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Abstract 

    This paper introduces a novel fuzzy model – 
transductive neural-fuzzy classifier with weighted data 
normalization (TWNFC). While inductive approaches 
are concerned with the development of a model to 
approximate data in the whole problem space 
(induction), and consecutively – using this model to 
calculate the output value(s) for a new input vector 
(deduction), in transductive systems a local model is 
developed for every new input vector, based on some 
closest data to this vector from the training data set. 
The weighted data normalization method (WDN) 
optimizes the data normalization ranges for the input 
variables of a system. A steepest descent algorithm is 
used for training the TWNFC model. The TWNFC is 
illustrated on a case study: a real medical decision 
support problem of estimating the survival of 
haemodialysis patients. This personalized modeling 
can also be applied to other distance-based, prototype 
learning neural network or fuzzy inference models.   

1. Introduction: transductive model and 
weighted data normalization 

Most of learning models and systems in artificial 
intelligence developed and implemented so far are 
based on inductive methods, where a model (a 
function) is derived from data representing the problem 
space and subsequently applied on new data. The 
derivation of the model in this manner therefore may 
not optimally account for all of the specific 
information related to a given new vector in the test 

data. An error is measured to estimate how well the 
new data fits into the model. The inductive learning 
and inference approach is useful when a global model 
(“the big picture”) of the problem is needed. In 
contrast, transductive inference methods estimate the 
value of a potential model (function) only in a single 
point of the space (the new data vector) utilizing 
additional information related to this point. This 
approach seems to be more appropriate for medical 
applications, where the focus is not on the model, but 
on the individual patient. Each individual data vector 
(e.g.: a patient in the medical area; a future time 
moment for predicting time series; or a target day for 
predicting a stock index) may need an individual, local 
model that fits the new data better than a global model, 
in which the new data is matched without taking any 
specific information about this data into account [1,2].       

Transductive inference is concerned with the 
estimation of a function in single point of the space 
only. For every new input vector xi that needs to be 
processed for a prognostic task, the Ni nearest 
neighbours, which form a sub-dataset Di, are derived 
from an existing data set D and, if necessary, generated 
from an existing model M. A new model Mi is 
dynamically created from these samples to 
approximate the function in the point xi - Figure 1 and 
Figure 2. Then the system is used to calculate the 
output value yi for this input vector xi (Figure 1 and 2).  

In many neural networks, fuzzy models and their 
applications, raw data without normalization is used. 
This is appropriate when all the input variables are 
measured in the same units. Normalization, or 
standardization, is reasonable when the variables are in 
different units, or when the variance between them is 
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substantial. However, a general normalization means 
that every variable is normalized in the same range, 
e.g. [0, 1] with the assumption that they all have the 
same importance for the output of the system.   

For many practical problems, variables have 
different importance and make different contribution to 
the output(s). Therefore, it is necessary to find an 
optimal normalization and assign proper importance 
factors to the variables. Such a method can also be 
used for feature selection or for reducing the size of 
input vectors through keeping the most important ones 
[3]. This is especially applicable to a special class of 
neural networks or fuzzy models – the clustering based 
(or distance-based; prototype-based) models such as 
radial based function (RBF) [4] and Evolving 
Connectionist System (ECOS) [5,6]. In such systems, 
distance between neurons or fuzzy rule nodes and input 
vectors are usually measured in Euclidean distance, so 
that variables with wider ranges will have more 
influence on the learning process and vice versa. 

The paper is organized as follows: Section II 
presents the structure and algorithm of the TWNFC 
model. Section III illustrates the approach on a case 
study example. Conclusions are drawn in Section IV. 

Figure 1. A block diagram of a transductive 
reasoning system. An individual model Mi is trained 
for every new input vector xi with the use of data samples Di

selected from a data set D, and data samples D0,i generated 
from an existing model (formula) M (if such a model is 
existing).  Data samples in both Di and D0,i are similar to the 
new vector xi according to defined similarity criteria. 

 – a new data vector;   – a sample from D;  – a sample 

from M

Figure 2. In the centre of a transductive reasoning system 
is the new data vector (here illustrated two of them – x1 and 
x2), surrounded by a fixed number of nearest data samples 
selected from the training data set D and generated from an 
existing model M.

