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Abstract 

Pancreatic cancer is currently one of the most aggressive and resistant cancers. The 

incidences rates of pancreatic cancer are comparatively low. However, the death rates 

of pancreatic cancer are within the top 10 of all cancers worldwide. The five-year survival 

rate is currently 5%, meaning that 95% of patients diagnosed with pancreatic cancer will 

not live more than five years. Most pancreatic cancer patients will succumb to the disease 

within one year of diagnosis. The current treatments for pancreatic cancer have not been 

significantly improved over the past three decades. The mechanism of action for 

gemcitabine in cancer killing is that the nucleoside analogue prevents cell cycle 

progression and proliferation. However, the major limiting factor with the use of 

gemcitabine and many other drugs is multidrug resistance. Multidrug resistance is the 

resistance of cancer towards multiple drugs that are distinct both in structure and 

pharmacological target. ABC transporters have modulated multidrug resistance across 

a wide range of cancers. Each ABC transporter has displayed unique substrate 

specificity, tissue distribution and unique molecules that inhibited its activity. P-gp, 

BCRP2 and MRP1 were among the first ABC transporters discovered and are the best 

characterized of the ABC transporters. However, recent studies have shown that other 

ABC transporters such as MRP2, MRP3 and MRP5 are also overexpressed in a variety 

of cancer types, which have been suggested to confer multidrug resistance. MRP3 has 

for instance, shown overexpression in pancreatic cancer cells, has a unique affinity for 

glucuronide metabolites and has modulated anticancer drug resistance (MTX, teniposide 

and etoposide). This study initially investigated the expression of MRP3 across three 

bioinformatic platforms (ONCOMINE, Kmplot and STRING). The results confirmed the 

wide-reaching overexpression of ABCC3/MRP3 in kidney, lung and pancreatic cancer. 

The well-established genomic editing tool CRISPR-Cas9 was used to knockout the 

expression of MRP3 in PANC1 cells by liposome-delivered three guide RNAs and Cas9 

protein. Silencing MRP3 in knockout cell lines increased cellular accumulation of a model 

MRP3 substrate, 5-chloromethylfluorescein (CMF) by 47%-fold, 76% and 38%. The 

same mixed knockout populations also showed decreased resistance towards 

methotrexate (MTX, a well-characterised MRP3 drug substrate) and gemcitabine (GEM). 

In addition to CRISPR-Cas9 modulation, the activity of MRP3 was also targeted using 

the potential inhibitors, suramin, curcumin and EF24. Suramin, curcumin and EF24 all 

successfully increased CMF accumulation by 2.11-fold, 2.43-fold and 2.4-fold. Whether 

this would translate into reduced resistance was investigated. Within PANC1 cells, the 

combination of MTX and EF24 proved to be the most promising, with synergistic values 

ranging from 0.137 to 0.412. While, MIAPACA2 cells showed highly synergistic results 

across all combinations tested, especially the combination of MTX and suramin. This 
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study was able to identify suramin, curcumin and EF24, three novel MRP3 inhibitors. 

Furthermore, for the first-time gemcitabine resistance was modulated by MRP3 

expression in PANC1 cells. Taken together, our results suggest that MRP3 confers 

resistance to gemcitabine. Modulation of ABCC3 increased the sensitivity of PANC-1 

and MiaPaCa-2 cells to gemcitabine and modulation of ABCC3 activity may represent a 

novel strategy to reverse gemcitabine resistance in pancreatic cancer cells. Screening 

tumour MRP3 expression levels to select patients for treatment with gemcitabine-based 

regimen alone or in combination with MRP3 modulation, could improve outcomes of 

pancreatic cancer treatment. 
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Chapter 1 Introduction  

Cancer review 

Hallmarks of Cancer 

In 2000, Hanahan et al., sought to characterise the biological changes in normal cells 

that allow for the formation of cancer [1]. These multistep processes allow cancers to 

acquire six functions that enable cancers to grow and develop [1]. The ability for cancer 

to overexpress growth signals, supress anti-growth signals, evade apoptosis, sustain 

proliferation, sustain angiogenesis and cause tissue invasion and metastasis 

mechanisms all enable cancer growth [1]. The overexpression of growth factor (GF) 

receptors such as epidermal growth factor receptor (EGFR), allows cancers cells to 

respond to GFs more sensitively than normal cells [1]. Therefore, lower concentrations 

of GF can activate proliferation in cancerous cells [1]. Cancers also induce the production 

of growth factors and signalling to promote further growth signals, creating a feedback 

loop that promotes the continual growth of cancer cells [1]. Mutations in the Ras protein 

can lead to the upregulation of the PI3K signalling pathway which also modulates cell 

growth, motility, metabolism and survival in cancer [2].  

Cancers supress anti-growth signals which, in normal cells allows the body and 

tissues to maintain cellular homeostasis [1]. Quiescence or cell cycle arrest prevent cells 

from further proliferation which may become permanent, depending on the cellular 

environment and the signals present [1]. The majority of antiproliferative signals pass 

through the retinoblastoma protein (pRb), p107 and P130 [1]. The E2F transcription 

factors are key factors in cell cycle progression between the G1 and S phase of the cell 

cycle [1]. The E2F transcription factors have been modified to block proliferation in 

cancer cells [1]. The expression of the growth factor TGFβ is able to dysregulate the 

phosphorylation of pRb [1]. A variety of cancers can utilise the activity of TGFβ to restore 

G1/S phase transition and subsequent proliferation [1]. 

Apoptosis once signalled caused cells to undergo a well characterised pathway 

of cell death [1]. In order for effective signalling the presence of sensors and effectors 

are necessary to both monitor and respond to cell death or cell survival signal levels, 

respectively [1]. The mitochondria is an organelle that the cell uses to accumulate 

apoptotic signals and respond by releasing more signals such as cytochrome C to further 

stimulate apoptosis [1]. This antiproliferative activity by cytochrome C can be governed 

by the B-cell lymphoma 2 (BCL2) family of mitochondrial proteins which either promote 

(BAX, BAK, BID, BIM) or supress apoptosis (BCL-2, BCL-XL, BCL-W) [1]. The 

upregulation of the tumour protein 53 (p53) protein results in the upregulation of BCL2-

associated X protein (BAX) in response to DNA damage, thereby promoting apoptosis 
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[1]. However, mutation of the p53 gene has been seen across a variety of cancers and 

limits the ability of cancer cells to respond to DNA damage via BAX/cytochrome C 

dependent apoptosis [1]. Furthermore, some cancers have utilised the PI3K/AKT/PKB 

pathway to supress the transmission of signals that promote apoptosis [1]. 

The limitation of apoptosis, stimulation of growth factors and receptors and the 

suppression of cell death signals all contribute to the uncontrolled growth that we see in 

cancer [1]. Telomere length can be used to measure the amount of generations of cell 

division that a cell has undergone [1]. In normal cells the telomere degrades after each 

division by approximately 50-100 base pairs at the ends of chromosomes [1]. The 

continual degradation of the chromosome telomere ultimately leads to chromosomal 

degradation which results in death signalling and cell death of the affected cell [1]. 

However, cancer cells avoid this process by overexpression of the telomerase enzyme, 

which maintains the length of the telomere by adding hexanucleotides to the ends of 

telomeres [1]. 

 In normal tissues, angiogenesis is transiently activated to repair tissue, during the 

menstrual cycle and embryogenesis [3]. The angiogenic process begins with the 

breakdown of the basement membrane followed by cell proliferation, migration of 

vasculature and subsequent maturation of endothelial cells [4]. In cancerous tissues, 

cancer exhibit heightened metabolic activity and require increased vascularity to supply 

the necessary nutrient requirements to grow [3]. Cancer utilises growth factors such as 

PDGF to stimulate proliferation, survival, migration and angiogenesis [5-10]. During 

tumorigenesis, angiogenesis is highly active, causing a constant sprouting of new 

vessels to supply the growing tumour [3]. Pathological angiogenesis is an incomplete 

process resulting in vascularity that is often morphologically abnormal and highly 

permeable [11].  

 The last characteristic for cancer establishment and progression is invasion and 

metastasis of cancer cells to adjacent and secondary tumour sites [1]. Metastasis begins 

with the entry of cancer cells into the blood, followed by the survival of cancer cells in the 

vascular system, invasion of distant tissue and establishment of tumour growth in the 

new location [12]. Many complex molecular changes facilitate cancerous metastasis and 

invasion [1]. The activity of E-Cadherin a cell-cell interaction molecule is lost in cancers, 

but by forced expression, E-Cadherin expression can limit cancers ability to invade and 

metastasise [1]. Once cells are able to invade a new region the remaining hallmarks of 

cancers are required to develop and establish secondary tumours, resulting in further 

stress, rerouting of bodily resources and degradation of the body [1]. 
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Cancer Treatments 

The most recent epidemiological estimates for cancer incidence and death rates where 

characterised by the GLOBOCAN project in 2018 [13]. The most common cancer types 

worldwide are lung, breast, prostate, colon and nonmelanoma skin cancers which were 

responsible for 11.6%, 11.6%, 7.1%, 6.1% and 5.8% of all (~18,100,000) cancer cases, 

respectively [13]. However, the death rates weren’t directly proportional, lung, stomach, 

liver, breast and colon cancers showed 18.4%, 8.2%, 8.2%, 6.6% and 5.8%, of the 

deaths (~9,500,000) in 2018, respectively [13]. The inclusion of cancer prevention into 

the strategy of cancer treatment is needed to improve the cancer rates of the past [14]. 

The improvements of our understanding of cancer has significantly improved treatment 

and detection of cancers however, the incidence rates continue to rise despite these 

advances [14]. This has been attributed to a number of factors including increased rates 

of obesity and increases in the median population age [14]. Progress in various cancer 

analyses has revealed the heterogeneity of cancers, suggesting that prevention may 

also require a multifaceted approach [14]. The prevention of cancer is not a simple task 

to undertake [14]. Improved health education, reduction in lifestyle risk factors such as 

tobacco use, poor diet and physical inactivity may lead to improved incidence rates [14]. 

While preventative measures can be taken, it is not always possible to identify the reason 

that patients get cancer [14]. Therefore, we must also find ways to treat cancer when it 

does arise. 

 According to the national cancer institute the current cancer therapies include 

chemotherapy, hormone therapy, targeted therapy, stem cell transplants, 

immunotherapy, resection and radiotherapy (www.cancer.gov). For a long time the 

clinical efficacy of immunotherapy was limited by cancers ability to avoid detection and 

destruction by the immune system [15]. More recently, immune system targeting has 

vastly improved, with a number of successful clinical trials [16]. Immunotherapy was 

designated the ‘breakthrough of the year’ by Science magazine in 2013 [16]. 

Immunotherapy has shown some encouraging in clinic results, especially when using the 

chimeric antigen receptor (CAR) therapy [16]. CAR therapy is a personalised therapy 

that extracts a patient’s T-cells, modifies them to recognise cancer cells and reintroduces 

them into the patient [16]. However, this is very expensive treatment that makes this 

treatment at this stage inaccessible for the general population [17]. Combinations of 

chemotherapy and immunotherapy have also exhibited improvements in patient survival 

[16].  

 In some cancers such as renal cell carcinoma (RCC), hormone receptors were 

dysregulated [18]. Dysregulated paracrine and autocrine hormone signalling modulates 

several cancerous hallmarks including proliferation, migration, angiogenesis and drug 

resistance [18]. Inhibiting cancer promoting hormones and their receptor signalling has 

http://www.cancer.gov/
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shown therapeutic benefit in RCC [18]. Breast cancers have also shown overexpressed 

hormone receptors including oestrogen receptors (ER) or progesterone receptors (PR) 

[19]. Tamoxifen, a hormonal therapy, prevents oestrogen and the ER from binding by 

competitive inhibition [19]. Reduction of ER activation reduces breast cancer growth in 

metastatic breast cancer [19]. Although there is still no cure for metastatic breast cancer, 

hormonal therapy demonstrated less toxicity and more prolonged palliative effects [19]. 

EGFR is a well-known oncogene that has been associated with poorer outcomes and 

prognoses in cancer patients [20]. Since the discovery of EGFR, targeting EGFR has 

undergone extensive research [20, 21]. In head and neck cancers, EGFR is 

overexpressed in 90% of tumours [20]. Cetuximab a monoclonal antibody remains the 

only FDA approved EGFR-targeted treatment [20].  

However, much like other treatment modalities, the long term survival rates for 

head and neck cancers has remained unchanged, even in combination with radiotherapy 

and chemotherapy [20]. Radiotherapy is the treatment most commonly used in 

combination with other treatment types [22]. More than 50% of cancer patients undergo 

a radiotherapy regime [22]. Radiotherapy acts by delivering high physical energy to 

cancer cells, damaging DNA leading to death of the cancer cell [22]. The rapidly dividing 

cancer cells are more sensitive towards radiotherapy than normal cells, therefore 

radiotherapy should selectively target cancer [22]. Radiotherapy includes the use of 

gamma rays, x-rays and protons [22]. Recent evidence has suggested that radiotherapy 

can break down local tumours, but these destroyed tumours may also damage both local 

and distant tissues by releasing cytokines and activating oncogenic signals [22]. The 

degraded tumour debris circulating within the blood can increase the chance of relapse 

or metastasis [22]. 

 Stem cells are cells that can indefinitely self-renew, form single cell-derived 

homogenous cell populations and differentiate into a variety of cell types [23]. There are 

several different stem cell types that can be classified based on their tissue origins [23]. 

Normal stem cells are involved in tissue regeneration and homeostasis [23]. In cancer 

therapy, stem cells can be modified to express GFs and cytokines producing stem cells 

which can act as a delivery mechanism to target tumours [23]. These modifications 

include the addition of chemokine and growth receptors which improve the stem cell 

tumour-homing ability [23]. Stem cell transplantation can be limited by dosing difficulties 

with insufficient or abundant stem cell transplants resulting in different challenges [23]. 

Low stem cell levels resulted in low responses and increased relapse levels, while too 

many transplanted stem cells increased the risk of tumorigenesis [23]. 

 Pancreatic cancer in most cases is discovered in a state that is unresectable (non 

R0) limiting the patient’s median survival to between 4 and 6 months [24-26]. In 

pancreatic ductal adenocarcinoma (PDAC), only 10-20% of patients diagnosed, present 
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with a tumour that can undergo surgery [27]. This limitation is in part due to the lack of 

distinguishing symptoms but also due to the lack of detection methods for early stage 

pancreatic cancer [24]. Resection is currently the only curative method for pancreatic 

cancer [27]. Patients that undergo surgery showed an improved median survival rate 

between 20.1 and 28 months [27]. Advances in imaging, patient care, accurate staging 

and clearly defined resection parameters have also improved pancreatic cancer 

treatment [27]. However, the prognosis remains poor, even when surgery is possible the 

five-year survival rate of pancreatic cancer remains only 25% [27]. 

Pancreatic cancer is treated where possible with surgery followed by treatment 

with either FOLFIRINOX or gemcitabine + nab-paclitaxel combination [28]. Gemcitabine 

has been used to treat pancreatic cancer for a number of years, however, the 

improvements in overall survival were significantly improved by the introduction of 

another anticancer drug nab-paclitaxel [28, 29]. The nab-paclitaxel and gemcitabine 

combination exhibited an improved median overall 1-year and 2-year survival in 

comparison to gemcitabine alone [28]. While there has been some advancements in the 

use of chemotherapy, the major limitations to successful cancer treatment are still 

efficacy, toxicity and drug resistance [28, 30]. 

Pancreatic cancer  

The most aggressive cancers were those that show high levels of death rates in 

comparison to their respective incidence rates [13]. Pancreatic, liver, oesophagus, lung 

and mesothelioma cancers showed the closest mortality and incidence rates [13]. Due 

to the relative decline in breast cancer rates worldwide, it is predicted that pancreatic 

cancer may soon surpass breast cancer related deaths [13]. Over the next eight years 

the New Zealand’s ministry of health forecasted an increase in the mortality, morbidity 

and overall burden of pancreatic cancer [31]. The 5-year survival rate for pancreatic 

cancer patients is approximately 5%, with most deaths occurring within the first year [24, 

32, 33]. Approximately 53% of pancreatic cancer patients at the point of diagnosis had 

already developed distant metastasis [24]. 90% of pancreatic cancer patients were 

diagnosed with pancreatic ductal adenocarcinoma (PDAC) [34]. The five year survival 

rate for PDAC was <10%, ranking PDAC within the top five most common causes of 

cancer-related death [34]. The cloaked nature of pancreatic cancer symptoms have 

prevented the development of screening strategies to detect early stages of pancreatic 

cancer [25]. Early symptoms of pancreatic cancer can range from anorexia to skin 

changes which are precursors for a variety of diseases [25]. The first line treatment for 

pancreatic cancer for the past three decades has been gemcitabine an antimetabolite 

drug that has only yielded a marginal increase in patient survival [35, 36]. Pancreatic 

cancer is notoriously resistant to chemotherapeutics which has halted the improvements 
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in treatment for the last thirty years [37]. Pancreatic cancer shows a series of resistance 

mechanisms that prevent its destruction [37]. These include overexpression of efflux 

transporters (MRP1, MRP3, MRP4 and MRP5), mutations in key genes (BRCA, PARP, 

p53), and dysregulation of signalling pathways (NF-ĸB, P13K/AKT) [37]. Targeting the 

high levels of drug resistance is essential in successfully treating cancer and pancreatic 

cancer in particular [37]. 

Drug Resistance 

Drug resistance is the primary limiting factor in the treatment of cancer [30]. The wide 

spread resistance seen towards cancer treatment requires further understanding and 

improved treatment options [30]. The mechanisms that drive drug resistance include 

drug inactivation, drug target alterations, DNA damage repair and drug accumulation 

modulation [1, 30]. Drug inactivation is a complex mechanism that encompasses the 

pharmacological interactions of drugs with various proteins and metabolites which 

modify, breakdown or indirectly inactivate drugs [30]. Drug target alterations are usually 

a result of mutations within cancers that cause the drug targets to no longer respond to 

drugs as effectively [30]. In cancer, some drugs were designed to disrupt DNA either 

directly or indirectly [30]. Damaged DNA repair mechanism may cause resistance simply 

carrying out what they were designed to do, repair DNA [30]. Lastly, efflux modulation 

which has prevented the accumulation of a number of different anticancer drugs [30, 38].  

The process by which cells become resistant to multiple unrelated drugs is called 

multidrug resistance (MDR) is [39, 40]. Efflux modulation in cancer by up-regulation of 

various ABC transporters such as P-glycoprotein (P-gp), Breast Cancer Resistant 

Protein (BCRP) and Multidrug Resistant Proteins 1-5 (MRP1-5) efficiently remove drugs 

from the cell, thus preventing the drug from achieving its desired level and effect [30, 41, 

42]. The activity of ABC transporters has become an essential consideration when 

designing drugs, as they can greatly affect pharmacokinetics, toxicity and efficacy of 

drugs [43]. Absorption, distribution, metabolism, excretion and toxicity are the properties 

that most dictate the success of a new drug, all of which can be affected by the 

expression of ABC transporters [44]. ABC transporters are present in key organs and 

blood/organ barriers such as the intestines, liver, kidneys, blood-brain barrier and blood 

placental barrier [45].  

ABC Transporters 

There are 48 human ABC transporters, all with the ability to utilise ATP as an energy 

source to transport substrates across cell membranes [41, 46]. ABC transporters are 

made up of two components, the transmembrane domain (TMD) which creates the 

passageway in the membrane for substrates to pass through and the nucleotide-binding 
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domain (NBD), where ATP is hydrolysed [47]. ATP hydrolysis provides the energy 

required for the conformational change of the TMD from the closed to the open 

conformation which is essential for the effective transport [47]. Cellular accumulation of 

anticancer drugs is attenuated by select ABC transporters because of their ability to 

efflux anticancer substrates out of cancer cells independent of concentration gradients 

(Figure 1—1) [48]. The ability to re-sensitise cancer cells to chemotherapeutics has been 

extensively studied as it is believed that when the limitation of resistance is removed, the 

efficacy of cancer treatment will be restored (Figure 1—1) [49, 50]. 

 

 

Figure 1—1. Multidrug resistance mechanism caused by ABC transporters and the targeting strategies. Modified from 

dantzic et al., [51]. 

  

In 1973, it was observed that daunorubicin, vincristine, and vinblastine all appeared to 

be actively transported from resistant Ehrlich ascite tumour cells [52]. In 1976, P-gp a 

surface glycoprotein was isolated from a colchine-resistant cell line [53]. It was found 

that the amount P-gp present correlated with the resistance observed against colchine 

[53]. The MDR1/ABCB1 gene, discovered in 1986, encodes the P-gp protein [54]. P-gp 

is a 170 kDa protein with 1280 residues in a single polypeptide chain [53, 55]. P-gp is 

expressed at various crucial barriers within the body, including the intestinal wall, the 

blood–brain barrier (BBB), the placental barrier and in key waste organs, including the 

liver and kidneys (Figure 1—2) [41, 56, 57]. The expression of P-gp at the apical side of 

the intestinal wall and the BBB predicates its role in limiting the entry of drugs into the 

bloodstream and the central nervous system, by pumping drugs either back into the gut 

lumen or back into the bloodstream, which under normal circumstances would act as a 

protective measure against toxins (Figure 1—2) [41, 58]. However, in the context of drug 

development and cancer treatment ABC transporters can play a large role in drug 

pharmacokinetics and therapeutic efficacy [58, 59]. It was for this reason that the 
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American Food and Drug Administration (FDA, Silver Spring, MD, USA) created strict 

guidelines on how drug and ABC transporter interactions should be evaluated during 

drug development [59]. Each ABC transporter has exhibited unique tissue distribution, 

substrate specificity and expression levels across both normal and cancerous tissues 

[55, 60]. P-gp transports a variety of anticancer agents against concentration gradients, 

including vinblastine, paclitaxel, doxorubicin, erlotinib, colchicine, and teniposide [55, 

61]. Given the widespread use of these chemotherapeutics, inhibition of P-gp may 

transform relatively poorly performing cytotoxic drugs into exceptional ones. 

Breast cancer resistance protein (BCRP) is another well studied member of the 

ABC transporter family [62]. The BCRP transporter has a unique structure and is 

considered a half transporter, as it is formed from only six TMDs and one NBD [63]. 

However, in order to function two BCRP molecules must dimerise to create a functional 

BCRP unit [63]. BCRP is distributed within the placenta, bile duct, colon, small bowel, 

brain and endothelium [62]. The localisation of BCRP permits it to act as a barrier, limiting 

the accumulation of toxins to the foetus, brain and prevent absorption of toxins into the 

blood stream (Figure 1—2) [42]. However, in cancerous cells, BCRP modulates the 

resistance of a variety of anticancer drugs including but not limited to gemcitabine 

mitoxantrone, topotecan, irinotecan, doxorubicin, SN-38, flavopiridol, and methotrexate 

(MTX) [62, 64-66]. Much like P-gp, the inhibition of BCRP reverses MDR, which could 

lead to improved therapeutic outcomes [62, 64]. BCRP has displayed the broadest 

substrate specificity and the most known phytochemical inhibitors of all ABC transporters 

[42]. To increase potency, specificity and inhibition of ABC transporters some natural 

compounds have been synthetically modified into new derivatives, which have been 

reviewed in detail below [51]. 

MRP1 is an ABC transporter that has been found in all areas of the body [63]. 

MRP1 transports a wide variety of xenobiotics and metabolites essential for cancer 

treatment and much like P-gp has been associated with poor prognosis [67, 68]. 

However, unlike P-gp, MRP1 is localised to the basolateral membrane of mucosal cells 

[69]. Therefore, under normal conditions MRP1 transports substrates into the 

bloodstream [69]. Much like BCRP, MRP1 is also localized to the BBB and transports 

substrates from the brain back into the blood stream (Figure 1—2) [38]. The complexity 

and cross-reactivity of these transport mechanisms were well exhibited by MRP1, with 

high substrate overlap between MRP1 and P-gp [60]. Unlike P-gp, MRP1 transports 

glutathione (GSH), glucuronate and sulphate conjugates which extends the scope of 

MRP1 specificity [60]. MRP1, MRP2, MRP5 and MRP6 all share the preferential 

transport GSH conjugates, while MRP3 preferentially transports glucuronide conjugates 

[42]. The glutathione conjugates created by xenobiotics such as methotrexate can also 
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be transported out of cells thereby limiting overall drug activity [60, 70]. MRP1 also 

transports doxorubicin, vincristine, etoposide, camptothecin, CPT-II and SN-38.  

 

 

 

Figure 1—2. Localization of ABC and SLC transporters in the human small intestine and blood brain barrier [38].  
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However, in the transport of daunorubicin and vincristine, MRP1 transport showed 

dependence on GSH levels [71]. Therefore, MRP1 transport of GSH-conjugates may 

only occur when sufficient levels of GSH are available [71]. P-gp did not show the same 

dependence on GSH levels and resistance remained unaffected by changes in GSH 

levels [71].Highlighting the subtle but important differences in ABC transporter activity 

and substrate specificities. 

MRP3 is located within the liver, adrenal glands, colon, pancreas, kidney and the 

gut [60, 72]. MRP3 (ABCC3), under healthy conditions is an important transporter in liver 

function due to its localisation in the hepatic basolateral membrane [73]. MRP3 

expression within the basolateral membrane can increase the transport of MRP3 specific 

substrates including excess bile acids [73]. MRP3 alongside MRP4 and MRP5 are also 

localized to the basolateral membrane of the intestine facilitation the transport of 

substrates from the intestine into the blood stream (Figure 1—2) [38]. MRP2 and MRP3 

were the only transporters able to transport conjugated bilirubin [72]. Unconjugated 

bilirubin is a potential neurotoxic compound that has been associated with a number of 

pathologies [72]. While MRP3 may not be the most expressed transporter in the liver, it 

can act as a compensatory transporter of MRP2 in the export of bile acids [73]. In the 

absence of MRP2, MRP3 moves the conjugated bilirubin from hepatocytes back into the 

blood stream which is subsequently removed from the body by the excretory system [72]. 

Conjugated bilirubin cannot be reabsorbed by the intestine, therefore MRP3 transport 

results in excretion of the conjugates [72]. This demonstrates in normal cells that MRP3 

protects cells from the accumulation of glucuronide conjugates and in particular, bilirubin 

conjugates [72]. 

The preference for transport of glucuronide conjugates over glutathione 

conjugates differentiates MRP3 from MRP1 and MRP2 [60]. The transport of a number 

of glucuronide conjugates by MRP3 may affect the accumulation, function and 

destruction of other compounds and their respective conjugates [72]. These include 

normal metabolites (folic acid, bilirubin glucuronide), therapeutic drugs (methotrexate, 

etoposide, teniposide) and their respective metabolites  (curcumin-O-glucuronide) and 

environmental contaminants (Bisphenol A glucuronide, Resveratrol glucuronide and 

Genistein) [72]. In the case of COG, an in vivo study demonstrated that the knockout of 

MRP3 in mice significantly decreased the concentration of COG in plasma samples [74]. 

MRP3 inside-out membrane vesicles showed the accumulation of COG in an ATP-

dependent manner further validating that COG is an MRP3 substrate [74]. While, in vivo, 

MRP3-/- mice showed a significant decrease in the rate of absorption of folic acid into the 

blood stream [75]. Folic acids are key dietary vitamins essential in a number of metabolic 

processes, especially in purine and pyrimidine biosynthesis and amino acid metabolism 

[76]. Folate deficiencies can be related to several diseases including Alzheimer’s, heart 
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disease, hearing loss and osteoporosis [76]. MRP3 has exhibited detrimental clinical 

activities by preventing the accumulation of pain medications such as diclofenac and 

morphine glucuronide (M6G) in their target sites [77, 78]. 

In some liver diseases MRP3 expression is upregulated in order to defend 

against cytotoxins [73, 79]. In cancer, ABCC3/MRP3 has shown overexpression in 

pancreatic cancer, renal cell carcinoma (RCC), transitional cell carcinoma (TCC), 

squamous cell carcinoma (SCC), resistant hepatocellular carcinoma cells, breast cancer, 

non-small cell lung cancer, bone cancer and cholangiocarcinoma [79-82]. Pancreatic 

cancer tissue samples underwent gene expression profiling and tissue microarray 

experiments [83]. The expression levels of 2177 cell-surface genes across four normal 

and 28 pancreatic cancer samples were evaluated and further investigated using 

immunohistochemistry [83]. TLR2 and ABCC3 were selected for further analysis from 

the 170 targets found to be overexpressed in two or more cancerous samples and not it 

normal samples [83]. ABCC3 and TRL2 showed 75% and 64% DNA array coverage, 

respectively across the pancreatic cancer samples [83]. Further in vitro validation by 

immunohistochemistry (IHC) confirmed that both ABCC3 and TLR2 exhibited differential 

protein expressions across normal and tumour tissue [83].  

MRP3, much like other members of the ABC transporter family, can confer 

multidrug resistance in cancer cell lines towards specific substrates [79, 82]. In 1999, 

MRP3 was investigated for its localisation, expression and ability to induce multidrug 

resistance [79]. Cytotoxicity was analysed in MRP3 overexpressing cell lines against a 

variety of drugs, using cell viability assays [79]. MRP3 inhibited the cytotoxicity of 

etoposide, teniposide and MTX in a concentration dependant manner [79]. In another 

model, MRP3 mRNA levels were analysed in primary untreated transitional cell 

carcinoma (TCC), squamous cell carcinoma (SCC) and normal tissue [82]. Expression 

of MRP3 was significantly increased in cancerous samples in comparison to normal 

tissues with approximately 13-fold increase in mRNA expression [82]. The expression 

levels of MRP3 was also significantly higher in TCC cells when compared to SCC cells 

[82]. In hepatocellular carcinoma, sorafenib resistant PLC/PR5 cell lines were created by 

incubating cells with increasing concentrations of sorafenib over 24 months [84]. The 

IC50 values of the two cell lines increased over this time by 1.8-fold and 4.6-fold that of 

the untreated PLC/PR5 cell line [84]. MRP3 expression was significantly upregulated in 

the resistant cell lines, while knockdown of MRP3 restored sensitivity to sorafenib [84]. 

Inhibition of MRP3 is essential to the reversal of resistance and treatment of a variety of 

cancers that overexpress MRP3 [79, 85]. 

ABCC3 mRNA and protein expression were overexpressed in Capan-2 and 

HPAFII PDAC cell lines as well as in tissue tumour specimens [36]. The stable (shRNA) 

and transient (siRNA) knockdown of ABCC3 both in vitro and in vivo reduced growth 
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rates, suggesting a role for MRP3 expression in PDAC proliferation [36]. 

Lysophosphatidylinositol (LPI) previously stimulated the proliferation of PDAC in cells 

with p53 mutations [36]. It was suggested that the efflux of LPI by MRP3 was the basis 

for the increase of PDAC proliferation [36]. These examples demonstrated the role of 

MRP3 in cancer biology and progression [36, 86]. ABCC3 mRNA was also 

overexpressed in breast cancer samples and breast cancer cell lines (BT-474, MCF-7, 

MDA-MB-231 and HCC-1805) [87]. In HER2 breast cancer cells, ABCC3 modulation of 

paclitaxel and monomethyl-auristatin-E (MMAE) was investigated [88]. Knockdown of 

ABCC3 increased sensitivity towards paclitaxel and MMAE, while overexpression of 

ABCC3 increased resistance in HER2 breast cancer cells [88]. Further analysis revealed 

that the overexpression of ABCC3 was found in HER2 upregulated tumours [89]. MRP3 

expression was also upregulated in non-small cell lung cancer (NSCLC) [81]. When 

comparing resistant and sensitive NSCLC, 44 genes were found to be upregulated in 

resistant cell lines, ABCC3 was among the most overexpressed genes found [81]. The 

expression of ABCC3 has influenced key pathophysiological stages including lymph 

node involvement, malignant histological indicators, decreased OS and resistance to 

chemotherapeutics [81]. The expression of MRP3 shows key roles both in normal and 

cancerous samples, however, there is still much to be learned about MRP3. 

The Effects of Synthetically Modified Natural Compounds on ABC Transporters 

Recent efforts to reverse ABC transporter dependent MDR by natural compounds was 

reviewed in detail [51]. The natural compound camptothecin (CPT) and its derivatives 

displayed a variety of antitumor activities [90]. However, high BCRP expression caused 

a 400–1000-fold increase in resistance towards camptothecin derivatives [91]. CPT, a 

substrate of P-gp and MRP2 has unpredictable oral bioavailability which has been 

attributed to the intestinal and biliary excretion mediated by P-gp and MRP2 [92]. 

Resveratrol another natural compound effects different diseases such as cardiovascular 

disease, cancer and neurodegenerative diseases [93]. The efficient elimination by 

intestinal BCRP and phase II metabolism limit the bioavailability of resveratrol [93]. The 

natural compound apigenin has been highlighted for its chemo preventative affects [94]. 

There has been a large amount of in vivo data showing the anticancer effects of apigenin 

against multidrug resistant tumours, leukaemia models and osteosarcoma xenografts 

[95-97]. Saeed et al., investigated the relationship between apigenin and ABC 

transporter expression [98]. Apigenin accumulation did not show P-gp dependence, 

while, apigenin treatments showed inhibition of both P-gp and BCRP expression [98]. 

Genistein much like resveratrol exhibits low bioavailability in clinic which could be related 

to its broad interactions with BCRP, P-gp and MRP2 [99-101]. Natural, highly bioactive, 
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poorly bioavailable compounds may respond to chemical modification to produce ABC 

transporter inhibitors with improved activity in clinic. 

The first generation of P-gp modulators verapamil and cyclosporine A were 

approved for treatment of other diseases, suggesting these could be used safely as MDR 

reversal agents, which was tested in clinic [59, 102]. However, these synthetic 

compounds exhibited little MDR reversal, low potency and poor pharmacokinetics [102]. 

Verapamil and cyclosporine A also exhibited high toxicity and serious off target effects 

such as increased cardiovascular toxicity [102]. The second generation of P-gp 

modulators included valspodar and dexverapamil, derivatives of first generation P-gp 

inhibitors [59]. In vitro, results showed higher potency and specificity however, in clinic 

the second generation modulators showed little MDR reversal effects and side effects 

such as neutropenia and high toxicity [102]. CYP450-mediated anti-cancer drug 

metabolism was also inhibited, leading to increased systemic exposure of cytotoxins and 

enhanced toxicity [102]. Third generation inhibitors, tariquidar and zosuquidar were 

developed with improved potency and minimise CYP450 inhibitory activity [102]. They 

were more potent with less pharmacokinetic interactions [59]. However, increased 

toxicity of chemotherapy regimens was still seen with limited clinical benefit [59]. These 

purely synthetic compounds were limited by toxicity, but dietary phytochemicals are 

hypothesised to be better tolerated.  

Ningalin B  

The P-gp inhibitory activity of natural marine compounds including Ningalin B and 

terpenoids were comprehensively summarised in the review article by Long et al. [103]. 

Ningalin B is a natural marine product isolated from the ascidian (sea squirt) family of the 

genus Didemnum [104-106]. In the earliest ningalin study a number of synthetic 

intermediates (e.g., O-methyl ningalin B, compounds 10, 11, 13 and 14) were 

synthesised from the ningalin isolate [104]. Ningalin B displayed moderate cytotoxicity in 

L1210 and HCT116 cell lines with IC50 values of 10 and 12 µM, respectively [104]. The 

synthetic analogue O-methyl ningalin B was 5-fold and 2.5-fold less cytotoxic than 

ningalin B, in L1210 and HCT116 cell lines, respectively [104]. P-gp overexpressing 

HCT116/VM46 cells demonstrated increased resistance to doxorubicin and vinblastine 

[104]. Ningalin compounds 10, 11, 13 and 14 at 1 µM potently sensitised HCT116/VM46 

cells towards doxorubicin and vinblastine [104]. Compound 14 (1 µM) increased the 

cytotoxicity of vinblastine to the point where the HCT116/VM46 resistant cells became 

more sensitive to vinblastine than the HCT116 wild type cells [104]. Meanwhile, ningalin 

B was unable to reverse MDR in HCT116/VM46 cells [107]. This suggests that synthetic 

modification of natural products can generate more potent, moderately toxic, P-gp 

specific, MDR reversal agents. Subsequent studies of other ningalin B analogues 
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demonstrated low toxicity and potent MDR reversibility towards doxorubicin and 

vinblastine in HCT116/VM46 resistant cells [107, 108]. Ningalin B analogues 3 and 4 (1  

µM) caused a complete reversal of vinblastine resistance and halved the resistance 

towards doxorubicin in a P-gp dependent manner [107]. Further modification of 

compound 3 led to the generation of ningalin B derivatives 19, 20 and 21, which exhibited 

complete MDR reversal towards doxorubicin and vinblastine without the toxicity 

associated with compound 3 [107, 108]. 

Six additional ningalin analogues (N1-N6) reported by Chou and colleagues 

showed a wide range of cytotoxic responses, with IC50 values ranging from 13 µM (N3) 

to 150 µM (N4) in vinblastine-sensitive cells (CCRF-CEM), and 18 µM (N5) to 250 µM 

(N2) in vinblastine-resistant cells (CCRF-CEM/VBL100) [109]. All the ningalin analogues 

except N5 displayed lower toxicity in vinblastine-resistant cells (CCRF-CEM/VBL100) 

compared with vinblastine-sensitive cells (CCRF-CEM), suggesting that N1-N4 and N6 

were P-gp substrates [109]. This is hypothesised because the lowered toxicity in 

resistance cells suggests that the ningalin compound could be exported from the cells 

by P-gp. Ningalin analogues (10 µM) resulted in an increase in sensitivity ranging from 

210-fold (N1) to 6.2 × 106-fold (N3) was observed in CCRF-CEM/VBL100 cells [109]. N3, 

(Figure 1—3) showed strong resistance reversal in vinblastine-resistant cells (CCRF-

CEM/VBL100) towards vinblastine and paclitaxel to a level beyond that measured in 

vinblastine-sensitive cells (CCRF-CEM) [109]. This combination study revealed that 

combining ningalins and doxorubicin resulted in a reduction in the IC50 of both 

compounds. The strong synergism between ningalins and doxorubicin in doxorubicin 

resistance cells was confirmed using the chou-talalay method [109]. In vivo, whilst 

paclitaxel treatment slowed tumour progression, the addition of N3 resulted in tumour 

shrinkage, and, in one case, complete elimination of the tumour [109]. Several in vitro P-

gp functional assays demonstrated that ningalins compete for [3H]azidopine binding to 

P-gp, increased the cellular accumulation of VBL or paclitaxel, and inhibited drug efflux 

from the tumour cells [109]. These results indicated that the synergistic antitumor activity 

between ningalins and chemotherapeutic drugs was dependent on the inhibition of P-gp 

by ningalins. 

The P-gp overexpressing breast cancer cell line MDA435/LCC6MDR was used 

to investigate the most recently designed ningalin analogues [105, 110-112]. Doxorubicin 

accumulation assays revealed that compounds 6, 25, 12, 23, 35 and 37 caused a 3.0, 

2.1, 2.6, 2.4, 2.2 and 2.3-fold increase in doxorubicin accumulation in resistant cell lines, 

respectively [105, 110, 111]. The potency of compounds based on the doxorubicin 

accumulation from the most to the least potent were as follows: 37 > 35 > 23 > 12 > 6 > 

25 [105, 110, 111]. The combination of compounds 6 and 23 exhibited a greater 

response towards doxorubicin accumulation than when used individually [111]. 
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Compounds 35 and 37 selectivity inhibited P-gp while they only moderately reduced 

BCRP transport and did not inhibit MRP1 transport [110]. 

 

Table 1—1.Comparison of the potent synthetic modulators in vitro. 

Reference Compound Target Cytotoxicity (µM) 

Ting-Chao 

Chou [109] 

N3 P-gp CCRF-CEM: 

13 

CCRF-

CEM/VBL1000: 

100 

  

Bin [110] Compound 

35 

P-gp L292: >100 MDA435/LCC6: 

>100 

MDA435/LCC6MD

R: >100 

 

Yang [105] Compound 

23 

P-gp L292: >100 MDA435/LCC6: 

>100 

MDA435/LCC6MD

R: >100 

 

Wang [112] Compound 

12 

P-gp L292: >100 MDA435/LCC6: 

>100 

MDA435/LCC6MD

R: >100 

 

Chen [113] 5 Bromo-

tetrandrine 

P-gp KB: 5.14 KBv200: 6.17 
  

Sun [114] W6 P-gp KB: ~2 KBv200: ~4 MCF-7: ~4.5 MCF-

7/DOX: 

~5 

Zhu [115] Compound 

26 

P-gp HepG2/ADR: 

>150 

MCF-7/ADR: 

>150 

  

Kraege [116] GO-Y078 BCRP K562/BCRP: 0.31 
  

Wong [117] Compound 

51 

MRP1, P-

gp and 

BCRP 

L292: >100 LCC6: >100 LCC6MDR: >100  

Wong [117] 4e MRP1 L292: >100 LCC6: >100 LCC6MDR: >100  

 

Doxorubicin and rhodamine 123 are relatively specific substrates of P-gp [118]. 

Quantifying the accumulation levels of specific P-gp substrates within the cell correlates 

with the activity of the P-gp transporter [105, 110, 111]. Compounds 12 (Figure 1—3) (2 

µM) and 23 (2 µM) increased rhodamine 123 accumulation by 3.9 and 4.8-fold, 

respectively [105, 112]. Compound 23 showed an EC50 of 78 nM which was 4.7-fold less 

than the typical P-gp inhibitor verapamil [105]. The synthetic ningalin compounds 6, 25, 

35, 37, 12 and 23 proved nontoxic and a more potent P-gp transport inhibitors than 

verapamil [104, 105, 110-112]. Furthermore, compounds 12, 23, 35 and 37 were more 

effective in reversing MDR towards vinblastine than verapamil and re-sensitizing 

resistant cells towards other drugs beyond that of non-resistant cells [104, 105, 110-112]. 

Structure-activity analysis (SAR) studies were carried out to investigate whether 

increasing the number of methoxy groups on ring B of ningalin B, changing the polarity, 

extending the linking chain, and substituting ring C with other functional groups would 

improve the potency and cytotoxicity of permethyl ningalin B analogues [110]. A 

significant improvement in potency and cytotoxicity was observed when the benzyloxy 

group was attached at the C ring in compounds 35 and 37 [110]. It was found that the 

number of methoxy substituents played a role in determining P-gp modulation, although 
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to what extent was not precisely established [110]. There was also evidence that more 

polar N substituents at the ring C decreased the P-gp activity [110]. SAR analysis of 

other ningalin compounds synthesised by Yang et al. including compound 23, showed 

that the addition of a para-trimethoxybenzyloxy, an ortho-bromo and a meta-methoxy 

group at ring C was an important pharmacophore for P-gp modulation in ningalin 

compounds [105]. 

