the variable. Different MFs can be attached to these neurons. 

New neurons can evolve in this layer if, for a given input vector, the 
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corresponding variable value does not belong to any of the existing MFs to a 

degree greater than a set threshold. A new fuzzy input neuron, or an input 

neuron, can be created during the adaptation phase of an EFuNN. An optional 

short-term memory layer can be used through feedback connections from the 

rule node layer (see Figure 3.1). The layer of feedback connections could be 

used if temporal relationships between input data are to be memorised 

structurally. 

 

The third layer contains rule nodes that evolve through supervised / 

unsupervised learning. The rule nodes represent prototypes of input-output data 

associations, graphically represented as an association of hyper-spheres from 

the fuzzy input and fuzzy output spaces. Each rule node r is defined by two 

vectors of connection weights – W1(r) and W2(r), the latter being adjusted 

through supervised learning based on the output error, and the former being 

adjusted through unsupervised learning based on a similarity measure within a 

local area of the problem space. The fourth layer of neurons represents fuzzy 

quantization for the output variables, similar to the input fuzzy neurons 

representation. The fifth layer represents the real values for the output variables. 

 

Figure 3.1  An EFuNN architecture with a short term memory and feedback 

connections  

(figure from Kasabov N, 2002, 2007) 
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Figure 3.2  Rule creation in an EFuNN 

Each rule created during the evolving process associates a hyper-sphere from 

the fuzzy input space to a hyper-sphere from the fuzzy output space. Through 

accommodating new nodes the centre of the rule node moves slightly (figure 

from Kasabov N, 2002) 

 

 

The evolving process can be based on two assumptions, that either no rule 

nodes exist prior to learning and all of them are created during the evolving 

process, or there is an initial set of rule nodes that are not connected to the 

input and output nodes and become connected through the learning process.  

 

Each rule node (e.g., r1) represents an association between a hyper-sphere 

from the fuzzy input space and a hyper-sphere from the fuzzy output space (see 

Figure 3.2), the W1(rj) connection weights representing the co-ordinates of the 

centre of the sphere in the fuzzy input space, and the W2(rj) – the co-ordinates 

in the fuzzy output space. The radius of an input hyper-sphere of a rule node is 

defined as (1 – Sthr), where Sthr is the sensitivity threshold parameter defining 

the minimum activation of a rule node (e.g., r1) to an input vector (e.g., (Xd2,  

Yd2)) in order for the new input vector to be associated to this rule node. 

 

Y

X

Errthr

Yd1 Yd2

Xd1 Xd2

r1
1 2

1 - Sthr

r1
1

r1
2

r1
1

r1
2

W1

[1, 2]

W2

[1, 2]



68 
 

Two pairs of fuzzy input-output data vectors d1 = (Xd1, Yd1) and d2 = (Xd2, Yd2) 

will be allocated to the first rule node r1 if they fall into the r1 input sphere and in 

the r1 output sphere, i.e. the local normalised fuzzy difference between Xd1 and 

Xd2 are correspondingly smaller than the radius r and the local normalised fuzzy 

difference between Yd1 and Yd2 is smaller than an error threshold (Errthr). 

 

The local normalised fuzzy difference between two fuzzy membership vectors 

d1f and d2f that represent the membership degrees to which two real values d1 

and d2 data belong to the pre-defined MF are calculated as D(d1f, d2f) = ∑ |d1f – 

d2f| / ∑ (d1f + d2f). For example, if d1f = [0, 0, 1, 0, 0, 0] and d2f = [0, 1, 0, 0, 0, 0], 

then D(d1f, d2f) = (1 + 1) / 2 = 1 which is the maximum value for the local 

normalised fuzzy difference. If data example d1 = (Xd1, Yd1) where Xd1 and Yd1 

are correspondingly the input and the output fuzzy membership degree vectors, 

and the data example is associated with a rule node r1 with a centre r1
1, then a 

new data point d2 = (Xd2, Yd2), that is within the shaded area as shown in 

Figure 3.2, will be associated with this rule node too. 

 

Through the process of associating (learning) new data points to a rule node, 

the centre of this node hyper-sphere is adjusted in the fuzzy input space 

depending on a learning rate lr1 and in the fuzzy output space depending on a 

learning rate lr2, as it is shown in Figure 3.2 on two data points. The adjustment 

of the centre r1
1 to its new position r1

2 can be represented mathematically by the 

change in the connection weights of the rule node r1 from W1(r1
1) and W2(r1

1) to 

W1(r1
2) and W2(r1

2) as it is presented in the following vector operations: 

 

W1(r1
2) = W1(r1

1) + lr1 * Ds(Xd1, Xd2)    (3.3) 

 

W2(r1
2) = W2(r1

1) + lr2 * Err(Yd1, Yd2) * A1(r1
1)             (3.4) 

 

where: Err(Yd1, Yd2) = Ds(Yd1, Yd2) = Yd1 – Yd2 is the signed value rather than 

the absolute value of difference vector; A1(r1
1) is the activation of the rule node 

r1
1 for the input vector Xd2. 

 

The idea of dynamic creation of new rule nodes over time for a time series data 

is graphically illustrated in Figure 3.3. While the connection weights from W1 
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and W2 capture spatial characteristics of the learned data (centres of hyper-

spheres), the temporal layer of connection weights W3 from Figure 3.1 captures 

temporal dependences between consecutive data examples. If the winning rule 

node at the moment (t – 1) (to which the input data vector at the moment (t – 1) 

was associated) was r1 = inda1(t – 1), and the winning node at the moment t is 

r2 = inda1(t), then a line between the two nodes is established as follows:  

 

W3(r1, r2)
(t) = W3(r1, r2)

(t-1) + lr3 * A1(r1)
(t-1) * A1(r2)

(t)       (3.5) 

 

where: A1(r)
(t) denotes the activation of a rule node r at a time moment (t); lr3 

defines the degree to which the EFuNN associates links between rules (clusters, 

prototypes) that include consecutive data examples (if lr3 = 0, no temporal 

associations are learned in an EFuNN). 

 

The learned temporal associations can be used to support the activation of rule 

nodes based on temporal, pattern similarity. Here, temporal dependences are 

learned through establishing structural links. These dependences can be further 

investigated and enhanced through synaptic analysis (at the synaptic memory 

level) rather than through neuronal activation analysis (at the behavioural level). 

The ratio (spatial – similarity) / (temporal – correlation) can be balanced for 

different applications through two parameters Ss and Tc such that the activation 

of a rule node r for a new data example dnew is defined as the following vector 

operations: 

 

A1(r) = f(Ss * D(r, dnew) + Tc * W3(r
(t-1), r))              (3.6) 

 

where: f is the activation function of the rule node r, D(r, dnew) is the normalised 

fuzzy difference value and r(t-1) is the winning neuron at time moment (t – 1). 
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Figure 3.3  Rule nodes in an EFuNN 

The rule nodes in an EFuNN evolve in time depending on the similarity in the 

input data (figure from Kasabov N, 2002) 

 

 

 

 

 

 

 

 

 

Several parameters were introduced so far for the purpose of controlling the 

functioning of an EFuNN. Some more parameters will be introduced later, that 

will bring the EFuNN parameters to a comparatively large number. In order to 

achieve a better control of the functioning of an EFuNN structure, the three-level 

functional hierarchy is used, namely: genetic level, long-term synaptic level, and 

short-term activation level. 

 

At the genetic level, all the EFuNN parameters are defined as genes in a 

chromosome, these are: 

 

(a) Structural parameters, e.g., number of inputs, number of MF for each of the 

inputs, initial type of rule nodes, maximum number of rule nodes, number of 

MF for the output variables, number of outputs. 

 

(b) Functional parameters, e.g., activation functions of the rule nodes and the 

fuzzy output nodes; mode of rule node activation (‘one-of-n’, or ‘many-of-n’) 

depending on how many activation values of rule nodes are propagated to 

the next level); learning rates lr1, lr2 and lr3; sensitivity threshold (Sthr) for the 

rule layer; error threshold (Errthr) for the output layer; forgetting rate; various 

pruning strategies and parameters, as explained in the EFuNN algorithm 

below.    
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3.2.2.2 The Basic EFuNN Algorithm 

 

In an EFuNN, a new rule node rn is connected and its input and output 

connection weights are set. The EFuNN algorithm, to evolve EFuNNs from 

incoming examples, is given below as a procedure of consecutive steps(N. 

Kasabov, 1998a). Vector and matrix operation expressions are used to 

simplicity of presentation. 

 

1. Initialise an EFuNN structure with maximum number of neurons and no (or 

zero-value) connections. Initial connections may be set through inserting 

fuzzy rules in the structure. If initially there are no rule nodes connected to 

the fuzzy input and fuzzy output neurons, then create the first node rn = 1 to 

represent the first example d1 and set its input W1(rn) and output W2(rn) 

connection weight vectors as follows: 

 

<create a new rule node>: W1(rn) = EX; W2(rn) = TE, where TE is the fuzzy 

output vector for the current fuzzy input vector EX. 

 

2. WHILE <there are examples in the input stream> DO 

Enter the current example (Xdi, Ydi), EX denoting its fuzzy input vector. If 

new variables appear in this example, which are absent in the previous 

examples, create new input and / or output nodes with their corresponding 

membership functions. 

 

3.  Find the normalised fuzzy local distance between the fuzzy input vector EX 

and the already stored patterns (prototypes, exemplars) in the rule (case) 

nodes, rj,  rj = r1, r2, …, rn,  

        

D(EX, rj) =  ∑ |EX – W1(j) / 2| / ∑ (W1(j)) 

 

4.  Find the activation A1(rj) of the rule (case) rj, rj = r1, r2, …, rn. Here, radial 

basis, radbas, activation, or a saturated linear one, satlin, can be use, i.e. 
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A1(rj) = radbas(D(EX, rj)),  or A1(rj) = satlin(1 - D(EX, rj)) 

 

The former may be appropriate for function approximation tasks, while   the 

latter may be   preferred for classification tasks. In case of the feedback 

variant of an EFuNN, the activation is calculated as explained above: 

 

A1(rj) = radbas(Ss * D(EX, rj) – Tc * W3), or  

A1(rj) = satlin(1 - Ss * D(EX, rj) + Tc * W3) 

Update the pruning parameter value for the rule nodes, e.g. age, average 

activation as pre-defined in the EFuNN chromosome. 

 

Find all case nodes rj with an activation value A1(rj) above a sensitivity 

threshold Sthr. 

 

If there is no such case node, then <create a new rule node> using the 

procedure from step 1. 

            ELSE 

8. Find the rule node inda1 that has the maximum activation value (e.g., maxa1). 

9. There are two modes: ‘one-of-n’ and ‘many-of-n’. 

(a) In case of ‘one-of-n’ EFuNNs, propagate the activation maxa1 of the rule 

node inda1 to the fuzzy output neurons.  

               A2 = satlin(A1(inda1)) * W2(inda1)) 

(b) In case of ‘many-of-n’ mode, the activation values of all rule nodes that 

are above an activation threshold of Athr are propagated to the next 

neuronal layer. 

10. Find the winning fuzzy output neuron inda2 and its activation maxa2. 

11. Find the desired winning fuzzy output neuron indt2 and its value maxt2. 

12. Calculate the fuzzy output error vector: Err = TE – A2. 

13. IF (inda2 is different from indt2) or (D(A2, TE) > Errthr), <create a new rule 

node> 

                   ELSE 

14. Update: (a) the input, (b) the output, and (c) the temporal connection vectors 

(if such exist) of the rule node k = inda1 as follow: 

(a) Ds(EX, W1(k)) = EX – W1(k); W1(k) = W1(k) + lr1 * Ds(EX, W1(k)), where 

lr1 is the learning rate for the first layer; 
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(b) W2(k) = W2(k) + lr2 * Err * maxa1, where lr2 is the learning rate for the 

second layer; 

(c) W3(l, k) = W3(l, k) + lr3 * A1(k) *  A1(l)
(t-1), here l is the winning rule 

neuron at the previous time moment (t-1), and A1(l)
(t-1) is its activation 

value kept in the short term memory. 

15. Prune rule nodes j and their connections that satisfy the following fuzzy 

pruning rule to a pre-defined level: 

       IF (a rule node rj is OLD) AND (average activation A1av(rj) is LOW) AND (the 

density of the neighbouring area of neurons is HIGH or MODERATE (i.e. 

there are other prototypical nodes that overlap with j in the input-output 

space; this condition apply only for  some strategies of inserting rule nodes 

as explained in a sub-section below) THEN the probability of pruning node 

(rj) is HIGH. 

       The above pruning rule is fuzzy and it requires that the fuzzy concepts 

of OLD, HIGH, etc., are defined in advance (as part of the EFuNN’s 

chromosome). As a partial case, a fixed value can be used, e.g. a node is 

OLD if it has existed during the evolving of an EFuNN from more than 1000 

examples. The use of a pruning strategy and the way the values for the 

pruning parameters are defined depends on the application tasks. 

16. Aggregate rule nodes, if necessary, into a smaller number of nodes (see the 

explanation in the following subsection). 

17. END of the while loop and the algorithm. 

18. Repeat steps 2 to step 17 for a second presentation of the same input data 

or for Eco training if needed. 

 

With good dynamic characteristics, the EFuNN model is a novel efficient model 

especially for on-line tasks. The EFuNN model has the following major strong 

points: (1) incremental, fast learning (possibly ‘one pass’); (2) on-line adaptation; 

(3) ‘open’ structure; (4) allowing for time and space representation based on 

biological plausibility; (5) rule extraction and rule insertion. 

 

3.2.3 Dynamic Evolving Neural Fuzzy Inference System (DENFIS) 

3.2.3.1 General Principle of DENFIS  
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The Dynamic Evolving Neural-Fuzzy Inference Systems (DENFIS) is also 

based on the ECOS principle and motivated by EFuNNs. DENFIS has an 

approach similar to EFuNNs especially similar to EFuNNs’ m-of-n mode. 

DENFIS is a kind of dynamic Takagi-Sugeno type fuzzy inference systems. An 

evolving clustering method (ECM) is used in DENFIS models to partition the 

input space for creating the fuzzy rules. DENFIS evolve through incremental, 

hybrid (supervised/unsupervised), learning and accommodate new input data, 

including new features, new classes, etc. through local element tuning. New 

fuzzy rules are created and updated during the operation of the system. At each 

time moment the output of DENFIS is calculated through a fuzzy inference 

system based on m-most activated fuzzy rules which are dynamically selected 

from the existing fuzzy rule set.  As the knowledge, fuzzy rules can be inserted 

into DENFIS before, or during its learning process and, they can also be 

extracted during the learning process or after it.  The fuzzy rules used in 

DENFIS are indicated as follows: 

 

Rl: if x1 is F11 and x2 is F12 and … and xP is F1P,   

then  yl  = bl0 + bl1x1 + bl2x2 +… + blPxP                       (3.7) 

 

where “xj is Flj”, l = 1, 2, … m; j = 1, 2, … P, are M × P fuzzy propositions that 

form m antecedents for m fuzzy rules respectively; xj, j = 1, 2, …, P, are 

antecedent variables defined over universes of discourse Xj, j = 1, 2, …, P, and 

Flj, l = 1, 2, … M; j = 1, 2, …, P are fuzzy sets defined by their fuzzy 

membership functions µFlj: Xj  [0, 1], l = 1, 2, … M; j = 1, 2, …, P. In the 

consequent parts of fuzzy rules, yl , l = 1, 2, … m, are the consequent variables 

defined by linear functions.  

 

In DENFIS, Flj are defined by the following Gaussian type membership function 

                          

          (3.8)                                    

 

When the model is given an input-output pair (xi, di), it calculates the 

following output value: 
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                (3.9) 

 

 

The goal is to design the system from (8) so that the following objective 

function is minimized: 

  

               (3.10) 

   

 

For optimizing the parameters blj, mlj, lj and lj in DENFIS, the steepest 

descent algorithm can be used:  

 

  

               (3.11) 

   

here,  is the learning rate and φ can represent b, m,  or  respectively. 

DENFIS has following characteristics: 

 Building a Takagi-Sugeno fuzzy inference engine dynamically. 

The Takagi-Sugeno fuzzy inference engine is used in both on-line and off-

line modes of DENFIS. The difference between them is that for forming a 

dynamic inference engine, only first-order Takagi-Sugeno fuzzy rules are 

employed in DENFIS on-line mode and both first-order Takagi-Sugeno fuzzy 

rules and expanded high-order Takagi-Sugeno fuzzy rules are used in 

DENFIS off-line modes. To build such a fuzzy inference engine, several 

fuzzy rules are dynamically chosen from the existing fuzzy rule set 

depending on the position of current input vector in the input space. 

 Dynamic creation and updating of fuzzy rules.  

All fuzzy rules in the DENFIS on-line mode are created and updated during 

a ‘one-pass’ training process by applying the Evolving Clustering Method 

(ECM) and the Weighted Recursive Least Square Estimator with Forgetting 

Factors (WRLSE).  
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 Local generalisation. 

Similar to EFuNNs, DENFIS model has local generalisation to speed up the 

training procedure and to decrease the number of fuzzy rules in the system. 

 Fast training speed. 

In the DENFIS on-line mode, the training is a ‘one-pass’ procedure and in 

the off-line modes, WLSE and small-scale MLPs are applied, which lead 

DENFIS to have the training speed for complex tasks faster than some 

common neural networks or hybrid systems such as multi-layer perceptron 

with back-propagation algorithm (MLP-BP) and Adaptive Neural-Fuzzy 

Inference System (ANFIS), both of which adopt global generalisation. 

 Satisfactory accuracy.  

Using DENFIS off-line modes, we can achieve a high accuracy especially in 

non-linear system identification and prediction.  

 

3.2.3.2 Dynamic Takagi-Sugeno Fuzzy Inference Engine 

 

The Takagi-Sugeno fuzzy inference engine(Takagi & Sugeno, 1985) utilised in 

DENFIS is a dynamic inference model. In addition to dynamically creating and 

updating fuzzy rules in the DENFIS on-line mode, the major differences 

between such inference engine and the general Takagi-Sugeno fuzzy inference 

engine are described as follows:  

First, depending on the position of the current input vector in the input space, 

different fuzzy rules are chosen from the fuzzy rule set, which has been 

estimated during the training procedure, for constructing an inference engine. If 

there are two input vectors very close to each other, especially in DENFIS off- 

line modes, two identical fuzzy inference engines are established and they may 

be exactly the same.  In the on-line mode, however, although sometimes two 

inputs are exactly same, their corresponding inference engines are probably 

different. This is because these two inputs come into the system from the data 

stream at different moments and the fuzzy rules probably have been updated 

during this interval. 
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Secondly, also depending on the position of current input vector in the input 

space, the antecedents of fuzzy rules, which have been chosen from the fuzzy 

rule set for forming an inference engine, may different. An example is illustrated 

in Figure 3.4, where two fuzzy rule groups, FG1 and FG2, are estimated 

depending on two input vectors x1 and x2 respectively in a 2-D input space. We 

can know from this example that, for instance, the region C represents a 

linguistic meaning ‘large’ in FG1 on the X1 axis but it represents a linguistic 

meaning ‘small’ on that in FG2. Also, the region C is presents as different 

membership functions respectively in FG1 and FG2. 

 

Figure 3.4  Two fuzzy rule groups corresponding with input x1 and x2 in a 

2-D space  

(figure from Kasabov N, 2002) 

 

 

 

 

 

 

 

 

 

 

  



78 
 

 

3.2.3.3 Fuzzy Rule Set, Rule Insertion and Rule Extraction 

 

Fuzzy rules in a DENFIS are created during a training procedure, or come from 

rule insertion. In the on-line mode, the fuzzy rules in the rule set can also be 

updated as new training data appear in the system(N.  Kasabov & Woodford, 

1999).  

 

As the DENFIS uses a Takagi-Sugeno fuzzy inference engine the fuzzy rules 

inserted to or extracted from the system are Takagi-Sugeno type fuzzy rules. 

These rules can be inserted into the rule set before or during the training 

procedure and they can also be exacted from the rule set during or after the 

training procedure.  

 

The inserted fuzzy rules can be the rules that are extracted from a fuzzy rule set 

created in previous training of DENFIS, or they can also be general Takagi-

Sugeno type fuzzy rules. In the latter, the corresponding nodes of the general 

Takagi-Sugeno fuzzy rules have to be found and located in the input space. For 

an on-line learning mode, their corresponding radiuses should also be defined. 

