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Abstract. This paper presents an investigation of two search techniques, 
tabu search (TS) and simulated annealing (SA), to assess their relative 
merits when applied to engineering design optimisation. Design 
optimisation problems are generally characterised as having multi-modal 
search spaces and discontinuities making global optimisation techniques 
beneficial. Both techniques claim to be capable of locating globally 
optimum solutions on a range of problems but this capability is derived 
from different underlying philosophies. While tabu search uses a semi-
deterministic approach to escape local optima, simulated annealing uses a 
complete stochastic approach. The performance of each technique is 
investigated using a structural optimisation problem. These performances 
are then compared to each other as and to a steepest descent (SD) method.  

 
1. Introduction 
 
The purpose of this paper is to investigate the performance of two optimisation 
techniques applied to an engineering design problem. Tabu search [1] is an 
aggressive metaheuristic that guides a local search out of local optima while 
simulated annealing [2] uses a probabilistic approach to obtain the same end. 
Comparing heuristic techniques is difficult since performance is highly dependant 
on the specific formulation of the general method. In this comparison, the 
implementation of each technique is sufficiently mature such that a direct 
comparison is unlikely to lead to results that favour one particular method due to 
bias in development effort. The tabu search algorithm used in this study was 
originally developed for application to the optimisation of fluid power circuits [3]. 
The simulated annealing algorithm is the underlying search technique used in an 
approach to size, shape and topology optimisation of structures [4]. 
 

The problem chosen to assess the relative merits of each algorithm is the 
shape and size optimisation of a ten bar truss. This is a simple extension of the 
standard problem, which only considers size optimisation, and a step towards 
applying tabu search to structural topology optimisation. 

 
2. Optimisation Techniques 
 
A variety of techniques can be used to tackle the optimisation of engineering design 
problems. Traditional methods, such as steepest descent and conjugate gradient 
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methods have recently fallen into disfavour due the advent of claimed global 
optimisation methods such as genetic algorithms, tabu search and simulated 
annealing. A wealth of studies exist in the literature which compare different 
methods [5,6,7] although no general conclusions can be made as sample problems 
come from differing domains and there are different approaches to implementing 
both the algorithms and the representation used. 
 
2.1. Tabu Search 
 
The tabu search concept is a heuristic procedure designed to guide other methods to 
avoid local optimality. Tabu search has been shown to be effective on a wide 
variety of classical optimisation problems, such as graph colouring and travelling 
salesman problems, and has also been applied to practical problems such as 
scheduling and electronic circuit design. The method uses constraint conditions, 
such as aspiration levels and tabu restrictions, and a number of flexible attribute 
based memories with different time cycles. The flexible memories allow search 
information to be exploited more thoroughly than rigid memory or memory-less 
systems, and can be used to either intensify or diversify the search to force the 
method to find optimum solutions. 
 

The underlying search method in the current implementation is a variable step 
size steepest descent algorithm. This has been chosen as it allows a direct search to 
be carried out without any gradient information. Two memory lists are used to 
control the search algorithm. The short term memory contains representations of 
recently visited solutions that are classed as tabu. When the search algorithm 
locates an optimum it is forced to make a move and it is not allowed to return to a 
solution that is contained in the list. As the search progresses the list is updated on a 
first in-last out basis so that the list remains a fixed size. It is the short term memory 
and the notion of tabu restriction that provide the capability to escape local optima. 

 
The intermediate term memory is similar to the short term memory, but it 

contains a list of previously visited best solutions. This list of solutions is used to 
provide a means of focussing on good regions of the solution space. This 
intensification provides the means to accelerate the search by examining trends in 
good solutions and proposing new solutions based on an extension of these trends. 
In addition to this, intensification can locate new good solutions by investigating 
the centroid of several disparate good solutions. The final search control mechanism 
is diversification. This is often implemented by using an additional long term 
memory cycle but in this implementation is based on a simple refreshment 
involving a scattering of new random solutions. 