 

 

  
 

 
 

 

A B C D 

Figure 1—3. Ningalin B compounds which act as potent P-gp inhibitors, from references 45, 49, 50 and 51. (A) N3 [49]. 

(B) Compound 35. 1-(2-(4-(benzyloxy)-3-methoxyphenyl)-2-oxoethyl)-3,4- bis(3,4-dimethoxyphenyl)-1H-pyrrole-2,5-

dione1-(2-(2-bromo-5-methoxy-4-((3,4,5-trimethoxybenzyl)oxy)phenyl)-2-oxoethyl)-3,4-bis(3,4-dimethoxyphenyl)-1H-

pyrrole-2,5-dione [50]. (C) Compound 23. 1-(2-(2-bromo-5-methoxy-4-((3,4,5-trimethoxybenzyl)oxy) phenyl)-2-oxoethyl)-

3,4-bis(3,4-dimethoxyphenyl)-1H-pyrrole-2,5-dione [105]. (D) Compound 12. 1-(2-(4-(Benzyloxy)-5-bromo-2-(2-

morpholinoethoxy)-phenyl)-2-oxoethyl)-3,4-bis(3,4-dimethoxy-phenyl)-1H-pyrrole2,5-dione [112]. 

Tetrandrine 

The phytochemical tetrandrine (TET) is a bisbenzylisoquinoline, isolated from Stephania 

tetrandra roots which has been used in Chinese medicine since the 1960s for treatment 

of silicosis lesions [119, 120]. TET was shown by Fu et al. to increase the cellular 

accumulation of the P-gp substrate Fura-2 in a concentration-dependent manner [119]. 

In the presence of TET (0.625, 1.25 and 2.5 µM), doxorubicin-resistant cells (MCF-

7/ADR) were re-sensitised to doxorubicin by 5.4, 11.8 and 20.4-fold, respectively [119]. 

Mice bearing subcutaneous MCF-7/ADR tumour xenografts were also re-sensitised to 

doxorubicin by combined treatment with TET without a significant increase in toxicity 

[119]. 

A brominated analogue of TET, bromotetrandrine (bromoTET, Figure 1—4), was 

reported to have a significant sensitizing effect on vincristine, doxorubicin, paclitaxel, 

docetaxel and epirubicin in P-gp overexpressing KBv200 (multidrug resistant) cells but 

not in the parental KB cells [113]. BromoTET was able to produce a significant increase 
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in doxorubicin accumulation in a concentration dependent manner in KBv200 cells [113]. 

In vivo, BromoTET alone resulted in a reduction of tumour growth at 7.5 mg/kg and 10 

mg/kg by 14.8 and 23.5%, respectively, in KBv200 xenograft nude mice [113]. Co-

administration of Bromo-TET (10 mg/kg) and epirubicin (2 mg/kg) significantly enhanced 

the antitumor activity of epirubicin without increasing toxicity [113]. BromoTET also 

increased the accumulation of doxorubicin within the KBv200 xenograft tissue while 

leaving the P-gp mRNA and protein expression unaffected [113]. Indicating that TET 

derivatives specifically inhibited P-gp transport function and not expression [113]. 

However, bromoTET showed some limitations, because of high toxicity in cancerous KB 

and KBv200 cell lines (IC50 values of 5.14 and 6.17 µM, respectively) [113]. 

  
(a) (b) 

Figure 1—4. Structures of 5-bromotetrandrine and W6. (a) Bromotetrandrine (11S,31S)-35-bromo-16,36,37,54-

tetramethoxy-12,32-dimethyl-11,12,13,14,31,32,33,34-octahydro-2,6-dioxa-1(7,1),3(8,1)-diisoquinolina-5(1,3),7(1,4)-

dibenzenacyclooctaphane [113]; (b) W6 [114] 

 

H1, another synthetic derivative of TET, also displayed P-gp inhibition evidenced by 

increased doxorubicin and rhodamine 123 accumulation (3.7 and 29.7-fold increase) in 

KBv200 cells when treated with H1 (0.5 µM) [120]. H1 caused a complete reversal of 

resistance to doxorubicin and a partial reversal of resistance to vincristine and paclitaxel 

in KBv200 cells [120]. KB-sensitive cells remained unaffected by H1 in cellular 

accumulation experiments [120]. Cisplatin toxicity remained unaffected by incubation 

with H1, exhibiting the selectivity of H1, since cisplatin is not transported by P-gp [120]. 

P-gp interaction was studied using an ATPase assay which indicated NBD binding and 

transport activation [120]. Compounds interacting with an ABC transporter can stimulate 

or inhibit its ATPase activity, which is measured by the amount of inorganic phosphate 

generated by ATP hydrolysis [120]. H1 inhibited ATPase activity of P-gp but also showed 

that it was not a P-gp substrate due to the lack of ATPase stimulation effects [120]. P-gp 

protein expression decreased in the presence of H1 in a concentration dependent 

manner, while the P-gp mRNA levels remained unaffected [120]. Further analysis 

revealed P-gp expression was reduced by ubiquitination via by the MEK-ERK signalling 

pathway [120]. Similar to bromoTET, H1 was inherently cytotoxic, with IC50 values 

ranging from 2-10 µM in the cell lines investigated [120]. 
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W6 (Figure 1—4), was another highly potent MDR reversal agent [114]. In the 

drug resistant KBv200 and MCF-7/DOX cells, W6 (1 µM) increased the accumulation of 

doxorubicin by 4 and 5.3-fold, respectively [114]. W6 (0.25 µM, 0.5 µM and 1 µM) 

demonstrated MDR reversal, by lowering the IC50 values of vincristine by 27.8, 29.2 and 

1050-fold, respectively, in resistant KBv200 cells, and 64.5, 30.3 and 99.3, respectively 

[114]. W6 (0.25 µM, 0.5 µM and 1 µM) also lowered the IC50 values of doxorubicin by 

14.5, 14.6 and 27.8-fold and paclitaxel by 134.3, 274.5 and 1050-fold ,respectively, in 

resistant KBv200 cells [114]. Much like H1, W6 inhibited ATPase in a dose-dependent 

manner and decreased the protein expression of P-gp while the mRNA levels were 

unaltered [114]. These results suggested that W6 inhibited P-gp in a non-competitive 

manner, which was confirmed by photo labelling experiments [114]. Knockdown of 

ERK1/2 inhibited the expression of P-gp, while W6 significantly decreased the 

expression of ERK1/2 in a time dependent manner [114]. H1 and W6 appeared to show 

some commonality in the mode of action and the extent of cytotoxicity [114]. 

Terpenes 

Celastraceae sesquiterpenes were isolated from the Celastraceae plant family which for 

centuries has been used to treat a variety of diseases [121]. Sesquiterpenes exhibit a 

wide range of biological activities, suggesting that they can interact with multiple proteins, 

including P-gp [121, 122]. The terpenoid compounds which are structurally diverse 

secondary metabolites modulate a variety of biological activities [122]. Celastraceae is 

also made up of non-terpenoid secondary metabolites such as quercetin, another natural 

product that has exhibited MDR reversal activities [122]. Twenty eight dihydro-β-

agarofuran sesquiterpenes isolated from various celastraceae plants reduced 

cytotoxicity in the drug-sensitive NIH-3T3 cell line, while showing increased cytotoxicity 

in the P-gp expressing cells, suggesting some collateral sensitivity [109, 121]. Collateral 

sensitivity is a phenomenon by which cells resistant to one drug become hyposensitised 

to another [123]. Machu4 and Mama12 sesquiterpenes displayed the most potent 

inhibition of P-gp-mediated daunorubicin efflux, with IC50 values of 0.24 and 0.33 µM, 

respectively [121]. 

Machu4, Mama5, and Mama12 reversed vinblastine resistance at 1  µM and were 

5 to 9-fold more potent than verapamil [121]. Compounds that can dislodge [3H] 

Azidopine from the binding pocket are likely to interact directly with the P-gp binding site 

[121]. The most potent daunorubicin efflux inhibitor, Machu4, did not decrease [3H] 

Azidopine photolabeling, while, Mama12 dislodged [3H] Azidopine [121]. These 

compounds presented no MRP1, MRP2 and BCRP modulation demonstrating their 

specificity as P-gp inhibitors [121]. Callies and co-workers prepared 58 dihydro-B-

agarofuran sesquiterpene derivatives that showed a greater inhibitory activity against P-
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gp mediated efflux of daunorubicin then with verapamil [124]. Six of the analogues (6, 

24, 50, 57, 58 and 59) showed higher inhibitory potency than the lead dihydro-B-

agarofuran compound [124]. Eighteen of the compounds displayed vinblastine re-

sensitization, while five compounds exhibited greater MDR reversal activity than 

verapamil, with compound 48 completely reversed MDR at 3 µM [124]. Dihydro-B-

agarofuran sesquiterpenes showed weak binding affinities and similar cytotoxic levels 

across control and MDR cell lines, suggesting that sesquiterpenes inhibited P-gp in a 

non-competitive manner [124].  

Jatrophane diterpenoids were isolated from the Euphorbia family of plants and 

have shown potent and specific inhibition of P-gp [115, 125]. Compound 6 was twice as 

potent as cyclosporine A [125]. Further in vitro and in vivo evaluation of the jatrophane 

diterpenoid synthetic derivatives revealed that several compounds (12, 26, 29 and 35) 

inhibited rhodamine 123 efflux more efficiently than verapamil at 1 µM [115]. These 

unique compounds were non-cytotoxic in resistant (up to 150 µM) and sensitive cell lines 

(up to 100 µM), while displaying strong MDR reversal towards doxorubicin [115]. 

Compound 26 (Figure 1—5) was the most potent jatrophane MDR reversal agent, 

reducing doxorubicin IC50 values by 61 and 36-fold in HepG2/ADR and MCF-7/ADR 

resistant cells, respectively [115]. In vivo, a combination of compound 26 and doxorubicin 

demonstrated a significant reduction in the final tumour volume and an increase in overall 

survival in a HepG2/ADR xenograft model [115].  

Other Notable Synthetic P-gp Inhibitors 

The broad activity and substrate specificity of P-gp can be further exhibited by the broad 

structural diversity of potential P-gp inhibitors. Methylated epigallocatechin, 

gallocatechin, and dihydromyricetin derivatives (compounds 23, 35, and 36) were not 

cytotoxic (>100  µM) in LCC6, LCC6MDR (a P-gp overexpressing breast cancer cell line) 

and L929 fibroblast cell lines [117]. The nontoxic compounds 23 and 35 significantly 

inhibited doxorubicin efflux at concentrations as low as 0.1 µM, while at 3  µM compounds 

23 and 36 completely reversed MDR [117]. Methylated epigallocatechin and 

gallocatechin derivatives reversed MDR towards paclitaxel, vinblastine, vincristine, and 

doxorubicin in the nanomolar range (EC50 between 102 to 280 nM) [117]. Intracellular 

accumulation of compounds 23 and 51 (Figure 1—5) in both MDR and parental cells 

were comparable, suggesting that they were not P-gp substrates [117]. 

Structure-activity analysis revealed some important P-gp inhibition 

pharmacophores including methoxy, allyloxy, or acetylamino substitutions at ring D and 

rigid linkers of oxycarbonylvinyl and oxycarbonylphenylcarbamoyl with optimal link 

lengths ranging from 7.75 to 13.37 Å between the D and C3 rings [126].  
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(a) (b) 

 

 

(c) (d) 

Figure 1—5. Other Potent MDR reversal agents. (a) Compound 26. (1S,2S,3S,4S,7R,9R,13R,14R,15S)-9,15-Fiacetoxy-

3,7-dibenzoyloxy-1,13,14-trihydroxyjatropha-5E-ene [62]. (b) GO-Y078. (1E,4E)-1-(4-hydroxy-3,5-dimethoxyphenyl)-5-

(3,4,5-trimethoxyphenyl)penta-1,4-dien-3-one [29]. (c) Compound 51. (2R,3S)-5,7-Dimethoxy-2-(3,4,5-

trimethoxyphenyl)chroman-3-yl. 3-(3,4,5-trimethoxybenzamido)-4-fluorobenzoate [65]. (d) Compound 4e. 1,16-Bis[40-

((6-methyl)-4H-chromen-4-on-2-yl)phenyl]-1,4,7,10,13,16-hexaoxahexadecane [65]. 

 

 

Several coumarin derivatives were reported to be more potent in blocking P-gp mediated 

rhodamine 123 efflux than verapamil [127]. Exhibiting high cytotoxicity across the 

sensitive and resistant cell lines studied [127]. However, compounds 1a, 1e, 1f, 1g, and 

1h all exhibited collateral sensitivity with more than a two-fold increase in cytotoxicity 

against the doxorubicin-resistant Lovo/Dox cells in comparison to sensitive cells [127]. 

Cell cycle analysis revealed that the coumarin derivatives induced significant cell cycle 

changes [127]. Compound 1b induced significant G0/G1 arrest, 1c caused S-phase 

arrest, while 1e at lower concentrations caused the G0/G1 arrest and at high 

concentrations caused G2/M block [127]. 

Tiamulin, a nontoxic semi-synthetic antibiotic, was capable of reversing MDR 

against colchine, doxorubicin, and vinblastine [128]. Daunorubicin accumulation was 

increased after treatment with 2  µM tiamulin by 5.3-, 2.3- and 4.0-fold in P-gp expressing 

AS30-D/COL5, CEM/VLB3.6, and P388/ADR25 cells, respectively [128]. In vivo, overall 

animal survival was increased by 29% with tiamulin treatment [128]. Reserpine and 

yohimbine analogues also showed high vinblastine MDR reversal, unfortunately, these 

analogues also displayed high cytotoxicity [61]. 
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Table 1—2. Effects of the potent synthetic modulators on cellular accumulation and cytotoxicity of substrates of ABC transporters 

Compound Target Cellular Accumulation in MDR Cells (Relative 

fold) 

MDR Reversal in MDR Cells (Relative fold)  

N3 [109] P-gp   Vinblastine: 440         

Compound 35 [110] P-gp Doxorubicin 1 µM: 2.2   Paclitaxel: 42.7         

Compound 23 [105] P-gp Doxorubicin 1 µM: 2.4   Paclitaxel: 48.0         

Compound 12 [112] P-gp Doxorubicin 1 µM: 2.6   Paclitaxel: 39.8         

5 Bromo-tetrandrine [113] P-gp Doxorubicin 1.5 µM: ~1.2   Doxorubicin: 15.6 Vincristine: 109.4 Paclitaxel: 78.4 Docetaxel: 

57.8 

Epirubicin: 

25.1 

W6 [114] P-gp Doxorubicin KBv200 1 µM: 4 Doxorubicin 

MCF-7/DOX 1  

µM: 5.3 

KBv200 Doxorubicin: 

27.8 MCF-7/DOX 

Doxorubicin: 30.3 

KBv200 Vincristine: 

29.2 MCF-7/DOX 

Vincristine: 64.5 

KBv200 

Paclitaxel:1049.6 

MCF-7/DOX 

Paclitaxel: 99.3 

    

Compound 26 [115] P-gp Rhodamine 123 

HepG2/ADR 2 µM: 2.74 

  HepG2/ADR  

100 nM Doxorubicin: 

71  

MCF-7/ADR 200 nM 

Doxorubicin: 36  

      

GO-Y078 [116] BCRP Pheophorbide A 1 µM: >3    SN-38: 1.18         

Compound 51 [117] MRP1, P-gp and 

BCRP 

Doxorubicin 2008/MRP1 1  

µM: 2.6  

Doxorubicin 

HEK293/R2 

(BCRP 

expressing) 1  

µM: 10.4 

Paclitaxel: 31.4         

4e [117] MRP1 Doxorubicin 2008/MRP1 1 

µM: 8.9 

            

4e [129] MRP1 Doxorubicin  

3 μM: 2.1 

  0.5 µM Doxorubicin: 

13.7 

0.5 µM Etoposide: 

10.2 
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Certain flavone derivatives, especially the aurone derivatives, significantly 

increased paclitaxel accumulation in MDR cells and bound strongly to P-gp [130]. All 

methoxyflavones tested in the study showed significant inhibition of [3H] vincristine at 0.2  

µM [130]. While, quercetagetin, a methoxyflavone, was the most potent [3H] vincristine 

efflux inhibitor [35]. Hydrocinchonine, cinchonine, and quinidine reversed MDR against 

paclitaxel and docetaxel in MDR cells by activation of PARP [35]. P-gp specific 

modulation by hydrocinchonine, cinchonine, and quinidine was also confirmed by 

increased rhodamine 123 accumulation [131]. 

Quercetin modulated multiple ABC transporters including P-gp, BCRP and MRP1 

[55, 132]. Active quercetin derivatives displayed low toxicity (IC50 > 100 µM) while 

displaying high P-gp modulating activity [132]. Compound 17 (1 µM) increased paclitaxel 

sensitivity by 11.3-fold [132]. Bivalent quinine inhibitors Q(6′,6′) and Q(6′,4′) inhibited 

calcein AM efflux [133]. Honokiol, Magnolol and 4-O-Methylhonokiol compounds were 

nontoxic and improved daunorubicin resistance, however, honokiol was the only 

compound capable of weakly inhibiting calcein-AM efflux [134]. Alpha-tocopherol 

metabolites and gamma-tocotrienol weakly inhibited rhodamine 123 efflux, while 

gammaT3 was the only compound to significantly inhibit rhodamine 123 transport [135]. 

Typically, inhibitors reduce P-gp expression but gammaT3 increased P-gp protein 

expression while downregulating its transport [135]. 

ABCG2/BCRP 

Ko143, a third generation synthetic inhibitor of BCRP performed poorly in vivo [59]. 

Ko143 displayed highly potent inhibition of BCRP in vitro however in vivo Ko143 

exhibited a short plasma half-life of approximately 1 h and was highly cytotoxic [136]. 

Natural compounds including flavonoid scaffolds, aurones, marine products, quinazoline 

and chalcone moieties and protoflavones were all modified to investigate BCRP 

reversibility [65, 66, 137-140]. 

Aurones are a family of flavonoids previously shown to reverse MDR towards 

mitoxantrone in ABCG2-overexpressing cells [138]. Mitoxantrone, pheophorbide A and 

Hoechst 33342 are fluorescent BCRP substrates which can be detected by flow 

cytometry, permitting the quantification of BCRP transport activity [66, 138, 139]. Aurone 

analogues A-2, A-3, I-2, I-3, F-2 and F-3 exhibited considerable cellular accumulation of 

mitoxantrone, up to levels comparable to fumitremorgin C (FTC), a well-defined BCRP 

inhibitor [138].  Four methoxylated aurone compounds at 50 nM significantly 

reduced the IC50 of mitoxantrone [138]. Mitoxantrone was combined with 0.5 µM of a 

series of chalcone (A-2, A-3, I-2, C-2) compounds and the F-2 aurone compound which 

resulted in complete MDR reversal in resistant cells [138]. Moreover, I-2 sensitised 

resistant cells towards mitoxantrone to a higher extent than those observed in control 
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cells [138]. ATPase assays revealed that the potent analogues A-2, A-3, I-2, F-2 were 

strong ATPase stimulators [138]. However, they do not inhibit cell viability differentially 

in ABCG2-overexpressing (MDA-MB-231/R) and parental (MDA-MB-231/V) breast 

cancer cells [138]. Compounds A-2, I-2 and F-2 weakly associated with the 

[I]IAAP/BCRP binding site, whereas A-3 completely inhibited [I]IAAP photolabeling [138]. 

These compounds all uniquely bound to and inhibited BCRP. In vivo the combination of 

A-2 and mitoxantrone significantly improved overall survival when compared with 

mitoxantrone treatment alone [138]. 

Quinazoline and chalcone compounds both inhibited BCRP at high nanomolar to 

low micromolar concentrations [139]. By combining the two moieties to generate new 

synthetic derivatives, Kraege et al. endeavoured to obtain more potent BCRP inhibitors 

[139]. Compound 35 inhibited pheophorbide A efflux in a BCRP overexpressing cell line 

with an IC50 of 0.19 µM, which was well below cytotoxic levels [139]. Compound 35 also 

inhibited BCRP, with a 10-fold larger therapeutic ratio than that of Ko143 [139, 141]. 

Compound 35 revealed no selective difference in toxicity for MDR and sensitive cells, 

suggesting that compound 35 was not a substrate of BCRP [139]. However, compound 

35 still potently reversed SN-38 resistance at 0.01 µM and 0.1 µM [139]. Compound 35 

displayed high specificity towards BCRP in comparison to P-gp [139]. Compound 35 

potently inhibited BCRP, slightly modulated P-gp, but did not affect MRP1 transport 

[139]. Most of the quinazoline compounds were highly toxic, with IC50 values of less than 

10 µM across the sensitive and resistant cell lines [66]. The therapeutic ratio of drugs 

was dependent upon the toxicity shown in comparison to the intended inhibitory activity 

[66]. Quinazoline derivatives 21, 54 and 60 exhibited improved therapeutic ratios in 

comparison to Ko143 even when considering these compounds’ high cytotoxicity [66]. 

The large therapeutic window can mainly be attributed to the potent inhibition of Hoechst 

33342 efflux by compounds 21, 54 and 60, with IC50 values of 55.6, 44.2 and 47.5 nM, 

respectively [66]. Compounds 54 and 60 also potently sensitised MDR cells towards SN-

38 (EC50 values of 12.7 nM and 15.6 nM respectively) and mitoxantrone (EC50 values 

7.4 nM and 9.7 nM respectively) [66]. ATPase analysis revealed that these potent 

inhibitors followed a bell-shaped curve [66]. 

ABCC1/MRP1  

The nontoxic bivalent apigenin homodimer compound 4e (Figure 1—5, IC50>100 µM) 

potently inhibited MRP1-dependent doxorubicin efflux and completely reversed MDR 

against both doxorubicin and etoposide at 0.5 µM (Table 1—1) [117, 129]. SAR revealed 

that removal of OH groups at the C-5 and C-7 positions of the A-ring from apigenin 

dimers and methyl substitutions at the C-6 or C-7 or fluorine substitution at the C-7 

position of the Å ring of the dimer showed the highest increase in MRP1-modulating 
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activity [129]. The high binding affinity of 4e within the MRP1 substrate/doxorubicin 

binding site showed that 4e inhibited transport by competitive inhibition [129]. 

The investigation of BCPCF (2′,7′-bis-(3-carboxy-propyl)-5-(and-6)-

carboxyfluorescein) accumulation, an MRP1 specific substrate, resulted in relatively low 

potencies with IC50 values of 13, 16, 16, 7, 5 and 7 µM for Licoisofalvone B, IFG10, 

IFG12, morin, silybin and indomethacin, respectively [142]. Several nontoxic lignan 

derivatives displayed even less potency upon BCPCF accumulation, with IC50 values 

ranging from 50 to 125 µM [142]. The naturally occurring compound oleanolic acid which 

exhibits anticancer properties was synthetically modified creating DIOXOL and 

HIMOXOL derivatives [143]. DIOXOL and HIMOXOL showed an 8-fold increase in 

calcein-AM fluorescence in comparison to MK-571, a potent MRP1 inhibitor [143]. 

DIOXOL and HIMOXOL both inhibited MRP1-mediated transport in MDR cells and 

demonstrated strong anti-proliferative activities such as DNA fragmentation, increased 

BAX expression and decreased BCL-2 expression [143].  

Multi-Specific ABC Transporter Inhibitors 

In some cases, researchers have examined how their inhibitors react with multiple ABC 

transporters, which lets researchers further evaluate the specificity of these compounds 

across different ABC transporters. This was especially important when considering the 

broad overlap in inhibition and substrate specificity of ABC transporters [144]. In vivo, it 

was shown that knocking out both BCRP and P-gp increased drug accumulation 43-fold 

compared with the knockout of BCRP or P-gp alone [145]. As previously mentioned P-

gp, BRCP and MRP1 all had some overlap in the substrates and co-localise at the same 

tissue [146, 147]. A potent multi-specific ABC transporter inhibitor could simultaneously 

block multiple efflux pathways and potentially increase the efficacy of anti-cancer drugs.  

Cyclosporine A is an example of a multi-specific ABC transporter inhibitor in that 

it can inhibit MRP1, BCRP and P-gp [148]. Cyclosporine A showed an increase in 

disease-free survival, in clinic [148]. PSC-833, a derivative of cyclosporine A only 

inhibited P-gp, but did not show improved survival [148]. Quercetin derivatives such as 

compound 17 was not only the most potent P-gp inhibitor but also inhibited BCRP [132]. 

Quinazoline and chalcone derivative 24 were designed to inhibit BCRP, yet they showed 

equipotent inhibition against P-gp, with IC50 values of 0.6 and 0.48 µM, respectively [139]. 

Compounds 19 and 27 both inhibited P-gp more potently then BCRP and MRP1 transport 

inhibition [139]. Methylated epigallocatechin, gallocatechin and dihydromyricetin 

derivatives inhibited multiple ABC transporters [117]. While compounds 23 and 35 

completely reversed P-gp dependent doxorubicin resistance, they also displayed strong 

MDR reversal towards BCRP [117]. Moreover, derivatives 50 and 51 showed activity 

against all three ABC transporters MRP1, BCRP and P-gp [117]. High specificity to a 
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single target is usually a highly regarded characteristic for drug design, however further 

investigation into multi-specific ABC transport inhibitors could prove essential when 

multiple ABC transporters are overexpressed [59, 149]. These multi-specific inhibitors 

may be required to substantially reduce MDR in clinic [59, 149]. 

Furthermore, in clinic, high expression of P-gp was only found in a few tumour 

types such as renal cancer and pheochromocytoma [150, 151]. Many tumour samples 

exhibited much less expression when compared with resistant cell lines [150, 151]. While 

some inhibitors (nilotinib) have not shown success when inhibiting P-gp at high 

concentrations, as in overexpression models, in lower P-gp expressing cells the inhibition 

of nilotinib becomes useful [152]. The MDR reversal capabilities of nilotinib and imatinib 

both successfully reversed MDR when the expression of P-gp was at low to moderate 

levels, however, at higher P-gp expression levels nilotinib MDR reversal required higher 

concentrations which initiated off target affects [152]. The antiproliferative, anticancer 

agent ABT-263 and ABT-199 is another compound that is able to reverse MDR but only 

when BCRP expression is low [153]. This research suggests a potential clinical 

relevance for using inhibitors with different efficacies depending on the ABC transporter 

expressed within the tumours. Demonstrating that even non-potent compounds can be 

highly beneficial. 

Curcumin 

Curcumin is a phytochemical derived from the readily available spice turmeric which has 

been extensively investigated for its biological activity [154-156]. Observed activities 

include MDR reversal, antioxidant, anti-inflammatory, and anti-cancer activities [156-

158]. However, the oral bioavailability of curcumin is very limited due to poor intestinal 

absorption, rapid metabolism into curcumin conjugates and a short half-life [159-161]. It 

was recently shown that the efflux of the predominant curcumin conjugate COG back 

into the blood was dependent upon the expression of MRP3 [74]. In addition, curcumin 

has showed broad spectrum inhibition of ABC transporters including P-gp, MRP1, MRP5 

and BCRP transport across the relevant overexpressing cell lines [162]. It is still unknown 

whether curcumin and its metabolites are able to inhibit MRP3 activity [74]. Synthetically 

modifying well-tolerated natural compounds has the potential to create derivatives with 

increased specificity, potency, and improved bioavailability [116, 162] Curcumin 

analogues A12, B11 and C10 had increased potency and in some instances, specificity 

in comparison to curcumin but only inhibited a single ABC transporter [162]. A12 (IC50: 

1.2 µM) and B11 (IC50: 5.2 µM) were more potent than curcumin (IC50: 32 µM) in BCRP 

modulation [162]. C10 (IC50: 2.8 µM) only inhibited P-gp, exhibiting enhanced specificity 

and potency when compared with curcumin (50.5 µM) [162]. However, A13 showed 
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multi-specific inhibition of BCRP, MRP1 and MRP5, with a higher potency in comparison 

to curcumin [162]. 

Murakami et al. screened 24 nontoxic synthetic curcumin analogues with 

increased bioavailability to evaluate their efficacy in BCRP modulation [116]. The 

curcumin analogues GO-Y078 (Figure 1—5), GO-Y0168, GO-Y0172 and GO-Y030 

potently inhibited mitoxantrone transport, with IC50 values of 0.51, 0.31, 0.25 and 0.37 

µM, respectively, while curcumin exhibited an IC50 of 0.62  µM [116]. GO-Y030 (1 µM) 

exhibited complete MDR reversal and GO-Y078 (1  µM) greatly enhanced SN-38 

sensitivity in MDR cells [116]. GO-Y078, GO-Y0168, GO-Y0172 and GO-Y030 

modulated ATPase activity and [I]IAAP binding at nanomolar concentrations, exhibiting 

high binding affinity the BCRP binding site [116]. This suggests that GO-Y030 and GO-

Y078 competitively inhibited BCRP by competing for the BCRP substrate binding pocket 

[116]. However, GO-Y0168 and GO-Y0172 also bound strongly and inhibited 

mitoxantrone transport, yet only GO-Y078 and GO-Y0168 were able to reverse SN-38 

resistance [116]. This suggested that curcumoid-mediated SN-38 MDR reversal was not 

entirely dependent on BCRP binding [116]. In vivo, GO-Y078 exhibited a 1.4-fold 

increase in survival that could be attributed to its increased solubility and bioavailability 

when compared with curcumin [163]. However, this in vivo activity could be attributed to 

the multi-specificity of these potent P-gp inhibitors which also showed some weak BCRP 

transporter inhibition [116]. Curcumin is another good example of when synthetic 

modification successfully improved the bioavailability, potency, and specificity in 

comparison to the lead bioactive compound [163]. 

Curcumin derivatives inhibited the widest range of ABC transporters in 

comparison to other natural derivatives, including P-gp, BCRP, MRP1 and MRP5 [51, 

162]. Twenty-three heterocyclic cyclohexanone curcumoids were tested for P-gp, BCRP, 

MRP1 and MRP5 inhibition [162]. In cellular accumulation assays of transporter specific 

substrates, compound C10 demonstrated strong and specific P-gp inhibition (IC50: 2.8 

µM) in resistant cell lines [162]. While A13 inhibited BCRP, MRP1 and MRP5, with IC50 

values of 4.3, 11.9 and 11.7  µM, respectively [162]. Substrate inhibition translated into 

an increase in drug sensitivity, with compound C10 causing MDR reversal of paclitaxel 

resistance [162]. A12 and A13 resulted in MDR reversal of mitoxantrone resistance [162]. 

6,7-Dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline derivatives 8, 9 and 12 were 

capable of modulating both calcein-AM and Hoechst 33342 efflux in their respective P-

gp and BCRP expressing cell lines [126, 162].  

EF24 

5,5-bis[(2-fluorophenyl)methylene]-4-piperidinone (EF24), is another curcumoid 

derivative that has displayed promise [164]. EF24 was first synthesised by Adams et al., 
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where EF24 demonstrated both the ability to arrest the cell cycle and induce apoptosis 

[165]. Since then, EF24 has inhibited NF-κβ and BCL2, indirectly enhancing BAX 

expression and cytochrome C mitochondrial release, stimulating apoptosis in a variety 

of cancer cells [164, 166, 167]. The additive effects of EF24 were shown in combination 

with the anticancer drug mitotane in adrenocortical tumour cell lines [168]. EF24 

treatment also modulated Wnt/β-Catenin, NF-κβ, MAPK and P13K/AKT protein 

expression [168]. Furthermore, EF24 has showed inhibition of glucose uptake in ovarian 

cancer cells limiting the production of both lactate and glycolysis [169]. EF24 glucose 

modulation may be in response to EF24 inhibition of the glut1 transporter expression in 

a dose dependent manner [169]. EF24, glut1 inhibition and knockdown (siRNA) both 

impaired the tumorigenicity of ovarian cancer cells [169]. Curcumin has inhibited several 

ABC transporters including P-gp, MRP1, MRP5 and BCRP [170]. The ability for MRP3 

to transport COG suggests a relationship between curcumin and MRP3, whether 

curcumin can inhibit MRP3 is unknown. It was of interest to determine whether curcumin 

and its derivate EF24 could also modulate MRP3 expression. 

Suramin 

Suramin (SUR) was initially synthesised in 1916 to treat trypanosomiasis, a parasitic 

infection [171]. In 1979, suramin displayed the ability to inhibit reverse transcriptase, a 

crucial enzyme in AIDs [172]. During experiments involving the treatment of AIDs, 

suramin demonstrated antitumor activity in AIDs specific cancers [173]. This discovery 

led to further investigation of suramin in the context of cancer therapy. Further 

investigation of the biological activity of the role of suramin showed suramin modulated 

infection, inflammation, proliferation, invasion, drug resistance, metastasis and 

angiogenesis [4, 174, 175]. Suramin also modulated Wnt signalling, telomere shortening, 

extracellular matrix breakdown, CD40-CD154 immunosuppression and MRP3 inhibition 

[73, 171, 174, 176, 177]. 

Drug induced liver injury (DILI) is a major safety concern that must be assessed 

during drug development [73]. DILI can be caused by insufficient secretion of bile acids 

and is one of the major reasons for rejection of transplanted livers [73]. In this model 

inhibition of MRP3 were screened to test compounds with the potential to cause DILI 

[73]. The Bayesian model’s sensitivity of 64% and specificity of 70% was confirmed by 

in vitro testing [73]. E217G, a MRP3 dependant substrate was tested in a membrane 

vesicle model prepared from HEK293, MRP3 overexpressing cells [73]. Fidaxomicin, 

suramin and dronedarone were identified as the three strongest MRP3-dependent 

transport inhibitors [73]. Fidaxomicin, suramin and dronedarone were able to inhibit 

MRP3-dependant transport potently (IC50 = 1.83±0.46 µM, 3.33±0.41 µM and 47.44±4.41 
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µM, respectively) [73]. Whether suramin can inhibit MRP3/ABCC3 in a cell or animal 

model remained untested.  

In Clinic 

A phase I trial of noncytotoxic concentrations of suramin coupled with either docetaxel 

or gemcitabine was implemented [178]. The purpose of this phase I trial was to assess 

the tolerability of the combination therapies and whether the plasma concentrations of 

suramin could be achieved [178]. Non-small cell lung cancer (NSCLC) was the most 

common form of lung cancer diagnosed [178]. Suramin was selected in this trial as 

NSCLC cancers highly express FGF, one of suramin’s inhibitory targets [178, 179]. 

NSCLC patients were injected intravenously with suramin, plus either gemcitabine or 

docetaxel on days 1, 8 and 21 of each treatment phases [178]. After three phases, 

patients with partial responses or better continued the trial [178]. Patients with stable 

disease or worse were changed over to the other combination therapy [178]. The results 

showed some dose-limiting toxicity in the combination of suramin (10-50 µM) and 

docetaxel (75 mg/m2), three of the six patients that received this combination exhibited 

febrile neutropenia [178]. However, no dose-limiting toxicities were seen with the 

combination of suramin (10-50 µM) and gemcitabine (1250 mg/ m2) or at a lower 

concentration of docetaxel (56 mg/m2) [178]. This phase I trial successfully proved that 

plasma concentrations of suramin could be achieved in the desired ranges and that 

combinations were well tolerated [178]. Furthermore, nine patients exhibited stable 

disease while two patients presented with a partial response to the treatment [178]. 

These results suggested that suramin combinations could be capable of antitumor 

activity and that further investigation was warranted [178]. 

Methotrexate 

MTX is a substrate of MRP1, MRP5, BCRP2 and MRP3 [60, 62, 79, 180]. MTX is an 

antifolate and antimetabolite drug that has been used in the treatment of acute 

lymphocytic leukaemia, breast cancer, osteosarcoma, primary central nervous system 

lymphoma, and head and neck cancer [181]. Upon inhibition of carrier-mediated 

transport of MTX, P-gp also improved MTX accumulation resistance [182]. While, MTX 

enters cells predominantly via active or carrier mediated transport, it is also possible for 

MTX to passively diffuse into cells when MTX-carriers are inhibited [182]. MTX 

anticancer activity is dependent on the MTX metabolites ability to compete with enzymes 

involved in folate metabolism [181]. Primarily dihydrofolate reductase (DHFR) and to a 

lesser extent ribonucleotide transformylase (GARFT), 5′-amino-4′-

imidazolecarboxamide ribonucleotide transformylase (AICARFT) and thymidylate 
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synthetase (TYMS) [181]. The competitive inhibition of GARFT and AICARFT by MTX 

impairs DNA/RNA synthesis by inhibiting purine synthesis and folate bioactivities [181].  

Gemcitabine 

Gemcitabine is a nucleoside analogue and an antimetabolite [178]. Gemcitabine 

di/triphosphate conformations are key antimetabolites that interfere with DNA synthesis 

and function [178]. In comparison to 5-FU, gemcitabine demonstrated improved clinical 

benefit response (5-fold) in pancreatic cancer patients [183]. However, Ciliberto D et al. 

(2013) stated that the therapeutic effects of gemcitabine were majorly putative and by no 

means curative [184]. Research responded to this crisis in pancreatic cancer treatment 

by studying combination treatments of gemcitabine with radiotherapy, resection, 

fluoropyrimidine-based therapies, platinum-based therapies, Kras-targeted therapies, 

nab-paclitaxel, EGFR-targeted therapies (erlotinib) and various phytochemical-based 

modulators [184-187]. Recent evidence showed a link between ABC transporters and 

gemcitabine [29, 188]. High gemcitabine (20 µM) concentrations over one hour 

increased the expression of MRP1, MRP3 and MRP5 [29]. MRP5 displayed the highest 

increase in expression in cells with gemcitabine resistance and subsequently studies 

have showed gemcitabine resistance was dependent on MRP5 expression [29, 188]. 

Whether MRP3 expression is able to modulate gemcitabine resistance was unknown.  

Bioinformatic Tools 

Since the inception of the microarray assay, the amount of genetic information available 

has grown [189]. The tissue microarray is a powerful tool that enables the user to 

simultaneously study the expression of thousands of genes or RNA products within a 

given cell or sample [189]. The use of DNA microarray data has been used to investigate 

the expression differences between cancerous and normal tissue types as well as across 

cancer types [190]. The advances in the quantification of genetic expression as well as 

advances in computing technologies has led to the creation of several bioinformatic 

databases including the Oncomine, KMplot and STRING databases. The oncomine 

database was created with the aim to collect, normalise, analyse and detect potential 

cancerous targets using published microarray data [190]. The KMplot platform also 

utilises microarray data but to plot Kaplan-Meier survival graphs that can be used to 

evaluate the impacts of low and high expression of a target gene on patient survival rates 

[191]. 

The levels of protein and mRNA do not always correlate, in fact it is difficult to 

predict protein levels based on RNA expression [192]. The STRING database is a 

platform dedicated to assessing a target’s protein-protein interaction networks [193]. 

Proteins are among the most diverse, information-rich and specific molecules within the 
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body [193]. The STRING platform utilises protein expression from experimental data, 

text mining and coexpression analysis to evaluate the relationships between proteins 

[193]. These databases will be used to assess the RNA and protein expression of 

ABCC3/MRP3. 

Aims and Hypotheses 

The wealth of research into ABC transporters is vast, however research regarding MRP1, 

BCRP and P-gp has dominated multidrug resistance research [51]. The expression of 

MRP3 is emerging as a unique and important transporter in pancreatic cancer [36, 79, 

83]. Pancreatic cancer is both highly resistant and aggressive and in need of new 

treatment avenues [13]. Simply put, if resistance can be reduced or eliminated, 

previously unsuccessful treatments can be improved. It is hypothesised that improving 

the understanding and targeting of MRP3 in pancreatic cancer will both improve and 

strengthen our knowledge of drug resistance mechanisms and restore cytotoxicity of 

previously ineffective drugs. 

 

The aims for this research were as follows: 

• To evaluate whether MRP3 expression was significant in pancreatic cancer and 

other cancers using ONCOMINE, KMplot and STRING databases. 

• To investigate whether gemcitabine or methotrexate resistance in PANC1 cells was 

dependent on MRP3 expression and function by knocking our ABCC3 using the 

CRISPR-Cas9 system. 

• To investigate whether MRP3 function could be inhibited by the natural compound 

curcumin and its derivate EF-24. Also, whether that inhibition could restore 

sensitivity of PANC1 cells to methotrexate or gemcitabine. 

• To investigate whether MRP3 function could be inhibited by the synthetic compound 

suramin. Also, whether that inhibition could restore sensitivity of PANC1 cells to 

methotrexate or gemcitabine. 
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Chapter 2 Methodology  

Bioinformatic Tools 

The ONCOMINE platform  

To establish clinical associations between the ABCC3 gene sequence and mRNA 

expression level variations in cancer patients, retrospective analyses was undertaken 

using the Oncomine platform. Oncomine analysis is as defined by individual archived 

datasets which include analyses of differential expression, Cancer Outlier Profile 

Analysis (COPA), tumour response, recurrence-free survival, progression-free survival 

and overall survival. 

Differential Expression 

Differential expression is the initial analysis type found within the ONCOMINE platform 

[194]. ONCOMINE is able to compare and differentiate expression between different 

cancers, cancer subtypes and normal samples [194]. This is an important tool when 

investigating genetic or pathological targets, especially when using the search function 

to investigate a target of interest across the vast oncomine database [194]. The threshold 

for used to search for ABCC3 was as follows: P-value = 0.0001, Fold Change=2 and 

Gene Rank = Top 10%. Some data outside of these ranges were also included in the 

analysis. 

Cancer versus Normal 

The cancer versus normal analysis allowed the user to investigate whether a target was 

upregulated or downregulated in cancer in comparison to normal tissue samples [194]. 

A student’s t-test was used for testing the significance when comparing two variables 

such as cancerous and normal expression [194]. The oncomine platform compared 

expression using a Pearson’s correlation test to evaluate the significance of differences 

between three or more variables such as grade I, grade II and grade III breast cancer 

[194]. Using the ONCOMINE platform, the evaluation of ABCC3 gene would result in a 

disease summary graph. The disease summary graph automatically returns results for 

the differential expression analysis with significant results for both upregulation and 

downregulation of ABCC3 in comparison to normal tissue. 

Cancer versus Cancer 

ONCOMINE uses the student’s t-test in the cancer versus cancer analysis to assess the 

significance between cancer types and cancer subtypes [194]. Cancer versus cancer 

analyses include multi-cancer and histological analysis [194]. Multi-cancer datasets 

profile a number of cancer types and group their data accordingly [194]. The multi-cancer 
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datasets contain the expression levels of a variety of genes across several cancer types 

using the same reporter to permit more direct comparisons (oncomine.org). Multi-cancer 

datasets allow the cancer versus cancer analysis to compare expression levels across 

cancers [194]. The histological analysis compares the histologic subtype, grade and 

stage of the samples across the cancer sub-types [194]. “Misc” or miscellaneous 

searches allow for the comparison of samples based on other parameters such as 

treatment response, viral infection status, gene expression and biomarker results (e.g. 

the p-53 signalling pathway or the WNT signalling pathway) [194]. Both the cancer 

versus normal and cancer versus cancer analyses will be used to assess ABCC3 

expression. 

