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Abstract 
Metabolomics is a fast-evolving field that provides
qualitative and quantitative analyses of metabolites
within cells, tissues or biofluids. Recent applications
of metabolomics approaches in aquaculture
research have highlighted the huge potential for
solving problems within all aspects of the
production line, from hatchery production to post-
harvest quality control. To assist with the growing
application of metabolomics in aquaculture
research, this contribution provides a review of 
techniques and steps necessary to conduct
metabolomics research, from experimental design
to data interpretation. Specifically, we target
scientists who are new to the field of metabolomics,
and we offer simple, but comprehensive steps and
strategies to conduct this type of research. We
conclude this primer with some advice on how to
access relevant expertise and facilities for
metabolomics-based aquaculture research.
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Introduction 
Within the last decade, the field of metabolomics 
(the study of metabolites within cells, tissues or 
biofluids) has expanded, with a number of 
applications across the life sciences. In aquaculture 
alone, metabolite patterns have been successfully 
used to identify and resolve issues related to 
hatchery production (Young et al. 2015a, 2015b), 
nutrition and diet (Castro et al. 2015; Cheng et al. 
2015), disease and immunology (Liu et al. 2015; 
Peng et al. 2015), and post-harvest quality control 
(e.g. Melis 2014; Chen et al. 2015), among others 
(reviewed by Alfaro & Young 2016). There are some 
reasons why this approach has been so successful in 
such a relatively short amount of time. To begin 
with, metabolomics is an approach that can 
generate comprehensive datasets of metabolites to 
describe complex biological systems. Furthermore, 
the same analytical and computational tools used to 
generate and interpret data can be performed on 
any living organism, since metabolites are highly 
conserved in structure and function across species 
(in contrast to genes). With recent advances in 
analytical techniques and computational analysis, 
complete datasets that describe changes and/or 
differences in biological systems can be carried out 
in a rapid and cost-effective manner. However, 
results stemming from this approach do not 
necessarily provide mechanistic and/or causal 
information regarding the patterns observed. In 
other words, the exploratory nature of this 
approach is likely to generate new hypotheses, and 
further targeted experiments may lead to validation 
of the resultant biological markers. This process 
allows for unexpected information to be revealed, 
leading to innovation and discovery in a very 
efficient manner. 
Compared to other areas of research, such as 
agriculture, food science, and medical science, the 
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application of metabolomics to aquaculture 
research has only recently been realised. These 
applications have been reviewed in a companion 
paper (Alfaro & Young 2016). Thus, we limit the 
scope of this contribution to a review of the 
techniques and steps necessary to conduct 
metabolomics research in aquaculture. Specifically, 
the purpose of this review is to provide aquaculture 
researchers and other aquatic scientists who are 
new to the field of metabolomics with a simple, but 
comprehensive, primer on the various strategies 
that are involved in conducting a metabolomics-
based investigation for the first time. This primer 
summarises information on experimental design, 
sample collection and preparation, choice of 
analytical platform, bioinformatics processing, 
statistical analyses, biological interpretation of the 
data, and reporting guidelines. We outline several 
aspects which require careful consideration, 
specifically for experiments involving aquatic 
organisms, and we direct readers to a range of 
specific aquaculture-related research studies to 
showcase the relevance of these topics.

We conclude this review with some advice on how 
researchers can access the relevant expertise and 
facilities for conducting a metabolomics-based 
project, and we provide some perspectives on the 
development of future technological strategies for 
assessing the health and welfare of wild and 
cultured aquatic organisms.  

Metabolomic strategies 
There are generally six steps involved in a 
metabolomics study: (i) robust experimental 
design, (ii) sample collection and preparation, (iii) 
analytical measurement and data acquisition, (iv) 
bioinformatics (data integrity checking and 
metabolite identifications), (v) statistical analyses, 
and (vi) biological interpretation and/or biomarker 
validation (Fig. 1). Due to the wide range of fields 
encompassed by metabolomics studies (biology, 
biochemistry, analytical chemistry, bioinformatics 
and statistics), it is highly recommended that 
consultation with a metabolomics specialist is 
carried out in the early stages of experimental 
design.  
 

 

 

 

 
Figure 1. General workflow involved in a metabolomics study outlining the six main steps.  
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Experimental design & sampling 

Along with good standard experimental design 
practices, there are a number of special 
considerations to keep in mind when planning a 
strategy for a metabolomics investigation. There 
are particular requirements, which mandate that 
samples be taken only after an experiment has been 
specifically designed and performed with a 
metabolomic-based analysis in mind. Samples 
which have previously been collected and stored for 
another purpose will unlikely be suitable for 
incorporation into a metabolomics-based study. 

Collected samples must reflect and represent 
the biology in question, and be appropriate for the 
particular research questions of the study. It is 
critical that biological, technical and experimental 
variability be minimized, since the metabolome can 
change very rapidly in response to subtle changes in 
the environment. For example, the metabolic 
signatures of aquatic organisms can be affected by 
handling stress and air exposure (Karakach et al. 
2009; Connor & Gracey 2012; Young et al. 2015a), 
so this should be kept to an absolute minimum - 
even experimentally characterized if possible. The 
acute stress of transferring fish and crustaceans 
between culture or storage tanks is reflected in the 
metabolome and, if not controlled, may influence 
results of a study (Schock et al. 2013; Mushtaq et al. 
2014a). In the case of shellfish, metabolic responses 
to treatments can be masked when organisms are 
taken from their natural environments and into the 
laboratory for a period of acclimatization (Hines et 
al. 2007). Therefore, sampling and tissue dissections 
should be performed in situ, when possible. 
Furthermore, in the case of time-course 
experiments, sampling at the same time of day can 
be important due to inherent effects associated 
with circadian rhythms (Gooley 2014; Li et al. 2015).  

Selection of adequate control animals is crucial 
in all omics-based investigations. In most cases, 
controls and treatment groups should have the 
same genetic background and should be matched 
for gender, age, size-class and/or development 
stage. For example, male and female mussels from 
a homogenous population can easily be 
discriminated based on their metabolite profiles 
(Cubero-Leon et al. 2012), and have sex-specific 
physiological responses to environmental stressors, 
toxin exposures and pathogen infections (Ji et al. 
2013; Liu et al. 2014a; Ellis et al. 2014). The 
metabolome is so sensitive that differences in the 

age of fish larvae can be detected within samples 
that are only a few hours apart in developmental 
stage (Huang et al. 2013), and marine invertebrate 
larvae of the same age but different size-class can 
be discriminated based on their metabolite profiles 
(Young et al. 2015b). Thus, these features should be 
carefully managed to avoid potential experimental 
bias, unless they are the specific biological aspect 
under investigation.  

Correct selection of sample material is also 
important. Different tissues (e.g., muscle, gills, liver, 
pancreas) undergo specific metabolic processes by 
virtue of their distinct functional purpose. Recent 
studies of tissue-specific metabolism in aquatic 
organisms include digestive gland vs. gill response 
differences during pathogen infection in mussels, 
and differences measured under future climate 
change scenarios in oysters (Liu et al. 2014b; Wei et 
al. 2015). In the case of biofluids, the serum and 
plasma components of blood contain significant 
chemical differences due to the way in which they 
are prepared (Yin et al. 2015). Thus, prior 
knowledge of the biological system is favourable in 
order to assess the suitability of particular tissues or 
biofluids for a given experiment.  

Once the sample type has been decided, 
protocols for sampling should be developed. While 
there is limited information on how the speed of 
sampling affects the metabolite profile, we suggest 
that samples be taken rapidly and in a highly 
reproducible manner to minimize biological and 
technical variation. For example, if liver samples are 
to be taken from a number of fish, it would be 
prudent to make sure that the timing and 
procedures used to immobilise the organisms and 
to dissect the tissue be very similar between each 
animal. Application of anaesthetics during this 
process should be used with caution since they may 
disturb the metabolic baseline signature (Bando et 
al. 2010). The highly dynamic state of the 
metabolome continues in tissues and biological 
fluids even after they have been extracted from the 
organism. Therefore, in almost all metabolomics 
investigations it is vital that metabolic processes 
within samples be stopped, or quenched, as soon as 
possible during collection (reviewed by van Gulik et 
al. 2012). While other options exist, a typical 
method to quench metabolism in animal tissues 
involves snap-freezing samples in liquid nitrogen. 
Special considerations may need to be made for 
this, especially if sampling in the field. Furthermore, 
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it is recommended that samples be stored at or 
below -80°C until metabolite extraction in order to 
maintain inactivation of enzymatic and chemical 
processes, which may influence the metabolite 
profile. Immediate access to appropriate facilities 
for sampling and storage is essential. The choice of 
containers in which the samples will be stored also 
requires attention due to potential introduction of 
contaminants, such as surfactants and plasticizers, 
which may cause severe interferences during 
analysis (Courant et al. 2014). See Álvarez-Sánchez 
et al. (2010a) for additional information regarding 
appropriate selection of biological samples and a 
review of some practical aspects, which require 
consideration prior to sample preparation. 

Techniques for preparing samples for analysis 
strongly depend on the type of biological material 
collected, and the analytical platform to be 
employed. Regardless of the approach, the 
metabolite extraction process should be rapid and 
robust, while minimizing the potential for sample 
degradation and metabolite modification (Allwood 
et al. 2013). Special considerations may also be 
required for processing marine samples due to 
potential interferences from salts within the sample 
matrices (Keller et al. 2008), or presence of complex 
polysaccharides in the case of macroalgae 
(Goulitquer et al. 2012). Approaches are numerous 
and constant method development by chemists 
provide an array of options. These range from 
simple one-step solvent extraction processes to 
more complicated procedures involving multiple 
stages and/or organic synthesis reactions 
(derivatization). 

In general, the most commonly applied solvent 
extraction methods include: 1) extraction of polar 
and/or non-polar metabolites with a mixture of 
methanol, water and chloroform, 2) extraction of 
polar metabolites with methanol alone or in 
combination with water, and 3) extraction of polar 
metabolites with perchloric acid. There are many 
variations as to the solvent ratios which can be 
used, the temperature of extraction, the extraction 
duration, and the mechanical techniques used to 
disrupt tissue samples and lyse cells. Due to the 
diversity of possible techniques and wealth of 
excellent information already available in the 
literature, method particulars regarding sample 
preparation are outside the scope of this review. 
However, we have provided a sizeable table (Table 
I) containing references to primary literature which 

have an aquatic metabolomics-based focus, and we 
highlight the various strategies employed by each 
study, including the extraction technique used. 
These studies may be useful to readers as guiding 
exemplars for many of the strategies discussed in 
this article. For further details on the preparation of 
biological samples prior to metabolite detection, 
see Álvarez-Sánchez et al. (2010b). For 
comprehensive information on platform-specific 
sample preparation techniques for general biofluids 
and animal tissues, see Beckonert et al. (2007), 
Nováková & Vlčková (2009), Liebeke & Bundy 
(2012), Römisch-Margl et al. (2012), Vuckovi (2012) 
and Mushtaq et al. (2014b). For sample preparation 
techniques with a particular focus on fish and 
marine invertebrates, see Lin et al. (2007), Wu et al. 
(2008), del Carmen Alvarez et al. (2010), and 
Fernández-Varela et al. (2015). 

Analytical platforms 

A clear understanding of the analytical platform/s 
to be used is necessary before starting an 
experiment. Certain platforms have special 
requirements and may or may not be able to deliver 
the desired data/information. For example, to 
obtain broad metabolite coverage, including low 
abundance compounds, some procedures may 
require a tissue sample of only 2 mg wet weight, 
whereas others may require >100 mg. 
Unfortunately, there is not yet a single platform 
which can analyse all metabolites within a sample, 
and some instruments are better-suited for the 
analysis of particular metabolite classes than 
others. Hence, multiple platforms may need to be 
used depending on the aims and scope of the 
investigation. The costs associated with employing 
different analytical platforms vary widely, and 
access to appropriate facilities for sample analysis 
may limit the decision making process. Therefore, 
selection of the most appropriate instrument for a 
given metabolomics-based study will depend 
largely on the type of sample material collected, the 
available sample mass, the accessibility of analytical 
platforms, the end-goals of the researchers, and the 
budget of the project.  

The most commonly applied, high-throughput 
and high-resolution platforms to analyse samples in 
metabolomics studies are nuclear magnetic 
resonance (NMR) and mass spectrometry (MS). In 
certain circumstances, lower resolution vibrational 
spectroscopy can also be used. See Figure 2 for 
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usage trends of the various platforms employed 
over the past decade. The selection of which 
platform to apply for a particular metabolomics 
study is always a compromise between cost, 
sensitivity, speed, chemical selectivity, and 
metabolite coverage (Table II). However, 
realistically, the choice of platform most-often 
comes down to the availability of analytical facilities 
and technical expertise through commercial or 
academic collaborations.  

Nuclear magnetic resonance 

Nuclear magnetic resonance (NMR) detects the 
characteristic spin properties of atomic nuclei. 
When nuclei with particular magnetic attributes are 
immersed in an external magnetic field, they align 
themselves with (low energy state) or against (high

 energy state) that field. Application of very specific 
radio frequency pulses to the nuclei induces a 
change in the energy state called a ‘spin flip’ 
(Savorani et al. 2013). The presence of other nuclei 
and chemical bonds in the immediate vicinity of a 
nucleus changes the intensity of the applied 
magnetic field by a small amount called nuclear 
shielding. As a result of this shielding, nuclei within 
a metabolite will absorb energy at slightly different 
frequencies, known as a chemical shift. The 
combination of all of these different frequencies 
produces a characteristic spectrum, or ‘fingerprint’ 
of the sample (Fig. 3A–D). In addition, more 
complex interactions of the spins under various 
pulse conditions can provide rich sets of 
information about the chemical bonding and 
composition of a molecule or mixture. 
 