The region can be obtained from the antecedent of a fuzzy rule and the centre 

of this region is taken as the node corresponding with the fuzzy rule. A value of 

(0.5 ~ 1)Dthr can be taken as the corresponding radius. 

 

3.2.3.4 Comparison of DENFIS On-line Mode and EFuNN 

 

Similar to EFuNN, the DENFIS on-line mode applies a one-pass, on-line 

training algorithm and adopts local generalisation that make both DENFIS 

performs its training procedure very fast.  

 

The EFuNN is a fuzzified neural network and it updates the system by using a 

method similar to an on-line gradient descent method(Biehl, Freking, Holzer, 

Reents, & Schlosser, 1998; Freeman & Saad, 1997; J. Moody & Darken, 1988; 
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John Moody & Darken, 1989; Rummery & Niranjan, 1994). The EFuNN 

algorithm is a simple one so that the rule insertion, rule extraction and rule 

aggregation are easy to realize, however, the EFuNN normally requires more 

rules than a DENFIS on-line mode for achieving the similar result. 

 

The DENFIS model is a neural fuzzy inference system with capability of 

learning. The DENFIS on-line mode updates the system by using a weighted 

recursive least square estimation algorithm which makes the DENFIS more 

effective and more accurate than EFuNN. Instead of the data space partitioning 

in both input space and output space, the DENFIS on-line mode applies the 

ECM that performs the partition in input space only. 

 

3.3 Summary 

 

This chapter reviews novel algorithms and techniques called ECOS, with 

particular emphasis on local and personalised modelling frameworks. These 

techniques will be used in the thesis either as part of the developed new 

techniques in the following chapters or for comparison of experimental results.    

 

In Chapter 4, medical and biological background will be presented as it 

relates to the representative problems modelled in this research. The 

biological relevance of renal function will be discussed, and the 

limitations of current tools for its evaluation. The modelling datasets 

(GFR and DOPPS) used in this current chapter will also be introduced 

and described. 
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Chapter 4 : Medical and Biological Background - The 

Evaluation of Kidney Function and the Survival with Patients 

with End-Stage Kidney Failure on Dialysis 
 

 

In Chapter 3, novel algorithms and techniques using evolving connectionist 

systems were reviewed, with particular emphasis on local and personalised 

modelling frameworks. These generic techniques are further developed as 

specific methods applied on renal data introduced in current chapter.  

 

In this chapter, medical and biological background is presented as it relates to 

the representative problems modelled in this research. To provide context and 

clinical relevance, the biological role of kidney function will be discussed, and 

the difficulties of evaluation using current tools. This chapter will also provide 

corresponding background to the problem of mortality for haemodialysis 

patients, and again the corresponding difficulties with prediction of longevity. 

The two modelling datasets (GFR, DOPPS) will be introduced and described. 

  

4.1 Problem Description and Review 

 

4.1.1 Normal Renal Function  

 

The human kidneys are two bean-shaped organs, one on each side of the 

backbone (Figure 4.1). They represent about 0.5% of the total weight of the 

body, but receive 20-25% of the total arterial blood pumped by the heart. The 

kidneys play a key role in eliminating metabolic waste and maintaining fluid and 

electrolyte homeostasis. They are also an endocrine organ, generating 

hormones such as renin and angiotensin that regulate blood pressure, vitaminD 

that maintains calcium balance and bone integrity, and erythropoietin which 

regulates red blood cell production in bone marrow(Kriz & Elger, 2010).  
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Figure 4.1  Anatomical location and relationships of the kidneys. 

 

 

 

The most important function of the kidney is the elimination of metabolic waste 

and the maintenance of normal fluid and electrolyte homeostasis. This occurs 

through a process of filtration by the kidneys, which separate cellular and 

proteinaceous material (e.g. red blood cells, immunoglobulins) in the blood from 

the fluid in which they are suspended (the plasma). The filtration itself occurs 

within organic filters called glomeruli (singular glomerulus). Each human kidney 

contains between 600,000-800,000 glomeruli. As is shown in Figure 4.2, 

unfiltered blood enters each glomerulus via the afferent arteriole and exits after 

filtration via the efferent arteriole. Aggregating the function of all of these 

glomeruli together, the normal kidney filters 125-150mL of blood per minute, or 

75-90 ml/min/1.73m2 when corrected for body surface area to account for the 

size of the person. This latter figure is referred to as the glomerular filtration rate 

(GFR). The filtered blood leaving each glomerulus is reconstituted with purified 

plasma which is generated by the proximal and distal tubules of the kidney, 

which reclaim water and electrolytes as necessary from the glomerular filtrate. 
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By the end of all these processes, the remaining fitrate containing all the 

metabolic waste and excess water and electrolytes is passed down larger 

conduits called collecting ducts into the ureters and then to the bladder for 

excretion as urine(Shirley & Unwin, 2010).  

 

Figure 4.2  Schematic representing the filtering unit of the kidney, namely 

a glomerulus and the tubules that serve it. 

  

 

 

In the healthy population, kidney function declines with physiological ageing at a 

rate of about 1 ml/min/1.73m2 per year after the age of 30 years (Coresh, Astor, 

Greene, Eknoyan, & Levey, 2003; D. F. Davies & Shock, 1950; Rule et al., 

2004). Most people, however, do not experience clinical consequences from 

normal aging, since the effects of age impair kidney function only very mildly, 

and in a manner that is insufficient to causes direct morbidity or mortality.  
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4.1.2. Overview of Kidney Disease 

 

Impaired kidney function can occur in two contexts. The impairment may occur 

over days to weeks in so-called “acute kidney injury”, a condition that is often 

reversible.  On the other hand, the impairment may occur over months to years 

in so-called “chronic kidney disease”, a generally progressive and irreversible 

condition. In both conditions, renal impairment can arise as a result of local 

organ or remote disease. Local organ diseases include congenital conditions 

such as polycystic kidney disease, and acquired ones such as 

glomerulonephritis and interstitial nephritis. Remote diseases include either a 

reduction of blood flow to the organ as a result of shock (severe blood loss, 

sepsis, heart failure) in acute kidney injury, or direct glomerular injury as a result 

of diabetes mellitus and hypertension in chronic kidney disease. Certain insults 

can cause both acute kidney injury and chronic kidney disease, such as 

medication side effects, vascular disease affecting perfusion of the kidney beds, 

and blockages to urinary outflow due to tumours or kidney stones.  

Impaired kidney function causes morbidity and mortality from lack of urine 

production and the accumulation of both metabolic waste in the blood (so-called 

“uraemic toxins”) and also excess salt and water in the body. The clinical 

concept of “uraemia” or “urine in the blood” as a result of kidney failure has 

remained constant since its origins in the 1700’s (Richet, 1988). Then as now, 

untreated uraemia results in death at anytime within days to months once 

toxicity manifests, depending on the rate of deterioration in kidney function and 

degree of concurrent medical co-morbidity (Carter, 1888; Garcia et al., 2007; 

Smith et al., 2003). When kidneys fail altogether, patients die from 

complications of fluid overload (pulmonary oedema, heart failure), complications 

of electrolyte and acid-base perturbation (arrhythmia from hyperkalaemia, organ 

failure from acidosis), and classical manifestations of terminal uraemia 

attributed to the various wastes retained in renal failure (neuro-encephalopathy, 

pericarditis, cardiomyopathy).  
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The clinical consequences of less severe degrees of renal impairment are in 

general proportional to the degree of kidney dysfunction. Overall, chronic kidney 

disease is strongly associated with cardiovascular morbidity and mortality. 

There is clear evidence that this is due to both atherosclerotic coronary artery 

disease probably as a direct result of retained uraemic toxins, as well as left 

ventricular hypertrophy secondary to hypertension and progressive salt and 

water retention. Both of these conditions predispose to myocardial ischaemia 

and sudden cardiac death. In chronic kidney disease, the risk of death 

associated with mild chronic kidney disease is probably not greatly increased 

over the general population without chronic kidney disease. However, in 

moderate and severe chronic kidney disease the risk of death is 20% and 80% 

higher than the general population, even after statistical adjustment for 

conventional cardiovascular risk factors(Go, Chertow, Fan, McCulloch, & Hsu, 

2004).  

End-stage kidney failure (ESKF) occurs when the kidneys fail completely. Most 

but not all patients will receive some kind of renal replacement therapy with 

dialysis or renal transplantation once their kidneys fail. Dialysis in general 

prolongs life by several years, and transplantation by several decades (Figure 

4.3)(Oniscu, Brown, & Forsythe, 2005). However, both treatments come at the 

cost of a heavy predisposition to cardiovascular and infectious diseases which 

between them account for the vast majority of deaths in such patients. Dialysis 

patients have up to a 100-fold increased risk of death compared to the general 

population, and transplant patients a 10-fold risk(Foley, Parfrey, & Sarnak, 

1998). As an example, a 30 year old New Zealander on dialysis has the same 

survival as an 80 year old with normal kidney function (Figure 4.4). The 

prognosis of patients on renal replacement therapy is approximately the same 

as those people who are diagnosed with bowel cancer(Foley et al., 1998; 

Howlader et al., 2001; U S Renal Data System, 2011). It is therefore vital to 

preserve kidney function.  

4.1.3 The Burden of Kidney Disease 

 

After standardization of methods of assessment, the NHANES III survey found 

a chronic kidney disease prevalence of 4.7% in the adult American population 
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(Coresh et al., 2003). Using non-standardized methods, other studies have 

found a prevalence of between 4.9% and 13%(Chadban et al., 2003; Clase, 

Garg, & Kiberd, 2002; de Lusignan et al., 2005; Viktorsdottir et al., 2005). 

Recently, a large primary care study from the UK also using standardized 

methods found a chronic kidney disease prevalence of 8.5% in the adult 

population (10.6% in females, 5.8% in males)(Stevens et al., 2007). The higher 

prevalence in the UK is probably as a result of the large South Asian population 

in this country, who are more prone to kidney disease than the white population. 

Of note, there are no reported prevalence data for chronic kidney disease within 

the general New Zealand population, or even the Pacific / New Zealand Maori 

communities. It is widely assumed that the prevalence of chronic kidney disease 

will be on the higher rather than the lower side in this country because of our 

high risk ethnic minorities.  

 

Figure 4.3 The longevity of dialysis patients who receive a transplant 

versus those who remain on dialysis waiting for one 

 (Oniscu et al., 2005)            

 

As mentioned above, renal replacement therapy for ESKF can be undertaken 

using either dialysis or renal transplantation. Both therapies are life-saving and 

life-sustaining. The vast majority of patients will only ever be treated with 

dialysis due to a shortfall in available organs for transplantation and the inability 

of many sick patients with ESKF to survive such major surgery. For instance, in 
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New Zealand only 13% of those with ESKF are ever listed as waiting for 

transplantation, and only half of those will actually be transplanted(Clayton, 

Excell, Campbell, McDonald, & Chadban, 2010).  

 

It has been estimated that there are 2-3 million people are treated with renal 

replacement therapy for ESKF around the world(Grassmann, Gioberge, 

Moeller, & Brown, 2005; U S Renal Data System, 2011). The prevalence of 

renal replacement therapy in New Zealand can be estimated using the 

Australian and New Zealand Dialysis and Transplant (ANZDATA) Registry, 

which has prospectively collected data on ESKF patients in these countries 

since 1963 (www.anzdata.org.au). According to the most recent census, there 

are between 3000 and 4000 patients treated with renal replacement therapy in 

New Zealand at 31st December 2010 (Figures 4.5). The leading cause of ESKF 

is diabetes mellitus, accounting for more than half the cases.   

 

Figure 4.4  Mortality in patients treated by dialysis and transplantation in 

New Zealand compared to the general population. 

 

 

The number of ESKF patients continues to grow around the world, and is 

around 4.8% per annum in New Zealand and the current time(Clayton et al., 

2010). This growth has arisen from improvements in technology and an aging 
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population, with both factors leading to a broadening of the criteria for 

acceptance of patients for dialysis. At the same time, increased awareness of 

the availability of a life-saving technology has led to an increase in demand for 

dialysis by patients, their relatives and the public at large. Globally, the veritable 

explosion in the end-stage kidney failure population is compounded by the 

increasing access of previously poor nations to technically advanced treatments 

as their economic fortunes increase and the cost of technology falls.  

 

In New Zealand, the treatment of ESKF costs more than $150 million annually 

representing around 1-2% of total public health expenditure.  As practiced, 

dialysis costs on average $46,000 per patient per annum in NZ. Costs for 

transplantation are relatively higher in the first year of treatment (~$90,000) and 

substantially lower in later years (~$9,000 per annum ongoing). In the long-

term, transplantation is approximately 2-3 times less expensive than dialysis on 

a per-patient per-year basis (Figure 4.6)(Ashton & Marshall, 2007).  

Developments to provide clinically superior and more financially viable 

replacement therapies than dialysis and transplantation are not expected in the 

foreseeable future. 

 

4.2 Problem Statement - Evaluation of Kidney Function 

 

4.2.1 Measurement and Estimation 

 

The early detection of renal impairment is therefore vital to allow for the 

institution of appropriate diagnostic and therapeutic measures, and potentially 

maximise preservation of residual renal function in the setting of kidney disease. 

Monitoring the progression and severity of renal impairment is just as important 

since it allows practitioners to monitor the response of kidney disease to 

therapy.  Finally, the evaluation of greater degrees of kidney impairment is 

useful to determine the onset of ESKF and provide additional information to the 

clinician to facilitate the timely initiation of dialysis before lethal complications 

ensue. Estimating the presence and degree of kidney disease is therefore an 
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important patient and population health priority, and fundamental to the 

wellbeing of New Zealanders. 

 

The most intuitive way of estimating the presence and degree of kidney disease 

is by measurement of uraemic toxins in the blood. Unfortunately, however, our 

knowledge about the specific solutes in blood responsible for uraemic toxicity 

remains inconsistent and incomplete. Urea, for instance, has come to be 

recognized as useful marker of general uraemic solute retention, having been 

first isolated from urine in 1773 by Hilaire Marin Rouelle(Richet, 1988). 

However, urea is not a uraemic toxin per se due to its relatively low toxicity and 

the variable relationship of urea concentrations with clinical characteristics of 

the uraemic syndrome.  It is now well accepted that the uraemic syndrome is 

instead the result of the accumulation of multiple factors rather than one single 

substance, as well as the deficiency of an important few such as vitamin D, 

erythropoietin and opsonins(Glorieux, Schepers, & Vanholder, 2007; Vanholder 

& Massy, 2009; Vanholder, Meert, Schepers, & Glorieux, 2008; Vanholder, Van 

Laecke, & Glorieux, 2008).  To date, a 100 or so uraemic toxins have been 

formally identified although the total number is probably in the thousands or 

millions (www.uremic-toxins.org/). Practically, most of these toxins are very 

difficult to measure. Moreover, the relationship between their blood levels and 

clinical disease is reasonably predictable for a given patient, but very variable 

between individuals.  

 

For this reason, GFR itself has come to be best index of renal function in both 

health and disease(Walser, 1998). GFR is most accurately measured by 

clearance measurements of administrated tracers filtered by the kidneys. The 

best tracer for the measurement of GFR is generally considered to be inulin, 

although radioisotopes such as 99Tc-DTPA, 55Cr-EDTA, and 125I-iothalamate are 

more accessible and of comparable accuracy, and are now accepted as 

reference methods for the measurement of GFR in clinical research(Levey et 

al., 1993). All of the methods are still associated with a small degree of error. 

Various investigators have reported intra-test coefficients of variation of 

approximately 5-6%  
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Figure 4.5  Prevalence of ESKF treated with either dialysis or renal 

transplantation at 31st December 2010 in New Zealand, by treating centre.   
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Figure 4.6  Costs of dialysis renal transplantation over the medium term.   

  

 

(Levey et al., 1993; Perrone et al., 1990; Roger et al., 2004; Walser, Davidson, 

& Orloff, 1955), although they have a high degree of reproducibility across 

different centres as long as computing algorithms are similar(Cosgriff et al., 

2003; Cosgriff et al., 2002; Fleming et al., 1998; White, Houston, Sampson, & 

Wilkins, 1999). These methods have been recommended as routine by some 

authors(Mariat C et al., 2004), although they are time consuming and expensive 

and probably unsuitable for routine assessment of GFR in clinical 

settings(Levey et al., 1993). 

 

Estimation of GFR from the clearance measurements of creatinine is based on 

the same principles as the “gold-standard” methods, but avoids the need for 

administered tracers. Creatinine is an endogenously produced protein 

originating from muscle. It is predominantly filtered by the kidneys and is 

progressively retained as kidney function declines. It therefore fulfils the major 

criteria as a tracer and marker of GFR. However, due to a variable degree of 

secretion, creatinine clearance tends to systematically overestimate GFR. This 

discrepancy is negligible for mild degrees of renal impairment, but becomes 

significant at lower levels of GFR. Accuracy can be enhanced by the 
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administration of cimetidine, which can block this secretion, during collection of 

the specimen, thereby providing a creatinine measurement in the urine that is 

derived from glomerular filtration alone(Walser, 1998). Accuracy can also be 

enhanced by using the averaged measured urea and creatinine clearance since 

the former tends to underestimate GFR and the latter overestimate, with the 

average being more accurate than both(Levey et al., 1999). Collection of an 

accurate 24-hour urine sample is essential for all of these tests, requiring a high 

degree of discipline by the patient. Studies have shown collection to be much 

less accurate and reproducible in routine clinical practice, and when such errors 

are not eliminated the day-to-day variation in measured creatinine clearance 

may be as high as 70%(Levey et al., 1999).  

 

Alternatively, GFR can be estimated by a number of empirical formulas that 

have been derived from correlational analysis with measured GFR in various 

datasets of patients with chronic renal disease. Over the last 30 years, medical 

practitioners have come to rely on a number of regression formulas to estimate 

GFR from demographic and common laboratory variables including levels of 

serum creaitine. These formulas predict either creatinine clearance as measure 

of GFR, or less commonly GFR directly depending on the original study design 

for formula development and validation. They represent a compromise between 

exactitude and convenience, since they have the advantage of easy bedside 

calculation without the requirement for direct tracer measurement, but at the 

price of reduced accuracy. Given the barriers to measuring GFR directly, 

formulas such as these have become clinically indispensable in routine medical 

practice. Previously, the most frequently used formula for predicting renal 

function in adults was the Cockcroft-Gault (CG) formula(Cockcroft & Gault, 

1976), which was originally developed for predicting creatinine clearance but 

widely utilised instead for predicting GFR. A number of other less commonly 

used formulas for predicting creatinine clearance or GFR (Table 4-1) have also 

been developed(Bjornsson, 1979; Cockcroft & Gault, 1976; Gates, 1985; Hull et 

al., 1981; Jelliffe, 1971, 1973; Levey et al., 1999; Mawer, Lucas, Knowles, & 

Stirland, 1972; Walser, 1994; Walser, Drew, & Guldan, 1993). When compared 

to reference methods, the prediction error of these formulas in the literature 

averages 21.3%. 
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Recently, the Modification of Diet in Renal Disease (MDRD) study resulted in 

several new formula for more accurate evaluation of GFR(Levey et al., 1999). 

Since they predict GFR as opposed to creatinine clearance, accuracy is 

maintained over the entire range of renal function, including in particular low 

GFR. All these formulas require the input of serum creatinine and various other 

laboratory or demographic variables. The most commonly used MDRD formulas 

estimate GFR from serum creatinine more accurately than the other formulas in 

Table 1-1. For instance, the prediction error of the most accurate MDRD 

formula in the original article (MDRD equation #7) was reported to be 11.5% 

and about half that of the CG formula to which it was directly compared(Levey 

et al., 1999). Although the MDRD investigators did not compare their formulas 

to all the others in Table 4-1, scatter graphs suggest that the MDRD formulas 

outperform these as well (See Figure 4.7). The most accurate MDRD formula 

uses the following variables: age, race, gender, serum creatinine (Scr in mg/dl), 

serum albumin (Alb in g/dl) and blood urea nitrogen concentrations (BUN in 

mg/dl). This so-called MDRD equation #7 is used in this research as the gold 

standard formula for the estimation of GFR, and will be henceforth referred to 

as the MDRD formula. 