2. Transductive Neural Fuzzy Systems with 

weighted data normalization: structure 

and learning algorithm   

TWNFC is a dynamic neural-fuzzy inference 
system with a local generalization, in which, the 
Zadeh-Mamdani type fuzzy inference engine is used 
[7]. The local generalization means that in a sub-space 
(local area) of the whole problem space, a model is 
created, which performs generalization in this area. In 
the TWNFC model, Gaussian fuzzy membership 
functions are applied in each fuzzy rule for both 
antecedent and consequent parts. A steepest descent 
back- propagation (BP) learning algorithm is used for 
optimizing the parameters of the fuzzy membership 
functions [8,9]. The distance between vectors x and y
is measured in TWNFC in normalized Euclidean 
distance defined as follows (the values are between 0 
and 1): 

      

                           (1)

 (1) 

where:  x, y R
P

To partition the input space for creating fuzzy rules 

and obtaining initial values of fuzzy rules, the 

Evolving Clustering Method (ECM) is applied [10,11] 
and the cluster centers and cluster radiuses are 

respectively taken as initial values of the centers and 

widths of the Gaussian membership functions.  

For each new data vector xq, the TWNFC learning 
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1) Normalize the training data set (the values are 

between 0 and 1) with the initial weights of input 
variables. 

2) Search in the training data set in the input space 

to find Nq training examples that are closest to xq.

The value for Nq can be pre-defined based on 

experience, or - optimized through the application 

of an optimization procedure. Here we assume the 

former approach. 

3) Calculate the distances di, i = 1, 2, …, Nq,
between xq and each of these Nq data samples . 

Calculate the vector weights vi = 1 – (di – 

min(d)), i = 1, 2, …, Nq,  min(d ) is the 

minimum value in the distance vector d, d = [d1,
d2, … , dNq].  

4) Use the ECM clustering algorithm to cluster and 

partition the input sub-space that consists of Nq

selected training samples.  
5) Create fuzzy rules and set their initial parameter 

values according to the results of ECM clustering 

procedure. For each cluster, the cluster centre is 

taken as the centre of a fuzzy membership 

function (Gaussian function) and the cluster 

radius is taken as the width.  

6) Apply the steepest descent method (Bp) to 

optimize the parameters of the fuzzy rules in the 
local model Mq following Eq. (6 – 13). 

7) Re-normalize the training data set (the values are 

between 0 and 1) with the optimized weights of 

variables. 

8) Search in the training data set to find Nq nearest 

samples (same to Step 2), if the same samples are 

found, as the last search, the algorithm turns to 

Step 9, otherwise, Step 3.  
9) Calculate the output value yq for the input vector 

xq applying fuzzy inference over the set of fuzzy 

rules that constitute the local model Mq.

10) End of the procedure.  

The parameter optimization procedure is described 

below: 

Consider the system having P inputs, one output and 

M fuzzy rules defined initially through the ECM 
clustering procedure, the l-th rule has the form of: 

Rl : If x1 is Fl1 and x2 is Fl2 and … xP is FlP,

     then y is Gl .                      (2)     

Here, Flj are fuzzy sets defined by the following 

Gaussian type membership function: 

                                       (3)  

Gl are of a similar type as Flj and are defined as:  

                          (4)     

Using the modified centre average defuzzification 

procedure, the output value of the system can be 
calculated for an input vector xi = [ x1, x2, …, xP ] as  

follows: 

              

(5)

Here, wj are weights of the input variables. 

Suppose a training input-output data pair [xi, ti] is 

given to the TWNFC, the system minimizes the 

following objective function (a weighted error 

function): 

                                       (6)    

(vi are defined in Step 3)   

Then the steepest descent algorithm (BP) is used to 

obtain the formulas for the optimization of the 

parameters Gl, δl, αlj, mlj, σlj and wj, so that the value 

of E from Eq. (6) is minimized: 

                                     (7) 
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(13)

Gη , δη , αη , mη , ση  and wη  are learning 

rates for updating the parameters Gl, δl, αlj, mlj, σlj and 

wj respectively.  

   In the TWNFC training–simulating algorithm, the 

following indexes are used: 

·  Training data samples:      i = 1, 2, … , N; 

·  Input variables:          j = 1, 2, … , P; 

·  Fuzzy rules:   l = 1, 2, …, M; 

·  Training epochs:  k = 1, 2, …. 