 
2.2. Simulated Annealing 
 

Simulated annealing algorithms model the process of annealing in solids to 
optimise complex functions or systems. In the physical world, annealing is 
accomplished by heating a solid to an elevated temperature and then allowing it to 
cool slowly enough so that the thermal equilibrium is maintained. Atoms in the 
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material then assume a globally minimum energy state. Simulated annealing 
algorithms have been successfully applied to a variety of problems. The algorithm 
starts with an initial design and generates a new design by changing one or more of 
the design variables. The objective function is then evaluated for the new design. 
While a better design is always accepted there is a possibility that a worse design 
may be accepted based on a probability function [8]. 

 
The change in energy is expressed as the change in objective function value, 

while the temperature is a control parameter that sets the probability of selection. In 
the general method, the temperature is held constant for a prescribed number of 
iterations to allow the system to gain “thermal equilibrium” and is then decreased in 
accordance with a cooling curve. As the temperature decreases, so does the 
probability that an inferior design will be accepted. This forces the algorithm to 
converge to an optimal, or near optimal, solution.  

 
Simulated annealing algorithms are reasonably robust if the parameters 

controlling the cooling curve are assigned values that reflect the complexity of the 
problem. In this implementation the modified Lam-Delosme schedule is used [9] 
with rules selected based on quality metrics [10] and dynamic constraint weights 
[11]. 
 
3. Optimisation of the Ten Bar Truss 
 
The problem considered in this paper is the optimisation of the ten bar truss. In the 
standard approach to this problem the spatial layout of the truss is constrained as 
shown in Figure 3.1 by fixing the position of the nodes.  
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Figure 3.1: Ten bar truss 
 

The truss is assumed to consist of an idealised set of pin jointed bars 
connected together at the nodes. The design optimisation problem is to find the 
cross sectional areas of each member such that the mass is minimised. The problem 
has been expanded in this paper to allow the spatial layout of the truss to be 
adjusted as well as the cross sectional area of the members. The built in nodes are 
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fixed in position, as is the loaded node. This variation of the problem therefore 
introduces six new parameters that determine the position of nodes 2, 5 and 6 in 
Cartesian space. It is important to realise that the introduction of new parameters 
does not turn the problem into a topology optimisation problem. Even if member 
areas were allowed to drop to zero, this removal of members is only a reduction in 
the connectivity of a given topology. A true topology optimisation can only be 
achieved if nodes can be added and removed. 

 
Essentially, all of the design parameters are continuous. However, the nodal 

positions have a minimum allowable change of 1cm whilst for the cross sectional 
areas the minimum allowable change is 0.01cm2. In reality, these cross sectional 
areas would be limited to discrete values corresponding to available stock material. 
The material for the truss is aluminium with Young’s modulus of 6.88x106 N/cm2 
and material density is 2.7-3 kg/cm3. Each member is modelled as a solid circular 
cross section.  
 
3.1. Constraints and Convergence 
 
Despite the simplicity of the ten bar truss example, it is still a reasonably 
constrained problem due to the difficulty in finding high quality, i.e. low mass, 
solutions that do not violate either the buckling or stress constraints. The constraints 
on the problem are that each member should not have a stress that exceeds 17,200 
N/cm2, buckle under Euler buckling criteria, and have a length less than 15cm. 
 

The tabu search and simulated annealing implementations used in this paper 
take different approaches to dealing with constraint violations. In order to reflect 
the aggressive nature of the search, the tabu search method uses a simple rejection 
of infeasible solutions. In comparison, the simulated annealing approach used in 
this study uses a complex, dynamically weighted penalty function that decreases the 
allowable violation as the search progresses. This approach allows the method to 
track through regions of infeasibility in order to locate new feasible solutions where 
as the tabu search implementation relies on the intensification of trends to carry the 
search through infeasible regions. 