Coexpression  

The ONCOMINE coexpression analysis aims to identify targets that follow the same 

expression patterns and that modulate similar biological pathways [194]. When the 

coexpression analysis is used in combination with the differential expression analysis, 

the identification of targets that are upregulated in cancer and coexpressed with the 

target gene can be achieved [194]. The ONCOMINE platform utilises a linked 

hierarchical clustering system to evaluate how synchronous other genes are with ABCC3 

expression [194]. The top three ABCC3 overexpressing datasets had the top three 

performing coexpression genes extracted from ONCOMINE for further literature review. 

In accordance with a previous paper the threshold for coexpression correlation was set 

at 0.7, anything above this would be recognised as a gene that highly correlates with 

ABCC3 [195]. Genes that displayed coexpression were then be assessed by literature 

review to improve and strengthen the evidence of functional overlap. The WNT signalling 

pathway, sphingosine-1-phosphate pathway and p53-signalling pathway have shown 

association with ABCC3 expression [36, 196, 197]. Coexpression of targets with ABCC3 

was firstly assessed with previously associated targets found in literature, followed by 

comparisons in cancer versus normal analysis.  

The amount of data generated by these co-expression searches was vast and 

highly variable. To specifically analyse ABCC3 coexpression, a ranking system was used 

to find the top three overexpressing ABCC3 cancer types based on ONCOMINE’s 

differential expression and outlier analyses. The top three performing cancer types were 

taken from each of the differential analysis types cancer versus normal, cancer versus 

cancer (histology) and cancer versus cancer (multi-cancer). These were ranked from first 

to fourth and assigned a relative score based on their position from 4 for first position to 

1 for fourth position. The positional scores were totalled, and the top three cancer types 

were revealed. These top three cancers were selected for coexpression analysis and 

further literature review. 
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Outlier Analysis 

COPA analysis allows for the user to distinguish overexpressing subsets within tumour 

types [194]. The heterogeneity seen in cancer is one of the major reasons that treatment 

fails [194, 198]. The COPA score calculates a median absolute deviation (MAD) which 

once calculated is normalised to a scale from 0-1 by dividing each sample expression by 

its MAD [194]. The use of median and MAD prevent the influence of outliers as well as 

limiting the influence of distribution estimates on calculations [194].The higher the COPA 

score the greater the evidence for consistent outlying expression seen in a cancer subset 

and the greater the difference in expression between the subsets of that gene. The 75th, 

90th and 95th percentiles of the transformed data for each gene was calculated against 

the cancer datasets and then ranked by COPA scores [194]. The COPA scores were 

used to evaluate whether any ABCC3 expression heterogeneity occurred across the 

cancer samples. The ONCOMINE platform, includes the term ‘gene rank’ which 

represents how the gene of interest (ABCC3) ranks in comparison to other genes within 

that analysis type either in significance, COPA or overexpression scores. 

The Kaplan-Meier (Km) Plotter 

The Kmplot database plots Kaplan-Meier plots based on the gene of interest and 

compares the overall survival of patients based on low and high mRNA expression of 

that target. The cancer types that were included were samples from bladder carcinoma 

(n = 405), breast cancer (n = 1090), cervical squamous cell carcinoma (SCC) (n = 304), 

oesophageal adenocarcinoma (n = 80), oesophageal SCC (n = 81), head-neck SCC (n 

= 500), kidney renal clear cell carcinoma (n = 530), kidney renal papillary cell carcinoma 

(n = 288), liver hepatocellular carcinoma (n = 371), lung adenocarcinoma (n = 513), lung 

SCC (n = 501), ovarian cancer (n = 374), pancreatic ductal adenocarcinoma (n = 177), 

pheochromocytoma and paraganglioma (n = 178), rectum adenocarcinoma (n = 165), 

sarcoma (n = 259), stomach adenocarcinoma (n = 375), testicular Germ Cell (n = 134), 

thymoma (n = 119), thyroid carcinoma (n = 502) and uterine corpus endometrial 

carcinoma (n = 543). In accordance with a previous paper and both the P-value and 

hazard ratio (HR) with 95% confidence intervals will be calculated by the KM plotter for 

ABCC3 [199]. Due to the sizes of datasets and possible compounding type I errors the 

false discovery rate (FDR) was also calculated to estimate the potential for false positives 

[200]. An FDR of 5% (0.05) indicates that 5% of the positive and significant results are 

actually negative results, which conversely means 95% of the positive results reflect 

actual positive results [200].  
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STRING Platform (Protein-protein interactions) 

The aim of the STRING database is to collect, analyse and predict protein-protein 

interactions across a wide range of targets and organisms [193]. This platform aims to 

assemble all known protein-protein interactions based on word association algorithms, 

direct physical bonding and indirect functional relationships [193]. The STRING platform 

analyses data across a wide range of organisms using coexpression analysis, selective 

shared expression, text-mining software and computational prediction software [193]. 

The evidence used to assess interactions are divided into seven channels [193]. These 

include the experimental, database, text mining, and coexpression channels [193]. As 

well as the neighbourhood, fusion and co-occurrence channels which are also included 

in the STRING platform analysis but are considered more relevant to Bacteria/Archaea 

based studies and therefore will not be used for this research [193]. The experimental 

channel utilises previous findings from laboratory experiments that showed evidence of 

interactions [193]. While the database channel compares information from pathway 

databases to gather evidence for any possible interactions [193]. The text mining channel 

utilises software which scans a wide range of publications including but not limited to all 

PubMed abstracts for targets that consistently appear in text together [193]. Using the 

STRING database, current MRP3 protein-protein interactions will be analysed. It will be 

of interest whether these results overlap with mRNA/microarray database searches. 

ABCC3 will be used as the input protein, confidence threshold will be set at high (0.7) 

with no more than 50 interactions shown. Network edges are based on the strength and 

type of evidence available for each interaction. Across all experiments P-values: <0.05 

will be considered significant and P-values: <0.01 will be considered very significant 

(Table 2—4). 

Cell Culture 

PANC1 cell line (ATCC), three PANC1 CRISPR ABCC3 knockout cells, MIAPACA2, 

HepG2 and A549 cells were used in this research project. All cells were grown and 

passaged in complete RMPI media (Thermofisher, NZ), unless otherwise stated during 

specific procedures. RMPI media was completed by supplementing RPMI with 10% FBS 

(Medica Pacifica, NZ), 100 units/ml penicillin (Life technologies, NZ), 100 µg/mL 

streptomycin Life technologies, NZ) and 2 mM of L-glutamine (Life technologies, NZ) 

[201]. Cells were grown and maintained in an incubator at 37°C, 95% humidity and 5% 

CO2. The cell line integrity was confirmed by regular DNA profiling (DNA Diagnostics, 

Auckland NZ) [201]. Where needed, cells were harvested using TrypLE (Thermofisher, 

NZ) and incubated at 37°C in 5% CO2 for 5 minutes, to achieve efficient cellular 

detachment from the surface of the flask. Cells were then stained by mixing trypan blue 

(Life Technologies, NZ) (80 µl) and cell suspension (20 µl) for 1 min at room temperature. 
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10 µl of the stained cells were placed in a haemocytometer and counted. The appropriate 

number of cells were counted and used for various experiments, plating, passaging and 

freezing. 

Flow Cytometry 

In 1954, Wallace Coulter designed the first basic flow analyser it was able to count and 

measure the size of a single cell flowing within a liquid, this liquid stream was focused to 

pass a specific measuring point [202]. In 1965, Kamentsky et al., described a flow 

cytometer that was able to measure absorption and back-scattered light of non-stained 

cells [203]. The absorption and back-scattered light measurements were used to infer 

the size and the amount of cellular nucleic acids [203]. The same year the first cell sorting 

device and use of electrostation ink-jet recording allowed the sorting of cells (1000cells/s) 

[204, 205]. Following these developments, in 1967, the electrostatic charging of droplets, 

further improved cell sorters and the development of cell extraction techniques led to the 

purification of human granulocytes and lymphocytes [202]. Cell sorting, preparation and 

separation allowed for more in-depth cellular investigation. The first clinical cytometer 

was implemented in 1983, further advances in technology and processing power led to 

the routine use to FLOW cytometry [202]. The creation of benchtop devices, the ability 

to measure five different parameters on 25,000 cells/s (1995), followed by the 

implementation of lasers and the use of fluorescent markers (1999) meant that the 

analytical power of flow cytometers exploded [206]. In 2003, the advances in digital 

technology allowed for the use of digitally based high-speed cell sorting [202]. The more 

that advances in computers, lasers, fluorophores, antibodies and optics improved the 

more prestigious flow cytometry became [207]. The most recent development in the field 

was the combination of flow cytometry and mass spectrometry [207]. The mass 

cytometer utilises stable element isotopes conjugated antibodies which enables the user 

to make at least 40 simultaneous measurements at one time [207]. Mass cytometry is 

limited by reduced sensitivity and throughput but displayed higher resolution and more 

comparisons when compared to flow cytometry [207]. The first commercially available 

mass cytometer was the Cytometry by Time-Of-Flight (CyTOF) which utilises probes that 

are able to bind to unique heavy-metal isotopes that allow specificity and limits signal 

overlap, a common limitation seen with antibodies [208]. Mass cytometry while not widely 

used may be the future of this field [207]. 

  Flow cytometry can measure a variety of cellular features including cell size, 

cellular complexity/granularity, fluorescent features, intracellular/membrane proteins and 

nucleic acid levels [207, 209]. Thousands of cells per second can be analysed using the 

flow cytometry technique [207]. The flow cytometer design can be organised into fluidics, 

optics, detectors and analysers [207, 209]. The fluidics are responsible for directing 
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particles and or cells within a liquid to a precise location that can intersect a laser or light 

source [207, 209]. The sheath fluid and pressurised lines are the two main components 

of the fluidic system [209]. The sheath fluid is the liquid (most commonly PBS) that is 

forced through the flow chamber in between the pressurised lines [209]. The pressurised 

lines force the sample liquid stream through the flow chamber, while coaxial flow ensures 

that the sample stream becomes a central part of the sheath stream [209, 210]. The 

sample pressure is more than the sheath fluid, which focuses the sample stream into a 

stream of single cells [209, 210]. This is an essential requirement for accurate 

intersection of the fluid stream with the laser beam [209, 210]. The injection rate is the 

speed at which the sample passes through the flow cytometer and through the laser 

beam [209, 210]. The higher the injection rate the more events per second (EPS) can be 

analysed but the lower the resolution for each cell [209, 210]. Slower injection rates are 

needed for more resolution and detail and is sometimes needed in more complex models 

[209, 210]. To ensure accuracy the stream must not be compromised anything other than 

detection of the sample stream, including unwanted particles or bubbles could produce 

false readings [209]. 

The optics system can be divided into the excitation optics and collection optics 

which uses lasers and lenses to excite, collect and transmit various wavelengths by 

different reflection angles to detectors [207, 209]. The light produced by the lasers 

reflects off cells in ways that can be recorded by the FLOW cytometer, these include light 

scattered in the forward scatter (FSC) direction and side scatter (SSC) direction [207, 

209]. Lasers can be used to excite fluorescent dyes and antibody conjugates (e.g. FITC) 

at specific wavelengths which can be used to further investigate specific cellular 

processes [207, 209]. Fluorescence based flow cytometry is limited by whether 

antibodies for your desired outcome actually exist and their specificity [207]. The FSC is 

light that is scattered along the same axis as the laser beam which means the FSC is 

used to detect differences in the sizes of the cells or particles used in the sample [209]. 

The SSC light is light that has been deflected to such a degree that it can be collected at 

approximately 90 degrees from the axis of the laser beam [207, 209]. The SSC results 

reflect the granularity and complexity of the cells or particles within the sample, the SSC 

includes the light detected from fluorescent signals [207, 209]. These light signals 

created by both the FSC and the SSC are collected using a series of lenses which gather, 

separate and focus specific wavelengths of light to the specific light detectors [207, 209]. 

Filters such as the long pass, short pass and band pass filters can be placed in the path 

of the light collected [209]. Long pass filters allow longer wavelengths of light to pass 

through the filter while short pass filters only allow shorter wavelengths of light to pass 

[209]. Band pass filters are a combination of short and long and can select which specific 

wavelengths should be captured [209]. These filters are used to sort the wavelengths 
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collected and ultimately detected which can increase the specificity of results [209]. 

Following the detection of the light signal the signals are digitised using amplifiers, 

processed and analysed using specifically designed computer programs [207, 209].  

  Through electrostatic cell sorting it is possible to collect and segregate cells 

based on set parameters [209]. It is now possible to sort cells based one or many 

parameters, resulting into specific populations of sorted cells that can used for further 

experimentation [209]. During electrostatic sorting, samples (cells/particles) are passed 

through lasers and depending on the predefined parameters become 

positively/negatively charged using a charging electrode [209]. The charged particles or 

cells can then be deflected into their respective containers using the charged plates 

[209]. 

Current Uses for Flow Cytometry 

The current uses for flow cytometry are broad, including the identification of lymphoma 

and leukaemia in blood samples, detection of aneuploidy, patient prognoses and 

prediction of clinical outcomes [207]. Within the laboratory we used flow cytometry to 

quantify cell death signalling, cellular accumulation of drugs, cytokine detection, cell 

surface staining and intracellular protein expressionfc. DNA analysis of haematological 

malignancies such as leukaemia and lymphoma including minimal residual disease 

(MRD) and applications for in vivo analysis of cells within blood or lymph could be 

investigated using flow cytometry [207]. Fluorescent dyes stain specific areas or 

chemical structures, in this case DAPI can be used to stain and quantify DNA [207]. 

Aneuploidy describes cells that contain an abnormal number of chromosomes, flow 

cytometry can detect the differences in DNA amounts [207]. Aneuploidy is associated 

with a poor patient prognosis in many cancers, but could also indicate a favourable 

prognosis in rhabdomyosarcoma, neuroblastoma and acute lymphoblastic leukaemia 

(ALL) in children [207].  

Flow cytometry can be used to detect and diagnose leukaemia and lymphoma 

carcinoma based on a set of morphological characteristics and cancerous markers [207]. 

The cancers that circulate within the blood and bone marrow are prime candidates for 

flow cytometry analysis [211]. For instance, the differences in the fluorescent detection 

of CD45 and SSC gating can be used to effectively detect blast cells and distinguish 

between mature lymphocytes, monocytes, maturing granulocytes, myeloid blasts, and 

lymphoid blasts [211]. A number of other markers can be used to detect these cancers, 

which in some cases can be detected simultaneously [207]. The clinical outcome can 

also be predicted based on the detection and classification of the cell type, facilitating 

the design of patient tailored treatment [207].  
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Flow cytometry has improved chemotherapeutic treatment in leukaemia and 

lymphoma cancers [207]. Non-Hodgkin lymphoma and plasma cells abundantly express 

CD20 which can be specifically targeted by rituximab [207]. Response to rituximab was 

directly dependent upon the cell surface expression of CD20 which is quantified using 

flow cytometry [207]. The past ten years have seen an expansion in the targeted 

therapies available for leukaemia patients [212]. In acute myeloid leukaemia (AML), 30% 

of patients exhibited FLT3-mutated AML [212]. The detection of the FLT3 receptor 

CD135 in flow cytometry was successfully demonstrated [213]. The combination of 

midostaurin a tyrosine kinase inhibitor and chemotherapeutics improved the overall 

survival in FLT3-mutated AML patients [212].The experimentation and discovery of drugs 

that can target these specific populations is ongoing [212]. Midostaurin, could be 

replaced by the more specific and potent inhibitors of FLT3 such as Quizartinib and 

Crenolanib [212]. However, the earlier detection of CD135 much like CD20 by flow 

cytometry may also improve the overall survival in FLT3-mutated AML patients. Flow 

cytometry has been commonly used to detect the presence of MRD in treated leukaemia 

and lymphoma carcinoma patients [207, 214]. MRD is a more accurate estimate of 

patient response to treatment than just morphological remission (>5%) [207, 214]. 

Highlighting the use of flow cytometry in predicting and assessing the success of a 

treatment via MRD assays [214]. Woo et al., highlighted that flow cytometry is becoming 

a more developed concept in, in vivo studies [207]. In vivo, flow cytometry permits the 

imaging of individual cells within blood or lymph of patients [207]. The idea was to detect 

cancerous cells within the vasculature of the animal/patient while limiting both alterations 

in normal cell biology and sensitivity seen in ex vivo techniques [207]. While the 

standardisation of techniques in clinic are still ongoing, the use of in vivo flow cytometry 

could impact many other diseases and scientific fields [207].  

Epigallocatechin-3-gallate (EGCG) a component of green tea was investigated 

for its anticancer activity in oesophageal squamous cell carcinoma [215]. Flow cytometry 

was used to investigate the effects of EGCG alone and in combination with doxorubicin 

on cellular apoptosis, BCL-2, BAX, mitochondrial membrane potential and caspase 

protein levels in Eca109 and Ec9706 cancer cells [215]. The results showed that EGCG 

was able to cause apoptosis (100 µg – 300 µg), raise caspase-3 and BAX expression 

and limit the expression of BCL-2 [215]. Furthermore, the combination of EGCG (5 µg / 

25 µg) and ADM (0.2 µg/ml) significantly improved the induction of apoptosis (P value: < 

0.01) [215].  

Flow cytometry is also commonly used for the quantification of several biological 

activities. These include quantifying cell death signalling, drug accumulation studies, 

cytokine detection, cell surface staining and intracellular protein expression [209, 216]. 

For instance, flow cytometry was used to quantify the intracellular and surface 
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expression of OATP1B1 and P-gp transporters in Caco-2, HEK293/OATP1B1 

overexpressing and hepatocyte cells [216]. Hogg et al., compared the expression levels 

of these two transporters across mass spectrometry and flow cytometry [216]. Flow 

cytometry revealed that P-gp expression found on the surface of Caco-2 cells was only 

a fraction of the total expression of P-gp [216]. Suggesting a higher proportion of 

intracellular P-gp than previously thought [216]. While mass spectrometry did reveal 

higher expression levels and specificity, which was especially profound in OATP1B1 

(~10-fold) expression [216]. The usability, speed and ease of the flow cytometry process 

as well as the ability to observe the major differences in transporter patterns made flow 

cytometry a favourable process to use for investigations of protein expression and 

distribution [216]. 

The uptake and cellular accumulation of transporter substrates is essential to 

better understand drug disposition, function and efficacy [217]. Flow cytometry was used 

to investigate the intracellular accumulation of drugs within HL60 leukemic cells [217]. 

The results showed that the prolonged incubation with drugs induced and sustained ABC 

expression, preventing the accumulation of doxorubicin [217]. Phorbol-12-myristate-13-

acetate (PMA) is known to promote endocytosis, PMA reversed the P-gp dependent 

inhibition of doxorubicin cellular accumulation, while verapamil a known P-gp inhibitor 

did not [217]. Therefore, not only could P-gp be causing resistance by increasing efflux 

of anticancer drugs but that the endocytosis of drugs could also be a limiting factor in 

this model [217]. 5-chloromethylfluorescein diacetate (CMFDA) is a nonfluorescent 

lipophilic compound able to passively enter a cell, upon intracellular localisation cytosolic 

esterases cleave CMFDA acetate residues forming the 5-chloromethylfluorescein (CMF) 

products [218, 219]. The CMF product is fluorescent and membrane-impermeable, 

further modifications with glutathione continues to form fluorescent conjugates [218, 

219]. The activity of MRP1, MRP2 and MRP3 when present are able to actively transport 

the CMF-glutathione conjugates out of the cell [218]. Therefore, CMF accumulation has 

be used to quantify the functional transport activity of these ABC transporters [218, 219]. 

Weiss et al., used this method to show the inhibitory potential of nucleoside, nucleotide, 

and non-nucleoside reverse transcriptase inhibitors on MRP1, MRP2 and MRP3 [218]. 

This method will also be used to investigate MRP3 modulation. 

Limitations 

Flow cytometry does have some limitations that must be considered. Firstly, the variety 

of uses for flow cytometry detection is limited by the number of antibodies available [216]. 

Not only must antibodies for the protein of interest be available, they need to target both 

internal and external epitopes depending on the target or distribution of interest [216]. 

Antibodies can also be limited by autofluorescence and background signals which make 
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observation of small changes in expression levels difficult [216]. When comparing flow 

cytometry to mass spectrometry the whole epitope is required for correct binding of 

antibodies which is not always possible within the cellular environment [216]. However, 

mass spectrometry can detect the presence of even fragments or partially degraded 

sections of the protein of interest [216]. The ability for flow cytometry to image tissue is 

not currently possible, flow cytometry can only analyse one cell at a time [207]. While the 

use of disassociating enzymes does allow for single-celled populations, the more 

laboratory manipulations done to a sample the more disruption of the normal cellular 

environment [207]. The vast applications require a sound foundation, grounded in a good 

knowledge of the background of the flow cytometry technology. These limitations can be 

reduced by careful experimental design, antibody selection and target selection. The 

usability, speed and range of applications make flow cytometry an essential tool for 

investigating the protein expression [216]. 

Surface Staining 

The plasma membrane localisation of MRP3 has been documented in past publications 

[220, 221]. The detection of MRP3 protein expression was done by surface staining. 

Surface staining uses FLOW cytometry to detect the specifically selected antibodies’ 

fluorescent signals from fluorescently conjugated antibodies. Cells were trypsinized and 

counted using a haemocytometer (as stated above) and 1.0x106 cells were aliquoted into 

1.5ml tubes and centrifuged at 350 x g for five minutes at 4°C. The supernatant was 

discarded, and cells were washed once in 1ml PBS-T (PBS + 0.2% Tween 20 

(Thermofisher NZ)) in the centrifuge at 300 x g for 5 minutes at 4°C. Cells (1.0x106 cells) 

were fixed in tubes containing 100 µl of 1% paraformaldehyde for 15 minutes on ice, 

followed by two washes (PBS-T). Each wash was done in 150 µl of PBS-T (PBS + 20% 

tween 20) followed by centrifugation at 300 x g for 5 minutes at either 4°C or room 

temperature. Cell permeabilization was achieved by incubation of the cells in 100 µl of 

0.2% saponin (in PBS) for 30 minutes at room temperature, followed by another two 

washes (room temperature). Blocking of non-specific antigen sites was achieved by 

incubating cells with 5% bovine albumin serum in PBS for 15 minutes. Cells were 

incubated in the dark, in 100 µl of either of anti-MRP3 (abcam, M3II-21, 2.5 µg/ml in 2% 

BSA in PBS) or IgG isotype control (Thermofisher, IgG2a, 2.5 µg/ml in 2% in BSA/PBS) 

for 60 minutes at room temperature. Following two washes (room temperature), cells 

were incubated in 100 µl of the Alexa Fluor® 488-labeled secondary antibody (1:1000 in 

2% BSA/PBS) in the dark at room temperature for 60 minutes. Cells were then washed 

once at room temperature followed by a final centrifugation step at 350 x g for five 

minutes at room temperature and resuspension of cells in 200 µl of PBS at 4°C. Samples 
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were stored on ice and MRP3 surface staining was detected by flow cytometry 

immediately. 

 

• Materials Used 

• PBS (Life Technologies, NZ) 

• Antibodies (primary: MRP3 antibody (abcam, M3II-21) secondary: Anti-

Mouse IgG H&L (FITC) (abcam, ab6785), control: Mouse IgG2b kappa 

Isotype Control, Alexa Fluor 488 (Life Technologies, NZ, 53-4732-80) 

• Saponin – Sigma (Cat. No – BCBV8000) 

• MoFlow™ XDP flow cytometer (Beckman Coulter) 

• RPMI (phenol red free) 

• TrypLE Express (Life technologies, NZ) 

• Sheath fluid  

• Flow-Check™ Beads (Beckman Coulter) TrypLE Express (Life 

Technologies, NZ) 

• PBS (Life Technologies, NZ) 

• CMFDA (Life Technologies, C2925)  

• Software used: GraphPad prism 8, Summit 5.4 and Kaluza (Beckman 

Coulter) 

 

Drug Study  

In short, cells were grown in 75cm2 flasks to an 80-90% confluence, trypsinized and 

counted (as above). Cells (0.5-1×106cells/ml) were then, centrifuged at 250 x g for 5 

minutes and resuspended in phenol red free RPMI media supplemented with 10% FBS 

. The cell suspension was first incubated at 37°C for 10 minutes followed by the addition 

of CMFDA and the potential inhibitors EF24 (2.5,1.25 and 0.625 µM), suramin (20, 10 

and 5 µM), benzbromarone (20 µM) or curcumin (20 µM). The accumulation study was 

initiated by spiking CMFDA (final concentration of 0.1% DMSO in RPMI phenol red free 

media) or BCECF (0.25 µM). After incubation for five minutes, cells were then washed 

in PBS (3ml, 4°C), centrifuged at 250 x g for 5 minutes, resuspended in PBS (4°C) and 

stored on ice. Measurement of CMF/BCECF fluorescence signal by flow cytometry 

immediately followed.  

MTT Assay 

Prior to 1983, the standard methods for analysing changes in cell death/proliferation 

involved laboriously counting cells with or without a specific dye or measuring the amount 

of 5aCr-labeled protein after lysis of cells or by measuring the accumulation of 
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radioactive nucleotide levels during cell proliferation [222]. The ability to quickly and 

efficiently measure cell viability across large samples was needed [222]. In 1983, 

Mossman et al., discovered a new assay now known as the MTT assay [222]. The ideal 

design for a viability assay would be void of washes, utilise the ELISA platform and 

contain a compound that was colourless but that would be modified within a living cell to 

become a new and distinguishable colour [222]. The tetrazolium salt 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) is modified by reactions 

within the mitochondria to form a rapid colour change [222]. MTT is now regularly used 

to measure the amount of live cells contained within the sample, allowing the 

measurement of proliferation or cytotoxicity depending on the experimental model [222]. 

The initial yellow MTT substrate produces a dark blue formazan product in the presence 

of live cells [222]. 

As previously mentioned ECGC was investigated for its ability to modulate the 

anticancer drug ADM in oesophageal carcinoma [215]. The MTT assay displayed that 

ECGC was able to reduce cell viability in a time-dependant and concentration-dependant 

manner [215]. The MTT assay was used to assess IC50 calculations of sorafenib in 

resistant PLC/PRF5 (R1 and R2) and wild type PLC/PRF5 cells [84]. The resistant cell 

lines showed significantly (P-value <0.01) higher IC50 values than the wildtype cell line 

[84]. MTT results demonstrated that ABCC3 silencing by siRNA caused decreased cell 

viability and increased sorafenib cytotoxicity [84].  

When considering the use of MTT as a cell viability/cytotoxicity assay it is 

important to consider the limitations. The MTT assay is limited by its insolubility in water 

and requires the organic solvent such as dimethyl sulfoxide (DMSO) or isopropanol in 

order to dissolve the MTT crystals [223]. The quality of DMSO used can affect the quality 

of MTT results [224]. In some instances, MTT assay has produced erroneous cell viability 

estimations [225, 226]. Many variations in methods during the MTT experiment can 

influence results including DMSO quality, presence of culture medium, and the exposure 

time of formazan to the air [224]. Morphological changes such as changes in size or cell 

contact may influence ability of cells to produce formazan products [224]. 

Notwithstanding, the variations between experiments are acceptable and with 

appropriate controls, MTT can produce reliable cell viability (IC50) estimates [224].  

MTT methodology 

MTT was carried out in accordance with Myint et al [201]. Firstly, an MTT stock (5 mg/ml 

PBS or 12mM in PBS) was prepared and stored at 4°C protected from light. Cells 

(PANC1/A549) were then passaged and seeded into a 96 well plate with 8,000 cells per 

well. Immediately following 24 hours of cell incubation, media was removed, and cells 

were incubated with the chosen treatment arranged in a specific layout (Figure 2—1). 
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The MTT assay was used to investigate the cytotoxicity of suramin (abcam, ab120422), 

curcumin (sigma, C7727-500MG), EF24, benzbromarone, methotrexate and 

gemcitabine (abcam, ab145657). The cytotoxicity of each compound (IC50) was 

investigated by observing the impact of a variety of concentrations (100 µM, 50 µM, 25 

µM, 12.25 µM, 6.75 µM, 3.13 µM, 1.56 µM, 0.78 µM) on cell viability.  

 

Figure 2—1. MTT Assay layout 

 

 150 µl Milli Q water or PBS 

 Media only 

 8,000 cells + Media 

 8,000 cells + Media + Drug treatment 

 

Once the treatments were completed and media/drugs were removed, MTT substrate 

was added (10 µl MTT in 100 µl RPMI non-supplemented) to each well. Followed by 3-

4-hour incubation under normal cell culture parameters (37°C, 95% humidity and 5% 

CO2). Most of the media was then removed leaving 25 µl in each well, which was 

combined with100 µl of DMSO, followed by mixing on an orbital shaker (10 minutes at 

RT). A further 10-minute incubation (at 37°C, 95% humidity and 5% CO2) was followed 

by orbital shaker mixing (1 minute) and the absorbance of the formazan product was 

read at both 540 nm and 680 nm. 

 

Table 2—1. Single agent MTT assays. 

Drug Concentrations Tested 

Suramin, Curcumin, Benzbromarone, Methotrexate, 

Gemcitabine 

100 µM, 50  µM, 25  µM, 12.25  µM, 6.75  µM, 3.125  µM, 

1.5625  µM, 0.78125 µM 

EF24 20 µM, 10 µM, 5 µM, 2.5 µM, 1.25 µM, 0.625 µM, 0.3125 

µM, 0.15625 µM 

 

A 

B 

C 

D 

E 

F 

G 

H 
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• Materials Used 

• 96-well plate 

• RPMI (Life Technologies, NZ) complete media  

• RPMI non-supplemented media (Life Technologies, NZ) 

• TrypLE Express (Life Technologies, NZ) 

• PBS (Life Technologies, NZ) 

• Suramin (Abcam, ab120422) 

• Benzbromarone (Abcam, 3562-84-3) 

• EF24 (Sigma, E8409) 

• Curcumin (Sigma, C7727-500MG) 

• Gemcitabine (Abcam, ab145657) 

• MTT reagent (Sigma, M5655) 

• Plate reader: Thermo Scientific™ Plate reader (Multiskan™ FC Microplate 

Photometer) 

• Dimethyl sulfoxide (DMSO) (Thermofisher, NZ)  

 

Combinatorial Treatment  

Following IC50 calculations, the ability of the compounds to modulate the cytotoxicity of 

gemcitabine and methotrexate was then assessed across wild-type and ABCC3 

knockout PANC1 cells. The simultaneous assay, incubated PANC1 and MIAPACA2 cells 

with suramin (100 µM, 50 µM, 25 µM, 12.5 µM, 6.25 µM and 3.125 µM) or EF24 (20 µM, 

10 µM, 5 µM, 2.5 µM, 1.25 µM and 0.625 µM), in the presence of gemcitabine (100 µM, 

50 µM, 25 µM, 12.5 µM, 6.25 µM and 3.125 µM) or methotrexate (100 µM, 50 µM, 25 

µM, 12.5 µM, 6.25 µM and 3.125 µM) for 72 hours (Table 2—2). Followed by MTT 

detection (as above). The impact of the different concentrations on the number of live 

cells that remain would relate to which compounds and concentrations if any were able 

to significantly modulate gemcitabine or methotrexate cytotoxicity.  

 

Table 2—2. MTT Simultaneous/Sequential Coincubation Treatment Layout (96-well plate) 

  SUR or 

EF24 

SUR or 

CUC or 

EF24 

SUR or 

EF24 

SUR or EF24 SUR or EF24 SUR or EF24 

 Conc 

(µM) 

100 µM 

(SUR) or 20 

µM (EF24) 

50 µM 

(SUR) or 

10 µM 

(EF24) 

25 µM 

(SUR) or 5 

µM (EF24) 

12.5 µM 

(SUR) or 2.5 

µM (EF24) 

6.25 µM 

(SUR) or 1.25 

µM (EF24) 

3.125 µM (SUR) 

or 0.625 µM 

(EF24) 

GEM 

or 

MTX 

100 µM 100 µM + 

100 µM 

(SUR) or 20 

µM (EF24) 

100 µM + 

50 µM 

(SUR) or 

100 µM + 

25 µM 

(SUR) or 5 

µM (EF24) 

100 µM + 

12.5 µM 

(SUR) or 2.5 

µM (EF24) 

100 µM + 

6.25 µM 

(SUR) or 1.25 

µM (EF24) 

100 µM + 3.125 

µM (SUR) or 

0.625 µM 

(EF24) 
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10 µM 

(EF24) 

GEM 

or 

MTX 

50 µM 50 µM + 100 

µM (SUR) or 

20 µM 

(EF24) 

50 µM + 

50 µM 

(SUR) or 

10 µM 

(EF24)  

50 µM + 

25 µM 

(SUR) or 5 

µM (EF24) 

50 µM + 12.5 

µM (SUR) or 

2.5 µM (EF24) 

50 µM + 6.25 

µM (SUR) or 

1.25 µM 

(EF24) 

50 µM + 3.125 

µM (SUR) or 

0.625 µM 

(EF24) 

GEM 

or 

MTX 

25 µM 25 µM + 100 

µM (SUR) or 

20 µM 

(EF24) 

25 µM + 

50 µM 

(SUR) or 

10 µM 

(EF24) 

25 µM + 

25 µM 

(SUR) or 5 

µM (EF24) 

25 µM + 12.5 

µM (SUR) or 

2.5 µM (EF24) 

25 µM + 6.25 

µM (SUR) or 

1.25 µM 

(EF24) 

25 µM + 3.125 

µM (SUR) or 

0.625 µM 

(EF24) 

GEM 

or 

MTX 

12.5 µM 12.5 µM + 

100 µM 

(SUR) or 20 

µM (EF24) 

12.5 µM + 

50 µM 

(SUR) or 

10 µM 

(EF24) 

12.5 µM + 

25 µM 

(SUR) or 5 

µM (EF24) 

12.5 µM + 

12.5 µM 

(SUR) or 2.5 

µM (EF24) 

12.5 µM + 

6.25 µM 

(SUR) or 1.25 

µM (EF24) 

12.5 µM + 3.125 

µM (SUR) or 

0.625 µM 

(EF24) 

GEM 

or 

MTX 

6.25 µM 6.25 µM + 

100 µM 

(SUR) or 20 

µM (EF24) 

6.25 µM + 

50 µM 

(SUR) or 

10 µM 

(EF24) 

6.25 µM + 

25 µM 

(SUR) or 5 

µM (EF24) 

6.25 µM + 

12.5 µM 

(SUR) or 2.5 

µM (EF24) 

6.25 µM + 

6.25 µM 

(SUR) or 1.25 

µM (EF24) 

6.25 µM + 3.125 

µM (SUR) or 

0.625 µM 

(EF24) 

GEM 

or 

MTX 

3.125 

µM 

3.125 µM + 

100 µM 

(SUR) or 20 

µM (EF24) 

3.125 µM 

+ 50 µM 

(SUR) or 

10 µM 

(EF24) 

3.125 µM 

+ 25 µM 

(SUR) or 5 

µM (EF24) 

3.125 µM + 

12.5 µM 

(SUR) or 2.5 

µM (EF24) 

3.125 µM + 

6.25 µM 

(SUR) or 1.25 

µM (EF24) 

3.125 µM + 

3.125 µM (SUR) 

or 0.625 µM 

(EF24) 

 

The Combination Index 

The CompuSyn software was used to calculate the combination index of 

gemcitabine/methotrexate in combination with EF24 or suramin. This software was 

designed by Ting-Chao Chou and Nick Martin and correctly calculates drug combinations 

based on the Chou-Talalay equation [227]. This software calculates the potency (Dm), 

shape (m) and conformity (r) of the data to the parameters of the median-effect principles 

[227]. The combination index values can be interpreted as synergistic (CI<1), additive 

(CI=1) and antagonistic (CI>1) (Figure 2—2) [228]. The Dose-reduction index (DRI) 

values can be interpreted as favourable (DRI>1), unfavourable (DRI<1) or showing no 

difference (DRI=1) (Figure 2—2) [229]. 
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Figure 2—2. Combination plots explained by chou et al., [229]. 

 

ABCC3 Knockout (CRISPR) 

The first method for the specific modification of genomic information was discovered in 

1971 [230]. Kathleen Danna and Daniel Nathans used restriction enzymes from 

Hemophilus influenzae to cause double strand breaks in the small oncogenic SV60 virus 

double stranded DNA, producing specific DNA breaks [230]. Gel electrophoresis was 

used to separate the DNA fragments, resulting in 11 DNA fragments that were used to 

better characterise the SV60 virus [230]. Bacteria create endonucleases or restriction 

enzymes in an effort to protect themselves from viral attack or invading DNA [231]. The 

ability to create breaks in specific segments of DNA led to the creation of deletion 

mutants of SV60 [232]. SV60 mutants showed deletion in areas causing specific genetic 

disruption within the cleavage site of restriction enzymes as well as deletions beyond 

those cleavage sites [232]. The specific deletion of genetic material and the ability to 

compare mutant types allowed for the restriction mapping of the SV60 genome [233]. 

Furthermore, the ability to segment DNA in specific loci also produced fragments that 

were used to perfect DNA sequencing [233].  
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Modern genetic engineering utilises an approach called reverse engineering 

which uses various strategies to interrupt the target gene expression, followed by 

analysis of the corresponding phenotypic changes [234]. In 1971, Scherer and Davis 

developed the first method that allowed for the stable introduction of genetic material 

created in vitro into the genome of yeast (Saccharomyces cerevisiae) [235]. The system 

required an effective and selective marker and the insertion of DNA via homologous 

recombination [235]. Homologous recombination is the process that recombines an 

homologous DNA sequence bound to an exogenous DNA sequence at a desired locus 

[236]. The use of ampicillin resistance, selection genes and tetracycline sensitivity were 

used to ensure that the correct DNA sequences were inserted into the yeast plasmid 

[235]. In the early to mid-1980s, the ability to introduce foreign DNA into mammalian 

DNA was investigated in detail [236]. Combining specific restriction enzymes and 

homologous recombination smithies et al., was able to successfully and specifically 

insert exogenous genetic material into the β-globin locus [236]. This form of genetic 

editing relied heavily upon the availability of specific restriction enzymes that were able 

to cause DSBs in specific locations of the genome [237]. Although there have been 

several new restriction enzymes discovered, finding restriction enzymes, each with 

different recognition sequences for a specific genetic locus proved difficult [231, 237]. 

Further limitations of low rates (1 in 103–109 cells) of successful spontaneous 

recombination and introduction of mistakes in the repair of DSBs by the non-homologous 

DNA repair (NHEJ) , meant that a faster more specific and efficient DNA editing tools 

were needed [237]. 

The specificity and targeted editing of genetic material progressed with the 

discovery of zinc finger proteins in 1991 [237]. Zinc finger proteins bind to DNA in a 

sequence specific manner with each zinc finger protein recognizing a 3 base pair DNA 

sequence [237]. The combination of zinc finger proteins could be combined into a 

sequence that could specifically bind to region of targeted DNA [237]. Fok1 DNA 

nuclease was modified to contain only its cleavage portion combined with zinc fingers 

allowed for targeted cleavage of select DNA sequence becoming the first “artificial” zinc 

finger nuclease (ZFN) [237, 238]. In 2006, transcription activator-like effector (TALE) 

proteins were discovered in the secretion of the Xanthomonas bacterial family [237]. 

Much like zinc finger proteins, TALE proteins could be combined with restriction enzyme 

to form a TALE nuclease (TALEN) [237]. TALE proteins however were able to recognise 

and bind to single nucleotides [237]. The ability to specify targeting of sequences was 

less restricted in TALEN gene editing in comparison to ZFN due to the ability to recognise 

single nucleotide molecule [239].  

However, TALEN design and replication was more complicated and required 

several time-consuming critical production steps to ensure that the correct sequence of 
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polypeptides were created [240]. The specificity within the TALE was governed by a 

small region of the TALE amino acid sequence called the repeat variable diresidue (RVD) 

[240]. Joining a long sequence of these TALE proteins bound to endonucleases in a 

specific order with a number of repetitive regions make the synthesis of TALENs difficult 

[240]. However, these limitations have been greatly reduced by a number of methods 

which rapidly assemble custom TALE arrays [239]. The difficulty of creating and 

validating a specific amino acid chain and the inherent protein engineering has greatly 

limited the use of both ZFN and TALEN in the wider scientific community [237]. 

In 1987, the clustered regularly interspaced short palindromic repeats (CRISPR) 

sequence was discovered as a 29 nucleotide long series of fragments within the E.coli 

genome [241]. The investigation of the non-repeating sequences called spacers 

accelerated during the human genome project (HGP) where sequencing of different 

bacteriophages with key features of repeat and spacer regions of CRISPR were noticed 

[237]. This led to the discovery of the abundance of CRISPR sequences in bacteria 

(40%) and archaea (90%) and their proximity to CRISPR-associated (Cas) highly 

conserved genes [237]. The abundance of CRISPR-Cas sequences is matched by its 

diversity, within the CRISPR-Cas family there are six types and currently 29 known 

subtypes [242]. Class I, CRISPR-Cas systems contain multiprotein effector complexes 

while class II CRISPR-Cas systems only contain single protein effector complexes [242]. 

The class II, CRISPR-Cas9 system has become the most commonly used editing tool of 

the CRISPR-Cas family [242].  

Theories that CRISPR-Cas was used as an immune response by bacteria began 

with the discovery that spacer regions encoded DNA that belonged to bacteriophages 

[237]. Proceeding viral infection, bacteria synthesised new spacer sequences derived 

from the attacking bacteriophage genome [243]. The newly integrated spacers were able 

to improve viral resistance [243]. However, this was dependent on the level of similarity 

between the spacer sequence and that of the targeted bacteriophage sequence [243]. 

This discovery was quickly followed by the realization that short CRISPR RNA (crRNA) 

transcribed from spacer regions guided the Cas enzymes to their targets [243]. The 

discovery of protospacer-adjacent motifs (PAMs) which were regions that were highly 

conserved in particular areas within the spacer sequences was the next critical finding in 

the creation of the CRISPR technology [237]. The first uses of CRISPR-Cas as an editing 

tool was shown in bacteria [244]. Earlier tools utilised mature crRNA and trans-activating 

crRNA (tracrRNA) separately which required independent binding to Cas proteins [244]. 