 

4.2.2 Better Systems are Needed for Estimating GFR.  

 

All of the formulas in Table 4-1, including the MDRD formula, are derived from 

regression. Regression formulas are the most popular type of prognostic and 

classification models in medicine. Technically, they are derived from data 

gathered from the whole problem space through inductive learning, and are 

consequently used to calculate the output value for a  new input vector 

regardless of where it is located in the problem space. For the estimation of 

GFR, this can result in different regression formulas for the same problem 

through the use of different datasets as can be seen in Table 4-1. As a result, 

all of these formulas have limited accuracy on new data that are significantly 

different from those used for the original modelling.   
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This applies to the even the MDRD formulas, which as described are the best 

ones available. Visual inspection of the validation data for the MDRD formula 

(Figure 4-7) shows still overall poor prediction and accuracy. This inaccuracy 

may under certain circumstances impair good clinical decision-making and 

mislead as to the presence or progression of renal disease. In the validation 

study, over 90% of estimated values by MDRD formula were within 30% of 

measured GFR, an accuracy that was generally maintained for most degrees of 

renal impairment. In relative terms, this degree of accuracy is certainly better 

than other regression formulas(Levey et al., 1999). In absolute terms, this 

degree of accuracy is not always acceptable. A new tool for accurate 

assessment of GFR is therefore desirable. 

 

Figure 4.7  Accuracy of MDRD formula #7¸ the Cockcroft & Gault formula, 

and the Walser formula for the prediction of GFR from the MDRD data as 

presented in the original publication. 

 

 

0

50

100

150

e
G

F
R

 u
s
in

g
 M

D
R

D
 E

q
u
a

ti
o
n

 #
7
 (

m
L
/m

in
/1

.7
3
m

2
)

0 50 100 150 200
 

 Measured GFR (mL/min/1.73m2)



94 
 

 

 

   

 

 

 

0

50

100

150

e
G

F
R

 u
s
in

g
 C

o
c
k
c
ro

ft
 &

 G
a

u
lt
 (

m
L
/m

in
/1

.7
3
m

2
)

0 50 100 150 200
 

 Measured GFR (mL/min/1.73m2)

0

50

100

C
re

a
ti
n
in

e
 C

le
a
ra

n
c
e

 u
s
in

g
 W

a
ls

e
r 

F
o
rm

u
la

 (
m

L
/m

in
)

0 50 100 150 200
 

 Measured GFR (mL/min/1.73m2)



95 
 

Table 4-1  Equations for estimating renal function 

 

Jelliffe Equation         

(1971)   

Men: Ccr  (ml/min/1.73m2 ) 12
100


Scr

            

Women: Ccr (ml/min/1.73m2 ) 7
80


Scr

                                             

Mawer Equation   

(1972)        

Men: Ccr (ml/min/70 kg)
     
  704.14

03.01203.03.29 Weight

Scr

ScrAgeWeight 



     

Women: Ccr (ml/min/70 kg) 

     
  704.14

03.01175.03.25 Weight

Scr

ScrAgeWeight





   

Jelliffe Equation  

(1973)                 

Ccr (ml/min/1.73m2)
   

Scr

Age 208.098
(0.9 if female) 

Cockcroft-Gault 

Equation (1976)   Ccr (ml/min)
 

 efemalif 0.85
Scr

WeightAge






72

140
                          

Hull Equation 

(1981)                        

Ccr (ml/min/70kg)    efemalif 0.85
Weight

Scr

Age  

703
145

      

Bjorasson Equation 

(1984)    

Men:  Ccr (ml/min) Scr

WeightAge 07.0)173.0(27            

Women: Ccr (ml/min) Scr

WeightAge 07.0)175.0(25    

Gates Equation  

(1985)          

Men:  Ccr (ml/min)       1.12.1 447.0554.89   ScrAgeScr  

Women: Ccr (ml/min)       1.11.1 3.05660   ScrAgeScr    

Walser Equation   

(1994)       

Men:  GFR (ml/min/1.73m2)     66.6096.0103.07570  WeightAge
Scr

   

Women: GFR (ml/min/1.73m2)

    81.408.008.06050  WeightAge
Scr

    

MDRD Equation #7 

(1999) 
318.017.0

176.0999.0

)(18.1

)(762.0170

AlbBUNblackisRaceif

femaleisSexifAgeScrGFR








 

 where Age in in years, Weight is in kg and Scr is in mg/dL. 
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There are also other potential theoretical problems applying the MDRD formulas 

to the New Zealand population. The formula was developed in a sample from 

the United States population. A feature of all of the MDRD formulas is a factor 

used to account for black race, 1.18 in the MDRD equation #7. In this research, 

the ethnic mix of "black" patients in Australia and New Zealand includes Maori, 

Polynesian, and Aboriginal patients, who are quite distinct from African 

Americans. It should not be assumed that creatinine generation is higher in 

these ethnic groups as is the case in African Americans. In the GFR dataset 

that will be used for modelling in the research, the mean measured GFR was 

18.73 mL/min/1.73m2 and the mean serum creatinine 0.42 mmol/L for patients 

classified as “black”. The corresponding values were were 22.9 mL/min/1.73m2 

and 0.34 mmol/L for patients classified as “white”. If one equates GFR with 

creatinine clearance and assumes a steady state, the mean 24-hour creatinine 

generation is 11.3 mmol for both blacks and whites. The only other available 

published data support this finding. The relationship between calculated 

creatinine clearance and urine creatinine was not different in Pacific People, 

New Zealand Maoris, and Europeans (P.A. Metcalf, personal communication, 

July 26, 2004)(Metcalf, Scragg, & Dryson, 1997). This issue highlights again the 

potential in applying formulas such as the MDRD formulas in a population that 

is different from that in which they have been developed. 

 

4.3 Problem Statement - The Prediction of Mortality in Dialysis 

Patients  

 

4.3.1 Predicting Prognosis in Dialysis Patients 

 

As described above, the prognosis of patients on dialysis is poor. In New 

Zealand, the average survival of dialysis patients is approximately 5 

years(Marshall et al., 2011). The need for more sensitive and specific 

prognostic information is motivated by several main principles. Each discussed 

in the following sections.  
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4.3.2 Principle 1: Prospective Identification of High Risk Dialysis Patients 

 

To be effective in supporting patients with this disease, intervention must aim to 

prevent catastrophic complications of ESKF rather than treating them. An 

accurate prognostic system will allow for prospective identification of high risk 

dialysis patients, who are likely to require increased health service resource. 

This will in turn allow more opportunity to intervene with potential to improve 

outcomes. This may also lead to the identification of characteristics associated 

with such a poor outcome such that withdrawal of dialysis, now the third most 

common cause of death in New Zealand(S McDonald, Excell, & Livingston, 

2010), can be carefully managed and in some cases anticipated.  

 

4.3.3 Principle 2: Provision of Equitable and Improved Clinical Outcomes to 

through Robust Benchmarking 

 

Recent evidence from New Zealand and elsewhere has highlighted apparently 

significant differences in patient survival across countries and dialysis units. For 

instance, the reported five-year mortality rates for end-stage kidney disease in 

Europe and Japan are 20-35% lower than those reported in the United States, 

even when adjusted for age, sex, and diabetic status(Held et al., 1990). Within 

the United States, there is a five-fold variation in both crude and adjusted 

mortality reported across facilities(Hulbert-Shearon, Loos, Ashby, Port, & Wolfe, 

1999; McClellan, Flanders, & Gutman, 1992). Similar results have been shown 

in the UK (Ansell & Feest, 2002). Recent analysis of units in Australia and New 

Zealand has showed significant centre variation in outcomes after accounting 

for both risk factors predictive of poor outcomes between centres, as well as 

potential bias due to sampling variability(Ansell & Feest, 2002; MacDonald, 

2003)(Figure 4.8).  

 

These observations have led to vigorous debate as to the relative effects of 

patient-related versus treatment-related factors(Keane & Collins, 1994; Lowrie 

& Lew, 1990; Marcelli et al., 1996), although the impact of differing practice 

patterns in contributing to these variations is disputed by few. However, a 

league table approach to this problem is flawed due to imprecise and overly 

sensitive statistical models. Without exception, these models are very sensitive 
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to minor differences in adjustment for predictive baseline characteristics 

producing inappropriately large changes in estimates of treatment effect on 

survival. Despite this, increasing scrutiny of the performance of health care 

providers has led to an increasing number of initiatives on a regional or unit 

basis, with these inadequate statistical tools providing the basis for the 

assessment of the quality of care in order to identify centres for possible 

regulatory intervention.  

 

The provision of equitable and improved clinical outcomes to a heterogeneous 

group of patients on dialysis will only be achieved through harmonization of 

clinical care to evidence-based best practice, and also reliable monitoring of 

mortality rates in dialysis units whilst accounting for the proportion of high risk 

patients in their population. To date, the league table approach using either time 

series analysis or standardized mortality ratios have not been reliable enough 

for this task, and as a consequence have not been adopted. Better predictive 

tools for acute benchmarking between dialysis units are required.  

 

Figure 4.8  Significant centre variation in relative risk of mortality after 

accounting for both patient-level risk factors predictive of poor outcome 

and potential bias due to sampling variability 

(SP McDonald, 2003). 
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4.3.4 Principle 3: Provision of Renal Replacement Therapy for All Those Who will 

Benefit from Treatment  

 

Funding agencies are faced with the task of allocating the necessary resources 

to provide access to renal replacement therapy for all those who will benefit 

from the treatment. In turn, dialysis providers must provide more accurate 

clinical assessments that dialysis will meaningfully prolong life and provide an 

acceptable quality of life in individual cases. While there is some variation in 

practice as indicated above, most dialysis services in New Zealand do not 

accept patients for dialysis whose life prolongation is estimated to be less than 

6 months. In this situation, dialysis providers are critically dependent on a 

scoring system or clinical intuition to accurately predict death soon after starting 

dialysis, and unless this can be achieved with certainty then limiting dialysis on 

the basis of likely short survival is almost certainly inappropriate(JF Collins, 

1998; Khan & Macleod, 1995; Kjellstrand & Moody, 1994). 

 

4.3.5 Principle 4: Accurate Clinical Assessments as to the Prolongation of life, and 

the Provision of an Acceptable Quality of Life for Dialysis Patients  

 

All patients with ESKF are offered dialysis treatment provided it will 

meaningfully prolong their life and provide an acceptable quality of life. A 

system that can accurately predict death soon after starting dialysis will allow for 

dialysis providers and patients to make a robust clinical evaluation as to 

whether dialysis will provide clinical benefit, and therefore allow a more 

objective and informed decision as to whether dialysis should be either offered 

or accepted. Approximately 50% of patients who reach ESKF are not offered or 

do not engage an offer of dialysis. The most common reason is a perception by 

either the dialysis provider or the patient of a low quality of life on dialysis for a 

only short prolongation of life. Although no such data are available for a 

complex therapy such as dialysis, patients who are asked to imagine 

themselves as incompetent with a poor prognosis decide against 

cardiopulmonary resuscitation about 70% of the time(Emanuel, Barry, Stoeckle, 

Ettelson, & Emanuel, 1991; Finucane, Shumway, Powers, & D'Alessandri, 

1988; Frankl, Oye, & Bellamy, 1989; Lo, McLeod, & Saika, 1986; Shmerling, 

Bedell, Lilienfeld, & Delbanco, 1988; Uhlmann, Pearlman, & Cain, 1988; 
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Wagner, 1984). A system that allows for accurate prediction of outcomes will 

potentially allow dialysis providers to withhold dialysis, and potential dialysis 

patients to refuse dialysis when the therapy merely serves to prolong death as 

opposed to prolonging life. Such a system may also provide data on 

characteristics that identify patient who are already on dialysis with a very poor 

prognosis. This would in turn allow the withdrawal of dialysis, now the second or 

third most common cause of death in both the United States and Australasia(S 

McDonald et al., 2010; U S Renal Data System, 2011), can be carefully 

managed and in some cases anticipated. 

 

4.3.6 Principle 5: Identification of Novel Factors or Novel Interactions between 

Factors to Improve Patient Care. 

 

Accurate models of patient survival may identify new factors or new interactions 

between factors that place patients on dialysis at increased risk, such as the 

elderly or those in certain ethnic minorities such as the New Zealand Maori. 

This will allow for new strategies and interventions for their medical, social and 

economic problems in order to improve outcomes.  

 

4.3.7  How can Dialysis Patients be Risk Stratified? 

 

Prognostic indices to identify mortality risk in advance should be based on those 

variables that independently predict mortality in prospective studies, or have 

independent associations with mortality in cross-sectional studies. Many such 

patient-related or treatment-related variables have been identified in the 

literature. Notwithstanding differences in data definitions between studies, 

omitted variables, the time-dependent nature of many risk factors, and issues 

around external validity, the following variables have been identified as being 

independent correlates of mortality in dialysis patients:  

 Age(Avram, Mittman, Bonomini, Chattopadhyay, & Fein, 1995; Barrett et 

al., 1997; Byrne, Vernon, & Cohen, 1994; Churchill et al., 1992; 

Fernandez, Carbonell, Mazzuchi, & Petruccelli, 1992; Foley et al., 1994; 

Garcia-Garcia et al., 1985; Hutchinson, Thomas, & MacGibbon, 1982; 

Keane & Collins, 1994; Khan & Macleod, 1995; Lowrie & Lew, 1990; 

MacDonald, 2002; Wright, 1991)  
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 Diabetes mellitus(Avram et al., 1995; Byrne et al., 1994; A. J. Collins, 

Hanson, Umen, Kjellstrand, & Keshaviah, 1990; S. J. Davies, Russell, 

Bryan, Phillips, & Russell, 1995; Garcia-Garcia et al., 1985; Hutchinson 

et al., 1982; Keane & Collins, 1994; Khan et al., 1993; Lowrie & Lew, 

1990; Lowrie, Lew, & Huang, 1992; MacDonald, 2002; Wright, 1991),  

 Poor nutrition as indicated by body mass index, subjective global 

assessment, serum creatinine, serum albumin, serum cholesterol, total 

lymphocyte count(Acchiardo, Moore, & Latour, 1983; Avram et al., 1995; 

Chertow, Johansen, Lew, Lazarus, & Lowrie, 2000; S. J. Davies et al., 

1995; Leavey et al., 2001; Leavey, Strawderman, Jones, Port, & Held, 

1998; Lowrie et al., 1992; Owen, Lew, Liu, Lowrie, & Lazarus, 1993; Pifer 

et al., 2002) 

 Race(Lowrie et al., 1992; Owen, Chertow, Lazarus, & Lowrie, 1998) 

 Blood pressure(Fernandez et al., 1992; Foley, Parfrey, et al., 1996c; 

Port et al., 1999) 

 Vintage (time on dialysis)(Avram et al., 1995; Chertow et al., 2000; 

Lowrie & Lew, 1990) 

 Primary renal disease (Byrne et al., 1994; Garcia-Garcia et al., 1985; 

Lowrie & Lew, 1990; Wolfe, Port, Hawthorne, & Guire, 1990) 

 Left ventricular hypertrophy(Foley et al., 2000) 

 Left ventricular ejection fraction(Foley et al., 2000) 

 Congestive heart failure(Foley et al., 2000; Hutchinson et al., 1982; 

Keane & Collins, 1994) 

 Ischaemic heart disease(Churchill et al., 1992; S. J. Davies et al., 1995; 

Fernandez et al., 1992; Foley, Parfrey, et al., 1996a; Foley et al., 1994; 

Keane & Collins, 1994) 

 Treated arrhythmia(Foley et al., 1994) 

 Peripheral vascular disease(A. J. Collins et al., 1990; S. J. Davies et 

al., 1995; Foley et al., 1994; Keane & Collins, 1994) 

 Chronic lung disease(A. J. Collins et al., 1990; Keane & Collins, 1994) 

 Central nervous system disease(A. J. Collins et al., 1990; Foley et al., 

1994) 
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 Smoking(Keane & Collins, 1994), non-cutaneous malignancy(Barrett et 

al., 1997; A. J. Collins et al., 1990; S. J. Davies et al., 1995; Foley et al., 

1994; Keane & Collins, 1994) 

 Liver disease(Beddhu, Bruns, Saul, Seddon, & Zeidel, 2000; Foley et 

al., 1994; van Manen et al., 2002) 

 Systemic collagen vascular disease(van Manen et al., 2002) 

 Dialysis schedule and duration(Charra et al., 1992; Lowrie & Lew, 

1990; Marshall, Byrne, Kerr, & McDonald, 2006) 

 Dialysis dose(Avram et al., 1995; A J Collins, Ma, Umen, & Keshaviah, 

1994; S. J. Davies et al., 1995; Fernandez et al., 1992; Gotch & Sargent, 

1985; R.M. Hakim, Breyer, Ismail, & Schulman, 1994; Keshaviah & 

Collins, 1988; Lowrie, Laird, Parker, & Sargent, 1981; Owen et al., 1993; 

Parker, Husni, Huang, Lew, & Lowrie, 1994) (Marshall et al., 2006) 

 Haemodialysis access(Combe et al., 2001), haemodialyser membrane 

characteristics(Eknoyan et al., 2002; R. M. Hakim, 1998; R. M. Hakim et 

al., 1996; Leypoldt et al., 1999)  

 Inflammatory markers(R.M. Hakim et al., 1994; Yeun, Levine, 

Mantadilok, & Kaysen, 2000; J. Zimmermann, Herrlinger, Pruy, Metzger, 

& Wanner, 1999) 

 Haemoglobin(Besarab et al., 1998; Foley, Parfrey, et al., 1996b) 

 Serum calcium(Foley, Parfrey, Harnett, Kent, Hu, et al., 1996) 

 Serum phosphate(Block, Hulbert-Shearon, Levin, & Port, 1998; Block & 

Port, 2000) 

 Acid-base status(Lowrie & Lew, 1990), patient compliance(Leggat et 

al., 1998) 

 Depression and quality of life(Lopes et al., 2003; Lopes et al., 2002) 

 Haemodialysis unit ownership(Garg, Frick, Diener-West, & Powe, 

1999) 

 Pre-dialysis care(Cass, Cunningham, Snelling, Wang, & Hoy, 2002; 

Jungers et al., 1993) 

 Functional status(Chandna, Schulz, Lawrence, Greenwood, & 

Farrington, 1999; Keane & Collins, 1994; Lopes et al., 2003; McClellan, 

Anson, Birkeli, & Tuttle, 1991) 
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 Socioeconomic status(Cass et al., 2002; Lopes et al., 2003; Young, 

Mauger, Jiang, Port, & Wolfe, 1994) 

 Health insurance(Garcia-Garcia et al., 1985). 

 

4.3.8  What Systems are Currently Available to Predict Outcomes? 

 

The numerous studies cited above have examined the influence of patient-

related and treatment-related variables on mortality in dialysis patients. The 

combined risk of having multiple single co-morbid medical conditions has been 

investigated less often and for only a limited number of diseases(Barrett et al., 

1997; Churchill, Thorpe, Vonesh, & Keshaviah, 1997; S. J. Davies et al., 1995; 

Gokal & Mallick, 1999; Khan et al., 1993; Mailloux et al., 1996; Mallick & Gokal, 

1999; van Manen et al., 2002; Van Manen et al., 2003). There are four simple, 

quantitative or semi- quantitative scoring systems in the literature that are 

generally regarded as being potentially useful. In essence, these scores attempt 

to summarise medical co-morbidity into a risk score.  

 

The first method was developed by Khan and colleagues in 1993(Khan et al., 

1993), derived from 375 incident haemodialysis and peritoneal dialysis patients 

from two centres for whom they had collected 2 years of survival data. Based 

on a combination of age and co-morbidity, patients were classified to have a 

low, medium and high mortality risk. The second method was developed by 

Davies and colleagues in 1995(S. J. Davies et al., 1995), derived from 97 

prevalent peritoneal dialysis patients from a single centre for whom they had 

collected 30 months of survival data. Based on the number of co-morbid 

medical conditions without age, patients were classified to have either no, 

intermediate, or severe co-morbidity. The third method is the Charlson co-

morbidity index, which is designed to deal with prognostic co-morbidity in 

longitudinal studies of all kinds of patients. Based on different weights for 

separate age classes and co-morbid medical conditions, a risk score can be 

calculated (Charlson, Pompei, Ales, & MacKenzie, 1987). This method was 

utilised by Beddhu and colleagues in 2000(Beddhu et al., 2002), adapted in 268 

incident and prevalent patients from a single centre for whom had collected 2 

years of survival data. The fourth method was developed by Foley in 
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1994(Foley et al., 1994), derived in 325 patients incident haemodialysis and 

peritoneal dialysis patients from a single centre for whom they had collected up 

to 11 years of survival data.  