 
Both methods have the capability to test convergence of the search and induce 

a premature termination of the search. However, the implementations of 
convergence criteria differ significantly and have not been used in obtaining the 
results. The implication is that the simulated annealing approach will carry out all 
of the evaluations specified by the cooling strategy and a potentially large number 
of the evaluations used by the tabu search will only be producing very small 
decreases in mass. 

 
4. Results 
 
An initial investigation of optimising only member size resulted in solutions in the 
range 2900 to 3300kg. These results have been used to set a target mass threshold 
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of 2900kg to determine the degree of success of the methods on the expanded 
problem. 
 

Results are presented for ten optimisation runs of each method. In the first 
instance, results are presented that show  summary of the results for test runs for all 
three methods. Both the tabu search method and the underlying steepest descent 
method are initialised by generating a random scatter of solutions with the search 
being started from the best feasible solution. The simulated annealing method is 
started from the same point but has an initial random walk which takes it to a 
different region of the solution space in each run before the probability of accepting 
a worse solution is reduced below 1. Therefore, the multiple runs of the problem 
indicate how the methods perform when started from different regions of the 
solution space. The results summary is shown in Table 4.1.  
 

 SD TS SA 
Best mass (kg) 2299 1598 1491 
Best mass evals 4206 12004 34000 
Worst mass (kg) 7208 2948 2307 
Worst mass evals 3252 8896 34000 
Average mass (kg) 4162 2401 1967 
Std. Dev. of mass (kg) 1796 495 323 
Lowest evals 2711 8441 34000 
Highest evals 5676 36806 34000 
Average evals 4386 13455 34000 
No. runs below 
2900kg threshold 3/10 8/10 10/10 

 
Table 4.1: Statistical comparison of methods 

 
The summary of the results shows the best and worst masses achieved by each 

method, along with the number of evaluations required in each case. The simulated 
annealing algorithm always carries out the same number of evaluations where as for 
the other methods the number of evaluations is dependant on how the search 
progresses. In addition to this, the summary also shows the average mass of the ten 
runs and the standard deviation away from that value. This is essentially an 
indication of the consistency of the performance. Finally, the lowest, highest and 
average number of evaluations is shown. 

 
Due to the dynamic penalty function used by the simulated annealing 

approach, a number of solutions found exhibited minor stress violations including 
the best solution found. Manually adjusting these solutions to remove the violations 
led to a slight increase in mass and it is the adjusted values used in Table 1. The 
following results first compare the best initially feasible solution found by the 
simulated annealing approach to those found by the tabu search and steepest 
descent methods. The adjusted solution that has the lowest mass is then described. 

 
Table 4.2 shows the numeric values for each of the design parameters where 

the x,y coordinates of the node positions are expressed relative to the lower fixed 
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node. The solution shown for the simulated annealing approach is the best solution 
found with no residual constraint violations. The shading in the table indicates 
minimum area members. Such minimum area members can be removed from the 
structure to produce a reduced topology solution provided that the change does not 
produce a violation of constraints or so great a reduction in topology that the 
structure begins to act as a mechanism. Simple violations may be adjusted out by 
the designer, however it is important to realise that if a minimum area member is 
transferring significant force to a node, then removing that node may result in 
significant changes in the response of other members which become increasingly 
difficult to gauge. 
 

 SD TS SA 
x2,y2 (cm) 488,89 445,-61 568,-151 
x5,y5 (cm) 840,581 807,408 -13,920 
x6,y6 (cm) 1436,-44 1197,-112 1252,-176 
A1 (cm2) 59.71 60.39 65.29 
A2 (cm2) 28.17 16.6 22.92 
A3 (cm2) 204.14 183.17 242.63 
A4 (cm2) 0.01 0.01 0.01 
A5 (cm2) 132.31 239.9 193.82 
A6 (cm2) 125.66 3.04 13.78 
A7 (cm2) 0.01 0.01 0.19 
A8 (cm2) 145.94 1.42 0.01 
A9 (cm2) 374.43 310.26 259.65 
A10 (cm2) 42.52 47.9 35.66 
Mass (kg) 2299 1598 1526 