This was later simplified into a single short RNA that was a union of the tracrRNA and 

crRNA strand into a single guide RNA (sgRNA) [244]. Following experimentation in 

bacteria, the power of CRISPR as a gene editing tool was further established in 

eukaryote cells in vivo [237, 245].  
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The most used CRISPR-Cas system, utilises the Cas9 protein and more 

specifically the SpCas9 derived from Streptococcus pyogenes [242]. SpCas9 is 

especially used due to the simple PAM sequence (5’-NGG), the 20nt long spacer and 

the ability to form a complex with sgRNAs [242]. Modifications of the Cas9 protein has 

led to a wider variety of PAM sequences and a wider range of sequences that can be 

targeted [242]. More recent modifications have conjugated sgRNA and donor DNA 

together, increasing the transfection efficiency and increasing the use of the homologous 

directed repair (HDR) system [246]. It is suggested that cell or tissue type targeting could 

be the eventual outcome of these modified sgRNA and donor DNA sequences [246].  

The future of CRISPR-Cas technology is yet unknown but at the present it is a 

widely accepted method used to reverse genetic expression of a wide variety of targets 

[247-250]. Bacillus thurigiensis (Bt) is a pervasive gram-positive soil bacterium that can 

release insecticidal toxins which kills insects [247]. In the fields of agriculture, forestry 

and public health, Bt has been extensively used, so much so that the resistance towards 

Bt toxins has increased within the insect population [247]. Modulation of both ABCC2 

and ABCC3 genes have previously shown modulation of resistance towards P.xylostella 

(Px) [247]. Using the CRISPR-Cas9 system, both PxABCC2 and PxABCC3 knockouts 

decreased in resistance towards Bt toxins [247]. Concluding that, PxABCC2 and 

PxABCC3 expression were responsible for the resistance towards Bt toxins [247]. Cystic 

fibrosis (CF) is a fatal genetic disorder that is characterised by abnormal secretions in 

the lungs and the pancreas [251]. CF causes blockages that lead to inflammation, tissue 

damage and the destruction of organs [251]. CF is characterised by a mutation in the CF 

gene and a defect in the expression of CFTR, an ABCC family member [251]. Using 

CRISP-Cas9 the correct genetic code for CF was re-inserted into organoids that had the 

mutated CFTR function to restore the expression and activity [248]. 

  As previously stated, P-gp has been one of the most studied ABC transporters 

[252]. The expression of canine P-gp was assessed in Madin-Darby canine kidney II cell 

line using CRISPR-Cas9 [249]. The interference of canine P-gp expression affected the 

feasibility of using MDCKII to study pharmacological responses to test compounds [249]. 

Therefore, CRISPR-Cas9 was used to remove canine P-gp genetic expression from 

MDCKII cells [249]. While, CRISPR-Cas9 successfully knocked out P-gp the expression 

levels, it also caused a slight decrease in ABCC2 expression, while the levels of canine 

ABCC3 remained constant [249]. Suggesting some off target effects as well as a possible 

compensatory relationship between certain transporters. The knockout of P-gp CRISPR-

Cas9 also significantly enhanced sensitivity towards vincristine, doxorubicin and cisplatin 

in HCT-8/V and KBv200 cells [118]. The knockout of P-gp was confirmed by western blot, 

PCR and rhodamine/doxorubicin cellular accumulation studies [118]. This study 
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displayed the impact of P-gp expression on multidrug resistance in two MDR cell lines 

as well as further validation of the MDR phenotype of ABC transporters [118].   

There are some important limitations to consider when designing CRISPR-Cas 

experiments and translating CRISPR-Cas systems into the clinic. The design of the 

sgRNA is the most important step to ensure targeted gene editing [237]. The induction 

of NHEJ repair system to repair the DSBs introduces errors into DSB repairs by randomly 

inserting or deleting DNA pieces into the repair site [242]. This inherently introduces 

variability into the system which may contribute to a random editing efficiency within the 

target location. The homology-directed repair system is a more specific repair 

mechanism that can be used to insert a modified sequence which contain homology 

arms and DNA inserts into the DSB loci [242]. Researchers are searching for ways to 

select HDR for when genetic insertion using CRISPR-Cas9 is desired [242]. NHEJ is the 

most commonly used repair mechanism in eukaryotes and while random insertion or 

deletion may occur, this may be used to effectively cause knockout of genes [242]. There 

is also some variability within the CRISPR-Cas system that cannot be explained, some 

sgRNA’s may simply not work [253]. While the CRISPR-Cas system is able to target 

specific regions of DNA, there are still some off-target effects [237]. These off-target 

effects may arise from mismatches within the PAM sequence [237]. However, the 

specificity of the CRISPR-Cas9 system has been proven in ABC transporters with 

previous P-gp knockout models [249]. Further modifications to the spCas9 protein has 

improved the specificity of the CRISPR-Cas9 system which indirectly reduces off-target 

effects [237]. 

While, successful genomic editing should result in successful protein editing. 

Smits et al., demonstrated that in one third of CRISPR gene knockout models, residual 

protein expression ranging from low to normal expression occurs [254]. The two 

suggested mechanisms for the rescue of protein expression were translation of the 

cleaved portions of DNA leading to truncated target proteins or by skipping the edited 

regions of DNA leading to protein isoforms with internal sequence deletions [254]. 

Allowing the synthesis of truncated proteins that can act to partially perform the duties of 

normal, unedited protein expression [254] . 

 

Table 2—3. ABCC3 CRISPR-Cas9 target sequences and primers  

Primers Primer 

Sequence 

crRNA 

(Thermofisher) 

crRNA target 

sequence 

PCR product 

size 

Pam Sequence 

CRISPR1 FWD CTCTGGGGAT

GCGGATTCCA 

CRISPR957583

_CR 

GATACAGTAT

GAGCGGCTGC 

(FWD strand) 

604bp AGG 

CRISPR1 RVS GGGACCCAGC

AGTGACTTTGA 

    



 

Page 63 of 185 

 

CRISPR2 FWD GGTGCAGTTT

TTGTTGCCCTT

A 

CRISPR957588

_CR 

GGATGATGTA

GCCACGACAA 

(FWD strand) 

608bp TGG 

CRISPR2 RVS AGAAGGCAGA

GGTTGCAGTG

AG 

    

CRISPR3 FWD TGCTTGGGGT

CATGGGAATC 

CRISPR957600

_CR 

GGAGTAAAAA

AGGTCCGCCC 

(reverse strand)  

422bp AGG 

CRISPR3 RVS AGACCTCCCC

CATCCACTTT 

 GGGCGGACCT

TTTTTACTCC 

(complementary 

5’ to 3’ 

sequence) 

  

 

CRIPSR Methodology 

The CRISPR-Cas9 system was used to knockout the ABCC3 gene in PANC1 (ATCC) 

cells in accordance with the manufacturer’s protocol (Thermofisher). The crRNAs were 

predesigned and designated CRISPR1 (CRISPR957583_CR), CRISPR 

2(CRISPR957588_CR) and CRISPR3 (CRISPR957600_CR) (Thermofisher). Firstly, the 

three TrueGuide™ synthetic sgRNA’s (Thermofisher) were created by annealing the 

tracrRNA (Thermofisher) and the crRNA (Thermofisher) together in accordance with the 

manufacturer’s protocol (Thermofisher). PANC1 cells were seeded at 50,000 cells per 

well in a 24 well plate. The following day the TrueGuide™ synthetic sgRNA and the Cas9 

protein v2 (Thermofisher) were transfected into PANC1 cells using Lipofectamine™ 

RNAiMAX™ transfection reagent within OPTIMEM serum free media.  

The cells were passaged twice after CRISPR-Cas9 transfection in accordance 

with the manufacturers protocol. Cleavage efficiency was then detected using the 

GeneArt® Genomic Cleavage Detection Kit and PCR, as below (life technologies). Cells 

(0.25x106) were harvested (200 x g, 5 mins, at 4˚C), supernatant was removed, and 

pellet was frozen (-80 ˚C). Cells were then lysed, and cell contents were exposed. Cell 

lysate was mixed with FWD/RVS primers or control primers, AmpliTaq Gold® 360 master 

mix and water to create a PCR mix. PCR was done in accordance with manufacturers 

PCR reaction. PCR product was verified by 2% agarose gel and SYBR™ Gold. The 

resultant PCR product was re-annealed and combined with the detection enzyme which 

cleaves any DNA mismatches created by the CRISPR knockout. After enzyme digestion 

was complete, samples were analysed in a 2% agarose gel supplemented with SYBR™ 

Gold. Gels were captured using SmartView Pro 2100 Imager System. The intensity of 

each band was calculated using ImageJ and cleavage efficiency was calculated as 

below.  
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Equation 2-1.Cleavage efficiency equation. 

Cleavage efficiency = 1- [(1-fraction cleaved)1/2] 

Fraction cleaved = sum of cleaved band intensities/ (sum of the total bands intensities) 

 

• Materials Used 

• Opti-MEMTM Reduced Serum medium (Life Technologies, NZ, 

31985070) 

• CRISPRMAX™ (Thermofisher, NZ)  

• crRNA (Life Technologies, NZ, A35509) 

• TrueCut Cas9 Protein v2 (Life Technologies, NZ, A36498) 

• GeneArt Genomic Cleavage Selection Kit (Life Technologies, A24372) 

• Primers (Table 2—3) (Life Technologies, NZ) 

• PCR facilities (see PCR methodology). 

PCR 

The polymerase chain reaction (PCR) was introduced into the scientific community by 

Dr Kary Mullis [255]. The polymerase chain reaction allows researchers to detect and 

amplify a region of DNA [255]. Mullis et al., stated that PCR “lets you pick the piece of 

DNA you’re interested in and have as much of it as you want” [255]. This process enables 

trace amounts of DNA to be isolated and amplified until there is enough material to 

analyse [255]. Qualitative PCR identifies whether a specific gene is present or absent 

within a sample [255]. Quantitative PCR (qPCR) or real-time PCR (rtPCR) can be used 

to detect the amount of a gene target within a DNA sample [255]. Real-time PCR can 

utilise reverse transcription to convert RNA molecules into cDNA molecules which can 

subsequently be quantified by PCR [255]. Therefore, RNA molecules can also quantified 

by the PCR system [255]. 

 A DNA template, primers, nucleotides and DNA polymerases are required to 

make the PCR [255]. The four nucleotides which make up the DNA strand are adenine 

(A), thymine (T), cytosine (C) and guanine (G) [255].The enzyme DNA polymerase is 

responsible for adding new nucleotides to form template strands of replicating DNA [255]. 

Primers were used to select the specific region of DNA to be amplified [255]. Primers 

highlight the region of DNA for DNA polymerases to build on [255]. The thermocycler 

uses heat cycles in a specific manner to induce DNA denaturation, annealing of primers 

and extension of DNA polymerases [255]. Each cycle of this process causes the amount 

of target DNA to double [255]. Cleavage detection primers were designed using the 

Primer-blast platform in accordance with the manufacturers protocol. 

Detection of PCR products occurs either by direct staining of DNA using ethidium 

bromide or by labelling PCR primers or DNA fluorescent dyes (SYBR™ Gold) [255]. 

Agarose gel electrophoresis is the most common detection method for PCR [255]. 
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Electrophoresis was used to separate and differentiate between different sizes and 

charges of DNA samples [255]. A DNA ladder containing DNA products with known sizes 

can be used to predict sample DNA size [255]. SYBR™ Gold (Thermofisher, NZ) is the 

most sensitive fluorescent nucleic acid stain that Thermofisher has available. In the 

detection of double/single stranded DNA and RNA SYBR™ Gold (at 300 nm excitation) 

was more sensitive than ethidium bromide, SYBR Green I stains and SYBR Green II 

stains [256]. The increase in sensitivity is due to the increased fluorescence signal upon 

binding (~1000-fold) [256]. PCR can be limited by the improved sensitivity of the PCR 

system which means that any contaminant can be amplified, greatly altering the result 

[255]. This can be the greatest strength and weakness of the PCR system, therefore 

extreme care is needed during sample preparation [255]. Primer design requires 

previous knowledge of the genetic sequence being investigated. Therefore, the PCR 

system cannot necessarily be used as an exploratory tool for unknown gene expression 

[255]. Lastly the non-specific binding and binding of primer dimers can also limit the 

efficacy of the PCR reaction [255, 257]. PCR will be used to assess the cleavage efficacy 

of CRISPR-Cas9 in knockout cells by amplifying the CRISPR-Cas9 target region 

combined with the endonuclease activity which cuts at hetero-duplex mismatches 

(Thermofisher, NZ) [258].  

 

• Materials Used 

• SYBR Gold (Thermofisher, NZ) 

• PCR System: Roche Light Cycler® 2.0 (Roche Diagnostics, NZ) 

• Eppendorf Mastercycler® pro 

• Temperature profile: 95 °C for 10 min, and then 40 cycles of 95 °C for 

15 s and 60 °C for 1 min. The threshold cycle (Ct) values were obtained 

for each sample.  

• Primers (Table 2—3).  

 

Statistics 

Statistical analysis was completed using the GraphPad Prism 8 software (San Diego, 

CA, USA). Each experiment when testing significance was done across three 

independent experiments. Significance was established across two sample averages 

using a student’s t-test and one-way analysis of variance (ANOVA) across multiple data 

sets. The post-hoc Dunnett and Tukey test was applied when appropriate. P-values were 

considered as significant in accordance with Table 2—4Error! Reference source not 

found. 
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Table 2—4. GraphPad Prism wording for signficance tests and p-values 

P value Wording Summary 

0.0001 to 0.001 Extremely significant *** 

0.001 to 0.01 Very significant ** 

0.01 to 0.05 Significant * 

≥ 0.05 Not significant ns 
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Chapter 3 ABCC3 Bioinformatic Study 

Introduction 

Cancer has become one of the most feared diseases in the world and according to the 

world health organization is ranked among the top ten causes of death worldwide [259]. 

Cancer is also second leading cause of death in the US with the number of new cases 

continually on the rise [260]. In 2018, there was an estimated 18.1 million newly 

diagnosed cancer cases and 9.6 million cancer related deaths worldwide [13]. Lung, 

breast and prostate cancers presented the highest number of new cases in 2018, with 

an estimated 2.093 million, 2.088 million and 1.276 million new cases, respectively [13]. 

Some cancers like pancreas, liver and lung cancer show a higher percentage of total 

deaths than new cases by 1.8-fold, 1.74-fold and 1.58-fold [13]. Pancreatic cancer is 

especially known for a poor outcome, while ranked as the fourteenth most common 

cancer, it also ranked as the seventh leading cause of death [13]. The five year survival 

rate for pancreatic cancer in the United States was at approximately 9% [261]. However, 

a recent study showed that these survival rates could vary depending on the country 

[262]. New Zealand showed less improvement in survival rates than other developed 

countries such as Australia, Canada, Norway, Denmark and Ireland [262]. There is 

clearly a need for improved, effective and targeted cancer therapies that will improve 

these poor survival rates especially within New Zealand. 

Effective treatment of cancer patients can be limited by failed chemotherapy 

treatments, brought about by the increased efflux of anticancer drugs [86]. The reduction 

in cellular accumulation of anticancer drugs has resulted in reduced cancer killing and 

an increased multi drug resistance [86]. Multidrug resistance is the development or an 

inherent resistance of cancer to a multitude of drugs that are unrelated in structure or 

target [88]. The ATP binding cassette (ABC) family are made up of transport proteins 

that require the energy released from ATP hydrolysis to achieve protein reconfiguration, 

enabling active transport of substrates across the membrane [263]. This type of transport 

allows the transport of substrates against concentration gradients [263]. ABCC3/MRP3 

has emerged as another important drug transporter in cancer [36, 79, 81]. It was our aim 

to investigate and analyse ABCC3 expression across normal and cancerous tissues 

using the ONCOMINE, Kaplan-Meier plotter (KMplot) and Search Tool for Retrieval of 

Interacting Genes/Proteins (STRING) platforms. 

The ONCOMINE platform has collected and organised several cancerous 

microarray datasets from a number of sources into one platform [190, 194]. In 2007, 

ONCOMINE contained 264 independent cancerous datasets containing approximately 

18,000 microarray samples of cancerous gene expression, with 2,000 normal samples 

for comparison [194]. To date, the number of samples within the ONCOMINE database 
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has expanded to 71,765 cancerous samples and 12,764 normal samples 

(oncomine.org). ONCOMINE was designed not only to contain a large amount of 

microarray data but was also designed to ensure usability and ease of comparison, in 

order to quickly find potential cancer targets [190]. Each new dataset was processed and 

normalised to allow for further comparisons between datasets [190]. The ONCOMINE 

database has integrated the data from the GenBank, Entrez Gene, Swissprot/Trembl, 

Unigene, InterPro, Biocarta, KEGG, HPRD, Cancer Gene Database, Gene Ontology, 

Inparanoid, Pin database, Therapeutic target database and TRANSFAC/Match 

databases [194]. The ONCOMINE platform was used to assess the ABCC3 expression 

across the datasets and analyses provided.  

The Kaplan-Meier survival curve represents the probability of surviving a certain 

amount of time, in this case probability of surviving a specific expression profile [264]. 

The Kaplan-Meier method uses nonparametric methods to estimate this survival 

probability which remains constant between events [264]. The vertical drop in the KM 

plot indicates that the predefined event has occurred, in this case patient mortality [264]. 

The median survival time can be calculated as the point at which 50% of the patients 

have died [264]. The KM plotter (www.kmplot.com) is an online database which 

compares the survival time stored within the KM plot clinical database with the high and 

low mRNA expression of a specific gene [199]. To date, the online database contained 

7,462 clinical samples across several cancer types (www.kmplot.com). The log-rank P 

produced by the KMplot informs the user as to whether a significant difference between 

the curves exists, it cannot however, attest to the magnitude of those differences [264]. 

For this reason the KM plot platform also produces a hazard ratio (HR) which is an 

indirect estimation of the length of a patient survival [264]. The higher the HR the shorter 

the estimated patient survival and the lower the HR the more prolonged the patient was 

estimated to survive [264]. It was our aim to use the Kmplot platform to assess the impact 

of high/low ABCC3 expression on the overall survival of cancer patients. 

Although the expression of RNA/microarray data is highly informative, the mRNA 

expression does not always translate into protein expression [265]. In some cases, 

mRNA expression only weakly correlates with protein expression across a number of 

different organisms [265]. The recent advances in technology has further highlighted 

mechanisms that are able to regulate protein expression post mRNA manufacture [265]. 

The STRING platform is an online database which like ONCOMINE contains a vast 

amount of data, prioritises usability and is constantly maintained [190, 193]. However, 

unlike ONCOMINE, the STRING platform assesses and analyses protein-protein 

interactions [193]. The goal of the STRING platform is to predict functional interactions 

between not only proteins that structurally bind with each other but also proteins that 

indirectly regulate each other by transcriptional modulation, formation of reacting 

http://www.kmplot.com/
http://www.kmplot.com/
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compounds, signal transduction and functional homology [193]. Among all the interacting 

molecules, proteins could be deemed the most important, ranging in biochemical activity, 

information and specificity [193]. Therefore, it was our aim to use the STRING platform 

to investigate possible protein-protein interactions of MRP3. It was also our aim to assess 

whether these platforms would have any overlapping patterns for MRP3 expression. 

Results 

ABCC3 Disease Summary 

The ONCOMINE database at the time of this search (August 2019) contained 71,765 

cancerous datasets and 12,764 normal samples (oncomine.org). The initial ABCC3 gene 

search within the ONCOMINE database returned a disease summary which showed the 

amount of significant analyses returned by the ONCOMINE platform (Table 3—1). The 

search of ABCC3 expression returned 2,291 unique analyses with 350 significant 

analyses returned (Table 3—1). The ABCC3 disease summary presented a higher 

number of significantly overexpressing analyses, than of significantly downregulated 

analyses (Table 3—1). The cancer versus normal analyses exposed several cancer 

types that significantly dysregulated the expression of ABCC3 (Table 3—1). The lung, 

kidney, oesophageal and brain carcinoma showed the highest amount of significant 

ABCC3 overexpressing analyses. In the cancer versus cancer (histological) analyses 

lung, bladder and brain carcinoma displayed the most analyses that returned significant 

results (Table 3—1). The multi-cancer datasets showed that colorectal, pancreatic and 

kidney carcinoma had highest number of significant ABCC3 overexpression analyses 

while melanoma, leukaemia and lymphoma showed the highest number of significant 

analyses that under expressed ABCC3 (Table 3—1). The amount of significant results 

returned within the outlier analysis for breast, brain, leukaemia and lung cancer 

suggested that subsets of these cancers differentially expressed ABCC3. Although the 

disease summary was a useful tool, it took further interrogation of the data to accurately 

interpret the ABCC3 expression results.  

 

Table 3—1. Disease Summary for ABCC3 (ONCOMINE). Threshold was set at a P-value = 0.0001, Fold Change=2 and 

Gene Rank = Top 10%. Cell colour was an indicator of the best gene rank percentile for each analysis.  

Analysis Type by Cancer 

Cancer 

Vs 

Normal 

Cancer vs cancer 

Outliers 

H
is

to
lo

g
y
 

M
u

lt
i-

c
a

n
c
e
r 

Bladder Cancer 1   4 4     2 3 

Brain/CNS Cancer 6   3 3     12 4 

Breast Cancer 1         2 32 8 

Cervical Cancer     1 1     4 3 
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Colorectal Cancer   2     4   3 8 

Esophageal Cancer 5   1 1 1   2 3 

Gastric Cancer           
 

2 3 

Head and Neck Cancer 1           7 6 

Kidney Cancer 5   1 2 3   3 8 

Leukemia 1         4 17 13 

Liver Cancer         
 

    4 

Lung Cancer 6 1 7 7     11 10 

Lymphoma 1   1 1   4 4 9 

Melanoma   1       5 8 3 

Myeloma           1 8 1 

Other Cancer     1   
 

1 12 13 

Ovarian Cancer         1 9 1 

Pancreatic Cancer 1       2   4 3 

Prostate Cancer   1       2 7 8 

Sarcoma   1 2 1 1 1 8 7 

         
Significant Unique Analyses 28 6 20 19 10 18 143 106 

Total unique analyses 426 700 255 910 

 

 

 

Differential ABCC3 Expression in Cancer versus Normal  

In order to better understand the differential expression shown in the ABCC3 disease 

summary, the data from the cancer versus normal analysis was extracted (Figure 3—1). 

All data was presented with significant differences in ABCC3 expression when 

comparing normal and cancerous samples with P-values ranging from 0.025 to 7.20E-

20 (Figure 3—1). The Gumz renal, kidney carcinoma dataset upon comparison of 

ABCC3 expression in clear cell renal cell carcinoma and normal kidney expression 

showed the greatest difference in ABCC3 expression levels of all datasets analysed, with 

a fold change of 15.06 (P-value = 2.38E-9, gene rank: top 1%) (Figure 3—1). ABCC3 

expression was not only the largest in the Gumz renal dataset, but also showed the 

highest, significantly different genes expressed across the cancer versus normal 

comparison. The other highly overexpressing kidney carcinoma datasets Higgins Renal 

and Jones Renal also showed a significantly increased ABCC3 expression in cancer 

samples with a fold change of 5.153 and 4.577 respectively (Figure 3—1). The Gumz 

renal and Higgins Renal showed a gene rank of 1%, the Jones Renal dataset resulted in 

a gene rank of 3% (Table 3—2). Demonstrating the greater importance of ABCC3 

expression in the Gumz renal and Higgins renal datasets. 

1 5 10 10 5 1

  %
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The lymphoma carcinoma type showed the second highest fold change (12.487) 

of all cancerous versus normal analyses (Figure 3—1). The ABCC3 expression within 

the Basso Lymphoma dataset was significantly (P-value = 7.19E-19) higher in 

centroblastic lymphoma in comparison to normal lymphocyte expression (Table 3—2). 

However, the next strongest overexpressing lymphoma carcinoma dataset (lymphoma 

Ma Breast) although significant, exhibited a much lower differential ABCC3 expression 

(Table 3—2). The remaining datasets Brune Lymphoma and Compagno Lymphoma 

showed an ABCC3 overexpression of 1.349 and 1.393-fold, respectively (Figure 3—1). 

The gene rank of ABCC3 in the top 3 and 5% of both Compagno Lymphoma and Brune 

Lymphoma showed that other genes were more significantly differentially expressed 

within these datasets (Figure 3—1). The third highest overexpressing ABCC3 cancer 

type was found in the Sanchez-Carbayo Bladder 2 dataset which compared superficial 

bladder cancer mRNA expression with normal bladder samples (Fold Change: 12.216, 

P-value = 7.46E-16) (Figure 3—1). However, this was the only bladder carcinoma 

dataset to show any significant over or under expression of ABCC3 (Table 3—2). 

The Su Lung carcinoma dataset showed the next highest fold change (10.261) in 

lung adenocarcinoma versus normal mRNA samples (P-values:1.04E-9) (Table 3—2). 

The Stearman Lung and Landi Lung datasets also showed ABCC3 overexpression in 

lung cancer samples with a fold change of 3.267 and 2.688, respectively (Table 3—2). 

The lung cancer type showed the widest range of ABCC3 expression of all cancer types 

and was the only cancer type to show both significant under and overexpression of 

ABCC3 (Figure 3—1). The lung cancer datasets ranged from the significant 

overexpression of the Su Lung dataset (Fold change: 10.261, P-value =1.04E-9) to the 

largest under expression of any cancer type found within the Bhattacharjee Lung dataset 

(Fold change: -26.3, P-value = 4.37E-5) (Table 3—2).   

The pancreatic cancer datasets Pei Pancreas and Badea Pancreas both showed 

a significant overexpression of ABCC3 in pancreatic cancer samples in comparison to 

normal samples (Figure 3—1). While Pei Pancreas showed a fold change of 2.131, the 

Badea Pancreas dataset fell just outside of the disease summary threshold (Table 3—

2).  
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Figure 3—1. Cancer vs Normal. A list of the top over and under expressing ABCC3 cancer datasets across all cancer 

types. The top three databases of each cancer type that showed either a significant increase or decrease in ABCC3 

expression were extracted (oncomine.org). 

 

The Badea Pancreas dataset compared the mRNA expression of ABCC3 in pancreatic 

ductal adenocarcinoma with pancreas samples, which showed ABCC3 expression was 

significantly increased in pancreatic ductal adenocarcinoma (P-value = 8.75E-8), with a 

fold change of 1.887 (Table 3—2). Although, differences in expression levels were not 

large as other datasets, Pei Pancreas and Badea Pancreas still showed extremely 

significant and distinct ABCC3 overexpression in pancreatic cancer versus normal 

samples (Table 3—2,). The remaining cancer types that showed significant ABCC3 

overexpression were the oesophageal cancer, brain and central nervous system cancer, 

breast cancer, head and neck cancer and leukaemia cancer (Table 3—2). The cancer 

versus normal analysis resulted in a differential expression of the oesophageal cancer 

ranging from 8.138 fold to 3.825 fold, brain and central nervous system cancer ranging 

from 7.2 fold to 2.067, breast cancer ranging from 4.577 fold and 1.365 fold, head and 

neck cancer ranging from 2.824 fold to 1.365 fold and leukaemia cancer ranging from 

2.586 fold to 1.674 fold (Table 3—2). Prostate, melanoma and colorectal carcinoma 
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datasets all exclusively showed significantly lower ABCC3 expression in the cancerous 

samples in comparison to normal samples (Table 3—2). Prostate cancer datasets Cho 

Gastric and Luo Prostate 2, after Bhattacharjee Lung show the greatest ABCC3 under 

expression with fold changes of -22.777 and -6.151, respectively (Table 3—2). The range 

and prevalence of ABCC3 expression in cancerous samples in comparison to normal 

shows the importance of ABCC3 as a cancerous target.  

 

Table 3—2. Differential analysis of ABCC3 expression (Cancer versus Normal) 

Cancer Type Dataset P-value t-test Expression 

(Under/Ov

er) 

Fold 

Change 

Gene 

rank (%) 

(n) Reporter 

Kidney Cancer Gumz 

Renal 

2.38E-09 10.50

9 

Over 15.08 1% 20 209641_s_at 

Lymphoma 

Cancer 

Basso 

Lymphoma 

7.19E-19 14.16

3 

Over 12.487 1% 53 38261_at 

Bladder 

Cancer 

Sanchez-

Carbayo 

Bladder 2 

7.42E-16 10.59

2 

Over 12.216 4% 76 209641_s_at 

Lung Cancer Su Lung 1.04E-09 8.443 Over 10.261 1% 57 209641_s_at 

Esophageal 

Cancer 

Kim 

Esophagus 

3.53E-16 18.35

5 

Over 8.138 1% 43 ILMN_1677814 

Brain/CNS 

Cancer 

Sun Brain 1.04E-18 10.72

9 

Over 7.2 2% 10

4 

209641_s_at 

Brain/CNS 

Cancer 

Bredel 

Brain 2 

4.23E-10 9.228 Over 5.779 2% 31 IMAGE:781139 

Esophageal 

Cancer 

Wang 

Esophagus 

1.41E-08 7.169 Over 5.374 1% 43 AF083552 

Kidney Cancer Higgins 

Renal 

8.94E-11 10.91

3 

Over 5.153 1% 27 IMAGE:781139 

Breast Cancer Karnoub 

Breast 

1.37E-05 5.427 Over 4.577 1% 22 209641_s_at 

Kidney Cancer Jones 

Renal 

4.52E-10 19.22

4 

Over 4.39 3% 31 214979_at 

Esophageal 

Cancer 

Hao 

Esophagus 

1.62E-06 5.438 Over 3.825 2% 27 IMAGE:781139 

Lung Cancer Stearman 

Lung 

1.61E-08 7.401 Over 3.267 1% 39 38261_at 

Head and 

Neck Cancer 

He Thyroid 1.98E-07 8.638 Over 2.824 1% 18 209641_s_at 
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Lung Cancer Landi Lung 7.20E-20 12.19

7 

Over 2.688 1% 10

7 

209641_s_at 

Leukemia 

Cancer 

Basso 

Lymphoma 

3.82E-07 5.953 Over 2.586 6% 41 1930_at 

Pancreatic 

Cancer 

Pei 

Pancreas 

0.00008

17 

4.274 Over 2.131 8% 52 209641_s_at 

Brain/CNS 

Cancer 

Shai Brain 1.25E-05 4.954 Over 2.067 6% 34 38261_at 

Pancreatic 

Cancer 

Badea 

Pancreas 

8.75E-08 5.791 Over 1.887 11% 78 209641_s_at 

Leukemia 

Cancer 

Andersson 

Leukemia 

8.15E-08 7.047 Over 1.671 5% 29 IMAGE:781139 

Head and 

Neck Cancer 

Vasko 

Thyroid 

6.32E-04 4.075 Over 1.549 3% 18 230682_x_at 

Breast Cancer TCGA 

Breast 2 

6.17E-04 4.873 Over 1.429 3% 82

2 

17-046095638 

Lymphoma 

Cancer 

Compagno 

Lymphoma 

3.98E-11 9.537 Over 1.393 3% 37 239217_x_at 

Breast Cancer Ma Breast 4 7.13E-04 3.733 Over 1.365 3% 23 g9955971_3p_s

_at 

Head and 

Neck Cancer 

Kuriakose 

Head-Neck 

2.50E-02 3.505 Over 1.365 5% 25 1930_at 

Lymphoma 

Cancer 

Brune 

Lymphoma 

2.00E-03 4.857 Over 1.349 5% 29 2062_x_at 

Colorectal 

Cancer 

Gaedcke 

Colorectal 

1.82E-18 -

10.79

2 

Under -2.139 7% 13

0 

A_23_P207507 

Prostate 

Cancer 

Tomlins 

Prostate 

3.40E-06 -5.06 Under -2.282 1% 53 IMAGE:781139 

Melanoma 

Cancer 

Riker 

Melanoma 

3.74E-05 -

5.384 

Under -2.758 2% 18 239217_x_at 

Colorectal 

Cancer 

Hong 

Colorectal 

1.12E-08 -

7.803 

Under -3.152 6% 82 209641_s_at 

Prostate 

Cancer 

Luo 

Prostate 2  

0.011 -

2.455 

Under -6.151 4% 30 38261_at 

Prostate 

Cancer 

Cho Gastric 3.07E-07 -

17.15

3 

Under -22.777 4% 25 ILMN_1677814 

Lung Cancer Bhattacharj

ee Lung 

4.37E-05 -

5.065 

Under -26.3 6% 23 38261_at 
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Differential ABCC3 Expression across Cancer  

Cancer versus Cancer (Histological samples) 

The differential analysis not only compares ABCC3 expression across cancerous and 

normal samples, but they also compare across cancer types. The cancer versus cancer 

analysis compares the ABCC3 expression in histological samples as well as in multi-

cancer datasets (Table 3—3 & Table 3—4). The histological analysis compared samples 

within the same datasets, showing which of the cancer subtypes under/over express the 

ABCC3 target the most significantly and predominantly (Table 3—3). The top 

overexpressing ABCC3 dataset within the histological analysis was the Bhattacharjee 

Lung dataset (Table 3—3). Non-small cell carcinoma in comparison to small cell lung 

carcinoma and SCC showed a significant 16.482-fold increase in ABCC3 expression (P-

value = 2.39E-6) (Table 3—3). The remaining lung cancer datasets TCGA Lung, Lee 

Lung, Bittner Lung and Bild Lung also show an overexpression of ABCC3 in non-small 

cell carcinoma samples in comparison to SCC (Table 3—3). The ABCC3 overexpression 

in non-small cell carcinoma samples in comparison to the squamous cell lung carcinoma 

in the TCGA Lung dataset resulted in a 5.207-fold increase in ABCC3 expression (P-

value = 5.43E-12) (Figure 3—2). The Lee Lung, Bittner Lung and Bild Lung datasets 

showed increased ABCC3 expression in non-small cell lung carcinoma with ABCC3 

expression by 5.0-fold (P-value = 2.59E-18), 3.96 fold (P-value = 1.61E-06) and 3.28 fold 

(P-value = 2.41E-13), respectively (Table 3—3). This expression pattern seen across 

four lung cancer datasets suggests that ABCC3 could be an effective target for non-small 

cell carcinoma treatment. 

Following the Bhattacharjee lung dataset, the Segal Sarcoma 2 dataset showed 

the next highest ABCC3 overexpression with a 9.53-fold change when comparing 

cancerous histological samples (Table 3—3). The analysis showed that the ABCC3 

expression in malignant fibrous histiocytoma was significantly (P-value = 1.92E-5) higher 

(9.53-fold) than fibrosarcoma, gastrointestinal stromal tumour, leiomyosarcoma, 

liposarcoma and soft tissue sarcoma (oncomine.org). Although, malignant fibrous 

histiocytoma showed ABCC3 overexpression in comparison to the other sarcoma types, 

the malignant fibrous histiocytoma still under expressed ABCC3 just to a lesser extent 

than other sarcomas (oncomine.org). Highlighting how important it was to further 

interrogate the results for correct interpretation. ABCC3 under expressing Segal 

Sarcoma 2 also showed significantly lower ABCC3 expression in gastrointestinal stromal 

tumour samples in comparison to fibrosarcoma, leiomyosarcoma, liposarcoma, 

malignant fibrous histiocytoma and soft tissue sarcoma (Figure 3—2). Therefore, Segal 

Sarcoma 2 samples ranged in ABCC3 under expression from weakly under expressing 

malignant fibrous histiocytoma samples to strongly under expressing gastrointestinal 
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stromal tumour samples (oncomine.org). The Nakayama Sarcoma dataset showed a 

different ABCC3 expression pattern, the malignant peripheral nerve sheath tumour 

showed a 5.92-fold increase in ABCC3 expression in comparison to fibrosarcoma, 

leiomyosarcoma, liposarcoma, malignant fibrous histiocytoma and soft tissue sarcoma 

(oncomine.org). When comparing cancer to cancer patterns the malignant peripheral 

nerve sheath tumour showed weak overexpression of ABCC3, with some samples 

showing ABCC3 log2 values close to zero (oncomine.org).  

The bladder carcinoma dataset Sanchez-Carbayo Bladder 2 showed the next highest 

fold change across histological samples (Figure 3—2). The superficial bladder cancer 

significantly overexpressed ABCC3 (P-value = 7.90E-14, Fold Change: 8.32) in 

comparison to the urothelial carcinoma (Table 3—3). Unlike sarcoma samples the 

bladder carcinoma samples not only showed a significant difference in comparison 

across samples, the majority of the superficial bladder cancer samples also showed 

strong ABCC3 overexpression (Figure 3—2, oncomine.org). This suggested that ABCC3 

would be a good target for the superficial bladder cancer subset of bladder carcinoma.  
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Figure 3—2. Cancer versus Cancer Analyses. The differential expression of ABCC3 across different cancer types was 

analysed. (A) Fold changes between the highest ABCC3 expressing histological sample type in comparison the other 

sample types across the cancer datasets. (B) Comparison of ABCC3 expression across different cancer types in multi-

cancer databases. The top three databases which showed either a significant increase or decrease in ABCC3 

expression were examined and the fold change expression was extracted.  

 

In cancer versus normal analyses kidney carcinomas showed the highest fold 

change (Figure 3—1). The Yusenko renal dataset showed renal carcinoma expressed 

ABCC3 significantly higher (P-value = 3.66E-5, fold change: 8.32) than renal lipoma, 

renal oncocytoma, renal sarcoma, renal wilms tumour and rhabdoid tumour of the kidney 

(Table 3—3). The Bittner Renal dataset also showed a similar expression pattern to the 

Yusenko dataset (Table 3—3). Renal carcinoma samples were also significantly higher 

(P-value = 2.08E-4, fold change: 7.8) in comparison to renal angiomyolipoma and renal 

oncocytoma (Table 3—3).  

The Brain/CNS carcinoma datasets showed significant ABCC3 overexpression 

in glioblastoma in comparison to other Brain/CNS cancer samples (Figure 3—2, Table 

3—3). The Sun Brain, Bredal Brain 2 and Liang Brain datasets showed ABCC3 

expression in glioblastoma to be 4.63-fold (P-value = 1.08E-12), 4.38-fold (P-value = 

1.28E-5) and 3.48-fold (P-value = 2.84E-7) that of other Brain/CNS cancers (Table 3—

3). The overexpression of ABCC3 was greater in glioblastoma than in astrocytoma, 
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oligodendroglial tumours and mixed glioma across the Sun Brian, Bredal Brain 2 and 

Liang Brain datasets (Figure 3—2, Table 3—3, oncomine.org). The lymphoma, 

oesophageal and cervical cancer types also showed significant overexpression of 

ABCC3 within the respective datasets. The Basso Lymphoma dataset revealed that 

diffuse large b-cell lymphoma significantly overexpressed ABCC3 (P-value = 4.32E-5, 

fold change: 2.72) in comparison to burkitt’s lymphoma, mantle cell lymphoma, primary 

effusion lymphoma and follicular lymphoma (Table 3—3, oncomine.org). The Kim 

Esophagus dataset showed a significant (P-value = 1.13E-7) 2.564-fold increase in 

ABCC3 expression in oesophageal cancer precursor samples in comparison to 

oesophageal carcinoma (Table 3—3, oncomine.org). While the Bittner Cervix dataset 

showed ABCC3 expression in cervical adenocarcinoma was significantly (P-value = 

2.95E-5) higher (4.5-fold) than in cervical adenosquamous carcinoma, cervical small cell 

carcinoma and cervical SCC samples (Table 3—3, oncomine.org). Although not as 

distinct, the Bachtiary Cervix dataset followed the same expression pattern as the Bittner 

Cervix dataset, with cervical adenocarcinoma significantly expressing ABCC3 higher (P-

value = 0.002, fold change:1.65) than that of cervical SCC (Table 3—3, oncomine.org). 

The more these expression patterns were repeated across datasets the greater the 

evidence that these patterns were a true representation of clinical expression patterns. 

 

Table 3—3. Differential analysis of ABCC3 expression (Cancer vs Cancer (Histology)) 

Cancer Type Dataset Cancer type 

comparisons 

P-

value 

t-

test 

ABCC

3 

Expres

sion 

(Under

/Over) 

Fold 

Change 

Gene 

rank (%) 

(n) Reporte

r 

Lung Cancer Bhattach

arjee 

Lung 

Lung Cancer 

Type: Non-Small 

Cell Lung 

Carcinoma 

2.39E

-06 

5.4

9 

Over 16.482 1% 159 38261_

at 

Sarcoma Segal 

Sarcoma 

2 

Sarcoma Type: 

Malignant 

Peripheral Nerve 

Sheath Tumor 

1.92E

-05 

4.6

2 

Under 9.533 1% 47 1930_at 

Bladder 

Cancer 

Sanchez

-Carbayo 

Bladder 

2 

Bladder 

Urothelial 

Carcinoma Type: 

Superficial 

Bladder Cancer 

7.90E

-14 

9.6

5 

Over 8.323 2% 109 209641

_s_at 

Kidney 

Cancer 

Yusenko 

renal 

Kidney Cancer: 

Renal Carcinoma 

3.66E

-05 

5.6

6 

Over 8.316 2% 62 23062_x

_at 

Kidney 

Cancer 

Bittner 

Renal 

Kidney Cancer: 

Renal Carcinoma 

2.00E

+04 

5.9

8 

Over 7.81 2% 253 209641

_s_at 
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Sarcoma Nakaya

ma 

Sarcoma 

Sarcoma Type: 

Malignant 

Peripheral Nerve 

Sheath Tumor 

1.32E

-14 

14.

33 

Over 5.92 1% 99 209641

_s_at 

Lung Cancer TCGA 

Lung 

Lung Cancer 

Type: Non-Small 

Cell Carcinoma 

5.43E

-12 

8.6

73 

Over 5.207 1% 187 A_23_P

207507 

Lung Cancer Lee Lung Lung Cancer 

Type: Non-Small 

Cell Lung 

Carcinoma 

2.59E

-18 

10.