 

 
 
Figure 2. Bibliometric analysis in SciVerse Scopus abstract and citation database (March 24th, 2015). “Metabolom*” was 
used as a primary keyword in all searches and was combined with keywords for each analytical platform. Searches were 
limited to terms found within ‘abstracts, titles and keywords’, between the years 2006–2014, and to research articles 
only. The bar graph shows the cumulative number of peer-reviewed articles which performed metabolomics-based 
analyses using various analytical platforms. The inset line graphs show the general usage trends for each platform. These 
trends also reveal how quickly metabolomics has evolved into such a well-established field of biological research over 
this short period of time. 
 
 
All isotopes that contain an odd number of protons 
and/or neutrons can theoretically be assessed by 
NMR approaches. However, if they are not found in 
biological molecules, or have low NMR sensitivities 
or low natural abundances, they are not often used 
for metabolomic studies. 1H NMR is frequently 
applied in metabolomics investigations to probe the 

molecular arrangements of hydrogen atoms. The 1H 
isotope is highly abundant in nature (>99.98%) and 
has a very high NMR sensitivity. See Schock et al. 
(2012) for an applied example of how 1H NMR was 
employed to monitor the health of cobia in 
response to reduced fishmeal-based protein diets, 
and to identify differential regulation of metabolism 
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indicative of thyroid disruption and variations in the 
composition of gut microflora. 13C NMR can also be 
used, but is much less abundant (1.1%) and less 
sensitive. However, 13C NMR has special 
applications in tracer studies to investigate 
metabolite transformations and metabolic flux 
(Tikunov et al. 2014).  

 For example, molecules can be chemically labelled, 
or enriched, with the 13C isotope and traced through 
metabolic processes, such as protein catabolism 
and lipid synthesis, to investigate the uptake and 
conversion of nutrients in fish (Conceição et al. 
2007; Eckman et al. 2013). 

 
 

 
 
Figure 3. Multi-platform metabolomics-based analysis of fish (Danio rario) liver samples showing sex-specific differences 
in spectral fingerprints obtained from three platforms (NMR, CG-MS and LC-MS). 1H NMR spectra of non-polar extracts 
from male (A) and female (B) fish. 1H NMR spectra of polar extracts from male (C) and female (D) fish. GC-MS total ion 
chromatograms of non-polar extracts from male (E) and female (F) fish. LC-MS spectra of non-polar extracts from male 
(G) and female (H) fish. Numbered peaks represent reliably assigned metabolites after bioinformatics processing. 
Reprinted with permission from Ong et al. (2009).  
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Table I. A selection of studies using metabolomics-based approaches with relevance to aquaculture. Although not a complete list of all the available literature, we have provided a broad range 
of references which we think may be of interest to aquaculture researchers, and may be useful resources as guiding exemplars for the various strategies which can be employed, including: 1) 
methods for metabolite extraction in diverse organisms, tissues and biofluids; 2) use of different analytical platforms; 3) a range of primary bioinformatics software to process raw spectral 
data and assign metabolite identities; 4) a variety of databases for matching spectral signatures; 5) various pre-treatment techniques to prepare data for statistical analysis; 6) an array of 
univariate and multivariate statistical methods to identify sample group differences; and 7) some secondary bioinformatics software to aid interpretation of metabolite profiles within 
biologically meaningful contexts through use of global a priori knowledge stored in biochemical information databases. 
 

Organism Sample type Experimental 
theme 

Extraction 
method† 

Metabolite 
component‡ 

Derivatisation 
method§ 

Analytical 
Platform/s¶ 

General 
approach 

Metabolites 
Detected 

Data pre-treatment methods 
applied\\ 

Bioinformatics & statistical 
software used†† 

Statistical analyses & 
data visualisation‡‡ 

Databases 
used§§ 

Reference 

Fish Embryos Baseline developmental 
metabolism: Multiplatform 
metabolomics  

MeOH P MSTFA GC-MS, LC-MS Fingerprinting 
& profiling 55+ Autoscaled MZmine, SIMCA-P, MEV 

PCA, OPLS-DA, HCA, 
Kruskal-Wallis test 
heatmap 

NIST library, HMDB Huang et al. 2013 

Larvae Nutritional & thermal influence 
on larval physiology & growth MeOH/H2O P - 1H NMR Fingerprinting 

& profiling 
28 Spectral area normalisation, 

mean centered 
TopSpin, Chenomx NMR 
Suite, MATLAB, PLS Toolbox PCA CRL  Chauton et al. 

2015 
Flesh/muscle Nutrition & alternative feed 

development MeOH/CHCl3 P, NP - 1H NMR Profiling 45 Spectral intensity normalisation, 
Pareto scaled 

TopSpin, AMIX, SAS, SIMCA-
P PCA, OPLS-DA, ANOVA HMBD, literature search Cheng K. et al. 

2015 
Culture conditions & post-
harvest storage HClO4 P - 1H NMR Fingerprinting 

& profiling 11+ Spectral intensity normalisation, 
mean centered MestReC, R PCA, t-test Undefined Picone et al. 2011 

Optimisation of sample 
preparation techniques 

HClO4, MeCN/H2O, 
MeOH/H2O/CHCl3, 
MeOH/H2O 

P, NP - 1H NMR Fingerprinting 
& profiling 26 Bin area normalisation, glog 

transformation, mean centered 
XWINNMR, Chenomx NMR 
Suite, MATLAB, PLS Toolbox PCA Chemical shift data from 

the literature, CRL Lin et al. 2007 

Effects of salmon farming on 
wild fish populations HClO4 P - 1H NMR Fingerprinting 

& profiling 23 Undefined MATLAB RPCA, PLS-LDA Chemical shift data from 
the literature 

Marhuenda-Egea 
et al. 2015 

Nutritional history prediction 
& alternative feeds C6H12/H2O P, NP  DART-MS Fingerprinting 

& profiling 59+ Spectral area normalisation, log 
transformation, Pareto scaling MassCenter, SIMCA, Excel PCA, OPLS-DA Undefined Cajka et al. 2013 

Monitoring compositional 
changes in fillets during post-
harvest cold-storage 

TCA P - 1H-13C NMR Profiling 51 Untreated TopSpin, MestReC N/A 
Chemical shift data from 
the literature, HMDB, 
BMRB, YMDB, ECMDB 

Shumilina et al. 
2015 

Food authentication, forensics, 
providence MeOH/H2O/CHCl3 NP - 13C NMR Fingerprinting N/A Peak maximum normalisation, 

vast stability scaling AI Trilogy, Tiberius PNN, SVM N/A Aursand et al. 
2009 

Liver Nutrition & alternative feed 
development MeOH/CHCl3 P, NP - 1H NMR Profiling 49 Spectral intensity normalisation, 

Pareto scaled 
TopSpin, AMIX, SAS, SIMCA-
P PCA, OPLS-DA, ANOVA HMBD, literature search Cheng K. et al. 

2015 
Nutrition & alternative feed 
development MeOH/H2O/CHCl3 P, NP - 1H NMR Profiling 23+ Spectral area normalisation, 

Pareto scaled 
TopSpin, Chenomx NMR 
Suite, AMIX, SIMCA-P PCA, OPLS-DA, ANOVA CRL, HMBD, 

literature search 
Wagner et al. 
2014 

Enhancing disease resistance 
via simple metabolic 
modulation 

MeOH P MSTFA GC-MS Profiling 60 
Peak height normalisation, 
median centered, quartile range 
scaled, log transformed 

AMDIS, R, SIMCA-P, SPSS, 
Prism, MetaboAnalyst 
(MetPA) 

HCA, heatmap, PCA, 
ICA, MPEA KEGG, NIST library Peng et al. 2015 

Enhancing disease resistance 
via simple metabolic 
modulation 

MeOH P MSTFA GC-MS Profiling 60 
Peak height normalisation, 
median centered, quartile range 
scaled, log transformed 

AMDIS, R, SIMCA-P, SPSS, 
Prism 

PCA, OPLS-DA, 
heatmap  KEGG, NIST library Cheng Z. et al. 

2015 

Enhancing disease resistance 
via simple metabolic 
modulation 

MeOH P MSTFA GC-MS Profiling 58 
Peak height normalisation, 
median centered, quartile range 
scaled, log transformed 

AMDIS, R, SIMCA-P, SPSS, 
Prism, MetaboAnalyst 
(MetPA) 

PCA, OPLS-DA, MPEA, 
HCA, heatmap KEGG, NIST library Ma et al. 2015 

Nutrition & alternative feed 
development MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 12+ Centered (undefined), Pareto 
scaled TopSpin, AMIX, SIMCA-P PCA, OPLS-DA, ANOVA CRL, BMRB, HMDB Abro et al. 2014 

Enhancing disease resistance 
via simple metabolic 
modulation 

MeOH, MeCN/H2O P MSTFA GC-MS, LC-MS Profiling 64+ 
Peak height normalisation, 
median centered, quartile range 
scaled, log transformed 

AMDIS, R, MarkerLynx, 
SIMCA-P, SPSS, Prism, 
MetaboAnalyst (MetPA) 

PCA, ICA, MPEA,  
HCA, heatmap, KEGG, NIST library Zhao et al. 2015 

Optimisation of extraction 
methods 

MeOH/H2O/CHCl3 
(various protocols) P, NP - 

1H NMR, FT-
ICRMS 

Fingerprinting 
& profiling 8+ 

Bin or spectral area 
normalisation, glog 
transformation, mean centered 

TopSpin. Chenomx NMR 
Suite, PLS Toolbox, MATLAB PCA, ANOVA Chemical shift data from 

the literature, CRL Wu et al. 2008 

Utilisation of dietary protein: 
Growth-metabolic interactions  HClO4 P ECF GC-MS Profiling 12+ Peak height normalisation SPSS, SIMCA-P PLS-DA, t-test NIST library, in-house 

library Jin et al. 2005 

Health biomarkers & stress 
evaluation: Multi-platform, 
large n features 

MeOH P  
LC-MS, LC-
MS/MS, FI-
MS/MS 

Profiling 95+ Mean centered, Pareto scaled MetaboAnalyst PCA, PLS-DA, Mann-
Whitney U test N/A Benskin et al. 

2014 

Health biomarkers: Tumor 
diagnostics 

MeCN/H2O, 
MeOH/H2O/CHCl3 P - FT-ICRMS Fingerprinting 4+ Bin area normalisation, glog 

transformation, mean centered 
MIDAS, MSCalc, MATLAB, 
PLS Toolbox PCA, PLS-R, t-test N/A Stentiford et al. 

2005 
Kidney Symptoms of anaemia & health 

biomarker identification  MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 
& profiling 37+ Spectral area normalisation, 

mean centered, Pareto scaled 

TopSpin, MestReNova, 
Chenomx NMR Suite, AMIX, 
SPSS 

PCA, t-test, Mann-
Whitney U test, 
Wilcoxon test 

HMDB, BML Allen et al. 2015 

Intestine Feed additives to enhance 
growth & metabolism MeCN/CHCl3 P - LC-MS Profiling 78+ Biomass normalised, autoscaled Chemstation, EasyLCMS, 

SPSS, Metaboanalyst 
PCA, HCA, heatmap, 
ANOVA, t-test,  Undefined Robles et al. 2013 
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Table I. Continued.  

Organism Sample type Experimental 
theme 

Extraction 
method† 

Metabolite 
component‡ 

Derivatisation 
method§ 

Analytical 
Platform/s¶ 

General 
approach 

Metabolites 
Detected 

Data pre-treatment methods 
applied\\ 

Bioinformatics & statistical 
software used†† 

 Statistical analyses & 
data visualisation‡‡ 

Databases 
used§§ 

Reference 

Fish 
(cont.) 

