

Tool Support for Social Risk Mitigation in Agile Projects

Sherlock Anthony Licorish

A thesis
submitted in partial fulfilment

of the degree of
Master of Computer and Information Sciences (MCIS)

at the

Auckland University of Technology
Auckland

June, 2007

Primary Supervisor: Anne Philpott

Co-supervisor: Professor Stephen MacDonell

Table of Contents

List of Figures ..v

List of Tables..vii

Attestation of Authorship ... viii

Acknowledgements ...ix

Abstract ..x

1. Introduction ...1

1.1. Intended Contributions and Research Objectives...3

1.2. Research Design ...4

1.3. Thesis Structure ..5

2. Evolution of Software Development Practice ...7

2.1. History of Software Development..8

2.2. Conventional Software Development Methodologies....................................12

2.2.1. Representative Conventional Methodologies..14

2.2.2. Characteristics of Conventional Methodologies......................................15

2.2.3. Criticisms of Conventional Methodologies...17

2.3. Agile Software Development Methodologies ..17

2.3.1. Representative Agile Methodologies ..19

2.3.2. Characteristics of Agile Methodologies ..20

2.3.3. Criticisms of Agile Methodologies ...22

2.4. Conventional Vs Agile Methodologies ..23

2.5. Summary...25

3. Software Project Risk Management ..26

3.1. Introduction to Projects and Software ..27

3.2. Conventional Project Risk Management Techniques.....................................31

3.3. Agile Project Risk Management Techniques ...33

3.3.1. Inherent Schedule Flaws..35

3.3.2. Requirements Inflation ..35

3.3.3. Employee Turnover ...35

 ii

3.3.4. Specification Breakdown...36

3.3.5. Poor Productivity...36

3.4. Summary...37

4. Agile Processes: The Effects of Stakeholders’ Interaction39

4.1. Human Collaboration ...39

4.1.1. Psychology of Human Collaboration ..41

4.1.2. Management Background and Role Theories ...43

4.1.3. Role Theories and IS Research..45

4.1.4. Risk of Customer Involvement..47

4.2. Summary...49

5. Software Development Tools ..51

5.1. Introduction to Software Development Tools ..51

5.2. Importance of Project Management Tools in Software Development52

5.3. Contemporary Project Management Tools...53

5.4. Agile Project Management Tools ...57

5.4.1. Collaboration, Technical Information Sharing, and Project Management

Tools ..58

5.5. Summary...62

6. Design and Implementation of the ASRMT Tool ...63

6.1. Introduction to the Agile Social-Risk Mitigation Tool (ASRMT).................63

6.1.1. Research Project Goals..63

6.1.2. Software Development Methodology Used for ASRMT........................65

6.1.3. Development Platform...69

6.1.4. ASRMT Overview...71

6.2. ASRMT Features..73

6.2.1. List of Features in ASRMT ...73

6.2.2. Using ASRMT...75

6.2.3. ASRMT User Options ...89

6.3. Summary...91

 iii

7. ASRMT Evaluation and Discussion...93

7.1. Reflections on the Development Process ...93

7.2. Benefits of using ASRMT: Risk Mitigation Capability94

7.2.1. Support for Remote Clients ...95

7.2.2. Support for Personnel Capability Management.......................................95

7.2.3. Other Indirect Benefits of ASRMT: Project Management Capability96

7.3. The ASRMT User Evaluation ..100

7.3.1. Method for ASRMT User Evaluation ...100

7.3.2. ASRMT Evaluation Findings and User Feedback102

7.4. Discussion and Contribution ..103

7.5. Summary...106

8. Conclusions and Recommendations ..107

8.1. Summary...107

8.2. Conclusions ..109

8.3. Limitations and Recommendations ..110

9. References ..112

10. Appendices ...121

Appendix A. Deploying ASRMT..121

Appendix B. ASRMT Requirements Specification...129

Appendix C. Agile Social-Risk Mitigation Tool (ASRMT) User Evaluation141

 iv

List of Figures

2.1. The SAGE Software Development Process………………………………….. 9

2.2. The Royce Waterfall Model…………………………………………………. 10

6.1. FDD process diagram………………………………………………………... 66

6.2. Development Architecture for ASRMT…………………………………….... 71

6.3. ASRMT Main Menu…………………………………………………………. 75

6.4. Add Feature Interface……………………………………………………....... 76

6.5. Edit Feature Interface (Client)……………………………………………….. 78

6.6. Feature Change Log………………………………………………………….. 78

6.7. Edit Feature Interface Showing Feature Statuses (Developer)………………. 79

6.8. Feature Traversing States…………………………………………………….. 79

6.9. Belbin’s SPI Survey Interface………………………………………………... 81

6.10. New User Interface………………………………………………………….. 82

6.11. Change Password Interface………………………………………………….. 82

6.12. View/Edit Personal Information Interface…………………………………... 83

6.13. View Contact Details Interface……………………………………………… 84

6.14. Add Project Interface………………………………………………………... 85

6.15. Edit Project Interface………………………………………………………... 86

6.16. Add user to Project Interface………………………………………………... 86

6.17. Feature Summary Interface………………………………………………….. 87

6.18. Project Summary Interface………………………………………………….. 88

6.19. SPI Survey Summary Interface……………………………………………… 89

6.20. Client Main Interface………………………………………………………... 90

6.21. Developer Main Interface…………………………………………………… 91

7.1. Edit Feature Interface Highlighting Technical Risk Field……………………. 98

10.1. Security object tab of Server Properties………………………………….… 123

10.2. Attaching the ASRMT database………………………………………….... 123

10.3. IIS is currently installed………………………………………………….… 125

10.4. ASRMT login screen…………………………………………………….… 126

10.5. ASRMT test page………………………………………………………….. 128

10.6. UML use case diagram depicting user functionalities…………………….. 129

 v

10.7. UML use case diagram depicting the client functionalities………………... 130

10.8. UML use case diagram depicting the developer functionalities…………… 131

10.9. UML use case diagram depicting the project manager functionalities…….. 132

10.10. Domain Model illustrating the relationships among system objects……... 135

10.11. Database Diagram………………………………………………….……... 138

 vi

List of Tables

2.1. Conventional versus agile methodologies……….………………………….. 24

4.1. Belbin team roles……………………………………………………………. 44

5.1. Evaluation summary of the features existing in popular project management

tools………………………………………………………………………………. 56

6.1. Chosen FDD practices for ASRMT implementation………………………... 68

7.1. Comparison summary of ASRMT and popular project management tools

features…………………………………………………………………………… 99

10.1. Summary of System Features and Time Estimate………………………… 136

10.2. ASRMT Development Summary………………………………………….. 140

 vii

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly defined in the acknowledgements), nor

material which to a substantial extent has been submitted for the award of any other

degree or diploma of a university or other institution of higher learning.”

 ……………………………………………….

 viii

Acknowledgements

The supervisors of this research have done all that is possible to make this a

challenging but pleasant experience. A special thank you is hereby extended to

Professor Stephen Macdonell and Anne Philpot for their exceptional guidance

throughout this study. In addition to satisfying the research goals set out for this

project, my research experience has been one of enjoyment, and my expectations

were exceeded.

Thank you to the lecturers of AUT who instilled in me a drive for rigor and a spirit

of critical inquisition; in particular, Dr. Andy Connor for his kind words, direction,

and early interest in supervising me, and Krassie Petrova for being the most

dedicated program administrator.

Special thanks to the Government of New Zealand, the New Zealand Agency for

International Development (NZAID), the New Zealand Vice Chancellors’

Committee (NZVCC), the Commonwealth Scholarship and Fellowship Plan (CSFP),

and the Government of Guyana for offering me a special opportunity.

Finally, I would like to recognise my wife Ngosi Mondella Smith-Licorish, and son

Isiah Jordon Saul, who left their comforts in Guyana to travel to New Zealand to

support me whilst I realised a life-long dream; this milestone would not have been

possible without their involvement and support.

 ix

Abstract

Software engineering techniques have been employed for many years to guide
software product creation. In the last decade the appropriateness of many techniques
has been questioned, given unacceptably high rates of software project failure. In
light of this, there have emerged a new set of agile software development
methodologies aimed at reducing software projects risks, on the basis that this will
improve the likelihood of achieving software project success. Recent studies show
that agile methods have been gaining increasing industry attention. However, while
the practices recommended by agile methodologies are said to reduce risks, there
exists little evidence to verify this position. In addition, it is posited that the very
processes recommended by agile methodologies may themselves introduce other
risks.

Consequently, this study addresses the risks inherent in the human collaboration
practices that are central to agile methods. An analysis of the risk management
literature reveals that personality conflicts and customer-developer disagreements
are social risks that occur through human collaboration. These risks negatively affect
team cohesion and software project success. Personality conflicts are said to be
mostly influenced through poor team formation, whereas customer-developer
disagreements are induced through excessive customer direct interaction. However,
these risks are not adequately addressed by standard risk management theories.
Furthermore, an evaluation reveals that these risks are also not considered by
existing software tools.

This study therefore designs and implements a web-based solution to lessen the
social risks that may arise in agile projects. The Agile Social-Risk Mitigation Tool
(ASRMT) offers support for personnel capability assessment and management and
for remote customer feature management, extending the customer’s access through
an interface. Using software engineering experts to evaluate ASRMT, the tool is
shown to effectively address social risk management theories, and is considered
likely to assist agile developers in their handling of social risks. In addition, above
and beyond its intended purpose, ASRMT is also likely to assist agile teams with
general project management. The findings of the ASRMT user evaluations
demonstrate sufficient proof of concept to suggest that such a tool could have value
in live software projects.

 x

1. Introduction

As the scale and complexity of software systems have grown over time, the

processes used in the creation of software have tended to become similarly complex.

Out of this complexity emerged a range of software development methodologies,

each created to guide the software development process and/or its project

management. Early methodologies (started in the 1950’s and remaining popular up

until the late 1990’s) included the waterfall model, prototype model, iterative model,

rapid application development model, and the spiral model. Nerur, Mahapatra, &

Mangalaraj (2005) state that such conventional software models, which are also

called heavyweight methodologies, follow a linear, heavily documented, pre-

planned, process-centric, and very rule based process.

Project management has similarly employed conventional sequential models in the

software project life cycle. Abrahamsson & Koskela (2004) assert that

conventionally, software engineers try to conform to project plans. In spite of this,

software project success rates using conventional software development

methodologies over the last 20 years have not been promising. The well known 2001

report “Extreme Chaos” by the Standish Group reveals that more than 50% of all

software projects either fail or overrun. In addition, the authors found correlation

between underestimated project complexity and ignored changing requirements, and

software failure. While there may be some questions over the scale of the problems

reported by the Standish Group (Jorgensen & Molokken-Ostvold, 2006), there is

little doubt that software development remains a very challenging activity.

In light of software project failures, a more recently promoted approach to software

development called ‘agile software development’ emerged. In agile methodologies

such as Extreme Programming (XP), Scrum, the Crystal Families of Methodologies,

and Feature-Driven Development (FDD), there is a gradual surfacing of the software

design and requirements, which promotes a more humanistic environment, having

persons interacting in a common space, employing a ‘speculate-collaborate-learn’

approach (Highsmith, 2000). Beznosov & Kruchten (2004) contend that the aims of

 1

this new approach are to reduce failure in software projects, and reduce the cost of

software development.

Abrahamsson, Warsta, Siponen, & Ronkainen (2003) and Kuppuswami,

Vivekanandan, Ramaswamy, & Rodrigues (2003) claim that agile methodologies

can reduce failure in software projects by mitigating software project risks.

However, these authors do not present any empirical evidence to support their claim.

Their view is in contrast to Kirk & Tempero (2006) and Sharp, Robinson, & Segal

(2004), who argue that agile methodologies may present complexities which may

result in additional risks in the software process. Added risks may be associated with

minimal upfront planning which can sometimes result in rework due to oversight,

regular customer involvement which may influence disagreements and increase

project cost, the need to manage a diversity of skills within highly interactive project

teams, a lack of shared vision and domain knowledge, and a lack of documentation

which results in poor communication during the project life cycle (Kirk & Tempero,

2006; Sharp et al., 2004; Nord & Tomayko, 2006; Hulkko & Abrahamsson, 2005).

In implementing agile methodologies, developers therefore face a set of

circumstances in which risk continues to be evident; perhaps new risks are

introduced by the very use of the agile methodologies that have been promoted to

reduce (conventional) risk. In light of the fact that there is steady adoption of agile

methodologies (Behrens, 2006; VersionOne, 2006b), but little empirical evidence to

verify the effectiveness of these methodologies in (new) risk analysis and mitigation,

there emerges a research opportunity. This research project therefore addresses

theories in support of risk analysis and mitigation in agile contexts, leading to the

development of a tool that is directed towards mitigating risks during agile software

development projects.

The next section of this chapter highlights the intended contributions and outlines

the research objectives of this project; this is followed by a discussion of the selected

research design, and the structure of this thesis.

 2

1.1. Intended Contributions and Research Objectives

Research examining agile methodologies and the practices recommended thereby

seems to be mostly descriptive (Abrahamsson et al., 2003). While several authors

have made recommendations regarding ways for improving agile practices (for

example Augustine, Payne, Sencindiver, & Woodcock (2005), Kontio, Hoglund,

Ryden, & Abrahamsson (2004), and Williams & Cockburn (2003)), it appears that

such recommendations have been founded on the basis of little empirical evidence.

As stated above, agile methodologies have gained significant industry attention, and

research shows that these methodologies are being increasingly adopted (Behrens,

2006). Therefore, studies aimed at evaluating agile methodologies, and offering

tangible support (or otherwise) for process improvement in agile projects, have the

potential to provide both theoretical and practical value. This study seeks to offer a

concrete, evidence-based way for improving agile practices by evaluating risk

management in agile methodologies, and offering a toolset to assist with social risk

administration.

Correspondingly, the objectives of this research project are ‘to evaluate risks in agile

software development methodologies, and to provide a tool to assist with risk

management in software projects adopting agile methodologies’. In order to realise

the objectives of this research project, this study aims to answer the following

research questions:

1. What risks are induced through human collaboration?

2. Can a process tool be implemented that effectively addresses social risk

management theories?

3. Will such a tool be useful to agile software teams in terms of improving

project risk management?

 3

1.2. Research Design

Embedded in this research is a set of expectations regarding best practice software

development. Existing methods and tools have been and will continue to be

evaluated against best practice expectations regarding risk management. This work

provides the basis for the generation of a set of criteria against which to assess agile

project management tools, and that guides the development of a new tool. This

research is therefore conducted using the constructive method, in the positivist

paradigm. Atsuta & Matsuura (2004), Ceravolo, Damiani, Marchesi, Pinna, &

Zavatarelli (2003), Kaariainen, Koskela, Abrahamsson, & Takalo (2004), Maurer &

Martel (2002), and Rees (2002) have all employed this approach in their similar

studies. This method is aimed at building innovative prototype systems, to present

proof of concepts for improving effectiveness and efficiency in organisations.

The constructive paradigm is alternatively referred to as design science (Hevner,

March, Park, & Ram, 2004). The design science paradigm is in fact made up of two

disciplines: behavioral science and design science. Silver, Markus, & Beath (1995)

assert that in the design science paradigm, building applications to solve problems

uncovers knowledge and understanding. Zmud (1997) also argues that the

constructive method is most suited toward the construction of IT solutions. It is

therefore appropriate for the research proposed here.

According to Highsmith (2004), risk assessment by project managers in agile

software projects is predominantly qualitative in nature. This is because the project

manager must always be reflecting on previous experiences, constantly assessing the

relationship between engineers and customers, and its impact on the software

project. Thus, any effective project management tool should address this and other

aspects of the development context. Kelter, Monecke, & Schild (2003) affirm that

agile project management tools may reduce risk in agile projects by extending the

scope of agile methodologies. These tools are created through the design science

paradigm. Denning (1997) asserts that the only way to fulfill these requirements in

design science is to apply theories that build, test, and modify artifacts through the

experience and creativity of researchers. Thus, the principles appropriate for agile

 4

risk management, and the theories governing the development of effective project

management tools are considered during this study.

Glass (1999) stresses that the relevance of IS research is directly linked to its

application. In addition, he argues that the outcomes of IS research should be

implementable. He further contends that the rigor involved in the development of

artifacts promotes critical thinking; sometimes existing theories are insufficient;

thus, new theories are made. Markus, Majchrzak, & Gasser (2002) emphasise that

innovative artifacts extend the boundaries of human problem solving capability

through the provision of intellectual and computational tools, and these artifacts also

add to existing theories once they are implemented. These insights direct the

development of the tool that is created in this research.

Therefore, in accordance with the principles of the constructive method, relevant

risk theories underpin the conceptualisation of a toolset to support those undertaking

agile software development projects. The toolset is evaluated against criteria

selected and/or developed during the literature review and from an evaluation of

existing tools. This provides the primary basis for the assessment of the outcomes of

the research. The views of a small number of experts are also informally sought to

provide additional verification of the toolset's potential effectiveness in use.

1.3. Thesis Structure

The remaining sections of this research are structured as follows; Chapter 2

examines the evolution of software development practice in order to provide the

appropriate context for the work subsequently performed. Chapter 3 presents an

introduction to software project risk management along with an analysis of existing

risk management approaches, and highlights inefficiencies in these approaches. In

Chapter 4 a study of the effect of one of agile methods’ most favoured processes:

human collaboration - the effect of stakeholders’ interaction is presented. In Chapter

5 consideration is given to existing project management tools in order to verify what

the different agile tools are, and how these tools are used to support agile teams. In

Chapter 6 an introduction to the design and implementation of a tool called the agile

 5

social-risk mitigation tool (ASRMT) is provided. Chapter 7 explains the ASRMT

evaluation process, discusses the benefits of using ASRMT, and revisits the research

questions and highlights this study’s contribution. Finally, Chapter 8 summarises

this project, presents the conclusions for this research, considers the limitations of

this study, and provides recommendations for future research.

 6

2. Evolution of Software Development Practice

Software engineering is seen as the process by which software developers apply a

systematic and controlled approach to software development. Boehm (2006), Coram

& Bohner (2005), and Kelter et al. (2003) contend that, through software

engineering, useful software products are manufactured for customers. According to

Coram & Bohner (2005), software development, as a discipline, is said to confront

two vital challenges that distinguish this discipline from the realm of other

engineering disciplines. The product, software, which can be seen as conceptual and

intangible, is adopted in evolving and changing environments, much in contrast to

the development of tangible products, such as integrated circuits. In addition, even

though change is often allowed, the cost of change in software development is said

to increase exponentially as the project progresses (Kim, 2006).

While the previous assertions might be generally true, in contrast to Kim (2006),

Beck (2000) claims that in the production of a tangible software artifact, software

processes that possess the ability to respond rapidly to change allow early

identification of defects which are likely to reduce cost throughout the project

(reducing the cost of change as the project progresses). The varying opinions, and

the risk involved in software development have led to the emergence of a new set of

software development methodologies (Chin, 2004). Augustine et al. (2005) argue

that the new methodologies, Agile Software Development Methodologies, may be

substituted for process centered software development methodologies in order to

avoid the risks inherent in existing approaches. In contrast, Coram & Bohner (2005)

and VanDeursen (2001) express reservations regarding this view, and assert that

agile methodologies might introduce several complexities leading to software risks.

To understand the methodologies used for software engineering and place the

proposed work on risk management in the wider context, this chapter presents a

brief overview of the history of software engineering and its evolution. This chapter

also examines the conventional software development methodologies and agile

 7

software development methodologies, and compares and contrasts these

methodologies.

2.1. History of Software Development

To understand where software engineering is today, it is essential to verify where

this discipline started and the reasons for its formation and transformation.

Therefore, in this section the history and evolution of software development is

examined.

Early use of the term software engineering emerged in the 1950’s. During this era,

software engineering was closely linked to hardware engineers and mathematicians

(Boehm, 2006). In addition, the software developed during this period often

supported aircraft or rocket engineering. Evidence of this is reflected in the Semi-

Automated Ground Environment (SAGE) project, which was developed for air

defense boundaries of United States of America and Canada. The software

development process followed in this project (see Figure 2.1) (Boehm, 2006), even

though waterfall in nature, was quite different to the processes that were formally

recommended during the 1960’s. In Figure 2.1 the software processes were

particularly aimed at supporting hardware functionality, and this model (overall)

bears a resemblance to those used in the production of hardware. In addition, there is

less emphasis on the software requirements and design phases (leading to coding)

when compared to the subsequent model (see Figure 2.2).

 8

Figure 2.1. The SAGE Software Development Process (1956) (Boehm, 2006)

 Operational Plan

 Machine Specifications Operational
 Specifications

 Program
 Specifications

Coding Specifications

 Coding

 Parameter Testing
 (Specifications)

 Assembly Testing
 (Specifications)

 Shakedown

 System Evaluation

During the 1960’s, efforts made by Peter Naur and Brian Randell to formalise the

software engineering process at the first ever software engineering conference were

greeted with mixed reaction (Boehm, 2006; Cockburn, 2004). This was because the

term engineering and its practices were more akin to the hardware perception of

engineering than to software development. In addition, the software engineering

process possessed many more states, modes, and paths to test than the former, often

complicating specifications (Naur & Randell, 1968). However, with subsequent

work by Brian Randell and John Buxton, Software Engineering as a branch of

engineering became partially accepted (Randell & Buxton, 1969). This initial

 9

reluctance by some may have re-emerged in recent years in the form of growing

dissatisfaction with heavily prescriptive methods.