 

In addition to these four indices, there has been a recent report from the 

Netherlands Co-operative Study on the Adequacy of Dialysis (NECOSAD) 

Study Group, who has explored the performance of new scoring systems 

derived from regression analyses of their own dataset. Several prognostic 

indices were developed from the combination of regression coefficients from 

Cox proportional hazard analysis and values of chosen variables. This study 

provided the opportunity to develop a scoring system in a large (n = 1205) 

prospective follow-up study of all incident dialysis patients in the majority of 

centres in the Netherlands, with data that allowed for the inclusion of more 

medical co-morbidity (15 conditions) and explicit graded severity for four of the 

most weighted co-morbid medical conditions(van Manen et al., 2002; Van 

Manen et al., 2003). This methodology can be utilised for the development of a 

prognostic index in any dataset that has been subject to appropriate 

regressions analysis, and has been proposed but not tested in other settings(J. 

Collins & Metcalf, 2003; MacDonald, 2002).  

 

One other index used in patients with ESKF is the Index of Co-Existent Disease 

(ICED)(Athienites et al., 2000; Miskulin et al., 2001; Miskulin et al., 2002; 

Nicolucci et al., 1992). The ICED summarizes co-morbidity by adding the peak 

score of the disease severity of co-morbidities and the peak score for impact of 

co-morbidities on physical impairment. Because the degree of physical 

impairment of the patient is rated for this index, the ICED seems more 

equivalent to a health status instrument, and therefore somewhat different from 

those indices above.  

 

4.3.9  Better Systems for Predicting Survival are Needed. 

 

The reference method for predicting outcomes in dialysis patients remains 

clinical intuition by the medical team. Surprisingly, this has been tested robustly 

in only one study, in which nephrologists performed as well the prognostic 
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indices at predicting early death(Barrett et al., 1997). Nevertheless, both clinical 

intuition and available scoring systems do not predict outcomes with a degree of 

accuracy that would influence clinical or administrative management. For 

instance, the system presented by Foley and colleagues was applied 

prospectively by Barrett and colleagues to 822 incident haemodialysis and 

peritoneal dialysis patients at 11 Canadian centres(Barrett et al., 1997). It was 

found that 52% of those classified as high risk died within 6 months, although 

23% were still alive after more than a year of treatment. Further refinement and 

adjustment of the model did not result in improved performance. The treating 

nephrologists provided a separate intuitive prediction of survival, which were as 

accurate as the scoring system up to 6 months, above which they tended to 

overestimate risk. The authors concluded that the inability of a scoring system 

or clinical intuition to accurately predict death soon after starting dialysis 

suggested limiting dialysis on the basis of likely short survival was 

inappropriate. 

 

Contrary to expectations, the NECOSAD index did not result in improved 

performance over the Khan, Davies or Charlson indices. This was despite a 

large number of patients, precise data, and inclusion of a large number of co-

morbid medical conditions with graded severity. The authors concluded further 

fine tuning of the NECOSAD index was unlikely to produce a superior scoring 

system, and that the Khan, Davies and Charlson indices were all appropriate for 

the expressing the prognostic impact of co-morbidity on mortality. 

 

Why then are these systems so limited? It has been speculated that the 

inclusion of yet other variables such as functional status may improve the 

predictive accuracy of these models(Barrett et al., 1997). In addition, these 

prognostic indices do not include potentially important variables relating to 

practice patterns at either a patient level such as details of dialysis procedures 

and medications, or at a facility level such as physician contact time or staffing 

ratios. However, it is more likely that simple regression is unable to account for 

variables which are interrelated in a multidimensional manner within the patient 

clinical profile, or account for variables which have a non-linear or complex 
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relationship with survival. A better system for predicting survival is likely to 

require a paradigm shift in modelling, and motivates the sue  

 

4.4. Study Datasets. 

 

4.4.1 The GFR Dataset. 

 

The EPO AUS-14 study was a prospective multi-centre randomised clinical trial 

conducted from 1998 to 2002 to determine if maintenance of serum 

haemoglobin between 120 and 130 g/L prevented and/or delayed the 

development of left ventricular hypertrophy in patients with advanced kidney 

disease. The coordinating centre did the original selection of 12 centres in 

Australia and New Zealand, and all incident patients fulfilling the criteria for 

study were screened for participation. These criteria were: (1) age between 18 

and 75 years, (2) GFR between 15 to 50 mL/min, and (3) demonstrated 

historical decline in haemoglobin concentration to 110 - 130 g/L for males and 

100 - 120 g/L for females. Full details of the methods and results of the study 

have been reported elsewhere(Roger, McMahon et al. 2003). EPO AUS-14 was 

approved by ethical review committees at respective institutions and informed 

consent was obtained from all patients in accordance with the guidelines 

proposed in the Declaration of Helsinki(1997). 

 

A sample of patients was drawn from EPO AUS-14 for research. In the original 

study, 296 patients were consented and screened for randomisation. We 

excluded patients from this research if the date of GFR measurement by the 

reference method did not coincide with the date of laboratory testing, or if the 

protocol employed for this GFR measurement differed from that stated below. A 

total of 178 patients from the original cohort were included in this study. The 

demographic and clinical characteristics of these patients are provided in Table 

4-2.  
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Reference GFR measurements were made for all patients at baseline and then 

yearly intervals for the duration of the study. GFR was measured as the plasma 

clearance of chromium-51 ethylenediamine tetraacetic acid (51Cr-EDTA) 

corrected for body surface area (GFR-EDTA). Clearance was determined by 

either two or three point sampling at variable intervals between 0.5 and 4.5 

hours after tracer injection, with or without a correction for the monoexponential 

assumption. Samples were processed in the nuclear medicine laboratories in 

each of the respective centres. Median intra-test and inter-test coefficients of 

variation within and between these centres were not studied and are therefore 

unavailable. A total of 441 GFR-EDTA measurements were available for this 

study. 

 

A limitation of this dataset is that multiple GFR measurements are included for 

each patient. This methodology has occasionally been a feature of previous 

research of this nature17, since estimates derived from any analysis in the 

dataset will be weighted by the characteristics of patients with more frequent 

measurements. To examine this further, demographic, clinical, and laboratory 

characteristics of the patients in this dataset have been compared between 

those with patients one or two GFR measurements, versus those with three or 

four measurements. There were no demonstrable differences in any of these 

parameters, indicating that the average frequency of 2.4 GFR measurements 

per patient was unlikely to have confounded our results. The other limitation of 

this dataset is its sample size: the MDRD study used 1070 and 558 GFR 

measurements for training and validation, respectively, compared with 309 and 

132 corresponding GFR measurements in this study. This will inevitably limit the 

power of the analyses presented in this research.  

 

A fundamental strength of this dataset is that it is sourced from multiple centres 

using the centres’ own clinical and laboratory measurements. This study design 

reproduces routine clinical practice, as opposed to previous studies which have 

usually been undertaken in single centres, or in multiple centres but using 

central laboratories.   
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Table 4-2  Baseline clinical characteristics of study participants in the 

GFR dataset 

 

Parameter n (% of total) Mean Standard Deviation 

    

Number of patients 178 - - 

Number of GFR 

measurements 

441 - - 

Male  93 (52%) - - 

Female 85 (48%) - - 

White race 160 (89%) - - 

Asian race 3 (2%) - - 

Black race 15 (9%) - - 

Angiotensin 

converting enzyme 

inhibitor use 

130 (74%) - - 

HMG CoA 

reductase inhibitor 

use 

69 (39%) - - 

Loop diuretic use 76 (43.3%) - - 

Diabetes mellitus 47 (26.4%) - - 

Hypertension 165 (93.0%) - - 

Congestive heart 

failure 

4 (2.2%) - - 

Ischaemic heart 

disease 

30 (16.9%) - - 

Age - 53.2 13.7 
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Weight (kg) - 77.1 15.9 

Height (cm) - 167.8 9.6 

Systolic blood 

pressure 

- 141.2 21.5 

Diastolic blood 

pressure 

- 79.5 11.7 

Serum creatinine 

(mmol/L) 

- 0.35 0.21 

Serum urea 

(mmol/L) 

- 20.4 7.6 

Serum albumin (g/L) - 38.8 4.7 

Haemoglobin - 111.7 10.0 

Left ventricular 

ejection fraction 

- 65 7.4 

Left ventricular 

mass (gm) 

- 162.8 57.7 

Left ventricular 

mass index ( g/m2) 

- 86.9 26.1 

 

4.4.2 The DOPPS Dataset 

 

The Dialysis Outcomes and Practice Patterns Study (DOPPS, www.dopps.org) 

is a prospective observational longitudinal cohort study which has been ongoing 

since 1996. The research plan of the DOPPS is to assess the relationship 

between haemodialysis treatment practices and patient outcomes, and the 

relationship between different patient outcomes, all for the purpose of improving 

treatments and survival of patients on haemodialysis. The DOPPS studies a 

stratified random sample of haemodialysis patients from the United Sates, 8 

European countries (United Kingdom, France, Germany, Italy, Spain, Belgium, 

Netherlands, and Sweden), Japan, Australia and New Zealand. There have 



110 
 

been four phases of data collection since 1996, and a fifth phase is currently 

just beginning. At the time of this thesis, the DOPPS had enrolled 27880 

incident and prevalent patients (approximately 33% and 66% respectively) in 

the study, representing approximately 75% of the world’s haemodialysis 

patients. Prevalent patients are defined as those patients who had received 

maintenance haemodialysis prior to the study period, while incident patients are 

those who had not previously received maintenance haemodialysis. 

 

The DOPPS collects detailed practice pattern data, demographics, cause of 

end-stage renal disease, medical and psychosocial history, and laboratory data 

at enrolment and then at regular intervals during the period of observation. 

Baseline characteristics of patients at study enrolment are provided in Table 

6.2. Numerous patient outcomes are studied, although the outcomes of main 

interest are death, frequency of hospitalisation, vascular access, and health 

related quality of life.  

 

The DOPPS dataset for this case study contains 6100 samples from the 

DOPPS phase 1 in the United States, collected from 1996-1999. Each record 

includes 24 patient and treatment related variables (input): demographics (age, 

sex, race), psychosocial characteristics (mobility, summary physical and mental 

component scores (sMCS, sPCS) using the Kidney Disease Quality of Life (KD-

QOL®) Instrument), co-morbid medical conditions (diabetes, angina, myocardial 

infarction, congestive heart failure, left ventricular hypertrophy, peripheral 

vascular disease, cerebrovascular disease, hypertension, body mass index), 

laboratory results (serum creatinine, calcium, phosphate, albumin, hemoglobin), 

haemodialysis treatment parameters (Kt/V, haemodialysis angioaccess type, 

haemodialyser flux), and vintage (years on haemodialysis at the 

commencement of the DOPPS). The outcome is patient survival at 3 years post 

study enrolment. 

 

A fundamental strength of this dataset is that it is representative of most of the 

world’s dialysis population other than for China. Patients are randomly chosen 
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from a random selection of dialysis units within countries, with the random 

selection of units being stratified by type of dialysis unit (hospital based versus 

community satellite, publicly funded versus private). Of note, 20 dialysis units in 

Australia and two in New Zealand participate in the DOPPS.  As such, the data 

in the DOPPS dataset are directly applicable to both our local dialysis 

population and also the wider global population.  
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Table 4-3  Baseline clinical characteristics of study participants in the 

DOPPS dataset 

Parameter n (% of total) Median Inter-

quartile 

range 

    

Number of patients 6010   

Age (years)  62  49-62 

Vintage (years)  0.6  0.02-2.73 

Male  3282 (54.6%)   

Female 2728 (45.4%)   

Race:         

              White 3071 (51.1%)   

              Black  2054 (34.2%)   

              Asian  178 (3.0%)   

              Native American 49 (0.8%)   

              Hispanic  580 (9.7%)   

              Other 78 (1.3%)   

Primary renal disease:    

              Diabetes mellitus 2257 (40%)   

              Hypertension 1723 (30.5%)   

              Glomerulonephritis 553 (9.8%)   

              Neoplasms  93 (1.7%)   

              Obstruction 152 (2.7%)   

              Polycystic kidney disease / 

interstitial nephritis / hereditary 

561 (9.9%)   
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              Other 305 (5.4%)   

Smoking:     

              Active 2478 (52.6%)   

              Former (<1 year) 1015 (21.5%)   

              Former (>1 year) 237 (5.0%)   

              Non-smoker 985 (20.1%)   

Angina:    

              None 3867 (64.4%)   

              Exertional 1464 (24.4%)   

              At rest 679 (11.3%)   

Previous myocardial infarction    

              None 4790 (79.7%)   

              > 3 months 1087 (18.1%)   

              < 3 months 133 (2.2%)   

Previous coronary surgery / intervention 863 (14.8%)   

Previous cardiac arrest               149 (2.5%)   

Congestive heart failure                  

              None 2821 (48.2%)   

              Previous 917 (15.7%)   

              Dyspnoea at rest 2115 (36.14)         

Left ventricular hypertrophy 1685 (28.7%)   

Cancer:                  

              None 5271 (87.7%)   

              >10 years ago 298 (5.0%)   
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              5-10  years ago 91 (1.5%)   

              1-5 years ago 143 (2.4%)   

              <1 year ago 207 (3.4%)   

Hypertension:    

             None 892 (15.4%)   

             Current 4795 (82.5%)   

             Current + retinopathy 123 (2.1%)   

Previous cerebrovascular disease    

             None 4962 (84.4%)   

             TIA 123 (2.3%)   

             Stroke, no deficit  492 (8.4%)   

             Stroke, deficit 291 (5.0%)   

Peripheral vascular disease    

             None 4388 (74.7%)   

             Intermittent claudication 460 (7.8%)   

             Previous bypass / AAA 208 (3.5%)   

             Rest pain / gangrene 500 (8.5%)   

             Previous amputation 321 (5.5%)   

Diabetes mellitus    

             None 3072 (52.6%)    

             Current 1293 (22.1%)    

             Current + microvasculopathy 1479 (25.3%)         

Lung disease    

             None 5095 (87.4%)   
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             Current 522 (9.0%)   

             Current + home oxygen 215 (3.7%)   

Dementia 230 (3.9%)   

Peripheral neuropathy 1119 (18.9%)   

Atrial fibrillation 629 (10.6%)   

Alcohol abuse 320 (7.5%)   

Previous parathyroidectomy 140 (2.4%)   

Gastrointestinal bleeding:    

              None  4933 (83.2%)   

              Previous 537 (9.1%)   

              <12 months 457 (7.7%)   

AIDS 71 (2.6%)   

Hepatitis B:    

              None 5886 (97.9%)   

              Current 121 (2%)   

              Current + ascites 3 (0.1%)   

Hepatitis C:    

              None 5608       93.31   

              Current 392 (6.5%)   

              Current + ascites 10 (0.2%)   

High flux haemodialysis 2277 (43.5%)   

Vascular access:    

              Fistula 1208 (20.8%)   

              Graft 2353 (40.4%)   
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              Bovine graft 129 (2.2%)   

              Tunnelled CVL 1139 (19.6%)   

              Non-tunnelled CVL 992 (17.0%)   

Malnutrition 439 (8.6%)   

Mobility:    

               Walks and eats normally 3784 (67.2%)   

               Walks with assistance 912 (16.2%)   

               Wheelchair, can transfer 361 (6.4%)   

               Wheelchair, cannot transfer 449 (8.0%)   

               Cannot eat independently 126 (2.2%)   

Marital status    

               Single 1072 (18.5%)   

               Married 2887 (49.8%)   

               Widowed  1039 (17.9%)   

               Divorced 635 (11.0%)   

               Separated 163 (2.8%)   

Living status    

               Living alone 1014 (17.3%)   

               Lives with family or friends 4519 (77.0%)   

               Nursing home/ institution 311 (5.3%)   

               Homeless 15 (0.3%)   

               Prisoner 8 (0.1%)   

Education:    

               <12 years 1655 (34.9%)   
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               High school 1806 (38.1%)   

               Incomplete tertiary 716 (15.1%)   

               Graduate tertiary 570 (12.0%)   

 Employment / homemaker /retired:                

                Current 2412 (57.6%)   

                Unemployed 541 (12.9%)   

                Disabled 1234 (29.5%)   

Residual renal function 1329 (39.5%)   

Blood pressure (mmHg):    

                Pre-dialysis systolic  153 137-168 

                Pre-dialysis diastolic  79 70-88 

                Post-dialysis systolic  142 126-159 

                Post-dialysis diastolic  75 66-84 

Haemodialysis Rx / week  3 3-3 

Heamodialysis Rx time (hours)  210 180-240 

Dialysate K+ (mmol/L)  2 2-2.5 

Dialysate Na+ (mmol/L)  140 140-143 

Dialysate bicarbonate (mmol/L)  35 35-39 

Daily protein intake (g)  80 71-92 

Daily calorie intake (kcal)  2000 1800-2000 

3-mo mean serum creatinine (mg/dL)  8.4 6.3-11 

3-mo mean serum BUN (mg/dL)  63.3 51-78.5 

3-mo mean serum K+ (mmol/L)  4.7 4.3-5.2 

3-mo mean serum Ca2+ (mg/dL)  9 8.4-9.6 
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3-mo mean serum albumin (mg/dL)  3.7 3.3-3.9 

3-mo mean serum PO4 (mg/dL)  5.6 4.6-6.7 

3-mo mean serum Hb (g/dL)  10.5 9.5-11.4 

3-mo mean serum Na+ (mmol/L)  138 135-140 

3-mo mean serum HCO3
- (mmol/L)  21 18-24 

3-mo mean serum ferritin (ug/L)  236 105-480 

3-mo mean total cholesterol (mg/dL)  166 140-197 

3-mo mean HDL cholesterol (mg/dL)  37 31-49 

3-mo mean LDL cholesterol (mg/dL)  102 76-138 

3-mo mean triglycerides (mg/dL)  143 100-212 

Kt/V  1.3 1.15-1.42 

Normalized protein catabolic ratio   0.9 0.7-1.1 

Predialysis weight (Kg)  73.5 62.7-87.2 

Postdialysis weight (Kg)  71.2 60.5-84.6 

BMI  24.7 21.5-29 

Summary physical component score  31.9 24.7-40.1 

Summary mental component score  47.4 37.5-56.1 

Depression 1133 (19.1%)   

 

 

4.5 Regression Formulas and Connectionist Systems  

 

As discussed above, kidney disease is a lethal and expensive calamity for both 

the patient and the nation. Better predictive tools would help lessen the burden 

of disease to both sufferers of kidney disease and the population at large.  
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As is also discussed above, regression formulas are the stalwart of prediction in 

medical issues related to kidney disease. However, their accuracy is limited with 

incremental improvement with addition data and modelling complexity. One 

reason for their poor performance is that they are global models, in which 

statistical functions or mathematical formulas are developed and applied 

uniformly to the entire patient population. For example, the MDRD formula 

implicitly assumes that relationships between predictive variables and GFR are 

the same for every patient within a given cohort. 

 

In contrast, a framework of multiple local models, in which different statistical 

models or mathematical formulas are developed and applied in different 

clusters of patients, may be more fruitful. As described in the previous chapters 

of this research, connectionist systems can be provided with a self-mapping 

function by which new patient data are allocated to whichever cluster or clusters 

are closest in terms of the associated predictive variables. From there, the local 

models unique to the allocated cluster or clusters can be applied to the new 

data in a weighted fashion. Moreover, these self-mapping functions may be 

used for a transductive approach to develop new models for each new patient 

using a framework of multiple personal models. Overall, it is likely that 

connectionist computing structures using these frameworks will generate more 

accurate output than regression analysis. A further benefit of connectionist 

systems is the easy implementation of adaptive modelling: when new patient 

training data are provided, the system will optimize both clustering and local or 

personal models until error cannot be reduced further. This is not possible to 

implement with classical regression analysis. 

 

Regression analysis is often unsuited for noisy medical data, and limited by 

assumptions regarding data distribution. In contrast, connectionist systems 

tolerate noisy data well and do not require assumptions regarding data 

distribution. They outperform classical regression analysis in situations where 

input variables are interrelated. They are potentially suitable for the prediction of 

both GFR in chronic kidney disease and survival in dialysis patients, where the 
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complex interrelation of patient factors make the evaluation of renal function 

and prediction of prognosis very difficult. 

4.6 Summary 

 

This chapter provides the medical and biological background to the 

representative problems which will be modelled in this research. It presents 

context and clinical relevance, the biological role of renal function, and the 

difficulties of renal function evaluation using current tools. The chapter also 

provides corresponding background to the problem of mortality for 

haemodialysis patients, and again the corresponding difficulties with prediction 

of longevity. The two modelling datasets (GFR, DOPPS) has be introduced and 

described. 