Gut contents & 
faeces 

Effects of diet on microbial 
symbiosis & co-metabolism 
+ non-invasive sampling 

MeOH P - 1H-13C NMR Fingerprinting 
& profiling 

25+ Spectral area normalisation  TopSpin, SpinAssign, R, 
Gephi  

 
PCA, PLS-DA PRIMe DB, BMRB, 

in-house library 
Asakura et al. 2014 

Humoral fluid Mechanism of vaccine action 
against disease H2O P MSTFA GC-MS Profiling 65 

Median centered, interquartile 
range scaled, Pereto scaled or 
autoscaled 

XCalibur, NIST MS search, 
SPSS, SIMCA, MetaboAnalyst 

 OPLS-DA, Heatmap, 
Mann-Whitney U test, 
MPEA 

NIST library, KEGG Guo et al. 2015 

Haemolymph: 
Plasma (p) or 
serum (s) 

Toxicological biomarkers & 
environmental monitoring  

None required (p), 
MeOH/CHCl3 for lipid 
fraction (p) 

P, NP - 1H NMR 
Fingerprinting 
(some limited 
profiling) 

7+ Bin integral normalisation, mean 
centered, pareto scaled 

NMR Processor, VNMR, 
SIMCA-P 

 
PCA, PLS-DA Chemical shift data 

from the literature 
Sammuelsson et al. 
2006 

Metabolic effects of food 
deprivation None required (p) P, NP - 1H-13C NMR 

Fingerprinting 
(some limited 
profiling) 

4+ Bin integral normalisation, Pareto 
scaled NMR Processor, SIMCA-P 

 
PCA, OPLS-DA 

Chemical shift data 
from the literature, 
HMDB 

Kullgren et al. 2010 

Utilisation of dietary protein: 
Growth-metabolic interactions  None required (p) P BSTFA GC-MS Profiling 16+ Peak height normalisation SPSS, SIMCA-P  PLS-DA, t-test NIST library, in-

house library Jin et al. 2005 

Spawning-induced inappetence 
& stress: High resolution 
platform, large n features  

MeCN (s) P MSTFA 2D GCxGC-MS Profiling 137 
Log transformed, autoscaled, 
quartile range filtering, KNN 
(missing variables) 

ChromaTOF, MetPP, 
MetaboAnalyst 

 PCA, PLS-DA, t-test, 
MPEA 

In-house MS library, 
KEGG Cipriano et al. 2015 

Health & immunology: 
Predicting survival None required (s) P, NP MSTFA GC-MS Profiling 67 Peal area normalisation, log 

transformation, autoscaled 
XCalibur, SPSS, SIMCA, 
MetaboAnalyst  

 Kruskal-Wallis test, 
Mann-Whitney U test, 
OPLS-DA, MPEA,  

NIST library, KEGG Guo et al. 2014 

Health, nutrition & alternative 
feed development None required (s) P, NP - 1H-13C NMR Fingerprinting 

& profiling 34 Spectral area normalisation, 
mean centered, Pareto scaled 

Chenomx NMR Suite, AMIX, 
Excel 

 PCA, Kruskal-Wallis test, 
ANOVA 

CRL, BMRB, 
in-house library Schock et al. 2012 

Primary cell 
culture: Cells (c), 
media (m) 
 

Effects of plant-derived 
contaminants in fish feeds: A 
multiplatform study (c) 

MeOH/H2O/CHCl3 P, NP - FT-ICR-MS, 
1H NMR 

Fingerprinting 
& lipid profiling 40+ 

Probabilistic quotient 
normalisation, glog 
transformation, mean centered 

ProMetab, MATLAB, PLS 
Toolbox, MI-Pack 

 
PCA, PLS-DA, ANOVA KEGG Søfteland et al. 

2014 

Nutritional supplementation & 
diet optimisation (m) None required P, NP - 1H NMR Fingerprinting 

& profiling 17 Pareto scaled Chenomx NMR Suite, 
SIMCA-P, Statistica 

 PCA, OPLS-DA, ANOVA Undefined Andersen et al. 
2014 

Fin tissue Identifying animal providence None required P, NP - FT-IR Fingerprinting N/A Undefined Undefined  PCA N/A Nurdalila et al. 
2015 

Skin mucus Minimally-invasive sampling & 
ecotox: Large n features MeOH/H2O P - LC-MS/MS Profiling 204 Peak height normalisation, 

autoscaled SIEVE, SIMCA-P, Excel, Systat  PCA, PLS-DA, ANOVA, 
t-test 

HMBD, Metlin, 
LipidMaps Ekman et al. 2015 

Fish oil capsules Food authentication, forensics 
& quality control None required NP - 13C NMR Fingerprinting  N/A Peak maximum normalisation Undefined  PCA, KNNA, GTM, PNN, 

GRNN 
Chemical shift data 
from the literature Aursand et al. 2007 

Canned fish 
packing oil 

Food authentication, forensics 
& quality control None required P, NP - FT-IR Fingerprinting N/A Undefined MATLAB, PLS Toolbox  PCA, PLS-DA N/A Dominguez-Vidal et 

al. 2016 
               

Molluscs Larvae Identification of larval quality 
biomarkers during hatchery 
culture 

MeOH/H2O P MCF GC-MS Profiling 29 
Peak height normalisation, 
metabolite ratios, log 
transformation, autoscaled 

R, AMDIS, MetaboAnalyst 
 PLS-DA, HCA, heatmap, 

volcano plot, EBAM, 
SAM 

In-house MS library Young et al. 2015b 

Handling stress & culture 
conditions MeOH/H2O P MCF GC-MS Profiling 27 Peak height normalisation, 

autoscaled 
R, AMDIS, MetaboAnalyst, 
SPSS 

 PCA, PLS-DA, HCA, 
heatmap, t-test, In-house MS library Young et al. 2015a 

Adductor muscle Organ function & physiology: A 
multi organ study HClO4 P - 1H NMR Profiling 37+ Peak area normalisation NMR Processor, SpinWorks  N/A HMBD Tikunov et al. 2010 

Optimisation of extraction 
methods & animal providence: 
A multi organ study 

HClO4, MeCN, Ringer’s 
solution P - 1H NMR Fingerprinting 

& profiling 32 Bin integral normalisation, Pareto 
scaled 

TopSpin, NMR Processor, 
Chenomx NMR Suite, JMP, 
Excel 

 
PCA, t-test HMDB, BMRB Hurley-Sanders et 

al. 2015a,b 

Mantle 
Sex discrimination MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 16+ 
Spectral area normalisation, 
biomass normalisation, glog 
transformation, mean centered 

TopSpin, MATLAB, Chenomx 
NMR Suite, Excel 

 
PCA, LDA, t-test CRL Hines et al. 2007 

Ocean acidification, disease, 
thermal stress & sex 
differences 

MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 
& profiling 25 

Probabilistic quotient 
normalisation, glog 
transformation 

MATLAB, PRIMER 
 PERMANOVA, MDS, 

SIMPER Undefined Ellis et al. 2014 

Hepatopancreas Health & immunology: Host 
responses to bacterial 
pathogens 

MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 
& profiling 27 

Spectral area normailisation, 
biomass normalisation, glog 
transformation, mean centered 

TopSpin, Chenomx NMR 
Suite, MATLAB, PLS Toolbox, 
Minitab 

 PCA, PLS-DA, OPLS-DA, 
ANOVA 

Chemical shift data 
from the literature Wu et al. 2013 

Ocean acidification: Integrated 
metabolomics & proteomics  MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 32 Spectral area normalisation, glog 
transformation 

TopSpin, Chenomx NMR 
Suite, MATLAB, SIMCA-P 

 PLS-DA, OPLS-DA CRL Wei et al. 2015 

Foot Health: Biomarkers for 
toxicology, hypoxia & food 
limitation  

MeCN/H2O P - 1H NMR Fingerprinting 
& profiling 20 Box-Cox transformation SpecManager, Excel, 

Minitab, GenStat 

 
PCA, LDA, ANOVA HMBD Tuffnail et al. 2009 

Gonad 
Sex discrimination & 
reproductive physiology SPE & fractionation P, NP - LC-MS Fingerprinting 

& profiling 21+ Spectral area normalisation, 
mean centered 

MarkerLynx, MassLynx, 
SIMCA-P 

 
PCA, PLS-DA, OPLS-DA, 
Mann-Whitney U test 

HMBD, KEGG LDB, 
BiGG DB, PubChem, 
NLDB, MBDB 

Cubero-Leon et al. 
2012 
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Table I. Continued. 

Organism Sample type Experimental 
theme 

Extraction 
method† 

Metabolite 
component‡ 

Derivatisation 
method§ 

Analytical 
Platform/s¶ 

General 
approach 

Metabolites 
Detected 

Data pre-treatment methods 
applied\\ 

Bioinformatics & statistical 
software used†† 

Statistical analyses & 
data visualisation‡‡ 

Databases 
used§§ 

Reference 

Molluscs 
(cont.) 

Gills Identification of thermal 
stress biomarkers MeOH/H2O P Undefined GC-MS Profiling 52 Biomass normalisation JMP DFA Undefined Dunphy et al. 2015 

Toxicology: Integrated 
metabolomics & proteomics MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 28 Spectral area normalisation, glog 
transformation, mean centered 

TopSpin, Chenomx NMR Suite, 
MATLAB, SIMCA-P PLS-DA, OPLS-DA Chemical shift data 

from the literature Ji et al. 2013 

Toxicology: Integrated 
metabolomics & proteomics MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 25+ glog transformation TopSpin, Chenomx NMR Suite, 
SIMCA-P, MATLAB  PCA, PLS-DA, OPLS-DA CRL, KEGG Song et al. 2016 

High resolution NMR: Coastal 
marine pollution & toxicology  MeOH/H2O/CHCl3 P - HR-MAS 

1H NMR 
Fingerprinting 
& profiling 27+ Spectral area normalisation, glog 

transformation, mean centered 

XWIN-NMR, Chenomx NMR 
Suite, MATLAB, Unscrambler X, 
Excel 

PCA, t-test HMBD, CRL Cappello et al. 2013 

Toxicology: Integrated 
metabolomics & proteomics MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 9+ Spectral area normalisation, glog 
transformation, mean centered 

TopSpin, Chenomx NMR Suite, 
MATLAB, SIMCA-P PLS-DA, OPLS-DA Chemical shift data 

from the literature Ji et al. 2016 

Central nervous 
system & glands 

Baseline molecular 
phenotyping: Multiplatform 
metabolomics 

MeOH/H2O/CHCl3 P, NP BF3MeOH 
(lipids) 

GC-MS, LC-MS 
(RPLC & HILIC)  

Fingerprinting 
& profiling 73+ Selected peak normalisation, 

total protein content normalised  
DataAnalysis, ProfileAnalysis, 
SPSS, Excel, SIMCA-P 

PCA, PLS-DA, OPLS-DA, 
HCA, ANOVA Undefined Tufi et al. 2015a 

Neurotoxicity of pesticides in 
aquatic environments: 
Multiplatform metabolomics 

MeOH/H2O/CHCl3 P, NP BF3MeOH 
(lipids) GC-MS, LC-MS Profiling 73 Total protein content normalised  

Compass DataAnalysis, 
DataAnalysis, PathwayScreener, 
ProfileAnalysis, IMPaLA, SPSS, 
Metamapp, Cytoscape  

ORA, BNM, t-test 
Reactome, EHMN, 
KEGG, Wikipathways, 
SMPDB, HumananCyc  

Tufi et al. 2015b 

Gastrointestinal 
tract and/or 
digestive gland 

Bioindicator species for 
pollution monitoring MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 19+ Spectral area normalisation, glog 
transformation, mean centered MATLAB, PLS Toolbox ANOVA, PCA, PLS-DA Chemical shift data 

from the literature Liu et al. 2011 

Metabolic effects of food 
deprivation & extraction 
method optimisation  

MeOH/H2O/CHCl3 P - 1H NMR Profiling 28 Log transformation, median 
centered 

Chenomx NMR Suite, TopSpin, 
R, Unscrambler 

PLS-DA, Mann-Whitney U 
test CRL Sheedy et al. 2015 

Whole soft tissue Dual platform metabolomics: 
Toxicological mechanisms MeOH/H2O/CHCl3 P MSTFA GC-MS, 1H NMR Fingerprinting 

& profiling 
NMR: 17+ 

GC-MS: 24+ 

Spectral area normailsation, 
autoscaled (GC-MS), mean 
centered & Pareto scaled (NMR)  

SpecManager, SIMCA-P PCA, PLS-DA 
Chemical shift data 
from the literature, 
NIST library 

Spann et al. 2011 

Toxicological mechanisms MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 
& profiling 25+ Bin integral normalisaiton, glog 

transformation, mean centered TopSpin, MATLAB, PLS Toolbox PCA, PLS-DA, ANOVA Undefined Wu & Wang 2010 

Unique extraction & platform: 
Method assessment SPME P, NP - 2D GCxGC-MS Fingerprinting 

& profiling 63+ Fourth root transformation ChromaTOF, PRIMER PERMANOVA, PCoA, 
HCA WMSL, NIST library Rocha et al. 20013 

Coastal marine pollution & 
toxicology MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 24 Pareto scaled Chenomx NMR Suite, MATLAB, 
SIMCA-P, R PCA, OPLS-DA, PLS-DA CRL Kwon et al. 2012 

Haemolymph: 
whole blood (wb) 
or plasma (p) 

Mechanical shaking & salinity 
stress None required (wb) P, NP - FT-IR Fingerprinting N/A Undefined Undefined MANOVA, PCA, CVA N/A Bussell et al. 2008 

Developing strategies for 
identifying stress None required (wb) P, NP - FT-IR Fingerprinting N/A Untreated Undefined MANOVA, PCA, CVA N.A Gidman et al. 2007 

Health/stress biomarkers: 
Toxicology None required (p) P, NP - 1H NMR Fingerprinting 

& profiling 18 Spectral area normalisation, glog 
transformation, mean centered 

MATLAB, PLS Toolbox, 
Chenomx NMR Suite ANOVA, PCA CRL Zhou et al. 2015 

              

Crustaceans Claw muscle Nutritional composition & 
quality assessment, 3 spp. MeOH/H2O/CHCl3 P, NP - 1H NMR Fingerprinting 

& profiling 24+ Spectral area normalisation, 
mean centered, areto scaled TopSpin, AMIX, SIMCA-P PCA, PLS-DA Chemical shift data 

from the literature Zotti et al. 2016 

Tail muscle & 
other 

Identification of health & 
stress biomarkers in shrimp 
during intensive culture 