During the 1970’s software development projects followed an amended SAGE

waterfall model (Boehm, 2006). The SAGE model was revised by Royce; this new

model possessed several additional stages when compared to the preceding model

(see Figure 2.2.). Royce recommended a more carefully organised coding phase,

which was preceded by the design, which was in turn preceded by the requirements

engineering phase (Boehm, 2006). These activities were most often sequential, as

design did not start until there was an exhaustive set of requirements, and coding

was delayed until there was extensive design review. This software process was

reinforced by the US Government, and at this time they began to instantiate software

development standards (Boehm, 1976, 2006).

Figure 2.2. The Royce Waterfall Model (1970) (Boehm, 2006)

 System
 Requirements

 Software
 Requirements

 Preliminary
Program Design

 Analysis

 Program Design

Preliminary
Design

Analysis

Program Design

Coding

Testing

Usage

 Testing

 Operations

 Coding

 10

Though IBM and the US military reported that small software projects were being

developed in a stable environment using Royce and SAGE models in the 1970’s

(Boehm, 1976), the early 1980’s saw a reverse of these assertions. The US

Department of Defense (DoD) reported that software projects were over budget and

often late, lacking the required functionality (Boehm, 2006). This led to the

implementation of the DoD’s DoD-STD-2167 and MIL-STD-1521B contractual

standards in 1985. These standards were recommended for the development of

future software projects. The DoD-STD-2167 and MIL-STD-1521B standards

strongly reinforced previous waterfall models, and stressed thorough management

reviews in every project milestone. However, even with the new standards, software

projects still continued to fail (Standish Group, 1995).

Due to these ongoing failures, the DoD commissioned the Software Engineering

Institute (SEI) formed in 1984, to develop a software capability maturity model

(SW-CMM) to assess organisations’ software process maturity (Boehm, 2006). The

SW-CMM model was based on IBM’s software practices, and was partially

effective at assessing organisations’ capability (Humphrey, 1989), though it was still

reinforcing the previous waterfall models. In addition, around this time the

International Standard Organisation (ISO) standard (ISO-9001) was also developed

under European leadership to bring forward complementary standards (Boehm,

2006).

Subsequent years for software development were relatively successful (Standish

Group, 1995). Software contractors who complied with the standards (SW-CMM

and ISO-9001) in order to secure contracts reported some success regarding a

reduction in software rework in the early 1990’s. In addition, research into the use

of tools in the software development process, and improvement to the waterfall

software process was reported (Ryder, Soffa, & Burnett, 2005). Further, Brooks

(1987) presented several fervent ideas in his famous paper ‘No Silver Bullet’, which

stressed that new software development technology such as process tools, code

reuse, high level languages, and powerful workstations might reduce the cost and

time to develop software.

 11

Around the time of Brooks’s suggestions, OOP, and software architecture and

description languages where beginning to support the expansion of the World Wide

Web (WWW) (Gamma, Helm, Johnson, & Vlissides, 1995; Perry & Wolf, 1992).

The emphasis on software development had now shifted with pressures from time-

to-market and open source development, and the waterfall models were not suited

towards concurrent software engineering (Boehm, 2006). Thus, the view of software

as a competitive discriminator and the reduction in the time-to-market gave rise to

the agile methodologies in the late 1990’s. Agile methodologies stress a software

development environment in which requirements emerge over time, emphasising

adherence to changing priorities and the use of different processes and tools.

Since the emergence of agile software development methodologies, there has been

speculation on their supremacy over conventional software development

methodologies (Augustine et al., 2005). However, there seems to be little empirical

evidence to confirm this assumption. The following sections (sections 2.2 and 2.3)

of this chapter are dedicated to the examination of conventional software

development methodologies and the newer agile software development

methodologies, with a view to considering their impact on software development

risk management.

2.2. Conventional Software Development Methodologies

Due to a desire for formality and an emphasis on control, from their inception

conventional software development methodologies emphasised planning, and

processes were most often predefined, utilising the rule of division of labor (Boehm,

1976, 2006). Boehm (2006) notes that plans and processes were often used to agree

on system architecture, project time lines, and phases in the software development

life cycle well in advance of the start of the software project. In addition, fulfillment

of customers’ requirements, which were agreed upon prior to system development,

determined the projects’ success. This train of thought is also evident in comments

of Kelter et al. (2003); they claim that in conventional software development

environments, changes and volatility in the software development process were

often greeted with additional plans and processes. Consequently, conventional

 12

software methodologies were often called process centric, plan-oriented, or (rather

negatively) heavyweight.

Due to the nature of the processes recommended by conventional software

development methodologies, there has been controversy over the early adoption of

such methodologies and their effectiveness (Beznosov & Kruchten, 2004; Chin,

2004; Kelter et al., 2003). Chin (2004) argues that conventional software

development methodologies were constructed to manage large US government

projects for the military, construction companies, and space industries; as such they

are not suitable for software development. A similar line of thought was put forward

by Beznosov & Kruchten (2004), suggesting that software development that

conforms to previous methodologies that were developed for construction or

manufacturing may be subject to failure, because unlike construction, software

development is not a linear activity.

While the literature presented in this chapter shows that the arguments of Beznosov

& Kruchten (2004) and Chin (2004) have some degree of support, software

development, regardless of the scale or method used, is a complex phenomenon.

Hence, simply replacing one software methodology with another will not in itself

eliminate software risks (Nerur et al., 2005). The well-known reports “Chaos” and

“Extreme Chaos” published in 1995 and 2001 by The Standish Group reveal that

only about 16% of the sample studied achieved software project success (Standish

Group, 1995, 2001). These reports show that about 31 % of those projects sampled

failed, while 53% were over-cost and exceeded schedule (Standish Group, 2001).

Further, these authors found correlation between “underestimated project

complexity” and “ignored changing requirements”, and “software failure”. Although

there may be some questions over the scale of the problems reported by the Standish

Group (Jorgensen & Molokken-Ostvold, 2006), there is little doubt that software

development remains a very challenging and risky activity.

 13

2.2.1. Representative Conventional Methodologies

In software development, the term waterfall categorically defines all software

development methodologies whose phases during the development process are

sequential in nature. Projects using the original waterfall model proceed

sequentially through phases such as requirements analysis, design, coding, testing,

release, and support. Each of these phases requires contractual sign-off prior to the

commencement of another phase (Pressman, 2001). This contractual control or

documentation is said to form the basis for predicting, measuring, and controlling

problems (risks) throughout the software development life cycle (Highsmith &

Cockburn, 2001). In addition, there are specific individual(s) assigned to software

roles who are responsible for each phase during the software development life cycle

(Nerur et al., 2005). Further, individual roles use documentation as a guide for their

development and communication efforts.

Even though the waterfall model is popular, Siddiqui & Hussain (2006) establish

that present-day software engineers are not likely to implement this model in their

software development projects. This is because of the overhead required in

implementing the processes recommended by this model. In addition, the waterfall

model’s presumption that requirements should be stable at a certain (early) point in

time encourages several variations to this model (Highsmith & Cockburn, 2001). In

the following discussions, three of the most popular variations of the waterfall

model are explained.

The rapid-prototyping model was developed to recognise the dynamic nature of

software engineering. According to Siddiqui & Hussain (2006), in this model,

developers aim to deliver an early prototype of the accepted customer requirements.

This prototype is expected to be a simple version on the proposed system, and is

aimed at gathering feedback from the parties involved in the software project in

order to produce an enhanced version of this prototype (Connell & Shafer, 1989). If

the enhanced version does not meet the customer requirements, this prototyping

process is repeated until it is accepted or until an agreed end point is accomplished.

 14

Likewise, the spiral model implements a process of prototyping in a framework that

combines the rapid-prototyping model and the waterfall model (Siddiqui & Hussain,

2006). In addition to the delivery of a prototype which is continually refined in the

rapid-prototyping model, the spiral model emphasises risk assessment which is

assisted through repeatedly implementing the waterfall model in the software

development life cycle (SDLC). Oriogun (1999) explains that the purpose of risk

assessment in the spiral model is to verify the feasibility of continued development.

The prototype developed in both the rapid-prototyping and spiral models are used as

guides for the original system after the parties involved in the software project agree

that the prototype resembles what is required.

A third variation to the waterfall model is the evolutionary prototyping model.

Sommerville (1997) says that in this model prototypes are similarly developed as in

the preceding models. However, the prototype itself evolves into the final system

after acceptance that the prototype adequately implements the initial customer

requirements. Divergent to the preceding models, the final version of the prototype

in the evolutionary prototyping model is completed using waterfall techniques and

delivered as the final product to the customer.

2.2.2. Characteristics of Conventional Methodologies

Previous research seems to associate conventional software development

methodologies with pre-planning, formal processes, and documentation (Connell &

Shafer, 1989; Oriogun, 1999; Siddiqui & Hussain, 2006). Though there are several

variations to the initial waterfall methodology, these deviations retain emphasis on a

plan driven and process oriented approach. Hence, Kelter et al. (2003), Nerur et al.

(2005), and Oriogun (1999) identify the following characteristics which are

consistent with the conventional software development methodologies:

Plan Oriented

The goal of conventional software development methodologies is to capture the

requirements of the software project prior to the SDLC, through requirements

 15

engineering and analysis. In the planning phase, contractual estimates specify the

cost of the project, project requirements, and project time. Changes in the

requirements are often characterised by re-planning which also influences additional

contractual estimates and documentation.

All-inclusive Documentation

The role of documentation in conventional software development methodologies is

to provide a representative snap shot of the project at any given time during the

software development life cycle. In addition, the documentation forms the basis for

future maintenance of the system.

Predictive

The predictive approach in conventional methodologies is as a direct consequence of

the planning framework implemented by such methodologies. The plans assume

software to be predictive and repeatable, similar to other engineering disciplines.

Task Oriented

The emphasis of conventional software development methodologies on role-base

development activity (example: the systems analyst must analyse requirements)

encourages a process oriented framework. In this setting, participants are seen as

roles which can be exchanged arbitrarily. Therefore, the project manager may decide

on a task which is communicated to any programmer via documentation. These

processes have been the subject of criticisms since their inception (Boehm, 2006;

Brooks, 1987; Tolvanen, 1998), the following section highlights a few of the

criticisms commonly echoed in the literature that have led to the emergence of agile

alternatives.

 16

2.2.3. Criticisms of Conventional Methodologies

Issues associated with changing requirements, difficulties matching developers to

roles, and too little focus on individual interaction seem to be the most common

criticisms in the literature against the conventional waterfall model (see Kelter et al.

(2003) and Nerur et al. (2005) for example). However, even when there are

variations to this model (see section 2.2.1), there seem to be additional shortfalls to

conventional methodologies.

The prototype developed in the rapid prototyping model is used to develop the real

system. Gordon & Bieman (1993) assert that the provision of such a model leads

customers to false expectations, believing that the prototype being developed is the

system. In addition, Serich (2005) and Siddiqui & Hussain (2006) argue that the

rapid prototyping and evolutionary prototyping models may induce risks associated

with bad design, and that scalability can be a challenge. They explain that the

technologies used in the prototype may work inadequately in the real system, which

can also influence the cost of rework.

Though the spiral model is said to adequately deal with risk (Oriogun, 1999),

Boehm (1988) affirms that adoption of this model may also result in risks associated

with project over-runs. This is influenced by the demand of implementing the

waterfall model in each prototype, and the extensive reliance on risk assessment

expertise. Additionally, if the spiral model is used in a low risk software project, the

overhead involved in implementing this model would be wasteful.

2.3. Agile Software Development Methodologies

The concept of agility in software development has been in existence for over two

decades (Koch, 2005). However, in February, 2001, a group of 17 authors and

developers met at a conference in the United States of America to officially forge an

alliance (agile alliance) and formally agreed to the Agile Manifesto

(http://www.AgileAlliance.org). The agile manifesto emphasised four values

 17

(Coram & Bohner, 2005): individual and interaction over processes and tools,

working software over comprehensive documentation, customer collaboration over

contract negotiation, and responding to change over following a plan. In addition,

members of the alliance sanctioned 12 principles (see Koch (2005) for details). The

values and principles recommended by the agile alliance were said to deliver value

to software organisations and customers, and improve software quality and reduce

risk.

In agile software development methodologies such as Extreme Programming (XP),

Scrum, the Crystal Families of Methodologies, Feature-Driven Development,

Adaptive Software Development, and Agile Modeling, there is a gradual surfacing

of the software design and requirements, which promotes a more humanistic

environment, having persons interacting in a common space, employing a

‘speculate-collaborate-learn’ approach (Abrahamsson et al., 2003). This approach to

software development is often termed ‘lightweight’. The agile processes are

implemented in contrast to the previous waterfall life cycle, which is often

documentation driven, in a continuous ‘plan-build-implement framework’ (Siddiqui

& Hussain, 2006).

There were several drivers behind the formation of the agile alliance, among these

the rapid pace of change in the software industry, the pressure of time to market,

users uncertainties when specifying requirements, and the requirements of

commercial off the shelf (COTS) software were emphasised (Boehm, 2006).

Additionally, conventional software development methodologies and predictable

process management techniques were criticised as not being suited for modern

software development (Chin, 2004). The fact that software projects success rate

using conventional methodologies were not very satisfying (see (Standish Group,

1995, 2001)), was taken as clear evidence of their unsuitability.

All of these drivers highlighted a common variable, ‘changing requirements’. Thus,

agile software development methodologies were expected to deliver two sets of

benefits, firstly, to meet the needs of the software industry, and secondly, to reduce

software risk thereby improving software success rates. However, though there have

been some attempts to verify the effectiveness of agile methodologies (Kuppuswami

 18

et al., 2003; Law & Charron, 2005; Misic, 2006), there exists little empirical

evidence to demonstrate their success.

2.3.1. Representative Agile Methodologies

According to Collins dictionary and thesaurus (2006), agility denotes the quality of

being “ready for motion, or being nimble”. Highsmith & Cockburn (2001) say that

the focus in agile software development methodologies is on simplicity and speed.

This, they maintain, is achieved through agile software development groups

concentrating on specific requirements, and rapidly delivering solutions to those

requirements. Thus, agile methodologies are said to adhere to the definition of

agility by recommending a software process that is incremental, cooperative,

straightforward, and adaptive (Abrahamsson et al., 2003). This is achieved through

an emphasis on minimum documentation, regular customer involvement, iterative

development, small collaborative teams, small releases, and continuous software

product testing. To illustrate these principles, three of the most popularly reported

agile software development methodologies are examined below.

Extreme Programming (XP), one of the agile software development models, brings

together some new software principles to develop software based on ‘user stories’ in

a vague and constantly changing environment (Kuppuswami et al., 2003). In XP

projects, the software development life cycle is characterised by small iterations.

Iterations each address a collection of stories, for each story an acceptance test is

written, then a solution is designed and coded (Beck, 2000). Abrahamsson et al.

(2003) advise that XP centres on small teams realising four values (communication,

simplicity, feedback, and courage) and implementing twelve practices. These

practices are: the planning game, small releases, metaphor, simple design, test first,

re-factoring, pair programming, collective ownership, continuous integration, 40

hour week, on-site customer, and coding standards; see Abrahamsson et al. (2003)

and Theunissen, Kourie, & Watson (2003) for further details.

In Scrum, development assumes and addresses changing environmental and

technical variables (Schwaber & Beedle, 2002). Its main focus is on the

 19

organisation of a software team to influence software projects’ success in a changing

environment. Coram & Bohner (2005) say that Scrum’s software project life cycle

mirrors a rugby game, where there are three phases: Pre-game, Development, and

Post-game. The pre-game is characterised by planning; early plans produce

prioritised requirements, the system architecture, and a high-level design.

Development follows in iterative cycles called ‘sprints’ (Schwaber & Beedle, 2002).

In each sprint a part of the system is expected to be delivered. The post-game

follows once there is full customer-team agreement on the system’s functionality. In

this phase, no additional functionality is presented (Coram & Bohner, 2005; Koch,

2005). Scrum projects involve regular project management activities aimed at

removing obstacles which can influence deficiencies.

Similarly, Feature-Driven Development (FDD) emphasises software process

management in the early stages of development, focusing its agility primarily on the

design and building phases (Palmer & Felsing, 2002). Abrahamsson et al. (2003)

affirm that the main focus in FDD software development is on quality and rapid

delivery. This is rarely achieved without careful monitoring of project processes

(Boehm & Turner, 2005). Koch (2005) and Palmer & Felsing (2002) explain that

the FDD project life cycle has five phases: overall development planning phase,

building features list phase, features planning phase, design by feature phase, and

build by feature phase. Planning and process management are particularly evident in

the first three phases, agile development then follows in the remaining phases,

implementing a life cycle resembling that of XP.

2.3.2. Characteristics of Agile Methodologies

Proponents of agile methodologies agree that the term ‘agile’ denotes a way of

thinking (Highsmith, 2004; Koch, 2005). Thus, though the preceding discussion

categorises several software development methodologies as ‘agile’, the

implementation of agile methodologies in real software projects may not always fit

the agile framework. An example of this occurrence is demonstrated in Palmer &

Felsing (2002), who posit that their first real use of the FDD method was in the

process centered and task driven implementation of a critical banking system.

 20

However, they explain that their implementation environment was agile. There may

be deviations to this view; see (Abrahamsson et al., 2003) for example. Nonetheless,

Verner & Evanco (2005) list the factors of agility as follows:

People Oriented

Agile software development methodologies stress the need for face-to-face

communication among stakeholders (customers, developers, and end users). As a

consequence of this phenomenon, documentation is accentuated only when it offers

direct support to the stakeholders. Such methodologies favor daily communication

among team members; for example: XP promotes the presence of an on-site

customer during development.

Adaptive

Supporters of agile methodologies give emphasis to change in the software project.

Agile methodologies welcome change, as it is often argued that change introduces

new information that may improve software quality, and project success. The intent

here is that a customer can request changes to the requirements without re-

negotiating previous contracts.

Decentralised Planning and Decision Making

Decisions are made by any team member involved with agile projects. Chin (2004)

asserts that the project manager’s role becomes that of a shaper and motivator in

such projects (remover of obstacles). Accordingly, management is often responsible

for general decision making and project coordination, and sometimes the project

manager may even function in a developer capacity.

Small Teams

It is often posited that small teams allow for effective communication among agile

team members (Cockburn, 2004; Nerur et al., 2005). This is because, as software

teams become larger, face-to-face communication becomes restricted, and

 21

documentation becomes the main facilitator. Agile methodologies are said to reduce

reliance on documentation, therefore agile methodologies may not be suited for

implementing large software projects which require large teams.

2.3.3. Criticisms of Agile Methodologies

Augustine et al. (2005) explain that changing requirements are characteristic of all

real life software projects, and agile software development methodologies are

change-focused. If their assertion is true, then it might be said that agile

methodologies will handle change effectively. However, the techniques employed in

agile software development methodologies to address changing requirements, and

to allow for a more participative software environment to reduce risks, are

themselves risky (Agarwal, Prasad, Tanniru, & Lynch, 2000; Boehm & Turner,

2003). Similar sentiments are expressed by several other authors.

Chin (2004) asserts that agile software development methodologies, especially XP,

rely on practices that require experienced and versatile team players. Thus, any

deviation from this, which is inevitable, introduces risks related to software quality

and delivery. In addition, documentation of the software development process in

agile approaches is often replaced by collaboration among team players. However,

De Souza, Anquetil, & De Oliveira (2005) and Nord & Tomayko (2006) state that in

large projects documentation becomes a necessary factor for project success, and

that in such scenarios human interaction cannot replace documentation. Similarly,

Boehm & Turner (2003) say that the loss of team players in agile teams may result

in the loss of tacit knowledge, which introduces further project risks.

McKinney & Denton (2005) assert that agile software development methodologies’

practice of team collaboration might not always positively influence team cohesion,

and therefore success, in agile projects. Likewise, Hulkko & Abrahamsson (2005)

assert that agile methodologies emphasis on iterative feature development may

influence project re-works and over-runs if their efforts are not coordinated. The

negative effects of collaboration can also be found in the literature on role theories.

A study by Rajendran (2005) finds that an individual’s personal orientation

 22

(personality preferences) significantly impacts on their team’s performance.

Consequently, agile methodologies’ emphasis on team cohesion may initiate risks

associated with social issues.

The anecdotal nature of the evidence presented by the studies above may affect the

validity of the authors’ assertions. However, since software is produced primarily by

humans, arguments suggesting that individuals’ personality preferences determine

overall team performance are subtly valid. Theories on the risks that may arise

through agile methods’ stakeholders’ interaction practices are further explored in

Chapter 4.

2.4. Conventional Vs Agile Methodologies

Software development methodologies were derived to help software teams manage

the software development process. Although there are several predefined software

development methodologies documented, software projects over the years have

often been characterised by processes which may follow one methodology, a mix of

methodologies, or sometimes none at all (Cockburn, 2004). Underlying this varied

usage seem to be mixed opinions on each methodology’s strengths, and suitability

for any given project (Abrahamsson & Koskela, 2004; Abrahamsson et al., 2003;

Boehm & Turner, 2003).