94 

Over 5.003 1% 138 209641

_s_at 

Brain/CNS 

Cancer 

Sun 

Brain 

Brain and CNS 

Cancer Type: 

Glioblastoma 

1.08E

-12 

7.6

8 

Over 4.63 1% 157 209641

_s_at 

Cervical 

Cancer 

Bittner 

Cervix 

Cervical Cancer 

Type: Cervical 

Adenocarcinoma 

2.95E

-05 

4.7

4 

Over 4.503 1% 35 209641

_s_at 

Brain/CNS 

Cancer 

Bredel 

Brain 2 

Brain and CNS 

Cancer Type: 

Glioblastoma 

1.28E

-05 

4.9

5 

Over 4.375 4% 49 IMAGE:

781139 

Bladder 

Cancer 

Stransky 

Bladder 

Bladder 

Urothelial 

Carcinoma Type: 

Superficial 

Bladder Cancer 

4.33E

-06 

4.9

6 

Over 3.959 2% 57 38261_

at 

Lung Cancer Bittner 

Lung 

Lung Cancer 

Type: Non-Small 

Cell Lung 

Carcinoma 

1.61E

-06 

4.9

9 

Over 3.52 1% 101 209641

_s_at 

Brain/CNS 

Cancer 

Liang 

Brain 

Brain and CNS 

Cancer Type: 

Glioblastoma 

2.84E

-07 

6.5

0 

Over 3.476 2% 33 AA4298

95 

Lung Cancer Bild Lung Lung Cancer 

Type: Non-Small 

Cell Lung 

Carcinoma 

2.41E

-13 

8.2

4 

Over 3.275 1% 111 230682

_x_at 

Bladder 

Cancer 

Blaveri 

Bladder 

2 

Bladder 

Urothelial 

Carcinoma Type: 

Superficial 

Bladder Cancer 

1.52E

-09 

7.1

3 

Over 3.049 1% 65 AA4298

95 

Lymphoma Basso 

Lympho

ma 

Mature B-cell 

Non-Hodgkin's 

Lymphoma Type: 

Diffuse Large B-

Cell Lymphoma 

4.32E

-05 

4.1

0 

Over 2.72 2% 100 38261_

at 

Esophageal 

Cancer 

Kim 

Esophag

us 

Esophageal 

Cancer Type: 

Esophageal 

Cancer 

Precursor 

1.13E

-07 

5.7

5 

Over 2.564 1% 100 ILMN_1

77814 
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Cervical 

Cancer 

Bachtiary 

Cervix 

Cervical Cancer 

Type: Cervical 

Adenocarcinoma 

0.002 5.1

90 

Over 1.645 5% 32 239217

_x_at 

Sarcoma Segal 

Sarcoma 

2 

Sarcoma Type: 

Gastrointestinal 

Stromal Tumor 

1.76E

-06 

-

5.3

5 

Under -10.898 2% 37 38261_

at 

Cancer versus Cancer (Multi-cancer datasets) 

Kidney carcinoma once again showed the highest overexpression of ABCC3 but this 

time in comparison to other cancers (Figure 3—2). The Su Multi-cancer dataset showed 

a significantly higher fold change (P-value = 1.80E-18, fold change: 24.93) in the kidney 

cancer in comparison to bladder, breast, colorectal, liver, lung, ovarian, pancreatic and 

prostate cancer samples (Table 3—4). The high ABCC3 expression in kidney datasets 

was also seen in the Bittner Multi-cancer and Garnett CellLine datasets which also 

showed fold changes of 3.83 (P-value = 4.45E-6) and 2.25 (P-value = 369E-22), 

respectively (Table 3—4). Strengthening the evidence of a strong relationship between 

ABCC3 overexpression and kidney carcinoma (Table 3—5). However, within this 

analysis the pancreatic carcinoma type showed the most consistently high ABCC3 

overexpression (Figure 3—2 & Table 3—5). The Su Multi-cancer dataset showed 

ABCC3 expression in the kidney cancer type was followed closely by the significant 

ABCC3 expression of the pancreatic type resulting in a 24.53-fold increase in 

comparison to bladder, breast, colorectal, kidney, liver, lung, ovarian and prostate 

cancers (oncomine.org, Table 3—4). Furthermore, ABCC3 expression in the pancreatic 

cancer type in comparison across other cancer types within both the Ramaswamy Multi-

cancer and Barretina CellLine datasets reveal fold changes of 14.93 (P-value = 2.89E-

4) and 4.21 (P-value = 8.71E-12), respectively (Table 3—4). The Ramaswamy Multi-

cancer datasets analysed the ABCC3 expression across bladder, brain/CNS, breast, 

colorectal, oesophageal, gastric, head and neck, kidney, leukaemia, liver, lung, 

lymphoma, melanoma, myeloma, ovarian, pancreatic, prostate and sarcoma cancer 

samples (oncomine.org). This broad range of cancer types analysed showed that 

pancreatic cancer on average exhibited higher ABCC3 expression in comparison to other 

cancer types including kidney carcinoma (Table 3—4). The average fold change across 

datasets were 10.34-fold and 14.56-fold in kidney and pancreatic cancer datasets, 

respectively. 

Colorectal carcinoma was the next highest overexpressing ABCC3 cancer type 

(Table 3—4). Across the Su Multi-cancer, Gyorffy CellLine 2, Bitnner Multi-cancer and 

Garnett CellLine datasets colorectal cancer showed a significant overexpression of 

ABCC3 by 16.8-fold (P-value = 1.8E-13), 13.8-fold (P-value = 5.82E-5), 2.41-fold (P-

value = 8.44E-62) and 2.25-fold (P-value = 1.19E-6), respectively (Table 3—4). Much 

like pancreatic carcinoma, colorectal cancer also demonstrated high and consistent 
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expression of ABCC3 in comparison to other cancers (Table 3—4). Lastly within the 

Barretina CellLine and Bittner Multi-cancer datasets, oesophageal cancer showed 

significant ABCC3 in overexpression by 2.03-fold (P-value = 1.54E-5) and 1.41-fold (P-

value = 4.6E-4). The cancer types that showed significant ABCC3 under expression in 

comparison to other cancers were breast, leukaemia, prostate, melanoma, ovarian, 

prostate, sarcoma, lymphoma and myeloma cancer (Table 3—4). The Su Multi-cancer 

dataset showed that breast cancer was the lowest ABCC3 expressing cancer within the 

dataset with -19.11-fold under expression in comparison to other cancers (P-value = 

9.43E-10) (Table 3—4 & Figure 3—2). The Ramaswamy Multi-cancer 2 and Yu Multi-

cancer datasets also showed breast cancer ABCC3 under expression, with -5.3-fold and 

-2.59-fold, respectively (Table 3—4). 

 

Table 3—4. Differential analysis of ABCC3 expression (Cancer vs Cancer (Multi-cancer)) 

Cancer 

Type 

Dataset Cancer type 

comparison

s 

P-

value 

t-test Expression 

(Under/Ove

r) 

Fold 

Chang

e 

Gene 

rank 

(%) 

n Reporter 

Kidney 

Cancer 

Su Multi-

cancer 

Cancer 

Type: 

Kidney 

Cancer 

1.80E

-18 

11.6

7 

Over 24.928 1% 162 38261_at 

Pancreatic 

Cancer 

Su Multi-

cancer 

Cancer 

Type: 

Pancreatic 

Cancer 

4.86E

-09 

9.96 Over 24.526 1% 162 38261_at 

Colorectal 

Cancer 

Su Multi-

cancer 

Cancer 

Type: 

Colorectal 

1.80E

-13 

8.65 Over 16.796 1% 162 38261_at 

Pancreatic 

Cancer 

Ramaswam

y Multi-

cancer 

Cancer 

Type: 

Pancreatic 

Cancer 

2.89E

-04 

4.56 Over 14.93 4% 169 U66674_at 

Colorectal 

Cancer 

Gyorffy 

CellLine 2 

Cancer 

Type: 

Colorectal 

5.82E

-05 

5.89 Over 13.793 1% 16 AA429895 

Pancreatic 

Cancer 

Barretina 

CellLine 

Cancer 

Type: 

Pancreatic 

Cancer 

8.71E

-12 

8.66 Over 4.206 2% 875 209641_s_

at 

Kidney 

Cancer 

Garnett 

CellLine 

Cancer 

Type: 

Kidney 

Cancer 

4.45E

-06 

5.73 Over 3.831 3% 690 209641_s_

at 

Colorectal 

Cancer 

Bittner Multi-

cancer 

Cancer 

Type: 

Colorectal 

8.44E

-62 

17.9

2 

Over 2.405 3% 146

8 

230682_x_

at 

Colorectal 

Cancer 

Garnett 

CellLine 

Cancer 

Type: 

Colorectal 

1.19E

-06 

5.42 Over 2.395 5% 690 209641_s_

at 
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Kidney 

Cancer 

Bittner Multi-

cancer 

Cancer 

Type: 

Kidney 

Cancer 

3.69E

-22 

10.1

5 

Over 2.249 6% 146

8 

209641_s_

at 

Esophage

al Cancer 

Barretina 

CellLine 

Cancer 

Type: 

Esophageal 

Cancer 

1.54E

-05 

5.00 Over 2.031 4% 875 230682_x_

at 

Esophage

al Cancer 

Bittner Multi-

cancer 

Cancer 

Type: 

Esophageal 

Cancer 

4.60E

-04 

5.47 Over 1.414 1% 146

8 

214979_at 

Myeloma Wooster Cancer 

Type: 

Myeloma 

3.73E

-04 

-

6.19 

Under -1.896 6% 298 209641_s_

at 

Myeloma Garnett 

CellLine 

Cancer 

Type: 

Myeloma 

1.38E

-13 

-

11.7

5 

Under -1.909 2% 690 209641_s_

at 

Lymphom

a 

Garnett 

CellLine 

Cancer 

Type: 

Lymphoma 

5.82E

-41 

-

14.6

5 

Under -1.966 1% 690 209641_s_

at 

Leukemia Garnett 

CellLine 

Cancer 

Type: 

Leukemia 

3.14E

-39 

-

14.3

1 

Under -2.037 2% 690 209641_s_

at 

Ovarian 

Cancer 

Bittner Multi-

cancer 

Cancer 

Type: 

Ovarian 

7.53E

-11 

-

6.74 

Under -2.115 6% 146

8 

209641_s_

at 

Leukemia Shankavara

m CellLine 2 

Cancer 

Type: 

Leukemia 

1.90E

-07 

-

5.86 

Under -2.526 1% 51 1930_at 

Breast 

Cancer 

Yu Multi-

cancer 

Cancer 

Type: Breast 

Cancer 

2.81E

-08 

-

5.79 

Under -2.585 7% 270 209641_s_

at 

Myeloma Barretina 

CellLine 

Cancer 

Type: 

Myeloma 

1.65E

-36 

-

17.9

6 

Under -2.909 2% 875 209641_s_

at 

Lymphom

a 

Barretina 

CellLine 

Cancer 

Type: 

Lymphoma 

9.64E

-72 

-

21.3

1 

Under -3.186 1% 875 209641_s_

at 

Lymphom

a 

Bittner Multi-

cancer 

Cancer 

Type: 

Lymphoma 

7.17E

-06 

-

5.81 

Under -3.207 5% 146

8 

230682_x_

at 

Leukemia Barretina 

CellLine 

Cancer 

Type: 

Leukemia 

1.50E

-105 

-

25.2

3 

Under -3.517 1% 875 209641_s_

at 

Melanoma Shankavara

m CellLine 

Cancer 

Type: 

Melanoma 

1.65E

-08 

-

6.40 

Under -3.614 1% 59 209641_s_

at 

Melanoma Compendia 

CellLine 

Cancer 

Type: 

Melanoma 

1.45E

-08 

-

3.65 

Under -3.646 1% 59 209641_s_

at 
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Sarcoma Bittner Multi-

cancer 

Cancer 

Type: 

Sarcoma 

5.51E

-13 

-

9.26 

Under -4.332 2% 146

8 

209641_s_

at 

Prostate 

Cancer 

Bittner Multi-

cancer 

Cancer 

Type: 

Prostate 

Cancer 

1.60E

-20 

-

12.8

9 

Under -4.525 2% 146

8 

209641_s_

at 

Ovarian 

Cancer 

Su Multi-

cancer 

Cancer 

Type: 

Ovarian 

3.38E

-04 

-

3.63 

Under -5.254 6% 162 38261_at 

Breast 

Cancer 

Ramaswam

y Multi-

cancer 2 

Cancer 

Type: Breast 

Cancer 

3.60E

-03 

-

1.94 

Under -5.3 5% 54 U66674_at 

Melanoma Shankavara

m CellLine 2 

Cancer 

Type: 

Melanoma 

4.73E

-13 

-

9.23 

Under -

13.921 

1% 60 38261_at 

Prostate 

Cancer 

Su Multi-

cancer 

Cancer 

Type: 

Prostate 

Cancer 

1.36E

-10 

-

7.33 

Under -

14.076 

4% 162 38261_at 

Leukemia Ramaswam

y Multi-

cancer 

Cancer 

Type: 

Leukemia 

2.65E

-12 

-

8.47 

Under -19.08 9% 169 U66674_at 

Breast 

Cancer 

Su Multi-

cancer 

Cancer 

Type: Breast 

Cancer 

9.43E

-10 

-

7.24 

Under -

19.114 

1% 162 38261_at 

 

Following breast cancer, the Ramaswamy Multi-cancer dataset showed leukaemia 

cancer as the next lowest ABCC3 expressing cancer type with -19.08-fold (P-value = 

2.65E-12) under expression (Table 3—4 & Figure 3—2). The Barrentina CellLine, 

Shankavaram CellLine 2 and the Garnett CellLine datasets also showed ABCC3 reduced 

expression in leukaemia cancer types by -3.52-fold (P-value = 1.50E-105), -2.53-fold (P-

value = 1.90E-7) and -2.04-fold (P-value = 3.14E-39), respectively (Table 3—4). The 

other cancer types prostate, melanoma and ovarian cancers all showed significantly 

lower expression of ABCC3 with -14.08-fold (P-value = 1.36E-10), -13.92-fold (P-value 

= 4.73E-13) and -5.25-fold (P-value = 3.38E-4), respectively (Table 3—4). The sarcoma, 

lymphoma and myeloma cancer types ranged in under expression from -4.33-fold to -

1.9-fold in comparison to other cancers (Table 3—4). Suggesting that these cancers 

would not perform well under ABCC3 targeted therapies. 

 

Table 3—5. Top ABCC3 Overexpresing cancer types across ONCOMINE analyses. The top three ABCC3 

overexpressing cancer types based on a ranking system (Supplementary Table 1). 

Cancer Types Cancer vs Normal 

Cancer vs Cancer 

(Histology) 

Cancer vs Cancer 

(Multi-Cancer) Outlier Analysis Total Score 

Kidney Cancer 5   4   9 

Pancreatic      4 4 8 

Lung Cancer   5     5 
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Bladder 2 2     4 

Lymphoma 3       3 

Melanoma       3 3 

Colorectal     2   2 

Brain/CNS Cancer       1 1 

 

Heterogeneous ABCC3 Expression within Cancer Types (Outlier Analysis) 

The expression of ABCC3 within a cancer type may not be homogenous and some 

cancers may have a subset of samples that overexpresses ABCC3. Outlier analysis 

within the ONCOMINE platform endeavours to assess the significance of this type of 

heterogenous expression with the use of COPA analysis [194]. The cancer dataset that 

showed the highest COPA score (35.396) was a pancreatic cancer dataset 

(oncomine.org, Error! Reference source not found.). The TCGA pancreas dataset 

showed high ABCC3 expression in the 95th percentile across a subset of both the 

pancreatic adenocarcinoma and pancreatic ductal adenocarcinoma samples 

(oncomine.org, Error! Reference source not found.). The remaining pancreatic 

datasets Ishikawa Pancreas and Collison Pancreas datasets resulted in COPA scores 

of 3.821 and 2.1151, respectively (Table 3—6). These results would suggest that there 

may be some subsets of pancreatic cancer that greatly overexpress ABCC3 above that 

of other pancreatic samples. COPA scores ranged from 28.757 to 11.104 in the Lin 

CellLine3 (95th percentile), Segal Sarcoma 2 (75th percentile), Wang Neuroblastoma (90th 

percentile), Imadome Cervix (95th percentile), Welsh Prostate (75th percentile), Jones 

Renal (95th percentile) and Lenburg Renal (95th percentile) datasets (Table 3—6). The 

remaining datasets resulted in positive COPA scores spanning several cancer types. 

These cancer types resulted in COPA scores ranging from 9.83 to 1.213 (Table 3—6). 

This showed that ABCC3 expression was highly heterogenous across many cancer 

types and may be an ideal candidate for targeted therapies.  

Tomlins et al., developed the COPA analysis and did not record COPA scores 

below 2, as the closer to zero the closer to the median and therefore the less outlying 

the expression profile [266]. The Nakayama Sarcoma, Zhan Myeloma 2, Sanchez-

Carbayo Bladder 2, Palanisamy Gastric, Compagno Lymphoma, Dyrskjot Bladder 4, 

Ballester Lymphoma, Takeno Gastric and Lin Colon 2 datasets all resulted in COPA 

scores below 2 (Table 3—6). Suggesting weak outlier expression profiles and although 

the Tian Myeloma, Su Esophagus 2, Stransky Bladder, Biewenga Cervix, Estilo Head-

Neck, Giordano Thyroid, Gaedcke Colorectal, Jorissen Colorectal 3 and Nutt Brain 

datasets resulted in negative COPA scores these did not exceed -2 (Table 3—6). 

Therefore, these datasets also showed weak outlier expression profile. 
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The more the expression levels deviate from the median the COPA score the 

more evidence of heterogeneity in both positive and negative directions. The lymphoma 

carcinoma Fan CellLine dataset showed the greatest deviation in the negative direction 

with a COPA score of -11.11 (Table 3—6 & Error! Reference source not found.). The 

remaining datasets including the Khatua Brain and Hao Esophagus also showed strong 

outlier expression in the lower 25th percentile resulting in COPA scores ranging from -

10.709 to -2.084, respectively (Table 3—6 & Error! Reference source not found.). The 

range of COPA scores and strong outlier deviations although distinct also require further 

interrogation. Irrespective of COPA scores, datasets showed ABCC3 overexpression, 

under expression or a mixed population of ABCC3 expressing samples (Table 3—6). 

Excluding the samples that fall between the 2 and -2 threshold for COPA scores, 76% 

(65/86) of the databases showed both ABCC3 over and under expressing populations 

(Table 3—6). High COPA scores would be expected from expression patterns that 

showed some samples under expressing and some overexpressing ABCC3 

(oncomine.org, Table 3—6). 

However, some datasets also showed exclusively ABCC3 overexpression and 

some showed exclusive ABCC3 under expression (Table 3—6). Some datasets 

overexpressed ABCC3 and resulted in a positive COPA score, under expressed ABCC3 

and resulted in a negative COPA score, overexpressed ABCC3 but resulted in a negative 

COPA score or under expressed ABCC3 but resulted in a positive COPA score (Table 

3—6). Firstly, the Imadome Cervix, Lenburg Renal, Smith Colorectal, Smith Colorectal 

2, Tan Renal and Collison Pancreas datasets all overexpressed ABCC3 and showed 

positive COPA results (Table 3—6). These datasets showed ABCC3 overexpression 

with some samples significantly overexpressing ABCC3 above that of the datasets 

median ABCC3 expression. Conversely, the Smith Skin, Symmans Breast 2, Nakayama 

Sarcoma 2 and Fan CellLine datasets all show exclusive ABCC3 under expression and 

negative COPA scores (Table 3—6). These datasets much like the previous datasets 

showed subsets that appear to extend to the extremes of ABCC3 expression (Table 3—

6). Within these datasets that already showed under expressed ABCC3 there was 

evidence of a subset of samples that under expressed ABCC3 significantly lower than 

the dataset median (Table 3—6). These results showed ABCC3 heterogeneity samples 

under/overexpress ABCC3 in the extreme ranges of ABCC3 expression in both negative 

and positive directions.  

Wang Neuroblastoma, Lenburg Renal, During Leukaemia and Koboyashi 

Sarcoma datasets showed under expression of ABCC3 and yet still yielded a positive 

COPA score (Table 3—6). Although the datasets exclusively showed ABCC3 under 

expression and most of these samples exhibited ABCC3 under expression at relatively 
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strong levels, a small subset of samples significantly showed only weakly ABCC3 under 

expression (oncomine.org, Table 3—6). 

 

 

Figure 3—3. Outlier Analysis. The consistency of heterogenous ABCC3 expression across cancerous subsets was 

analysed. The top three databases that showed either a significant increase or decrease in the COPA score across 

cancer types was examined and the COPA score was extracted. The list of all the COPA scores across all databases 

were shown. Green represents the negative COPA scores and the orange represents the positive COPA scores. 
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These weakly under expressing ABCC3 samples lay within the upper 75 th 

percentiles and were distinct enough from the median to give evidence of an outlying 

profile and the corresponding COPA score (Table 3—6). Conversely, the Roessler Liver 

2, Vanaja Prostate, Ishikawa Pancreas, Chiang Liver, Lee Bladder, Pei Pancreas and 

Cho Gastric datasets showed negative COPA scores, while overexpressing ABCC3 

(Table 3—6). These datasets had samples that showed high ABCC3 overexpression, 

yet within the dataset there were some samples that only weakly overexpressed ABCC3 

below the 25th percentile (oncomine.org). These datasets highlighted data that 

consistently showed strong ABCC3 overexpression or under expression, with some 

samples showing less strong ABCC3 expression. 

 

Table 3—6. Outlier analysis of ABCC3 expression across cancer datasets. The threshold for COPA scoring as 

extrapolated from the Tomlin et al., was shown between 2 and -2 by solid lines [266].  

Cancer Type Dataset Expression 

Over/Unde

r 

Gene 

Rank (%) 

Percentil

e 

COPA 

score 

Reporter (n) 

Pancreatic 

Cancer 

TCGA Pancreas Both 8% 95th 35.396 17-046095638 10

0 

Melanoma Lin CellLine 3 Both 1% 95th 28.757 209641_s_at 94 

Sarcoma Segal Sarcoma 2 Both 3% 75th 27.933 38261_at 51 

Brain/CNS 

Cancer 

Wang 

Neuroblastoma 

Under 1% 90th 23.526 1930_at 10

2 

Cervical 

Cancer 

Imadome Cervix Over 3% 95th 21.926 354061 16

0 

Prostate 

Cancer 

Welsh Prostate Under 3% 75th 20.387 38261_at 34 

Kidney Cancer Jones Renal Both 1% 95th 11.638 214979_at 92 

Kidney Cancer Lenburg Renal Over 7% 95th 11.104 230682_x_at 18 

Prostate 

Cancer 

Singh Prostate Both 4% 90th 9.828 38261_at 10

2 

Ovarian Cancer Jazaeri Ovarian Both 1% 95th 9.502 IMAGE:78113

9 

61 

Breast Cancer Ivshina Breast Both 1% 95th 8.999 209641_s_at 28

9 

Esophageal 

Cancer 

Su Esophagus Both 6% 95th 7.783 IMAGE:78113

9 

19 

Cervical 

Cancer 

Bachtiary Cervix Both 3% 75th 7 230682_x_at 33 

Melanoma Hoek Melanoma Both 1% 90th 6.74 209641_s_at 45 

Melanoma Hu CellLine 2 Both 1% 95th 6.409 17-046095638 45 

Breast Cancer Schmidt Breast Both 1% 90th 6.181 209641_s_at 20

0 

Head and Neck 

Cancer 

Cromer Head-Neck Both 2% 95th 5.986 1930_at 38 

Breast Cancer Wang Breast Both 1% 90th 5.882 209641_s_at 28

6 

Ovarian Cancer Bild Ovarian Both 1% 90th 5.843 209641_s_at 15

3 
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Head and Neck 

Cancer 

Ginos Head-Neck Both 1% 90th 5.643 209641_s_at 54 

Leukemia Durig Leukemia Under 1% 75th 5.033 209641_s_at 14 

Cervical 

Cancer 

Scotto Cervix 2 Both 1% 90th 4.88 209641_s_at 66 

Colorectal 

Cancer 

Smith Colorectal Over 9% 95th 4.357 209641_s_at 17

7 

Lung Cancer Su Lung Both 1% 75th 4.029 209641_s_at 66 

Lung Cancer Gemma CellLine Both 1% 75th 3.991 209641_s_at 29 

Leukemia TCGA Leukemia Both 1% 90th 3.935 209641_s_at 19

7 

Pancreatic 

Cancer 

Ishikawa Pancreas Both 3% 90th 3.821 239217_x_at 49 

Ovarian Cancer Schaner Ovarian Both 2% 90th 3.746 IMAGE:78113

9 

44 

Colorectal 

Cancer 

Smith Colorectal 2 Over 10% 90th 3.437 230682_x_at 55 

Lung Cancer Raponi Lung Both 1% 75th 3.362 209641_s_at 13

0 

Esophageal 

Cancer 

Su Esophagus 2 Both 10% 90th 3.265 209641_s_at 10

6 

Lymphoma Dave Lymphoma Both 5% 90th 3.199 239217_x_at 19

1 

Head and Neck 

Cancer 

Schlingemann Head-

Neck 

Both 3% 75th 2.95 209641_s_at 12 

Kidney Cancer Tan Renal Over 1% 75th 2.832 209641_s_at 30 

Prostate 

Cancer 

Nanni Prostate Both 1% 75th 2.684 209641_s_at 30 

Sarcoma Kobayashi Sarcoma Under 3% 75th 2.489 214979_at 27 

Leukemia Heuser Leukemia Both 1% 75th 2.449 AA429895 35 

Brain/CNS 

Cancer 

Sun Brain Both 1% 75th 2.411 209641_s_at 18

0 

Brain/CNS 

Cancer 

Phillips Brain Both 1% 75th 2.257 209641_s_at 10

0 

Pancreatic 

Cancer 

Collisson Pancreas Over 5% 75th 2.1151 239217_x_at 27 

Myeloma Zhan Myeloma 3 Both 2% 75th 2.02 209641_s_at 78 

Myeloma Zhou Myeloma Both 1% 75th 2.018 239217_x_at 11

5 

Sarcoma Nakayama Sarcoma Both 1% 75th 1.875 209641_s_at 10

5 

Myeloma Zhan Myeloma 2 Both 2% 75th 1.684 239217_x_at 41

4 

Bladder Cancer Sanchez-Carbayo 

Bladder 2 

Both 3% 75th 1.588 209641_s_at 15

7 

Gastric Cancer Palanisamy Gastric Both 8% 75th 1.582 17046095638 93 

Lymphoma Compagno 

Lymphoma 

Under 5% 75th 1.563 214979_at 13

6 

Bladder Cancer Dyrskjot Bladder 4 Both 9% 75th 1.492 AW848421 29 

Lymphoma Ballester Lymphoma Both 9% 75th 1.427 IMAGE:20809

7 

59 



 

Page 89 of 185 

 

Gastric Cancer Takeno Gastric Both 4% 75th 1.323 AGhsB030810 14

1 

Colorectal 

Cancer 

Lin Colon 2 Both 9% 75th 1.213 AF085692 14

9 

Myeloma Tian Myeloma Both 18% 25th -1.241 1930_at 17

3 

Esophageal 

Cancer 

Su Esophagus 2 Over 2% 25th -1.4 239217_x_at 10

6 

Bladder Cancer Stransky Bladder Both 4% 25th -1.578 38261_at 57 

Cervical 

Cancer 

Biewenga Cervix Both 2% 25th -1.755 A_23_P20750

7 

45 

Head and Neck 

Cancer 

Estilo Head-Neck Both 4% 25th -1.782 38261_at 58 

Head and Neck 

Cancer 

Giordano Thyroid Both 1% 25th -1.787 209641_s_at 99 

Colorectal 

Cancer 

Gaedcke Colorectal Over 1% 25th -1.883 A_23_P20750

7 

13

0 

Colorectal 

Cancer 

Jorissen Colorectal 3 Both 2% 25th -1.907 209641_s_at 15

4 

Brain/CNS 

Cancer 

Nutt Brain Both 4% 25th -1.922 1930_at 50 

Esophageal 

Cancer 

Hao Esophagus Both 2% 25th -2.084 IMAGE:78113

9 

48 

Lung Cancer Zhou CellLine Both 1% 25th -2.26 209641_s_at 44 

Melanoma Smith skin Under 4% 25th -2.491 214979_at 18 

Prostate 

Cancer 

Bittner Prostate Both 1% 25th -2.608 230682_x_at 60 

Bladder Cancer Lindgren Bladder Both 9% 10th -2.698 AA429895 75 

Head and Neck 

Cancer 

FriersonHF Salivary-

gland 

Both 8% 25th -2.725 1930_at 22 

Brain/CNS 

Cancer 

Michel Brain Both 10% 10th -2.975 1930_at 29 

Lymphoma Shaknovich 

Lymphoma 

Both 1% 25th -3.031 230682_x_at 69 

Lung Cancer Sos CellLine Both 1% 10th -3.189 17-046095638 84 

Liver Cancer Roessler Liver 2 Over 3% 10th -3.311 209641_s_at 44

5 

Gastric Cancer Kim Gastric Both 8% 5th -3.366 209641_s_at 12

3 

Melanoma Hoeflich CellLine 2 Both 10% 10th -3.569 239217_x_at 51 

Prostate 

Cancer 

Vanaja Prostate Over 2% 10th -3.892 239217_x_at 40 

Breast Cancer Weigelt Breast Both 7% 10th -4.109 AA429895 16 

Breast Cancer Symmans Breast 2 Under 6% 10th -4.196 214979_at 10

3 

Pancreatic 

Cancer 

Ishikawa Pancreas Over 6% 10th -4.291 230682_x_at 49 

Liver Cancer Chiang Liver Over 5% 5th -4.3 209641_s_at -

4.3 

Myeloma Mulligan Myeloma Both 4% 5th -4.482 214979_at 26

4 
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Melanoma Bogunovic 

Melanoma 

Both 10% 10th -4.627 239217_x_at 44 

Leukemia TCGA Leukemia Both 2% 10th -4.647 214979_at 19

7 

Kidney Cancer Beroukhim Renal Both 1% 10th -4.767 209641_s_at 70 

Gastric Cancer Ooi Gastric Both 2% 10th -4.772 209641_s_at 31 

Prostate 

Cancer 

Wallace Prostate Both 2% 10th -4.821 209641_s_at 89 

Pancreatic 

Cancer 

Iacobuzio-Donahue 

Pancreas 2 

Both 10% 5th -4.823 IMAGE:78113

9 

36 

Bladder Cancer Lee Bladder Over 3% 5th -4.942 ILMN_167781

4 

25

6 

Ovarian Cancer Bittner Ovarian Both 5% 5th -5.101 214979_at 24

1 

Pancreatic 

Cancer 

Pei Pancreas Over 4% 5th -5.534 230682_x_at 52 

Breast Cancer Bittner Breast Both 4% 5th -5.65 214979_at 33

6 

Leukemia Gutierrez Leukemia Both 4% 5th -6.28 214979_at 43 

Sarcoma Bittner Endometrium Both 2% 5th -6.481 214979_at 17

7 

Cervical 

Cancer 

Bittner Cervix Both 8% 5th -6.7 214979_at 36 

Lung Cancer Bittner Lung Both 1% 5th -6.967 214979_at 10

9 

Colorectal 

Cancer 

Jorissen Colorectal 2 Both 1% 5th -6.987 214979_at 15

5 

Kidney Cancer Bittner Renal Both 1% 5th -7.011 239217_x_at 25

6 

Gastric Cancer Cho Gastric Over 1% 5th -7.213 ILMN_167781

4 

90 

Esophageal 

Cancer 

Su Esophagus Both 4% 5th -7.502 IMAGE:78113

9 

19 

Kidney Cancer TCGA Renal Both 1% 5th -7.521 A_23_P20750

7 

88 

Sarcoma Nakayama Sarcoma 

2 

Under 1% 10th -7.649 214979_at 34 

Lymphoma Hartmann 

Lymphoma 

Both 1% 5th -7.795 214979_at 64 

Cervical 

Cancer 

Bachtiary Cervix Both 3% 5th -8.5 230682_x_at 33 

Leukemia Raponi Leukemia Both 1% 5th -9.38 214979_at 34 

Brain/CNS 

Cancer 

Khatua Brain Both 4% 10th -9.594 1930_at 13 

Liver Cancer Liao Liver Both 4% 5th -10.709 230682_x_at 13 

Lymphoma Fan CellLine Under 1% 5th -11.11 214979_at 21 

 

Coexpression Analysis 
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The coexpression analysis was an important part of the ONCOMINE platform as it allows 

the user to assess genes that are expressed alongside ABCC3 [194]. Possible targets 

that modulate ABCC3 expression were investigated using the coexpression analysis [36, 

197]. There was a number of targets that strongly correlated with ABCC3 expression 

(Table 3—7). Members of the WNT signalling pathway, sphingosine-1-phosphate 

pathway and p53-signalling pathway also showed significant correlation with ABCC3 

overexpression (Table 3—7). The sphingosine-1-phoshate receptors S1PR1 and S1PR3 

where all found to be upregulated within the ABCC3 overexpressing datasets (Table 3—

7). The increase in S1PR1 overexpression ranged from 1.67-fold (Beroukhim Renal: 

Non-Hereditary Clear Cell Renal Cell Carcinoma vs. Normal) to 6.71-fold (Su Multi-

cancer: kidney cancer type) (Supplementary Table 2). While S1PR3 showed a 1.53-fold 

increase in expression in the Bild Lung dataset (comparing Lung cancer type: Non-small 

Cell Lung Carcinoma) (Supplementary Table 2). 

 

Table 3—7. The identified targets that were also upregulated in ABCC3 overexpressing datasets across previously 

associated pathways. The top seven datasets which showed the highest gene ranks for ABCC3 where compared with 

pathways that showed ABCC3 modulation in literature (Supplementary Table 2). The frequency at which each target 

appeared across the seven datasets was recorded. 

ABCC3 & WNT signaling pathway ABCC3 & p53 signaling pathway ABCC3 & S1P receptor signaling pathway 

Gene Frequency Gene Frequency Gene Frequency 

CSNK1A1 5 ATM 3 S1PR1 6 

CCND1 4 CCND1 3 S1PR3 1 

PPARD 4 BAX 3     

FZD1 4 BCL2 2     

MYC 3 TP53 2     

HNF1A 2 RB1 1     

SMAD4 2 CDKN1A 1     

MAP3K7 2 TIMP3 1     

CNSK2A1 1 GADD45A 1     

CTNNB1 1 PCNA 1     

TLE1 1 CDK2 1     

PPP2CA 1 CDK4 1     

CSNK1D 1 MDM2 1     

 

In all datasets except for Bild Lung dataset, S1PR1 was found to be upregulated 

(Supplementary Table 2). These results suggest that S1PR1 overexpression may be 

linked with ABCC3 overexpression (Table 3—7). 

The more complex WNT signalling pathway and p53 signalling pathway resulted 

in a greater number of targets found to be upregulated in ABCC3 overexpressing 

datasets (Table 3—7 & Supplementary Table 2). The results showed that in the presence 

of ABCC3 overexpression casein kinase 1 alpha 1 (CSNK1A1), cyclin D1 (CCND1), 

peroxisome proliferator-activated receptor delta (PPARD), frizzled homolog 1 (FZD1), 
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myelocytomatosis viral oncogene (MYC), HNF1A, SMAD4, mitogen-activated protein 

kinase 7 (MAP3K7), casein kinase 2 Alpha 1 (CNSK2A1), catenin (cadherin-associated 

protein) beta 1 (CTNNB1), TLE1, PPP2CA and CSNK1D were all upregulated 

(oncomine, Table 3—7). 

Due to the broad nature of both the WNT signalling pathway and the p53 

signalling pathway some overlap would be expected. CCND1 was the only target found 

common to both pathways (Table 3—7). The comparison of the p53 signalling pathway 

and ABCC3 overexpression also revealed the upregulation of mutated ataxia-

telangiectasia (ATM), BAX, BCL2, p53, retinoblastoma 1 (RB1), cyclin-dependent kinase 

inhibitor 1A (CDKN1A), TIMP metallopeptidase inhibitor 3 (TIMP3), growth arrest and 

DNA-damage-inducible alpha (GADD45A), proliferating cell nuclear antigen (PCNA), 

cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4) and MDM2 p53 

binding protein (MDM2). The frequency at which a target regularly appeared during this 

analysis bolsters the evidence that there was a correlation between that target and 

ABCC3 (Table 3—7). 

The ONCOMINE platform also identified a number of targets whose expression 

strongly correlated (>0.7 correlation score) with the expression of ABCC3 (Table 3—8). 

Interestingly, very few of the gene targets were repeated across the datasets (Table 3—

8). The only target to repeat across the coexpression analyses was the keratin protein 7 

(KRT7) which was shown in both the Frasor CellLine 2 and Stansky Bladder datasets 

(Table 3—8). Furthermore, the cytoband locations of the coexpressing genes varied 

greatly, suggesting that ABCC3 expression may impact a wider range of genes and their 

corresponding functions than previously thought (Table 3—8). 

 

Table 3—8. ABCC3 Coexpression Analysis across Cancer types. The top three coexpressing genes from the top three 

cancer datasets (Table 3—5). A coexpression correlation threshold of 0.7 was used to eliminate genes that aren’t highly 

correlated with ABCC3.  

Cancer Type Dataset 

Coexpression 

correlation Gene Cytoband Reporter n 

Head and 

Neck 

Pramoonjago 

CellLine 0.998 CLDN7 17p13 202790_at 6 

Head and 

Neck 

Dohda 

CellLine 0.998 LHX4 1q25.2 1553157_at 6 

Head and 

Neck 

Pramoonjago 

CellLine 0.997 LRRN2 1q32.1 216167_at 6 

Head and 

Neck 

Pramoonjago 

CellLine 0.996 PRSS22 16p13.3 205847_at 6 

Head and 

Neck 

Dohda 

CellLine 0.99 CSHL 17q42.2 208293_x_at 6 

Head and 

Neck 

Dohda 

CellLine 0.985 SARS2 19q13.2 218702_at 6 

Colorectal 

Connolly 

CellLine 0.949 CALCOCO2 17q21.32 210817_s_at 18 
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Colorectal 

Connolly 

CellLine 0.942 CRBN 3q26.2 222533_at 18 

Colorectal 

Connolly 

CellLine 0.937 ZNF655 7q22.1 225945_at 18 

Esophageal 

Wang 

Esophagus 0.906 TSPAN1 1q34.1 AF054838 52 

Esophageal 

Wang 

Esophagus 0.906 LGALS4 19q13.2 U82953 52 

Esophageal 

Wang 

Esophagus 0.888 RHOC 1q13.1 A1685018 52 

Esophageal 

Hao 

Esophagus 0.885 TSPAN8 

12q14.1-

q21.1 IMAGE:509731 48 

Head and 

Neck An CellLine 0.882 HSF2BP 21q22.3 34044_at 23 

Head and 

Neck An CellLine 0.882 COL6A1 21q22.3 41350_at 23 

Head and 

Neck An CellLine 0.882 GAL3ST1 22q12.2 38565_at 23 

Breast 

Frasor 

CellLine 2 0.86 KRT7 12q12-q13 41294_at 30 

Breast 

Pratilas 

CellLine 0.857 CYP2B6 19q13.2 206754_at 32 

Lung Cancer 

Gemma 

CellLine 0.855 KYNU 2q22.2 204385_at 29 

Esophageal 

Hao 

Esophagus 0.848 SPINK1 5q32 IMAGE:1412481 48 

Esophageal 

Hao 

Esophagus 0.848 CDC42BPA 1q42.11 IMAGE:506523 48 

Pancreatic 

Cancer 

Gyorffy 

CellLine 2 0.847 TNFRSF21 

6p21.1-

p12.2 AA490494 13 

Pancreatic 

Cancer 

Gyorffy 

CellLine 2 0.847 MAOA Xp11.3 AA011095 13 

Pancreatic 

Cancer 

Collisson 

CellLine 0.827 TCF7L2 10q25.3 212762_s_at 20 

Pancreatic 

Cancer 

Gyorffy 

CellLine 2 0.818 AKR1C2 10p15-p14 AI924357 13 

Breast 

Frasor 

CellLine 2 0.814 GPC5 13q32 36788_at 30 

Breast Lin CellLine 3 0.81 LTBP2 14q24 204682_at 94 

Breast Lin CellLine 3 0.81 F3 1q22-p21 204363_at 94 

Breast 

Pratilas 

CellLine 0.807 GLS2 12q13 205531_at 32 

Breast 

Pratilas 

CellLine 0.807 CASP6 4q25 209790_s_at 32 

Prostate 

Welsh 

Prostate 0.799 EPN2 17q11.2 36121_at 34 

Bladder 

Stransky 

Bladder 0.774 KRT19 17q21.2 40899_at 57 

Bladder 

Stransky 

Bladder 0.774 KRT7 12q12-q13 41294_at 57 

Breast Lin CellLine 3 0.773 PPP1R13L 19q19.32 218849_at 94 
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Bladder 

Stransky 

Bladder 0.764 GATA3 10p15 40511_at 57 

Breast 

Frasor 

CellLine 2 0.764 ENPP1 6q22-q23 342_at 30 

Prostate 

Welsh 

Prostate 0.762 CYPA411 1q33 35412_at 34 

Colorectal 

Tsuji 

Colorectal 0.749 PRPF18 10q13 232473_at 83 

Colorectal 

Tsuji 

Colorectal 0.749 RPA4 Xq21.33 221143_at 83 

Bladder 

Sanchez-

Carbayo 

Bladder 3 0.746 

PPFIBP2, or 

liprin-beta-2 
  

157 

Bladder 

Sanchez-

Carbayo 

Bladder 2 0.746 CTSH 15q24-q25 202295_s_at 157 

Colorectal 

Watanabe 

Rectum 0.743 CAST 5q15 41257_at 46 

Lung Cancer 

Gemma 

CellLine 0.735 S100A6 1q21 217728_at 29 

Lung Cancer 

Gemma 

CellLine 0.735 AHR 7p15 202820_at 29 

Prostate 

LaTuplippe 

Prostate 0.733 LPCAT4 15q14 40472_at 35 

Bladder 

Sanchez-

Carbayo 

Bladder 4 0.725 UGT1A3 
 

208596_s_at 157 

Melanoma 

Hoek 

Melanoma 0.722 HAS1 19q13.4 207316_at 45 

Melanoma 

Hoek 

Melanoma 0.722 PTGS1 9q32-q33.3 205127_at 45 

 

ABCC3 Modulation of Overall Survival 

The overall survival in response to ABCC3 high/low expression was plotted by 

www.kmplot.com (Figure 3—4 & Figure 3—5). The graphs plotted displayed the survival 

over time (months) against the probability that the patients were still alive (Figure 3—4 

& Figure 3—5). The cancer types that significantly predicted patients with high ABCC3 

expression showed increased overall survival were breast carcinoma (HR 0.68 [0.48-

0.94], P-value = 0.021), bladder cancer (HR 0.61 [0.45-0.83], P-value = 0.0014), uterine 

corpus endometrial carcinoma (HR 0.6 [0.39-0.941, P-value = 0.016), sarcoma (HR 0.6 

[0.38-0.91], P-value = 0.026), rectum adenocarcinoma (HR 0.37 [0.16-0.89], P-value = 

0.021) and oesophageal adenocarcinoma (HR 0.31 [0.12-0.81], P-value = 0.012) (Figure 

3—4). These results suggested that some patients with certain cancer types may benefit 

from higher levels of ABCC3 expression. However, these patients also showed a much 

lower average HR estimate (0.528) across the six datasets, a 3.41-fold reduction when 
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compared to the average HR across the datasets in Figure 3—5. The lower HR suggests 

that these cancers showed an overall less aggressive cancer profile (Figure 3—5). 
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Figure 3—4. Kaplan Meier Survival Plots of ABCC3 expression. Cancer Types that showed improved survival with 

higher expression of ABCC3 Cancer types in which overall suvival was significantly improved by higher levels of ABCC3 

expression includes (A) Breast Carcinoma, (B) Bladder Carcinoma, (C) Uterine Corpus Endometrial Carcinoma, (D) 

Sarcoma, (E) Rectum Adenocarcinoma and (F) Esophageal Adenocarcinoma. 