 

In Chapter 5, a local knowledge-based model - GFR- KBNN will be 

introduced. The development and the performance of this inductive neural 

model ar also presented. 
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Chapter 5 :  A Knowledge Based Neural Network for the 

Prediction of Renal Function (GFR - KBNN) 

 

 

In Chapter 4, medical and biological background was presented as it relates 

to the representative problems modelled in this research. The biological 

relevance of renal function was discussed, and the limitations of current tools 

for its evaluation. The modelling dataset (GFR and DOPPSt) used in this 

current chapter was also introduced and described. 

 

In this chapter, a novel KBNN for the prediction of GFR is presented (GFR-

KBNN). GFR-KBNN is a neural system in which prediction occurs based on 

global and local learning. As described in Chapter 4, there are several existing 

regression formulas commonly used by medical practitioners to predict GFR in 

both clinical and research settings. These formulas constitute global and fixed 

models, and each of them is characterised by different and varying degrees of 

prediction error distributed across the problem space. Nevertheless, these 

regression formulas represent accumulated knowledge that might be accurate 

in at least some sub-space of the whole problem space. 

 

The GFR-KBNN incorporates several conventional regression formulas and 

kernel functions in its structure for improved accuracy and adaptation. Unlike 

standard feed-forward NNs, the GFR-KBNN model uses several different non-

linear functions as neurons in its hidden layer. Each hidden neural node has a 

pair of such functions, comprised of one conventional regression formula that 

represents existing knowledge, and one Gaussian kernel function that defines a 

sub-space of the whole problem space, in which the formula is locally adapted 

to new data. All these functions are aggregated through incremental learning. 

The GFR-KBNN model is trained using the GFR dataset as described in 

Chapter 4, which contains observed measurements patient GFR and 

associated demographic and laboratory variables for modelling. In this case 

study, the regression function for each cluster is selected by the model from 

conventional regression formulas that are commonly used by medical 

practitioners to predict GFR (Table 4.1). As will be demonstrated, GFR-KBNN 
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predicts GFR with ≥10% greater accuracy compared to any of the individual 

regression formulas or other NN models. Furthermore, the model derives locally 

adapted formulas with the best performance within each cluster.  In summary, 

using existing knowledge the GFR-KBNN model can manifest better accuracy 

and extract adapted formulas on new data. 

 

The material of the chapter was published in (Song, Kasabov, Ma, & Marshall, 

2005). 

 

5.1 Introduction to GFR-KBNN:  Integrating Regression Formulas 

and Kernel Functions into a Locally Adaptive KBNN 

 

So long as there are sufficient data, both general NNs (including kernel-based 

function NNs)  and KBNNs  can generate accurate output after appropriate 

training (Cloete & Zurada, 2000; N. Kasabov, 1996; John Moody & Darken, 

1989; Q.  Song, Ma, & Kasabov, 2004). Kernel-based NNs have radial based 

function (RBF) kernels attached to their nodes that are adjusted through 

learning from data in terms of their centres and radius(John Moody & Darken, 

1989). They are trained as a set of local models that are integrated at the output.  

 

KBNNs are a distinct type of NN structured to “capture” knowledge from data in 

different formats, but most often as IF-THEN rules (Cloete & Zurada, 2000; 

Jang, 1993; N. Kasabov, 1996). In (N.  Kasabov, 2003; N.  Kasabov & Song, 

2002), special types of KBNN are presented where the model evolves its 

structure from data and can adapt to new data in an incremental mode 

facilitating rule extraction (that is, an evolving connectionist system). However, 

this approach as applied so far has a limited capability as it “ignores” the 

accumulated knowledge in the regression formulas that might be useful at least 

in some sub-space of the whole problem space.  

 

We propose a new type of KBNN that is represented by the following generic 

structure in Fig. 5.1 and generic function in Eq. 5.1: 
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Figure 5.1  A generic structure for the proposed KBNN 

 

 

y(x) = G1(x) F1(x) + G2(x) F2(x)+ … + GM(x) FM(x)   (5.1) 

 

where, x = [x1, x2, …, xP] is the input vector; y is the output vector; Gl are kernel 

functions; and Fl are knowledge-based transfer functions, e.g. regression 

formulas, l = 1, 2, … M. 

 

Eq. 5.1 can be regarded as a functional regression function. Using different Gl 

and Fl, Eq. 5.1 can represent different kinds of neural networks, and describe 

the different functions associated with neurons in their hidden layer(s). Gl are 

Gaussian kernel functions and Fl are constants in the case of RBF NNs (John 

Moody & Darken, 1989). Gl are sigmoid transfer functions and Fl are constants 

in the case of a generic three-layer MLP NN (Jang, 1993; N. Kasabov, 1996; N.  

Kasabov, 2003; "Neural Network Toolbox user's guide," 1996). Gl are fuzzy 

membership functions and Fl are linear functions in the case of a first-order 

Takagi-Sugeno-Kang (TSK) fuzzy inference model (Jang, 1993); and in the 

simplest case, Gl represents a single input variable and Fl are constants in the 

case of a linear regression function. 

 

The KBNN structure illustrated in Fig. 5.1 is distinct from these other NNs 

(Fuzzy Logic Toolbox User’s Guide 2002). Fl are non-linear functions that 
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represent the knowledge in local areas, and Gl are Gaussian kernel functions 

that control the contribution of each Fl to the system output. The further an input 

vector is from the centre of the Gaussian function, the less contribution to the 

output is produced by the corresponding Fl.  

 

The KBNN model has a cluster-based, multi-local model structure. Every 

transfer function is selected from existing knowledge (conventional regression 

formulas), and it is trained within a cluster (local learning), so that it becomes a 

modified formula that can optimally represent this area of data.  These formulas 

are taken as knowledge-based transfer functions to be integrated into the KBNN 

model. The KBNN aggregates a number of transfer functions and Gaussian 

functions to compose a neural network and such a network is then trained on 

the whole training data set (global learning). The GFR-KBNN model uses the 

medical dataset of observed patient GFR measurements to select the most 

accurate formula within each patient cluster and incorporate it within the local 

model.  

 

5.2 Proposed Method 

 

In this experiment, we compare the prediction of GFR from KBNN models with 

the prediction using individual regression formulas and other NN models. We 

use the GFR dataset as described in Chapter 4. 

 

5.2.1 Learning Procedures for the Integrated Regression – Kernel Function of 

KBNNs  

 

Suppose there are Q functions fh, h = 1, 2, ..., Q, globally representing existing 

knowledge that are selected as functions Fl (see Fig.1). The KBNN learning 

procedure performs the following steps: 

 

(1) Cluster the whole training data set into M clusters.  

(2) In each cluster l, l = 1, 2, …, M, Q functions fh are modified (local learning) 

with a gradient descent method on the sub-dataset and the best one (with 

the minimum root-mean-square error – RMSE) is chosen as the transfer 

function Fl for this cluster. 
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(3) Create a Gaussian kernel function Gl as a distance function: the centre and 

radius of the clusters are respectively taken as initial values of the centre 

and width of Gl. 

 

(4) Aggregate all Fl and Gl as per Eq. 5.1 and optimize all parameters in the 

KBNN (including parameters of each Fl and Gl) using a gradient descent 

method on the whole data set. 

 

In the KBNN learning algorithm, the following indexes are used: 

  

 Training data :   i = 1, 2, …, N ; 

 Sub-training data set:  i = 1, 2, …, Nl ; 

 Input variables:   j = 1, 2, …, P ; 

 Neuron pairs in the hidden layer: l = 1, 2, …, M ; 

 Number of existing functions: h = 1, 2, ..., Q ; 

 Number of parameters in Fl pf = 1, 2, ..., Lpf ; 

 Learning iterations:   k = 1, 2, … 

 

The equations for parameter optimisation are described below. Consider the 

system having P inputs, one output, and M neuron pairs in the hidden layer, the 

output value of the system can be calculated on input vector xi = [xi1, xi2, …, xiP] 

by  Eq. 5.1: 

 

y(xi) = G1(xi) F1(xi) + G2(xi) F2(xi)+ … + GM(xi) FM(xi)                       (5.2) 

 

Here, Fl are transfer functions and each of them has parameters bpf , pf = 1, 

2, ..., Lpf , 
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Here, α represents a connection vector between the hidden layer and the output 

layer; ml is the centre of lG .  σl is regarded as the width of lG , or a ‘radius’ of 

the cluster l. If a vector x is the same to ml, the neuron pair Gl(x)Fl(x) has the 

maximum output – Fl(x); the output will be between (0.607 ~ 1)Fl(x) if the 

distance between  x and ml is smaller than σl; the output will be close to 0 if x is 

far away from ml. 

 

Suppose the KBNN is given the training input-output data pairs [xi, ti], the local 

learning minimizes the following objective function for each transfer function on 

the corresponding cluster:  
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Here, Nl is the number of data that belong to the l-th cluster, and the global 

learning minimizes the following objective function on the whole training data 

set: 
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A gradient descent algorithm (BP algorithm) is used to obtain the recursions for 

updating the parameters b, α, m and σ, so that El of Eq.5.4 and E of Eq.5.5 are 

minimized. The initial values of these parameters can be obtained from original 

functions (for b), random values or least-squares method (for α) and the result 

of clustering (for m and σ): 
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Here, ηb, ηα,  ηm, and ησ are learning rates for updating the parameters b, α, m 

and σ respectively; 

pf

l

b

E




 and 

pfb

E




 respectively depend on existing and selected functions, e.g. the 

MDRD function, which has been introduced in Chapter 4, can be defined as 

follows:  

 

 f(x) = GFR = b0 × x1
b1 × x2

b2× x3
b3× x4

b4× x5
b5× x6

b6  (5.11) 

 

In this function, x1, x2, x3, x4, x5  and x6 represent Scr, age, gender, race, BUN 

and Alb respectively. So that, for the local learning: 
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and for the global learning (suppose the MDRD function is selected for the l-th 

cluster): 
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For both local and global learning, the following iterative design method is used: 

 

(1) Fix the maximum number of learning iterations (maxKl for the local learning 

and maxK for the global learning) and the minimum value of  the error on 

training data (minEl for the local learning and minE for the global learning ); 
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(2) Perform Eq. 5.6 repeatedly for the local learning until the number of learning 

iterations k > maxKl or the error El <=  minEl (El is calculated by Eq. 5.4);  

 

(3) Perform Eq. 5.7 – 10 repeatedly for the global learning until the number of 

learning iterations k > maxK or the error E <=  minE (E is calculated by Eq. 

5.5). 

 

In this learning procedure, we use a clustering method called ECM (Evolving 

Clustering Method) for clustering and a gradient descent algorithm  for 

parameter optimization(N.  Kasabov & Song, 2002; Q.   Song & Kasabov, 2001). 

Although some other clustering methods can be used such as K-means, Fuzzy 

C-means or the Subtractive clustering method (Fuzzy Logic Toolbox User’s 

Guide 2002), ECM is more appropriate because it is a fast one-pass algorithm 

and produces well-distributed clusters. The number of clusters, M, depends on 

the data distribution in the input space and it can be set up by experience, 

probing search or optimization methods (e.g. the genetic algorithm – GA). In 

this research, we do not use any optimization method to adjust M. For 

generalisation and simplicity, we give the KBNN learning algorithm a general 

gradient descent method. The Levenberg-Marquardt (LM), one-step secant BP 

algorithm (Fuzzy Logic Toolbox User’s Guide 2002), Least-squares method, 

SVD-QR method or some others (Mendel, 2001) can be applied in the KBNN 

for parameter optimization instead of a general gradient descent algorithm.  

 

5.2.2 Statistical Evaluation 

 

The performance of GFR-KBNN models and individual regression formulas and 

other NN models are compared using the Root-Mean-Square-Error (RMSE) and 

the Mean-Absolute-Error (MAE), as defined as the following equations: 
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where N is the number of testing samples, yi and ti are the actual output. yi is 

calculated by a model or a function, and ti is the desired output for the i-th 

testing sample.   



129 
 

 

The statistical assessment of agreement is philosophically related to the 

assessment of model fit, although there are all sorts of aspects of agreement 

and model fit that are better illustrated with one method than the other.  

 

In regression analysis, the RMSE is an assessment of the residuals around a 

line of best fit. This can be directly converted into 95% confidence intervals by a 

number of different methods. The RMSE is also known as the standard error of 

the estimate in regression analysis. This is the statistic whose value is 

minimized during the parameter estimation process, and it is the statistic that 

determines the width of the confidence intervals for predictions. The 95% 

confidence intervals for prediction are approximately equal to the point 

prediction "plus or minus 2 standard errors"--i.e., plus or minus 2 times the 

RMSE 

 

95% confidence intervals are the standard way of expressing accuracy in 

medical fields, although Bland and Altman analyses and concordance 

correlation coefficient are also used. In Chapter 6 of the GFR-DENFIS model, 

all of these methods of describing accuracy were used. These are sufficient for 

all regulatory bodies, and are the basis for which the MDRD formula was 

adopted by NZ over and above of previous ones.  

 

5.2.3 Data Source 

 

The GFR-KBNN models are trained using the GFR dataset as described in 

Chapter 4, and all testing is also using the same dataset. Ideally, a training 

dataset should be used to train a model for testing on an independent testing 

dataset. When the data set is comparably small, a Leave-One-Out cross-

validation method is usually used (Leave-One-Out cross-validation: for each 

experiment, one sample is taken out from the data set as the testing data and 

the remains as the training data). In this experiment, all results of the models 

listed in Table 5-1 (including GFR-KBNN models) are based on Leave-One-Out 

cross-validation experiments on the whole data set. We did not use parameter 

optimization the connectionist models, but used instead different parameter sets 

for each model to optimise output, and the best results produced by the 
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respective models are shown in Table 5-1. For instance, we used LM learning 

algorithm for MLP (Neural Network Toolbox User’s Guide, 2002), and selected 

different number of neurons in the hidden layer from [4, 8, 12, 16, 24, 32] and 

different number of learning iterations from [60, 120, 200, 500]. The parameters 

of the MLP producing the best results (as shown in Table 5-1) are 12 neurons 

and 200 learning iterations. 

5.3 Results 

 

The GFR-KBNN models generate more accurate outputs than the existing 

formulas or other well-known connectionist models. The results of all 

comparisons are listed in Table 5-1, including those obtained using the nine 

conventional regression formulas, standard NN models such as MLP and 

RBFNNs (Neural Network Toolbox User’s Guide, 2002), and the adaptive 

neural fuzzy inference system (ANFIS) (Fuzzy Logic Toolbox User’s Guide 

2002; Jang, 1993). The results include the number of fuzzy rules (for ANFIS), or 

neurons in the hidden layer (for KBNN, RBF and MLP), testing RMSE, testing 

MAE and Std (standard deviation).  

 

For the GFR-KBNN models, we found that the number of clusters – M, and the 

initial values for the BP algorithm affect the training results. If M is too small, e.g. 

M < 6, the results are similar to that of using a certain formula. This is because 

the KBNN cannot derive optimal local models under such conditions. If M is too 

large, e.g. M > 30, some clusters are so small that the data in these clusters are 

not adequate for the local learning. In this study, the best range for M was 12 – 

20.  

 

With regard to the BP algorithm, random values were used as initial parameter 

values, and for every experiment we implemented GFR-KBNN for three times 

and then selected the best result (the MLP and RBF were implemented in the 

same way).   

 

The testing results (using Leave-One-Out cross-validation) of different phases 

of GFR-KBNN are listed in Table 5-2. From the results we can see that: 

(1) Using original formulas locally is better than using them globally; 

(2) Local learning adapts original formulas to local data; 
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(3) The optimal local models are changed a little after the global learning; 

(4) Both local learning and global learning are necessary for the KBNN 

model to improve its accuracy. 

 

Through training the KBNN model, new knowledge can be extracted, which 

includes the modified formulas for each cluster (location). When the whole data 

set (441 samples) is used to train the KBNN, the whole input space is 

partitioned into 17 clusters and 17 corresponding modified formulas are 

obtained: one Cockcroft-Gault, two Gates, five MDRD and nine Walser. Four of 

these 17 formulas are listed in Table 5-3 to Table 5-5. The formulas listed in 

Table 5-3 are four optimal formulas for corresponding local areas (clusters). 

After the local learning and global learning, the formulas change as listed in 

Table 5-4, and they comprise the final KBNN model that can be used to obtain 

better results. Table 5-5 shows the parameters of four related Gaussian kernel 

functions. From the experimental results, we can see that four formulas (Walser, 

MDRD, Gates and Cockcroft-Gault) are selected as the most important to KBNN 

model in this case study. It can be inferred that these formulas are also the 

most suitable for use in New Zealand and Australia.  

Table 5-1  Experimental results (testing) on GFR data with different 

methods. 

Model Neurons or Rules  RMSE MAE Std 

Jelliffe71 – 9.13 7.21 12.42 

Mawer – 11.01 8.09 13.34 

Jelliffe73 – 7.84 5.90 9.66 

Cockcroft-Gault – 7.97 6.16 10.45 

Hull – 9.50 7.12 12.43 

Bjorasson – 10.29 7.83 12.07 

Gates – 7.49 5.62 9.92 

Walser – 7.36 5.58 10.19 

MDRD – 7.76 5.87 9.27 

MLP 12 8.44 5.74 9.06 

ANFIS 36 7.43 5.46 8.97 

RBF 32 7.18 5.39 9.36 

GFR-KBNN   17 6.86 5.07 8.55 
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Table 5-2  Experimental results (testing) on GFR data with different modes 

of operation of GFR-KBNN. 

Model RMSE MAE 

Local Models   (original formulas) 7.28 5.51 

Modified local models  (after local learning) 7.09 5.26 

Modified local models  (after local and global learning) 7.12 5.30 

KBNN  with global learning only 7.05 5.19 

KBNN with both local and global learning  6.86 5.07 
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Table 5-3  Four selected formulas (after local learning) 

Cluster Number  Best Formula For The Cluster Modified Formula Through Local Adaptation In The  KBNN Model 

1 MDRD 121.5Scr-0.842Age-0.0580.834 (if Sex is female) 

0.915 (if Race is black)BUN-0.101Alb0.014    

3 Walser Men:        6319 / Scr – (0.046Age) + (0.081Weight) – 1.90 

Women:   4747/ Scr – (0.175Age) + (0.056Weight) + 7.28 

5 Gates Men:        (83.21  Scr -1.2)+ (55 –  Age)   (0.805  Scr -1.1) +5.34 

Women:   (49.64  Scr -1.1)+ (56 –  Age)   (0.271  Scr -1.1) +5.88 

7 Walser Men:       6288 / Scr – (0.047Age) + (0.091Weight) – 1.91 

Women:   4402/ Scr – (0.0287Age) + (0.077Weight) + 0.349 
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Table 5-4  Four selected formulas (after local learning and global learning) 

Cluster Number  Best Formula For The Cluster Modified Formula Through Local Adaptation In The  KBNN Model 

1 MDRD 121.5  Scr -0.846Age-0.0550.834 (if Sex is female) 

0.915 (if Race is black)BUN-0.099Alb0.011    

3 Walser Men:        6306 / Scr – (0.044Age) + (0.085Weight) – 1.92 

Women:   4759/ Scr – (0.178Age) + (0.058Weight) + 7.40 

5 Gates Men:        (83.58  Scr -1.2)+ (55 –  Age)   (0.801  Scr -1.1) +5.58 

Women:   (49.53  Scr -1.1)+ (56 –  Age)   (0.275  Scr -1.1) +5.87 

7 Walser Men:       6306 / Scr – (0.044Age) + (0.085Weight) – 1.92 

Women:   4393/ Scr – (0.0351Age) + (0.076Weight) + 0.347 
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Table 5-5  Four Gaussian functions (after local learning and global learning) associated with four clusters. 

Cluster Number  Parameters of Gaussian functions 

1 α                   0.113            

m    36.5,   0,           0.61,    3.67,    0,         19.4,    162,    61.8      

σ     7.12,   0.155,    0.41,    4.10,    0.16,    2.82,    8.0,     5.0 

3 α                  -0.122 

m     27.8,   1,          1.24,    18.6,    0,         16.8,     155,    47.7 

σ      6.30,   0.15,     0.33,    4.0,      0.15,     6.0,      8.0,     5.89  

5 α                   -0.193 

m     69.1,   0,          1.37,    15.7,    0,         16.8,     171,    58.9 

σ      7.04,   0.15,     0.39,    4.0,      0.15,    6.0,       8.0,     5.0 

7 α                    0.288 

m     51.2,   1,          0.77,    7.61,    0,         5.44,    178,   61.2     

σ      6.97,   0.15,     0.50,     4.0,     0.15,    6.0,      8.0,    6.02 
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5.4 Conclusions 

 

In this case study, the local learning GFR-KBNN model performed better than 

any of existing conventional regression formulas, MLP, RBFNNs, and ANFIS 

neural fuzzy models as global models. This is a result of a fine-tuning of each 

local model and a proper aggregation of all local models in the KBNN system. 