According to Williams (2005), software projects that typify an environment of

complexity, uncertainty, and are time limited, should adopt agile methodologies. On

the other hand, Boehm & Turner (2003) assert that software projects that are highly

predictable, stable, require few changes, and mission critical, should be developed

using conventional methodologies. These two views seem to be common in the

literature. Nonetheless, the previous authors present very little rationale for their

assertions. In addition, Boehm & Turner (2003) contradict the general body of

knowledge which has established that software product development is on no

account predictable and stable (Cockburn, 2004; Coram & Bohner, 2005).

 23

While each methodology may yield benefits in their allied environment, the

appropriateness of the generic models most common in the literature are presented

in Table 2.1. In Table 2.1 it is illustrated that these methodologies differ on the

dimensions of: people, processes, and tools. There are also novel arguments in the

literature which propose that agile methodologies can be adapted to suit large

software projects (Cockburn, 2004; Schwaber & Beedle, 2002). Accordingly, agile

methodologies are said to possess strength in either context. However, no evidence

exists to confirm this assertion. This highlights the need for research examining and

improving agile processes and their effectiveness and suitability for software

development.

Table 2.1. Conventional versus Agile methodologies (Boehm & Turner, 2003;
Nerur et al., 2005)

Project Characteristics Conventional Methodologies Agile Methodologies

Fundamental Assumption Systems are fully specifiable,
predictable, and can be built
through meticulous and extensive
planning

High-quality, adaptive
software can be developed by
small teams using the
principles of continuous
design improvement and
testing based on rapid
feedback and change.

Control Process centric People centric
Management style Command and control Leadership and collaboration
Knowledge Management Explicit Tacit
Role Assignment Individual favors specialisation Self organising teams,

encourages role
interchangeability

Communication Formal Informal
Customer’s Role Important Critical
Project Cycle Guided by tasks or activities Guided by product features
Development Model Life cycle model (waterfall, spiral,

or some variation)
The evolutionary-delivery
model

Desired Organisational
Form/Structure

Mechanistic (bureaucratic with
high formalisation)

Organic (flexible and
participative encouraging
cooperative social action)

Technology No restriction Favors object-oriented
technology

Size Larger teams and projects Smaller teams and projects

 24

2.5. Summary

Software engineering techniques have now been employed for many years to guide

software product creation. Early waterfall techniques used in the software

development process were often criticised as not appropriate for software process

management. Thus, the failure of software projects has often been (unfairly) linked

to these waterfall processes. Though there have been some variations created to the

conventional waterfall process, these too are often assessed as inappropriate to

manage software production.

In light of this, there has emerged a new set of agile software development

methodologies aimed at reducing software projects risk and thereby inducing

software production success. The new methodologies are implemented using

processes contrasting to the previous models. However, the new processes also

present complications and risks in software engineering practice. Consequently,

there seem to be arguments in support of each methodology’s appropriateness in

software projects. Conventional methodologies are said to be suited to software

projects that are highly predictable, stable, require little change, and are mission

critical; whereas agile methodologies are recommended for use in software projects

that are implemented in an environment of complexity, uncertainty, and time

limitation. Since the practices recommended by agile methodologies to deal with

risk are also risky, it is worth considering how risk management can be implemented

to reduce risk in both development contexts. The following chapter examines

software project risk management.

 25

3. Software Project Risk Management

According to cases reported by Charette (2005), software project failures account for

billions of dollars. In 2001, Nike Inc reported losses of about $100 million due to

their supply-chain management system failure. The Sydney Water Corporation

cancelled their billing system software project in 2002 after investing $33.2 million.

In 2003, AT&T Wireless reported losses of around $100 million due to glitches in

upgrading to a new customer relationship management software system. Further,

Avis Europe PLC in the United Kingdom reported $54.5 million losses after

cancelling the development of their enterprise resource planning system. Failure in

these projects was linked to a variety of reasons: unrealistic project goals, inaccurate

estimates, poor system requirements engineering, inadequate reporting of the project

status, unmanaged risks, poor communications among projects’ stakeholders, use of

immature technologies, unmanageable projects’ complexities, inadequate

development practices, inadequate project management, stakeholder politics and

commercial pressure (Charette, 2005).

Even though ‘unmanaged risks’ is explicitly stated as one of the reasons for failure

in the above projects, the other reasons cited for failure can also be classified as

possible risks areas. According to Morski & Miler (2002), effective risk

management techniques often allow project managers the opportunity to identify

potential risk, thereby permitting them to change their course of action in order to

mitigate those risks. In addition, Roy (2004) argues that risks are often mitigated if

risk management is an evolving and learning process. Thus, to avoid or lessen the

impact of failure, risk mitigation techniques should be implemented through careful

qualitative and quantitative examination of all the failure areas above.

Since the lack of effective risk management may impact negatively on software

project outcomes, of relevance to this research are the ways that project risk

management can be implemented in order to reduce the likelihood of failure. Hence,

in this chapter the fundamental notions of projects and software are introduced,

conventional project risk management techniques are described, agile project risk

 26

management techniques are then examined, followed by a summary of the theories

explored throughout this chapter.

3.1. Introduction to Projects and Software

According to the international Project Management Institute (PMI), a project is a

venture which is undertaken to produce a product or service (P.M.Institute, 2000). In

software development, this product or service is the software system. Software

project management is aimed at organising the responsibilities of the software team

in order to achieve specific goals. This discipline dates back to the commencement

of software engineering in the 1950’s (Williams, 2005). Prior to the commencement

of software engineering, the project management profession comprised of around

130,000 professionals represented by the PMI and the International Project

Management Association (IPMA).

The main reasons cited for the establishment of the PMI and the IPMA were:

projects’ potentially complex nature due to their being time-limited, evolutionary,

possessing transient teams, and risky (Williams, 2005). Consequently, the PMI and

IPMA formalised agreed standards for project management which were later

documented in the project management body of knowledge (PMBOK), and the body

of knowledge (BoK) respectively (Dixon, 2000; P.M.Institute, 2000). The PMBOK

and BOK identify five processes which are common in a project’s life cycle, and

nine knowledge areas suitable for guiding management processes (P.M.Institute,

2000). The guide presented in the PMBOK offers potential for supporting project

management in a generic sense. However, there are many criticisms in the literature

with regard to its effectiveness when used as a guide for projects with rapid change

(Chin, 2004; Hodgson, 2004), although change is said to be a main characteristic of

software development.

Among its recommendations, the PMBOK guide states that if the guidelines

presented are followed, then project success becomes inevitable (P.M.Institute,

2000). In addition, this guide notes that the project management process bears

validity across all disciplines. Nonetheless, there are contradictions to these

 27

statements in the literature (David, 1991; Williams, 2005). Arguments presented by

David (1991) and Williams (2005) claim that there is evidence of widespread failure

across all disciplines in spite of projects having employed the guidelines of the

PMBOK and BoK. Failures are often linked to poor risk management (Winch,

Millar, & Clifton, 1997). Of particular relevance to this thesis are risks that result

from uncertainty in project goals, personality differences, and project complexities

which are regularly linked to project failure (Standish Group, 2001; Williams,

2005). Risks associated with poor productivity (and therefore success) often arise

due to personality differences among team members (see Bradley & Hebert (1997)

for further details).

In software projects, project managers apply project management techniques to

guide the software development life cycle (SDLC). Though there are variations to

the implementation of the SDLC in software projects (see Chapter 2), most software

projects comprise some or all of the following activities (Siddiqui & Hussain, 2006):

conceptualisation, requirement and cost benefit analysis, project scoping,

specification of software requirements, design of systems (architectural design and

detailed design), module development, integration and testing, system testing,

installation, meeting acceptance conditions, user and technical training, and

maintenance. Thus, the software project manager is expected to link their

understandings of the technology with project management principles, and

administer their leadership skills to induce success through coordinating and

implementing the various activities of the SDLC (Brewer, 2005).

Consequently, selecting the most appropriate project manager is also a critical risk

factor in relation to project success (Standish Group, 2001). While being versed in

the areas identified by the PMI such as time management, risk management, scope

management, and costing and budgeting (P.M.Institute, 2000), Melymuka (2000)

stresses that soft skills are also critical for project success. This view coincides with

the line of thought put forward by Bradley & Hebert (1997) and Brewer (2005) who

claim that relationship management is an essential ingredient for team coordination

and for successful customer interactions, leading to effective project management.

 28

The idea presented by Melymuka (2000) appears to be minimally considered in the

literature on risk management. According to Chapman & Ward (2004), risk is an

uncertain event or set of circumstances that can potentially hinder project objectives.

This seems to suggest that uncertainty management does not necessarily describe

only perceived threats, opportunities, and their implications in a software project,

but the identification and management of all potential sources that give rise to

threats throughout projects. To this end, the PMBOK identifies six key risk

processes (P.M.Institute, 2000): risk management planning, risk identification,

qualitative risk analysis, quantitative risk analysis, risk response planning, and risk

monitoring and control. Accordingly, the PMBOK guide suggests brainstorming

and assumption analysis as useful mechanisms for risk identification, coupled with a

survey of risk categories such as technical and organisational risks.

Similar to the PMBOK, the US-based Software Engineering Institute (SEI) uses a

classification-based model to identify software risks (Carr, Konda, Monarch, Ulrich,

& Walker, 1993). In their model, categorisations are based on product engineering,

development environment, and program constraints. Risks are identified through the

answering of questionnaires, each category relating to a specific list of factors

associated with the questions. The techniques for risk identification presented in the

models by the PMBOK and SEI are often criticised as technically biased and

process centered (Kirk & Tempero, 2006; Verner & Evanco, 2005; Williams, 2005).

For this reason, other variations to these models warrant examination.

Further use of a classification model is relation to project risks is described in Klein

(1999). He recommends answering the following questions to assist with risk

identification:

1. Can the developers describe clearly and in detail the objective and

requirements for the proposed system?

2. Are the requirements consistent and feasible?

3. Is there a clear approach or plan for developing the system?

4. Have adequate time and resources been allocated for this project?

5. Is there certainty that the off-the-shelf items being used are suitable for the

problem at hand?

 29

6. Are the relevant cultural communities working together properly?

7. Are all the relevant ancillary issues being addressed?

8. Is there a well defined process with clear criteria for determining

completion?

9. Is there a significant ongoing effort to identify and mitigate project risks?

10. Is the status of the project clear to management and other relevant

stakeholders?

To ensure a clear view of the project prior to answering the recommended questions,

Murthi (2002) also suggests doing the following generic risk-related tasks:

establishing potential impact of each risk, ranking risks according to potential

impact, calculating the probability that the risk will occur, ranking risks by their

combined impact and probability of occurrence, developing contingency plans for

major risks, determining the resource requirements for the contingency plans,

putting risk information in the review plan, tracking risks as the project progresses,

and periodically evaluating and modifying the risk evaluation approach.

While the approaches mentioned above might help in the evaluation of technological

project conditions that might equate to risks (Kirk & Tempero, 2006), there exists

literature which asserts that a more behavioral approach to risk analysis is needed

(Verner & Evanco, 2005). Early studies by Curtis (1989) and Curtis, Krasner, &

Iscoe (1988) found that software projects were often affected by a small number of

human related issues. They affirm that such issues were often critical to project

success, and directly related to lack of shared vision and domain knowledge,

requirements uncertainty, and poor communication. These issues are long-standing -

a recent study by Verner & Evanco (2005) shows that excessively focusing on the

technological aspects of project risks may be in itself risky, and that the greatest

project risks are influenced through social factors.

Therefore, considering the previous literature on project risk, it might be said that

the best project management techniques should take an all encompassing view

regarding project risk analysis, covering both technological and behavioral

dimensions. Conventional systems development procedures are characterised by

process-centered risk management (Williams, 2005). In contrast, agile software

 30

development approaches are said to ignore risk management. These approaches are

alleged to employ light techniques (see Chapter 2 for agile practices), which are said

to eliminate uncertainty (Chin, 2004). However, in both conventional and agile

environments, project risks are inevitable. Additionally, if the theories presented by

Curtis (1989), Curtis et al. (1988), and Verner & Evanco (2005) above hold true, the

processes employed in the latter project environment offer significant potential for

social risks to occur. In the remaining sections of this chapter, consideration is

therefore given to techniques presented in the literature that are said to assist with

conventional project risk management, and agile project risk management. A

summary of the theories presented throughout this chapter then follows.

3.2. Conventional Project Risk Management Techniques

Conventional project management techniques mirror the systems analysis approach

of the traditional software development methodologies (Murthi, 2002). This heavily

process oriented approach, while adding the impression of control, does not

automatically eliminate risk from software development. In fact, Murthi (2002)

asserts that these methods of project management induce risks into the software

development process through delays and unnecessary overhead. Nevertheless, there

exists a dominant discourse that these methods, such as those recommended by the

PMI and SEI, are implicitly correct (Williams, 2005).

Thus, two trains of thoughts are presented in the literature. Packendorff (1995)

contends that in conventional project organisations, planning processes are

excessively heavyweight and these often delay execution processes. Similarly,

Koskela & Howell (2002) argue that according to the PMBOK, management is seen

as planning, and in this framework one execution process is often preceded by ten

planning processes. On the other hand, Boehm & DeMarco (1997), Jiang & Chen

(2004), and Schoenthaler (2002) assert that thorough risk management techniques

recommended by risk theories reduce failure. They say that the cost of plans may be

insignificant when compared to the cost of corrective actions after project failure.

 31

In addition, they affirm that project risks cannot be reduced or eliminated without

implementing risk management techniques. Taking the previous views into

consideration, regardless of the software project, the goal of software project risk

management should be to ensure the reliability of software development. Thus, the

role of project managers should be to identify possible threats to the software project

development and deployment atmosphere, and devise strategies and plans to

mitigate against those threats.

Accordingly, risk management (listed in the PMBOK among nine areas of project

management) is said to be one of the most crucial areas of project management

(P.M.Institute, 2000). Similarly, the SEI continually stresses the importance of risk

management in software projects (Gallagher, 1999; Gallagher, Alberts, & Barbour,

1997). While there are some controversies over the SEI’s approaches to risk

management techniques (Kontio et al., 2004), there exists empirical evidence which

supports the necessity of risk management in all software projects (Charette, 2005;

Standish Group, 2001).

Previous literature shows that there are several variations to conventional risk

management techniques. In addition, previous research stresses the importance of

implementing appropriate risk management in software projects. The SEI presents a

wide-ranging risk taxonomy (Gallagher, 1999; Gallagher et al., 1997). In this

taxonomy, 194 possible areas of risks are identified, and corresponding questions

are provided in order to assist with risk identification in specific areas. Similarly,

Karolak (1998) proposes a quantitative approach examining 81 risks factors or

perspectives. Questions are also presented by Karolak (1998) to enable risk

identification. Roy (2004) and Siddiqui & Hussain (2006) also propose a

quantitative project risk management approach that is designed to monitor the

processes involved in the waterfall and incremental models. Additionally, Serich

(2005) recommends a model which uses the constructive cost model (COCOMO)

representation and places specific emphasis on risk management.

The models proposed by Gallagher et al. (1997), Karolak (1998), and Roy (2004),

and their associated data collection and analysis processes, may be overly time

consuming when implemented in time-limited software projects. In addition, these

 32

authors seem to give scant consideration to behavioral risks such as those resulting

from personality differences through team members’ involvement, or risks

associated with organisation politics, and changing business requirements. This

could be problematic if it is accepted that, as mentioned earlier (Murthi, 2002;

Verner & Evanco, 2005), the most critical software development risks are linked to

social issues.

Further, there exists empirical evidence which shows that project managers rarely

apply the processes defined in the associated theories when executing their real life

projects (Moynihan, 1997; Verner & Evanco, 2005). In addition, Moynihan (1997)

found that in such project environments successful project managers quite often

substituted formal risk management processes with expert judgment. These findings

could be taken to imply that the models recommended in the literature do not

adequately address risk management approaches suitable for at least some software

projects. In particular, their applicability to agile development has been questioned.

In light of this, the following section examines popular techniques used for agile

project risk management.

3.3. Agile Project Risk Management Techniques

Agile project management practices are intended to support the processes enacted by

agile software development methodologies. Thus, in a similar manner to the way

agile methodologies are said to deal with project uncertainty (see Chapter 2), the

associated project management techniques are also meant to support emerging

projects (Williams, 2005). Augustine et al. (2005) stress that in an agile project

environment there is minimal control and projects are developed in an adapting

atmosphere where plans are often short and iterative. While an adapting and iterative

form of project management may prove suitable to a software production

environment where change is expected (Bostrom, Wayrynen, Boden, Beznosov, &

Kruchten, 2006; Lehman & Ramil, 2001), some have expressed reservations over

the negative impact that too much change can have on software development

(VanDeursen, 2001). That is, it is asserted that there is a point at which even

methods adaptable to change can be overwhelmed.

 33

According to early work by Gilb (1988), software project management techniques

are coupled closely with planning and documentation – but these activities are not

predominant in agile projects. It is also important to note that planning by itself does

not necessarily eliminate risk, though the systematic gathering of information to

assist with risk assessment may aid in risk reduction (Highsmith, 2004). In any case,

there still seems to be some uncertainty as to whether risks are introduced through

the lack of planning in agile projects. In addition, there exists little empirical

evidence to ascertain whether the management techniques that are (meant to be)

employed by agile project teams are actually effective in reducing risk.

Proponents of agile methodologies do not support the employment of ‘heavy’ plans

often common in more conventional software development settings. In addition,

they argue that the current framework for software risk management is not

appropriate for agile project management (Highsmith, 2004; Kontio et al., 2004).

This view is expounded by Kontio (2001), who added that a formula driven

approach to calculate risk is not suited to fast paced development, and such a

method is mathematically unsound. That is not to say that there should be no

planning. It is important to note that agile allies support the development and use of

the appropriate amount of plans that are necessary for software development, still

allowing for agility.

To that end, risk management is continually stressed in the agile project

management literature (Chin, 2004; Highsmith, 2004). According to Highsmith

(2004), until a final product emerges, the life cycle should be one of constant

information gathering. In addition, he says that each question answered, and each

new piece of information uncovered, throughout the software development life cycle

should be aimed at reducing risk (agile methodologies being well suited to assist

with this). For those reasons, Highsmith (2004) goes on to identify five risks that are

most likely to be reduced in agile software projects: inherent schedule flaws,

requirements inflation, employee turnover, specification breakdown, and poor

productivity. To understand how agile methodologies are said to reduce the five

risks previously mentioned, they are further considered in detail.

 34

3.3.1. Inherent Schedule Flaws

It has been stated that the most resilient risk mitigation technique in agile

development projects is incremental delivery (VanDeursen, 2001). Inherent schedule

flaws result when product size is misestimated or there are unrealistic timelines set

in the software project plan (Highsmith, 2004). Highsmith (2004) states that in

uncertain software development projects, scheduling the unknown may result in a

project failing to meet the schedule. Hence, the process of exploration, common to

most agile software methodologies, may reduce this risk. Most agile practices

address schedule risk in some way (Williams, 2005) (see Chapter 2 section 2.3.1 for

agile practices). According to Chin (2004), the agile project teams’ direct

involvement in planning and estimating, the emphasis on early feedback regarding

delivery speed, the constant pressure to balance system features with schedule

constraints, the tightly coupled team (engineers and customer), and the principle of

early error alleviation potentially reduce schedule risk in these projects.

3.3.2. Requirements Inflation

Requirements evolution is popular (and is in fact welcomed) in agile projects

(Abrahamsson et al., 2003). Under this approach, engineers and customers are

constantly considering cost and time while evolving the projects’ requirements. This

approach may reduce unanticipated (and therefore unmanaged) requirements

inflation in agile projects, as both the developer and customer are involved in any

changes to be made to the project requirements.

3.3.3. Employee Turnover

Employee turnover is an inherent risk factor in all software projects. Highsmith

(2000, 2004) establishes that the impact of turnover can be reduced through cross

training and appropriate amounts of documentation. Williams & Kessler (2003)

assert that the agile practice of coupled teams induces a great degree of knowledge

sharing, which is likely to reduce the risk of turnovers. The coupled team practice

 35

employed in agile project environments may also induce extensive tacit knowledge

gain, which may also reduce risks.

3.3.4. Specification Breakdown

This occurs when the stakeholders fail to agree on a specification, due to conflicting

intentions between the customer and the developers. In an agile project, the project

manager and the customer are responsible for managing specification and workflow.

There are arguments in the literature that seem to suggest that agile methodologies’

practice of heavy customer involvement may reduce risks associated with

specification breakdown (Grisham & Perry, 2005).

3.3.5. Poor Productivity

According to Highsmith (2004), the risk of poor productivity arises from three

sources: having an inefficient team, having a team that is not cohesive, and having a

team with poor morale. Several agile practices may potentially reduce these risks.

Highsmith (2004) explains that agile approaches of having the right people on the

team, and coaching the team and promoting team development help to offset the risk

of poor productivity. Further, some agile methodologies such as XP and SCRUM

focus on short iterations. Chin (2004) asserts that this may also mitigate risks

associated with poor productivity.

