
ThinkingISsues

Tony Clear
School of Information Technology

Auckland University of Technology,
Private Bag 92006, Auckland 1020, New Zealand

Tony.Clear@aut.ac.nz
Documentation and Agile Methods: Striking a Balance

I have written previously about the need for students to
develop discrimination as part of their preparation for
professional practice during their undergraduate capstone
courses. But nowhere is this need for discrimination more
problematic than in the area of software documentation.
Perhaps the only consolation is that professional developers
are equally challenged. Yet in migrating students from the set
of beliefs and practices that may have worked for them in
programming-in-the-small, to those required for
programming-in-the-large, sound documentation practices are
critical to effective development and delivery of a professional
product.
Belief systems related to documentation are intriguing.
Within the software development community we see what
Highsmith [1] has termed the “battle lines between proponents
of agile software development ecosystems (ASDE’s) and
rigorous system development methodologies (RSM’s), based
upon fundamentally different assumptions about how the
world and organizations work. On the one hand we see the
more extreme proponents of agile methods arguing for the
code itself as the main artifact and primary source of
documentation for the project, and on the other hand the
heavily process oriented and documentation driven
methodologies of the software engineering camp as outlined
in such formal representations as SWEBOK [1], and the SEI’s
Capability Maturity Model.
Part of the answer lies in the views of Naur who has advanced
the notion of programming as “theory building”, during which
the programming team develops a jointly owned “theory of
the world” to become frozen into software. He regards
documentation as a secondary construct to the programmers’
internalised theory of the program or system, and based upon
this “Theory Building View, for the primary activity of the
programming there can be no right method”[2], since the
creative process of theory building is inherently not a method
or rule driven activity. Thus the argument of the agile
methodologists [1] for interaction, cooperation and
collaboration, during development, rather than communication
by formal documents, is given weight by a theory building
perspective. For such dynamic interaction and
communication is a necessary part of the process of

developing the jointly owned ‘theory of the world’ to be
represented in the software artifact arising from the project.
It follows then that documentation is not necessary if the
programming team can jointly own and hold the theory of the
world in their heads. This of course is the mindset of the
novice programmer who sees “the code, the code and nothing
but the code” as the key artifact from a software project.
Having the likes of Kent Beck [3] advocating extreme
programming then, is a great support for students who can
code passably but either hate, or are barely able to write a
coherent sentence.
Perhaps this also helps explain the programmer mentality
about documentation as something external, something
“other” than the primary work of coding, since it is only
through the coding that the theory becomes encapsulated. For
students this view is even more justifiable, given the limited
scale of the problems which they encounter as they begin their
programming exercises. The inability of a team to completely
grasp more complex domains and the issues that arise with
increasing the scale of projects, are not apparent to students,
and it seems that they have to encounter them for themselves
and learn by their own mistakes.
The question that must be answered then, is what is the role of
documentation in software development? If students do not
see the need for it, why do it? Why should we require it of
them?
Ambler [5] suggests two primary reasons for documentation,
namely that we should model (or document) to communicate,
or model (or document) to understand. In our capstone
projects I have advocated a document-driven methodology, in
which each artifact builds upon and can be related back to
prior artifacts. Like Ambler, I recommend that the documents
be produced to support the thinking associated with each stage
of the project. In other words producing the document
develops and supports the understanding, so that in effect the
writing ‘writes’ the thinking for the next steps. The resulting
document then is available for communicating with its several
audiences, and for mapping back to prior work to confirm
completeness of subsequent stages (e.g. testing functionality
against initial requirements specifications). The effect of
course is cumulative and the full set of artifacts produced

during the project also combine to create a project portfolio
for assessment purposes.
But in observing the efficacy of this approach with students, I
have noticed some undesirable side-effects and negative
behaviours. The underlying principle behind the document
driven approach is to have documentation produced in-line, or
as a natural by-product of the project rather than as an after
thought hurriedly pieced together at the end. It also provides a
context in which configuration management has purpose, and
the issues arising from inconsistent versions become apparent.
In this way documentation is not an all-encompassing ‘other’
category, but a natural deliverable of each stage in the process.
In supporting the thinking processes and providing
checkpoints for review and reference, the value of the
documentation is meant to become self-evident. However,
from observing some student behaviour this is probably an
over-optimistic view.
In our projects I try to have the students take some
responsibility for their projects and exercise judgement over
their planning and execution. So they are required to develop
their own plans outlining the methodology they will adopt,
and identifying their key milestones and deliverables. It
appears that many of them although theoretically adopting an
iterative lifecycle, appear to become bogged down with
completing their requirements specification. This may be
partly a domain comprehension problem and indicate
weakness in their analytical skills, but it seems to be more
than this.
In the project guidebook given out to students I had
deliberately left process and deliverables relatively open for
them to decide, and more agile approaches are not precluded.
Technical assessment is based upon the four broad categories
of: requirements; design; construction; implementation and
testing. Yet waterfall, iterative and incremental lifecycle
approaches are all permissible. Few however, seem to have
adopted the active use of prototypes, screen mock-ups and
joint application design sessions to complement the written
parts of their requirements specifications. The term
‘document’ as opposed to useful artifact, appears to have been
taken too literally, with a narrative specification supported by
various models, typically UML use cases, activity diagrams
and class diagrams being common. This in turn is probably a
result of referring students to a sample table of contents from
an object oriented software engineering text [6] as a pro-forma
template for their document – often in response to their
requests for more guidance. It may also be a response to their
expectations of the assessment to which they will be subject,
and a reluctance to provide work-in-progress materials as
opposed to completed artifacts. Perhaps it is also a failure to
appreciate the evolving nature of a software application,
through the murky phases of conceptual, logical and physical
design. So is offering a default template guidance or
misdirection then? I am currently revising the project
guidebook to make some of these issues hopefully more

explicit, but again this requires that students do carefully read
the guidebook, which is now becoming longer each semester.
If as argued by Highsmith [1] we document to communicate,
then this itself is a classic documentation catch-22!

1. Highsmith, J., Agile Software Development

Ecosystems. The Agile Software Development
Series, ed. A. Cockburn and J. Highsmith. 2002,
Boston: Addison-Wesley. 404.

2. Abran, A., et al., eds. Guide to the Software
Engineering Body of Knowledge. Vol. 1. 2001, IEEE
Computer Society Press: New Jersey. 228.

3. Naur, P., Programming as Theory Building.
Microprocessing and Microprogramming, 1985. 15:
p. 253-261.

4. Ambler, S., Essay - Agile Documentation. 2001-
2002, The Official Agile Modelling Site, Ronin
International. Retrieved from
http://www.agilemodeling.com/essays/agileDocumen
tation.htm, 14/01/2003

5. Beck, K., Extreme Programming Explained:
Embrace Change. 2000, Boston: Addison-Wesley.

6. Bruegge, B. and A. Dutoit, Object Oriented Software
Engineering. 2000, New Jersey: Prentice Hall.