 

The KBNN integrates existing regression formulas as sub-models with new data 

related to the same problem resulting in an incrementally adaptive model. The 

KBNN performs the local learning to find an optimal formula (local model) for 

each cluster defined by a kernel function. Global learning was subsequently 

performed to integrate all local models, thus facilitating knowledge insertion, 

knowledge-modification, and knowledge extraction. New knowledge can be 

extracted from the KBNN as follows: 

(1) A modified function (or local model) that represents the current knowledge in 

each cluster (local area). 

(2) The importance of the local models and how they can be aggregated to 

obtain better accuracy. 

(3) For a new input vector, the contribution from each local function can be 

estimated. 

 

The KBNN method is considered suitable for medical applications because:  

(1) Related existing regression formulas can be used as local models, or local 

models can be created depending on the related knowledge;  

(2)  Through local learning and global learning, a KBNN model can achieve a 

better accuracy; 

(3)  New knowledge can be extracted from a KBNN model, which may be 

valuable for users.   

 

5.5 Summary 

 

In this chapter, a novel local inductive knowledge-based neural network based  

model was presented. Its performance was superior to existing global 

regression formulas commonly used by medical practitioners.  
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In Chapter 6 the development of another local inductive neural fuzzy model is 

presented (GFR-DENFIS), and its performance compared to conventional 

methods for GFR prediction. This direction represents an incremental advance 

in the techniques of Health Informatics towards progressively more localized 

and personalised modelling frameworks with the expectation of a better 

accuracy and a more specialised knowledge discovery. 
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Chapter 6 :  An ECOS Based Method for Local Learning for 

Renal Function Evaluation (GFR - DENFIS) 

 

 

In Chapter 5, GFR-KBNN was presented as a local inductive knowledge-

based model for the prediction of renal function. The GFR-KBNN models predict 

GFR with ≥10% greater accuracy compared to any of the individual regression 

formulas or other NN models. 

 

In this chapter, another novel local modelling method for the prediction of GFR 

is presented (GFR-DENFIS). GFR was predicted using the dynamic evolving 

neuro-fuzzy inference system (DENFIS) (N.  Kasabov & Song, 2002), an ECOS 

that optimizes its generated output by learning from training data using multiple 

local models. In this case, the generated output was GFR, and the training 

vectors were each comprised of the target output (GFR-EDTA) and the clinical 

and laboratory variables to be associated with this target output and therefore to 

be used for computational modelling. DENFIS was engineered to report GFR as 

the average of ten performed internal modelling experiments for both training 

and testing vectors.  

 

The material of the chapter was published in (Marshall, Song, Ma, Macdonell & 

Kasabov, 2005) (Marshall et al., 2005) 

 

6.1 Introduction to GFR-DENFIS 

 

Detailed descriptions of DENFIS are provided in Chapter 3.  

 

6.2  The Proposed Method 

 

In this experiment, we compare the prediction of GFR from GFR-DENFIS 

models with the prediction the MDRD formula, which as described in Chapter 4 

is the best of the available conventional regression formulas for the prediction of 

GFR. We use the GFR dataset as described in Chapter 4.  
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GFR were predicted also using a modified MDRD formula (mMDRD formula) 

containing the same variables, but different regression coefficients and 

multiplicative constants developed using multiple regression analyses in the 

GFR dataset. Successive mMDRD formulas were derived during each phase of 

the GFR-DENFIS modelling described below.  

 

The rationale for modification of the original MDRD formula is as follows. As 

described in Chapter 4, the original formula was developed in a sample of the 

United States population to predict GFR as measured by renal clearance of 25I-

iothalamate. In the GFR dataset, patients were sampled from an Australian and 

New Zealand population and GFR was measured by plasma clearance of 51Cr-

EDTA. The original MDRD formula cannot therefore be expected to perform as 

well in this dataset as the original, due to patient related factors and also the 

inter-test variability between the two techniques for radioisotope GFR 

measurement. A meaningful comparison between the MDRD equation and 

GFR-DENFIS (which has been developed in the new dataset) requires that the 

original MDRD formula be remodelled to optimize accuracy under the new 

conditions. In this way, the comparison now becomes more valid in that both the 

algebraic formula and local models are products of the same dataset, and 

neither has the disadvantage of being developed under one set of conditions 

and tested under another. 

 

6.2.1  Modelling Phases for GFR-DENFIS and mMDRD Formulas. 

 

Three phases of modelling were performed. The purpose of the first phase of 

modelling was conventional validation of both the DENFIS and modified MDRD 

formula. Variables used in the training of DENFIS and modification of the MDRD 

formula were the same six as were used in original formula. The GFR dataset 

was randomly divided into training and testing sub-datasets, comprising 70% 

(309 renal function measurements) and 30% (132 renal function measurements, 

randomly selected) respectively of the total. The mMDRD formula was derived 

from the training dataset using stepwise multiple regression analyses. The 

model for GFR-DENFIS was derived from the training dataset within the neural 

fuzzy systems described in Chapter 3 and (N.  Kasabov & Song, 2002). Even 

modified according to the new data, the mMDRD formula is a global model and 
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it is difficult to adapt to data in every sub-space of the problem space. The 

DENFIS model, being a set of local models, may be expected to perform better. 

 

For the second phase of modelling, additional clinical variables were used for 

the training of DENFIS. The purpose of this phase of modelling was to evaluate 

the effect of adaptive properties of DENFIS in clinical practice. As previously, 

the GFR dataset was randomly divided into training and testing sub-datasets, 

but this time comprising 80% (353 renal function measurements) and 20% (88 

renal function measurements) respectively of the total. The mMDRD formula 

was again derived from the now expanded training dataset using stepwise 

multiple regression analyses and the usual six variables per vector. The 

modelling of DENFIS was performed in a manner to closest reproduce its use in 

clinical practice. The likeliest clinical scenario is that centres would be 

sequentially recruited to the local model over time, to join other centres already 

using the trained system. The recruitment of the new centre would involve 

provision of some centre-specific training data to DENFIS, after which one could 

expect accurate prediction of GFR for the new patients. 

 

The "leave one out" method is the modelling protocol that best reflects this 

clinical scenario. This protocol involved dividing the EPO AUS-14 dataset into 

12 sub-datasets according to the centre of origin of the renal function 

measurement. For a given centre of interest, GFRDENFIS was initially modelled 

by training on the other 11 centres. GFRDENFIS was then further modelled in 

the centre of interest by retraining on a random sample comprising 80% of renal 

function measurements from that centre. This protocol was applied for each of 

the 12 centres. The overall prediction error was then calculated as the average 

error across the 12 centres from testing in the remaining 20% of the 

measurements from each centre. This modelling protocol provides the most 

realistic reflection of the ECOS performance with sequential recruitment of 

centres to the system over time. 

 

The purpose of the third and final phase of modelling was to develop the most 

accurate local model and algebraic formula possible, and compare the limits of 

optimization for both frameworks. It should be noted that virtually all algebraic 

formulas in common clinical use, including the original MDRD as published, 
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have been optimized by using the entire respective data sets for concurrent 

training and testing(Cockcroft & Gault, 1976; Hull et al., 1981; Jelliffe, 1971; 

Kampmann, Siersbaek-Nielsen, Kristensen, & Hansen, 1974; Levey et al., 1999; 

Mawer et al., 1972; Walser et al., 1993). The third phase of modelling in this 

study was similarly undertaken using the entire GFR data set for both training 

and testing of both the neural fuzzy model and algebraic formula. The variables 

used in the training of DENFIS and modification of the MDRD formula were the 

same six as were used in the original MDRD formula. 

 

Modelling for both algebraic formulae and DENFIS was performed using 

Matlab® V6 software (Natick, Massachusetts, USA).   

 

6.2.2  Statistical Evaluation 

 

The accuracy of predicted GFR values (GFR-MDRD, GFR-mMDRD, GFR-

DENFIS) was determined by their bias and precision in relation to reference 

GFR measurements (GFR-EDTA). Absolute agreement or bias was assessed 

by the mean difference between the predicted GFR values and GFR-EDTA, 

which is the systematic difference between the methods. Relative agreement or 

precision was assessed by the fluctuation of these differences around the mean. 

The standard deviation of these differences can be quantified as the RMSE, 

which can be expressed in mL/min/1.73m2 or as a percentage of GFR. The 

Bland-Altman procedure was also used which defines range of agreement. This 

is the mean difference +/- 1.96 standard deviations, and represents how far 

apart predicted GFR values are likely to be from reference GFR measurements 

for 95% of individuals (Bland & Altman, 1986, 1995). Analyses were made using 

Analyse-It® V1.62 software (Leeds, UK), and presented as scatter and bias 

plots. 

 

6.3 Experimental  Results  

 

Results are presented as mean +/- standard deviation (range) unless otherwise 

specified. GFR-EDTA in the cohort was 22.6 +/- 10.7 (0.2 – 70) mL/min/1.73m2. 

GFR-MDRD was 19.1 +/- 9.3 (3.3 – 46.9) mL/min/1.73m2. GFR-mMDRD was 

21.0 +/- 8.0 (4.2 – 40.8) mL/min/1.73m2 after the first phase of modelling, 22.3 
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+/- 8.0 (3.0 – 45.4) mL/min/1.73m2 after the second, and 21.4 +/- 7.8 (6.4 – 41.2) 

mL/min/1.73m2 after the third. The mMDRD formula for Australians and New 

Zealanders generated using the entire GFR dataset was (analytes other than 

serum albumin in mg/dL, serum albumin in g/dL, age in years):  

 

     

      0651.00114.0

159.0825.0

min913.0

837.04.120









albuserumnitrogenureaserumblackisraceif

femaleissexifagecreatinineserummMDRDGFR
 

 

GFR-DENFIS was 23.2 +/- 8.6 (5.0 – 47.6) mL/min/1.73m2 after the first phase 

of modelling, and 22.6 +/- 8.7 (0.0 – 48.7) mL/min/1.73m2 after the second. 

GFR-DENFIS was 22.5 +/- 9.9 (5.0 – 64.6) mL/min/1.73m2 after the third phase 

of modelling. 

 

Statistical assessments of bias and precision of predicted GFR values are 

presented in Table 6.1 and Figures 6.1 to 6.4. The prediction error of GFR-

DENFIS versus mMDRD from the second phase of modelling for each of the 12 

centres is shown in Figure 6.5. It can be seen that the local model outperformed 

the algebraic formula in only certain centres. This finding can be further 

explored considering Centre 2 as a case study. Patients from Centre 2 had a 

marginally higher serum creatinine (0.40 0.10 mmol/L) but a markedly lower 

GFR-EDTA (12.1 6.7 mL/min/1.73 m2) when compared to the other centres. 

The relationship between these two variables was therefore different in patients 

from Centre 2, explaining the improved prediction with local modelling via GFR-

DENFIS in comparison to global modelling via the mMDRD. There are several 

possible hypotheses to explain this observation. Perhaps the patients from 

Centre 2 were biologically different with lower rates of creatinine production. 

Indeed, patients from Centre 2 did tend to be female (60% of patients), older 

(mean age 60 years), and none were black. Alternatively, laboratory assays for 

serum creatinine or measurements of GFR-EDTA may be systematically lower 

in Centre 2 than other centres. Irrespective of the reason, improved 

performance of GFR-DENFIS in this second phase of modelling is due to 

additional clustering and local model optimization, and allows for improved 

prediction for patients within centres by accounting for such centre disposition. 

 

http://www.nature.com/ki/journal/v67/n5/full/4495261a.html#tbl2#tbl2
http://www.nature.com/ki/journal/v67/n5/full/4495261a.html#fig1#fig1
http://www.nature.com/ki/journal/v67/n5/full/4495261a.html#fig4#fig4
http://www.nature.com/ki/journal/v67/n5/full/4495261a.html#fig5#fig5
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Figure 6.6 shows the GFR-DENFIS interface, with one of the fuzzy rules 

generated by the trained DENFIS. Each rule represents a local model 

associating predictive variables with the generated output within a given cluster. 

All rules together represent the equivalent of a global model that can be applied 

for the prediction of GFR for any new patient. 

 

 

http://www.nature.com/ki/journal/v67/n5/full/4495261a.html#fig6#fig6
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Table 6-1  Agreement between predicted GFR values and reference GFR measurements.  

Accuracy is reported for the testing sub-datasets for the modelling phases 1 and 2, and for the entire dataset for GFR-MDRD and 

modelling phase 3. 

Versus GFR-EDTA Bias (95% CI) 

(mL/min/1.73m2) 

RMSE 

(mL/min/1.73m2) 

RMSE 

(% of GFR) 

95% limits of agreement 

(mL/min/1.73m2) 

Lower                    Upper 

GFR-MDRD -3.5 [-4.2, -2.9] 7.75 34.5% -17.2 10.1 

      

Modelling Phase 1      

GFR-mMDRD -1.6 [-2.3, -0.9] 7.59 33.6% -16.1 13.0 

GFR-DENFIS 0.7 [0.0. 1.3] 7.36 32.6% -13.7 15.0 

      

Modelling Phase 2      

GFR-mMDRD -0.3 [-0.9, 0.4] 7.08 31.3% -14.2 13.6 

GFR-DENFIS 0.1 [-0.6, 0.6] 6.75 29.9% -13.2 13.3 

      

Modelling Phase 3      

GFR-mMDRD -1.2 [-1.8, -0.6] 7.03 31.1% -14.8 12.4 

GFR-DENFIS -0.1 [-0.4, 0.3] 3.73 16.6% -7.4 7.2 
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Figure 6.1  Agreement of MDRD with GFR-EDTA.  

In the scatter plot (left panel), the dotted line (∙∙∙∙∙∙∙∙) represents the line of 

identity between methods. In the bias plot (right panel), the dotted lines 

represent the bias between methods, and the broken lines (− ∙ − ∙) represent the 

range of agreement). 
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Figure 6.2  Agreement of mMDRD and GFR-DENFIS with GFR-EDTA from 

Modelling Phase 1.  

In the scatter plots (left panels), the dotted lines (∙∙∙∙∙∙∙∙) represent the line of 

identity between methods. In the bias plots (right panels), the dotted lines 

represent the bias between methods, and the broken lines (− ∙ − ∙) represent the 

range of agreement. 
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Figure 6.3  Agreement of GFR-mMDRD and GFR-DENFIS with GFR-EDTA 

from Modelling Phase 2.  

In the scatter plots (left panels), the dotted lines (∙∙∙∙∙∙∙∙) represent the line of 

identity between methods. In the bias plots (right panels), the dotted lines 

represent the bias between methods, and the broken lines (− ∙ − ∙) represent the 

range of agreement. 
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Figure 6.4  Agreement of GFR-mMDRD and GFR-DENFIS with GFR-EDTA 

from the Modelling Phase 3.  

In the scatter plots (left panels), the dotted lines (∙∙∙∙∙∙∙∙) represent the line of 

identity between methods. In the bias plots (right panels), the dotted lines 

represent the bias between methods, and the broken lines (− ∙ − ∙) represent the 

range of agreement.  
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Figure 6.5  Prediction error for glomerular filtration rate.  

GFR-DENFIS is represented by the square, and the mMDRD the triangle, and 

refer to results in each of the 12 centres from modelling phase 2. 
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Figure 6.6  Illustration of the GFR-DENFIS computer interface.  

The problem space is visualised, as is the progressive partitioning of the space 

for the ongoing creation of fuzzy rules. At each moment, GFR-DENFIS is 

calculated through a fuzzy inference system based on the most activated fuzzy 

rules that are dynamically selected from the existing fuzzy rule set.  New fuzzy 

rules are created and updated during the operation of the system. As an 

example, rule 13 is illustrated in this interface.  
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6.4. Conclusions  

 

The results of this experiment indicate that conventional regression formulas will 

be less accurate than expected in routine clinical practice. However, 

modification of the original MDRD formula by multiple regression analyses 

within the GFR dataset did achieve some improvement in absolute prediction 

error (bias) from -3.5 to -1.2 mL/min/1.73m2, and in relative prediction error 

(precision) from 34.5% to 31.1%. This represents the best accuracy that can be 

achieved in the study dataset by a conventional regression formula developed 

using the MDRD formula template.  

 

GFR-DENFIS predicts GFR with greater accuracy (bias -0.1 mL/min/1.73m2, 

precision 16.6%), even with the modification of the MDRD formula as described. 

Moreover, the second phase of modelling in the experiment illustrates the 

potential beneficial of adaptive modelling with sequential recruitment of centres 

to the system. The model did not however develop single discrete models for 

each centre: within each centre, up to 21 models were used to calculate GFR-

DENFIS, with renal function measurements often allocated to areas of the 

problem space partitioned to several overlapping clusters. It is the weighted 

application of these local models within the ECOS framework that provides 

improved accuracy over and above global models such as algebraic formulas. 

 

The second phase of modelling also demonstrated an important limitation of 

GFR-DENFIS in clinical practice. In the case study of Centre 2, DENFIS was 

unable to distinguish whether the discrepancy between MDRD and the 

corresponding GFR-EDTA arose from patient-related factors or measurement 

error in laboratory parameters or radioisotope tracer clearance. ECOS is still a 

tool based on association rather than causality. However, unlike conventional 

artificial neural networks it is still possible to examine relationships among input 

and output variables within the ECOS. The local models are in the form of fuzzy 

rules that can be extracted and studied. Such rules may allow for generation of 

hypotheses for further laboratory or clinical testing, and also have the potential 

to directly add to understanding of underlying biologic processes. 
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There is potential to engineer machine intelligence into tools of medical practice, 

and the computer interface of GFR-DENFIS gives a glimpse of this potential. 

Many medical devices already have such systems embedded in them such as 

arrhythmia detectors. Alternatively, the systems can be placed on a central 

server as an internet or intranet-based utility. If such computing resources were 

not available, these systems are amenable to rule extraction as described. Such 

rules may be imported in a non-evolving form into a hand-held device, although 

they would need updating whenever advances in predictive modelling were 

made. 

 

In summary, this experiment strongly suggests that published conventional 

regression formulas for the prediction of GFR will be less accurate than 

expected in routine clinical practice, and confirms that their performance can be 

improved somewhat by additional regression analyses prior to clinical use in 

diverse populations. Furthermore, there is potential to enhance modelling 

further within the ECOS framework by the addition of further variables and 

training vectors in the future. The web-based implementation of GFR-DENFIS is 

suitable for clinical use either for research or patient care. Finally, the 

computational models developed in this experiment may in turn shed light upon 

biological processes that influence renal function and mitigate renal disease. 

 

6.6 Summary 

 

In this chapter, a novel inductive knowledge-based neural fuzzy model was 

presented in which prediction occurs by local modelling. Its performance was 

superior to the most accurate of the regression formulas commonly used by 

medical practitioners, even when they are modified by multiple regression 

analyses within the GFR dataset. Despite optimization, such formulas are still 

global and fixed models across the whole problem space. The DENFIS model, 

being a set of local models, as expected performs better. 

 

In Chapter 7, the development of a transductive neural fuzzy model is 

presented (GFR-TWNFI) in which prediction occurs by individual or 

personalised modelling. Its performance is compared to other methods for GFR 
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prediction. As previously, this direction represents an incremental advance in 

the techniques of Health Informatics towards progressively more localized and 

ultimately personalised modelling frameworks. 
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Chapter 7 : Personalised Modelling for Renal Function 

Evaluation (GFR - TWNFI) 

 

 

In Chapter 6, GFR-DENFIS was presented as an ECOS based model using 

neural fuzzy inference for local learning and the prediction of renal function. The 

GFR-DENFIS models predict GFR with greater accuracy than the most widely 

utilized and accurate conventional regression formula, even after enhanced of 

the formula through further statistical modelling within the GFR dataset.  

 

In this chapter, a novel transductive neuro-fuzzy inference model (GFR-TWNFI) 

is presented for personalised modelling. In GFR-TWNFI, prediction occurs by 

personalised or individual modelling. In transductive systems, a local model is 

developed for every new input vector, based on data closest to this vector from 

the training data set. The weighted data normalization method (WDN) optimizes 

the data normalization ranges for the input variables in the model. A steepest 

descent algorithm is used for training the TWNFI model. In this chapter, the 

performance of GFR-TWNFI for the prediction of GFR is compared the MDRD 

formula and other neural fuzzy systems. The GFR-TWNFI model not only 

results in a personalised model with a better accuracy of prediction for a given 

person, but also depicts the most significant input variables (features) for the 

model that may be used for a personalised medicine.  