 

However, in cancers where the high expression of ABCC3 limited overall survival, 

the HR and significance levels were much higher (Figure 3—5). The kidney renal 

papillary cell carcinoma (HR 2.6 [1.4-4.81], P-value = 0.0017), pancreatic ductal 

adenocarcinoma (HR 2.01 [1.32-3.06], P-value = 9.6E-4), kidney renal clear cell 

carcinoma (HR 1.68 [1.23-2.29], P-value = 0.001), lung SCC (HR 1.6 [1.02-2.52], P-value 

= 0.038), head and neck SCC (HR 1.46 [1.11-1.93], P-value = 0.0071) and liver 

hepatocellular carcinoma (HR 1.46 [1.07-1.99], P-value = 0.017) all showed that patients 

with high ABCC3 expression had reduced overall survival (Figure 3—5). The average 

HR across these datasets was 1.8, exhibiting that these cancers showed a more 

aggressive profile (Figure 3—5). Upon further interrogation the pancreatic 

adenocarcinoma was the only Kmplot to show an FDR of 5%, followed by bladder 

carcinoma (FDR: 20%), kidney renal clear cell carcinoma (FDR: 20%), kidney renal 

papillary cell carcinoma (FDR: 20%) and head and neck SCC (FDR:50%) (data not 

shown, kmplot.com). The remaining datasets all had FDRs over 50%, thereby limiting 

the robustness of those results. Suggesting that although, some cancers showed 

significant differences in low/high ABCC3 expression, that only a few results showed 

clear evidence of ABCC3 involvement in patient survival. Pancreatic adenocarcinoma, 

kidney renal clear cell carcinoma and kidney renal papillary cell carcinoma continue to 

show evidence that ABCC3 increased expression decreases overall survival in these 

cancer types (Figure 3—1) 
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E F 

  

Figure 3—5. Kaplan Meier Survival Plots of ABCC3 expression. Cancer Types that show significantly improved survival 

with lower expression of ABCC3. Cancer types in which overall suvival was significantly improved by lower levels of 

ABCC3 expression included: (A) Kidney Renal Papillary Cell Carcinoma, (B) Pancreatic Ductal Adenocarcinoma, (C) 

Kidney Renal Clear Cell Carcinoma, (D) Lung SCC, (E) Head and Neck SCC and (F) Liver Hepatocellular Carcinoma.  

ABCC3 Predicted Functional Associations 

The STRING database was used to predict potential protein-protein interactions of 

ABCC3. The STRING database revealed that the majority of proteins (>70%) with 

predicted ABCC3 association were also transport proteins (Table 3—9). The STRING 

database revealed that ABCG4 was associated with ABCC3 protein (Figure 3—6).  

 

 

 

Figure 3—6. ABCC3 protein association network in the STRING database. This shows all the interactions that have 

been predicted to show functional association with ABCC3 with high confidence (>0.7) within the STRING database.  
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The solute carrier organic anion (SLC) transporters were the remaining transporters 

associated with MRP3 (Table 3—9 & Figure 3—6). SLC51A, SLC51B, SLCO1B1, 

SLC10A1, SLCO1B3, ENGS00000257046 and SLCO1A2 all showed association with 

ABCC3 (Table 3—9). The remaining proteins included gastrotropin/fatty acid binding 

protein 6 (FABP6), albumin (ALB) and mitochondrial ribosomal protein S7 (MRPS7) 

(Table 3—9). Although the functions of ABCC3 and the SLC transporters should show 

overlap of function they did not return the highest confidence score (Table 3—9). Both 

FABP6 and ALB showed strong confidence scores of 0.926 and 0.919 (Table 3—9). 
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FABP6 
  

X X 0.926 

ALB X 
 

X X 0.919 

SLC51A X 
  

X 0.767 

ABCG4 X X 
 

X 0.758 

SLC51B X 
  

X 0.755 

SLCO1B1 X 
  

X 0.751 

SLC10A1 X 
  

X 0.745 

MRPS7 X 
  

X 0.745 

SLCO1B3 X 
  

X 0.738 

ENGS00000257046 X 
  

X 0.732 

SLCO1A2 X 
  

X 0.705 

Table 3—9 ABCC3 STRING predicted functional partners. These results showed with strong predictive confidence 

(>0.7) that ABCC3 was associated with these targets across the four relevant analysis types held within the STRING 

database. 

 

While, the coexpression, databases and text mining analyses were used as evidence for 

ALB, FABP6 confidence scores were calculated without showing coexpression (Table 

3—9). ABCC3 association with MRPS7 and ABCG4 appear to show some exclusivity in 

that they do not overlap with any of the other strongly associated ABCC3 proteins (Figure 

3—6). When comparing the associated proteins found from the STRING database and 

the targets found in the ONCOMINE database there was no overlap (Table 3—9, Table 

3—8 & Table 3—7). 
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Discussion 

Coexpression Analysis  

The coexpression analyses revealed a number of targets that were either coexpressed 

or upregulated alongside ABCC3 expression (Table 3—7 & Table 3—8). Cytochrome 

P450 enzymes (P450s) are able to modulate the metabolism of several drugs especially 

within the nervous system [267]. In normal tissue, ABC transporters aid in the removal 

of xenobiotics and certain toxins alongside P450s activity [268]. The P450s CYP2B6 and 

the cytochrome enzyme CYPA411 were both found to co-express (0.857 and 0.762) with 

ABCC3 expression within breast and prostate cancer datasets, respectively (Table 3—

7). The co-expression of CYP2B6 and other P450s were also shown with ABCG2 and 

ABCA1 in the amygdala and the prefrontal cortex of the brain [268]. Asfar et al., showed 

that within the Pakistani population overexpression of both P450s (including CYP2B6) 

and ABC transporters ABCB1 and ABCC2 were found [269]. Furthermore, the functional 

activity of CYP2B6 and CYP3A4 were shown in peripheral blood mononuclear cells 

(PBMC) treated with cytokines over 48 hours, [270]. It appears that the mechanism that 

modulate P450s may be linked to ABC transporter modulation [270]. Yang et al., 

investigated the effects of the cytokine, interleukin-6 (IL-6) over 48 hours on the 

expressions of P450s including CYP2B6 and transporters including ABCC3 [271]. The 

general pattern showed that P450s expression generally reduced in the presence of IL-

6, while the expression of efflux transporters like ABCC3 generally remained constant or 

increased in expression [271].  

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is a cell surface 

protein that catalyses the reaction of ATP to AMP [272]. The generalised arterial 

calcification of infancy (GACI) is a rare disease that causes calcification of the internal 

lamina in large and medium arteries leading to infant heart failure within the first months 

of life [272]. Inactivation via mutation of ENPP1 has been shown to cause 75% of the 

GACI diagnosed [272]. The literature associating ENPP1 with ABC transporters was 

demonstrated by the ABCC6 mutation which also accounted for a significant amount of 

GACI diagnosed [272]. Within cancer ENPP1 expression has been linked to malignancy 

and chemotherapeutic response in breast cancer tissues [273]. ENPP1 expression also 

promoted the localization of ABCG2 to the surface of breast cancer cells [273]. The 

coexpression of ENPP1 and ABCC3 (0.764) as shown in a breast cancer dataset may 

suggest that ENPP1 also promotes the cell surface localization of ABCC3 or be involved 

in ATP phosphorylation, an essential reaction in ABC transport (Table 3—8) [272].  

The inhibition of WNT signalling via the inhibition of TCF7L2 and β-catenin 

stimulated the expression of ABCC3 [197]. The binding locus for both TCF7L2 and 

ABCC3 showed nine common binding regions suggesting a common binding region 
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between the two targets [197]. There was a number of p53 and WNT signalling pathway 

members that showed upregulation alongside ABCC3 overexpression (Table 3—7). The 

WNT signalling members CSNK1A1, CCND1, PPARD and FZD1 showed the most 

consistent upregulation alongside ABCC3 (Table 3—7). ABCC3 expression in the 

presence of wild-type p53 was lower than in the presence of p53 mutations [36]. The p53 

signalling members ATM, CCND1 and BAX/BCL2 showed the most consistent 

upregulation alongside ABCC3 (Table 3—7). Increased CCND1 expression has been 

linked to a poor prognosis in glioblastoma [274]. CCND1 was responsible for cell signal 

integration and cell cycle regulation [274]. CCND1 overexpression has previously been 

associated with MDR1 and BCL2 upregulation, while CCND1 inhibition showed a 

decrease in MDR1 and BCL2 expression [274]. Knockdown of WNT receptor Frizzled-1 

(FZD1) much like CCND1 also reduced MDR1 expression [275]. The leukemic cells 

responded to the knockdown of FZD1 and downregulation of MDR1 with increased 

sensitivity towards chemotherapy [275]. Within lung cancer, interleukin 6 (IL-6) showed 

the ability to stimulate the expression of Ataxia-telangiectasia mutated (ATM) which in 

turn increased the expression of BCL2, BAX and ABCG2 [276]. The ability for CCND1 

and FZD1 activity to modulate MDR1 activity may also translate towards modulation of 

ABCC3 expression. 

ABCC3 was predicted to associate with several transporters including SLC51A, 

SLC51B, SLCO1B1, SLC10A1, SLCO1B3, ENGS00000257046, SLCO1A2 and ABCG4 

(Table 3—9). Yan et al., showed the role of ABC transporters and SLC transporters in 

the absorption and distribution of phytochemicals [38]. The reason ABC and SLC 

transporters have such a link to absorption was that both are localised within the GI tract 

(Figure 1—2) [38]. ABCC3/MRP3, SLCO1A2/OATP1A2 and SLCO1B1/OATP1B1 have 

all been identified within different areas of the GI tract [38]. SLCO1A2 and SLCO1B1 are 

both located on the apical membrane while MRP3 is located on the basolateral side of 

the membrane [38]. Unlike P-gp and BCRP2, it appears that the normal action of MRP3, 

SLCO1A2 and SLCO1B1 all appear to aid in the absorption of chemicals into the blood 

circulation (Figure 1—2) [38]. The absorption of the SLCO1A2 drug substrates imatinib, 

talinolol, levofloxacin and MTX can be reduced upon SLCO1A2 inhibition [38]. MTX is 

also a substrate of ABCC3, inhibition of MRP3 expression improved methotrexate 

cytotoxicity [79, 277]. The functional link between SLC and ABC transporters has been 

well established, reinforcing the validity of the STRING platform [38, 278].  

Fatty acid binding protein 6 (FABP6/IBABP/ILBP) preferentially binds to bile acids 

and is almost completely localised in the ileum [279]. In vivo, ABCC3 double knockout in 

mice had altered transport of bile acids in hepatocytes revealing ABCC3’s ability to 

modulate liver regeneration [280]. Although no direct link between FABP6 and ABCC3 

has been shown, the proximity of these bile acid functions would warrant further 
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investigation. MRPS7 is a small mitochondrial, ribosomal protein and in accordance with 

other ribosomal proteins plays a role in translation, a key cellular process [281]. Little is 

known about MRPS7, however a recent study showed that two siblings both affected 

with congenital sensorineural deafness and hepatic and renal impairments also showed 

a mutation in the MRPS7 gene [281]. Moreover, mutations in the MRPS7 gene caused 

a reduction in mitochondrial protein synthesis, while exogeneous addition of wild-type 

MRPS7 restored mitochondrial protein synthesis [281]. The link between ABCC3 and 

MRPS7 could not be established in literature. However, this does not detract from this 

current research, it further demonstrates how much is still yet unknown about both 

cancer and MRP3. The fact that the STRING platform returned expected, weakly 

associated and unknown protein-protein interactions may also prove the usefulness of 

the platform. 

ABCC3 Expression analyses 

The top three ABCC3 overexpressing cancer types were found to be kidney cancer, 

pancreatic cancer, and lung cancer (Table 3—5). In 2012, Kidney cancer made up a total 

of 2.4% of new cancer cases worldwide, with approximately 338,000 new kidney cancer 

cases [282]. This rose to 403,262 new cases in 2018 and resulted in 175,098 deaths in 

2018 alone [13]. The most common form of kidney cancer, renal cell carcinoma (RCC) 

is highly aggressive and resistant to therapy with 5-year recurrence rates ranging from 

30 to 60% [283]. RCC presents symptoms late and is inherently resistant to 

chemotherapy [284]. As previously shown by a number of studies, ABC transporters and 

ABCC3 in particular was able to limit the effectiveness of several anticancer drugs 

including platinum based drugs, methotrexate, paclitaxel, doxorubicin and gemcitabine 

[81, 88, 277, 285]. Although, the link between RCC or kidney carcinoma and ABCC3 has 

not been well characterised it would be plausible to hypothesise that the high ABCC3 

expression seen in this study could contribute to RCC resistance. Kool et al., used a 

Madin-Darby canine kidney II cell to better characterise the function of ABCC3 [79]. The 

expression levels of P-gp, MRP1 and LRP were quantified in 47 RCC samples with the 

aim of assessing any possible linkages between multidrug resistant protein expression 

and clinically relevant parameters [286]. Although RCC showed expression of all three 

MDR proteins no correlations between clinical parameters could be made [286]. 

However, in Figure 3—5, the patient’s overall survival (OS) was significantly (P-value = 

0.0017) increased when ABCC3 expression in low. The results also showed that kidney 

carcinoma and ABCC3 differential expression between cancerous and normal samples, 

was the highest of all cancer types (Figure 3—1 & Figure 3—2). An ideal target is one 

that is differentially expressed when comparing cancerous and normal samples [287].   
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Pancreatic cancer much like RCC is also recognized as an aggressive and 

resistant form of cancer [24, 37]. Pancreatic cancer death rates are currently listed in the 

top four of all cancer related deaths and expected to rise to second by 2030 [288]. New 

Zealand’s ministry of health in 2010 forecasted an increase in the mortality, morbidity 

and overall burden of pancreatic cancer within New Zealand in the next 8 years [31]. The 

five year survival rate for pancreatic cancer in the United States is at approximately 9% 

[261]. However, a recent study also showed that these survival rates can vary depending 

on the country [262]. In 2012, there was estimated 338,000 newly diagnosed pancreatic 

cancer patients, with 331,000 deaths that same year [282]. In 2018, there was 

approximately 459,000 new cases of pancreatic cancer worldwide with approximately 

432,000 deaths [13]. These findings not only highlight the need for new therapies but 

demonstrate the need for better preventative strategies where possible. This study found 

pancreatic cancer to be on average the highest ABCC3 overexpressing cancer type in 

comparison to other cancers (Figure 3—2). High ABCC3 expression was also shown to 

have a significantly negative impact on overall survival in pancreatic cancer (Figure 3—

5). Pancreatic cancer versus normal analysis also showed that pancreatic cancer 

exhibited ABCC3 overexpression, although not as strongly as other cancers (Figure 3—

1). The outlier analysis revealed that the TCGA pancreas dataset exhibited the highest 

COPA score, suggesting a portion of the pancreatic cancer samples strongly and 

heterogeneously overexpress ABCC3 (Error! Reference source not found.).  

The average expression of ABCC3 may veil the complexity of the ABCC3 

expression due to the high heterogeneity as seen in the ONCOMINE platform (Error! 

Reference source not found.). In literature, pancreatic cancer has already shown 

differential expression of both ABCC3 and ABCC5 across normal and cancerous mRNA 

samples [289]. Further examination of the expression profiles of 2177 cell-surface genes 

across samples of both cancerous and normal pancreas tissues revealed that, ABCC3 

and TLR2 were robust targets [83]. A recent paper by Adamska et al., showed that not 

only was ABCC3 overexpressed in pancreatic cancer but also that the knockdown 

(siRNA) of ABCC3 was able to modulate pancreatic cancer proliferation [36]. The 

identification of the relationship between ABCC3 and pancreatic cancer through these 

results as well as validation in literature attests to the value of these bioinformatic studies.  

Lung carcinoma exhibited ABCC3 overexpression and performed especially well 

when comparing histological samples within the cancer types (Table 3—5 & Figure 3—

2). The overexpression of ABCC3 was specifically shown within non-small cell carcinoma 

samples in comparison to SCC, across multiple lung cancer datasets (Table 3—3). This 

pattern was seen across multiple lung carcinoma datasets. The non-small cell carcinoma 

subtype was the most common form of lung cancer diagnosed (80-85%) and has a 

resistant phenotype although not to the same extent as renal carcinoma or pancreatic 
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carcinoma, with a 5-year survival rate of 15% [13, 81]. The reason for the low 5-year 

survival rate is the high recurrence rate of 30-70% and the resistance to multiple drugs 

[81]. The upregulation of ABCC3 in non-small cell carcinoma was linked to the increased 

multidrug resistance and a failure of chemotherapy [81]. The cancer types and cancer 

subsets identified by this study which showed overexpression of ABCC3 have also been 

linked with aggressive and resistance cancers. This data suggests RCC, pancreatic and 

non-small cell cancers would be good targets for ABCC3 modulation. 

The cancer versus cancer (histology) analysis also identified malignant fibrous 

histiocytoma which showed the highest expression of ABCC3 across the sarcoma cancer 

type (Table 3—3). However, this comparison was across a dataset that all showed low 

ABCC3 expression, therefore the malignant fibrous histiocytoma demonstrated weak 

ABCC3 under expression (Table 3—3, oncomine.org). Soft-tissue sarcoma diagnoses 

are rare with only 12,000 new cases estimated in the US, each year [290]. The five-year 

survival rate for soft-tissue sarcoma ranges from 90% to 56% depending on the stage of 

the cancer [291]. The Ewing sarcoma, a rare form of bone carcinoma has a five-year 

survival rate of less than 20% [292, 293]. Within this Ewing sarcoma subtype the 

mechanisms underlying Ewing sarcoma drug resistant was investigated [292]. The A673, 

Ewing sarcoma cell line was exposed to increasing concentrations of SP-2509, a small 

molecule reversible lysine specific demethylase (LSD1/KDM1A) inhibitor over a seventh 

month time period [292]. The expression of the intended target KDM1A remained 

unchanged in the newly created a multidrug resistant Ewing sarcoma cell line. While the 

expression of of ABCC3, ABCB1 and ABCC5 all increased [292]. This revealed the 

importance of ABC expression in drug resistance. The danger of ABCC3 overexpression 

was seen in this sarcoma model [292]. Sarcoma usually exhibits relatively high survival 

rates, this exhibits that the overexpression of ABC transporters could change this [292].  

Lung cancer, gastric cancer and prostate cancer all exhibited datasets that 

showed significant under expression of ABCC3 in cancer versus normal analyses (Figure 

3—1). Breast cancer, leukaemia and prostate all showed significant under expression in 

comparison to other cancer samples (Figure 3—2). Suggesting that these cancers would 

not be good targets for ABCC3 targeted treatments. However, Breast cancer which 

showed the strongest ABCC3 under expression across cancer types (Table 3—4), also 

showed an increase in ABCC3 expression in patient samples that underwent 

chemotherapy [87]. Both Ewing sarcoma and breast carcinoma showed that ABCC3 

upregulation may also occur in these under expressing cancers resulting in increased 

drug resistance [292]. These under expressing cancers may like Ewing sarcoma and 

breast cancer develop resistance to drugs via overexpression of ABCC3 [292].  
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Limitations  

There a number of limitations that must be considered while interpreting the results of 

these bioinformatic tools [189, 294]. DNA microarrays allow for the simultaneous 

comparison of the expression of thousands of genes [189]. The ONCOMINE platform 

has gathered and normalised thousands of microarray samples [194]. However, 

microarray data was limited firstly by the quality of samples, this concerns both the 

sample and tissue quality and the quality of the RNA extracted [189]. The extraction of 

RNA and the processing time is so important that any degradation in mRNA can result 

in false microarray results [189]. The sample quality can be affected by sample selection, 

as many tissues especially in the context of cancer contain heterogenous populations of 

different cell types and healthy/diseased cells [294]. The ONCOMINE platform has no 

control over the quality of a dataset other than the fact that it has been published in a 

recognized journal [190]. The inherent assumption that these published datasets have 

been well constructed is a reasonable assumption. However, while the chance is low, 

this could provide opportunity for some ill-prepared data to slip through. Secondly, 

Microarray datasets are also limited by the genes/probes that have been used. 

Therefore, they may paint a limited picture of the total genetic expression in the samples. 

As ABCC3 is a relatively new ABC transporter member being studied there may be some 

expression patterns that have been missed because ABCC3 was not included as part of 

the study. Lastly, microarray data utilise various forms of nucleic acids (mRNA, cDNA, 

PCR products) to measure gene expression [294]. Quite simply the expression of nucleic 

acids does not always translate into functional protein expression [294].  

Subsequently, the STRING database was used to address protein-protein 

functional relations. However, the string database much like any database platform 

including the ONCOMINE and the KMplot was limited by the data contained within the 

database, and the analyses available. The STRING database while it was designed for 

the evaluation of protein-protein interactions, was not equipped to compare cancerous 

versus normal samples [193]. Although there were several proteins that were identified 

as functionally associated with ABCC3 in the context of cancer these may not be 

pathologically relevant (Table 3—9). However, all of these limitations can be resolved by 

further validation of the expression patterns seen across these databases. This can be 

done by other quantification methods such as RT-PCR and Western blotting [294].  

Conclusion 

In conclusion, the expression of ABCC3 was shown across a wide range of cancers, 

which may be targeted by ABCC3 inhibition. The top overexpressing ABCC3 cancers 

based on the oncomine platform were kidney, lymphoma, bladder, lung, sarcoma, 

colorectal, melanoma, brain/CNS and pancreatic cancer (Table 3—1). Pancreatic cancer 
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exemplified the importance of heterogeneous expression. While pancreatic cancer did 

not show strong ABCC3 overexpression in comparison to normal pancreatic cells, it 

showed the highest COPA score and strong expression in comparison to other cancer 

types (Figure 3—1, Figure 3—2 & Error! Reference source not found.). High ABCC3 

expression was also shown by the KMplot platform to be a modulator of overall survival 

across kidney renal papillary cell carcinoma, PDAC, kidney renal clear cell carcinoma, 

Lung SCC, Head and Neck SCC and Liver Hepatocellular Carcinoma (Figure 3—5). This 

was especially true for pancreatic cancer which showed significant (P-value = 9.6E-4) 

and statistically robust (FDR: 5%) modulation of survival rates (Figure 3—5). The 

discovery that cancer types and subtypes which do overexpress ABCC3 were more 

resistant and aggressive, reinforced ABCC3’s role in creating a resistant phenotype. The 

amount of information and analyses that were recorded from the ONCOMINE, STRING 

and KMplot platforms as well as the ability to correlate these findings with previous 

literature attests to the value of these kinds of studies. The three cancers that would be 

ideal candidates for a validation of ABCC3 expression and targeting would be pancreatic, 

kidney and lung carcinoma.   
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Chapter 4 CRISPR-Cas9 Knockout of ABCC3 

Introduction 

The ATP binding cassette (ABC) family are made up of transport proteins that require 

the energy released from ATP hydrolysis to achieve protein reconfiguration, which 

transport substrates across the membrane [263]. This type of transport allows the 

movement of substrates against their concentration gradients [263]. The ABC family is 

divided into a number of subfamilies, ABCC, also known as the multidrug resistance 

protein (MRP) family contains the most multidrug resistance transporters [86]. Multidrug 

resistance is the development or inherent resistance of cancer to a multitude of drugs 

that are unrelated in structure or function [88]. ABCC1 (or MRP1), P-glycoprotein (P-gp) 

and breast cancer resistance protein (BCRP/2) were the first ABC transporters to be 

associated with a multidrug resistance [86, 186, 295, 296]. ABC transporters also play 

an essential role in a number biological processes because of their ability to transport 

proteins and essential signalling molecules [86]. ABC transporters have been able to 

modulate the “hallmarks of cancer” as stated by Hanahan and Weinberg (2000) [1, 86]. 

Forced expression of BCRP in bone marrow both in vitro and in vivo showed a reduction 

in mature progenitor cells displaying BCRP modulation of differentiation in cancer cells 

[86]. Furthermore, the sole treatment of valspodar, a P-gp inhibitor also promoted 

apoptosis in vitro [86]. P-gp also conferred survival in the presence of apoptotic stimuli, 

supposedly without active transport [86]. The knockdown of MRP1 both in vitro and in 

vivo resulted in spontaneous cell death [86]. Other hallmarks associated with ABC 

transporter expression include cell migration, invasion and metastasis which are 

essential in of cancer progression [86].  

More recent analysis revealed that MRP3 and MRP5 could also cause multidrug 

resistance [79, 186]. MRP3 was located in several locations including the liver, colon, 

small intestine, adrenal gland and at lower levels in the lung, pancreas, kidneys and 

prostate [79]. MRP3 has the closest sequence homology to MRP1, however it has not 

been as extensively characterised [79]. The canonical mechanism for which ABC 

transporters can confer resistance is by actively transporting drugs away from their target 

sites [79, 186, 295, 296]. The manipulation of ABC transporters to decrease multidrug 

resistance in cancer has been a well-recognised therapeutic strategy [86, 297, 298]. 

ABCC3 has also been associated with differentiation, a key biological necessity of cancer 

[86]. The TNM staging or tumour grading is associated with tumour differentiation with 

the majority of tumour cells being differentiated resulting in grade I [289]. While the more 

undifferentiated cells within a tumour the higher the grade, with grade III representing 

tumours that are predominantly undifferentiated [289]. ABCC3 mRNA expression was 

correlated with tumour grading and differentiation in pancreatic cancer [289]. Tumour 
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growth and differentiation are also related, less differentiated tumours have an increased 

potential for proliferation [86]. In order to sustain tumour growth, it is essential to keep a 

major proportion of the tumour undifferentiated [86]. 

MRP3 expression has affected numerous drugs and their metabolites in several 

cancer types [36, 80, 81, 87, 89, 186, 285, 299-301]. Cancerous pancreatic tissues 

significantly overexpressed MRP3 and MRP5 mRNA in comparison to normal tissue 

[186, 289]. The upregulation of ABCC3 mRNA expression in HER2 positive breast 

cancer samples and cell lines has also been shown [89]. As previously shown in vitro by 

O’Brien et al., ABCC3 can mediate paclitaxel and MMAE resistance in HER2 positive 

breast cancer cell lines [88]. Luminal cancers which are predominantly ER positive 

cancers, usually yield a relatively good prognoses and respond well to hormonal 

therapies [88]. ABCC3 was shown not only to confer resistance to paclitaxel and the 

antimitotic monomethyl-auristatin-E (MMAE), ABCC3 was also highly expressed in 25% 

of HER2-positive breast tumours and in 11% of luminal tumours [88]. In non-small cell 

lung cancer, ABCC3 was identified as one of the most of upregulated genes in the chemo 

resistant samples/cell lines [81]. In osteosarcoma, the expression of ABCC3 increased 

the likelihood of a poorer prognosis with a reduced disease-free survival (DFS) and 

overall survival (OS) [80]. Osteosarcoma is one of the leading causes of cancer related 

deaths in children and adolescents [80]. Patients expressing the ABCC3 (rs4148416 TT 

genotype) showed a significant reduction in the response to chemotherapy [80]. ABCC3 

expression also limited platinum-based chemotherapies within NSCLC patients being 

treated [81].  

90% of pancreatic cancer patients are diagnosed with pancreatic ductal 

adenocarcinoma (PDAC) [34]. The five year survival rate for PDAC is <10%, ranking 

PDAC in the five highest cancers causing death [34]. The first line treatment for 

pancreatic cancer in the past three decades has been gemcitabine, an antimetabolite 

drug that has only yielded a marginal increases in patient survival [35, 36]. More recently, 

Abraxane (albumin-bound paclitaxel) and FOLFIRINOX have been included in the 

standard treatment for pancreatic cancer, with improved survival estimates but is limited 

by increased side effects [36]. ABCC3 is highly expressed in PDAC tumours and the 

knockdown of ABCC3 caused reduced PDAC cell proliferation [36]. Analysis of public 

datasets revealed that the differential upregulation of ABCC3 in PDAC correlates with a 

poor prognosis and reduced survival rates [36]. In vitro and in vivo models revealed that 

knockdown of ABCC3 was able to reduce the proliferation rates of pancreatic cancer 

cells and greatly reduced the growth rate in tumours [36].  

Modern genetic engineering utilises an approach called reverse engineering 

which uses various strategies to interrupt gene expression of a target [234]. The 

corresponding phenotypic changes can be attributed to the specific changes in the 
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genome [234]. The CRISPR-Cas9 system has been extensively utilised to investigate 

such changes. CRISPR-Cas9 was used to successfully investigate P-gp expression by 

creating P-gp knockout cell lines [249]. The CRISPR-Cas9 system successfully 

modulated genomic, protein and functional activities of P-gp, establishing a precedence 

for the success of CRISPR-Cas9 in drug transport mechanisms [249].  

 

Figure 4—1.CRISPR-Cas9 mechanism. Modified from (https://www.addgene.org/guides/crispr/) 

 

P-gp knockout by CRISPR-Cas9 was also able to significantly enhance sensitivity 

towards vincristine, doxorubicin and cisplatin in HCT-8/V and KBv200 cells [118]. The 

knockout of P-gp was confirmed by western blot, PCR and rhodamine/doxorubicin 

cellular accumulation studies [118]. The CRISPR-Cas9 system has been reviewed in 

detail in the methodology chapter. In short, three gRNA sequences designed by 

Thermofisher scientific were used to target a specific ABCC3 loci, binding and guiding 

the cas9 protein cause a double strand break within the target site (Figure 4—1 & Table 

4—1). The CRISPR-Cas9 was introduced to the cell by transfection in accordance with 

the manufacturer’s instructions. Using the CRISPR-Cas9 system, ABCC3 expression 

was knocked out in pancreatic cancer (PANC1) cells and the phenotypic and genomic 

https://www.addgene.org/guides/crispr/
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effects were investigated (Figure 4—1). Whether the modulation of ABCC3 activity 

affects gemcitabine or methotrexate drug resistance was also investigated.  

Results 

ABCC3 Expression in PANC1 Cells 

The MRP3 protein levels was confirmed in PANC1 cells by flow cytometry and surface 

staining of the ABC transporter membrane proteins in accordance with a previously 

established protocol [201]. The MRP3 expression was investigated in both PANC1 and 

HepG2 cells (Figure 4—2). In PANC1 cells, MRP3 protein expression was shown to be  

significantly (P-value = 0.0055) higher than its IgG control by 3.5-fold (Figure 4—2) 

across three independent experiments. During the initial optimization of the protocol, 

HepG2 cells were used to validate MRP3 expression (Figure 4—2). HepG2 surface 

staining showed a significant (P-value = 0.03) 3.07-fold difference between the average 

MRP3 (X-GMean = 1.135) expression and the IgG (X-GMean = 0.37) control. The strong 

differences in surface staining in comparison to IgG control in HepG2 cells suggested 

that the protocol being used was selective and sensitive to MRP3 expression.  
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Figure 4—2. MRP3 expression in PANC1 and HepG2 cells. The surface staining of PANC1 cells with an MRP3 antibody 

confirmed the presence of MRP3 membrane protein expression in PANC1 and HepG2 cells. (A) MRP3 expression was 

significantly higher than IgG controls (P-value = 0.0055). (B) HepG2 cells which also express MRP3 were used to 

optimise surface staining and act as a positive control for MRP3 expression, significance was not calculated as this was 

only repeated twice [302]. 
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Targeting ABCC3 using CRISPR-Cas9 

Three gRNA sequences that target the ABCC3 gene were acquired from Thermofisher 

(Table 4—2). As previously stated, gRNA’s can for unknown reasons be unable to 

knockout the selected gene target [253]. Therefore, three different gRNA sequences that 

target different loci within the ABCC3 gene were selected (Table 4—2). When possible 

different PAM sequences were also selected to ensure a variation in targeting could be 

achieved [242]. Each gRNA sequence was designated a number to ease subsequent 

data analysis (Table 4—2). The initial round of CRISPR-Cas9 transfection was done in 

triplicate with the resultant cells named gRNA1 (a, b and c), gRNA2 (a, b and c) and 

gRNA (a, b and c). Initially the knockout of ABCC3 was assessed by quantifying the 

cellular accumulation of CMF within the cell to select the transfected replicate with the 

highest functional inhibition (see below). The selected replicates for gRNA1, 2 and 3 

(mixed population) were tested for cleavage efficiency.  

 

Figure 4—3. CRISPR-Cas9 cleavage detection 

 

 

The enzyme (T7EI) contained in the kit targets the DNA mismatches caused by Cas9 

activity and the corresponding double strand breaks, creating two smaller DNA 

fragments. The forward and reverse primers for gRNA3 were redesigned using the 

BLAST platform (Table 4—1). The cleavage detection kit exhibited three different results 

for the three gRNA sequences used (Figure 4—3). The cleavage results showed that 

gRNA1 was the only gRNA to demonstrate clear cleavage with a cleavage efficiency of 

0.267 (Figure 4—3 & Equation 2-1). gRNA3 did not show any cleavage detection, while 
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gRNA2 exhibited some cleaved products but no uncleaved DNA (Figure 4—3). This data 

suggests that knockout of ABCC3 was most successfully achieved in the gRNA1 cell 

lines. The positive control was also clearly seen and resulted in a cleavage efficiency of 

0.291 (Equation 2-1).  

 

 

Primers Primer Sequence PCR 

produ

ct size 

crRNA 

(Thermofisher) 

crRNA target sequence Pam 

Sequenc

e 

CRISPR

1 FWD 

CTCTGGGGATGCGGATTCC

A 

604bp CRISPR957583_

CR 

GATACAGTATGAGCGGC

TGC 

AGG 

CRISPR

1 RVS 

GGGACCCAGCAGTGACTTT

GA 

    

CRISPR

2 FWD 

GGTGCAGTTTTTGTTGCCCT

TA 

608bp CRISPR957588_

CR 

GGATGATGTAGCCACGA

CAA 

TGG 

CRISPR

2 RVS 

AGAAGGCAGAGGTTGCAGT

GAG 

    

CRISPR

3 FWD 

TGCTTGGGGTCATGGGAAT

C 

422bp CRISPR957600_

CR (Reverse 

Strand) 

GGAGTAAAAAAGGTCCG

CCC 

AGG 

CRISPR

3 RVS 

AGACCTCCCCCATCCACTTT     

Table 4—1. ABCC3 gRNA sequences and primers. 

 

Functional Modulation of MRP3 Activity 

ABCC3 knockout should result in the modulation of MRP3 transport function. Flow 

cytometry outputs include the geometric mean which is predominantly used to calculate 

the mean of values on a logarithmic scale [303]. While, the arithmetic mean is simply the 

value that divides the total acquired across the entire dataset by the number of 

observations recorded [303, 304]. The median on the other hand is the value that lies 

between the highest observed results and the lowest results observed [304]. The median 

values can be used to remove outliers from the overall summary values that is sometimes 

seen in mean calculations. This is usually why the median is utilised in flow cytometry 

experiments [304]. 

 

Table 4—2. gRNA Targets  

gRNA Thermofisher catalog 

number 

Target DNA sequence PAM sequence 

1 CRISPR957583_CR GATACAGTATGAGCGGCTGC 

(FWD strand) 

AGG 

2 CRISPR957588_CR GGATGATGTAGCCACGACAA 

(FWD strand) 

TGG 

3 CRISPR957600_CR GGAGTAAAAAAGGTCCGCCC 

(reverse strand)  

AGG 
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The initial round of CRISPR-Cas9 transfection showed increased CMF cellular 

accumulation above that of the WT PANC1 cancer cells (Figure 4—4). Both the median 

and the geometric mean (x-GMean) results were displayed (Figure 4—4). These results 

showed that in mixed knockout populations, gRNA2 exhibited the highest increase in 

CMF accumulation by 84% (x-GMean) (Figure 4—4). The highest increase of CMF 

accumulation across gRNA1 and gRNA3, were 47% and 33% respectively (Figure 4—

4). However, the average across the triplicate experiments gRNA1 and gRNA3 cell lines 

showed a conservative increase in CMF accumulation of 0.8% and decrease of 0.63%, 

respectively (Figure 4—4). 
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Figure 4—4. Accumulation of CMF across wild-type and K/O PANC1 cells. Initial screening of mixed K/O cell population 

showed substantial differences between WT and K/O CMF uptake levels. (A) Compares the differences in geometric 

mean of CMF fluorescence. gRNA2 showed a significant increase in CMF accumulation in comparison to WT cells (P-

value = 0.0131). (B) Compares the differences in the median CMF fluorescence values. gRNA2 showed a significant 

increase in CMF accumulation in comparison to WT cells (P-value = 0.0159). 

 

Median results showed a more conservative increase in CMF accumulation across the 

datasets, although the overall expression pattern remained unchanged (Figure 4—4). 

The average median significantly increased in CMF accumulation across gRNA2 

knockout cells was 66.3%. The average median values for gRNA1 and gRNA3 showed 

CMF increases of 17% and 0.1%, respectively. These results suggested that the 

transfection efficiency for gRNA2 was consistent across the PANC1 cells, however 
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gRNA1 and gRNA3 both showed large variations in transfection efficiency across the 

CRISPR-Cas9 repeats. The CMF accumulation assay was used to screen the functional 

effects of ABCC3 knockout using the CRISPR-Cas9 system.  

 

 

Figure 4—5. Accumulation of CMF across wild-type and the K/O PANC1 cells. The overlay revealed the average 

differences in CMDFA accumulation levels across WT and MRP3 K/O cells (n = 2). The replicate with the highest 

accumulation was chosen in this overlay.  

 

The overlay of the fluorescence across the samples exhibiting the highest CMF 

accumulation showed a clear shift of the knockout cells in the log scale (Figure 4—5). 

While, gRNA2 showed the highest average increase in CMF accumulation across cell 

lines, gRNA3 clearly showed the highest fluorescence in comparison to all cell lines 

(Figure 4—5). 
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Figure 4—6. Accumulation of CMF across wild-type and knockout PANC1 cells. The second repeat of CRISPR-Cas9 

experiments also revealed differences in average CMDFA accumulation levels across WT and mixed MRP3 knockout 

populations (fold-change) (n = 2). (A) Average geometric mean fold change. (B) Average median fold change. 
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The second round of CRISPR-Cas9 transfection also showed increased CMF 

accumulation in PANC1 ABCC3 knockout cells in comparison to wild-type PANC1 cells 

(Figure 4—6). In this second round the transfected, mixed cell populations showed an 

increase in CMF accumulation (x-GMean) above that of wild-type PANC1 by 1.499-fold, 

1.36-fold and 1.15-fold across gRNA3, gRNA2 and gRNA1 cells, respectively (Figure 

4—6). While, the average x-GMean fluorescence seen across gRNA samples was the 

highest in gRNA3 , the highest levels of fluorescence (x-GMean and median) seen in 

any of the replicates was seen in a replicate of the gRNA2 mixed populations (Figure 4—

7). The variation in CMF accumulation showed that while an upward trend was seen in 

x-GMean significance could not be established.  

 

PANC1 wild type gRNA1 

  

Log10 Log10 

Gate X-Med X-AMean X-Stdev X-CV X-GMean  

All 215.65 260.77 201.53 77.28 161.87 

Gate X-Med X-AMean X-Stdev X-CV X-GMean  

All 323.35 349.30 234.18 67.04 241.62 

 

  

gRNA2 gRNA3 

  

Log10 Log10 

Gate X-Med X-AMean X-Stdev X-CV X-GMean  

All 355.66 414.08 270.61 65.35 299.49 

Gate X-Med X-AMean X-Stdev X-CV X-GMean  

All 299.79 341.75 236.83 69.30 216.09 

 

Figure 4—7. Accumulation of CMF across wild-type and K/O PANC1 cells (second round). The raw data from the CMF 

accumulation study of the second round of the CRISP-Cas9 experiments. The highest CMDFA accumulation levels 

across WT and mixed knockout populations were extracted from the Kaluza software. 

 

However, median fluorescence results across the same cells and data sets showed that 

CMF accumulation was significantly (P-values = 0.0112, 0.0006 and 0.002, respectively) 
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increased in gRNA1, gRNA2 and gRNA3 cells by 18.1%, 39.8 and 53.9% (Figure 4—6). 

The median values showed much less variations across gRNA samples tested, lowering 

the standard deviation and highlighting the differences in CMF accumulation levels 

(Figure 4—6).Furthermore, according to the average median results, gRNA2 cells 

accumulated the highest amount of CMF (Figure 4—6). The average median 

fluorescence across duplicates was 1.47-fold, 1.76-fold and 1.38-fold in gRNA1, gRNA2 

and gRNA3 mixed populations, respectively (Figure 4—6). 

Modulation of Drug Resistance in ABCC3 Knockout Cell Lines 
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Figure 4—8. Cell viability across WT and K/O cell lines non-linear regression models. (A) Cell viability across K/O and 

WT cell lines in response to methotrexate concentrations (linear graph). (B) Cell viability across K/O and WT cell lines in 

response to methotrexate concentrations (log graph). 
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While these results did not line up exactly with the initial round of CRISPR-cas9 results, 

the general increase especially in gRNA2 samples were consistent across the two 

rounds of transfection (Figure 4—4 & Figure 4—6). The shift in fluorescence peaks was 

also seen across both initial and subsequent transfection experiments in comparison to 

wild-type PANC1 cells (Figure 4—7). The modulation of ABCC3/MRP3 transport function 

was established. Whether this modulation would affect drug resistance in PANC1 cells 

was investigated. The PANC1 cells and knockout cells were grown alongside each other 

since transfection. The PANC1 cells showed an unusually high resistance towards 

gemcitabine showing an IC50 > 100 µM (Table 4—3). These same cells showed a slightly 

more sensitive response towards methotrexate (IC50 = 81.5 µM) (Table 4—3). In the 

mixed cell populations, the knockout of ABCC3 showed decreased resistance towards 

both methotrexate and gemcitabine (Figure 4—8 & Figure 4—9).  

Nonlinear regression analysis in GraphPad prism displayed this increase in 

sensitivity clearly (Figure 4—9 & Figure 4—8). The IC50 of methotrexate in wild type cells 

of 81.5 µM was reduced in gRNA1, gRNA2 and gRNA3 knockout cells with each 

knockout cell line showing a more potent methotrexate IC50 of 19.76 µM, 2.91 µM and 

40.33 µM, respectively (Table 4—3). The IC50 calculations of gemcitabine in wild type 

cells (>100 µM) was also reduced in gRNA2 knockout cells to 3.53 µM (Table 4—3). 