MeOH/H2O/CHCl3 P - 1H-13C NMR Fingerprinting 
& profiling 50+ Spectral area normalisation, 

mean centered, Pareto scaled 
AMIX, Chenomx NMR Suite, 
Excel  PCA, t-test HMDB, BMRB, CRL, 

in-house library Schock et al. 2013 

Hepatopancreas Mechanisms of white spot 
virus syndrome in shrimp Undefined Undefined - 1H NMR Fingerprinting 

& profiling 27+ Undefined TopSpin, SIMCA-P PCA, OPLS-DA Chemical shift data 
from the literature Liu et al. 2015 

Haemolymph Pathogen-induced oxidative 
stress responses in crabs: New 
biochemical insights 

None required P, NP - 1H-13C NMR Fingerprinting 
& profiling 20 Spectral area normalisation, 

mean centered 
AMIX, SIMCA-P PCA, sPCA, PLS-DA, 

ANOVA 

Chemical shift data 
from the literature, 
in-house library 

Schock et al. 2010 

              

Echinoderms Muscle 
Thermal stress responses  MeOH/H2O/CHCl3 P - 1H NMR 

Fingerprinting 
& profiling 

31 Spectral area normalisation, glog 
transformation, mean centered 

TopSpin, Chenomx NMR Suite, 
MATLAB, SIMCA-P PCA, OPLS-DA 

Chemical shift data 
from the literature 

Shao et al. 2015  

              

Macroalgae Thallus Effects of food processing on 
nutrient composition 

MeCN/H2O P - 1H NMR Fingerprinting 
& profiling 

32+ Bin integral normalisation AMIX, SIMCA-P, MATLAB, SPSS PCA, OPLS-DA, heatmap, 
t-test 

Chemical shift data 
from the literature 

Ye et al. 2014 

New insights into metabolism MeOH, H2O P - 1H NMR Profiling 27 N/A Chenomx NMR Suite N/A PRIMe DB, HMDB, 
BMRB  Gupta et al. 2013 

Stipe & blades Seasonal variations in 
metabolism: Multiplatform 
metabolomics 

None required (FT-IR), 
MeOH, H2O (NMR) 

P, NP - FT-IR, 1H-13C 
NMR 

Fingerprinting 
& profiling 51 

Specific peak intensity 
normalisation (FT-IR), spectral 
area normalisation (NMR) 

Excel, TopSpin, SpinAssign, 
OMNIC, R, Amos, Gephi, Fityk 

PCA, ICA, SOMs, CNA, 
SEM, MCR-ALS 

PRIMEe DB Ito et al. 2014 
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Table I. Continued. 

Organism Sample type Experimental 
theme 

Extraction 
method† 

Metabolite 
component‡ 

Derivatisation 
method§ 

Analytical 
Platform/s¶ 

General 
approach 

Metabolites 
Detected 

Data pre-treatment methods 
applied\\ 

Bioinformatics & statistical 
software used†† 

Statistical analyses & 
data visualisation‡‡ 

Databases 
used§§ 

Reference 

Microalgae Cells or extracts Screening microalgae to 
identify commercially 
useful mutants 

None required (FT-IR), 
MeOH/H2O/CHCl3 (LC-
MS) 

P, NP - FT-IR, LC-MS Fingerprinting 
& lipid profiling 

11+ lipid 
classes 

Biomass normalised  MATLAB, Xcalibur, Unscrambler PCA, PC-DFA, PLS-DA, 
PLS-R 

MMD, HMDB, KEGG, 
BioCyc, LIPIDMAPS, 
DrugBank 

Bajhaiya et al. 2016 

Profiling diatoms for bioenergy 
& feedstock MTBE/MeOH/H2O P, NP MSTFA GC-MS, LC-MS Profiling 96+ Cell density normalised, median 

scaled, log transformed 
Expressionist Refiner MS, 
ChromaTOF, R 

PCA, HCA, heatmap, 
t-test In-house MS library Bromke et al. 2015 

Dual platform metabolomics: 
Natural products research 

MeOH/H2O/CHCl3 (GC-
MS), MeOH (LC-MS) P MSTFA GC-MS, LC-MS Profiling 128 Peak area & cell density 

normalisation AMDIS, SIMCA-P, MeV PLS-DA, HCA, heatmap, 
MPEA, WGCNA KEGG Yu et al. 2015 

Photobioreactor culture 
conditions & bioresource 
development 

None required (FT-IR), 
MeOH & EtOH/H2O (LC-
MS)  

P, NP - FT-IR, LC-MS Fingerprinting 
& profiling 13+ 

Second derivative calculation 
(FR-IR), log transformed, Pareto 
scaled 

OpusLab, XCMS, Xcalibur, R, 
Spectrum Database, Statistica 
Data Miner, MetaboAnalyst, 
SIMCA-P 

Kruskal-Wallis test, HCA, 
Mann-Whitney U test, 
heatmap, PLS-DA  

In-house MS library Courant et al. 2013 

Chemical interactions between 
bacteria & diatoms 

MeOH/EtOH,CHCl3 (GC-
MS) P MSTFA GC-MS Fingerprinting 

& profiling 19+ Cell density normalised MassLynx, AMDIS, MET-IDEA, 
SigmaPlot, Excel 

RM-ANOVA, PCoA, CAP, 
heatmap NIST library, GMDB Paul et al. 2013 

              

Bacteria Cell extract Mechanisms of white spot 
syndrome virus in shrimp: 
Nutritional treatment  

MeOH, H2O P MSTFA GC-MS Fingerprinting 
& profiling 3+ Untreated Xcalibur, NIST MS search  Wilcoxon rank-sum test,  NIST library Zhu & Jin 2015 

 
Restoring pathogen 
susceptibility to antibiotics: 
Simple metabolic modulation 

MeOH P MSTFA GC-MS Profiling  Undefined Xcalibur, NIST MS Search, 
MetaGeneAlyse ICA NIST library Su et al. 2015 

 
† Extraction solvents: MeCN (acetonitrile), MeOH (methanol), EtOH (ethanol), MTBE (methyl-tert-butyl ether), H2O (water), CHCl3 (chloroform), HClO4 (perchloric acid), C6H12 (cyclohexane), TCA (trichloroacetic acid), SPME (solid phase 

microextraction), SPE (solid phase extraction) 

‡ Metabolite components: P = polar component, NP = non-polar component 

§ Derivatisation: MSTFA = silylation with N-Methyl-N-(trimethylsilyl)trifluoroacetamide, BSTFA = silylation with N,O-Bis(trimethylsilyl)trifluoroacetamide, MCF = alkylation with methyl chloroformate, ECF = alkylation with ethyl 
chloroformate 

¶  Analytical platforms: FI-MS/MS (flow injection tandem mass spectrometry), FT-IR (Fourier transform infrared spectroscopy), 1H NMR (proton nuclear magnetic resonance), 1H-13C NMR (two dimensional proton and carbon NMR for 
assisting metabolite identifications), HR-MAS NMR (high resolution magic angle spinning NMR), FT-ICRMS (Fourier transform ion cyclotron resonance mass spectrometry), DART-MS (direct analysis in real time mass spectrometry), GC-
MS (gas chromatography mass spectrometry), LC-MS (liquid chromatography mass spectrometry), RPLC (reverse phase liquid chromatography), HILIC (hydrophilic interaction liquid chromatography) 

\\  Note: Whilst not explicitly stated within the table, most metabolomics-based investigations will also include normalisation of data to an internal standard as a data pre-treatment method to compensate for potential technical variations 
(e.g., variable metabolite recoveries during sample preparation and processing). 

†† Software: AI Trilogy (Ward Systems Group Inc., US), AMDIS (Automated Mass Deconvolution and Identification System [The National Institute of Standards and Technology, US]), Amos (IBM Corp., US), AMIX (Bruker Corp., Germany), 
Chemstation (Agilent, US), Chenomx NMR Suite (Chenomx Inc., Canada), ChromaTOF (LECO Corp., US), Compass DataAnalysis (Bruker Corp., Germany), Cytoscape (Shannon et al. 2003), DataAnalysis (Bruker Corp., Germany), EasyLCMS 
(Fructuoso et al. 2012), Excel (Microsoft, US), Expressionist Refiner MS (Genedata, Switzerland), FityK (Wojdyr 2010), Gephi (Bastian et al. 2009), GenStat (VSN Internaitonal, UK), IMPaLA (Integrated Molecular Pathway Level Analysis 
[Kamburov et al. 2011]), JMP (SAS Institute Inc., US), MarkerLynx (Waters Corp., US), MassCenter (JEOL, Japan), MassLynx (Waters Corp, US), MATLAB (Mathworks, US), MestReC (Mestrelab Research, Spain), MestReNova (Mestrelab 
Research, Spain), Metaboanalyst (Xia et al. 2015), MetaGeneAlyse (Daub et al. 2003), MetaMapp (Barupal et al. 2012), MET-IDEA (Lei et al. 2012), MetPA (Xia & Wishart 2010 [now a component of MetaboAnalyst]), MetPP (Wei et al. 
2013), MEV (Multi Experiment Viewer [Howe et al. 2010]), MIDAS (Wang et al. 2014), Minitab (Minitab Inc., US), MSCalc (SoftShell International Ltd., US), MZmine (Katajamaa et al. 2006), NMR Processor (ACD/Labs, Canada), OMNIC 
(Thermo Fisher Scientific, US), PathwayScreener (Bruker Corp., Germany), PLS Toolbox (Eigenvector Research Inc., US), PRIMe DB (Platform for RIKEN Metabolomics Database, RIKEN Yokohama Institute, Japan), PRIMER (Plymouth 
Routines In Multivariate Ecological Research [PRIMER-E Ltd, UK]), Prism (GraphPad Software Inc., US), ProfileAnalysis (Bruker Corp., Germany), ProMetab (Parson et al. 2007), R (R Core Team 2014), SAS (Statistical Analysis System [SAS 
Institute Inc., US]), SIEVE (Thermo Fisher Scientific, US), SIMCA-P (MKS Unimetrics, Sweden), SpecManager (ACD/Labs, Canada), Spectrum Database (ACD/Labs, Canada), SpinAssign (Platform for RIKEN Metabolomics, RIKEN Yokohama 
Institute, Japan), SpinWorks (University of Manitoba, US), SPSS (IBM Corp., US), Statistica Dataminer (StatSoft, US), Systat (Systat Software, US), Tiberius (Tiberius Data Mining, Australia), TopSpin (Bruker Corp., Germany), Unscrambler 
(CAMO, Norway), VNMR (Varian Inc., US), Xcalibur (Thermo Fisher Scientific, US), XWINNMR (Bruker Corp., Germany). 

‡‡ Statistical analyses: ANOVA (analysis of variance), RM-ANOVA (repeated measures ANOVA), MANOVA (multivariate ANOVA), PERMANOVA (permutation MANOVA), BNM (biochemical network mapping), CAP (canonical analysis of 
principal coordinates), CNA (correlation network analysis), CVA (canonical variates analysis), DFA (discriminant function analysis), EBAM (empirical Bayes analysis of metabolites), GRNN (general regression neural networks), GTM 
(generative topographic mapping), HCA (hierarchical cluster anlaysis), ICA (independent component analysis), KNNA (Kohonen neural network analysis), MDS (multi-dimensional scaling), MCR-ALS (multivariate curve resolution-
alternating least squares), MPEA (metabolite pathway enrichment analysis), ORA (over-representation analysis), PNN (probabilistic neural networks), PCA (principal components analysis), SPCA (supervised PCA), RPCA (robust PCA), PC-
DFA (principal component discriminant function analysis ), PCoA (principal coordinate analysis), PLS-DA (projection to latent structures discriminant analysis), OPLS-DA (orthogonal projection to latent structures discriminant analysis), 
PLS-LDA (projection to latent structures linear discriminant analysis), PLS-R (projection to latent structures regression), SAM (significant analysis of metabolites), SEM (structural equation modelling), SIMPER (Similarity Percentage 
analysis), SOMs (self-organising maps), WGCNA (weighted gene correlation network analysis). 

§§ Databases: BiGG DB (Database for Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions), BML (Birmingham Metabolite Library), BMRB (Biological Magnetic Resonance Data Bank), 
CRL (Chenomx Reference Library), ECMDB (E. coli Metabolome Database), EHMN (Edinburgh Human Metabolic Network), GMDB (Golm Metabolome Database), HMDB (Human Metabolome Database), KEGG (Kyoto Encyclopaedia of 
Genes and Genomes), KEGG LDB (KEGG Ligand Database), NIST (The National Institute of Standards and Technology) library, MBDB (Massbank Database), MMD (Manchester Metabolomics Database), NLDB (Nature Lipidomics Database), 
SMPDB (The Small Molecule Pathway Database), WMSL (Wiley Mass Spectral Libraries), YMDB (Yeast Metabolome Database).
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A range of other NMR-based techniques are also 
available which have various applications and levels 
of analytical sensitivity, such as two-dimensional 
and hyphenated platform approaches (reviewed by 
Simpson & Bearden 2013; Bharti & Roy 2014; Larive 
et al. 2014). NMR was originally the workhorse of 
metabolite profiling in the early days, but recent 
advances in mass spectrometry based approaches 
offer alternative methods of analyses. These 
platforms are often used in combination, since they 
have their own individual merits (Ong et al. 2009; 
Zhang et al. 2012). For example, NMR is a non-
destructive technique and acquires highly robust 
and reproducible measurements. Separation of 
metabolites prior to detection is not necessary and 
minimal sample preparation is required. NMR is 
generally cheaper to perform, but unfortunately 
has comparatively low sensitivity in relation to MS-
based platforms, which means only metabolites 
that are present in significant quantities can be 
detected.  