 

The material of the chapter was published in (Kasabov, N., Song, Q., & Ma, T. 

M., 2008).  (N. Kasabov et al., 2008)  

 

7.1 Introduction to Transductive versus Inductive Modelling 

 

As introduced in Chapter 2, most of learning models and systems in artificial 

intelligence developed and implemented so far are based on inductive methods, 

where a model is derived from data representing the problem space and this 

model is further applied on new data. The model is usually created without 

taking into account any information about a particular new data vector (test 
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data). An error is measured to estimate how well the new data fits into the 

model. The inductive learning and inference approach is useful when a global 

model (“the big picture”) of the problem is needed even in its very approximate 

form. In contrast to the inductive learning and inference methods, transductive 

inference methods estimate the value of a potential model (function) only in a 

single point of the space (the new data vector) utilizing additional information 

related to this point. This approach seems to be more appropriate for clinical 

and medical applications of learning systems, where the focus is not on the 

model, but on the individual patient. Each individual data vector (e.g.: a patient 

in the medical area; a future time moment for predicting a time series; or a 

target day for predicting a stock index) may need an individual, local model that 

best fits the new data, rather than a global model, in which the new data is 

matched without taking into account any specific information about this data.    

    

7.2 Weighted Data Normalization 

 

In many NN and fuzzy models and applications, raw (not normalized) data is 

used. This is appropriate when all the input variables are measured in the same 

units. Normalization, or standardization, is reasonable when the variables are in 

different units, or when the variance between them is substantial. However, a 

general normalization means that every variable is normalized in the same 

range, e.g. [0, 1] with the assumption that they all have the same importance for 

the output of the system.  

 

For many practical problems, variables have different importance and make 

different contribution to the output(s). Therefore, it is necessary to find an 

optimal normalization and assign proper importance factors to the variables. 

Such a method can also be used for feature selection or for reducing the size of 

input vectors through keeping the most important ones (Q. Song & Kasabov, 

2003). This is especially applicable to a special class of neural networks or 

fuzzy models – the clustering based models (or also: distance-based; prototype-

based) such as: RBF (Poggio, 1994), Adaptive Resonance Theory (ART) 

(Carpenter & Grossberg, 1991), ECOS (N.  Kasabov, 2001, 2003; N.  Kasabov 

& Song, 2002). In such systems, distance between neurons or fuzzy rule nodes 
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and input vectors are usually measured in Euclidean distance, so that variables 

with a wider normalization range will have more influence on the learning 

process and vice versa. 

 

7.3 Principles of the TWNFI 

 

7.3.1 Structure of the TWNFI 

 

TWNFI is a dynamic neural-fuzzy inference system with a local generalization, 

in which, either the Zadeh-Mamdani type fuzzy inference engine(L.A. Zadeh, 

1965; L.A.  Zadeh, 1988) or the Takagi-Sugeno fuzzy inference (Takagi & 

Sugeno, 1985) is applied. Here, the former GFR data is introduced. The local 

generalization means that in a sub-space of the whole problem space (local 

area) a model is created that performs generalization in this area. In the TWNFI 

model, Gaussian fuzzy membership functions are applied in each fuzzy rule for 

both the antecedent and the consequent parts. A steepest descent (BP) 

learning algorithm is used for optimizing the parameters of the fuzzy 

membership functions (Lin & Lee, 1996; Wang, 1994). The distance between 

vectors x and y is measured in TWNFI in weighted normalized Euclidean 

distance defined as follows (the values are between 0 and 1): 

       

           (7.1) 

 

where:  x, y  RP and wj are weights. 

 

To partition the input space for creating fuzzy rules and obtaining initial values 

of fuzzy rules, the ECM (Evolving Clustering Method) is applied (N.  Kasabov & 

Song, 2002; Q.   Song & Kasabov, 2001) and the cluster centres and cluster 

radiuses are respectively taken as initial values of the centres and widths of the 

Gaussian membership functions. Other clustering techniques can be applied as 

well. A block diagram of the TWNFI is shown in Figure 7.1. 
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Figure 7.1  A block diagram of the TWNFI 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.2 The TWNFI Learning Algorithm  

 

For each new data vector xq, the TWNFI learning algorithm performs the 

following steps: 

 

1) Normalize the training data set (the values are between 0 and 1) with the initial 

weights of input variables. 

2) Search in the training data set in the input space to find Nq training examples 

that are closest to xq. The value for Nq can be pre-defined based on 

experience, or - optimized through the application of an optimization procedure. 

Here we assume the former approach. 

3) Calculate the distances di, i = 1, 2, …, Nq,  between xq and each of these Nq 

data samples . Calculate the vector weights vi = 1 – (di – min(d)), i = 1, 2, …, 

Nq,  min(d ) is the minimum value in the distance vector d, d = [d1, d2, … , dNq].  

4) Use the ECM clustering algorithm to cluster and partition the input sub-space 

that consists of Nq selected training samples.  

5) Create fuzzy rules and set their initial parameter values according to the results 

of ECM clustering procedure. For each cluster, the cluster centre is taken as 
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the centre of a fuzzy membership function (Gaussian function) and the cluster 

radius is taken as the width.  

6) Apply the steepest descent method (Bp) to optimize the parameters of the 

fuzzy rules in the local model Mq following Eq. (7.6 – 13). 

7) Search in the training data set to find Nq nearest samples (same to Step 2), if 

the same samples are found, as the last search, the algorithm turns to Step 9, 

otherwise, Step 3.  

8) Calculate the output value yq for the input vector xq applying fuzzy inference 

over the set of fuzzy rules that constitute the local model Mq. 

9) End of the procedure.  

 

The weight and parameter optimization procedure is described below: 

 

Consider the system having P inputs, one output and M fuzzy rules defined 

initially through the ECM clustering procedure, the l-th rule has the form of: 

 

Rl : If x1 is Fl1 and x2 is Fl2 and … xP is FlP,      then y is Gl .                       (7.2) 

 

Here, Flj are fuzzy sets defined by the following Gaussian type membership 

function: 

 

 (7.3) 

 

Gl are of a similar type as Flj and are defined as:  

                                                         

                                          (7.4)

   

Using the modified centre average defuzzification procedure, the output value 

of the system can be calculated for an input vector xi = [ x1, x2, …, xP ] as  

follows: 

 

                                                                                (7.5) 
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Here, wj are weights of the input variables. 

 

Suppose the TWNFI is given a training input-output data pair [xi, ti] , the system 

minimizes the following objective function (a weighted error function): 

 

                                    (7.6) 

 

(vi are defined in Step 3)   

 

Then the steepest descent algorithm (BP) is used to obtain the formulas for the 

optimization of the parameters Gl, l, lj, mlj, lj and wj, so that the value of E 

from Eq. (7.6) is minimized: 
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(7.13) 

 

       

 

where:  G ,  ,  , m ,   and w  are learning rates for updating the 

parameters Gl, l, lj, mlj, lj and wj respectively.  

 

In the TWNFI training–simulating algorithm, the following indexes are used: 

·  Training data samples:      i = 1, 2, … , N; 

·  Input variables:                     j = 1, 2, … , P; 

·  Fuzzy rules:      l = 1, 2, …, M; 

·  Training epochs:             k = 1, 2, …. 

 

7.4 The Proposed Method  

 

In this experiment, the performance of GFR-TWNFI for the prediction of GFR is 

compared to several well-known methods using the GFR dataset as previously 

described in Chapter 4. 

 

For methods for comparison include the MDRD formula, MLP neural network, 

ANFIS, and GFR-DENFIS. 

  

All results reported for neural fuzzy systems listed in Table 7-1 (including GFR-

TWNFI) are based on 10-cross validation experiments with the same model and 

parameters and the results are averaged. In each experiment 70% of the whole 

data set is randomly selected as training data and another 30% as testing data.  

 

Two experiments with TWNFI are conducted. The first one is the TWNFI 

without WDN: all weights’ values are set as ‘1’ and will not be changed during 

the learning.  Another employs the TWNFI learning algorithm described in 

Section 7.3.   
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The performance of GFR-TWNFI and other methods are compared using the 

testing RMSE and MAE. The results also include the number of fuzzy rules 

(fuzzy models), or neurons in the hidden layer (MLP).  

 

 
Figure 7.2  Illustration of the computing interface of GFR-TWNFI 

 

. 

7.5 Results and Conclusions  

 

What follows below is an exemplar personalised model for the prediction of 

GFR in a patient through use of the TWNFI: 

 

Rule 7: 

if  

Age is around 60.5 

Gender is Male 

Screat is around 0.31 

Surea is around 20.7 

Race is White 

Salb is around 35.0 

then   GFR = 12.14 * Age^0.280 * Screat^-0.858 * Surea^0.029 * Salb^0.001 

 

Rule 8: 

if 

Age is around 54.7 
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Gender is Male 

Screat is around 0.45 

Surea is around 24.9 

Race is White 

Salb is around 35.9 

then  GFR = 12.45 * Age^0.270 * Screat^-0.858 * Surea^0.038 * Salb^-0.003 

 

Variable importances: 

Age(0.80); Gender(0.60); Screat(1.00); Surea(0.60); Race(0.30); Salb(0.31) 

 

 

These fuzzy rules represent knowledge that is comprehensible to professional 

healthcare provider. They illustrate the efficiency of TWNFI on knowledge 

discovery vi fuzzy rules extraction. Besides the rules for GFR evaluation, which 

identifies different groups of input vectors that are unique and should be treated 

differently, there are also rules to show the importance of different variable for 

this individual patient. The term “about” in the rules can be more precisely 

described as the degree of membership. 

 

The results of the experiment are provided in Table 7-1. They indicate that 

normalization of the training data set (the values are between 0 and 1) with 

weighting of input variables resulted in better prediction. GFR-TWNFI not only 

resulted in a “personalised” model with a better accuracy of prediction for every 

single person, but also depicts the most significant input variables (features) for 

the model that may be used for a personalised medicine and improved 

treatment.  

 

In conclusion, the GFR-TWNFI performs a better local generalisation over new 

data as it develops an individual model for each data vector that takes into 

account the new input vector location in the space. It is an adaptive model, in 

the sense that input-output pairs of data can be added to the data set 

continuously and immediately made available for transductive inference of local 

models.  This type of modelling can be called “personalised”, and it is promising 

for medical decision support systems. As the TWNFI creates a unique sub-

model for each data sample, it usually needs more computational time than 

other inductive models, especially in the case of training and simulating on large 
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data sets. Of note, this personalised modelling can also be applied to other 

distance-based, prototype learning neural network or fuzzy inference models. 
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Table 7-1  Experimental results (testing) on GFR data with different methods. 

 

    
Weights of Input Variables 

 

Model 

 

Neurons or Rules 

 

Testing RMSE 

 

Testing MAE 

 

Age 

 

Sex 

 

Scr 

 

Surea 

 

Race 

 

Salb 

MDRD - 7.74 5.88 1 1 1 1 1 1 

MLP 12 8.44 5.75 1 1 1 1 1 1 

ANFIS 36 7.49 5.48 1 1 1 1 1 1 

DENFIS 27 7.29 5.29 1 1 1 1 1 1 

TNFI 6.8 (average) 7.31 5.30 1 1 1 1 1 1 

TWNFI  6.8 (average) 7.11 5.16 0.89 0.71 1.00 0.92 0.31 0.56 



 

 

7.6 Summary 

 

In this chapter, a personalised tranductive neural fuzzy model is 

presented (GFR-TWNFI), and its performance compared to other 

methods for GFR prediction including other machine learning techniques.  

 

In Chapter 8, the personalised modelling approach is extended to 

another clinical medical problem involving the prediction of a binary 

outcome rather than a continuous one. This direction is intended to 

determine the potential utility of advanced personalised models for 

problems that involve classification, a common scenario for health 

informatics applications. 
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Chapter 8 : Personalised Modelling for the Prediction of 

Survival of Haemodialysis Patients (DOPPS-TWNFC) 

 

 

In Chapter 7, GFR-TWNFI was presented as a transductive model 

using neural fuzzy inference for personalised modelling and the 

prediction of renal function. The GFR-TWNFI model predicts GFR with 

greater accuracy than other methods, including GFR-DENFIS, indicating 

that personalised modelling are potentially superior to those local 

models.  

 

In this chapter, the personalised modelling approach is further 

developed and applied on another clinical medical problem involving the 

prediction of a binary outcome rather than a continuous one. A 

tranductive model using neural fuzzy inference is trained on the DOPPS 

dataset to predict the survival of patients on haemodialysis at 3 years. 

As previously described in Chapter 4, the DOPPS dataset contains 

observed mortality status and associated demographic, clinical and 

laboratory variables for modelling. In this case study, very similar models 

and modelling techniques to the GFR-TWNFI are used to demonstrate 

the flexibility of this approach for other prediction problems that arise in 

medicine. In this clinical medical problem, the TWNFI model is 

developed for classification, a common scenario for health informatics 

applications whether the classification is related to death or other sorts of 

outcomes. The material of the chapter was published in (Ma, Song, 

Marshall & Kasabov).  (Ma et al., 2005)  

 

8.1 Introduction to a Novel Transductive Neuro-fuzzy Classifier 

with Weighted Data Normalization (TWNFC) 

 

For this task, a novel transductive neuro-fuzzy classifier with weighted 

data normalization (TWNFC) is developed. As with the previous 

transductive system in Chapter 7 (GFR-TWNFI), a local model is 
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developed for every new input vector, based on the closest data to this 

vector from the training data set. As with GFR-TWNFI, the WDN 

optimizes the data normalization ranges for the input variables of a 

system. A steepest descent algorithm is used for training the TWNFC 

model. The TWNFC is illustrated on the DOPPS dataset as described in 

Chapter 4: a medical problem of predicting the survival of haemodialysis 

patients.  

 

8.2 Proposed Method 

 

8.2.1 Structure and Learning Algorithms of the TWNFC 

 

The structure and learning algorithms of the TWNFC are identical to 

those described for the GFR-TWNFI in Chapter 7 with the following 

additions / exceptions only: 

 

In this dynamic neural-fuzzy inference system with a local generalization, 

the Zadeh-Mamdani type fuzzy inference engine (L.A. Zadeh, 1965; L.A.  

Zadeh, 1988) is applied. The Zadeh-Mamdani fuzzy logic operator is 

presented in details in Chapter 3. 

 

All results reported for different models (including GFR-TWNFC) are 

based on 10-cross validation experiments with the same model and 

parameters and the results are averaged. In each experiment 70% of the 

whole data set is randomly selected as training data and another 30% as 

testing data.  

 

The output is patient survival at 3 years from study enrolment (yes/no).  

 

8.2.2 Statistical Evaluation 

 

The output of the DOPPS-TWNFC was compared with prediction from 

several more common and well-known methods of classification, such as 

SVM, ECF, MLP, RBF, and multiple linear regression.  
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For model fit of a dichotomous variable, it was necessary to choose a 

statistic that reflects the goodness-of-fit, rather than a statistic such as 

the Chi-square which allows a hypothesis tests with a simple yes-no 

answer. With the many thousands of vectors available, the Chi-square 

test (whether for discrimination of the binary outcome of death and life, or 

for calibration over various increased categories of risk) gives a poor fit 

for all of the models, with a significant difference between the predicted 

values and observed values for every technique (all Chi square > 74 at 

best). 

 

An additional statistic is needed to enable a comparison between models 

and allow some assessment of the models as to what might be an 

acceptable model and what is not.  

 

There are several statistics available for this:  

 

The Akaike Information Criterion and the Bayesian Information Criterion 

allow some sort of discernment between models and allows the observer 

to choose between two models. They do not, however, allow for the 

assessment of a model as being good enough for clinical use.  

 

There are really two statistics which do this. The first is the Kappa 

statistic, which was developed to assess the agreement between two 

methods, raters or observers, when the observations are measured on a 

categorical scale (Altman, 1991). The degree of agreement is indicated 

by K, which allows some sort of idea of whether the agreement is 

clinically useful and can be roughly interpreted as follows: K < 0.20, 

agreement quality poor; 0.20 < K < 0.40, agreement quality fair; 0.40 < K 

< 0.60, agreement quality moderate; 0.60 < K < 0.80, agreement quality 

good; K > 0.80, agreement quality very good. Confidence intervals for K 

were constructed using the goodness-of-fit approach of Donner & 

Eliasziw (Donner & Eliasziw, 1992). There is no universally agreed 

method for comparing K between multiple tests of agreement. In this 
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study, K for different classification methods was compared using the 

permutation or Monte Carlo resampling routine of McKenzie (McKenzie, 

Mackinnon, & Clarke, 1997; McKenzie et al., 1996). 

 

Agreement refers to the quality of the information provided by the 

classification device and should be distinguished from the usefulness, or 

actual practical value, of the information. Agreement provides a pure 

index of accuracy by demonstrating the limits of a test's ability to 

discriminate between alternative states of health over the complete 

spectrum of operating conditions. To date, prognostic systems based on 

simple logistic regression or principle component analysis for the 

prediction of haemodialysis patient survival have published accuracy of 

60-70%.  

 

Perhaps the more conventional way of reporting model fit might be with a 

receiver operating curve (ROC). Similarly to the Kappa statistic, the area 

under the ROC curve has an element which allows some sort of 

qualitative judgement of mdoel fit:    .90-1 = excellent (A), .80-.90 = good 

(B), .70-.80 = fair (C), .60-.70 = poor (D), .50-.60 = fail (F). The AUROC is 

derived from the specificity and sensitivity which are included in Table 8.1 

and Table 9.1 

 

We believe the AUROC and other statistics (including the Brier and 

Shapiro scores) do not add to the Kappa statistic in understanding the 

practical accuracy of the predictive model. 

 

8.3 Results 

 

The experimental results in Table 8-1 illustrate that the DOPPS-TWNFC 

provides incrementally better results with agreement quality moderate, 

towards a K of > 0.60 and a level of accuracy ~80%, which are generally 

regarded as thresholds for clinical utility.  
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The AUROC statistics are very similar to the Kappa statistics: they 

indicate fair prediction with the DOPPS-TWNFC, but nevertheless better 

prediction than the other models.  

 

For every patient, a personalised model is created and can be used to 

estimate the importance of the variables for this patient. Two examples 

are shown in Table 8-2. The DOPPS-TWNFC not only results in a better 

accuracy for the prediction of mortality of patients, but also shows 

variables selected by the model for each vector that may result in a more 

efficient personalised treatment for the patient which the vector 

represents. 

 

8.4 Conclusions  

 

The DOPPS-TWNFC performs a better local generalisation over new 

data as it develops an individual model for each data vector, and this 

model takes into account the location of new input vector in the problem 

space. As for GFR-TWNFI, this approach seems to be superior to 

inductive AI approaches using global models. As with GFR-TWNFI, the 

approach also focuses on the individual patient and as an adaptive 

model, where input-output pairs of data can be added and made 

available for transductive inference of local models. The clinical 

plausibility of this approach for the prediction of mortality and its results 

are satisfactory in this study. As GFR-TWNFI, DOPPS-TWNFC creates a 

unique sub-model for each data sample and usually needs more 

computational time than other inductive models.  

 

8.5 Summary 

 

In this chapter, a personalised tranductive neural fuzzy model is 

presented (DOPPS-TWNFC), and its performance compared to other 

methods for GFR prediction including other machine learning techniques. 

In particular, prediction is superior to conventional statistical and other 

approaches based on global or local learning.  
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In Chapter 9, the personalised modelling approach is applied using 

novel transductive model to the same clinical problem as for Chapter 8. 