While the remaining knockout cells also showed large gemcitabine IC50 values (>100 

µM), both gRNA1 and gRNA3 cells both exhibited a downward shift in both the linear 

and nonlinear graphs, suggesting a decrease in resistance towards gemcitabine than 

wild type cells (Figure 4—8).  
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Figure 4—9. Cell viability across WT and K/O cell lines non-linear regression models. (A) Cell viability across K/O and 

WT cell lines in response to gemcitabine concentrations (linear graph). (B) Cell viability across K/O and WT cell lines in 

response to gemcitabine concentrations (log graph). 

 

Methotrexate and gemcitabine both showed increased sensitivity in knockout cells in 

comparison to wild-type, especially ABCC3 knockout 2 cells (Table 4—3, Figure 4—8 & 

Figure 4—9). Further analysis revealed that the mean cell viability in wild-type PANC1 

cells in the presence of methotrexate and gemcitabine were 57.39% and 109.8%, 

respectively (Table 4—3).  

 

IC50 (µM) 

 PANC1 Wild-Type  PANC1 ABCC3 K/O 

1 

PANC1 ABCC3 K/O 

2 

PANC1 ABCC3 K/O 

3 

MTX IC50 values 81.5 µM 19.76 µM 2.913 µM 40.33 µM 

GEM values IC50 >100 µM >100 µM 3.530 µM >100 µM 

One-way ANOVA results 

Mean cellular viability 

results MTX  

57.39 48.59 45.03 45.94 

Dunnett’s Test (P-

values) MTX 

 0.0122 0.0005 0.0011 

Mean cellular viability 

results GEM  

109.8 79.93 48.84 82.51 

Dunnett’s Test (P-

values) GEM 

 0.1684 0.0016 0.2256 

Table 4—3. Gemcitabine and Methotrexate cytotoxicity across PANC1 wild-type and knockout cells. MTT assay was 

used to investigate the differences in cytotoxicity between wild-type and knockout cells. 

 

Whereas, across the knockout cells the average cell viability in the presence of varied 

concentrations of methotrexate significantly dropped to 48.59 (P-value = 0.012), 45.03 



 

Page 120 of 185 

 

(P-value = 0.0005), 45.94 (P-value = 0.0011) in gRNA1, gRNA2 and gRNA3 knockout 

cells respectively (Table 4—3). The average cell viability across different concentrations 

of gemcitabine also dropped significantly in gRNA2 cells to 48.84 (P-value = 0.0016) but 

not the remaining knockout cells (Table 4—3). 

Discussion 

The CRISPR-Cas9 knockout of MRP3 showed reduced functional activity of MRP3 with 

gRNA2 and gRNA3 knockout cells competing for the highest inhibition in CMF 

accumulation (Figure 4—4 & Figure 4—7). The subsequent loss in MRP3 function also 

resulted in the reduction of MRP3-dependent resistance of methotrexate and 

gemcitabine (Table 4—3). The use of both the geometric mean and the median in the 

interpretation of flow cytometry results was necessary [303, 304]. While the median value 

does reduce the effects of outliers, the cells that had high CMF fluorescence may be the 

very cells that the CRISPR-Cas9 system was meant to create. The results clearly 

showed that gRNA2 within the mixed population was the most successful increasing 

CMF accumulation which can be related to a decrease in MRP3 function and multidrug 

resistance (Figure 4—6, Figure 4—8 & Figure 4—9). MRP1, MRP5, BCRP2 and MRP3 

transport has been previously established in literature to transport methotrexate [277, 

305]. Therefore, the knockout of MRP3/ABCC3 would be expected to increase sensitivity 

towards methotrexate. However, gemcitabine has only been previously shown to 

increase the expression levels of MRP1, MRP5 and MRP3 [29, 302]. This was the first 

time that modulation of gemcitabine resistance has shown dependence on MRP3 

expression, which was highlighted in ABCC3 gRNA2 knockout cells (Table 4—3). These 

results showed a clear logical flow from knockout to limited function including increased 

model substrate CMF accumulation and enhanced drug sensitivity. Further validating 

ABCC3/MRP3 as a viable anticancer target.    

 The cleavage detection results suggest that the cleavage efficiency in the mixed 

gRNA populations for both gRNA2 and gRNA3 was low or non-existent. However, these 

cells showed the highest modulation of CMF accumulation and the most significant 

changes to drug resistance. Mutations in PANC1 DNA or gRNA could affect both the 

target sequence and the binding site utilised by Cas9 for double stranded breaks [306]. 

While the mixed populations of the knockout cells all showed reductions in ABCC3/MRP3 

expression, function and multidrug resistance, establishing single clone populations is 

necessary to fully investigate the extent at which transport and drug resistance of 

gemcitabine and methotrexate is dependent on ABCC3/MRP3 expression. Furthermore, 

gene sequencing could be used detect the genomic changes that have allowed the 

phenotypic changes seen in these cell lines. Further validation across other pancreatic 

cancer cell lines and comparison between knockout and ABCC3 overexpressing cell 
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lines would bolster the results found in this study. A recent paper also suggested that 

truncated versions of proteins may compensate in part for the loss of function caused by 

CRISPR-Cas9 [254]. Whether this is the reason for the lower CMF accumulation should 

be investigated. 

The successful modulation of ABCC3/MRP3 expression has far reaching 

applications. The overexpression of ABCC3/MRP3 has been shown as previously stated 

across several different cancer types. These include pancreatic cancer, breast cancer, 

lung cancer, bone cancer, and urinary bladder cancer [80, 81, 283, 307]. The ability to 

successfully target ABCC3 using the CRISPR-Cas9 system will inform our 

understanding of the dependence of these cancers on the expression of ABCC3/MRP3. 

Furthermore, ABCC3/MRP3 has been shown to transport a number of anticancer drugs 

including methotrexate, paclitaxel and monomethyl-auristatin-E (MMAE), sorafenib, 

etoposide, teniposide and glucuronide conjugates and possibly gemcitabine [60, 79, 88]. 

These knockout cells can also be used to investigate other drug targets and substrates 

that could modulated by ABCC3/MRP3 activity. 
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Chapter 5 The Role of MRP3 in Drug Resistance 

Introduction 

MRP3 expression has transported anticancer drugs and modulated resistance in cancer 

[36, 277]. The modulation of cytotoxicity was analysed in MRP3 overexpressing cell lines 

against a variety of drugs [79]. MRP3 was able to inhibit etoposide, teniposide and 

methotrexate in a concentration and time dependant manner [79]. In normal cells, MRP3 

expression is key in the transport of key bile acids [73]. MRP3 expression is also key in 

the pharmacological activities of drug development and distribution, especially in the 

context of drug induced liver injury (DILI) [43, 73]. MRP3 expression was able to 

modulate bile acid homeostasis, a key factor in DILI [73]. MRP3 also showed extensive 

overexpression in pancreatic, kidney and lung cancer as exhibited by the bioinformatics 

chapter. MRP3 inhibition by suramin, curcumin and EF24 were investigated in pancreatic 

cancer cell lines PANC1 and MIAPACA2. 

Suramin, was first synthesised in 1916 to treat the parasitic infection, 

trypanosomiasis (Figure 5—1) [171]. Trypanosomiasis more commonly known as 

sleeping sickness is a disease that is caused by the Trypanosoma brucei, T. b. 

rhodesiense and T. b. gambiense parasites [308]. The disease is transmitted by the bite 

of the tsetse fly (Glossina spp) found in different regions of Africa [308]. The parasites 

infect and multiply within the blood causing a variety of initial symptoms including fever, 

headaches and joint pain [308]. These minor symptoms are followed by more serious 

neurological and endocrinal disorders, which if untreated would result in death within 

months of initial infection [308]. After extensive characterization of over 1000 

naphthalene ureas, germanin (suramin) was discovered to cure trypanosomiasis [308]. 

Parasites require energy provided by glycolysis in order to multiply within the blood [309]. 

Suramin inhibits the glycosomal enzymes within the cytosol, directly limiting the energy 

required to sustain parasitic life [309]. Suramin also showed a wide variety of biological 

activities including modulation of angiogenesis, WNT signalling, telomere shortening, 

extracellular matrix (ECM) breakdown, CD40-CD154 immunosuppression and more 

recently MRP3 inhibition [73, 171, 174, 176, 177]. This has led to the investigation of 

suramin in several anticancer studies [73, 171, 174, 176, 177]. 

Suramin has also shown the ability to inhibit angiogenesis in several different 

models [310, 311]. In ovarian and cervical cancer the overexpression of Hpa was 

correlated with a poor prognosis [310]. The endo-β-glucuronidase, Hpa is a compound 

that aids in the breakdown of the ECM, basement membrane by cleaving heparan 

sulphate proteoglycans [310]. The breakdown of the ECM and the basement membrane 

are crucial steps in cancer invasion, migration and metastasis [310]. In primary breast 

tumours, overexpression of Hpa resulted in increased tumour growth, survival and 
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angiogenesis [312]. Suramin (300-600 µg/ml) was able to significantly inhibit Hpa protein 

and mRNA expression as well as cell growth in HO-8910PM and HeLa cells in a 

concentration and time dependent manner [310].  

Suramin also inhibited Wnt signalling in triple-negative breast cancer (TNBC) 

cells [174]. The Wnt signalling proteins play an important role in normal and cancerous 

cellular processes [313]. The canonical Wnt signalling has been shown to modulate 

epithelial cell differentiation, endothelial-mesenchymal transition Notch-induced cell 

cycle arrest and stabilization of vasculature [313]. The non-canonical, Ca2+, Wnt 

signalling pathway was able to stimulate the nuclear factor of activated T-cells (NFAT) 

downstream [313]. The transcription factor NFAT is key in the upregulation of VEGF-

induced angiogenesis [314]. Canonical Wnt signalling also modulates vascularization of 

the central nervous system and is responsible for blood-brain barrier (BBB) induction 

[315, 316]. The ability to inhibit Wnt signalling may explain the wide range of biological 

activities that suramin can inhibit. The mechanism of suramin inhibition appeared to be 

the targeting of plasma membrane components of the Wnt signalling pathway by 

inhibiting g-protein dependent endocytosis [174]. While, the biological activities of 

suramin has shown vast biological activities, more recently suramin also exhibited the 

ability to modulate MRP3 [73]. Using a computational, Bayesian model to predict novel 

MRP3 inhibitors, Ali et al., identified suramin as a potential inhibitor [73]. The 

accumulation of E217G, like CMF was dependent on the activity of MRP3 transport 

across the cell membrane [73, 218, 219]. Further In vitro validation revealed suramin to 

be one of the top three inhibitors of MRP3 dependent transport of E217G in a membrane 

vesicle study [7]. 

Curcumin, a phytochemical derived from the readily available spice turmeric has 

been extensively investigated in cancer (Figure 5—1) [154-158]. Earlier studies 

investigated curcumin’s clinical activity, apoptotic activity and ABC transporter 

modulations [154-158]. In cancer, NF-κB modulated apoptosis, tumour proliferation, 

invasion, angiogenesis and metastasis [154]. Curcumin targeted NF-κB by reducing NF-

κB activation, suppressing NF-κB downstream gene products thereby inhibiting 

proliferation [154]. In pancreatic cancer, a phase II trial testing the clinical effectiveness 

of curcumin was carried out [154]. Curcumin showed no cytotoxicity across the 25 

patients, but bioavailability was limited [154]. However, even with limited bioavailability, 

two patients still demonstrated positive responses with one patient exhibiting >18 months 

stable disease [154]. The remaining patient showed a marked reversal in tumour size 

(73%), which was unfortunately followed by a rapid disease progression [154]. The 

tumours that regressed continued to do so under curcumin treatment while other tumours 

that were originally smaller continued to grow, suggesting a heterogeneous population 

of curcumin-sensitive and resistant cells within the tumour population [154].  
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Figure 5—1.Chemical structures of Suramin, benzbromarone, curcumin and EF24.  

Suramin Benzbromarone 
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As previously stated, ABC transporters and especially those of the MDR family have 

shown strong regulation of multidrug resistance in cancer cells and can affect drug 

disposition and absorption in both normal and cancerous cells [30, 44, 55]. The multidrug 

resistant cervical cancer cell line (KB-V1) was used to investigate the effects of 

curcumoids on P-gp expression and function [156]. Curcumin and two closely related 

compounds showed reduction in both the expression and function of the ABC transporter 

P-gp [156]. The treatment with curcumin increased the sensitivity of KB-V1 cells to 

vinblastine above that of the other curcumoids tested [156]. Curcumin also showed the 

strongest inhibition of verapamil stimulated ATPase activity when compared to the other 

curcumoids tested [156]. Curcumin also showed the ability to inhibit a broad spectrum of 

ABC transporters including P-gp, MRP1, MRP5 and BCRP transport across the 

respective overexpressing cell lines [55, 162]. As previously mentioned, in vivo MRP3 

knockout mice showed significantly less COG plasma levels of MRP3 suggesting that 

the loss of MRP3 decreased the accumulation of COG within the plasma and increased 

in accumulation within the cells [74]. Therefore, COG could be a substrate of MRP3 and 

possibly a competitive inhibitor as well. Whether curcumin can also inhibit MRP3 was 

investigated. 

The oral bioavailability of curcumin was limited due to poor intestinal absorption, 

rapid metabolism into curcumin conjugates and a short half-life [159-161]. The intestinal 

transport of curcumin and two novel derivatives was investigated using a Caco-2 cell 

monolayer [157]. A chamber designed with both an apical and basolateral compartment 

was used to detect changes in concentrations across the Caco-2-cell monolayer [157]. 

Transport rates were calculated and the results demonstrated that curcumin derivatives 

exhibited improved membrane permeability, suggesting improved bioavailability [157]. 
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The chemical modulation of curcumin in order to improve the specificity, potency and 

bioavailability has been extensively studied [157, 162]. Monocarbonyl analogues of 

curcumin (MACs) were created without the unstable β-diketone moiety, improving upon 

curcumin’s in vivo pharmacology [162]. 23 MACs were investigated for their ability to 

improve upon curcumin’s inhibition of P-gp, BCRP, MRP1 and MRP5 [162]. These MACs 

showed improved potency in the inhibition of the ABC transporters tested in comparison 

to curcumin [162]. The greatest improvements were seen in BCRP transport inhibition 

[162].  

A curcumin MAC EF24, also showed improved biological activity and anticancer 

affects (Figure 5—1) [162]. EF24 exhibited increased cytotoxicity in a variety of cancer 

cells in comparison to curcumin and cisplatin [166]. EF24, much like curcumin, 

interrupted cell cycle progression, induced apoptosis and inhibited cancer cell 

proliferation by modulating the NF-ĸB pathway [166]. Whether curcumin’s ability to inhibit 

ABC transporters has translated to EF24 remains unknown. Curcumin, EF24 and 

suramin inhibition of MRP3 function and reversal of MRP3 dependent drug resistance 

was investigated. 

Results 

Cytotoxicity  

The MTT assay was used to calculate the modulation of cell viability when treated with 

EF24, suramin, benzbromarone, curcumin, methotrexate and gemcitabine across 

PANC1 and A549 cells (Table 5—1). The protein atlas database showed that A549 cells 

showed the highest mRNA expression of ABCC3 across a wide variety of cell lines, not 

including PANC1 (www.proteinatlas.org). A549 was therefore included in this study as a 

control for highly expressing ABCC3 cells when needed. In PANC1 and A549 cells, EF24 

showed the most potent inhibition of cellular viability across PANC1 (IC50: 1.7 µM) and 

A549 (IC50: 2.2 µM) cells (Table 5—1). Curcumin also showed inhibition of cellular 

viability across PANC1 (IC50: 24.81 µM) and A540 (IC50: 34.49 µM) cells (Table 5—1). 

PANC1 cells showed a much higher resistance toward gemcitabine (IC50 >100 µM) than 

in A549 (IC50: 17.92 µM) cells (Table 5—1). While A549 cells showed much higher 

resistance towards methotrexate than in PANC1 cells exhibiting IC50 values of 47 µM 

and >100 µM, respectively (Table 5—1). The nonlinear regression graphs of the tested 

compounds showed a wide the variety of slopes and curves (Figure 5—2). Suramin, 

benzbromarone, and curcumin (≥20 µM) all increased cell viability or proliferation beyond 

that of untreated PANC1 cells (Figure 5—2). This initial stimulation by suramin and 

curcumin decreased as concentrations increased (Figure 5—2). However, 

benzbromarone continued to stimulate cell viability up to 100 µM (Figure 5—2).  

  



 

Page 126 of 185 

 

 

Figure 5—2. MTT Cell viability results (Log10) of 72-hour incubations (PANC1). All experimental results were averages 

across three separate experiments. Data was transformed using the GraphPad prism software 8.3.2. The graph with the 

highest R-value was selected. 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

38

40

42

44

Log10 Concentration (µM)

C
e
ll

 V
ia

b
il
it

y
 (

%
)

 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

100

110

120

130

Log10 Concentration (µM)

C
e
ll

 V
ia

b
il
it

y
 (

%
)

 

Methotrexate cell viability results. Suramin cell viability results. 
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Gemcitabine cell viability results. Benzbromarone cell viability results. 
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Cell viability of curcumin with the highest concentration ending 

at 20 µM. 

Cell viability of curcumin with the highest 

concentration ending at 100 µM. 
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EF24 treated PANC1 cell viability results.  

 

The anticancer drugs methotrexate and gemcitabine both decreased cell viability of 

PANC1 cells in a concentration dependent manner (Figure 5—2). Methotrexate even at 

low concentrations caused an initial 60-70% drop in cell viability, which continued to drop 

at higher concentrations (Figure 5—2). However, gemcitabine treatment up to 100 µM 

was unable to decrease cell viability by more than 50% (Figure 5—2). Curcumin at higher 

concentrations (with an final concentration of 100 µM) and EF24 were both able to cause 

close to 100% cell death, decreasing cell viability in a concentration dependent manner 

(Figure 5—2). 

 

 PANC1  A549 MIAPACA2 

Suramin >100 µM >100 µM >100 µM 

EF24 1.76 µM 2.2 µM 821 nM 

Gemcitabine >100 µM 17.92 µM 14.88 µM 

Methotrexate 47 µM >100 µM  3.07 µM 

Benzbromarone >100 µM >100 µM  

Curcumin 24.81 µM 34.49 µM  

Table 5—1. Cytotoxicity across PANC1, MIAPACA2 and A549 cells. MTT assay was used to investigate the cytotoxicity 

(IC50) of treatment compounds: suramin, benzbromarone, curcumin, EF24, methotrexate and gemcitabine after 72 hours 

incubation. 

 

MRP3 Transport Inhibition 

The effects of suramin and benzbromarone on the cellular accumulation of CMF was 

tested in pancreatic cancer cells (MIAPACA2 and PANC1). The fluorescent CMF signals 

were detected using flow cytometry which showed that the highest signals were detected 

after five minutes incubation (Figure 5—3). BCECF a specific substrate of MRP5 

transport was also initially tested in MIAPACA2 cells in combination with DMSO 

(negative control), curcumin, EF24 and benzbromarone (Figure 5—3). The results 

showed that curcumin (20 µM) significantly increased the geometric mean of BCECF 

accumulation (P-value = 0.0371) by 2.17-fold (Figure 5—3).  



 

Page 128 of 185 

 

 

 

(A) 

B
en

zb
ro

m
ar

one 
20

µM

C
urc

um
in

 2
0µ

M

E
F24

 2
0µ

M

D
M

S
O

0.0

0.5

1.0

1.5

2.0

2.5
F

o
ld

 C
h

a
n

g
e
 (

x
-G

M
e
a
n

)

✱

 

(B)  

B
en

zb
ro

m
ar

one 
20

µM

C
urc

um
in

 2
0µ

M

EF24
 2

0µ
M

D
M

S
O

0.0

0.5

1.0

1.5

2.0

F
o

ld
 C

h
a
n

g
e
 (

M
e
d

ia
n

)

ns

 

 

(C) 

PA
N
C
1 

D
M

SO
 0

.1
%

PA
N
C
1 

C
U
C
 2

0µ
M

PA
N
C
1 

C
U
C
 1

0µ
M

PA
N
C
1 

EF24
 1

0µ
M

PA
N
C
1 

EF24
 5

µM

PA
N
C
1 

EF24
 2

.5
µM

0.0

0.5

1.0

1.5

2.0

2.5

B
C

E
C

F
 X

-G
M

e
a
n

✱✱✱

✱✱

✱✱

✱✱✱

✱✱✱✱

 



 

Page 129 of 185 

 

(D) 

PA
N
C
1 

D
M

SO
 0

.1
%

PA
N
C
1 

C
U
C
 2

0µ
M

PA
N
C
1 

C
U
C
 1

0µ
M

PA
N
C
1 

E
F24

 1
0µ

M

PA
N
C
1 

E
F24

 5
µM

PA
N
C
1 

E
F24

 2
.5

µM

0.0

0.5

1.0

1.5

2.0

2.5

B
C

E
C

F
 M

e
d

ia
n

 F
lu

o
re

s
c
e
n

c
e

✱✱

ns

✱✱✱

✱✱

✱✱✱

 

 

Figure 5—3. Initial assessment of BCECF (0.25 µM) accumulation (X-gMean or Median fluoresence). MIAPACA2 cells 

were incubated with DMSO (0.1% in RPMI phenol red free, serum free media), benzbromarone, curcumin and EF24 in 

combination with BCECF (A) x-GMean or (B) median fluoresence. PANC1 cells were also incubated with a combination 

of DMSO, CUC or EF24 and BCECF in PANC1 cells at different concentrations (C) x-GMean or (D) median 

flouresence.  

 

The BCECF accumulation was increased by benzbromarone (20 µM) and EF24 (20 µM) 

by 1.68 and 1.56-fold (P-values = 0.0614 and 0.1163, respectively). These results also 

showed an increase in median fluorescence (X-med) by 1.5.17-fold, 1.519-fold and 1.4-

fold for benzbromarone, curcumin and EF24, (P-values = 0.079, 0.073, 0.144) 

respectively (Figure 5—3). Upon further investigation, BCECF accumulation significantly 

increased in PANC1 cells when treated with curcumin also at 10 µM and at varied 

concentrations of EF24 (10 µM and 2.5 µM). Curcumin at 10 µM and 20 µM was able to 

significantly increase BCECF accumulation (x-GMean) by 1.94-fold and 2.17-fold (P-

value = 0.0003 and <0.0001) concentrations, respectively (Figure 5—3).  

While EF24 at 10 µM, 5 µM and 2.5 µM was able to significantly (P-values = 

0.0015, 0.0021 and 0.0006, respectively) increase BCECF (x-GMean) accumulation by 

1.68-fold, 1.65-fold and 1.82-fold, respectively (Figure 5—3). The median BCECF 

accumulation results showed similar but more conservative increases (Figure 5—3). 

Median BCECF accumulation increased under curcumin (20 µM and 10 µM) and EF24 

(10 µM, 5 µM and 2.5) treatment by 1.97-fold, 1.84-fold, 1.41-fold, 1.27-fold and 1.43-

fold, respectively (Figure 5—3). Suggesting some evidence of heterogeneity within the 

sample cells and that 2.5 µM would be a good concentration for MRP5/BCECF inhibition 

(Figure 5—3 & Table 5—1). 
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Figure 5—4. PANC1 accumulation of CMF in the presence of Suramin/Benzbromarone (five minutes). The comparison 

of fluorescent signals between control (0.1% DMSO in RPMI phenol red free, serum free media), benzbromarone (20 

µM) and suramin (20 µM or 10 µM) in PANC1 cells. (A) x-GMean and (B) Median. 

 

CMF accumulation was initially optimised, and the five-minute time point was 

selected as it showed the highest CMF accumulation (Supplementary Figure 3). PANC1 

cells treated with suramin (20 µM) and benzbromarone (20 µM) significantly (P-value = 

0.001 and 0.029, respectively) increased the cellular accumulation of CMF by 2.11-fold 

and 1.7-fold (Figure 5—4). While suramin (10 µM) showed an average increase in CMF 

accumulation by 1.55-fold. However, this increase was unable to produce significance 

(P-value = 0.15) (Figure 5—4). The CMF accumulation median showed suramin (20 µM) 
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and benzbromarone (20 µM) were also able to significantly (P-value = 0.011 and 0.016, 

respectively) increase CMF across median fluorescence levels by 1.97-fold and1.91-

fold, respectively (Figure 5—4). Suramin at 20 µM, 10 µM and 5 µM was also able to 

increase CMF accumulation in HepG2 cells by 1.55-fold, 2.81-fold and 2.02-fold 

respectively (data not shown).  
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Figure 5—5. PANC1 accumulation of CMF in the presence of EF24/Curcumin/EF24 (five minutes). The comparison of 

fluorescent signals between control (DMSO: 0.1%), curcumin (20 µM) and EF24 (2.5 µM, 1.25 µM or 0.625 µM) in 

PANC1 cells. (A) x-GMean or (B) median fluorescence. 
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Curcumin and EF24 also showed inhibition of MRP3 in the CMF accumulation 

assay (Figure 5—5). The same protocol used for the assessment of 

suramin/benzbromarone modulation of CMF accumulation was used to evaluate 

curcumin and EF24. EF24 showed a much higher potency than the other compounds 

tested to illicit inhibition of MRP3-dependent, CMF accumulation (Figure 5—5). EF24 at 

2.5 µM had already shown the ability to significantly increase the accumulation of BCECF 

in PANC1 cells (Figure 5—3). EF24 at 2.5 µM and 1.25 µM was also able to significantly 

(P-value = 0.0083 and 0.0425, respectively) increased CMF cellular accumulation (x-

GMean) by 2.43-fold and 2.05-fold, respectively (Figure 5—5). Even at 0.625 µM, EF24 

was also able to increase CMF accumulation by 1.96-fold (P-value = 0.1786) (Figure 5—

5). Curcumin (20 µM) also significantly (P-value = 0.0018) increased CMF accumulation 

within PANC1 cells by 2.77-fold (P-value = 0.0421) (Figure 5—5). For the first time the 

median CMF fluorescence exhibited stronger evidence that CMF accumulation had 

increased (Figure 5—5). All compounds tested showed significant increase in the median 

CMF accumulation (Figure 5—5). Curcumin (20 µM) and EF24 (2.5 µM, 1.25 µM or 0.625 

µM) significantly (P-values = 0.0003, 0.0009, 0.0002 and 0.0371, respectively) increased 

CMF accumulation (median) by 2.63-fold, 2.43-fold, 2.77-fold and 1.79-fold, respectively 

(Figure 5—5). Curcumin has already showed inhibition a number of other ABC 

transporters including P-gp, MRP1, MRP5 and BCRP transport across the respective 

overexpressing cell lines [55, 162]. These results showed that curcumin (20 µM) also 

increased CMF accumulation, displaying that MRP3 was also inhibited by curcumin 

(Figure 5—5). Furthermore, these results showed potent and significant inhibition of 

MRP3 function at 2.5 µM, 1.25 µM and 0.625 µM (Figure 5—5). 

Combination of EF24 and Suramin with Anticancer Drugs in PANC1 cells 

The inhibition of MRP3 function should translate into a reduction in anticancer drug 

resistance, this was investigated. The use of the diagonal combination design with a ratio 

of 1:1 drug combinations were recommended for the initial experiment [229]. The 

CompuSyn software was used to calculate the combination index (CI) and dose-

reduction index (DRI) values of the various combinations of the anticancer drugs (MTX 

or GEM), with the MRP3 inhibitors (SUR or EF24) [229]. The CI can be used to effectively 

define whether a combination of drugs were synergistic, antagonistic or additive [229]. 

The DRI is a measure of how many fold the dose of one drug may be reduced in the 

presence of another drug in comparison to the sole treatment of either drug [229]. The 

data was interpreted as suggested in a previous paper by chou at al., (Figure 5—6) [229]. 
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Figure 5—6. Combination plots explained by chou et al., [229]. 

 

Gemcitabine and EF24 

The CompuSyn analysis showed high inhibition of PANC1 cell viability by EF24 and low 

inhibition of cell viability by GEM, which is consistent with previous results (Table 5—2 & 

Table 5—1). The analysis parameters of slope (m), potency (Dm) and goodness of fit (r) 

revealed that gemcitabine showed low conformity (r-value = -0.2068) to the median effect 

principle (MEP) and therefore, Dm and m values could not be trusted (Table 5—2). This 

result was most likely due to the fact that gemcitabine did not previously show more than 

a 50% reduction in cell viability up to 100 µM (data not shown). The slope (m) is an 

important parameter as it is used to calculate the CI [229]. Conversely, EF24 showed a 

strong r-value (0.944), with a sigmoidal curve (m>1) and a low Dm (0.647 µM) (Table 

5—2). The combination of gemcitabine and EF24 the data showed a higher Dm than 

EF24 or gemcitabine alone (3.44834) which would suggest a less potent combination 

than EF24 alone (Table 5—2). The combination of EF24 and gemcitabine also showed 

less conformity to the MEP (r-value = 0.895) (Table 5—2).  
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Compound Fractional 

Inhibition 

(Fa) 

Parameters  CI [DRI (GEM); DRI 

(EF24)] 

GEM (µM) EF24 (µM) m Dm r  

100  0.323 -0.0672 +/- 

0.15907 

4.33E-05 -0.2068  

50  0.221     

25  0.234     

12.5  0.334     

6.25  0.459     

3.125  0.237     

 20 0.996 1.45122 +/- 

0.25452 

0.6426 0.94363  

 10 0.986     

 5 0.880     

 2.5 0.794     

 1.25 0.752     

 0.625 0.637     

100 + 20 0.999 1.60679 +/- 

0.39931 

3.44834 0.89549 1.59E49 [6.3E-50;3.10467] 

50 + 10 0.984    5.47E32 [1.8E-33;1.10679] 

25 + 5 0.975    2.43E29 [4.1E-30;1.59850] 

12.5 + 2.5 0.627    6.367E8 [1.57E-9;0.36724] 

6.25 + 1.25 0.829    2.24E15 [4.5E-16;1.52493] 

3.125 + 0.625 0.730    1.98E11 [5.1E-12;2.04348] 

 Simulation     

 0.05    1.08851 [9.76E14;0.91869] 

 0.1    1.03557 [9.162E9;0.96565] 

 0.15    1.00410 [7068269;0.996] 

 0.2    0.98107 [32047.0;1.01933] 

 0.25    0.96508 [371.677;1.039] 

 0.3    1.07844 [7.57246;1.05665] 

 0.5    66324.8 [1.51E-5;1.11810] 

 0.65    9.700E8 [1.03E-9;1.16525] 

 0.75    1.63E12 [6.1E-13;1.20313] 

 0.95    4.29E24 [2.3E-25;1.36080] 

Table 5—2. Dose and effect data were obtained from the MTT assay (average value of triplicate) and were subjected to 

CompuSyn analysis in accordance chou et al., [229]. The combination index values can be interpreted as synergistic 

(CI<1), additive (CI=1) and antagonistic (CI>1) [228]. The combination of gemcitabine and EF24 was compared. 

 

Gemcitabine and EF24 at low concentrations demonstrated a slightly synergistic 

or additive effect with combination indexes ranging from 0.965 to 1.08851 between fa 

values of 0.005 and 0.3 (Table 5—2). While the fa values under 0.3 would usually be 

considered small inhibitory effects, it was at this inhibition level that gemcitabine was 

able to show any inhibition in the highly resistant PANC1 cells (Table 5—2). These data 

points also corresponded with highly favourable dose reduction indexes for gemcitabine 

(DRI>1) while, EF24 showed no dose reduction responses (Table 5—2). The remaining 

data including the combination index values for the actual/non-simulated data, showed 

that gemcitabine and EF24 at higher inhibition levels (Fa) returned highly antagonistic 
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results (CI>1) (Table 5—2). Gemcitabine also showed unfavourable does reductions 

(DRI), while EF24 showed moderately favourable (DRI) (Table 5—2). These results 

demonstrate that EF24 could add to the cytotoxic effects of gemcitabine across the 

ranges when gemcitabine was able to illicit cytotoxicity alone. 

 

  

A B 

Figure 5—7. The dose-response curves for inhibition of PANC1 cell viability. (A) Gemcitabine and EF24 dose-response 

curves were shown with a nonlinear curve fitted. (B) The simulated and actual data for the combination of gemcitabine 

and EF24. 

 

These conclusions were consistent with the graphical outputs of the CompuSyn software 

(Figure 5—8). The combination plot for gemcitabine and EF24 clearly showed that at 

lower concentrations and inhibitory effects that the relationship between the two drugs 

appeared to centralise around additive (CI=1) CI values (Figure 5—8). While, at higher 

concentrations the relationship became clearly antagonistic (Figure 5—8). Both DRI 

curves exhibited what was previously shown, in that the initial concentrations of EF24 

showed slight improvement in potency, but as the concentrations and effects of the 

combination increased the antagonistic characteristics increased (Figure 5—8). While, 

gemcitabine showed almost favourable DRI but only at levels lower than 0.4 (Fa) (Figure 

5—8). At higher inhibitions DRI levels for gemcitabine became highly unfavourable 

(Table 5—2 & Figure 5—8).  
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Figure 5—8. Combination plot for the coincubation treatments of GEM and EF24 in panc1 cells. (A) Combination plot of 

gemcitabine and EF24. (B) The DRI plot in the combination of gemcitabine and EF24 (constant ratio). (C) The DRI plot 

in the combination of gemcitabine and EF24 (non-constant ratio). (D) Combination plot of gemcitabine and suramin. (E) 

The DRI plot in the combination of gemcitabine and suramin (constant ratio). (F) The DRI plot in the combination of 

gemcitabine and suramin (non-constant ratio). (G) Combination plot of methotrexate and suramin. (H) The DRI plot in 

the combination of methotrexate and suramin (constant ratio). (I) The DRI plot in the combination of methotrexate and 

suramin (non-constant ratio). (J) Combination plot of methotrexate and suramin. (K) The DRI plot in the combination of 

methotrexate and suramin (constant ratio). (L) The DRI plot in the combination of methotrexate and suramin (non-

constant ratio). 

Gemcitabine and Suramin 

The combination of suramin and gemcitabine was also investigated in PANC1 cells 

(Table 5—3). Much like gemcitabine, suramin did not fit the MEP model well (r-value = -

0.3928) (Table 5—3). This could also be due to the lack of cytotoxicity of both compounds 

across these concentration ranges resulting in flat curves that do not fit the model well 

(Table 5—3). The combination of gemcitabine and suramin enhanced the divergence 

from the MEP model (r-value = -0.1617) (Table 5—3). Suggesting that the combination 

of gemcitabine and suramin did not fit the MEP model well.  

 

Compound Fractional 

Inhibition 

(Fa) 

Parameters  CI [DRI (GEM); DRI 

(Suramin)] 

GEM (µM) Suramin 

(µM) 

m Dm r  

100  0.323 -0.0672 +/- 

0.15907 

4.33E-05 -0.2068  

50  0.221     

25  0.234     

12.5  0.334     

6.25  0.459     

3.125  0.237     

 100 0.0001 -0.7141 +/- 

0.83600 

1.71E-4 -0.3928  

 50 0.0001     

 25 0.0001     

 12.5 0.0001     

 6.25 0.03122     



 

Page 138 of 185 

 

 3.125 0.0001     

100 + 100 0.272 -0.4259 +/- 

1.29938 

0.17082 -0.1617 147803 [0.98521;6.77E-6] 

50 + 50 0.313    97819.9 [0.10042;1.02E-5] 

25 + 25 0.0001    0.367 [5.24E53;2.7216] 

12.5 + 12.5 0.188    9447.5 [9768.12;1.06E-4] 

6.25 + 6.25 0.350    15452.5 [0.06750;6.48E-5] 

3.125 + 3.125 0.362    8298.9 [0.06380;1.21E-4] 

 Simulation     

 0.15    2.20E-4 [1.10E30;4545.89] 

 0.25    0.15873 [7.51E20;6.30010] 

 0.5    13742.1 [111080.;7.28E-5] 

 0.65    8328012 [1.34E-4;1.20E-7] 

 0.75    6.21E10 [1.6E-11;8.4E-10] 

 0.95    2.40E37 [4.2E-38;4.3E-18] 

Table 5—3. Dose and effect data were obtained from the MTT assay (average value of triplicate) and were subjected to 

CompuSyn analysis in accordance chou et al., [229]. The combination index values can be interpreted as synergistic 

(CI<1), additive (CI=1) and antagonistic (CI>1) [228]. The combination of gemcitabine and suramin was compared. 

 

However, the results demonstrated that suramin (25 µM) and gemcitabine (25 µM) 

combined, exhibited moderate synergism with CI values of 0.367 (Table 5—3). The 

simulated data at lower inhibition levels (>0.25 fa) also showed moderate to strong 

synergism (Table 5—3). At inhibition levels of 0.15 (Fa) and 0.25 (Fa) the GEM:SUR 

combination resulted in CI values of 0.0002 and 0.159 (Table 5—3). The combination 

and sole treatments of gemcitabine and suramin both did not achieve higher inhibition 

(Fa) levels (Figure 5—9). Which explains the inability of the CompuSyn program to plot 

the Fa-CI plot (Figure 5—8). Therefore, while the r value is low the data would suggest 

that like EF24, suramin may be able to marginally enhance the cytotoxicity of 

gemcitabine at lower doses (Figure 5—9 & Table 5—3). Interestingly, the combination 

of GEM:SUR at these low doses also overcame the initial enhancement of proliferation 

exhibited by suramin (Figure 5—2). 

 
 

A B 

Figure 5—9. The dose-response curves for inhibition of PANC1 cell viability. (A) Gemcitabine and suramin dose-

response curves were shown with a nonlinear curve fitted. (B) The simulated and actual data for the combination of 

gemcitabine and suramin. 
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Methotrexate and Suramin 

As previously shown, methotrexate was initially more cytotoxic than gemcitabine in 

PANC1 cells (Table 5—1). The conformity of both suramin and methotrexate was low in 

both single incubations (r values = -0.3928 and -0.3421, respectively). However, the 

combination of suramin and MTX showed good conformity (r-value = 0.94905) (Table 

5—4). The combination of suramin and MTX showed improved potency (Dm = 1.04) 

above that of the ambiguous MTX Dm estimate (Dm = 260265). At the lower fa levels, 

the combination index showed strong synergism up to 0.25 (Fa) with CI values ≤ 0.159 

(Table 5—4 & Figure 5—8). These synergistic combinations also exhibited 

corresponding highly favourable DRI values for MTX and SUR (DRI ≥ 7.51E20 and 

4545.9, respectively) (Table 5—4 & Figure 5—8). The actual data showed approximately 

half of the combinations showed favourable DRI values for MTX (Figure 5—8). 

Suggesting that the addition of suramin increased the potency of MTX. However, the 

remaining combinations of suramin and MTX showed strong antagonism and 

unfavourable DRI values between the two drugs (Table 5—4). Suggesting that these 

combinations were unable to achieve strong cytotoxicity at the chosen concentrations. 

 

Compound Fractional 

Inhibition 

(Fa) 

Parameters CI [DRI (MTX); DRI 

(Suramin)] 

MTX (µM) Suramin 

(µM) 

m Dm r  

100  0.604 -0.0413 +/- 

0.05667 

260265 -0.3421  

50  0.568     

25  0.586     

12.5  0.563     

6.25  0.665     

3.125  0.597     

 100 0.0001 -0.7141 +/- 

0.83600 

1.71E-4 -0.3928  

 50 0.0001     

 25 0.0001     

 12.5 0.0001     

 6.25 0.03122     

 3.125 0.0001     

100 + 20 0.638 0.11176 +/- 

0.05870 

1.04094 0.94905 1298106 [0.00280 7.71E-7] 

50 + 10 0.582    466210 [1.70822;2.14E-6] 

25 + 5 0.511    156098 [3524.55;6.41E-6] 

12.5 + 2.5 0.519    81774.0 [3146.01;1.22E-5] 

6.25 + 1.25 0.572    55249.8 [34.3878;1.81E-5] 

3.125 + 0.625 0.510    19414.7 [30749.7;5.15E-5] 

 Simulation     

 0.15    2.20E-4 [1.10E30;4545.89] 

 0.2    0.00809 [1.05E25;123.667] 
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 0.25    0.15873 [7.51E20;6.3001] 

 0.5    13742.1 [111080;7.28E-5] 

 0.65    8328012 [1.34E-4 1.20E-7] 

 0.75    6.21E10 [1.6E-11 8.4E-10] 

 0.95    2.40E37 [4.2E-38 4.3E-18] 

Table 5—4. Dose and effect data were obtained from the MTT assay (average value of triplicate) and were subjected to 

CompuSyn analysis in accordance chou et al., [229]. The combination index values can be interpreted as synergistic 

(CI<1), additive (CI=1) and antagonistic (CI>1) [228]. The combination of methotrexate and suramin was compared. 

 

Methotrexate and EF24 

The combination of MTX and EF24 was the final combination tested in PANC1 cells 

yielding m, dm and r values of 1.60679 +/- 0.39931, 3.44834 and 0.89549 respectively 

(Table 5—5). At inhibition fractions (Fa) up until 0.6 the combination of MTX and EF24 

showed moderate synergism with CI values ranging from 0.137 to 0.412 across fa values 

of 0.15 to 0.6, respectively (Table 5—5). The combination of MTX and EF24 also showed 

favourable dose reduction up to 0.6 Fa (Table 5—5). The remaining data showed that 

higher inhibition fractions, the combination of MTX and EF24, the relationship shifted 

from synergistic to antagonistic, most likely due to the maximum cytotoxicity of MTX 

being less than that of EF24 (Figure 5—8). This was supported by the fact that the DRI 

values of EF24 remained favourable over the entire simulated dataset (Figure 5—7 & 

Figure 5—8). The MTX:EF24 combination index showed the widest ranging synergistic 

effects in comparison to the other combinations, as shown by the combination plot 

(Figure 5—8). Suggesting that at the concentrations selected, this could be the most 

effective combination in PANC1 cells. 