Mass spectrometry 

Mass spectrometry (MS) is a method which involves 
the measurement of molecular weights of 
molecules (reviewed by El-Aneedet al. 2009; Viant 
& Sommer 2013). There are three components to a 
mass spectrometer: the ion source, the mass 
analyser, and the detector (Glish & Vachet 2003). 
There are many different types of these 
components (see Dettmer et al. 2007; El-Aneed et 
al. 2009; Junot et al. 2014). At the ion source, 
metabolites within a sample are ionized by a variety 
of processes. For metabolomics work, the most 
commonly used ionisation techniques are electron 
ionisation and electrospray ionisation (Lei et al. 
2011). In most cases, the molecules become 
sufficiently excited to fragment into a number of 
electrically charged ions. These ions move into the 
mass analyser where they are separated based on 
their mass to charge (m/z) ratio by accelerating 
them and subjecting them to various combinations 
of electric, magnetic or electromagnetic fields or in 
a ‘time of flight’ mass spectrometer which assesses 
how fast they are travelling. Fragments with 
different m/z ratios travel at different speeds and 
are deflected from their forward trajectory to 
different degrees; lighter ions deflect more than 
heavier ions, and the higher the ionic charge, the 
greater the deflection. This allows the various types 

of mass analysers to filter the ions. The ions are 
then directed into a device that counts the number 
of ions at each different mass. This information is 
plotted in a spectrum of the ion abundance as a 
function of the m/z ratio. The identity of a 
metabolite can be putatively elucidated by 
comparing the fragmentation patterns against open 
access and/or proprietary databases which contain 
mass spectra of known compounds. Depending on 
the particular instrument, some (high resolution 
mass spectrometers) are capable of determining 
the actual elemental composition of each ion, thus 
providing an extra dimension of information for 
validation of metabolite identity. 

MS-based methods are becoming highly 
sophisticated and newly-developed platform 
variations are increasingly being showcased in the 
scientific literature. MS can be performed directly 
on samples without pre-separation of metabolites 
(reviewed by Ibáñez et al. 2014). While direct MS 
techniques are rapid, they also suffer from low 
ionization efficiencies and ion suppression. Thus, to 
decrease the complexity of the sample matrix and 
enhance the sensitivity and selectivity of the 
analysis, MS-based metabolomic approaches 
usually involve separation of metabolites via 
chromatography or electrophoresis prior to MS 
detection. The benefits of pre-separation are that a 
significant amount of information is available from 
the pre-separation process, and metabolites with 
the same mass can easily be distinguished since 
they are introduced into the MS system at different 
times. In addition, higher quantitative accuracies 
can be achieved since problems associated with ion 
suppression and other interferences are greatly 
reduced. Gas chromatography (GC), liquid 
chromatography (LC), and capillary electrophoresis 
(CE) are the most commonly applied methods for 
this purpose. When coupled, these instruments are 
called hyphenated platforms (GC-MS, LC-MS and 
CE-MS). Each of these platforms have their own 
unique advantages, and can be used in combination 
to obtain very broad coverage of the metabolome 
(Lei et al. 2011). 

Gas Chromatography Mass Spectrometry 

Gas Chromatography (GC) separates metabolites 
which are volatile and thermally stable, or which 
become volatile and thermally stable after 
functional group modifications (e.g., alkylation or 
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silylation via chemical derivatization [Villas-Bôas et 
al. 2011]) (reviewed by Garcia & Barbas 2011). Once 
the sample extract has been prepared, it is injected 
into a hot gas stream flowing through a long and 
very small diameter tube in the GC instrument. The 
inside walls of the tube, called a column for 
historical reasons, are coated with material that has 
some affinity for the various components in the 
mixture. The different interactions of the 
metabolites with the gas stream and the column 
walls result in differential flow speeds through the 
column and they exit the column at different times 
(producing a chromatogram [Fig. 3E,F]); thus 
entering the mass spectrometer in a unique 
sequence. This combination of unique entrance 
times and associated information on the 
physicochemical properties of metabolites provides 
an enhanced means of profiling and identification. 
See Figure 4 for an illustrated overview of the 

analytical processes involved using pre-separation 
techniques combined with MS for the metabolomic 
analysis of complex sample matrices. GC-MS has the 
advantage that it produces very stable metabolite 
retention times within the column, does not have 
drawbacks associated with ion suppression, and 
generates highly reproducible fragmentation 
patterns. These features mean that metabolite 
identifications can more easily be authenticated by 
matching spectra against those contained within 
numerous open-access spectral libraries. However, 
if samples need to be derivatized, are thermally 
unstable, or have too high a molecular weight, GC-
MS may not be suitable.  See Zhao X. et al. (2015) 
for an applied example of how GC-MS was used to 
identify biomarkers for temperature stress in 
tilapia, and to discover that an exogenous supply of 
L-proline into the culture water led to higher 
disease resistance against bacterial pathogens. 

 
 

 
 

 
 
 
Figure 4. Overview of the processes involved using pre-separation techniques combined with mass spectrometry. Gas 
chromatography, liquid chromatograph or capillary electrophoresis is used to separate metabolites in the sample extract 
to produce a chromatogram. Compounds within the peaks are then sequentially analysed by mass spectrometry, and 
their ion m/z ratios are compared to those stored in mass spectral databases for identification. In some cases, peaks may 
comprise multiple metabolites with similar physicochemical properties which are unable to be separated by the pre-
separation device and deconvolution of the spectra is required. 
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Table II. Comparisons between different analytical platforms for processing metabolomics samples.  

Platform Advantages Disadvantages Processing Cost† 
 

NMR 
 

Rapid analysis time (5–10 mins) 
Simple sample preparation 
No derivatisation needed 
Provides detailed structural information 
Low chemical bias 
Very reproducible 
Can be high resolution 
Excellent metabolite recovery (no suppression) 
Highly quantitative (without standards) 
 

 

Low sensitivity 
Convoluted Spectra 
Libraries of limited use due to complex matrix 
More than one peak per component 
Peak overlap common 
pH adjustment required 
 

 

Cheap 
 

$30–100 USD 
per sample 

GC-MS Very sensitive 
Very robust 
Large linear range 
MS provides some structural information 
Many available libraries for metabolite identification 
Pre-separation provides additional information 
Does not suffer from ion suppression 
Reproducible retention times 
Quantitative (with appropriate standards) 
 

Slow analysis time (30–60 mins) 
Extensive sample preparation 
Derivatisation required 
Destructive to sample 
Some metabolites cannot be made volatile 
Some metabolites are too large for analysis 
Cannot detect some thermally unstable metabolites 
 

Expensive 
 

$100–200 USD 
per sample 

LC-MS Very sensitive 
Can detect a very wide range of metabolites  
MS provides some structural information 
High mass accuracy 
Many modes of pre-separation available 
Pre-separation provides additional information 
Quantitative (with appropriate standards) 
 

Analysis time can be slow (10–60 mins) 
Lack of comprehensive spectral libraries 
Ion suppression & adduct formation problems 
Destructive 
Metabolite identification is difficult 
Low retention time reproducibility  

Very expensive 
 

$150–400 USD 
per sample 
 

FT-IR, NIR, 
Raman 

Very rapid analysis time (10–60 secs) 
Low chemical bias 
Can be used directly on samples 
No derivatisation required 
Complete fingerprint of sample composition 
Useful for identifying functional groups 
 

Extremely convoluted spectra 
More than one peak per component 
Metabolite identification almost impossible 
Often requires sample drying 

Very Cheap 
 

$10–50 
per sample 

 
† Per sample processing costs vary between service providers and depend highly on the number of samples to be analysed within a particular project, 

and the resolution of the specific platform to be employed. The price ranges displayed are not strictly defined limits but are typical of the current 
rates charged for commercial samples, and generally will include metabolite extraction (and derivatisation when required), instrumental analysis, 
and some primary bioinformatics processing. Additional statistical analysis, secondary bioinformatics processing and/or biological interpretation of 
the data can usually be provided as an extra service by most facilities e.g. $50–200 USD per hour for a metabolomics specialist. Academic-based 
metabolomics service providers may offer discounted rates for collaborative projects. 

 

Liquid Chromatography Mass Spectrometry 

High Performance Liquid Chromatography (HPLC or 
LC) is based on similar chromatographic principals 
as GC, but the sample is not heated to high 
temperatures (reviewed by Xiao et al. 2012). The 
most important distinction between GC and LC is 
that GC largely separates metabolites based on 
their boiling points with secondary retention by 
polarity, whereas metabolite size or polarity are the 
main mechanisms of LC. The column in this case is a 
tube a few millimetres wide and a few centimetres 
long and packed with extremely fine powder coated 
with material that has some affinity for the various 

metabolite components in the sample. A suitable 
solvent mixture is pumped at very high pressure 
through the column. The sample is introduced into 
the column as a solution and, like GC, the various 
components of the mixture travel through the 
column at different speeds and exit in sequence to 
produce a chromatogram (Fig. 3G,H). From there 
the outlet stream is directed into a suitable detector 
which, for metabolomic work, is typically a high-
resolution mass spectrometer. Therefore, LC-MS 
can analyse a wider range of metabolites since non-
volatile and thermally sensitive compounds can be 
separated in the liquid phase. However, LC-MS 
suffers from greater ionization and matrix effects, 
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and lower chromatographic reproducibility. These 
features make assigning metabolites through 
spectral library matching considerably more 
difficult. Nevertheless, LC-MS is a very popular 
metabolomic platform and the analytical 
technology, spectral libraries, and software for 
processing spectra are continually being updated to 
improve metabolite identifications. See Yan et al. 
(2012) for an applied example of how LC-MS was 
used to identify species-specific metabolic stress 
responses of fish immediately after a tropical 
cyclone at various cage-farming sites, and to 
determine the physiological mechanisms which 
resulted in high mortalities during the following 
month of grow out. 

Capillary Electrophoresis Mass Spectrometry 

Capillary electrophoresis (CE) is an alternative pre-
separation technique which separates metabolites 
based on their ionic charge characteristics, or 
electrophoretic mobility (reviewed by Ramautar et 
al. 2009). In many respects this technique is similar 
to LC, but molecules are separated based on their 
ionic affinities and size rather than on their solid 
phase solubilities (Hiryama et al. 2014). In CE, 
sample extracts enter a column which contains 
electrolytes. Charged metabolites migrate through 
the column and exit at different times under the 
influence of an electric field, and can be further 
concentrated using gradients in conductivity and 
pH. CE-MS is an efficient platform that does not 
require rigorous sample pre-treatment, is useful for 
small samples, is good at separating highly polar 
metabolites, has separation power and sensitivities 
which are comparable to GC-MS and LC-MS, and 
can quantify certain metabolites that other 
hyphenated MS platforms cannot. On the other 
hand, CE is unable to separate non-charged 
compounds, and suffers more than GC or LC from 
poor reproducibility. However, recent advances in 
CE-MS technologies are contributing to the 
increasing usage of the technique in metabolomics 
studies (Ramautar et al. 2015). See Koyama et al. 
(2015) for an applied example of how CE-MS was 
used to gain detailed metabolic insights into salinity 
adaption of brackish-water clams from four 
commercial fishery grounds in Japan with different 
water chemistries. 

The sensitivity, or at least the detection limits, of 
MS techniques can be extremely high. As long as a 
substance can be separated, detection limits in 

parts per million or even better are possible. If pre-
concentration techniques are used, molecules can 
easily be detected in concentrations of parts per 
trillion or better. 

Vibrational spectroscopy 

The analysis of complex sample matrices can also be 
performed using lower resolution instruments 
which measure the vibrational signatures of broad 
metabolite functional groups (Moore et al. 2014). 
Such analyses generally do not provide detailed 
information for identifying particular metabolites, 
but can still be very useful for obtaining an overall 
‘metabolite fingerprint’ of a sample. This fingerprint 
is based on the holistic composition of functional 
group chemistries across all metabolites within the 
sample, and can be used to classify samples from 
different conditions when significant variations are 
observed. However, the drawback is that biological 
interpretation of spectra can be difficult because of 
this non-specificity. The application of vibrational-
based technologies, such as Fourier transform 
infrared (FT-IR), near infrared (NIR), and Raman 
spectroscopy are growing in popularity due to their 
rapid and high through-put analysis capabilities, 
their ability to work with very small samples, and 
their very low cost compared to other platforms. 