The model, however, is enhanced further through the use of the Total 

Least Square method (TLS) for optimal fitting, potentially resulting in 

improved model development for every new input vector.  
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Table 8-1  Experimental Results on the DOPPS Data   

 

Model 

 

Kappa (95% Confidence 

Intervals)* 

 

P-value 

 

Agreement  

(%) 

 

Specificity    

      (%) 

 

Sensitivity  

(%) 

              

             RBF 

 

0.1675 (0.1268 - 0.2026) 

 

<0.001 

 

59.1 

 

67.51 

 

49.08 

ECF 0.1862 (0.1469 - 0.2224) <0.001 59.9 66.74 51.76 

MLP 0.3833 (0.3472 - 0.4182) <0.001 69.44 72.56 65.72 

Multiple Linear 

Regression 

0.4020 (0.3651 - 0.4357)  

<0.001 

70.55 76.7 63.21 

SVM 0.4110 (0.3748 - 0.4449) <0.001 70.93 76 64.88 

TWNFC 0.4503 (0.4152 - 0.4837) Reference 72.64 73.3 71.8 

 

*Kappa values and confidence intervals ascertained with Stata Intercooled V 8.2 (StataCorp, College Station, TX), and P-values 

with KAPCOM (McKenzie et al., 1997). 
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Table 8.2  DOPPS-TWNFC Models of Single Patients  

 Patient 1 Patient 2 

Input variables Values of input Weights of 

input 

variables 

Values of input Weights of 

input 

variables 

Years on Dialysis 

prior to Study 

0.34 0.49 0.5175 0.63 

Age 88 0.85 66 1 

Sex Female 0.05 Female 0.62 

Race Black 0.59 White 0.72 

Diabetes No 0.96 No 0.56 

Angina Angina at rest 

within 12 

months of 

enrolment date 

1 No 0.89 

Myocardial 

Infarction 

Yes 0.77 No 0.62 

Chronic Heart 

Failure 

Dyspnea at rest 

or pulmonary 

edema 

0.54 No 0.71 

Left Ventricular 

Hypertrophy 

Yes 0.79 No 0.33 

Serum Albumin 3.8667 0.54 3.7 0.94 

Peripheral 

Vascular Disease 

No 0.37 No 0.68 

Cerebrovascular 

Disease 

No 0.73 No 0.21 

Hypertension Yes 0.76 Yes 0.7 

Kt/V 1.3 0.52 1.31 0.68 

Serum 

Phosphate 

4.9333 0.56 3.77 0.57 

Serum 

Haemoglobin 

11.3333 0.42 9.9 0.66 
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Type of access 

for Dialysis 

 

Synthetic graft 

 

0.95 

 

Native A- V 

fistula 

 

0.24 

Mobility Can walk with 

assistance 

0.69 Can walk without 

assistance 

0.5 

sPCS 32.02 0.98 51.82 0.64 

sMCS 50.99 0.77 43.99 0.69 

Body Mass Index 23.5 0.6 17.5 0.6 

Hi-flux No 0.82 Yes 0.66 

Serum Creatinine 6.8 0.6 5.93 0.8 

Serum Calcium 8.53 0.52 9.07 0.6 

Output Survive Predicting 

result: 

Survive 

Non-survive Predicting 

result: Non-

survive 
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Chapter 9 : Personalised Modelling for the Prediction of 

Survival of Haemodialysis Patients (DOPPS-TTLSC) 

 

 

In Chapter 8, DOPPS-TWNFI was presented as a transductive model using 

neural fuzzy inference for personalised modelling and the prediction of 

mortality in haemodialysis patients. The DOPPS-TWNFI model predicts 

mortality with greater accuracy than other methods based on global or local 

learning.  

 

In this chapter, another novel method is proposed. A change is made 

to the learning algorithms for the personalised modelling approach. The 

enhanced transductive model uses the Total Least Square method (TLS) for 

optimal fitting, potentially resulting in improved model development for every 

new input vector, based on more appropriate selection of data closest to this 

vector from the training data set. In this chapter, we compare the 

performance of the transductive total least squares classifier (DOPPS-

TTLSC) for the prediction of mortality in haemodialysis patients  

 

The material in this chapter was published in (Song, Q., Ma, M. and 

N.Kasabov, 2006).   

 

 9.1 Transductive Model and Total Least Square Method 

 

The principle and algorithm of TWNFI system has been introduced in Chapter 

7. Here I will emphasize the rationale and details of TLS method. 

 

The rationale for the use of the TLS method arises from it being one of the 

optimal fitting methods that can be used for curve and surface fitting. It is 

known to outperform the commonly used Least Square (LS) fitting methods in 

resisting both normal noise and outliers. The problems of using a model of 

line (curve), plane (surface), or hyperplane (hypersurface) to fit a given data 
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set are often encountered in many engineering applications. For solving such 

classical statistical problems, the conventional method is the LS fitting 

method. However, in many cases, LS is suboptimal. The optimal least square 

method is the so called Total Least Square (TLS) method (Golub & Van Loan, 

1996; Oja, 1982; Xu, Oja, & Suen, 1992). In contrast to the usual LS method, 

the TLS method yields a function, which can be a line (curve), plane (surface), 

or hyperplane (hypersurface), on the given data set, and to minimize the sum 

of the distances between each data point to the estimated function.   

 

In contrast to the usual LS method, computations to obtain the solution of TSL 

are generally quite burdensome. In the case of linear fitting, however, the 

problem of optimal fitting in the TLS sense is not so intricate. When the linear 

models are expressed as: 

 

b0 + b1 x1 +  b2 x2 + … + bm xm = 0.                   (9.1) 

 

where xj, j = 1, 2, …, m,  are variables and b0 is an arbitrary constant. For Eq. 

9.1, the TLS fitting problem is to minimize the following total least square error 

E: 
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   (9.2)  

where n is the number of vectors in the data set. 

Either a linear neural network using a constrained Hebbian learning rule (Xu 

et al., 1992) or a steepest descent algorithm can be used to solve such a 

problem. In our current research, we use the latter. 

We apply the transductive technology to the TLS method for more accurate 

classification: for each class, one TLS function is created on the local area 

that is based on the position of the new data in the training data space, and 

the new data belongs to such a class – the related TLS function has the 

shortest distance to the new data point.    



177 
 

 

9.2 Proposed Method  

 

9.2.1 The TTLSC Structure and Learning Algorithm 

 

TTLSC is a TLS method using the transductive technology for solving 

classification problems. The distance between vectors x and y is measured in 

TTLSC in normalized Euclidean distance defined as follows (the values are 

between 0 and 1): 

 

                                                                              (9.3)

                           

where:  x, y ∈ RP  

Consider the classification problem has two classes and m variables, for each 

new data vector xq, the TTLSC learning algorithm performs the following 

steps: 

1) Normalize the training data set and the new data (the values are 

between 0 and 1). 

2) Search in the training data set in the whole space to find Dq that 

includes Nq training samples closest to xq. The value of Nq can 

be pre-defined based on experience, or - optimized through the 

application of an optimization procedure. Here we assume the 

former approach. 

3) If all training samples in Dq belong to the same class, the new 

data belongs to this class and the procedure ends. Otherwise, 

4) Calculate the distances di, i = 1, 2, …, Nq,  between xq and each 

of data samples in Dq and calculate the vector weights wi = 1 – 

(di – min(d)), here, i = 1, 2, …, Nq,  min(d ) is the minimum value 

in the distance vector d, d = [d1, d2, … , dNq].  

5) Use the Weighted Least Square method (Hsia, 1977; N.  

Kasabov & Song, 2002) to create a function as Eq.9.4 with the 

data pairs [xi, yi] and wi, i = 1, 2, …, Nq ,  
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y = a0 + a1 x1 + a2 x2 + … + am xm                    (9.4) 

where,  yi = 0 if training data sample xi belongs to class 1 and, yi = 1 

if xi belongs to class 2. 

6) Create two initial TLS functions for two classes respectively 

f1(x,B(0)) = B0
(0)+ B1

(0)x1 +  B2
(0)x2 + … + Bm

(0)xm = 0;    

           Bj
(0) = aj,  j = 0,1, 2, …, m.                                                  (9.5a)  

f2(x,b(0)) = b0
(0)+ b1

(0)x1 +  b2
(0) x2 + … + bm

(0) xm = 0; 

b0
(0) = a0 – 1 and  bj

(0) = aj , j = 1, 2, …, m.        (9.5b) 

7) Apply the steepest descent method to optimize the parameters 

B and b for two TLS functions following Eq. 9.6 – 9.8. 

8) Calculate the distances r1 and r2, from the new data point to f1 

and f2 respectively, the new data belongs to class1 if r1 < r2 and 

otherwise, it belongs to class 2. 

9) End of the procedure.  

The parameter optimization procedure is described as following: 

Suppose there are Nq1 class 1 training data Dq1 and Nq2 class 2 training data 

Dq2 in the Dq. The f1 and f2 are optimized on Dq1 and Dq2 respectively. The 

optimization for f1 is showed following (it is the same manner for f2): 

 

The optimization minimizes the following objective function (the re-written 

Eq.9.2): 
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Then the steepest descent algorithm is used to obtain the formulas for the 

optimization of the parameters B, so that the value of E from Eq. (9.6) is 

minimized: 
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where, η is the learning rate.  

 

   In the TTLSC algorithm, the following indexes are used: 

·  data samples:       i = 1, 2, … , Nq1 or Nq2; 

·  variables:                         j = 1, 2, … , m; 

·  optimization iterations:               k = 1, 2, …. 

 

All results reported for different models  (including DOPPS-TTLSC) are based 

on 10-cross validation experiments with the same model and parameters and 

the results are averaged. In each experiment 70% of the whole data set is 

randomly selected as training data and another 30% as testing data.  

 

The output is patient survival at 2.5 years from study enrollment (yes/no) 

 

9.2.2 Statistical Methods 

 

The output of the DOPPS-TTLSC was compared with prediction from several 

more common and well-known methods of classification, such as SVM, ECF, 

MLP, RBF, and multiple linear regression. The Kappa statistic described in 

Chapter 8 is also used in this experiment. 

 

 9.3 Results 

 

The experimental results in Table 9-1 illustrate that the DOPPS-TTLSC 

provides incrementally better results, towards a K of > 0.60 and a level of 

accuracy ~80% ,which are generally regarded as thresholds for clinical utility.  
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Table 9-1  Experimental Results on the DOPPS Data 

 

Model Kappa (95% Confidence 

Intervals)* 

P-value Agreement 

 (%) 

Specificity  

(%) 

Sensitivity  

(%) 

 

RBF 

 

0.1675  (0.1268 - 0.2026) 

 

<0.001 

 

60.4 

 

65.3 

 

49.08 

ECF 0.1862  (0.1469 - 0.2224) <0.001 61.5 63.4 51.76 

MLP 0.3833  (0.3472 - 0.4182) <0.001 62.8 65.6 58.72 

Multiple Linear 

Regression 

0.4000  (0.3651 - 0.4357)       <0.001 69.9 71.6 60.21 

SVM 0.4240  (0.3748 - 0.4449) <0.001 72.6 76 62.4 

TTLSC 0.4503  (0.4152 - 0.4837) Reference 73.5 74.6 68.6 
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9.4 Conclusions 

 

This chapter presents a transductive total least square method for 

classification – TTLSC. The TTLSC performs a better local generalization 

over new data as it develops individual models for each data vector that takes 

the location of new input vector in the space into account.  

 

As with the other transductive approaches in this research, this personalised 

approach seems appropriate for clinical and medical applications where the 

focus is often not on the population but on the individual patient. At the same 

time, it is an adaptive model, in the sense that data can be added to the data 

set continuously and immediately, and made available for transductive TTLSC 

models. The clinical plausibility of the approach and its results are also 

satisfactory, along with the other transductive models in this study.  

 

In Chapter 10, conclusions and recommendations for future directions are 

included.  
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Chapter 10 : Conclusion and Future Directions  

 

 

This last chapter of the thesis includes a summary of the thesis, the main 

contributions of this study in the field of Health Informatics and renal DSS and 

some future directions that I would like to follow in my future research and 

practice.  

10.1 Summary of the Thesis 

 

This research develops AI for Health Informatics, and focuses on those which 

can continuously evolve structure and functionality over time through learning 

from data and continuous interaction with the environment. This thesis 

presents novel neuro-fuzzy models for local and personalised modelling and 

illustrates them on real world medical case studies.  

 

The local modelling techniques are based on the principles of ECOS, where 

the data is clustered and for each cluster a separate local model is developed 

and represented as a fuzzy rule, either of Takagi-Sugeno, or Zadeh-Mamdani 

types. The local models compare favourably with global models. As the 

archetypal local model, the output from DENFIS was more accurate as one 

might expect given that it is a set of local models. Moreover, DENFIS shows a 

significant advantage in potential explanation through rule extraction within 

patient clusters.  

 

The personalised modelling techniques are based on transductive reasoning, 

where a local model is developed for every new input vector, based on data 

closest to this vector from the training data set. The performance of these 

models for prediction of GFR and the prediction of mortality in haemodialysis 

patients is superior to regression formulas, and other neural fuzzy systems in 

which prediction is made by either local or global modelling. These 

transductive systems allow for personalised modelling with a better accuracy 

for a given individual patient. They also reveal the most significant input 
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variables (features) for the model that might suggest clinical target for 

intervention and a change in medical management.  

 

Two representative problems in clinical medicine have been explored using 

the framework of local and personalised modelling. In each case, prediction 

has been made utilising either routinely available data of a clinical, laboratory, 

or a combined nature. Systems has been developed for the following 

circumstances: (1) prediction appertaining to renal function, using data from 

178 Australasian patients with advanced chronic kidney disease (computing 

procedure GFR-DENFIS, GFR-KBNN, GFR-TWNFI); (2) prediction 

appertaining to patient longevity after the inception of dialysis for end-stage 

renal failure, using data from 6010 patients randomly sampled from United 

States facility haemodialysis population (computing procedure DOPPS-

TWNFC, DOPPS- TTLSC). 

 

Five novel modelling have been developed during this course of study: 

 

 GFR- KBNN: a novel local modelling for GFR Evaluation based on 

KBNN. KBNNs incorporate and adapt existing knowledge as kernel 

functions in their structures to improve their learning and adaptation 

ability. The system performed better than any existing conventional 

regression formula in common clinical practice. The system also 

performed better than other NNs and fuzzy models, which occurs as a 

result of the fine-tuning of each local model in KBNN and by the proper 

aggregation of all local models. 

 

 GFR-DENFIS: a novel modelling for prediction of renal function based 

on neuro-fuzzy inference system with capability of learning. This 

direction represents an incremental advance in the techniques of 

Health informatics towards progressively more localized and 

personalised modelling frameworks. 

     

 GFR-TWNFI: a transductive personalised modelling for prediction of 
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renal function with better local generalizations over new data. It utilizes 

medical knowledge efficiently as setting initial values for parameters of 

weighted data normalization and develops individual model for 

individual patient. 

 

 DOPPS-TWNFC: a transductive personalised modelling for prediction 

of survival of patients on dialysis. This personalised modelling can also 

be applied to solve other classification or clustering problems. 

 

 DOPPS- TTLSC: a novel transductive modelling based on total least 

square classification method with better results for medical diagnosis 

and prognosis. 

 

However, taking more insights on critical review of the methods applied in this 

research, there are challenges as following: 

 

1) External validity 
 

Most regression formulas have been validated in unrelated datasets. 

New models developed in this research have only been validated in the 

dataset in which they are developed using 10-flod cross validation, 

leave one out, etc. There is a possibility that there is overfitting which 

needs to be explored through analyses on new datasets. 

 

2) Accuracy 

 In most areas of medicine, AI has not resulted in greatly better 

prediction than competent and contemporary statistical models. 

Both AI and regression analysis cannot make predictions on 

omitted covariates, and the degree of residual variation in all of 

these models suggest that there are important predictors which 

are simply not captured in existing databases and therefore 

impossible to model (accepting that there might be some 

instrumental variables that might reduce unmeasured 
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confounding). However, irrespective of this, AI predicts more 

accurately than regression. 

 This is a preliminary research emphasized on the application of 

local and personalised models for medical decision support 

system. Through future optimizations of the models, we target 

on the improvement on accuracy. 

 

3) Practicality 

 Is the improvement in accuracy with AI of sufficient magnitude to 

be important? How much better does prediction have to be 

before it is clinically useful? 

 Most regression formulas can be implemented using simple 

software. Connectionist models are more complex to implement, 

and if they used multiple fixed formulae then this is fine, but they 

won’t be able to evolve outside of a mathematical program. 

 Already, Information System in hospitals is painfully slow and 

often crippled by old servers and outdated software. How 

resource hungry are these applications, and are they cost-

effective? Is the benefit of better prediction worth the outlay of 

expenditure or is the money better spent elsewhere? 

 

10.2 Main Contributions of the Research 

 

The main contribution of this research is to provide immediate and workable 

methods and tools to augment health care, which are of sufficient accuracy to 

support good clinical decision-making.  

 

Current tools for the above applications are either inadequate or wholly 

lacking, and the new systems compare favourably. Such systems can be 

utilised by hospital funders and administrators to more accurately assess 

future population disease burden for service planning, and also by health care 

providers to more accurately assess actual or potential patient disease burden 

to assist with diagnostic and therapeutic decision-making. The objectives of 
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this research are concentrated on specific clinical situations (prediction of 

renal function, prediction of patient survival on haemodialysis), but they result 

in generic modelling frameworks. These can then be extrapolated to the future 

development of other health care applications using ECOS (e.g. for accurate 

prediction of cardiovascular risk) using local and personalised models, and 

will serve to catalyse further applications albeit with some modification to 

methodology.  

 

Furthermore, this research resulted in technical solutions to the various data 

modelling problems that exist in health care research. For instance, most 

patient data collected by hospitals for diagnosis and prognosis are limited by 

their incompleteness (missing parameter values), incorrectness (systematic or 

random noise in the data), sparseness (few and/or non-representable patient 

records available), and inexactness (inappropriate selection of parameters for 

the given task). To date, there have been few rigorous attempts to develop 

Health Informatics solutions to these problems, and it is anticipated that the 

procedures developed in this project will set the benchmark in this area.   

 

More importantly, personalised modelling developed for renal decision 

support system in this research is an adaptive and evolving technique, in 

which new data sample can be continuously added to the training dataset and 

subsequently contribute the learning process of personalised modelling. The 

technique of personalised modelling offers a new tool to give a profile for each 

new individual data sample. Such characteristic makes personalised 

modelling based methods are promising for medical decision system, 

especially for complex human disease diagnosis and prognosis. 

 

10.4 Future Directions 

 

Health Informatics is an area with increasing data and emergence of 

knowledge. The problems in Health Informatics are too complex to be 

adequate modelled with the use of a single approach. New methods are 

needed in the future for data and model integration and for personalised 



187 
 

modelling to be applied in medical practice. Future directions for my research 

include:  

 

1) Further Modification:  

 

 Working on parameter optimization of different systems, e.g. 

optimal number of clusters and number of learning iterations for 

KBNN, optimal number of nearest neighbours for TWNFC and 

TTLSC, etc. 

 Searching for more effective optimization algorithms. 

 Using different formulas in fuzzy rules as their consequent parts 

to create new fuzzy inference system. 

 

2) Further Development:  

 

 Integration of these novel methods into Health Care Decision 

Support Systems to manage health knowledge and patient data 

for promoting cost-effective and high-quality medical care. 

 Offering patients personalised, actionable wellness information 

to improve their health. 

 Contributing to the development of new generation of systems 

and tools which are aimed at health care administrators and 

other professionals - to support education, communication, 

decision making, and many other aspects of professional activity.   

 

3) Further Application: Applying these novel methods to different medical 

decision support systems for solving other healthcare problems, such 

as: cardio-vascular risk prognosis; biological processes modelling and 

predictions based on gene expression micro-array data, etc.   

 

 Applications in Health Informatics and Bioinformatics for building 

embedded systems in biological environments, for personalised 

drug design and personalised medical services, etc. 
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 Applications in Genomics and Proteomics for computational 

modelling of gene/ protein expression data and gene regulatory 

networks related to diagnosis and prognosis of disease and drug 

marker discovery, for prevention of genetic disease and gene 

therapy.   

 Applications in Neuroinformatics and neuroscience for solving 

complex problems of artificial intelligence, such as multimodal 

information processing. A promising direction is computational 

neurogenetic modelling which integrating genetic and brain data 

to model brain functions (Nikola Kasabov, Benuskova, & 

Wysoski, 2005). 

 

As we know, Chronic Kidney Disease (CKD) is a global health problem 

leading to a substantial burden of illness and premature mortality. The burden 

of CKD is high worldwide.  

 

The application of the novel local and personalised models for renal medical 

decision support system developed in this research will allow earlier detection 

and management of CKD, which could be an important strategy to reduce the 

increase burden of CKD; In addition, personalised models will effectively help 

identify risk factors in individual patient which might lead to further 

personalised medical monitoring and treatment. 

 

This research is not an endpoint, but a beginning and an enabling within the 

field of personalised modelling for Health Informatics and knowledge 

discovery. Now clinical studies for prospective validation of these systems in 

independent datasets are planned.  
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