 

Compound Fractional 

Inhibition 

(Fa) 

Parameters  CI [DRI (MTX); DRI 

(EF24)] 

MTX (µM) EF24 (µM) m Dm r  

100  0.604 -0.0413 +/- 

0.05667 

260265 -0.3421  

50  0.568     

25  0.586     

12.5  0.563     

6.25  0.665     

3.125  0.597     

 20 0.996 1.45122 +/- 

0.25452 

0.6426 0.94363  

 10 0.986     

 5 0.880     

 2.5 0.794     

 1.25 0.752     

 0.625 0.637     

100 + 20 0.987 1.60679 +/- 

0.39931 

3.44834 0.89549 3.69E43 [2.7E-44 0.69667] 

50 + 10 0.973    8.21E33 [1.2E-34 0.75529] 
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25 + 5 0.975    2.74E34 [3.6E-35 1.59443] 

12.5 + 2.5 0.868    3.08E15 [3.3E-16 0.94031] 

6.25 + 1.25 0.840    7.13E12 [1.4E-13 1.61410] 

3.125 + 0.625 0.815    4.84E10 [2.1E-11 2.85669] 

 Simulation     

 0.15    0.13663 [3.51E24;7.31887] 

 0.2    0.15666 [5.20E20;6.38340] 

 0.25    0.17539 [3.58E17;5.70161] 

 0.3    0.19358 [6.18E14;5.16588] 

 0.35    0.21173 [1.91E12;4.72304] 

 0.5    0.26999 [300034; 3.70395] 

 0.6    0.41207 [10.4710;3.15883] 

 0.65    21.6150 [0.04701;2.90475] 

 0.75    3977566 [2.51E-7;2.40621] 

 0.95    7.77E26 [1.3E-27;1.16571] 

Table 5—5. Dose and effect data were obtained from the MTT assay (average value of triplicate) and were subjected to 

CompuSyn analysis in accordance chou et al., [229]. The combination index values can be interpreted as synergistic 

(CI<1), additive (CI=1) and antagonistic (CI>1) [228]. The combination of methotrexate and EF24 was compared. 

 

Combination of EF24 and Suramin with Anticancer Drugs in MIAPACA2 cells 

Gemcitabine and Suramin 

The combination of suramin or EF24 with the anticancer drugs gemcitabine and 

methotrexate was also investigated in MIAPACA2 cells (Table 5—6). Much like in 

PANC1 cells, gemcitabine, did not fit the MEP model well (r-value = -0.166) (Table 5—

6). However, the suramin model appeared to fit better in MIAPACA2 cells, which could 

also be due increased cytotoxicity exhibited by suramin in MIAPACA2 cells (r-value = 

0.598) (Table 5—1 & Table 5—6). The conformity of the GEM:SUR model to the MEP 

slightly decreased when in combination (r-value = 0.574) (Table 5—6). While the r-value 

was lower in combination in MIAPACA2 cells, this combination still showed increased 

conformity in comparison to the gemcitabine and suramin combination in PANC1 cells.  

 

Compound Fractional 

Inhibition 

(Fa) 

Parameters  CI [DRI (GEM); DRI 

(Suramin)] 

GEM (µM) SUR (µM) m Dm r  

10  0.613 -0.0189+/-

0.05602 

2.56E14 -0.1663  

5  0.696     

2.5  0.609     

1.25  0.670     

0.625  0.657     

0.3125  0.647     

 100 0.213 -0.7701 +/- 

0.14402 

67817.7 0.59827  

 50 0.283     

 25 0.286     
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 12.5 0.151     

 6.25 0.203     

 3.125 0.161     

10 + 100 0.610 2.42118 +/- 

1.72598 

0.37160 0.57423 7.97E-4 [1412.95;11162.2] 

5 + 50 0.664    92.7686 [0.01078;98017.3] 

2.5 + 25 0.535    1.52E-4 [5.83E10; 6578.86] 

1.25 + 12.5 0.599    2.33E-5 [116742; 67702.1] 

0.625 + 6.25 0.740    2.360E9 [4.2E-10;757895] 

0.3125 + 3.125 0.676    105.061 [0.00952;221112] 

 Simulation     

 0.45    0.76708 [7.08E15;1.30365] 

 0.5    0.03825 [9.87E11;26.1427] 

 0.55    0.00191 [1.377E8;524.253] 

 0.65    0.79296 [1.26111;271902] 

 0.75    1.298E9 [7.7E-10;3.519E8] 

 0.95    3.78E44 [2.6E-45;3.34E20] 

Table 5—6. Dose and effect data were obtained from the MTT assay (average value of triplicate) and were subjected to 

CompuSyn analysis in accordance chou et al., [229]. The combination index values can be interpreted as synergistic 

(CI<1), additive (CI=1) and antagonistic (CI>1) [228]. The combination of gemcitabine and suramin was compared. 

 

The results demonstrated that suramin at 25 µM or 12.5 µM in combination with 

gemcitabine at 2.5 µM or 1.25 µM exhibited strong synergism with CI values of 1.52E-4 

and 2.33E-5, respectively (Table 5—6). The simulated data across Fa levels (<0.45 fa) 

showed moderate synergism (Table 5—6). At inhibition levels from 0.45 (Fa) up to 0.65 

(Fa) the GEM:SUR combination resulted in CI values ranging from 0.019 to 0.793 (Table 

5—6). The DRI curve for both suramin and gemcitabine also suggested favourable dose 

reductions as each reaches medial Fa inhibition (Figure 5—11). Therefore, this data 

would suggest suramin and gemcitabine showed synergism especially at lower to middle 

concentrations (Figure 5—10 & Figure 5—11). 

Gemcitabine and EF24 

MIAPAC2 cell viability was more potently affected by EF24, SUR, MTX and GEM, 

demonstrating MIAPACA2 sensitivity, which was consistent with previous results (Table 

5—1) [319]. While gemcitabine also showed a poor conformity to the MEP (r-value = -

0.166) in MIAPACA2 cells it was able to cause a greater reduction in cell viability at a 

lower concentration (Figure 5—10). The inhibition of cell viability by EF24 in MIAPACA2 

also did not fit well with MEP (r-value = 0.183). Most likely because of the high potency 

that EF24 exhibited against cell viability across all concentrations tested. 
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(A) 

  

 

(B) 

 

 

Figure 5—10. The dose-response curves for inhibition of MIAPA2 cell viability. (A) GEM, MTX, EF24 and SUR dose-

response curves were shown with a nonlinear curve fitted. (B) The simulated and actual data for the combination of all 

the combinations including GEM:SUR (GEMs), GEM:EF24 (GEMe), MTX:EF24(MTXe) and MTX:SUR (MTXs). 

 

 

The combination of gemcitabine and EF24 showed much more consistent synergistic 

effects (Table 5—7). The CI values from low fa values (0.05) to moderately high fa values 

(0.65) all showed synergistic effects (Table 5—7). The GEM:EF24 coincubation showed 

strong synergistic effects with CI values ranging from 7.69E-4 to 0.00276 (Table 5—7). 
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Compound Fractional 

Inhibition 

(Fa) 

Parameters  CI [DRI (GEM); DRI 

(EF24)] 

GEM (µM) EF24 (µM) m Dm r  

10  0.613 -0.0189+/-

0.05602 

2.56E14 -0.1663  

5  0.696     

2.5  0.609     

1.25  0.670     

0.625  0.657     

0.3125  0.647     

 20 1 0.84369 +/- 

2.26343 

8.24E-4 0.18322  

 10 0.792     

 5 0.975     

 2.5 0.987     

 1.25 0.996     

 0.625 0.842     

10 + 20 1 -0.1154 +/- 

0.10632 

2853.55 -0.4769 1.1E304 [9.E-305; 5.58693] 

5 + 10 0.992    2.95E97 [3.4E-98; 0.27415] 

2.5 + 5 0.936    5.56E47 [1.8E-48; 0.22553] 

1.25 + 2.5 0.987    2.88E84 [3.5E-85; 0.87736] 

0.3125 + 0.625 0.933    3.66E45 2.7E-46; 1.76322] 

 Simulation     

 0.05    1.52E-4 [1.38E87; 6569.14] 

 0.1    2.71E-4 [3.87E69; 3688.97] 

 0.15    3.87E-4 [5.24E58; 2580.77] 

 0.2    5.07E-4 [3.44E50; 1972.12] 

 0.25    6.33E-4 [6.00E43; 1579.24] 

 0.3    7.69E-4 [7.49E37; 1300.66] 

 0.4    0.00108 [3.12E27; 924.65] 

 0.5    0.00148 [9.32E17; 676.07] 

 0.65    0.00276 [2670.80; 419.158] 

 0.95    1.59E51 [6.3E-52; 69.5789] 

Table 5—7. Dose and effect data were obtained from the MTT assay (average value of triplicate) and were subjected to 

CompuSyn analysis in accordance chou et al., [229]. The combination index values can be interpreted as synergistic 

(CI<1), additive (CI=1) and antagonistic (CI>1) [228]. The combination of gemcitabine and EF24 was compared. 

 

These data points also corresponded with highly favourable dose reduction indexes for 

both gemcitabine (DRI>1) and EF24 (Table 5—7). The remaining data including the 

combination index values for the actual/non-simulated data, showed that gemcitabine 

and EF24 at high inhibition levels (0.65>Fa) returned highly antagonistic results (CI>1) 

(Table 5—7). Gemcitabine also showed unfavourable does reductions (DRI), while EF24 

exclusively demonstrated favourable dose reductions (Figure 5—11).These results 

strongly demonstrated that EF24 could add to the cytotoxic effects of gemcitabine across 

the ranges that gemcitabine was able to illicit cytotoxicity alone. This is a feature that is 

consistent across both PANC1 and MIAPAC2 cells. The combination plot for gemcitabine 

and EF24 demonstrated synergistic (CI<1) CI values across the majority of this 
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combination (Figure 5—8). While, at higher concentrations the combination became 

antagonistic (Figure 5—8). The DRI plots showed that past fa 0.65 the DRI became 

favourable for gemcitabine, which could simply be because of the potency of EF24 

(Figure 5—10). 

 

 

(A) 

 

(B) 
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(E) 

Figure 5—11. Combination plot and Dose-reduction plots for the coincubation treatments in MIAPACA2 cells. (A) 

Combination plot for the four MIAPACA2 coincubations. (B) The DRI plot in the combination of gemcitabine and suramin 

(constant ratio). (C) Combination plot of gemcitabine and EF24 (constant ratio). (D) The DRI plot in the combination of 

methotrexate and EF4 (constant ratio). (E) The DRI plot in the combination of methotrexate and suramin (constant ratio) 

Methotrexate and Suramin 

As previously shown, MTX was initially more cytotoxic than GEM in PANC1 cells (Table 

5—1). MIAPAC2 cells also exhibited higher sensitivity towards MTX than GEM (Table 

5—1). The conformity of both suramin and methotrexate was higher in PANC1 cells that 

in MIAPACA2 cells with r values = 0.692 and 0.598, respectively. The MTX:SUR 

coincubation exhibited synergism across the widest range of concentrations (Table 5—

8). The simulated data showed that the CI values for MTX:SUR combination ranged from 

10E-225 to 8.1E-21 (Table 5—8). While the lack of conformity may be an issue, the CI 

plot showed all values to be synergistic (Figure 5—11). Further demonstrating the strong 

synergistic effects between MTX and SUR. The DRI plot also exhibited that suramin 

showed a constant favourable DRI while MTX exhibited favourable DRI until high (>0.8) 

inhibition levels were reached. 

 

Compound Fractional 

Inhibition 

(Fa) 

Parameters CI [DRI (MTX); DRI 

(Suramin)] 

MTX (µM) Suramin 

(µM) 

m Dm r  

100  0.843 0.09013 +/- 

0.04705 

4.04E-7 0.69170  

50  0.833     

25  0.866     

12.5  0.818     
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6.25  0.813     

3.125  0.801     

 100 0.213 -0.7701 +/- 

0.14402 

67817.7 0.59827  

 50 0.283     

 25 0.286     

 12.5 0.151     

 6.25 0.203     

 3.125 0.161     

100 + 100 0.816 0.00786 +/- 

0.10180 

2.5E-82 0.03858 1298106 [0.06190; 783563] 

50 + 50  0.869    466210 [10.2365; 1.902E8] 

25 + 25 0.749    156098 [0.00295; 2561596] 

12.5 +12.5 0.799    81774.0 [0.1458; 3.140E7] 

6.25 + 6.25 0.834    55249.8 [3.9918; 2.757E8] 

3.125 + 3.125 0.826    19414.7 [4.18599; 3.83E8] 

 Simulation     

 0.05    10E-225 [1.0E224;2.5E24] 

 0.1    5.E-187 [2.1E186;1.4E202] 

 0.15    1.E-163 [9.8E162; 7.0E17] 

 0.2    4.E-146 [2.6E145; 3.5E16] 

 0.25    1.E-131 [8.2E130; 2.7E14] 

 0.5    3.1E-76 [3.18E75; 5.33E8] 

 0.65    5.2E-45 [1.90E44; 1.62E5] 

 0.75    8.1E-21 [1.24E20; 1.04E2] 

 0.95    1.01E73 [9.9E-74; 1.1E-68] 

Table 5—8. Dose and effect data were obtained from the MTT assay (average value of triplicate) and were subjected to 

CompuSyn analysis in accordance chou et al., [229]. The combination index values can be interpreted as synergistic 

(CI<1), additive (CI=1) and antagonistic (CI>1) [228]. The combination of methotrexate and suramin was compared. 

 

Methotrexate and EF24 

The combination of MTX and EF24 was suggested to be the most effective combination 

in PANC1 cells. Suramin (6.25 or 3.125 µM) combined with MTX (1.25 or 6.25 µM) within 

MIAPACA2 cells, resulted in synergistic CI values of 0.507 and 0.567, respectively. The 

inhibition fractions (Fa) greater than 0.8 demonstrated that the combination of MTX and 

EF24 was synergistic at higher levels of inhibition (Table 5—9). The combination of MTX 

and EF24 also showed favourable dose reduction for both compounds after 0.8 Fa 

(Table 5—9). This was the only combination to show synergism across values higher 

than that of the anticancer compound alone. Suggesting that while the strong synergistic 

effects of the previous combinations were able to enhance the potency of anticancer 

drugs. The combination of MTX and EF24 showed enhanced cytotoxicity above that of 

MTX alone. Even at lower inhibition levels, EF24 also showed favourable DRI, while 

suramin did not (Table 5—9). Surprisingly, this would suggest that MTX is able to make 

EF24 an already highly potent compound, even more potent. The combination of 
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MTX:SUR while not the most wide-ranging combination showed enhanced synergism at 

higher inhibitory levels a pattern not seen in other combinations or in PANC1 cells. 

 

Compound Fractional 

Inhibition 

(Fa) 

Parameters  CI [DRI (MTX); DRI 

(EF24)] 

MTX (µM) EF24 (µM) m Dm r  

100  0.843 0.09013 +/- 

0.04705 

4.04E-7 0.69170  

50  0.833     

25  0.866     

12.5  0.818     

6.25  0.813     

3.125  0.801     

 20 1 2.42118 +/- 

1.72598 

0.37160 0.57423  

 10 0.792     

 5 0.975     

 2.5 0.987     

 1.25 0.996     

 0.625 0.842     

100 + 20 0.999 0.72043 +/- 

0.57754 

0.07420 0.52921 2.60847 [8.34E26; 0.3834] 

50 + 10 0.950    7.95189 [1351628; 0.1258] 

25 + 5 0.948    4.05845 [1556890; 0.2464] 

12.5 + 2.5 0.983    1.25778 [1.18E12; 0.7951] 

6.25 + 1.25 0.990    0.50746 [7.54E14; 1.9706] 

3.125 + 0.625 0.932    0.56883 [575421; 1.75801] 

 Simulation     

 0.2    1.07E11 [9.4E-12; 116.099] 

 0.25    6.550E9 [1.5E-10; 87.7017] 

 0.3    5.711E8 [1.75E-9; 68.6418] 

 0.5    152995 [6.54E-6; 30.0469] 

 0.75    3.67076 [0.27983; 10.2942] 

 0.8    0.34752 [4.56785; 7.77628] 

 0.85    0.18805 [134.312;5.53708] 

 0.9    0.28363 [11980.1; 3.52681] 

 0.95    0.58753 [1.693E7; 1.7021] 

 0.97    0.98664 [2.951E9; 1.0135] 

Table 5—9. Dose and effect data were obtained from the MTT assay (average value of triplicate) and were subjected to 

CompuSyn analysis in accordance chou et al., [229]. The combination index values can be interpreted as synergistic 

(CI<1), additive (CI=1) and antagonistic (CI>1) [228]. The combination of methotrexate and EF24 was compared. 

Discussion 

Suramin, curcumin and EF24 were all able to inhibit MRP3 function demonstrated by 

their ability to increase the cellular accumulation of CMF. Curcumin and EF24 also 

showed increased BCECF accumulation, suggesting that they also significantly inhibited 

MRP5 function. Whether these functional inhibitions were able to illicit positive effects on 

anticancer drugs was investigated in a combination study. The combination of 

GEM:EF24, GEM:SUR, MTX:SUR and MTX:EF24 all combined to show synergistic 
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effects in both MIAPACA2 and PANC1 cells. In PANC1, GEM:EF24 combinations 

showed that the lower concentrations of EF24 may exhibit an additive relationship 

towards gemcitabine within the range of gemcitabine’s original effectiveness. This was 

further established by the increases in DRI values seen an the lower Fa regions of the 

graph. However, the combination of EF24 was unable to increase the Fa of gemcitabine 

suggesting only increased potency and not cytotoxicity. The GEM:SUR combination also 

showed synergistic effects at lower inhibition (Fa) ranges. The findings that suramin 

enhances proliferation at lower doses, accentuate these results further as this initial 

stimulation was overcome in combination with GEM. However, GEM:SUR unlike 

GEM:EF24 was unable to achieve inhibition of PANC1 cell viability by more than 50%. 

The MTX:SUR combination was also able to show synergistic effects at lower fa regions 

of the graph. While the combination index became more antagonistic at higher fa regions, 

the data still suggests that the non-cytotoxic compound suramin could improve lower 

doses of methotrexate. Similar to GEM:SUR, MTX:SUR was also able to overcome the 

stimulation of cell viability shown in suramin treatments. The most synergistic 

combination was that of MTX and EF24, which showed synergism for the whole range 

of sole MTX treatment (up to fa of 0.6). These results suggested that MTX:EF24 showed 

the most consistent synergistic relationship. It would be beneficial to investigate the 

combination of GEM/MTX and EF24 at lower concentrations to see whether the synergy 

observed could be enhanced to cause higher fractional inhibition.  

MIAPACA2 exhibited increased sensitivity towards all of the compounds tested. 

The combination that exhibited the most consistent synergism across the concentrations 

chosen was the combination of MTX and SUR. While the remaining combinations 

showed synergism across different ranges of cell viability inhibition. The combination of 

GEM and SUR in MIAPAC2 cells showed enhanced cytotoxicity approximating around 

half the maximum inhibition. While, the GEM and EF24 combination also showed 

synergistic effects across a wide range. However, the combination of MTX and EF24 

resulted in synergistic effects that only occurred at higher levels of inhibition. The MTX 

and EF24 combination did not show synergistic effects across the normal inhibition levels 

of MTX but only showed synergism at levels higher than that achieved by methotrexate. 

Suggesting that this combination unlike the other combinations in both MIAPACA2 and 

PANC1 cells showed that MTX cytotoxicity was enhanced to levels higher than both 

EF24 and MTX alone.  

 The mechanisms by which MRP3 inhibition occurs has not been well established. 

The ability of suramin to inhibit energy production in parasites by inhibiting glycosomal 

enzymes such as those required for glycolysis, may be the mechanism by which suramin 

inhibits MRP3 [309, 320]. MRP3, like all ABC transporters require ATP to change 

conformation and transport substrates [47]. The inhibition of glycolysis a process which 



 

Page 151 of 185 

 

produces ATP shows a clear link between suramin and MRP3 inhibition [321, 322]. 

Curcumin modulation of ABC transporter function in the case of P-gp appeared to be by 

direct inhibition of P-gp expression [323]. Furthermore, curcumin competed with 

verapamil for the binding P-gp binding site, further suggesting direct inhibition of P-gp 

[323]. Therefore, curcumin may also inhibit MRP3 by direct modulation of MRP3 

expression. Little is known about EF24 activity, as EF24, is a derivative of curcumin, 

EF24 may also directly interact with MRP3 by limiting MRP3 expression and binding sites 

like its parent molecule, curcumin. However, like suramin, EF24 also showed inhibition 

of glycolysis, which could suggest a similar mechanism of action for both suramin and 

EF24 in MRP3 inhibition [169]. 

 This study examined three very different compounds all with the ability to 

increase MRP3 dependent accumulation of the CMF molecule. Curcumin a natural 

compound found in turmeric, showed moderate cytotoxicity in PANC1 cells (IC50: 24.81 

µM) but exhibits inherently low bioavailability [51]. EF24, a natural derivative of curcumin 

showed strong cytotoxicity in PANC1 cells (IC50: 1.76 µM). Suramin, a fully synthetic 

compound which not only exhibited no cytotoxicity (up to 100 µM) but also enhanced cell 

proliferation. While previous publications showed the ability of curcumin to inhibit P-gp, 

MRP1, MRP5 and BCRP transport [55, 162]. This was the first time that curcumin, EF24 

and suramin was shown in an in vitro model to inhibit MRP3 activity in pancreatic cancer. 

Furthermore, this was the first time that EF24 has shown MRP5 inhibition and increased 

BCECF accumulation in pancreatic cancer.  

The inhibition of both MRP3 and MRP5 by EF24 suggest that it has retained the 

ABC transport modulation seen in curcumin. However, EF24 inhibited both MRP3 and 

MRP5 more potently than curcumin and EF24 showed much higher cytotoxicity as well. 

This may suggest that EF24 could be used alone or in combination with anticancer drugs 

to directly treat pancreatic cancer or modulate multidrug resistance caused by ABC 

transporters.  

It was recently shown that accumulation of COG a predominant curcumin 

metabolite was inhibited by MRP3 [74]. Whether MRP3 transport can also be inhibited 

by COG alone is not yet known. The preferential transport of glucuronides by MRP3 has 

been well demonstrated, however the extent to which this exclusivity impacts MRP3 

inhibition is of great interest. The combination of suramin and gemcitabine have been 

studied in clinic within non-small cell carcinoma models [178]. Non-small cell carcinoma 

in particular showed consistent overexpression of ABCC3 within the cancer versus 

cancer analysis. The clinical trial demonstrated that gemcitabine (1,250 mg/kg) and 

suramin (<50 µM) was well tolerated, resulting in stable disease in three patients and the 

highest median time to progression in comparison to combinations with docetaxel and 

suramin. This data validates the combination of gemcitabine and suramin but the 
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mechanism of action could be the modulation of MRP3. A phase II clinical trial tested the 

efficacy of MTX in combination with 5-FU and doxorubicin in advanced pancreatic cancer 

patents [324]. The combinations were well tolerated in the majority of patients and 

resulted in modest improvements in response rates of 16% [324]. Further investigation 

of these combinations within pancreatic cancer as well as the activity of MTX in 

pancreatic cancer may lead to better treatment outcomes for pancreatic cancer patients.  
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Chapter 6 Discussion  

 

Summary of Results 

Bioinformatic Studies of ABCC3 

Dysregulation of ABCC3 in normal and cancerous tissues was well displayed in the 

oncomine platform. ABCC3 was significantly over and under expressed in cancers 

affecting the lymphatic and circulatory system or within bladder, brain/CNS, breast, 

colorectal, oesophageal, head and neck, kidney, lung, skin, pancreatic, and prostate 

tissues (Table 3—1). Further interrogation of the expression across normal and 

cancerous tissues showed that ABCC3 expression was significantly differentially over 

expressed in kidney, lymphoma, bladder and lung cancers which showed the highest 

fold increase in expression (Table 3—2). While some cancers also showed strong 

ABCC3 underexpression in lung, prostate, colorectal and melanoma cancers (Table 3—

2). The expression of ABCC3 within the oncomine database was also compared across 

cancer types (Figure 3—1). Kidney, pancreatic and colorectal cancers showed the 

highest ABCC3 expression across cancer types (Figure 3—2). The heterogeneity of 

ABCC3 was also tested within the oncomine platform, revealing several cancers that 

exhibited large and significant differences in expression levels across the respective 

cancer databases (Error! Reference source not found.). Pancreatic cancer showed 

heterogeneity of ABCC3 expression with the highest COPA score (Error! Reference 

source not found.). Sarcoma, cervical and renal cancer also showed high COPA 

scores, suggesting high ABCC3 heterogeneity within these cancers (Error! Reference 

source not found.). Oncomine was also used to investigate which targets could be 

identified that follow a similar expression pattern to ABCC3. Members of various 

signalling pathways (WNT signalling pathway, sphingosine-1-phosphate pathway and 

p53-signalling pathway) showed significant correlation with ABCC3 expression. The 

coexpression of ABCC3 and cytochrome p450s, ENPP1, WNT signalling molecules and 

other transporters was discovered (Table 3—8). While, ABCC3 expression correlating 

with cytochrome p540s, WNT signalling expression and SLC transporters expression 

had already been observed [38, 197, 268]. Links to other targets such as ENPP1, which 

promotes cell surface localisation to the cell membrane where found. ENPP1 activity with 

other ABC transporters make it is possible that ENPP1 may also promote MRP3 the cell 

surface localisation. However, BCRP is highly unique in a number of ways especially in 

its structure. Therefore further investigation between the coexpression of ENPP1 and 

MRP3 expression would be needed to better understand the relationship. 
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 The bioinformatic study also utilised the KMplot and STRING databases to 

evaluate the effects of expression on survival and whether any significant protein-protein 

interactions could be discovered. The Km plot revealed that the cancers with high 

ABCC3 expression could either show improved survival or decreased survival. However, 

for those patients who showed decreased survival they showed a more severe decline 

in survival than for those who showed moderate improvement in survival (Figure 3—4 

and Figure 3—5). The STRING database returned FABP6 and MRPS7, two targets with 

no clearly documented links with ABCC3 that also require further investigation. 

CRISPR-Cas9 Knockout of ABCC3 

The CRISPR-Cas9 system provided a model that could specifically target and disrupt 

the expression of ABCC3 [237]. Following knockout of ABCC3 from PANC1 cells, the 

results showed that both the first and second round of knockouts showed increased 

accumulation of CMF (Figure 4—4 & Figure 4—5). This decrease in functional activity of 

MRP3 resulted in decreased drug resistance of PANC1 towards both gemcitabine and 

methotrexate (Figure 4—8). The reversal of gemcitabine resistance by MRP5 had 

already been shown [29]. However, this was the first time that gemcitabine resistance 

had been modulated in an ABCC3 knockout cell line. 

Inhibition of MRP3 by Suramin, Curcumin and EF24 

Suramin, curcumin and EF24 were identified as potential MRP3 inhibitors. Suramin 

showed low cytotoxicity across both MIAPACA2 and PANC1 cells. Suramin also 

significantly inhibited MRP3 function in the CMF accumulation assay and exhibited 

synergistic effects in both the resistant (PANC1) and sensitive (MIAPACA2) cell lines 

when combined with gemcitabine and methotrexate. EF24, unlike suramin, showed 

potent cytotoxicity in both PANC1 and MIAPACA2 cells. However, in combination with 

MTX and GEM, EF24 also exhibited strong synergistic effects especially in the more 

sensitive MIAPACA2 cells. EF24 also demonstrated functional inhibition of MRP3 and 

MRP5 by significantly increasing the accumulation of CMF and BCECF, respectively. A 

recent paper suggested targeting ABC transporters require inhibitors like EF24, which 

can target multiple ABC transporters [51]. This data demonstrates that modulators of 

MRP3 function can improve drug resistance in pancreatic cancer cells.  

Limitations 

The cleavage detection across the knockout cell lines only showed successful cleavage 

of ABCC3 in the gRNA1 cells, while the cells that showed greater modulation of both 

CMF accumulation and modulation of anticancer drugs did not produce clear cleavage 

results. The cleavage sites targeted by the CRISPR-Cas9 knockout are sites that exist 
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in normal human cells, it is unknown whether these target sites have mutated in PANC1 

cells. Therefore, while these results suggest some off-target effects causing the 

phenotypic changes in gRNA2 and gRNA3, cleavage of DNA could have still occurred 

within the ABCC3 gene. This question would be answered by gene sequencing of 

gRNA2 and gRNA3 in comparison with WT PANC1 cells.  

 Furthermore, the cytotoxicity of PANC1 towards gemcitabine was relatively high 

(IC50 >100 µM). However, this cytotoxicity was consistently exhibited across different 

PANC1 passages and gemcitabine stocks. The variation in IC50 values for PANC1 cells 

across literature is quite surprising with the highest IC50 value of 300±33mM and the 

lowest IC50 value of 8.32 nM [319, 325]. Therefore, the gemcitabine found in this study 

does fall within published results. However, it would be highly beneficial to investigate 

why there is such variations between gemcitabine IC50 values. Furthermore, some 

papers showed that PANC1 was more resistant towards gemcitabine while others 

showed that MIAPACA2 was more resistant [319, 325]. This data agreed with the paper 

by Fryer, R.A., et al  that MIAPACA2 cells showed increased sensitivity towards 

gemcitabine [319]. However, MIAPACA2 also showed enhanced sensitivity towards 

methotrexate, EF24 and suramin. Potentiating the use of these compounds and 

combinations in both resistant and sensitive pancreatic cancer cells. 

Future Directions 

This study successfully created MRP3 PANC1 knockout cell lines that reduced both 

MRP3 functional activity and MRP3-dependent drug resistance. These cells lines could 

be used to further investigate MRP3 substrates, inhibitors and MRP3 inhibitor 

mechanisms of action. However, before this can happen single clone populations should 

be extracted in order to fully observe the effects of ABCC3 knockout on MRP3 function 

(CMF accumulation), gene sequencing (cleavage detection) and protein expression 

(surface staining). It may also be useful to try CRISPR-Cas9 knockout of ABCC3 using 

the sgRNA molecule which would remove the variability imparted by the extra 

tracrRNA:crRNA annealing step that was required (see methodology).  

This research also revealed a number of other cancer targets that highly express 

MRP3 especially kidney and lung cancer. The CRISPR-cas9 system and the protocols 

established in the research, could also be used to investigate the MRP3 expression 

across in these cancers. Finally, the inhibition of MRP3 by curcumin, suramin and EF24 

and their combination with MTX or gemcitabine can lead to some valuable results. 

Further optimization of concentrations for both anticancer drugs and MRP3 inhibitors 

may improve m, CI and DRI values. The use of EF24 in pancreatic cancer treatments as 

a sole anticancer agent should also be investigated.  
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Supplementary Figure 1. Kaplan Meier Survival Plots of ABCC3 expression. Other cancer types that were produced by 

the KM plotter fof ABCC3 expression. Cancer types in which overall suvival was not significantly affected by ABCC3 

includes (A) Thymoma, (B) Testicular Germ Cell Tumour, (C) Thyroid Carcinoma, (D) Lung Adenocarcinoma, (E) 

Ovarian Carcinoma, (F) Pheochromocytoma and Paraganglioma, (G) Esophageal SCC, (H) Stomach Adenocarcinoma 

and (I) Cervical Carcinoma. 
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Supplementary Figure 2. Significant analyses shown in response to the ABCC3 search in the oncomine database. 

Overexpression in red and underexpression in blue. (A) Comparing cancerous samples versus normal samples. (B) 

Comparing the differential ABCC3 expression between different types of cancerous histology samples. (C) Comparing 

ABCC3 expression across different cancer types. (D) Comparing the outlying expression of ABCC3 across cancer 

types. (oncomine.org) 
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Supplementary Figure 3. MIAPACA2 cells were incubated with CMF and suramin (20 µM) for 5, 10 and 30 minutes 

to assess which time point should be selected for optimal fluorescent detection. 

 

 

 

Supplementary Table 1.Top overexpressing ABCC3 cancer types. The top overexpressing ABCC3 cancer types for 

each type of oncomine analysis was compared and given a position score, allowing the extropolationg of the top 

overexpressing ABCC3 cancer types across all analyses performed. 

Cancer vs Normal Overexpression Rank Position Score 

Kidney Cancer 1st 4 

Lymphoma Cancer 2nd 3 

Bladder Cancer 3rd 2 

Kidney Cancer 4th 1 

Cancer vs Cancer (histology)     

Lung Cancer 1st 4 

Sarcoma 2nd 3 

Bladder Cancer 3rd 2 

Lung Cancer 4th 1 

Cancer vs Cancer (multi-cancer)     

Kidney Cancer 1st 4 

Pancreatic Cancer 2nd 3 

Colorectal Cancer 3rd 2 

Pancreatic Cancer 4th 1 

Outliers     

Pancreatic Cancer 1st 4 

Melanoma 2nd 3 

Sarcoma 3rd 2 

Brain/CNS Cancer 4th 1 
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. 

Supplementary Table 2. Coexpression across previously associated pathways. The top seven datasets which showed 

the highest gene ranks for ABCC3 where compared with pathways that showed ABCC3 modulation in literature 

Concept Dataset 

Cancer/Analysis 

Type Rank P-value Fold Change Gene  

ABCC3 and Sphingosine-1-phosphate receptor-interpo protein domains and families 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Su Multi-

cancer Kidney Cancer 9 1.80E-18 24.93 ABCC3 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Su Multi-

cancer Kidney Cancer 194 1.03E-07 6.71 S1PR1 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families Gumz Renal 

Clear Cell Renal 

Cell Carcinoma 

vs Normal 66 2.38E-09 15.08 ABCC3 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families Gumz Renal 

Clear Cell Renal 

Cell Carcinoma 

vs Normal 1985 3.00E-03 2.03 S1PR1 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Beroukhim 

Renal 

Non-Hereditary 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 366 1.42E-08 4.92 ABCC3 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Beroukhim 

Renal 

Non-Hereditary 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 1692 1.14E-04 1.67 S1PR1 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Beroukhim 

Renal 

Hereditary Clear 

Cell Renal Cell 

Carcinoma vs. 

Normal 522 3.35E-09 6.56 ABCC3 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Beroukhim 

Renal 

Hereditary Clear 

Cell Renal Cell 

Carcinoma vs. 

Normal 1113 4.85E-07 1.91 S1PR1 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Bittner Multi-

Cancer 

Cancer Type: 

Kidney Cancer 544 2.25E-34 2.05 S1PR1 
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ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Bittner Multi-

Cancer 

Cancer Type: 

Kidney Cancer 995 3.69E-22 2.25 ABCC3 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Su Multi-

cancer 

Cancer Type: 

Pancreatic 

Cancer 28 4.86E-09 24.53 ABCC3 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families 

Su Multi-

cancer 

Cancer Type: 

Pancreatic 

Cancer 735 7.00E-03 2.56 S1PR1 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families Bild Lung 

Lung cancer type: 

Non-small Cell 

Lung Carcinoma 7 2.41E-13 3.27 ABCC3 

ABCC3 and 

Sphingosine-1-

phosphate receptor-

interpo protein domains 

and families Bild Lung 

Lung cancer type: 

Non-small Cell 

Lung Carcinoma 1061 0.001 1.53 S1PR3 

ABCC3 and WNT Signaling Pathway-Biocarta Pathway (Cancer vs Cancer & Cancer vs Normal) 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 9 1.80E-18 24.93 ABCC3 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 57 1.98E-11 8.14 CCND1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 354 5.36E-06 5.1 FZD1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 396 1.10E-05 1.63 PPP2CA 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 648 1.49E-04 3.67 PPARD 
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ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 885 6.56E-04 6.8 HNF1A 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 924 7.98E-04 1.86 CNSK2A1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 19 8.94E-11 5.15 ABCC3 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 192 4.83E-05 1.68 CTNNB1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 280 3.72E-04 4.28 CCND1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 419 2.00E-03 1.56 CSNK1A1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 507 4.00E-03 3.71 MYC 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 733 1.60E-02 2.16 FZD1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Gumz Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 66 2.38E-09 15.08 ABCC3 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Gumz Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 366 1.03E-06 5.21 CCND1 
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ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Gumz Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 538 7.01E-06 1.63 CSNK1A1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Gumz Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 821 4.04E-05 2.83 FZD1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Gumz Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 992 9.42E-05 6.71 MYC 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Gumz Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 1194 2.42E-04 1.58 SMAD4 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Gumz Renal 

Clear Cell Renal 

Cell Carcinoma 

vs. Normal 2604 9.00E-03 2.37 PPARD 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Garnett 

CellLine 

Cancer Type: 

Kidney Cancer 253 4.45E-06 3.83 ABCC3 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Garnett 

CellLine 

Cancer Type: 

Kidney Cancer 527 1.16E-04 1.68 TLE1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Garnett 

CellLine 

Cancer Type: 

Kidney Cancer 878 1.00E-03 1.94 CCND1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Jones Renal  

Renal Pelvis 

Urothelial 

Carcinoma vs. 

Normal 70 3.07E-16 3.7 SMAD4 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Jones Renal  

Renal Pelvis 

Urothelial 

Carcinoma vs. 

Normal 211 5.03E-11 1.83 PPARD 
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ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Jones Renal  

Renal Pelvis 

Urothelial 

Carcinoma vs. 

Normal 263 4.52E-10 4.39 ABCC3 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Jones Renal  

Renal Pelvis 

Urothelial 

Carcinoma vs. 

Normal 721 9.91E-07 1.74 MAP3K7 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Jones Renal  

Renal Pelvis 

Urothelial 

Carcinoma vs. 

Normal 739 1.15E-06 2.3 CSNK1A1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Yusenko 

Renal  

Kidney Cancer 

Type: Renal 

Carcinoma 328 3.66E-05 8.32 ABCC3 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Yusenko 

Renal  

Kidney Cancer 

Type: Renal 

Carcinoma 567 1.45E-04 1.63 PPARD 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Yusenko 

Renal  

Kidney Cancer 

Type: Renal 

Carcinoma 749 3.25E-04 3.54 FZD1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Yusenko 

Renal  

Kidney Cancer 

Type: Renal 

Carcinoma 826 4.28E-04 1.99 HNF1A 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Yusenko 

Renal  

Kidney Cancer 

Type: Renal 

Carcinoma 1753 4.00E-03 1.56 CSNK1D 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Yusenko 

Renal  

Kidney Cancer 

Type: Renal 

Carcinoma 2458 1.20E-02 2.45 MYC 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Yusenko 

Renal  

Kidney Cancer 

Type: Renal 

Carcinoma 3730 4.40E-02 1.93 CSNK1A1 
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ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Pancreatic 

Cancer 5 2.69E-14 6.06 PPARD 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Pancreatic 

Cancer 28 4.86E-09 24.53 ABCC3 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Pancreatic 

Cancer 546 3.00E-03 1.69 CTNNB1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Pancreatic 

Cancer 1121 2.40E-02 1.59 CSNK1A1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Pancreatic 

Cancer 1383 4.30E-02 1.72 MAP3K7 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Barretina 

CellLine 

Cancer Type: 

Pancreatic 

Cancer 69 1.31E-17 2.6 CCND1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Barretina 

CellLine 

Cancer Type: 

Pancreatic 

Cancer 229 8.71E-12 4.21 ABCC3 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Barretina 

CellLine 

Cancer Type: 

Pancreatic 

Cancer 778 4.91E-07 1.74 TLE1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Pei Pancreas 

Cancer Type: 

Pancreatic 

Cancer 517 9.25E-07 1.84 HDAC1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Pei Pancreas 

Cancer Type: 

Pancreatic 

Cancer 1541 8.17E-05 2.13 ABCC3 
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ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Pei Pancreas 

Cancer Type: 

Pancreatic 

Cancer 2228 3.75E-04 1.7 CNSK2A1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Pei Pancreas 

Cancer Type: 

Pancreatic 

Cancer 2460 5.51E-04 1.95 CCND1 

ABCC3 and WNT 

Signaling Pathway-

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Pei Pancreas 

Cancer Type: 

Pancreatic 

Cancer 3564 3.00E-03 1.62 PPARD 

ABCC3 and p53 Signaling Pathway-Biocarta Pathway (Cancer vs Cancer & Cancer vs Normal) 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Bild Lung 

Lung Cancer 

Type: Non-small 

Cell Lung 

Carcinoma 7 2.41E-13 3.27 ABCC3 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Bild Lung 

Lung Cancer 

Type: Non-small 

Cell Lung 

Carcinoma 2268 1.20E-02 1.22 ATM 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Bild Lung 

Lung Cancer 

Type: Non-small 

Cell Lung 

Carcinoma 2382 1.40E-02 1.45 CCND1 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 9 1.80E-18 24.93 ABCC3 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 57 1.98E-11 8.14 CCND1 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 182 7.34E+08 1.77 RB1 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 267 1.01E-06 3.3  BAX 
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(Cancer vs Cancer & 

Cancer vs Normal) 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 437 1.97E-05 3.25 CDKN1A 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 625 1.21E-04 7.06 ATM 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 699 2.04E-04 2.79 BCL2 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 800 3.79E-04 2.47 TP53 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 1078 2.00E-03 1.78 TIMP3 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Kidney Cancer 1248 4.00E-03 1.79 GADD45A 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Pancreatic 

Cancer 28 4.86E-09 24.53 ABCC3 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Pancreatic 

Cancer 1039 1.80E-02 2.97 BAX 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Colorectal 

Cancer 54 1.80E-13 16.8 ABCC3 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

Su Multi-

cancer 

Cancer Type: 

Colorectal 

Cancer 338 3.16E-07 2.29 PCNA 
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(Cancer vs Cancer & 

Cancer vs Normal) 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Colorectal 

Cancer 500 5.52E-06 2.98 BAX 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Colorectal 

Cancer 695 6.47E-05 1.37 BCL2 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Colorectal 

Cancer 794 1.45E-04 1.28 CDK2 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Su Multi-

cancer 

Cancer Type: 

Colorectal 

Cancer 980 5.26E-04 1.41 CDK4 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Nakayama 

Sarcoma 

Sarcoma Type: 

Malignant 

Peripheral Nerve 

Sheath Tumour 15 1.32E+14 5.92 ABCC3 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Nakayama 

Sarcoma 

Sarcoma Type: 

Malignant 

Peripheral Nerve 

Sheath Tumour 145 4.86E-06 1.67 RB1 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Nakayama 

Sarcoma 

Sarcoma Type: 

Malignant 

Peripheral Nerve 

Sheath Tumour 182 1.56E-05 2.17 CCND1 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Nakayama 

Sarcoma 

Sarcoma Type: 

Malignant 

Peripheral Nerve 

Sheath Tumour 492 2.00E-03 1.77 TIMP3 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Nakayama 

Sarcoma 

Sarcoma Type: 

Malignant 

Peripheral Nerve 

Sheath Tumour 881 1.30E-02 1.51 CDK2 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs Normal 19 9.84E-11 5.15 ABCC3 
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(Cancer vs Cancer & 

Cancer vs Normal) 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs Normal 154 1.31E-05 1.88 TP53 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs Normal 280 3.72E-04 4.28 CCND1 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) Higgins Renal 

Clear Cell Renal 

Cell Carcinoma 

vs Normal 774 1.90E-02 2.04 ATM 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Bhattacharjee 

Lung 

Lung cancer type: 

Non-small Cell 

Lung Carcinoma 25 2.39E-06 16.48 ABCC3 

ABCC3 and p53 

Signalling Pathway - 

Biocarta Pathway 

(Cancer vs Cancer & 

Cancer vs Normal) 

Bhattacharjee 

Lung 

Lung cancer type: 

Non-small Cell 

Lung Carcinoma 643 4.00E-02 1.49 MDM2 
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