Infrared Spectroscopy 

Infrared techniques work on the principal that when 
a sample is exposed to light, or electromagnetic 
radiation, the different chemical bonds within 
metabolite functional groups absorb energy at 
different wavelengths and vibrate in characteristic 
ways. A plot of the absorbance or transmittance of 
light at different wavelengths produces a spectrum 
which represents the overall metabolite 
composition of the sample to provide a snapshot, or 
fingerprint, of the organism’s metabolome (Fig 5.). 
Infrared platforms are categorized into Near-
Infrared (NIR) 0.78–3 µm and Mid-Infrared (MIR) 3–
50 µm depending on the wavelength of light used 
to analyse the samples. Modern instruments 
commonly use Fourier transform techniques (a 
mathematical process which converts the raw data 
from the instrument into a spectrum) so the 
expression FT-IR is often seen when discussing MIR 
spectroscopy. MIR analysis examines the 
absorptions of bond vibrations and other molecular 
movements, whereas NIR evaluates the overtones
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and combinations of strong MIR absorptions, 
which, while not as specific as the sharper, stronger 
MIR absorptions, can be characteristic and more 
easily quantified for a range of biologically 
important functional groups such as sugars, fats, 
and proteins. Unlike MIR, NIR can penetrate many 
millimetres through water and the instruments can 
use glass optics. Infrared platforms have proven 
useful for a range aquaculture-related purposes. 
For example, to identify pathogenic bacteria 
responsible for disease in farmed salmon (Wortberg 
et al. 2012), to determine the causation for post-
harvest variations in shrimp quality based on the 

methods used for culling (Fu et al. 2014), to identify 
fraudulently marketed fish from different origins 
(Vidal et al. 2014), to assess the meat quality of 
various fish species (Cheng et al. 2013; Qu et al. 
2015), to develop new food safety and 
authentication techniques for classifying shelled 
shrimp based on their post-harvest storage 
conditions (Qu et al. 2015), and to develop fast and 
cost-effective methods for proximate chemical 
analysis of cultured shellfish for the purposes of 
monitoring animal condition and assisting in 
selective breeding programs (Brown et al. 2012), 
among others. 
 

 
 

Infrared spectra Raman spectra 

 
 
 

Figure 5. An example of comparative IR and Raman spectra obtained from the analysis of blood serum (reproduced from 
Ellis & Goodacre 2006). 
 

 

Raman Spectroscopy 

Raman spectroscopy is a technique closely related 
to MIR. When a laser beam hits a molecule, 
approximately 1 in 107 photons will interact with 
electrons in the chemical bonds resulting in the 
scattered laser light having extra wavelengths (a 
few nm) added to it and subtracted from it which 
correspond to the vibration frequencies of the 
bonds in the molecule. These shifts in photon 
wavelengths are called the ‘Raman effect’. The 
original laser colour can be subtracted using filters 
and the remaining frequencies provide information 
about the vibrational, rotational and other low 
frequency transitions within metabolites. Raman 
spectra are closely related to MIR spectra and look 
very similar (Fig. 5). The principal difference is that 
the sorts of chemical bonds that give weak MIR 
absorptions are usually very strong in the Raman 
spectrum, and vice versa, so the two techniques are 
complementary. Although its big drawback is the 

very weak Raman signal, Raman spectroscopy has 
several major advantages. Glass optics can be used 
and since Raman spectroscopy is based on the 
scattering of incident light rather than on 
absorption, it does not suffer from interferences 
caused by water. Thus, measurements can be made 
directly on biofluids and aqueous extracts, minimal 
to no sample preparation is required, and spectra 
can be obtained very quickly. See Ishigaki et al. 
(2014) for an applied example of how non-invasive 
Raman spectroscopy was used on live fish eggs to 
predict and monitor their quality and viability to 
ensure successful fertilizations. 

Metabolite fingerprinting vs. profiling 

There are generally two approaches to generation 
and examination of metabolomics data – 
metabolite fingerprinting and metabolite profiling. 
The approach utilized depends largely on the 
objectives of the investigation and the facilities 
available.  
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Metabolite fingerprinting compares the overall 
nature of samples based on the entire set of signals 
generated by the analytical platform. These signals, 
or features, are analysed using statistical 
techniques to discern patterns in the data for the 
purpose of sample classification. This approach 
usually involves the analysis of a very large number 
of signals, which represents the total compositions 
of metabolites, and does not necessarily require 
metabolite identification. Data obtained from NMR 
and vibrational spectroscopy platforms are 
particularly well-suited for metabolite 
fingerprinting. However, interpretations of results 
within particular biological frameworks are limited 
unless further analyses of relevant features within 
the fingerprints are performed. Nevertheless, 
metabolite fingerprinting can be convenient for 
situations when only sample-class discrimination is 
required. For example, Aursand et al. (2007) used 
metabolite fingerprinting to reliably identify 
fraudulently mislabelled fish oil products to ensure 
food safety and develop novel techniques for food 
traceability and quality assurance. 

Metabolite profiling evaluates all of the signals 
generated by the analytical platform so that they 
may be characterized and matched to spectra of 
known metabolites in reference libraries. Once 
identified, data analyses are then performed on the 
abundances of the metabolites within the samples. 
This approach provides data which can be more 
easily interpreted across various biological 
frameworks since features are ascribed an identity 
with often well-known biochemical roles. 
Metabolite profiling frequently leads to discovery of 
biomarkers and development of novel and testable 
hypotheses. For example, Guo et al. (2014) used 
metabolite profiling to identify early-warning 
biomarkers to predict fish health, and to better-
understand the mechanisms of defence against 
bacterial infection.  

Metabolite fingerprinting combined with 
profiling is sometimes used when very large 
numbers of signals are present within the raw 
spectral data so that only those features statistically 
different between samples, or otherwise deemed 
important, are subsequently identified. This 
approach can be used to reduce the computational 
and resource demands of processing noisy or large 
and complex datasets. In most metabolite 
fingerprinting applications, signals that are different 
between samples are usually identified to aid 

interpretation of the data. For example, Savorani et 
al. (2010) and Picone et al. (2011) used combined 
approaches to identify factors responsible for meat 
quality variation in fish reared under different 
culture environments, and stored under different 
post-harvest conditions. 

NMR-based metabolomics usually involves 
fingerprinting as an initial step, whereas use of MS-
based hyphenated platforms may involve profiling 
only. It is important to note that the definitions and 
term usage for these two approaches tend to be 
flexibly applied in the literature and as yet there are 
no standardized descriptions. 
 
Data Analysis 
Although metabolomic datasets are often very large 
and complex, recent advances in bioinformatics and 
streamlined statistical workflows provide simple 
strategies for coping with the high dimensional data 
(Johnson et al. 2015). Bioinformatics is an 
interdisciplinary field incorporating computer 
science, database management, mathematics and 
statistics. Primary bioinformatics processing 
involves analysis of the raw data obtained from the 
analytical platform and incorporates all procedures 
which are required to generate a list of features or 
metabolites. The resulting data can then be 
analysed by a range of classical and applied 
statistical procedures.  

A number of steps are involved in the primary 
bioinformatics processing and usually includes data 
conversion, spectral processing (e.g., 
deconvolution, alignment, noise reduction), feature 
selection, metabolite identification via database 
matching, metabolite quantification, and quality 
control procedures. While a variety of freely or 
commercially available software packages exist to 
perform these tasks, many laboratories employ 
their own proprietary programs and algorithms, 
which have been custom designed for their unique 
situations and analytical set-ups. The methods used 
for primary bioinformatics processing vary widely 
and depend on data type and the analytical 
platform employed. Thus, it is impossible to provide 
general advice. However, at the end of this section 
we direct readers to a wide range of relevant 
literature, which covers these topics in more depth. 

Prior to statistical analysis of metabolite 
profile/fingerprint data, data scaling, normalization 
and/or transformations are often performed to 
enhance extractability of biologically relevant 
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information from the dataset. Metabolite 
concentrations have huge dynamic ranges, and 
variance is typically larger at higher concentrations. 
Because many statistical procedures rely on 
homoscedasticity or distributional assumptions, it is 
important to alleviate the dependency of the 
variance on the concentration through variance-
stabilizing transformation or transformation to 
normality. Furthermore, the relative abundances of 
different metabolites are not proportional to the 
biological importance that they may represent, and 
many data analysis techniques fail to take this into 
consideration. Some of the more commonly applied 
pre-treatment methods for metabolomics data 
include centering, autoscaling, pareto scaling, range 
scaling, log transformation, and power 
transformation (reviewed by van den Berg et al. 
2006). The pre-treatment method chosen may vary 
between different metabolomics datasets; hence, a 
solid understanding of how the implemented 
method affects the outcome of subsequent 
statistical analyses is essential for reliable 
interpretations. 

Statistical data analysis can be achieved using 
general statistical software (e.g., Minitab [Minitab 
Inc., PA, USA], SIMCA [Umetrics, Umea, Sweden], 
SPSS [IBM Corp., NY, USA], STATISTICA [Statsoft Inc., 
OK, USA]) or dedicated metabolomics-based data 
analysis packages (e.g., DeviumWeb [Grapov 2014], 
MeltDB [Kessler et al. 2013], Metaboanalyst [Xia et 
al. 2015]). A basic knowledge of programming is 
useful for employing, modifying, or writing script in 
certain data analysis environments (e.g., Matlab 
[Mathworks Inc., MA, USA], R [R Core Team 2014]). 
However, recent development of easy-to-use 
graphical user interfaces for these environments 
have substantially reduced the need for advanced 
programming skills. See Mishra and Van der Hoot 
(2016) for further information regarding the latest 
advances in available computational tools and 
resources for the analysis of metabolomics data. 
OMICtools (http://omictools.com/) is also a useful 
and growing online repository of web-accessible 
tools related to omics-based data analysis.  

Similar to other –omics disciplines, it is common 
for the number of measured variables (genes, 
proteins or metabolites) within each sample to far 
exceed the number of samples analysed. 
Metabolomics data are by their very nature 
multivariate in design and lend themselves 
particularly well to multivariate statistical analyses. 

However, univariate techniques can also be 
employed to extract valuable information from the 
data. Use of both approaches in combination is 
routinely performed and recommended because 
they can expose different characteristics of the 
samples (Sugimoto et al. 2012).  

Univariate methods 

Univariate methods involve analysis of single 
variables (metabolites) at a time. T-tests and 
ANOVA’s (analysis of variance), or their non-
parametric equivalents (e.g. Mann-Whitney U test, 
Kruskal-Wallis test), are the most commonly applied 
univariate techniques to identify differences in 
metabolite abundances between samples. 
However, due to the high number of variables, it is 
important to correct for multiple hypothesis testing 
to protect against the likelihood of identifying false-
positives (Broadhurst & Kell 2006). SAM (significant 
analysis of microarrays/metabolites) is an example 
of a univariate method which is able to account for 
correlations between metabolites and does not 
assume independence, unlike the T-test and 
ANOVA. Volcano plots are often used for the 
univariate analysis of gene, protein and metabolite 
expression data (Li 2012). Volcano plots are 
scatterplots which incorporate a measure of 
statistical significance (T-test p-values) with 
information about the magnitude of metabolite 
change (fold-change) (Fig. 6).  
 
 

 
 

Figure 6. Example of a volcano plot. Solid yellow circles 
represent metabolites which are significantly different 
between sample groups (P<0.05), as well as have large 
variation (> 1.2 fold-change) in their mean abundances. 
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They allow quick identification of metabolites, 
which are not only statistically different between 
two sample conditions, but which also co-display 
large variations in abundance. See Young et al. 
(2015) for an applied example of how a volcano plot 
and SAM was used to assist construction of a 
multivariate classification model for assessing the 
quality of hatchery-reared mussel larvae.  

Univariate methods are attractive because they 
are generally simple to apply and the results are 
easily interpreted and communicated across 
various levels of expertise. However, they cannot 
detect group differences when only minor 
variations exist on a single molecule level. 
Associations between metabolites and low 
variations in abundance can be highly important on 
a systems level due to the orchestrated flux of 
metabolites within common biochemical networks.  

Multivariate methods 

Since univariate techniques may not account for 
interrelations between metabolites, multivariate 
methods are applied to compensate, and to provide 
additional and complementary information for 
assisting interpretation of the data. Multivariate 
techniques can be used to reduce complexity and 
identify patterns, group structure, and relationships 
among metabolites and samples (Worley & Powers 
2013). Commonly applied procedures include 
Principal Components Analysis (PCA), Projection to 
Latent Structures Discriminant Analysis (PLS-DA), 
and clustering. 

Principal Components Analysis 

PCA is a mathematical procedure that aims to 
capture and extract most of the important 
information in a high-dimensional data matrix and 
re-express it in fewer dimensions (Abdi & Williams 
2010). In doing so, the data can be more easily 
visualized, described, and analysed. PCA does this 
by combining the multiple correlated variables into 
a number of smaller uncorrelated variables called 
principal components. A different data matrix is 
constructed in which the first 2–3 new variables 
account for the vast majority of the total variance in 
the original data. The samples can then be 
projected and visualized on a 2D or 3D score-plot 
(Fig. 7). PCA is an unsupervised statistical technique 
which incorporates only the independent 
metabolite information. Dependant variables are 
not required for modelling and information of 
sample class membership is not included in the 
analysis. As an unsupervised technique, patterns 
among the independent variables are discerned and 
groups of samples are formed based solely on the 
structure of the metabolite data. The PCA algorithm 
therefore achieves unbiased dimensionality 
reduction and only exposes group structure when 
within-group variation is substantially less than 
between-group variation. PCA is very useful for 
visualizing multi-dimensional data, identifying 
outliers, conducting classification studies, 
identifying a subset of original variables which 
explain most of the variation between samples, and 
for exploratory data analysis before building 
predictive models. See Kokushi et al. (2015) for an 
applied example of how PCA was used to identify 
differential regulation of metabolic pathways due 
to insecticide exposure in freshwater carp. 
 