While the practices presented by the authors above may help with risk mitigation (in

principle) in agile projects, there is a lack of empirical evidence to support this

position. Nonetheless, agile supporters seem to agree that, as with all software

projects, risk management techniques should be considered throughout the agile

software development life cycle. Through effective risk consideration, agile project

managers may be better able to set realistic project expectations, recover quickly

from problems through earlier conceived contingencies, and instrument preventative

actions to lower the impacts of problems. Accordingly, Chin (2004) identifies four

parts to the agile risk management process: identify potential risk, assess the risk,

 36

make plans to address the risk, and reassess the risks throughout the project. This

process largely mirrors the thinking in conventional project management, even

though the techniques recommended by conventional project management are often

criticised by agile proponents.

Several steps are followed to identify risks: these include reviewing project planning

outputs, reviewing project dependencies, quantifying unknowns, and reviewing

previous lessons of similar projects. These techniques are both quantitative and

qualitative. Therefore, the project manager is faced with the task of applying

quantitative methods to calculate risk, or alternatively reflecting on previous

experiences and observing agile projects’ dimensions to mitigate risk. Chin (2004)

explains that risk assessment is supported by describing each potential risk, and

estimating risk outcome and impacts. He says that the risk plan should consider risks

that are going to be managed by the project, and once these are considered, a

mitigation plan should be constructed. For every iterative release, the agile project

manager should reassess risk in the new iteration.

The literature seems to suggest that agile practices (see Chapter 2 section 2.3.1 for

common agile practices) which are said to eliminate project risks, are themselves

risky. In addition, in the absence of plans and a quantitative framework for risk

identification, the agile risk management process appears to be more qualitative in

nature. Irrespective of whether qualitative or quantitative approaches are used,

software projects that lack risk management techniques may be perilous. Since there

is great emphasis on team members’ interaction in agile methods and this practice is

said to attract the most critical risks, the following chapter presents a review of the

theories around the particular risks induced through human collaboration.

3.4. Summary

From its inception software project management was a knowledge area created to

assist project teams. In particular, this discipline serves as a guide to the project

manager to help with organising the responsibilities of the software team in order to

achieve specific goals. Software project risk management is listed as one of the most

 37

critical areas in software project management literature. That said, the

recommendations made by the early bodies of general project management to assist

with risk management in software projects were not quite suited to the management

of risks in these projects. Previous recommendations were often technically

focused, while the most critical risks in software projects are said to be induced

through social factors.

While the present risk models, such as the SEI’s risk analysis framework, are more

applicable to software risk analysis than these earlier efforts, questions remain over

their effectiveness. Nonetheless, there is evidence that supports the importance of

risk management in software development projects. Thus, there are several

variations to the model presented by the SEI in the literature. However, research has

shown that project managers rarely adhere to strict employment of risk management

in real life software projects.

Recent approaches to risk management in agile projects seem to be mostly

qualitative in nature, dependent on expert judgment. In addition, the practice

adopted by agile methodologies does not allow for a heavy process-centered

approach to risk management. Besides, agile methodologies are said to mitigate

most of the risks inherent in the conventional software development methodologies.

While some of the practices recommended by agile project management may

mitigate several project risks, it is doubtful that all agile software projects are

entirely ‘safe’. Further, the most critical project risks are said to be social in nature.

Thus, several agile practices may actually introduce serious risks to the software

project environment. Therefore, the following chapter considers the risks that may

become prevalent in agile projects through human collaboration.

 38

4. Agile Processes: The Effects of Stakeholders’ Interaction

Since significant software failures still occur (Charette, 2005; Standish Group,

2001), and software plays a major role in our lives today, activities aimed at

assessing and improving the processes employed in successful software creation are

of vital importance. Academic research should continue to be aimed at evaluating

the reasons for software failures (and successes), and should present

recommendations regarding ways to reduce such failures. In this chapter, some of

the processes recommended by agile methods are assessed, with the intent of

identifying ways to improve agile practices. To this end, agile process social risks

are examined. Consideration is given to four subject areas: psychology of human

collaboration, management and role theories, role theories and IS research, and risk

of customer involvement. The chapter then closes with reflections on the literature

explored throughout the chapter, and possible directions through which the risks of

agile methods social processes could be addressed.

4.1. Human Collaboration

Evident among the arguments presented in support of agile processes are two lines

of thought regarding the social process improvements made possible through the use

of agile methods. One line of thought argues for extensive stakeholder interaction in

software projects without condition (Murthi, 2002), as against another position

which supports stakeholder interaction after the critical process of team formation

(Acuna, Juristo, & Moreno, 2006). Since the research literature reveals mixed

findings regarding the former argument, the objective and reliable literature

examining the latter is worth considering. To that end, this section considers social

risks (which are also referred to as people-related risks) that may affect software

development projects employing agile processes.

In Cockburn & Highsmith (2001), the authors emphasise the importance of the

people factor in software projects. They go on to mention the ingredients for project

success; these, they posit, are talent, skill, and communication. Many authors share

 39

similar views (see Clavadetscher (1998) for example), and the activities

recommended by agile processes such as those bringing the team and the customer

together, and others emphasising ongoing oral communication among team

members and customers, reinforce the ideas embraced by agile proponents.

Empirical evidence verifying the benefits of bringing people together to employ

agile practices has reported mixed findings. For example, Nosek (1998) observed 15

programmers working on a 45 minutes long task in live settings to verify the

benefits of collaboration. He found that collaboration improved the programmers’

performance (software development took less time, and there was also improvement

in software quality) and enhanced appreciation of the problem solving process.

Williams, Kessler, Cunningham, & Jeffries (2000) experimented with small groups

of students working on class assignments to verify whether XP’s pair programming

yielded benefits over solo programming. Their findings revealed that software

quality was enhanced for teams using pair programming, and software development

by pairs took slightly less time than by single individuals.

McKinney & Denton (2005) and Wellington, Briggs, & Girard (2005) also

experimented with small groups of students working on class projects to investigate

the effectiveness of collaboration and team cohesion using agile practices such as

pair programming, collective code ownership, and on-site customer interaction.

They reported mixed findings; through observation they revealed that teams were

not cohesive initially, but fared better as the projects studied moved close to

completion. While studies by McKinney & Denton (2005), Wellington et al. (2005),

and Williams et al. (2000) were conducted to support an area that lacks theories,

questions also arise over the validity of studies employing students as subjects

(Collis & Hussey, 2003).

Additionally, the studies above all shared similar characteristics with regard to task

size. Research exists that shows that task size and complexity affect the outcomes

of problem solving practices (Barki & Rivard, 1993; Chang & Ho, 1997). Barki &

Rivard (1993) and Chang & Ho (1997) assert that the significance of development

practices is rarely observed in small projects. Therefore, the validity of the findings

of studies by McKinney & Denton (2005), Nosek (1998), Wellington et al. (2005),

 40

and Williams et al. (2000) might also be affected by the task sizes observed by these

authors.

A study by Lan & Peng (2005) employing students as subjects considered the

benefits of collaboration. In Lan & Peng (2005) study, which controlled task size,

they reported differing findings to the previous body of knowledge put forward by

(Nosek, 1998; Williams et al., 2000). Their findings revealed that some teams

working in pairs divided due to personality conflicts and communication problems.

Additionally, they found that persons with high competence performed well with

low competence persons as they were able to exert control; and persons working

alone produced superior quality work. Lan & Peng (2005) observed that the effect of

collaboration hinged heavily on team members’ personality orientation. Findings

opposing the benefits of pair programming are similarly reported by Hulkko &

Abrahamsson (2005) in a case study observing four software teams in real software

development settings. They found that pair programming offered no clear benefit

over solo programming.

While the negative impact of collaboration might have not been severe for the

projects observed by Hulkko & Abrahamsson (2005) and Lan & Peng (2005),

failure in software projects such as the FoxMeyer Drug Company in 1996 which

resulted in bankruptcy, and the US Federal aviation software project which was

cancelled after a $2.6 billion US dollars investment (see Charette (2005) for further

details) can be catastrophic. Thus, collaboration should be closely examined, as team

cohesion and the management of interpersonal skills are most critical to project

success (Verner & Evanco, 2005). Consequently, the concepts and evidence

underpinning personality and role theories are examined in the following sections.

4.1.1. Psychology of Human Collaboration

Research proposing or evaluating psychology theories considers the impact of

personality type and behaviour (Jung, 1971; Montgomery, 2002; Myers &

McCaulley, 1985). This discipline seeks to understand personality type and its

influence on individuals’ strengths and qualities, and their ability to communicate

 41

and form/sustain relationships in teams. Additionally, some studies are primarily

concerned with the effect of the mix of personality types in groups, how

personalities interact to influence team performance, and the impact of behavioural

difference on team work; for example: Belbin (2002) and McCrae & Costa (1990).

Accordingly, Myers & McCaulley (1985) used Jung’s theories (Jung, 1971) to

develop the psychometric instrument called Myers-Briggs Type Indicator (MBTI)

after controlled experiments during the 1940’s, 1950’s, and 1960’s. This indicator is

intended to reflect an individual’s basic preferences. Similarly, Keirsey (1998) also

used the work of Carl Jung and Isabel Briggs Myers to develop a psychometric

instrument to identify an individual’s most dominant personality trait. A variation to

Myers and McCaulley’s and Kirsey’s studies is Hofstede’s work. He conducted

several experiments to determine cultural differences along five dimensions (see

(Hofstede, Neuijen, Ohayv, & Sanders, 1990) for details). His findings revealed that

your world view, behaviour and preferences, and the decisions you make are heavily

linked to your experiences and cultural background.

The Hofstede et al. (1990) findings are consistent with the ideas put forward

previously by Keirsey (1998) and Myers & McCaulley (1985). Myers & McCaulley

(1985) studies reveal that individuals are expected to possess one of four preferences

in their behaviour. For a person’s energetic preference: they are either extrovert or

introvert; for what they perceive: sensing or intuition; for their decisions: thinking or

feeling; and their lifestyle: judging or perceiving. Myers & McCaulley (1985)

describe extroverts as often favouring interacting with people while introverts are

complete by being alone. Sensing individuals prefer evidence that is factual or

concrete whereas intuitive individuals favour exploration and alternative

explanation. Thinking individuals are rational and favour formal methods of

reasoning whereas feeling individuals focus their judgement on subjective values

and their views. Judgers like pre-planning and order whereas perceivers live through

adoption and spontaneous decision making. The validity and reliability of the MBTI

instrument have been continually verified in studies done by Carlson (1985),

Johnson (1992), and McCarley & Carskadon (1983).

 42

Keirsey (1998) suggests that human personality belongs to one of sixteen types (see

www.keirsey,com for more information). Like Myers & McCaulley (1985), he

asserts that your dominant or preferred personality exists among one of four types

(similar to MBTI above). However, there are additional details within each of these

types which further classify individuals to one of sixteen types.

Even though people are often vulnerable to imprecise suggestions and

misunderstanding when completing questionnaires (Kitchenham & Pfleeger, 2002),

psychometric testing offers a way to at least partially understand the difference in

individuals’ behaviour. The psychometric tests above have been used widely by

many organisations for recruitment, team assembly, assessment, and training and

development (for example see http://www.knowyourtype.com/google.html,

www.keirsey,com, and www.belbin.com). Key among the psychometric tests is

Belbin’s Self-perception Inventory (Belbin, 2002). Belbin Associates claim that this

test has been used by over 40% of UK’s top companies and millions of people

around the world (www.belbin.com). Since Belbin’s instrument has received such

wide audience, and it has been verified (see Beranek, Zuser, & Grechenig (2005) for

example), Belbin’s work is further examined in the following section.

4.1.2. Management Background and Role Theories

An extension of the personality type theories in the psychology literature is found in

Belbin’s work (Belbin, 2002). Meredith Belbin conducted several studies to

ascertain what particular human behaviour or attitudes are essential for team success

(Belbin, 2002). Following several years of observation in Norway, the Czech

Republic, the United Kingdom, Germany, Denmark, and South Africa, Belbin found

that most successful teams possess eight different functional roles. He listed the

roles as company worker, chairman, shaper, plant, resource investigator, monitor-

evaluator, team worker, and completer-finisher (see Table 4.1. for details).

 43

http://www.keirsey,com/
http://www.knowyourtype.com/google.html
http://www.keirsey,com/
http://www.belbin.com/
http://www.belbin.com/

Table 4.1. Belbin team roles (Belbin, 2002)

Symbol Role Positive Qualities

Allowable Weaknesses

CW Company
Worker

Organising ability, practical common
sense, hard-working, self-discipline

Lack of flexibility,
unresponsiveness to
unproven ideas

CH Chairman A capacity for treating and welcoming
all potential contributors on their merits
and without prejudice, A strong sense
of objectives

No more than ordinary in
terms of intellect or
creative ability

SH Shaper Drive and a readiness to challenge
inertia, ineffectiveness, complacency or
self-deception

Proneness to provocation,
irritation and impatience

PL Plant Genius, imagination, intellect,
knowledge

Up in the clouds, inclined
to disregard practical
details or protocol

RI Resource
Investigator

A capacity for contacting people and
exploring anything new. An ability to
respond to challenge

Liable to lose interest
once the initial fascination
has passed

ME Monitor-
Evaluator

Judgment, discretion, hard-headedness Lacks inspiration or the
ability to motivate others

TW Team Worker An ability to respond to people and to
situations, and to promote team spirit

Indecisiveness at
moments of crisis

CF Completer-
Finisher

A capacity for follow-through,
Perfectionism

A tendency to worry
about small things. A
reluctance to let go

Belbin asserts that in successful teams, the eight roles described in Table 4.1 are

performed by the team members. Though Belbin's (2002) findings differ slightly

from previous role theories which linked individuals to one personality trait, his

work built on the MBTI ideas, and also agrees that a person’s interaction in a group

is influenced by their personality trait. Among his findings he also reported that

individuals who possessed premium quality in one respect were often lacking in

others, and that combining individuals with similar personality traits reduced

performance. Successful teams are heterogeneous; normally possessing a balance of

team members occupying all roles. Individuals can possess more than one

personality preference, having a primary preference and other secondary

preferences. Individuals are most comfortable when they are functioning in roles

that are their natural preference. Interaction between different personalities without

understanding and managing their differences can be a source of conflict.

During his studies on team roles Belbin developed a psychometric test called the

Self–perception Inventory (SPI). The SPI is a questionnaire used as an indicator for

determining an individual’s personality preference. The test consists of seven

 44

sections with eight questions for each section. For each section individuals allocate a

total of ten points based of how they feel about the questions. As mentioned earlier,

there exist studies which have verified the accuracy of Belbin’s theories; Beranek,

Zuser, & Grechenig (2005), Jones (1999), and Rajendran (2005) have offered

confirmation to Belbin’s findings.

4.1.3. Role Theories and IS Research

The consideration of group dynamics and expertise coordination is not new to

software development and information system research (Acuna & Juristo, 2004).

Gorla & Lam (2004) use the MBTI model and studied 92 software developers from

20 software companies in Hong Kong to verify whether personality type is linked to

team performance, and the effect of heterogeneity of personalities on team

performance. Their findings confirm those of Myers & McCaulley (1985) and

Belbin (2002). They found that personality preference influences the way team

members communicate and personality preference also has a significant impact on

team output. Additionally, they found that the higher the heterogeneity of software

teams, the higher their productivity levels are likely to be.

Similarly, Rajendran (2005) employed the Belbin model for personality assessment

to observe three software development teams. Consistent with Belbin (2002), he

found that positive and negative qualities are associated with personality

preferences. Rajendran (2005) also found that, through personality assessment,

teams can be constructed to possess a mix of members with positive personality

traits, thereby reducing the risk of personality conflicts and enhancing the likelihood

of success in team development tasks.

Previous studies by Bradley & Hebert (1997) and Faraj & Sproul (2000) also

substantiate the Myers & McCaulley (1985) findings. In a case study of two

software teams, Bradley & Hebert (1997) found that team composition of

personality types influences team performance. They also found that a united team is

an important variable for team effectiveness and team success. Additionally, their

findings indicated that the team with a balance of personality types performed better

 45

than the team that was homogenous. In a study involving 69 software development

teams, Faraj & Sproul (2000) also reported that managing personality traits has a

significant positive impact on software development performance.

Studies by Beranek et al. (2005) and Jones (1999) in student settings also offer

insightful support for linking personalities to roles. Using Belbin’s model, Beranek

et al. (2005) reported that personalities associated with negative attitudes, such as a

‘reluctance to share tasks’ or ‘being overly critical’ created a negative impact on

success. Beranek et al. (2005) found that such individuals pose a significant threat to

the success of the team and other team members. Additionally, Beranek et al. (2005)

observed that an individual’s willingness to participate in group settings also plays

an important role in successful team work. These findings are consistent with those

of Jones (1999) who reported that personality traits are significantly correlated with

team cohesion, and team cohesion is a necessary ingredient for team success.

The previous studies investigated here have all reported similar findings regarding

the importance of personality traits for software teams’ success. Cohesion has also

been repeatedly acknowledged as a crucial element for team effectiveness (Verner &

Evanco, 2005). Recent research shows that the processes recommended by agile

methods have been attracting industry attention, and agile processes are increasingly

being adopted by software teams (Behrens, 2006; VersionOne, 2006b). Among the

processes recommended by agile proponents, human collaboration is heavily

emphasised (Cockburn & Highsmith, 2001). Therefore, research examining ways of

improving this process should be fruitful for enhancing the performance and success

of software developers.

Even though researchers have focused on improving the social process related to

software development (Bradley & Hebert, 1997; Faraj & Sproul, 2000; Rajendran,

2005), previous research has failed to offer a complete solution to personnel

capabilities management. This study offers a mechanism for solving this problem by

implementing Belbin’s SPI in a software tool to permit project stakeholders to

electronically determine their personality preference or capability, and storing the

personality preference information. This can then be used by project leaders in

 46

assigning team members to roles, in so doing, reducing risk of conflicts and software

project failure. This work is more fully described in Chapter 6.

4.1.4. Risk of Customer Involvement

In this section the risks associated with customer involvement are examined. The

terms ‘user’ and ‘customer’ are used interchangeably throughout this discussion,

though in other contexts these two terms may be different (the customer is often the

group or individual paying for the software project, whereas the user is taken to be

the intended user of the system).

Extensive and active customer involvement is often cited as a key to project success

(Clavadetscher, 1998; Jiang, Klein, & Balloun, 1996). In this context customer

involvement is seen as their active participation and involvement in requirements

specification, software testing, and other development practices often recommended

by agile models. This assertion is especially dominant in agile processes; an extreme

endorsement of user involvement is evident in XP’s onsite customer practice (Beck,

2000). While customer involvement may be beneficial in principle, there is little

actual evidence verifying that this practice significantly improves the outcomes of

software systems development. Furthermore, some research reports that there are in

fact several pitfalls to extensive customer involvement.

Previous studies examining whether customer involvement affects customer

satisfaction have reported mixed findings. In a study involving 107 customers in the

service industry, Goodman & Fichman (1995) find that high customer involvement

increases customers’ overall dissatisfaction, especially when customers are

dissatisfied with product performance. They assert that customer involvement is

often only functional when firms perform well, and poor performance increases

overall dissatisfaction. Similarly, Grisham & Perry (2005) and Tesch, Jiang, & Klein

(2003) find that customer satisfaction is influenced by their prior expectations.

Grisham & Perry (2005) and Tesch at al. (2003) establish that when team

performance is higher than customer expectations there is greater conformity and

 47

higher customer satisfaction. However, when the reverse occurs, customers are often

dissatisfied.

A longitudinal study by Heinbokel, Sonnentag, Frese, Stolte, & Brodbeck (1996) of

29 software projects also reported negative effects of customer participation.

Heinbokel et al. (1996) found that customer involvement lowered developers’

overall success and software teams’ effectiveness. In addition, they also reported

that the projects studied were not innovative and offered little flexibility. In the same

way, Sharp et al. (2004) studied 19 software developers in an activity session and

found that heavy customer involvement threatened software projects’ success in a

number of ways. While these findings may not generalise to all software projects,

the results indicate that incidents of conflicting views, skills difference, customer

exposure to sensitive information such as schedule slippages and technical issues,

and customers asserting too much dominance in developers’ decisions are major

risks that may influence project failure and may lead to customers and developers

falling out.

On the contrary, a study by McKeen & Guimaraes (1997) involving 151 software

projects found that customer participation induces customer satisfaction. Similarly,

Foster & Franz (1999) studied 87 customers and 107 analysts and found that

customer participation was correlated with system success and acceptance. Though

the findings of these studies support the position of agile methodologies, in these

studies user satisfaction was only pronounced in tasks that were simple and offered

the customer control (for example: requirement specification). However, agile

methodologies place significant emphasis on intensive and ongoing customer

involvement, and recommend customer and developer collaboration on development

tasks (for example: system testing) in an environment which might not necessarily

mirror the settings of the projects considered by Foster & Franz (1999) and McKeen

& Guimaraes (1997).

Additionally, customer involvement in software teams is also likely to be affected

by the risks associated with personality differences (Barki & Hartwick, 2001;

Newman & Robey, 1992). Accordingly, studies examining the impact of customer

involvement and ways of gaining the maximum benefit of customer participation in

 48

software development projects are likely to offer significant benefit for software

development.