 
Table 4.2: Comparison of best solutions 

 
The best truss found by the steepest descent algorithm is shown in Figure 4.1. 
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Figure 4.1: SD solution 

 
Removing the minimum area members of the solution shown in Figure 2 

produces a minor buckling violation in the member between nodes 2 and 3; see 
Figure 4.2. Increasing the area of this member from 145.94 cm2 to 146 cm2 removes 
the violation and makes the reduced topology to be a feasible design. The fact that 
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such a tiny increase in area removes the buckling violation suggests that removing 
the hard constraints or introducing a tolerance on the constraints may be of benefit 
as such small violations are insignificant. 
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Figure 4.2: Adjusted SD solution 

 
The solution in Figure 4.3 resulted from the tabu search method. 
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Figure 4.3: TS solution 
 

Removing the minimum area members produces the solution shown in Figure 
4.4. The reduced topology has no constraint violations and needs no adjustment. 
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Figure 4.4: Adjusted TS solution 
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This solution has the same reduced topology as that found using the steepest 
descent method but is considerably lighter. Due to the different joint positions the 
solution has smoother load transmission paths as well as a more elegant appearance. 
Also, the variance of member lengths is noticeably smaller than in the solution 
found by the steepest descent method. 

 
The solution shown in Figure 4.5 is the best feasible solution found by the 

simulated annealing algorithm. The position of node 5 has moved just behind the 
support node since no spatial constraint was formulated. This may cause problems 
depending on how the truss is supported. The support node, node 4, and the 
member joining nodes 4 & 5 is obscured in the Figure 4.6 but the length of the 
member is longer than the minimum length and an expanded view of this region 
(not to scale) is shown in Figure 4.6. 
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Figure 4.5: Feasible SA solution 
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Figure 4.6: Expanded region of solution 
 

From this expanded view it can be seen that the positioning of node 5 above 
and behind the fixed support node has resulted in a compression member between 
nodes 4 & 5 which transmits the forces applied to node 5 from the other members to 
the support. 

 
Removing the minimum area members does not produce violations. Although 

it is not shown, it is also possible to remove member 7 which has a small area, .19 
cm2 with no adverse impact on the behaviour of the structure. It may also be 
possible to remove node 5 and attaching the tension members that link node 5 to 
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nodes 6 & 3 directly to the support node. This has the benefit of removing the 
compression member between nodes 4 & 5 which is a potential source of buckling 
failure. These potential changes have not been incorporated in the adjusted solution 
that is shown in Figure 4.7 even though they would result in a simplified reduced 
topology solution. 
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Figure 4.7: Adjusted feasible SA solution 
 

The simulated annealing approach did locate a number of solutions that were 
slightly infeasible due to the soft constraint formulation. The best solution found 
overall after small violations were removed has the parameter values given in Table 
4.3.  
 

 SA 
x2,y2 (cm) 612,-92 
x5,y5 (cm) 93,850 
x6,y6 (cm) 1259,-96 
A1 (cm2) 61.36 
A2 (cm2) 11.64 
A3 (cm2) 252.61 
A4 (cm2) 0.01 
A5 (cm2) 202.02 
A6 (cm2) 8.05 
A7 (cm2) 0.01 
A8 (cm2) .74 
A9 (cm2) 251.89 
A10 (cm2) 43.47 
Mass (kg) 1491 

 
Table 4.3: Initially infeasible SA solution (adjusted to become feasible) 

 
The minimum area members, four and seven, were removed whilst the area of 

member ten was altered from 28.41 cm2 to 43.47 cm2. The area of member six was 
slightly altered from 8.03 cm2 to 8.05 cm2 to obtain this solution. This solution is 
shown in Figure 4.8. 
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Figure 4.8: Adjusted SA solution that initially had violations 
 
5. Discussion 
 
A goal of this study was to assess the merit of each method in light of the 
computational expense required and the quality of the solution obtained. Using 
steepest descent as the basis, the best solution found by tabu search is 31% lighter 
with 2.85 times the number of evaluations. Simulated annealing resulted in a 
solution that is 35% lighter but required eight times the number of evaluations. 
While for the ten bar truss problem the evaluation is not highly time intensive, for 
larger problems and situations where the evaluation is more computationally 
expensive, reducing the number of evaluations is highly desirable. The expense of 
the optimisation must also be compared to the number of designs that will be 
manufactured and additional cost benefits outside of material purchase for reducing 
the mass of the structure.  
 