 

   

                               PCA                                             PLS-DA                                                   OPLS-DA 

 
Figure 7. Comparison of multivariate data reduction techniques for assessing sample groupings using non-supervised 
principal component analysis (PCA) and supervised projection to latent structures discriminant analysis (PLS-DA), and its 
orthogonal extension (OPLS-DA). Discrimination power: PCA < PLS-DA < OPLS-DA.  
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Projection to Latent Structures Discriminant 
Analysis 

Similar to PCA, PLS-DA is a technique, which can be 
used to reduce dimensionality and help visualize 
and analyze multivariate data (Worley & Powers 
2013). However, PLS-DA is a supervised statistical 
technique, which incorporates information about 
the sample classes. Using this information, PLS-DA 
rotates the data within the newly created latent 
variable subspace in a way that maximizes 
separation between groups of samples. This can 
result in much clearer separations than when PCA is 
applied (Fig. 7). PLS-DA can be very useful for 
identifying and ranking metabolites which 
contribute most towards sample group separations 
and, when applied correctly, to assist construction 
of predictive classification models. Orthogonal PLS-
DA is a related technique, which can further 
enhance separations due to its ability to distinguish 
between predictive and non-predictive 
(orthogonal) variation (Bylesjӧ et al. 2006) (Fig. 7).  

PLS-DA and its extensions have a tendency to 
over-fit the model to the data. Therefore, validation 
is important when using these algorithms in 
predictive capacities. Model validation is the 
process of defining a model’s performance and is a 
critical requirement for predictive modelling 
(Szymańska et al. 2012). This ensures that the 
model’s internal variable rankings are truly 
informative. Commonly used methods to test a 
model’s performance include permutation-based 
tests and cross validation (Worley & Powers 2013). 
The ideal scenario involves the use of a training 
dataset to build the model, and a separate 
validation dataset to assess its predictive capacity. 
See Liu et al. (2015) for an applied example of how 
PLS-DA and OPLS-DA were used to identify 
metabolites associated with white spot syndrome 
virus infection in shrimp, and provide preliminary 
information for developing biomarkers for 
diagnosing the pathophysiology of the disease.  

Clustering 

Clustering is a collection of statistical procedures, 
which aims to group samples together that are most 
similar in their metabolite profile (reviewed by 
Andreopoulos et al. 2009). Like PCA, most clustering 
techniques involve unsupervised approaches to 
group samples and the goal of clustering is to 
identify the actual groups based on the underlying 

structure of the data. Where PCA selects the 
variables with the most variation to form a reduced 
data matrix for partitioning samples, cluster 
analysis algorithms do not lose variance through 
dimensionality reduction in the same way and 
generally use all variables equally to display sample 
similarity/dissimilarity. Although clustering can be 
used to discover structures within the data 
irrespective of sample-class membership, it does 
not explain why they exist. Nevertheless, clustering 
is a very useful exploratory technique for 
uncovering patterns, finding natural groupings, 
confirming known groupings, identifying outliers, 
and discovering groups of metabolites with similar 
expression patterns across a wide range of 
biological conditions by clustering the variables 
rather than the samples. The most commonly 
applied clustering algorithms in metabolomics-
based investigations are Hierarchical Cluster 
Analysis (HCA) and k-means clustering. 

HCA is a method which seeks to construct a 
hierarchy of clusters and arrange them into a binary 
tree-structured graph called a dendrogram 
(Meunier et al. 2007). HCA does this by successively 
merging comparable groups based on the 
similarity/dissimilarity, or distance, between them. 
Visualizing this tree provides a useful summary of 
the data. HCA can be combined with data 
visualization techniques to provide new ways of 
looking at the data, and to enhance the extraction 
of important information (Fig.8). See Courant al. 
(2013) for an applied example of how HCA was 
combined with heatmap analysis to assist 
visualization of metabolite-group expressions, and 
to identify biomarkers for fine-scale monitoring 
during continuous culture of microalgae under 
different nitrogen regimes. 

K-means is a non-hierarchical, unsupervised, 
partitional clustering approach. Although sample 
class membership information is not incorporated 
into the analysis, the researcher must initially 
define how many clusters (k number of clusters) 
into which the samples are to be partitioned. Like 
other clustering techniques, the aim is to gather 
samples into groups so that those in the same group 
are most similar to one another, and those in 
different groups are as different as possible. 
Working within an n-dimensional subspace of true 
vectors (number of variables), the algorithm 
performs this task through an iterative sequence of 
minimizing the sample distances to a centroid point
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Figure 8. Combined heatmap and hierarchical cluster analysis of metabolites in developing zebrafish during 
embryogenesis via GC/MS- and LC/MS-based metabolomics (reproduced from Huang et al. 2013). Each column 
represents a sample (five biological replicates for each of the five development stages). Each row represents the 
abundance of a particular metabolite (red = high abundance, green = low abundance). Metabolites cluster naturally into 
groups which, in this case, have functional relationships (labelled metabolite classes in dotted boxes).  

 
 

within each of the k number of clusters, and 
reallocating the samples to the cluster with the 
closest centroid so as to minimize the within-cluster 
sum of squares. Initially, the first centroid points are 
randomly placed and samples are assigned to a 
cluster. Then, the true centroid points of those 
clusters are calculated and repositioned, samples 

are reassigned, and the clusters are redefined. This 
is performed repeatedly until convergence is found. 
Use of k-means clustering in aquaculture-related 
metabolomics research is limited thus far. However, 
see Yu et al. (2013) for a relevant example of how k-
means was used to identify groups of genes with 
similar expression profiles in fish which had been 
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fed a diet contaminated with the persistent organic 
pollutant BDE-47, and to determine potential 
enzymatic and metabolic mechanisms of toxicity 
defence. 

While we have discussed three widely used 
multivariate techniques to analyse metabolomics 
data, one should be aware that an array of other 
procedures are available which may be better-
suited for the analysis of particular datasets in some 
cases. These include: multivariate analysis of 
variance, linear discriminant analysis, partial least 
squares regression, support vector machines, k-
nearest neighbour, random forests, soft 
independent modelling of class analogies, and self-
organizing maps, among others. For further 
information on these alternative data analysis 
approaches, see Steuer et al. (2007), Liland (2011), 
and Xi et al. (2014). For platform-specific reviews on 
various bioinformatics processes see Smolinska et 
al. (2012), Sugimoto et al. (2012), Du & Zeisei 
(2013), Engel et al. (2013), and Wei et al. (2012 & 
2014).   

Biomarker discovery and validation 

The aim of many metabolomics-based 
investigations is to discover novel metabolite 
biomarkers, which correlate with specific diseases 
or health states. These molecules can then be used 
as early diagnostic tools, or in conjunction with 
other assessments for confirmation of pathology. 
Metabolite biomarkers are also very useful within 
the aquaculture industry to assist in the evaluation 
of pre- and post-harvest meat quality, and for food 
safety and traceability purposes (Alfaro & Young 
2015). Biomarkers may be single metabolites, 
multiple metabolites, ratios of metabolite pairs, 
particular features (e.g., ion fragments), or entire 
unannotated spectral fingerprints. 

The initial step in biomarker discovery is often to 
perform an exploratory experiment with different 
treatments or animal conditions, and to identify 
features which are substantially different between 
the sample groups using one or more statistical 
procedures outlined in the previous section. Once 
determined, these features can be considered as 
‘candidate biomarkers’. The purpose of initial 
biomarker discovery is to identify the most salient 
features for further investigation, and may involve 
low biological sample replication (n < 10), although 
higher replication is usually preferred. The results of 
these studies can be very useful for generating 

hypotheses, and gaining preliminary mechanistic 
insights into metabolic factors responsible for, or 
involved in, particular health states or other 
conditions. However, when the ultimate goal is to 
develop practical biomarkers with useable 
applications and minimal risks for Type II errors 
occurring, they must have extremely reproducible 
performances. Thus, in order to ensure that the 
identified candidate biomarkers have high 
sensitivity and specificity for the particular 
condition under investigation, it is important to 
validate them. 

The process of biomarker validation was born 
from the medical research field where the 
misdiagnosis of a health condition might result in a 
disastrous outcome for a patient. Biomarker 
validation is a quality assurance process of defining 
the performance of a biomarker within acceptable 
limits, whilst understanding and minimizing the rate 
of false discovery. Biomarker validation usually 
involves one or more additional experiments where 
the candidate metabolite/feature is targeted more 
specifically for quantification using complementary 
or alternative analytical platforms with a high 
selectivity for that analyte. Such experiments will 
typically also involve much higher sample 
replication (n = 100–1000), experimental 
replication, a broadening of scope in some cases 
(e.g., incorporation of multiple sexes, development 
stages, and environmental conditions), and 
rigorously refined statistical approaches (e.g. 
permutation based cross-validation or using 
different sub-sets of the samples to construct, 
validate, and test the performance of a predictive 
model [Westerhuis et al. 2008; Szymańska et al. 
2012; Xia et al. 2013]). Accordingly, biomarker 
validation within the framework of a high-quality 
clinical study can involve substantial costs and time, 
which may not be viable for an environmental study 
or commercial aquaculture exercise. However, 
what constitutes validation is a subjective measure 
and is scalable within the confines of the 
researcher. 

In a practical scenario where time and funds are 
limited, an alternative approach might be to employ 
a particular candidate biomarker whilst accepting 
its potential vulnerability, and continually adding 
new data to the predictive model as it becomes 
available. In this way, quality control limits on the 
model’s performance can be set and monitored as 
it is updated. Thus, expenses are diluted over time 
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and performance-based milestones can be 
implemented based on cost-benefit analyses to 
guide management decisions in an empirically data 
driven context. Validation is an important concept 
when identifying and implementing new 
biomarkers, and should be a carefully considered 
component within the general strategy of a 
metabolomics-based biomarker discovery and 
development project. For further information on 
biomarker discovery and validation procedures, see 
Xia et al. (2013). 

Biological interpretation & secondary 
bioinformatics 

The discovery and identification of 
biomarkers do not always necessitate in-depth 
functional explanations for their presence and/or 
roles. For example, a simple metabolomics-based 
study using nuclear magnetic resonance and a 
fingerprinting approach combined with pattern-
recognition tools (e.g., PCA, PLS-DA) could be used 
for food authentication purposes to identify 
biomarkers to classify an adulterated product, or 
determine its provenance (reviewed by Cubero-
Leon et al. 2014). However, for many investigations, 
more detailed insights into the reasons for sample 
group separations are required, and the 
procurement of mechanistic biochemical 
explanations are highly desirable. In such cases, it 
becomes necessary to interpret the data within 
biologically meaningful frameworks.  

The past 100 years of biological research 
has provided us with an amazing wealth of 
knowledge concerning cellular metabolism across a 
wide range of taxa. Rigorous empirical 
experimentation by a multitude of pioneers during 
this period has established the major biochemical 
pathways. Not only do we know which genes, 
enzymes, cofactors, substrates, products, and 
intermediates are involved in these pathways, in 
many cases we also know about individual enzyme 
kinetics and have detailed information about vast 
arrays of endogenous and exogenous factors which 
influence their pathway flux (German et al. 2005). 
Information such as this provides us with a rich 
source of knowledge which can be used to assist the 
interpretation of biochemical data. Nevertheless, 
interpretation of metabolite expression data can be 
one of the most challenging aspects of a 
metabolomics study.  

In many cases, concentrations of particular 
metabolites within a tissue, biofluid, or organism 
may correlate very well with our current 
understanding of biochemical networks and the 
functional relationships among metabolites, 
enzymes, and genes within normal or perturbed 
systems. For example, classic signs of stress caused 
by pathogen or toxin exposure in aquatic animals 
include increased levels of reactive oxygen species 
(ROS), and differential co-expression of metabolites 
(e.g., glutathione, NADPH) and enzymes (e.g., 
glutathione reductase, superoxide dismutase, 
catalase) involved in regulating excess ROS 
production in order to maintain redox homeostasis 
(Parrilla-Taylor et al. 2013; Macías-Mayorga et al. 
2015). The results of recent omics-based 
investigations provide data which corroborate the 
presence of such mechanisms in various taxa, as 
well as offer new information on associated 
regulatory pathways (Srivastava et al. 2013; Barth 
et al. 2014; Shi et al. 2015). On the other hand, a 
number of studies (particularly those containing 
metabolomics-based components) are providing 
data which are shedding light on unfamiliar 
biochemical associations which cannot be explained 
by our current theses of molecular biology and 
biochemistry (Steuer 2006). For example, unlike 
genes and proteins, it is relatively common for 
metabolite levels within a particular pathway to be 
highly correlated with metabolites from other 
pathways for which a mechanistic connection is not 
currently known. It is intriguing and unexpected 
results like these that are starting to deliver new 
information that is helping to push forward our 
understanding of metabolic networks at an 
astonishing rate, and also highlights the usefulness 
and efficiency of omics-based approaches for 
generating novel data to assist new interpretations. 
The continual development of metabolomic 
techniques to characterize larger and larger sets of 
metabolites requires new methods to analyse these 
data in order to obtain biologically meaningful 
information. Here, we briefly outline a few methods 
that can be used to help researchers interpret their 
metabolomics data beyond more conventional 
scenarios, involving assessments of single 
metabolite variations based on a priori biochemical 
knowledge.  