The findings of previous studies suggest that customer involvement is most

beneficial when teams are successful, when customers and developers share similar

views, and when there is minimal skill difference among the customer and the

developers. Accordingly, onsite customers may prove to be a threat to project

success under circumstances in which the above conditions are not met – for

instance, when software teams perform poorly, or where the team lacks balance in

skills or personality. Therefore, lessening the direct interaction with customers may

reduce potential conflict and the negative impact associated with interpersonal

conflict. One such way to lessen direct interaction with the customer while still

accommodating their presence is to extend the customer-developer interaction

through other mechanisms. This can be achieved by enabling remote customers to

use a tool interface. Such an interface should simulate the face-to-face environment,

providing the customer with the opportunity to initiate requirements, and participate

in the management of requirements.

Previous tools supporting project management have not considered the employment

of a customer interface, allowing an extension of the onsite customer (see tool

evaluation in Table 5.1). As a result, the second objective of the current study is to

bridge this gap by creating a feature management tool which extends the customer

by means of a customer interface.

4.2. Summary

The challenges presented by software development influence studies examining the

processes employed in this endeavor. Recent studies show that agile methods have

been gaining industry attention. However, mixed evidence exists regarding the

effectiveness of the practices recommended by agile methods. Therefore, efforts to

verify the most effective ways of employing agile practice should be undertaken.

Since social risks are deemed critical to software project success, the current study

closely examines issues relating to human collaboration.

 49

An individual’s personality preference and cultural background influences how they

contribute in group settings. Previous studies show that personality conflicts

negatively affect team cohesion and software project success. Personality conflicts

are said to be mostly influenced through poor team formation. Therefore, assigning

team members to specific roles based on their personality preference and managing

personality preference information should reduce risks associated with personality

conflicts. Customer involvement is (in principle) beneficial to the software

development team, especially when they perform well. However, evidence shows

that customers may pose a threat when teams perform poorly. Reducing direct

interaction with customers (whether or not software teams performs favorably) by

allowing them a tool interface to the development team may also reduce conflict. As

detailed in Chapter 6, the current study offers a toolset that allows personality

assessment and management, and feature management, extending the customer

interaction through an interface. Prior to this, however, consideration is given to the

use and effectiveness of tools in general in relation to software development and its

management.

 50

5. Software Development Tools

In this chapter, the role of tools used during software development projects is

considered. An introduction to software tools is presented, forming the basis and

specifying the direction of this chapter. Secondly, an examination of the importance

of project management tools follows. Tools associated with the two software

paradigms under consideration in this research are then presented in subsequent

sections. Finally, this chapter is concluded with a summary of the theories explored.

5.1. Introduction to Software Development Tools

In software engineering, a software tool is a computer program used to enhance the

engineering process by supporting the software process or the production of

software deliverables (Hunt & Thomas, 1999). Since the inception of software

engineering in the 1950’s, tools have been used to develop, test, and maintain

software products (Coram & Bohner, 2005). At the height of automation in the

1980’s such tools became known as Computer Aided Software/System Engineering

(CASE) tools. There are two sub-categories of CASE tools (Kelter et al., 2003),

Lower-CASE and Upper-CASE tools. Lower-CASE tools are generally used by

software engineers to edit and compile (and otherwise manipulate and manage)

source code, whereas upper-CASE tools are used to support other (generally earlier)

activities in the software development process, such as analysis and design, and

process documentation.

In addition to CASE tools, software engineers also use tools to plan, monitor, and

control the software development process (Fox & Spence, 2005). These tools are

called project/process management tools. Through the use of these tools, engineers

are often able to track critical processes in the software development life cycle.

Additionally, the tracking of software cost, resource, and time estimations are often

supported by such tools (Kelter et al., 2003). It is also common for the different

 51

categories of tools (upper-CASE, lower-CASE, and process) to be integrated into

one tool environment.

Project management is often posited to be critical in software production (Fox &

Spence, 2005). Even though software tools exist to assist software developers,

software challenges over the years have frequently been linked to poor project

management (Parker, 2002). While the use of software project management tools

cannot eliminate software projects’ risks, tools can be used to enhance project

communication, and allow project members to plan, track, and control projects,

thereby enhancing software project management, and thus reducing software risks

(Jurgen, 2000). Similar views are also promoted by Meredith & Mantel (2003), who

confirm that without project management tools project managers would not have

unhindered access to accurate project information, which should inform decision

making.

Thus, software developers have at their disposal a wide variety of commercial tools

for selection. In addition, open source tools exist that may also aid project

management. These tools support varying aspects of the software development

process implemented through the different software development methodologies.

The remaining sections of this chapter further examine software project management

tools’ importance, and present an evaluation of the popular tools that support the two

software paradigms (conventional and agile) under consideration in this study.

5.2. Importance of Project Management Tools in Software

Development

According to Fox (2002), regardless of the software development methodology

employed, project management tools are an asset to the software development

process. Globerson & Zwikael (2002) affirm that through the use of tools, project

managers are often able to re-schedule and identify suitable project alternatives.

Meredith & Mantel (2003) claim that project management tools may act as a

repository for project information to enable project managers to learn from their

 52

previous mistakes. In respect to the topics addressed in this thesis, Fox & Spence

(2005) and Swink (2002) confirm that tools may allow project managers the

opportunity to identify deficiencies in team personnel and to utilise resources where

they are most effectively needed.

Thus, the use of project management tools in the software process may reduce

project risks. In addition to studies by Fox (2002) and Globerson & Zwikael (2002),

a study by Fox & Spence (2005) shows that project managers who employ software

tools may outperform those who do not employ such tools. Even though there are

some controversies over these authors’ assertion (see Standish Group (2001) for

example), there exists little doubt that software tools offer positive support for

project teams if they are appropriately used.

While there are several classes of software tools as described above (lower-CASE,

upper-CASE, and process tools), a detailed analysis of the different classes is

outside the scope of this research project. Rather, this study examines software tools

associated with software project management. Such tools are often used in project

planning, allowing the storage of planning information such as cost, time, and

resource estimates (Kelter et al., 2003). Schedules are also documented, and the

tools’ functionality often models the project management techniques selected for

development. The project management model acts as an outline for the processes

that exist in the particular software project. Hence, during project execution, tasks

are engineered according to the models selected for development. In addition, these

tasks are assigned to team members, which are monitored and controlled via project

management tools. In the following section an analysis of contemporary project

management tools is provided.

5.3. Contemporary Project Management Tools

Tools that support conventional waterfall processes seem to be also structured and

systematic in nature. Meredith & Mantel (2003) assert that the most integral issue in

tool development for conventional waterfall projects is to have these tools act as a

 53

reservoir for information enabling project managers to keep project performance in

concert with project plans. This coincides with the literature on the conventional

waterfall models which stresses systematic planning and phased implementation of

software projects. Fox & Spence (2005) assert that project managers who are not

themselves structured face difficulties when adopting these tools. They find that a

project manager who embraces a structured approach to decision making utilises

project management tools most effectively. While this assertion bears some validity,

an earlier study by Rowe & Mason (1987) showed that tools that are often overly

structured may affect individual’s success through their use. This seems to suggest

that overly structured tools (can) also affect an individual’s effectiveness in a

negative way.

Several commercial project management tools exist that are suited to managing the

processes prevalent in the conventional waterfall models. Microsoft Project seems to

be the most widely used in this environment (Fox & Spence, 2005; Meredith &

Mantel, 2003). However, even though Microsoft Project seems robust and offers

several process management functionalities (see Table 5.1), considering the details

of the evaluation summary presented in Table 5.1, it also possesses several

limitations. The reason for Microsoft Project’s shortcomings is because this tool

supports the tracking of software design information in a stand alone environment.

Meredith & Mantel (2003) affirm that Microsoft Project’s rigidity may be as a

consequence of its purpose. They say that this tool was developed with the

underlying principles of most Microsoft products; to facilitate add-on capabilities.

While add-on functionality may be an asset to project management software, the

cost for these systems is likely to rise as each module is added, and this affects

project management budget. In addition Meredith & Mantel (2003) noted that

systems that are configured in such a manner, may hinder effective project

management due to information overload, project isolation, and excessive overhead

using these tools. Further, Microsoft Project does not offer risk management

support, and a significant degree of customisation may be required prior to project

data population for process tracking (see Table 5.1). In consequence, risk

management software such as Risk Guide may offer a possibility as an add-on for

Microsoft Project (Morski & Miler, 2002).

 54

 55

Similar to Microsoft Project, AceProject, and Trackstudio Enterprise are also

commercial project management tools. These tools offer process support similar to

that offered by Microsoft Project. However, in addition to the support for

management functions such as cost, time, and resource estimation, AceProject and

Trackstudio allow for a more collaborative management environment, and provide

support to track technical risks in the software life cycle (a summary of AceProject’s

features is included in Table 5.1). In addition to these tools, several similar open

source tools exist that support the administration of conventional processes in

software production. DotProject is one such tool (see www.dotProject.net for this

and similar open source tools).

After examining and comparing conventional project management tools such as

Microsoft Project and AceProject, the findings (see Table 5.1) suggest that these

tools might not adapt well when used to monitor the processes supported by agile

software development methodologies (see Chapter 2 for agile processes, and Table

5.1 for recommended feature support for agile tools). Among the features suggested

for agile tools (Kelter et al., 2003; VersionOne, 2006a), it is recommended that agile

tools should allow both local and distributed data management, should be remotely

accessible, should offer a range of reporting capabilities, should be secured, should

offer a risk prioritisation scheme, and be easy to use (see Table 5.1 for further

details).

Research has therefore been considering a more appropriate set of tools (Kaariainen

et al., 2004; Maurer & Martel, 2002). Recent agile project management tools offer

some improvements over conventional tools such as Microsoft Project. However, an

evaluation of the popular project management tools (Behrens, 2006) shows that it

might not be possible for a single project management tool to be a universal remedy.

Agile project management tools are further examined in the following section.

http://www.dotproject.net/

Feature/Tool Support ExtremePlanner VersionOne DevPlanner Rally AceProject MS
Project

Local Installation or Distributed Management for teams of
any size Yes Yes LI HO Yes NC

Remote Accessibility NC Yes No Yes Yes No
Reporting and Analytics

Executive level reporting No Yes No Yes Yes Yes
Project/ Releases reporting Yes Yes Yes Yes Yes NC
Shared Projects reporting Yes Yes No Yes Yes NC
Individual level reporting No Yes No Yes Yes NC
Feature management and planning Yes Yes Yes Yes Yes Yes
Customer request management Yes Yes No Yes Yes NC
Feature estimation and prioritisation Yes Yes Yes Yes Yes NC
Defects estimation and prioritisation No Yes Yes Yes Yes NC
Feature tracking Yes Yes Yes Yes Yes NC
Individual feature tracking and estimation No Yes No Yes Yes No
Password authentication, new team member addition, role
management Yes Yes No Yes Yes No

Audit history Yes Some No No Yes No
Project information archiving Yes Yes Yes Yes Yes Yes
Feature Risk rating scheme Yes Yes No Yes No No
Feature Estimation and implementation summary Basic Yes EO Yes Yes Yes
Easy to use, short learning curve RE RE Yes RE RE RE

Risk Mitigating Feature
Personnel Capability Management No No No No No No
Customer interface to extend the on-site customer No No No No No No
Key: LI - Local Installation, HO - Hosted Onsite, NC – Need Configuration, EO – Estimation Only, RE – Relatively Easy.

56

 Table 5.1. Evaluation summary of the features existing in popular project management tools, adapted from (Kelter et al., 2003;
 VersionOne, 2006a)

5.4. Agile Project Management Tools

It is often emphasised that tools designed in support of agile processes should be

tailored for the specific needs of the development team (Kelter et al., 2003; Chin, 2004).

However, agile supporters constantly stress that agile methods can be successfully

applied exclusive of supporting tools (see Highsmith (2000, 2004) for example). While

this assertion sounds plausible, there is little doubt that if properly applied, relevant

project management tools may add value to the agile development environment.

Several reasons exist that necessitate tool support for agile software development; larger

projects are often said to induce complexity, and managing complexities is seldom

achieved without support tools (De Souza et al., 2005). In larger projects, process data

and team activities are often managed through project management tools (Kelter et al.,

2003). In addition, the use of tools offers a means of quantifying development practices

(although its value depends on the usefulness of the measures), while allowing

traceability (Behrens, 2006). Furthermore, tool support may become essential for

distributed teams (Angioni et al., 2006). Tools supporting the processes recommended

by agile methodologies fall into three categories (Highsmith, 2004): collaboration,

technical information sharing, and project management. Since the main objective of this

research is to verify whether a prototype can be developed for agile teams to help them

with their handling of social risks, it is necessary to consider existing agile tools, and

how these tools are used to support agile teams. Therefore, in the following section,

discussions on agile collaboration, technical information sharing, and project

management tools are presented.

 57

5.4.1. Collaboration, Technical Information Sharing, and Project

Management Tools

Collaboration tools facilitate teams working in a distributed environment, bringing

teams together as if they were occupying a common area (Leuf & Cunningham, 2001).

These tools are commonly grouped under the computer supported cooperative work

(CSCW) label; they provide facilities for email, discussion groups, conferencing, and

instant messaging. Email, discussion groups, and instant messaging primarily enable

text-based interactions among stakeholders. These tools can also be considered as

interactive content access tools. Such tools allow users to share files and other material.

Similarly, conferencing software also supports distributed groups by allowing teams to

operate in a virtual business environment (Damian, Lanubile, & Mallardo, 2006).

Conferencing tools include video conferencing, teleconferencing, and text-based

conferencing. Video conferencing allows groups to maintain a two way visual and audio

communication link, which permits users to simulate a co-located setting, while

teleconferencing allows similar functionality but is often limited to only audio

exchanges (Olsen, 2006). Like asynchronous communication such as email, text-based

conferencing tools facilitate group member cooperation to convey planning information

via files and shared whiteboard. There also exists synchronous text-based conferencing

which is integrated with chat and whiteboard systems (see Linebarger, Scholand, Ehlen,

& Procopio (2005) for example).

Technical information sharing tools are often used to manage architectural and other

design artifacts in a distributed environment (Capilla, Nava, Perez, & Duenas, 2006).

The Wiki is also becoming popular in CSCW. However recent Wikis are often

incorporated into integrated development environments (IDEs) to facilitate process

tracking functionalities. As a consequence, there is some disagreement over whether the

Wiki is a collaboration or project management tool (Behrens, 2006). Accordingly,

Behrens (2006) finds that the Wiki is often perceived as a project management tool, and

it is used to manage project data, while also allowing collaboration.

 58

The Agile Manifesto’s first characteristic “Individual and interaction over processes and

tools” (http://www.AgileAlliance.org) makes clear their stance regarding prescription

for tools. Therefore, in the agile software project environment the expectation is for

team members to favor communicating in an open work space (employing face-to-face

practices). Mixed evidence exists with regard to the effectiveness of face-to-face

communication (McKinney & Denton, 2005; Wellington et al., 2005). However,

cultural and personality differences aside, this mode of communication offers a medium

which helps in the reduction of information omission and ambiguity. Nonetheless,

empirical studies verifying agile project management tools’ adoption provide evidence

to show that agile developers often rely on tools to manage their agile processes

(Behrens, 2006).

Behrens (2006) reported several reasons for the use of tools to support agile teams;

among them efficiency, productivity, and traceability are emphasised. On the other

hand, the experiences of Williams (2003) show that teams employing agile methods use

ad hoc processes to track project artifacts. Williams (2003) noted that in these teams,

team members often employed pen-paper practices, and recorded system requirements

on white boards and in Microsoft Excel files to track software artifacts and minimise

rework. There are criticisms against these practices. Apart from poor traceability,

Williams (2003) contended that these techniques sometimes resulted in agile teams

losing important information.

Therefore, to ensure efficiency, productivity, and traceability, several project

management tools exist to track agile processes (see Table 5.1). Due to the dynamic

nature of agile-based development work, highly structured tools such as Microsoft

Project and DevPlanner (see Microsoft Project and DevPlanner features in Table 5.1)

might pose some problems if they are adopted in agile projects. Agile principles

emphasise unlimited accessibility, suitable process match, and shared knowledge. For

these and other reasons, tools such as Microsoft Project and DevPlanner may challenge

(and constrain) the practices of agile developers due to their limitations (see Table 5.1

for further details). In addition since agility hinges on time in terms of rapid and

 59

http://www.agilealliance.org/

frequent releases, the time spent by agile team members on learning to use complex

tools reduces agility and productivity in agile projects. Therefore, it is recommended

that tools developed to support agile project management should also be easy to use,

and should not slow down the software development process. Koch (2005) says that

usability issues should be non existent in agile tools.

Correspondingly, academic research is continually examining ways of supporting agile

methods’ best practices in toolsets. Maurer & Martel (2002) created MILOS to support

agile software teams’ communication; the main aim behind the development of this tool

is to enhance coordination among agile team members. MILOS allows agile teams to

manage project requirements. Similar tools called XPSWiki, DotStories, and XPWiki

were created by Angioni et al. (2006), Ceravolo et al. (2003) and Rees (2002)

respectively. A further alternative, StoryManager, was created by Kaariainen et al.

(2004); this tool employs the Eclipse integration framework. Eclipse is a development

environment and a tool integration framework, allowing for sharing and managing of

agile project requirements. When StoryManager was evaluated in a small live XP

project environment, this tool was abandoned after two releases and the testing team

reverted to their manual process. According to Kaariainen et al. (2004), usability issues

were the main reason for StoryManager’s discontinued usage.

Atsuta & Matsuura (2004) also developed a tool that supports the XP pair programming

practice. This tool allows pairs of programmers to work in a distributed environment.

Their tool offers several elements of XP pair programming support: role shift - where

pair programmers shift repeatedly between roles of reviewer and programmer;

notification of state - programmers can inform each other of their state, whether they are

working or not; chat - programmers can have electronic conversations; and white board

- this function allow for the sharing of ideas. This tool is limited to only one XP

practice, pair programming.

The literature above shows that several tools exist to assist agile teams with

collaboration and information sharing among developers. These tools may also allow

 60

the customer to be involved with the development team. However, tools developed for

project management do not consider the customer; even though the customer is

expected to be regularly involved with project management in agile development teams.

This seems to suggest that studies should investigate how project management tools can

be built to address customer involvement with the developers.

A survey done by Behrens (2006) found that ExtremePlanner, VersionOne, and Rally

are popular commercial tools which support agile processes. Even though there seems

to have been no specific attempt to have risk mitigation features built into

ExtremePlanner, VersionOne, or Rally, these tools offer several features which are rare

in most other process tools (see Table 5.1), and their use may also possibly reduce agile

project risks. However, since these tools were developed mainly for traceability and

tracking purposes, they neglect the most critical dimension of risks - social risks (Curtis,

1989; Curtis et al., 1988). Empirical evidence exists to show that team cohesion is most

critical to project success, and personality differences pose significant threats to

software projects’ achievements (Jones, 1999; Verner & Evanco, 2005). With agile

methods emphasising “individual and interactions over process and tools” (see Chapter

2 for the other agile tenets), social risks are likely to be prevalent in projects where agile

(social) practices are used.

Therefore, a tool considering social risks, built to extend the remote customer, and

offering team personality assessment and management prior to team formation (see

Chapter 4 for further details) would potentially lessen agile project risks through its use

in software projects. There is an expectation that such a tool would offer significant

support to the agile community. Thus, Agile Social-Risk Mitigation Tool (ASRMT)

was built to address the shortcomings of current agile project management tools by

offering an extension for remote customer feature management, and personality

assessment functionalities. An introduction to ASRMT is presented in Chapter 6.

 61

5.5. Summary

Since the inception of software engineering, software tools have provided useful

support for software developers. Though a wide variety of tools exist, all tools might

not be appropriate for every software environment. Tools such as Microsoft Project and

AceProject may be appropriately applied in a plan driven development environment,

whereas tools like VersionOne and Rally may offer better support for agile project

environments. Collaboration tools such as email, discussion groups, conferencing, and

instant messaging also add value to agile distributed teams by allowing data sharing and

bringing teams together as if they are occupying a common space.

Tools such as ExtremePlanner, VersionOne, and Rally offer a wide range of features,

and if used by agile teams, these tools may lessen risks in agile projects. However, these

tools offer no mechanism for assisting teams to plan for social risks; even though agile

practices may attract social risks, and such risks are deemed the most critical

encumbrance to project success. ASRMT is a tool built addressing the shortcomings of

popular agile tools by offering agile teams’ social risk mitigation features. An

introduction of ASRMT is provided in the following chapter.

 62

6. Design and Implementation of the ASRMT Tool

This chapter describes the development and implementation of a tool called Agile

Social-Risk Mitigation Tool (ASRMT), designed to assist agile project teams with their

handling of social risks. In this chapter, ASRMT is first introduced, providing details of

its rationale, the approach taken to development, and implementation details. The

features of ASRMT are then described, and then the chapter concludes with a summary

of the discussions throughout this chapter.

6.1. Introduction to the Agile Social-Risk Mitigation Tool (ASRMT)

In this section the ASRMT research project goals are outlined, and then the software

development methodology selected for implementing ASRMT is described. Third, the

ASRMT development platform is outlined and justified. Finally, an overview of

ASRMT is provided.