3. Case study example of applying the 

TWNFC for a medical decision support 

problem  

A medical dataset is used here for experimental 

analysis. Data originate from the Dialysis Outcomes 

and Practice Patterns Study (DOPPS, www.dopps.org)

[12]. The DOPPS is based upon the prospective 

collection of observational longitudinal data from a 

stratified random sample of haemodialysis patients 
from the United Sates, 8 European countries (United 

Kingdom, France, Germany, Italy, Spain, Belgium, 

Netherlands, and Sweden), Japan, Australia and New 

Zealand. There have been two phases of data collection 

since 1996, and a third phase is currently just 

beginning. To date, 27,880 incident and prevalent 

patients (approximately 33% and 66% respectively) 

have been enrolled in the study, which represents 
approximately 75% of the world’s haemodialysis 

patients. In this study, prevalent patients are defined as 

those patients who had received maintenance 

hemodialysis prior to the study period, while incident 

patients are those who had not previously received 

maintenance hemodialysis. 

The research plan of the DOPPS is to assess the 

relationship between haemodialysis treatment practices 
and patient outcomes. Detailed practice pattern data, 

demographics, cause of end-stage renal disease, 

medical and psychosocial history, and laboratory data 

are collected at enrollment and at regular intervals 

during the study period. Patient outcomes studied 

include mortality, frequency of hospitalisation, 

vascular access, and quality of life. The DOPPS aims 

to measure how a given practice changes patient 
outcomes, and also determine whether there is any 

relationship amongst these outcomes, for the eventual 

purpose of improving treatments and survival of 

patients on haemodialysis. 

 The dataset for this case study contains 6100 

samples from the DOPPS phase 1 in the United States, 

collected from 1996-1999. Each record includes 24 

patient and treatment related variables (input): 

demographics (age, sex, race), psychosocial 

characteristics (mobility, summary physical and mental 

component scores (sMCS, sPCS) using the Kidney 
Disease Quality of Life (KD-QOL®) Instrument), co-

morbid medical conditions (diabetes, angina, 

myocardial infarction, congestive heart failure, left 

ventricular hypertrophy, peripheral vascular disease, 

cerebrovascular disease, hypertension, body mass 

index), laboratory results (serum creatinine, calcium, 

phosphate, albumin, hemoglobin), haemodialysis 

treatment parameters (Kt/V, haemodialysis 
angioaccess type, haemodialyser flux), and vintage 

(years on haemodialysis at the commencement of the 

DOPPS). The output is survival at 3 years from study 

enrollment (yes or no). All experimental results 

reported here are based on 10-cross validation 

experiments [13].  

  For comparison, several well-known methods of 

classification are applied to the same problem, such as 
Support Vector Machine (SVM) [14], Evolving 

Classification Function (ECF) [5,15], Multi-Layer 

Perceptron (MLP) [15], Radial Basis Function (RBF) 

[15], and Multiple Linear Regression along with the 

proposed TWNFC, and results are given in Table 1.  

The Kappa statistic, K, formally tests for agreement 

between two methods, raters, or observers, when the 

observations are measured on a categorical scale.  
Both methods must rate, or classify, the same cases 

using the same categorical scale [16]. The degree of 

agreement is indicated by K, which can be roughly 

interpreted as follows: K < 0.20, agreement quality 

poor; 0.20 < K < 0.40, agreement quality fair; 0.40 < K 

< 0.60, agreement quality moderate; 0.60 < K < 0.80, 

agreement quality good; K > 0.80, agreement quality 

very good. Confidence intervals for K were 
constructed using the goodness-of-fit approach of 

Donner & Eliasziw [17]. There is no universally 

agreed method for comparing K between multiple tests 

of agreement. In this study, K for different 

classification methods was compared using the 

permutation or Monte Carlo resampling routine of 

McKenzie [18,19].  

Agreement refers to the quality of the information 

provided by the classification device and should be 

distinguished from the usefulness, or actual practical 
value, of the information. Agreement provides a pure 

index of accuracy by demonstrating the limits of a 

test's ability to discriminate between alternative states 

of health over the complete spectrum of operating 

conditions. To date, prognostic systems for the 

prediction of haemodialysis patient survival have 

published accuracy of 60-70%. The experimental 

results in Table 1 illustrate that the TWNFC in this 

paper provide incrementally better results, towards a K 

of > 0.60 and a level of accuracy ~80% ,which are 

generally regarded as thresholds for clinical utility.  
For every patient sample, a personalised model will 
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be created and used to evaluate the output value for 

the patient, and also to estimate the importance of the 
variables for this patient using Equation (12).  Two 

examples are shown in Table 2. The TWNFC not only 

results in a better accuracy for these patients, but also 

shows the importance of the variables for her/him that 
may result in a more efficient personalised treatment. 