An advantage of tabu search is a semi-deterministic nature as it acts both as a 
local and global search method. With the current implementation, from an initial 
starting point, tabu search always results in the same solution. It was seen though 
that the performance of tabu search improved by using an initial scatter search but, 
this eliminated the deterministic nature. A problem with non-deterministic methods 
is, while solution quality is improved overall, this can only be assessed based on a 
number of optimisation runs. A common rule of thumb used with simulated 
annealing is to take the best solution found from three runs. 

 
The steepest descent and tabu search methods employed a hard constraint for 

stress and buckling, that is the constraints were never violated at any point in the 
search. In contrast, simulated annealing used dynamic penalty functions such that 
constraint violations were allowed throughout the search but were penalised in the 
cost function. One clear advantage to using soft constraints is that the other methods 
suffered from simple rejection of solutions with small violations, eg less than 0.01. 
Considering that the limits modelled in the problem are not accurate to this 
precision as well as the fact that the structure will not behave exactly as modelled, 
rejecting solutions with small violations to this accuracy is impractical. This could 
be resolved using a tolerance on the violations. 
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As both methods are heuristic a number of search parameters are required. To 
have a search technique that is robust over a wide range of design problems it is 
advantageous to reduce the number of parameter adjustments required from 
problem to problem. The simulated annealing implementation used has 6 
temperature schedule parameters, 15 parameters associated with the selection of 
moves, and 8 parameters associated with the dynamic constraint weights. While the 
majority of these parameters are robust over a wide range of problems, some fine 
tuning is generally necessary. In comparison, the tabu search method has a total of 5 
control parameters for which an empirically derived heuristic has been developed 
that relates the values required to the number of design parameters.  

 
Many structural optimisation methods allow members to reduce to a minimum 

area, which is generally very small, with the implication that these members can be 
removed from the structure. As was shown in Section 4, this is not always a simple 
task. Skill and understanding are necessary to transform the solutions found by the 
optimisation algorithms into sensible designs. Deciding which members can be 
removed without the structure collapsing or inducing stress and buckling violations 
is non-trivial. This emphasises that optimisation can only be an aid for designers 
and engineering judgement is still imperative.  

 
To reduce the mass of the structure farther, topology changes are required. 

Simulated annealing has been applied to this problem in the past and a best mass of 
853kg was reported for the same problem [12]. A goal of this study was to 
investigate the advantages of tabu search over simulated annealing for topology 
optimisation of discrete structures. General advantages are a decreased number of 
evaluations, potential for parallel evaluation, fewer search parameter adjustments, 
possibilities for incorporating design knowledge, and potential for learning. These 
advantages could lead to a more appropriate search technique for topology design 
problems. 
 
6. Conclusions 
 
This paper compares the performance of two mature implementations of different 
search algorithms to structural optimisation. In general, both methods perform 
considerably better than a local search method, with simulated annealing finding 
higher quality solutions than tabu search at the cost of increased computational 
expense.  
 

Each of the methods has some advantages and disadvantages other than 
improved solution quality and reduced evaluations. The aim of future work is to 
combine strengths of each method in such a to produce a hybrid. This may involve 
the use of memory cycles to escape optima and incorporate domain knowledge and 
utilise search history. The use of probabilistic moves will be investigated so as to 
remove the inherent disadvantage of tabu search in searching all moves that 
penalises the current implementation when the number of variables is very large. 
The intent of the resulting method is an efficient and effective technique for general 
engineering topology problems. 
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