6.1.1. Research Project Goals

While the processes recommended by agile software development methods may

improve some aspects of the software production environment, Chapter 4 shows that

these processes also inherit some challenges of their own. In addition, some agile

software development methods are recent, and arguments suggesting that they are

untested (see Coram & Bohner (2005) for example) bear some soundness. Thus,

research examining ways to strengthen the processes employed by agile methods carries

potential significance. The literature examining agile processes and the challenges

inherent in their implementation seems to be mostly descriptive, and empirical evidence

is sparse (though there are a few experience reports in existence).

 63

Project management tools may improve the agile software development environment

and reduce risks in these projects. In addition to support for information management

and communication among team members, agile project management tools may also

implement other risk mitigation strategies. However, since agile methods place

significant emphasis on face-to-face communication, arguments against using a project

management tool that has been implemented for reasons such as to assist with

communication are subtly valid, as it may work against the very principles embedded in

agile methods. Nonetheless, the literature shows that significant risks are introduced

through human collaboration and that personality differences are magnified in co-

located teams (Grisham & Perry, 2005; Nerur et al., 2005).

Since behavioral risks are deemed most significant in software projects (Verner &

Evanco, 2005), a tool developed on the basis of social risk mitigation theories possibly

will lessen risks through its use in agile projects and present some concrete guidance for

the practices recommended by agile methods. To be effective, such a tool should

present low overhead in its usage, and should consider aspects particular to agile

software development environments. Though there exist some agile project

management tools, these have not considered the employment of ‘social risk’ mitigation

strategies (see the tool evaluation in Table 5.1). This research project aims at

implementing risk mitigation strategies to directly address, and hopefully reduce,

exposure to the social risks that may become inherent in agile projects.

In this context, this tool addresses the extension of customer involvement, the provision

of support for remote customers, and the management of team members’ personality

capability. This reflects the suggestions made by this study in terms of reducing

customers’ direct involvement with the development team (see Chapter 4 section 4.1.4).

Additionally, personality assessment prior to team formation should allow agile project

managers to better manage team members, and team assemblages, potentially reducing

risks associated with personality conflicts among agile teams. Therefore, the tool under

consideration also implements the Belbin’s Self-perception Inventory (SPI) to support

 64

developers’ personality assessment prior to team formation (see Chapter 4 sections 4.1.2

and 4.1.3 for risks associated with personality conflicts).

6.1.2. Software Development Methodology Used for ASRMT

As described in previous chapters (mainly Chapters 2 and 3), agile software

development methodologies are often associated with fast paced software development

of innovative products. Given the time and resource constraints of this research project,

the principles and practices underlining such an approach (see Chapter 2 section 2.3.2

for further details) seem to be most suited to this project development framework. In

addition, by adopting such a methodology, the researcher stands to achieve knowledge

which potentially expands their understanding of some of the implications regarding

agile software development. Further, in recognition of prior discussions, it is posited

that the processes employed by sensible project managers should fit with the

characteristics of the software product under consideration, thereby increasing the

likelihood of development success (Highsmith, 2004). Therefore, the ASRMT tool is

created under the principles and practices that adhere to agile software development

methods and agile project management.

Correspondingly, agile’s four favored principles - responding to change, working

product, customer collaboration, and individual and interaction - influence how the

practices selected throughout the software development life cycle are implemented.

While the process of envisioning and exploring is implemented in the design and build

phases of this software project, domain object modeling (DOM) is implemented in the

project specification phase. According to Koch (2005), domain object modeling is the

Feature-Driven Development (FDD) method of capturing the overall design of the

system to enhance developers’ understanding of the domain (see Figure 6.1 for the FDD

process diagram). Thus, capturing this software project in a DOM should help to

simplify the development process. Additionally, FDD’s practices such as developing by

 65

feature, regular build schedule, configuration management, and reporting and visibility

of result are implemented throughout this software project.

Figure 6.1. FDD process diagram (De Luca, 2002)

Software development projects leading to large mission critical systems can dedicate a

significant amount of time towards requirements gathering, which is normally followed

by a linear implementation of the software development life cycle (Boehm & Turner,

2003). This is often appropriate for such a context. However, for rapid application

development (RAD), working software is preferred over a waterfall mode of

development (Agarwal et al., 2000). Thus, while time is invested in requirements

specification for ASRMT using the preferred DOM approach, this software is

developed feature by feature. FDD defines features to be small “client-valued”

functions which are implemented in a maximum of two weeks (Koch, 2005). This

practice is said to enhance dependable feedback among stakeholders in the development

process, which increases the likelihood of tangible delivery and progress throughout the

software development life cycle. Abrahamsson et al. (2003) recommend the use of the

FDD method in ‘time and resource’ constrained development environments where

quality is necessary.

Regular build schedules and configuration management (CM) are employed throughout

this software development project. After classes are developed to support proposed

feature functionalities, unit testing is performed separately on each class. Subsequently,

 66

 67

the code existing in the classes is checked thoroughly before being promoted for

building. Regular builds are done continuously as features are implemented. This

technique helps with ensuring an up to date version of the system exists at any given

time of development review (Highsmith, 2004; Koch, 2005), whereas unit testing

should enhance software quality (De Luca, 2002). Configuration management is

required in scenarios where regular build practices are engaged. This technique is said

to assist with efficient management of the artifacts. In this case, SourceSafe is utilised to

support the implementation of configuration management methods in this project.

It should be noted, however, that this project environment does not precisely mirror a

real life software project environment where stakeholders occupy distinct roles such as

customers, developers, project managers, quality assurance engineers and so on (see

Highsmith (2004) for agile project roles). Since this project only possesses one primary

participant, the researcher must occupy the roles previously mentioned throughout the

software project, at times simultaneously. The supervisors of this project offer some

customer-style feedback to ensure a reliable prototype is developed, meeting time and

resource estimates, whereas the additional customer, the developer, project manager,

and quality assurance roles are occupied interchangeably by the researcher. That said,

principles such as customer collaboration and individual and interaction are

implemented using practices such as specific reporting techniques, including project

status reporting, and visibility of results recommended in FDD projects (see Koch

(2005) for examples).

Project status reporting to provide visibility of results is implemented throughout this

software project, by examining the ratio of completion of the feature list and feature

development milestones. This technique is used to enhance continuous project

milestone estimation throughout the project in order to keep track of project progress.

See Table 6.1 for a full summary of the chosen FDD practices from the practices

recommended for software development using this method.

68

Process Description Reason for Selection

Domain Object Modelling (DOM) An overall model created to capture the

domain after project scoping.

To provide the project scope, to allow a detail assessment of project

goals prior feature list building.

Development by Feature After decomposing the DOM into subject

areas, and business activities, a feature list

is a representation of each category

identified.

To identify small units for which to start designing, to allow planning

and development in increments, to allow for rapid feedback between

developer and supervisors.

Planning by Feature A plan of the order in which features

should be implemented.

To identify and evaluate class feature dependencies, to assist with

load balancing throughout the software project, to help to simplify

complex features, to identify and plan for risks which may result

through feature complexity.

Designing by Feature A package describing the design details of

the feature, design alternatives, task list,

and sequence diagram of the feature.

To verify the dependencies among classes identified in the plan, to

verify sequence of events, and schedule, to identify dependencies

among features.

Building by Feature An activity to produce a client-valued

function.

To produce fast-pace increments, to produce quality software, by

implementing practices such as unit testing and code inspection in

each feature built, to verify quality output, and produce software on

schedule, to ensure quality through rapid feedback.

Configuration Management Management of artefacts, and source code

versions.

To enhance management of source code versions.

Reporting and visibility of results Mechanism for tracking and reporting the

project status.

To ensure rapid application development with proper standards, these

include usability, relevance of feature, and adequate documentation.

 Table 6.1. Chosen FDD practices for ASRMT implementation (De Luca, 2002; Koch, 2005)

6.1.3. Development Platform

Given the research goals described above, this prototype tool is by necessity developed

to support a distributed environment. While a regular desktop tool may assist co-

located teams using agile processes, thereby extending the scope of agile methods and

reducing their risks (see Chapter 5 section 5.2 for a list of the importance of software

tools), web based tools are most suitable for agile distributed environments (Angioni et

al., 2006). This is because most agile methods stress continuous accessibility to the

customer, emphasising communication and cooperation, and sometimes distributed data

sharing (Kelter et al., 2003); such goals are easily facilitated in web settings.

Additionally, support for distributed teams requiring remote customers’ interfaces are

not facilitated in a non-web situation. Technologies such as teleconferencing software

and e-mail systems are examples of such milieu which provide support for distributed

communication.

Several choices exist for web application development. Among these, Java technologies

and the Visual Studio.NET seem most popular for such implementations (Atsuta &

Matsuura, 2004; Kaariainen et al., 2004). To verify whether the concepts proposed in

Chapters 4 and 5 are achievable, this tool is developed using the ASP.NET framework.

ASP.NET is a suite of programs which support fast paced platform independent web

application development (Moroney & MacDonald, 2006). Hence, the concepts of

standard user application techniques such as storing, retrieving, displaying, and

modifying data are implemented in this software development project, using a client

server architecture.

Of the visual studio collection of programming languages, Visual Basic is used for

implementing server side logic. The ASP.NET framework allows for basic user

validation, therefore, supplemental validation can be performed using JavaScript. Rapid

application development (RAD) is the fundamental trait of this project, thus the

assertion made by (Flanagan, 2001), who asserts that JavaScript presents a short

learning curve to web developers and enhances efficiency of web application by

 69

allowing client side validation, is embraced. Microsoft Windows XP Professional

operating system is the platform for development, and Internet Information Services

(IIS) is used as the web hosting software for this application, given their dominance in

desktop environments.

Additionally, data storage is enabled using the Microsoft SQL 2005 relational database

management system (RDMS). Client server computing functionalities such as views

and stored procedures are also supported by this RDMS. As mentioned previously,

SourceSafe is used for managing source code versions. Finally, cascading style sheets

(CSS) are used for formatting the web pages. CSS is a technology which allows web

developers the opportunity to build web pages with a consistent look and feel, while

allowing a separation of style from content (Clark, 1998). See Figure 6.2 for a

graphical representation of the proposed development architecture.

As mentioned previously, an alternative to this implementation platform would be to

use Java technologies. Java Server Pages (JSPs) could be used to implement the server

side logic of the application (Bergsten, 2004). This technology is also platform

independent and allows rapid application development (Bergsten, 2004). Additionally,

an Apache web server could be used to implement server side programming. In this

scenario, JavaScript could also be used for client side validation and CSS for consistent

look and feel, while any RDMS can be used to store user data.

Even though this latter option is open source and may appear attractive, there are

several drawbacks to this implementation. Configuring IIS to work with Apache has

proven tedious because they are from differing vendors (Warrene, 2004). JSPs are only

served in a JSP engine; thus, the functioning of this web application will necessitate

configuring a JSP engine such as Resin or Tomcat in order that the JSP pages are

served. Connection to the RDMS would require a specific database driver such as

aveconnect or ODBC. Finally, optimum performance is not guaranteed with differing

vendors applications, for example, connecting to a Microsoft database with JDBC

drivers (Clark, 2006).

 70

Since the platform of implementation is (almost) exclusively Microsoft, ease of

configuration and development should be enhanced through utilising the technologies

selected for this tool development (see Appendix A for the ASRMT configuration and

deployment instructions). Finding such an approach to software development is

constantly stressed by agile proponents such as Jim Highsmith, Kent Beck, and Alistair

Cockburn (see Highsmith & Cockburn (2001) for example). A summary of the

experiences gained through adopting this approach is presented in Chapter 7.

Figure 6.2. Development Architecture for ASRMT

6.1.4. ASRMT Overview

Since software development is plagued by many challenges which make it risky, the

identification and validation of new approaches that improve software development

practice is of paramount importance to the future success of software development.

While agile models are said to provide practices that are likely to reduce software risks,

agile social practices are also risky (see Chapter 4). In addition, social risks are most

 71

critical to software development success. In light of this, this research leverages risk

theories to develop a prototype to support the social side of agile software development.

The intent of ASRMT is to assist agile project teams with their handling of social risks.

This tool specifically takes into consideration the social practices (co-located teams

depending on tacit knowledge, and onsite customer) of agile methodologies. Thus,

ASRMT is aimed at reducing social risks in agile teams by allowing project managers

the opportunity to verify individuals’ personality preferences and traits (to unearth their

team strengths and weaknesses, so as to place them in most suitable roles) before they

are assigned to software project roles, and integrated into the software team.

Additionally, ASRMT is also meant to extend remote project customers (to reduce

conflicts between onsite customers and the development team). Support for remote

customers is achieved through ASRMT client feature request management

functionality. This functionality allows project customers the chance to participate in

the management of features, irrespective of their presence, on – or off-site.

While the primary aim of ASRMT is to assist development teams with the handling of

social risks, this tool is also likely to offer several other benefits to software project

teams. ASRMT is a (small-scale) project management tool (see section 6.2 for ASRMT

project management features) and it provides development teams with the ability to

communicate project information across teams (in support of both distributed and co-

located teams). This tool also enables project teams to track software projects, and it

acts as a reservoir for information in order to enhance project managers’ future decision

making. The following section provides additional details about the features existing in

ASRMT.

 72

6.2. ASRMT Features

In this section an introduction to the features provided by ASRMT is presented. This

section is arranged in the following order: firstly, the list of features in ASRMT is

provided, and then an introduction to ASRMT follows in the ‘Using ASRMT’ section.

Finally, ASRMT user options are introduced. See Appendix B for the ASRMT

requirements specification information.

6.2.1. List of Features in ASRMT

ASRMT was developed to support the management of agile project teams’ remote

customer and team members’ personality preferences. Accordingly, this tool offers the

features discussed below (note that ‘client’ and ‘customer’ are used interchangeably

here to denote the user who is actively participating and involved in requirement

specification, software testing, and other development practices often recommended by

agile methods).

Client Feature Management

Requirements specification, a standard and ongoing activity in agile software

development (see Chapter 2 for an example), can be tracked using ASRMT. Feature

requests are initiated by the customer; features are then jointly managed by the

development team and the customer. Customers are involved in the management of

features for all projects in which they are involved.

Developer Feature Management

While customers are often the initiator of features, developers are responsible for

coordinating activities which should lead to feature development and overall software

 73

project realisation. ASRMT offers developers the opportunity to monitor development

goals in the form of features (entered by Clients), to allow customers the opportunity to

keep track of software development progress. Developers are assigned to designated

projects, and are responsible for updating ASRMT with project information such as

feature technical risks, and their development progress.

Remote Accessibility for Remote Developer and Client

Remote accessibility is integral to the work of distributed teams. ASRMT is web based

and offers remote customers the opportunity to interface with local project teams.

Additionally, developers can also access ASRMT from anywhere and at anytime to

ensure up to date project information and feature tracking. Remote developers and

customers are supported by ASRMT through a web browser.

Feature Tracking

Feature information initiated by the customer is jointly managed by both the developers

and the customer in ASRMT. ASRMT offers a range of project summaries for feature

information (for example: New Feature, Defect, and Enhancement tracking). Through

adequate user updates, ASRMT is able to offer real time feature tracking information

support for Clients and Developers, in both detailed and summary forms. This

information allows customers the opportunity to see developers’ progress while being

remote. In addition, project managers are allowed a chance to make expert decisions

(related to project management) through the information provided by ASRMT.

Personality Capability Management

ASRMT allows team members the opportunity to determine their two main personality

preferences, in this case using the Belbin Self-perception Inventory. Information

regarding individuals’ personality preference is stored to assist with project

management decision making. Through assessment summaries, project managers are

 74

afforded the opportunity to assemble a balanced team (with the right mix of

personalities), taking into account team members’ major strengths and weaknesses. In

addition, through continued observation, project managers can also compare actual

performance against the summary provided by ASRMT to make expert judgment

regarding individuals’ effectiveness in their given roles.

6.2.2. Using ASRMT

ASRMT takes into account the practices of agile software development teams. Since

agile teams are meant to be flexible, ASRMT can be used flexibly in order that agility is

maintained. All menu items are placed on ASRMT’s main screen to reduce mouse

clicks and repetition. The following menu items, shown in Figure 6.3, are provided by

ASRMT.

Figure 6.3. ASRMT Main Menu

 75

Feature Management

Features are small client valued system functions. Thus, features can be classified as

system functionalities. ASRMT allows customers to add features, and all users are

allowed to edit features.

Add Feature: ASRMT allows clients to add features (see Figure 6.4). In order for clients

to add features, they must provide feature information such as the Project, Feature

Description (short statement of not more than 200 words), Feature Details (any

additional details regarding each feature), Business Value (Low, Moderate, or

Significant – features that are Significant being most important for the business at the

time of entry), Priority (High, Medium, or Low – features that are high in priority

should attract most of the developers’ attention), Feature Type (New Feature, Defect, or

Enhancement), and whether the feature should be discussed in a face-to-face meeting.

Features added by clients are tagged with the default status ‘Requested’.

Figure 6.4. Add Feature Interface

 76

Edit Feature: Clients are allowed to edit information for features previously added when

the feature carries the status Requested, Estimated, or Scheduled (see Figure 6.5). If a

feature Status is Estimated or Scheduled and it is edited by a Client, then its Status is

automatically changed to Requested again. A log is maintained for all changes made to

features by clients (see Figure 6.6). For Developers, features are edited and their Status

updated automatically. Features traverse states via the Status field (see Figure 6.7).

Initially when a feature is entered by a Client its Status is ‘Requested’ by default. When

the Developer is ready to estimate a feature and the developer enters estimation

information (Date Estimated and Estimated Hours), the feature Status is automatically

changed to Estimated. If the feature is then scheduled (once Date Scheduled is entered),

its Status is automatically changed to Scheduled. Once the feature Date Started field is

updated, the feature Status is then automatically updated to In Progress. Finally, the

feature status is automatically changed to Completed once the Actual Hours and Date

Completed are entered. Developers are also able to categorise features based on an

estimation of their technical risk (Low, Medium, or High). As mentioned previously, if

the developer updates a feature Status to Estimated or Scheduled, and the client makes

changes to the feature thereafter, the feature Status is automatically changed to

Requested again (see Figure 6.8 for an example of the feature traversing states).

 77

Figure 6.5. Edit Feature Interface (Client)

Figure 6.6. Feature Change Log

 78

Figure 6.7. Edit Feature Interface Showing Feature Statuses (Developer)

Figure 6.8. Feature Traversing States

Requested Estimated Scheduled

Client
Changes

In Progress Completed

 79

Administration

SRMT provides an administration menu which allows users to administer projects,

omplete SPI Survey: One of the most important features of ASRMT is its provision of

A

user options, and complete the SPI survey (see Figure 6.3). These options are facilitated

through the following submenus:

C

Belbin’s SPI survey1. Through the SPI survey users are able to determine and store

information about their main personality preference. Individuals are expected to possess

varying strengths based on their personality preference (see Table 4.1 for a summary).

Thus, this feature assists project managers to assemble the most effective teams, having

the right mix of personalities. To complete the survey individuals are required to answer

fifty six questions, divided evenly among seven sections. For each section, a total of ten

points must be distributed based on how the user feels about the questions. When the

SPI survey is submitted, the user’s two main personality preferences are returned (see

Figure 6.9).

1 Use of the Belbin SPI in ASRMT is not for profit, and is purely on a conceptual basis for this research,
to verify whether the concept of personnel capability management can be integrated in an agile project
management prototype. Therefore, please ensure that if you are interested in analysing Belbin’s team
roles, you use one of the three approved methods links which can be found at www.belbin.com .

 80

http://www.belbin.com/

Figure 6.9. Belbin’s SPI Survey Interface

New User: ASRMT is a secured software tool. Thus, in order for users to access

ASRMT, they must be registered. Only an ASRMT administrator or a registered project

manager is allowed to add users. The New User menu on the main interface (see Figure

6.3) opens the Register interface which stores First Name, Last Name, Address,

Telephone Number, Email Address, Category (Customer, Developer, or Manager),

Login Name, Password, and Confirm Password details to be entered. For users

belonging to the ‘Developer’ category, their Role (Programmer, Analyst, or Chief

Programmer) must also be specified (see Figure 6.10).

 81

Figure 6.10. New User Interface

Change Password: ASRMT users can ensure their details are secured by changing their

passwords from time to time (see Figure 6.11). To change their password, users are

required to enter their Current Password, and then enter their New Password twice.

Figure 6.11. Change Password Interface

 82

View/ Edit Personal Details: Since ASRMT users are added by the administrator or

project manager, ASRMT allows users the opportunity to view and edit their previously

entered information (see Figure 6.12). Users are allowed to edit their First Name, Last

Name, Address, Telephone Number and Email Address.

Figure 6.12. View/Edit Personal Information Interface

View Contact Details: Developers and project managers are allowed to view clients’

contact information (see Figure 6.13). Developers are restricted to viewing of

information for clients who are part of their projects, whereas project managers are

allowed to view all clients’ or developers’ contact information. Project managers may

also use this interface to see which users are participating in specific projects; see

Figure 6.13 for example.