If biological replication is sufficient, a simple 
method involves correlation analysis in which 
construction of a correlation matrix of pairwise 
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metabolite level comparisons are made. Such 
matrices can be useful for identifying potentially 
important relationships requiring further 
investigation. For example, consider the following 
hypothetical situation where levels of metabolite X 
and metabolite Y are not significantly different 
between control and treatment groups. However, 
metabolite X is positively correlated with 
metabolite Y in the control group, and negatively 
correlated in the treatment group (Fig. 9). Such a 
scenario would indicate that some major 
perturbation of the underlying network was taking 
place, and would have gone undetected had the 
correlations not been investigated. Differential non-
linear correlation patterns may also be present 
which would require alternative methods of 
detection. For further information on the 
interpretation of linear and non-linear correlations 
in metabolomics data, see Camacho et al. (2005) 
and Steuer (2006).  

 
 

 
 

Figure 9. An example of a situation where mean levels of 
metabolite X and metabolite Y are not significantly 
different between groups of samples (A), but are 
differentially correlated within each group (B & C).  
 

 
While our knowledge is relatively comprehensive 
compared to only a few decades ago, much of our 
understanding to date has come from highly 
targeted analyses of specific pathway components, 
and it is increasingly becoming clear that there are 
many gaps to be filled. With more of a focus on the 
interconnections between pathway components, 

we are starting to uncover new insights into 
metabolism which are much more integrated than 
ever before. An alternative method for identifying 
metabolite association patterns is called correlation 
network analysis. 

Correlation networks are increasingly being used 
in omics-based applications to visually capture the 
overall network of interconnections between 
biomolecules and to describe the correlation 
patterns, to identify relationships between entire 
biochemical pathways, to discover new modules or 
clusters of relationships, and to assist data 
interpretation (Langfelder & Horvath 2008; Hero & 
Rajaratnam 2015). Applied to metabolomics, 
correlation network analysis is a technique that 
maps the relationships between every metabolite 
pair onto a metabolite network. Lines between 
metabolites typically are descriptive of the 
relationship between them (e.g., a solid line for a 
positive correlation and a dotted line for a negative 
correlation), and may also be quantitative (e.g., 
defined by the width of the line). The positions of 
the metabolites within the network map may be 
placed manually to enhance visualisation, or for 
additional interpretive purposes they may be 
positioned using algorithms to identify and define 
metabolite modules that cluster together. For an 
applied example of a study involving an aquatic 
organism, see Southam et al. (2008), who used a 
combination of correlation analysis techniques to 
identify key metabolic differences in hepatic tumors 
of flatfish compared to control tissues, and to assist 
detection and interpretation of the underlying 
mechanisms involved in the diseased phenotype 
(Fig. 10). 

Correlation network analysis can additionally be 
used to integrate transcriptomic, proteomic and 
metabolomic datasets to help identify functional 
roles at different biochemical levels (e.g., gene-
gene/protein interactions and relationships 
between enzymes and metabolites) (Higashi & Saito 
2013). There are a number of software packages 
available to perform correlation network analysis, 
such as DPClus (Altaf-Ul-Amin et al. 2006), 
Metscape (Karnovsky et al. 2012), COVAIN (Sun & 
Weckworth 2012), 3Omics (Kuo et al. 2013), and 
MetaMapR (Grapov et al. 2015). For further 
information on correlation network analysis and 
various applications, see Steuer (2006), Adourian et 
al. (2008), Hüning et al. 2013, and Kotze et al. 
(2013).
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Figure 10. An example of two correlation networks constructed using NMR-based metabolomics data from samples of 
healthy and diseased fish livers (reproduced from Southam et al. 2008). Solid lines represent positive correlations 
between metabolites, and dotted lines represent negative correlations. Grey lines represent similarly shared 
relationships between the healthy and diseased phenotypes, and coloured lines represent those which are dissimilar. 
Clear differences in the underlying biochemical networks are easily visualised using this technique.  
 
 
 
Other procedures useful for supporting data 
interpretation include a variety of ‘pathway 
enrichment analysis’ techniques. Rather than 
focusing on individual metabolites which may be 
responsible for discriminating groups of samples, 
pathway enrichment analysis techniques aim to 
discover predefined metabolic pathways or 
biological networks that are altered in an 
orchestrated manner. Such analyses make use of 
large amounts of biochemical information collated 
over decades and stored in publicly accessible 
depositories, such as the Kyoto Encyclopaedia of 
Genes and Genomes (KEGG), and can be considered 
as secondary bioinformatics processes. There may 
be cases where levels of individual compounds are 
not identified as being statistically different 
between samples using conventional statistical 
approaches. However, when analysed together as 
functional groups, or metabolite sets within their 
known pathways, it might be revealed that 
particular pathways as a whole are being 
differentially regulated under certain experimental 
conditions. The recent development of secondary 
bioinformatics tools (reviewed by Booth et al. 2013) 
to analyse biochemical data within the context of 
predefined metabolite sets are changing the way 

that the results of metabolomics projects are 
interpreted. Pathway Activity Profiling (PAPi) is one 
example of such a technique (Aggio et al. 2010).  

PAPi is an algorithm developed into an R 
package which can be used to analyse sets of 
functionally-related metabolites, and quantitatively 
compare the activity of metabolic pathways 
between different groups of samples. PAPi 
performs this task by calculating ‘activity scores’ 
based on the number of metabolites identified from 
each pathway and their relative abundances. 
Pathways for which each detected metabolite is 
involved in is collected from KEGG, and each is given 
a score based on the absolute abundance/relative 
abundance of the metabolite to which it is linked. 
The pathways are ranked by the total number of 
metabolites they comprise, and the percentage of 
detected compounds within them are calculated. 
The sum of the scores for each pathway are then 
calculated and normalized (dividing by the 
proportion of metabolites detected from within the 
respective pathway) (Aggio et al. 2010). This simple 
yet effective method can be used to help determine 
the likelihood of a particular biochemical process 
being up- or down-regulated under certain 
circumstances. To our knowledge, PAPi has not yet 
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been applied to studies involving aquatic 
organisms. However, it has been successfully 
applied in a number of other biological systems 
(Han et al. 2012; Portella et al. 2014; Zhao C. et al. 
2015). 

Another useful pathway analysis tool is 
called Metabolite Set Enrichment Analysis (MSEA) 
(Xia & Wishart 2010; Kankainen et al. 2011; Persicke 
et al. 2012). MSEA is an algorithm designed to 
detect subtle, but consistent changes among groups 
of metabolites within the same biological pathway. 
Using an analysis package with MSEA capabilities 
(e.g., MarVis-Pathway [Kaever et al. 2014], MeltDB 
[Kessler et al. 2013], Metaboanalyst [Xia et al. 
2015]), a quantitative dataset of annotated 
metabolites can be cross-referenced with 
information in the KEGG database, and metabolite

 sets belonging to reference pathways from various 
model organisms (e.g., human, mouse, zebrafish, 
drosophila, nematode) can be analysed together as 
a group. The ability to examine biochemical 
information for different animal models is a key 
advantage of MSEA, and options also exist to use 
proprietary/customised background sets of data 
from any organism. Pathway enrichment analysis 
techniques, which use software to interrogate 
databases that contain global biochemical 
knowledge, are tremendously powerful data 
interpretation tools. For applied examples see Zhao 
X. et al. (2015) and Ma et al. (2015), who utilized 
MSEA to identify differentially enriched pathways in 
Tilapia infected with two pathogenic Streptococcus 
species, and to develop remedial strategies to 
enhance disease resistance.  

 
 

Table III. Summary of sample-specific topics (prior to chemical analysis) which should be described in detail when 
reporting the results of a metabolomics project. 

 

 
Reporting guidelines in metabolomics 
The final stage of a metabolomics project is to 
disseminate the findings, either internally through 
technical reports, or externally through peer-
reviewed publication. Whichever route is taken, it is 
advised that researcher’s follow to the best of their 
abilities a number of ‘minimum reporting 
standards’ which have been developed over the 

past decade by the wider metabolomics community 
(the Metabolomics Standards Initiative 
[http://www.metabolomics-msi.org/]). These 
readily available standards are ‘highly 
recommended’ guidelines for the reporting of 
various aspects of a metabolomics project, and 
provide a framework to ensure scientific rigour, 
allow study replication, support data sharing, and 
enable a better-informed process of assessment 

Focus area Descriptions 
 

Sample 
 

Taxonomic classifications, common name/s, genotype/s, ecotype/s, sample composition, sample type, 
specimen condition (phenotypic characteristics, weight, age, sex, development stage, health) 
 

Environment Any field environment: Geographic location, habitat, depth, meteorological conditions (e.g. precipitation, wind 
speed/direction, humidity), lunar/solar phase, other measured parameters (e.g. pollutant concentrations) 
 

Any aquatic environment: Water temperature, tidal phase (or submergence/emergence information), other 
measured parameters (e.g. salinity, pH, dissolved inorganic/organic content, oxygen concentration)  
 

Any laboratory environment: Details not covered elsewhere, laboratory address and contact information 
 

Process 
(biological) 

Maintenance and acclimation of organisms: Procedure and means (e.g. cage, aquaria, static/flowthrough tanks, 
continuous culture), reasons for maintenance/acclimation, other parameters (e.g. feeding regime, lighting 
regime, tank/cage dimensions) 
 

Manipulation of organisms/samples: Controlled manipulation as part of the study (e.g. exposure to a toxicant, 
environmental perturbation or dietary manipulation etc), dissection of a specific organ/tissue, capture/sampling 
means and procedures (e.g. netted, electrically stunned, anaesthetised, razor cut), reason for capture, other 
capture parameters (e.g. handling/stress aspects, time to capture, air exposure duration) 
 

Sample handling and storage/preservation: Procedure and means (e.g. snap frozen and stored in liquid nitrogen 
or on dry ice, sample container material), reasons for storage/preservation, temperature and duration of 
storage 
 

Organism/sample transportation: Procedures and means (e.g. live/dead, submerged/emerged, refrigerated 
container, dry shipper, temperature, transport duration) 
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and interpretation. In accordance with other 
biological science investigations, typical areas of 
focus include detailed descriptions of the biological 
sample/s involved in the study, descriptions of the 
environment/s involved in the study, and 
descriptions of biologically-relevant processes 
involved in the study (Table III) (see Morrison et al. 
2007). Additional aspects to consider when 
reporting metabolomics-derived information 
include prescribing to the use of specific standard 
terms (ontology), providing particular details of a 
wide range of platform-specific instrumental

 parameters and data processing methods 
(computational, bioinformatics, statistical), quality-
scoring metabolite identifications, and, among 
others, participating in the standards initiative to 
advance the future of the field by reporting and 
exchanging various levels of metadata with others. 
We strongly advise that all metabolomics 
researchers, from aspiring to seasoned 
investigators, become familiar with the 
recommended reporting guidelines for each 
component of a metabolomics project (summarised 
in Figure 11). 
 

 
 

 
 
 
Figure 11. Overview of the metabolomics workflow showing the different components for which the Metabolomics 
Standards Initiative (MSI) have developed recommended minimum reporting standards (modified from Goodacre 
2014).  
 
 
Incorporating metabolomics 
Two main avenues exist for researchers who wish to 
conduct metabolomics investigations, or add a 
metabolomics component to an existing research 
project. There are a number of commercial 
metabolomics laboratories worldwide that offer 
streamlined services. Core facilities at various 
universities and centres house a combination of 
infrastructure and expertise to carry out a range of 
advanced metabolomics studies. These 
organisations can provide excellent support from 

consultation on experimental design to data 
analysis and interpretation of results. Inevitably, 
significant costs are usually associated with such 
commercial services. Alternatively, access to 
metabolomics facilities can be gained through 
academic institutions for substantially reduced 
charges based on collaborative agreements. For 
scientists wanting to conduct metabolomics 
research for the first time, it is important to note 
that running a successful metabolomics project 
requires an adequate experience in chemistry, 
statistics, bioinformatics and the advice from a 
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metabolomics expert on hand. For researchers with 
sufficient chemistry knowledge and access to 
appropriate equipment and facilities, extraction 
and initial identification of metabolites may be 
relatively easy. However, there are some specific 
constraints in sample collection/preparation and 
experimental design that need to be considered. In 
addition, the bioinformatics required for data 
analysis and interpretation are significantly 
complex and may require the involvement of a 
bioinformatics expert. Regardless of the approach, 
we suggest that new metabolomics projects 
incorporate the appropriate expertise from the 
start. Furthermore, we urge scientists to give 
appropriate consideration to the expected results 
and implications of findings, since this approach is 
exploratory by nature. 

Summary 
In summary, metabolomics is a relatively new 
approach that has the potential to make a huge 
contribution to the field of aquaculture. With a wide 
range of analytical platforms available today and 
the rapidly evolving computational and 
bioinformatics capabilities, we are likely to see a 
growing number of studies using metabolomics in 
all aspects of cultivating aquatic organisms.

 However, it is important to be aware of the 
potential limitations of this approach, especially 
with regard to sensitivity to external influences 
during sample collection and complex 
bioinformatics procedures required to obtain 
meaningful biological interpretations. We are still at 
an early stage in the application of metabolomics in 
aquaculture, and it is envisioned that more 
streamlined procedures and strategies will be 
generated in the coming years to facilitate 
implementation of this powerful approach. Some of 
those advances will involve the development of 
extensive metabolite biomarker libraries, easy-to-
use bioinformatics packages, small robust analytical 
platforms for use in the field, and improvements in 
analytical sensitivities and metabolite coverage. But 
more importantly, our future challenge will no 
doubt be to translate the clear potential of this 
approach into practical solutions to significantly 
improve the commercial aquaculture sector. 
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