Table 1.  Experimental results on the DOPPS data  

Model Kappa (95% Confidence Intervals)* P-value Agreement (%) Specificity (%) Sensitivity (%) 

RBF 0.1675  (0.1268 - 0.2026) <0.001 59.1 67.51 49.08 

ECF 0.1862  (0.1469 - 0.2224) <0.001 59.9 66.74 51.76 

MLP 0.3833  (0.3472 - 0.4182) <0.001 69.44 72.56 65.72 

Multiple Linear 

Regression 0.4020  (0.3651 - 0.4357) <0.001 70.55 76.7 63.21 

SVM 0.4110  (0.3748 - 0.4449) <0.001 70.93 76 64.88 

TWNFC 0.4503  (0.4152 - 0.4837) Reference 72.64 73.3 71.8 

• Kappa values and confidence intervals ascertained with Stata Intercooled V 8.2 (StataCorp, College Station, TX), and P-

values with KAPCOM [19]   

Table 2.  TWNFC models of single patient (two samples from the DOPPS data) 

 Patient 1 Patient 2 

Input variables Values of input 

Weights of input 

variables Values of input 

Weights of input 

variables 

Years on Dialysis prior to Study 0.34 0.49 0.5175 0.63 

Age 88 0.85 66 1 

Sex Female 0.05 Female 0.62 

Race Black 0.59 White 0.72 

Diabetes No 0.96 No 0.56 

Angina 

Angina at rest within 12 

months of enrolment date 1 No 0.89 

Myocardial Infarction Yes 0.77 No 0.62 

Chronic Heart Failure 

Dyspnea at rest or 

pulmonary edema 0.54 No 0.71 

Left Ventricular Hypertrophy Yes 0.79 No 0.33 

Serum Albumin 3.8667 0.54 3.7 0.94 

Peripheral Vascular Disease No 0.37 No 0.68 

Cerebrovascular Disease No 0.73 No 0.21 

Hypertension Yes 0.76 Yes 0.7 

Kt/V 1.3 0.52 1.31 0.68 

Serum Phosphate 4.9333 0.56 3.77 0.57 

Serum Hemoglobin 11.3333 0.42 9.9 0.66 

Type of access for Dialysis Synthetic graft 0.95 Native A- V fistula 0.24 

Mobility Can walk with assistance 0.69 Can walk without assistance 0.5 

sPCS 32.02 0.98 51.82 0.64 

sMCS 50.99 0.77 43.99 0.69 

Body Mass Index 23.5 0.6 17.5 0.6 

Hi-flux No 0.82 Yes 0.66 

Serum Creatinine 6.8 0.6 5.93 0.8 

Serum Calcium 8.53 0.52 9.07 0.6 

Output Survive 

Predicting result: 

Survive Non-survive 

Predicting result:  

Non-survive 
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4. Conclusions  

This paper presents a transductive neuro-fuzzy classifier 

with weighted data normalization method – TWNFC. The 

TWNFC performs a better local generalisation over new data 

as it develops an individual model for each data vector that 

takes the location of new input vector in the space into 

account. This approach seems to be more appropriate for 

clinical and medical applications of learning systems, where 
the focus is not on the model, but on the individual patient. 

At the same time, it is an adaptive model, in the sense that 

input-output pairs of data can be added to the data set 

continuously and immediately, and made available for 

transductive inference of local models.  This type of 

modelling can be called “personalised”, and it is promising 

for medical decision support systems. The clinical 

plausibility of the approach and its results are satisfactory in 
this study. As the TWNFC creates a unique sub-model for 

each data sample, it usually needs more performing time than 

inductive models, especially when training and simulating 

are based on large data sets.  

Further directions for research include: (1) TWNFC 

system parameter optimization such as optimal number of 

nearest neighbours; and (2) applying the TWNFC method to 

other decision support systems, such as: cardio-vascular risk 
prognosis; biological processes modelling and classifications 

based on gene expression micro-array data.   
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