 83

Figure 6.13. View Contact Details Interface

Add Project: Before clients and developers are allowed to interface with projects

(manage project features) they must be added to projects by their project manager.

ASRMT allows the project manager to add projects using the Add Project menu (see

Figure 6.3). To add projects, project managers must specify the Project Name, Project

Description, and Project Start Date (this date can be estimated if the date for starting the

project is unclear, and updated at a later date) (see Figure 6.14).

 84

Figure 6.14. Add Project Interface

Edit Project: Project managers are allowed to edit projects previously added using the

Edit Project menu. Project managers can also update projects when they are completed

by adding a Project Finish Date (see Figure 6.15).

 85

Figure 6.15. Edit Project Interface

Assign Users–Project(s): Project managers are allowed to Add Users (clients and

developers) to specific projects. Clients and developers can only interface with projects

that they have been previously added to (see Figure 6.16). This interface also allows the

project manager to see all the projects each user is participating in.

Figure 6.16. Add user to Project Interface

 86

Project Summaries

ASRMT provides reports in the form of project summaries. Project summaries are

available for all features, projects, and users’ SPI survey data previously added. These

summaries are meant to assist project team members to keep track of project progress,

and help project managers with decision making.

Feature Summary: ASRMT provides a wide range of summaries for features (see

Figure 6.17). Feature summaries include: All features for specific projects, Features by

a specific Type (New Features, Defect, and Enhancement), Features by Priority (Low,

Medium, and High), Features for a given Risk Rating (Low, Medium, and High), and

Features by Status (Requested, Estimated, Scheduled, In Progress, and Completed). For

these summaries, users must specify a given date range (Start Date and End Date).

Figure 6.17. Feature Summary Interface

 87

Project Summary: Project summary options provided by ASRMT include: Summary for

All Projects, Summary for Specific Project, Summary for Outstanding Projects, and

Summary for Completed Projects (see Figure 6.18). These summaries provide

information such as the project name and its description, its start date, its finish date,

total number of features, and percentage of the features completed. For each summary

(except the Specific Project) the user must specify a Start Date and End Date.

Figure 6.18. Project Summary Interface

SPI Survey Summary: A summary of user personality preference information is also

provided by ASRMT. Through this menu project managers can gain information which

is likely to enhance activities such as: assigning individuals to roles in the software

team, and monitoring their progress by comparing work output and personality traits

with what is recorded by the SPI questionnaire. Additionally, ASRMT also highlights

the main weaknesses that might be associated with each personality preference. Project

managers can work to leverage individuals’ strengths while minimising the impact of

their weaknesses through team composition. Figure 6.19 shows a sample SPI summary

for a few developers currently registered.

 88

Figure 6.19. SPI Survey Summary Interface

6.2.3. ASRMT User Options

ASRMT support three categories of users - Customers, Developers, and Managers.

Users possessing manager privileges are provided with access to an extended menu to

administer ASRMT, whereas the customer and developer users have restricted access. A

description of each category of user and the relevant access limitation are outlined

below.

The Client: ASRMT’s main Client/Customer purpose is not to eliminate face-to-face

contact between clients and developers; rather, ASRMT seeks to allow clients to extend

the software development team by offering them a remote interface (reducing their

direct interaction). Thus, clients are only allowed access to features of the tool that

facilitate ‘normal’ capabilities but from remote locations (see Figure 6.20). Users

having Customer privilege are allowed access to the following: Add Feature, Edit

Feature, Complete the SPI Survey, Change Password, View/ Edit Personal Details,

 89

Feature Summary, and Project Summary. Clients are only allowed to interface with

projects in which they are a member.

Figure 6.20. Client Main Interface

The Developer: Developers are allowed access to ASRMT features that are meant to

support their functions in the software team. Thus, like customers, developers also view

a scaled down list of options (see Figure 6.21). Their options include: Edit Feature,

Complete SPI Survey, Change Password, View/Edit Personal Details, View Contact

Details, Feature Summary, Project Summary, and SPI Survey Summary. Developers are

only allowed to interface with projects in which they are a member. They are also only

allowed to view the positive qualities associated with their personality preferences. The

intent of this restriction is to discourage developers from manipulating their answers to

the SPI questionnaire in an effort to avoid appearing to have certain weaknesses.

 90

Figure 6.21. Developer Main Interface

The Project Manager: Project managers have administrator privileges. Thus, project

managers are allowed full access to the entire functionality of ASRMT (see ASRMT

full menu in Figure 6.3).

6.3. Summary

Feature-driven development (FDD) practices and Microsoft development tools were

used to develop ASRMT to assist agile project teams with their handling of social risks.

This tool is intended to reduce social risks in agile teams by allowing project managers

the opportunity to assess and manage individuals’ personality preferences and traits (to

unearth their team strengths and weaknesses so as to place them in most suitable roles)

before they are assigned to software project roles and integrated into a software team,

and to extend remote project customers (to reduce potential conflicts between onsite

customers and the development team). Even though ASRMT was primarily created to

assist agile teams with the handling of social risks, this tool also offers features that are

likely to support and add benefits to general project management in agile teams. The

 91

following chapter provides further discussions on ASRMT intended benefits and

addresses the research questions.

 92

7. ASRMT Evaluation and Discussion

This chapter begins with some reflections on the development process employed in

ASRMT. The intended benefits of using ASRMT are then explained in relation to the

concepts established earlier in this thesis. This chapter also delineates the ASRMT

evaluation process and its findings. The research questions listed in Chapter 1 are then

revisited. Finally, this chapter concludes with a summary of the discussions presented

throughout this chapter.

7.1. Reflections on the Development Process

In general, most of the FDD practices selected for developing ASRMT were followed.

Domain object modeling (DOM) was useful; this process enhanced the developer

understanding of the domain, and helped the developer to keep the overall project goal

in focus. Developing ASRMT feature by feature also allowed the developer to focus on

one unit at a time, which reduced the development expectation burden of excessively

looking at the requirements of the entire system. Planning by feature, designing by

feature, and building by feature also allowed the implementation of complete units of

ASRMT, which were subsequently integrated into the overall project after testing.

Configuration management enhanced the management of ASRMT versions. In one

case, an earlier version of ASRMT was retrieved to revert to a specific user interface

(UI) design recommended by the supervisors of this project.

Overall, the benefit of using FDD practices was not clear in this research project, as the

relatively small scale of ASRMT did not enable the researcher to manage development

outputs and quality against any benchmark. In addition, because of the size of ASRMT,

there were moderate differences between the times estimated and the actual times taken

for development (see Table 10.2). The increase in development time that did occur was

due to the exclusion of time estimates (in the initial feature list summary) for ASRMT

 93

research activities (for development), planning and implementing the ASRMT database,

and implementing ASRMT reports (see Table 10.2).

Because ASRMT was developed almost exclusively using Microsoft products, the

effort for configuring these products to work collectively was trivial. However, open

source help on the internet for implementing ASRMT functionalities was scarce. While

the technologies proposed for implementing most of ASRMT functionalities were

adequate, in addition to cascading style sheets (CSS), themes were also used for

implementing ASRMT’s consistent visual style. Themes are asp.net technology for

maintaining a consistent look and feel of asp.net applications. This technology extends

the CSS by offering additional support outside the scope of CSS for asp.net controls.

7.2. Benefits of using ASRMT: Risk Mitigation Capability

ASRMT was developed to support agile processes. Thus, through use of ASRMT, users

should be able to reap the benefits existent in similar agile project management tools

(see Chapter 5 section 5.2 for the benefits of using project management tools). An

outline of the additional benefits offered by ASRMT is presented below.

As mentioned above, ASRMT was developed to track agile processes. Therefore, this

tool focuses on providing process support for agile projects and avoids features that may

become heavyweight, thereby reducing agility in such project environments. The idea

behind ASRMT is to be as lightweight as possible, and easy to learn. Since ASRMT is

meant to track agile projects, if information is promptly entered, it is likely to support

communication in agile projects. ASRMT is web-based; as such it provides unrestricted

accessibility, a key feature of agile methods. ASRMT was developed using an object

oriented (OO) approach, thus ASRMT was built with an awareness of the need for

scalability, requiring minimal change for additional functionalities (extendibility).

 94

Beyond the architectural benefits stated above, ASRMT also offers functional benefits

that are intended to mitigate social risks in agile projects. ASRMT was developed to

extend the customer interface and provide personality assessment functionality, in so

doing, reducing social risks in agile projects. The following sections further describe the

benefit of providing support for remote clients, personnel capability management,

highlight some other indirect benefits of using ASRMT, and explain its project

management capability.

7.2.1. Support for Remote Clients

User (customer) participation in software development is only beneficial when software

teams perform well (see Chapter 4 section 4.1.4). Since there is no guarantee of elevated

team performance in software development, having a customer always on-site (as

recommended by XP) is a potentially risky practice. In such circumstances, lessening

direct interaction with the customer is likely to reduce risks that may be derived through

unmanaged customer expectations and interpersonal conflicts. ASRMT provides a way

to extend the on-site customer by providing support for remote customer participation.

ASRMT was developed to trap customer feature requests, allowing the customer to

initiate feature requirements, and to participate in the management of such

requirements. For more complex features, ASRMT also offers customers a way of

indicating to the development team that they are interested in having a face-to-face

meeting to discuss these features (see Figure 6.4).

7.2.2. Support for Personnel Capability Management

Personality differences are the most critical risk affecting software team cohesion. Thus,

assessing and managing team members’ personalities should provide an opportunity to

reduce such risk. The aim here is to enable managers to assemble software teams with a

balance of personalities (see Chapter 4 section 4.1.2 for further details). ASRMT allows

team members the opportunity to assess their main personality preferences before team

 95

formation. Thus, the project manager is afforded the opportunity to assemble a team

with the best mix of personality types for a given software development project (see

Figure 6.9 for a SPI assessment sample). For example: examining Belbin’s team roles

shown in Table 4.1 in Chapter 4, a typical project management decision might be -

Individuals possessing the Plant personality are assigned to the Programmer role,

whereas individuals possessing the Completer-Finisher personality could function most

effectively as Quality Assurance Specialists (QASs).

The reason for the project management decision in the above example might be as

follows:

o Since the Plant role is linked to ‘genius, imagination, intellect, and knowledge’

personality traits, individuals occupying this role might be prone to rapid and

innovative solutions to software problems, making them most suitable as

programmers.

o On the other hand, the Completer-Finisher role is associated with ‘a capacity to

follow-through, perfectionism’. Thus, individuals occupying this role may pay

keen attention to details unearthing errors, and ensuring software quality,

functioning effectively as QASs.

7.2.3. Other Indirect Benefits of ASRMT: Project Management Capability

ASRMT was developed to assist project teams by offering them a way to lessen social

risks. In addition to its intended purpose, ASRMT may also offer several other benefits

to project teams. Since communication is critical for software development project

success, ASRMT’s capacity to act as a communication vehicle potentially lessens risks,

offering team members a way to store and retrieve information for later use. In this

regard, team members do not have to entirely rely on tacit knowledge. Additionally,

ASRMT is web-based; therefore this tool can support communication across distributed

agile teams. ASRMT may also act as a reservoir for project information, thus team

 96

members are afforded the opportunity to perform post mortem reviews which should

enhance their future decision making process.

ASRMT is not intended to be a full-scale project management tool (see Table 7.1 for a

comparative summary of ASRMT and popular project management tools features).

Rather, this tool was developed to primarily assist agile project teams with their

handling of some of the social aspects of project management. Thus, through ASRMT

use, social project risks are likely to be lessened (see sections 7.2.1 and 7.2.2).

However, as mentioned earlier, ASRMT may also provide benefits above and beyond

its planned purpose. ASRMT may provide assistance to project teams through its

project management capability. In agile software development methods, project

coordination and the management of project interdependencies and uncertainties are

executed informally. Such a method of project management may itself prove risky, as

coordination and communication are seen as key success areas in project management.

ASRMT offers a project team the opportunity to coordinate software development. In

ASRMT, customers enter feature requests, which may be beyond those initially

requested or discussed at formal meetings. ASRMT offers customers a way to manage

features, prioritise features, rate their level of significance, and categorise features in

terms of business value. Thus, developers have an opportunity to jointly manage feature

development based on customer priorities (see Chapter 6 section 6.2.2). Developers are

also provided with the opportunity to manage feature states, and the technical risk (see

Figure 7.1) associated with each feature. ASRMT also enables developers to track

feature estimation information and provides a mechanism for developers to review

feature information to assist with future decision making. It is also possible to track

feature rework information using ASRMT. For features entered with the feature type

‘Defect’ or ‘Enhancement’, development information can be measured, to allow

developers a way to consider rework effort (see Figure 6.17). Additionally, ASRMT

could assist project managers with project coordination by offering them a way to

manage project information, feature development information, and to track team

members’ development progress, and their task assignments.

 97

Figure 7.1. Edit Feature Interface Highlighting Technical Risk Field

98

99

 Table 7.1. Comparison summary of ASRMT and popular project management tools features (VersionOne, 2006a)

Feature/Tool Support ExtremePlanner VersionOne DevPlanner Rally AceProject MS
Project ASRMT

Local Installation or Distributed Management for
teams of any size Yes Yes LI HO Yes NC Yes

Remote Accessibility NC Yes No Yes Yes No Yes
Reporting and Analytics

Executive level reporting No Yes No Yes Yes Yes Yes
Project/ Releases reporting Yes Yes Yes Yes Yes NC No
Shared Projects reporting Yes Yes No Yes Yes NC Yes
Individual level reporting No Yes No Yes Yes NC No
Feature management and planning Yes Yes Yes Yes Yes Yes Yes
Customer request management Yes Yes No Yes Yes NC Yes
Feature estimation and prioritisation Yes Yes Yes Yes Yes NC Yes
Defects estimation and prioritisation No Yes Yes Yes Yes NC Yes
Feature tracking Yes Yes Yes Yes Yes NC Yes
Individual feature tracking and estimation No Yes No Yes Yes No No
Password authentication, new team member
addition, role management Yes Yes No Yes Yes No Yes

Audit history Yes Some No No Yes No Yes
Project information archiving Yes Yes Yes Yes Yes Yes Yes
Feature Risk rating scheme Yes Yes No Yes No No Yes
Feature Estimation and implementation summary Basic Yes EO Yes Yes Yes Yes
Easy to use, short learning curve RE RE Yes RE RE RE Yes

Risk Mitigating Feature
Personnel Capability Management No No No No No No Yes
Customer interface to extend the on-site customer No No No No No No Yes
Key: LI - Local Installation, HO - Hosted Onsite, NC – Need Configuration, EO – Estimation Only, RE – Relatively Easy.

7.3. The ASRMT User Evaluation

The scale and available resource for this research project do not allow for ASRMT to be

validated in live project settings. Nonetheless, in order to measure the extent to which

ASRMT is usable, and whether or not the tool presents proof of the concepts presented

in this research project, it is both necessary and useful to conduct informal evaluations.

ASRMT was therefore verified in informal settings using a small number of software

engineering experts. In this section an explanation of the method used for ASRMT user

evaluation, and discussion of the evaluation findings are provided.

7.3.1. Method for ASRMT User Evaluation

This section outlines the method used for evaluating ASRMT. In keeping with the

research aims, ASRMT was informally tested by a small number of software

engineering experts. Seven participants were involved in the evaluation process. These

participants were agile software developers with varying levels of experience.

The tool was installed on a local server, where the respondents completed a scenario-

based evaluation comprised of two parts (see Appendix C for the ASRMT user

evaluation instrument). The first part of the evaluation asked respondents to test

ASRMT’s functionality using 23 tasks in the roles of project manager, developer, and

customer, while the second part of the evaluation was designed to solicit feedback

regarding respondents’ impressions of the tool and their use of it while working through

the scenarios. While questions may arise in relation to validity for randomly constructed

evaluation instruments (Kirakowski, 2000), it is important to note that the questions for

the ASRMT user evaluation were not randomly selected. Rather, this evaluation was

adopted from (Lewis, 1995). Lewis’s (1995) instrument has been previously assessed

for reliability and validity, and recommended for usability evaluations.

 100

The second part of the evaluation comprised 11 questions (using two sub-scales). Seven

close-ended questions, each conforming to a Likert scale, were used to evaluate

ASRMT’s stability and the users’ learning experience (first sub-scale). Two close-ended

questions conforming to the Likert scale and two further open-ended questions were

used to assess ASRMT’s usefulness, to consider whether ASRMT addressed the

research objectives, and to solicit respondents’ overall impressions and

recommendations for improving ASRMT (second sub-scale). The possible answers to

the questions conforming to the Likert scale were on discrete continuums. These

included strongly agree, agree, disagree, and strongly disagree (bi-polar) options. The

answers were linearly scaled from one to four (where a strongly agree choice was

represented by one, and four represented a strongly disagree choice), offering

respondents no neutral choice such as ‘neither agree nor disagree’. This approach was

deliberately selected to force respondents to express an opinion. While there may be

threats to reliability for usability evaluations employing such an approach, given the

target respondents (experts), this option presents a low threat to the reliability of the

findings (Kirakowski, 2000). As mentioned previously, the two open-ended questions

were aimed at capturing respondents’ positive and negative impressions of ASRMT,

and their suggestions for improving ASRMT.

Given the scale of the ASRMT user evaluation (only seven respondents), responses to

close-ended questions were aggregated to determine the number of the respondents that

favored a particular choice (strongly agree and agree were taken to be positive

responses, while strongly disagree and disagree were negative responses). Open-ended

responses were analysed using content analysis. These responses were summarised into

six categories, each response being either positive or negative. The frequency of each

occurrence (positive or negative response) was aggregated. Details of the evaluation

findings and user feedback are provided in the following section.

 101

7.3.2. ASRMT Evaluation Findings and User Feedback

All respondents completed the evaluation in full. The average time taken to complete

the evaluation was 58 minutes. Respondents felt that the concepts and ideas behind the

development of ASRMT were excellent. Correspondingly, six of the respondents

thought ASRMT was easy to use. Of the seven respondents, three reported one or two

bugs whilst using ASRMT. All respondents reported that they were able to successfully

complete the scenarios, that ASRMT was easy to learn to use, and that they recovered

easily and quickly from errors.

Of the seven respondents, five reported that ASRMT was simple and satisfying to use,

while four believed that ASRMT would be useful if used in live projects. The three

respondents who did not agree that ASRMT would be useful if used in live projects felt

that the tool needed usability improvement before it would be suitable for

implementation in live settings. All of the respondents believed that ASRMT offered

functionality to address the features in keeping with its purpose. In terms of the

respondents’ overall impression of ASRMT, all respondents believed that the idea of

personnel capability management in a process tool was good and should provide

benefits to project management. In addition, all respondents believed that the idea of

extending the customer would also be useful for projects where customers are regularly

involved with the development tasks and the project teams. Regarding the tool’s ease of

use, five of the respondents believed that ASRMT’s simplicity and ease of use should

enhance project management.

Among the recommendations for improvement, two respondents suggested that the idea

of personnel capability management should be further investigated to uncover the best

instrument for assessing personality preference (and to possibly automatically match

assessment outcomes to software roles) before ASRMT is implemented in live settings.

Additionally, five respondents believed that a few of ASRMT’s user interfaces could be

improved; and one respondent suggested that ASRMT might need enhancement if it

was to be implemented in large projects. Respondents suggested higher color contrast

 102

for user feedback, additional guidance for user tasks, and accommodating multiple date

formats. In addition, one respondent also suggested that ASRMT could be extended to

include additional functionality such as a discussion feature and automatic e-mail

reminders, which are likely to assist project participants.

7.4. Discussion and Contribution

What risks are induced through human collaboration? The first research question

sought to identify the risks that arise given the extensive reliance on teams of people in

the software development and management processes. In Chapter 4 the issue of human

collaboration was extensively examined with respect to software development. A

comprehensive review of the relevant literature illustrated that team cohesion and the

management of interpersonal skills are most critical to software projects’ success. A

lack of team cohesion and poor management of interpersonal skills are likely to induce

risks associated with personality conflict (see Chapter 4 for further details). In addition,

evidence suggests that customer involvement is most beneficial when software teams

perform well, but that customer involvement may pose a threat when teams perform

poorly. Of the risks that are likely to be induced through human collaboration, poor

productivity, project overruns, and software failure are highlighted in the literature.

Even though the risks induced through human collaboration are deemed most severe

and are likely to result in software failure, evidence in Chapter 3 shows that current risk

management approaches do not adequately address these risks. Furthermore, the

assessment of existing tools (reported in Chapter 5) highlights their lack of attention to

such risks. Consequently, studies such as this, aimed at examining software processes

and offering mechanisms to assist developers to employ most effective practices to

assist with social risk mitigation are likely to offer potential significant benefit.

Can a process tool be implemented that effectively addresses social risk management

theories? The second research question sought to substantiate whether a process tool

 103

could be implemented to effectively address the social risk management theories. It was

proposed that such a tool should offer agile teams a way to manage interpersonal skills,

and offer remote customers a way to interact with developers by allowing them an

interface to the development team in order for them to be directly involved with project

management (see Chapter 5 section 5.4.2). This tool should present low overhead in its

usage, and also present feature support particular to agile software development

contexts.

Based on the findings of the ASRMT user evaluations, this study hypothesizes that a

process tool can be implemented that effectively addresses social risk management

theories (ASRMT is one such tool). In addition to the management of software

requirements, this tool provides support for the management of interpersonal skills and

remote customer interactions (see Table 7.1 for a summary of ASRMT features).

In section 7.3.2 above, it is shown that the average time taken to complete the ASRMT

evaluation was 58 minutes. This evaluation has 23 tasks; these tasks are composed of

personnel capability management functionalities, customer feature management

functionalities, and developer feature management functionalities. Since all respondents

were able to complete their tasks, in such a relatively small amount of time, it might be

said that ASRMT provides low overhead in its usage, and its simple design also makes

this tool lightweight and usable.

Agile proponents emphasise process tools that are lightweight, and easy to learn and

use. The findings presented in section 7.3.2 also support the solution provided by this

study with regard to ease of use and simplicity. Most of the respondents believed that

ASRMT was easy to use and learn. This suggests that should ASRMT or any similar

tool be adopted by agile developers, such tools are likely to be accepted by these

developers. Beyond this study, these findings may also offer insights into the area of

research verifying what tool support might be relevant for agile practitioners.

 104

The findings in section 7.3.2 also show that the expert respondents were strongly

supportive of the concepts of personnel capability management and remote customer

involvement in project management. Even though the instrument selected in this study

for determining personality preference might be deemed heavyweight (possessing 56

questions), the concept of personality capability management was embraced by the

developers. Thus, this offers confirmation that a process tool can effectively address

social risk management theories. While the purpose of ASRMT is to present a way to

lessen customer interaction with the development team (in response to a particular risk),

ASRMT may also offer a way to increase customer involvement for projects where

customer presence should be strengthened. Since the literature shows that too little

customer involvement may also be catastrophic, balancing customer involvement is

beneficial. Therefore, it might be said that the ASRMT solution may support risk

mitigation in two ways: it may allow developers to decrease customer involvement

when this phenomenon poses a risk, and it may allow developers to increase customer

involvement where the lack of customer involvement presents risks.

Will such a tool be useful to agile software teams in terms of improving project risk

management? The third research question aimed to confirm whether a tool implemented

to address social risks would be useful to agile teams, and could improve their project

risk management. The findings of the ASRMT user evaluations (see section 7.3.2)

suggest that this tool would indeed be useful to agile teams, and would be likely to

improve risk management if implemented in agile projects.

In keeping with earlier discussions, respondents believed that a tool that is simple and

easy to use will enhance project management (see section 7.3.2). In addition,

respondents believed that considering techniques to assist with social risks is likely to

be beneficial to agile teams. While the feedback presented shows that ASRMT can be

improved in a number of ways, respondents believed that this or a similar tool is likely

to be useful for agile project management, and this solution should assist with project

risk management. This evidence supports the solution proposed here, provides

 105

confirmation that ASRMT would be useful to agile software teams, and indicates that

use of the tool would improve software project risk management.

7.5. Summary

While ASRMT was mainly developed to assist development teams with the handling of

social risks, this tool is also likely to offer several other benefits to software project

teams. ASRMT is a project management tool; thus, it provides development teams with

a facility to communicate project information across teams (in support of both

distributed and co-located teams). This tool also presents project teams with an

opportunity to track software projects and development effort, and acts as a reservoir for

information in order to enhance project managers’ future decision making.

ASRMT was informally evaluated by seven software experts of varying levels of

experience. The findings of the evaluations revealed that ASRMT is easy to learn,

simple to use, relatively bug free, would be useful if used in live projects, and presents a

proof of the concepts presented in this research. However, the ASRMT user evaluations

also revealed that ASRMT can be improved in a number of ways. It was also suggested

that ASRMT could be extended to include additional functionality such as a discussion

feature and automatic e-mail reminders, which are likely to assist project participants.

From the findings of the ASRMT user evaluation, it can be concluded that such a tool is

likely to assist agile developers and project managers with their handling of social risks.

Through the extensive consideration of social risks, the assessment of existing tools and

the development and evaluation of ASRMT, the three research questions posed in

Chapter 1 have now been addressed. In the following final chapter the work is

summarised and overall conclusions are drawn.

 106

8. Conclusions and Recommendations

In this chapter a summary of the experiences and insights gained throughout this

research project is presented. Lessons drawn from the work are then outlined before the

study concludes with a statement of the limitations of this research and

recommendations for future research.

8.1. Summary

In Chapter 2 an introduction to software engineering was presented. Evidence

explained that early waterfall techniques used to guide software production were

criticised as inappropriate for software project management. In addition, studies

examining the reasons for software failure regularly linked software failure to waterfall

processes. Consequently, the literature revealed that newer agile software development

methodologies might provide improvements to conventional waterfall models, and that

their use should also reduce risks. However, it is evident that while agile models may

provide improvements (in principle) to the software development process, there exists

little evidence to soundly support this position. In addition, this study uncovered that

some of the practices recommended by agile methodologies may also directly increase

exposure to software project risks.

Analysing the risk management literature in Chapter 3, it was noted that of the risks that

are likely to increase through adopting agile methodologies, social risks may be deemed

the most critical. In addition, this research found that even though several guides exist

for assisting with risk management (provided by the SEI and other research bodies),

agile project leaders are most likely to depend on expert judgment. Using this form of

project management might not always prove successful, and the agile practice of

bringing stakeholders together is likely to introduce serious project risks. To this end,

this study examined the effects of stakeholders’ interaction in Chapter 4.

 107

Of the risks that are induced through human collaboration, evidence highlighted that

personality conflict is potentially the most severe. Personality conflict is likely to result

from poor team formation. Personnel capability management is one way of enhancing

the process of team formation, and reducing conflicts that are likely to result through

personality differences. This research proposed that software development and/or

project management tools should implement personnel capability management to assist

with risk mitigation in agile teams. In examining the stakeholders’ interaction literature

it was noted that customer involvement also poses a threat to software development

success, especially when software teams perform poorly. In light of this, the study also

proposed that providing remote customers with a tool interface to the development

team, in order for them to be involved with project management directly but not

necessarily on-site, may assist with reducing risks that might otherwise result through

customer involvement.

As a consequence, existing software development and/or project management tools

were examined in Chapter 5. After evaluating several representative tools findings

revealed that VersionOne and Rally are likely to offer agile software developers support

for their development activities. In addition, it was suggested that the use of these tools

might also reduce risks in agile projects. However, even though social risks are most

critical, there has been no attempt to address social risks in VersionOne and Rally.

Thus, this study designed and built a tool called ASRMT to address this inadequacy.

In Chapter 6 an outline of the software development methodology and development

platform selected for implementing ASRMT was provided. To verify whether agile

software development practices enhanced development efficiency, and to understand

the implications of using agile approaches, agile feature-driven development (FDD)

practices were largely employed throughout the ASRMT software development life

cycle (see Table 6.1 for selected practices). The remainder of Chapter 6 described in

detail the features and functionality of the ASRMT tool.

 108

A discussion of the development process and an explanation of the benefits expected to

accrue from the use of ASRMT are provided in Chapter 7. FDD was found to have been

generally useful for the development of ASRMT, and the tool’s functionality was

verified in term of addressing in principle the research goals identified in earlier

chapters. Informal expert evaluations of ASRMT revealed that the tool is likely to

provide support for agile project teams. Among the feedback received from ASRMT

user evaluations, it was reported that ASRMT is easy to learn and use, relatively bug

free, would be useful if used in live projects, and presents a proof of the concepts

presented in this research. While these findings upheld ASRMT’s value, there are

several ways in which this tool could be improved to extend its usefulness. In particular,

it was recommended that ASRMT should be extended to include additional

functionality such as a discussion feature and automatic e-mail reminders, which are

likely to further assist project participants with communication and information sharing.

8.2. Conclusions

Regardless of the methodology employed in software development, evidence shows that

this continues to be a very challenging activity. This study found that, while agile

methodologies are likely to improve some aspects of software project management,

agile methods’ human collaboration practices also introduce social risks, and such risks

may be deemed most critical. In addressing the first research question, this study

showed that, of the risks that are likely to be induced through human collaboration, poor

productivity, project overruns, and software failure are highlighted in the literature.

While ‘standard’ risk management theories such as those espoused by the PMI may

assist with general software project risk management, this study identified that these

theories do not adequately address social risk management.

As a consequence, the effects of stakeholders’ interactions were comprehensively

examined, and this study proposed to implement a tool to assist with social risks that are

likely to increase through these occurrences. The social risk management and

 109

psychology literature revealed that personality conflicts and customer disagreements are

social risks that are induced through human collaboration, and such risks should be

managed as they negatively affect team cohesion and software project success. Previous

tools did not consider addressing these risks. ASRMT was successfully designed and

built to address this shortcoming, addressing the second research question in the

process. This tool offers personality capability management to reduce personality

conflicts, and support for remote customer feature management to extend the customers

so that they can be directly involved with project management while being physically

remote.

This study concludes that a project management tool can be implemented in the agile

software development context to address social risk management theories. ASRMT was

verified using software engineering experts with different levels of experience. The

ASRMT user evaluation findings answered the third research question positively;

ASRMT is likely to be useful to agile developers, and should improve their handling of

social risks. The findings of the ASRMT user evaluations therefore provide sufficient

proof of concept for this research. However, it would be interesting to determine

whether this concept would be embraced in live project settings, and by the wider agile

community.

8.3. Limitations and Recommendations

Even though the findings of the ASRMT user evaluations are encouraging, there are a

few limitations to the tool, and consequently, to the findings of this research project.

The personality assessment mechanism used here - the self-scoring Self-Perception

Inventory (SPI) - was originally published in Meredith Belbin’s book ‘Management

Teams Why They Succeed or Fail’ (1981). Belbin Associates own the copyright for this

questionnaire and do not allow it to be reproduced in any form. Furthermore, Belbin

Associates no longer recommend the use of this questionnaire, as it is obsolete (no

Specialist Role), lacks the balance of observer input, is not properly normed, and most

 110

importantly, does not offer any advice (an approved version of the questionnaire can be

found at www.belbin.com). While the findings of the ASRMT user evaluations verify

and support the idea proposed by this study with respect to personality management, the

SPI implemented in ASRMT cannot be used to evaluate individuals or assess team

roles, as assessment findings may not be truly representative of individuals’ personality

preferences. Therefore, accessing the approved version of Belbin’s SPI and re-

implementing it (or an alternative) in ASRMT, offer an avenue for extending and

enhancing the tool.

Additionally, even though the ASRMT user evaluations were meaningful (with targeted

representative users), due to resource constraints, ASRMT was not used in the

management of real life software projects where there are many project members

occupying varying roles, and there is a need to coordinate and manage many concurrent

development tasks, perhaps across a portfolio of projects. Further ASRMT user

evaluations should therefore be carried out in live project environments. Thus, ASRMT

should be enhanced, taking into account the suggestions provided by the participants in

the ASRMT initial user evaluations, and then re-evaluated in live project settings.

 111

http://www.belbin.com/

9. References

Abrahamsson, P., & Koskela, J. (2004). Extreme programming: a survey of empirical
data from a controlled case study. Paper presented at the Proceedings of the
Empirical Software Engineering Symposium, Oulu, Finland.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New directions
on agile methods: a comparative analysis. Paper presented at the Proceedings of
the 25th International Conference on Software Engineering, Portland, Oregon.

Acuna, S. T., & Juristo, N. (2004). Assigning people to roles in software projects.
Software Practice and Experience.

Acuna, S. T., Juristo, N., & Moreno, A. M. (2006). Emphasizing human capabilities in
software development. IEEE Software, 23(2), 94 - 101.

Agarwal, R., Prasad, J., Tanniru, M., & Lynch, J. (2000). Risks of rapid application
development. Communications of the ACM, 43(11), Article No.1.

Angioni, M., Carboni, D., Pinna, S., Sanna, R., Serra, N., & Soro, A. (2006). Integrating
XP project management in development environments. Journal of Systems
Architecture, 52(11), 619-626.

Atsuta, S., & Matsuura, S. (2004). eXtreme Programming support tool in distributed
environment. Paper presented at the Computer Software and Applications
Conference.

Augustine, S., Payne, B., Sencindiver, F., & Woodcock, S. (2005). Agile project
management: steering from the edges. Communications of the ACM, 48(12), 85 -
89.

Barki, H., & Hartwick, J. (2001). Interpersonal conflict and its management in
information system development. MIS Quarterly, 25(2), 195 - 228.

Barki, H., & Rivard, S. (1993). Toward an assessment of software development risk.
Journal of Management Information Systems, 10(2), 203 - 225.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Reading, MA:
Addison-Wesley Longman, Inc.

Behrens, P. (2006). Trail Ridge Consulting: Agile project management (APM) tooling
survey results. Retrieved January 5, 2007, from
http://www.trailridgeconsulting.com

Belbin, R. M. (1981). Management teams: why they succeed or fail. Woburn, UK:
Butterworth-Heinemann.

Belbin, R. M. (2002). Management teams: why they succeed or fail. Woburn, UK:
Butterworth-Heinemann.

Beranek, G., Zuser, W., & Grechenig, T. (2005). Functional group roles in Software
Engineering teams. Paper presented at the Workshop on Human and Social
Factors of Software Engineering, HSSE'05, St. Louis, Missouri, USA.

Bergsten, H. (2004). JavaServer Pages. (Second ed.). CA, USA: O'Rilley and
Associates Inc.

Beznosov, K., & Kruchten, P. (2004). Towards agile security assurance. Paper
presented at the Proceedings of the 2004 workshop on new security paradigms,
Nova Scotia, Canada.

 112

http://www.trailridgeconsulting.com/

Boehm, B. (1976). Software Engineering. Computers, C-25(12), 1226 - 1241.
Boehm, B. (2006). A view of 20th and 21st century software engineering. Paper

presented at the Proceeding of the 28th international conference on Software
engineering, Shanghai, China.

Boehm, B., & Turner, R. (2003). Using risk to balance agile and plan-driven methods.
IEEE Journal, 36(6), 57 - 66.

Boehm, B., & Turner, R. (2005). Management challenges to implementing agile
processes in traditional development. IEEE Journal, 22(5), 30 - 39.

Boehm, B. W. (1988). A spiral model of software development and enhancement.
Computer, 21(5), 61 - 72.

Boehm, B. W., & DeMarco, T. (1997). Software risk management. IEEE Software,
14(3), 17 - 19.

Bostrom, G., Wayrynen, J., Boden, M., Beznosov, K., & Kruchten, P. (2006).
Extending XP Practices to Support Security Requirements Engineering. Paper
presented at the Software Engineering for Secure Systems, Shanghai, China.

Bradley, J. H., & Hebert, F. J. (1997). The effect of personality type on team
performance. Journal of Management Development, 16(5), 337 - 353.

Brewer, J. L. (2005). Project managers: can we make them or just make them better?
Paper presented at the Proceedings of the 6th conference on Information
technology education, Newark, NJ, USA.

Brooks, F. P. (1987). No Silver Bullet: Essence and Accidents of Software Engineering.
Computer, 20(4), 10 - 19.

Capilla, R., Nava, F., Perez, S., & Duenas, J. C. (2006). A web-based tool for managing
architectural design decisions. Software Engineering Notes, 31(5).

Carlson, J. G. (1985). Recent Assessments of the Myers-Briggs Type Indicator. Journal
of Personality Assessment, 49(4), 356 - 365.

Carr, M. J., Konda, S. L., Monarch, I., Ulrich, C. F., & Walker, C. F. (1993).
Taxonomy-Based Risk Identification. (Technical Report): Software Engineering
Institute, Carnegie Mellon University.

Ceravolo, P., Damiani, E., Marchesi, M., Pinna, S., & Zavatarelli, F. (2003). A
ontology-based process modeling for XP. Paper presented at the Tenth Software
Engineering Conference, Asia.

Chang, C. J., & Ho, J. L. Y. (1997). The effects of justification, task complexity and
experience/training. Behavioral Research in Accounting, 9, 98 - 116.

Chapman, C., & Ward, S. (2004). Project Risk Management. (Second ed.). West
Sussex, England: John Wiley & Sons Ltd.

Charette, R. N. (2005). Why software fails. IEEE Spectrum, 42(9), 42 - 49.
Chin, G. (2004). Agile Project Management: How to Succeed in the Face of Changing

Project Requirements. New York: American Management Association.
Clark, D. R. (2006). Beginning object-oriented programming with VB 2005: From

novice to professional. Berkeley, CA: Apress.
Clark, S. (1998). CSS Simplifies Your Life. Retrieved November 20, 2006, from

http://www.webdeveloper.com/html/html_css_1.html
Clavadetscher, C. (1998). User involvement: key to success. IEEE Software, 15(2), 30 -

32.

 113

http://www.webdeveloper.com/html/html_css_1.html

Cockburn, A. (2004). The End of Software Engineering and the Start of Economic-
Cooperative Gaming. Computer Science and Information Systems, 1(1), 1 - 32.

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor.
Computer, 34(11), 131 - 133.

Collins, H. (2006). Collins Dictionary and Thesaurus. Glasgow, GB: HarperCollins
Publishers.

Collis, J., & Hussey, R. (2003). Business Research: A practical guide for
undergraduate and postgraduate students. (Second ed.). New York: Palgrave
Macmillan.

Connell, J. L., & Shafer, L. (1989). Structured Rapid Prototyping: An Evolutionary
Approach to Software Development. New Jersey: Yourdon Press.

Coram, M., & Bohner, S. (2005). The impact of agile methods on software project
management. Paper presented at the Engineering of Computer-Based Systems,
2005. ECBS '05, USA.

Curtis, B. (1989). Three Problems Overcome With Behavioral Models Of The Software
Development Process. Paper presented at the 11th International Conference on
Software Engineering.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design process
for large systems. Communications of the ACM, 31(11), 1268 - 1287.

Damian, D., Lanubile, F., & Mallardo, T. (2006). The role of asynchronous discussions
in increasing the effectiveness of remote synchronous requirements negotiations.
Paper presented at the Proceeding of the 28th international conference on
software engineering.

David, B. A. (1991). Vulnerability and Agenda: Context and Process in Project
Management. British Journal of Management, 2(3), 121 - 132.

De Luca, J. (2002). Feature Driven Development. Retrieved November 26, 2006, from
http://www.featuredrivendevelopment.com/

De Souza, S., Anquetil, N., & De Oliveira, K. (2005). A study of the documentation
essential to software maintenance. Paper presented at the Proceedings of the
23rd annual international conference on Design of communication: documenting
& designing for pervasive information, Coventry, United Kingdom.

Denning, P. J. (1997). A New Social Contract for Research. Communications of the
ACM, 40(2), 132 - 134.

Dixon, M. (2000). The association for project management (APM) body of
knowledge(BoK). (Fourth ed.). High Wycombe, UK: Assoc. Project
Management.

Faraj, S., & Sproul, L. (2000). Coordinating expertise in software development teams.
Journal of Management Science, 46(12), 1554 - 1568.

Flanagan, D. (2001). JavaScript: The Definitive Guide. (Fourth ed.). CA, USA: O'Rilley
and Associates Inc.

Foster, S. T., & Franz, C. R. (1999). User involvement during information systems
development: a comparison of analyst and user perceptions of system
acceptance. Journal of Engineering and Technology Management, 16, 329 -
348.

Fox, P. (2002). Tapping the right tools. Computer World, 36(17), 43.

 114

http://www.featuredrivendevelopment.com/

Fox, T. L., & Wayne Spence, J. (2005). The effect of decision style on the use of a
project management tool: an empirical laboratory study. Advances in
Information Systems, 36(2), 28 - 42.

Gallagher, B. P. (1999). Software Acquisition Risk Management Key Process Area
(KPA)--A Guidebook Version 1.02. (SEI Technical Report). Pittsburg PA:
Carnegie Mellon University.

Gallagher, B. P., Alberts, C., & Barbour, R. (1997). Software Acquisition Risk
Management Key Process Area (KPA)--A Guidebook Version 1.0. (SEI
Technical Report). Pittsburg PA: Carnegie Mellon University.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of
reusable object-oriented software. Reading, MA: Addison-Wesley.

Gilb, T. (1988). Principles of software engineering management. Wokingham, UK:
Addison-Wesley.

Glass, R. (1999). On Design. IEEE Software, 16(2), 103 - 104.
Globerson, S., & Zwikael, O. (2002). The Impact of the Project Manager on Project

Management Planning Processes. Project Management Journal, 33(3), 58 - 65.
Goodman, P. S., & Fichman, M. (1995). Customer-firm relationships, involvement, and

customer satisfaction. Academy of Management Journal, 38(5), 1310 - 1324.
Gordon, V., & Bieman, J. (1993). Reported effects of rapid prototyping on industrial

software. Software Quality Journal, 2(2), 93 - 108.
Gorla, N., & Lam, Y. W. (2004). Who should work with whom? Communications of the

ACM, 47(6), 79 - 82.
Grisham, S. P., & Perry, E. D. (2005). Customer relationships and Extreme

Programming. Paper presented at the Proceedings of the 2005 workshop on
Human and social factors of software engineering.

Heinbokel, T., Sonnentag, S., Frese, M., Stolte, W., & Brodbeck, F. C. (1996). Don't
underestimate the problems of user centeredness in software development
projects - there are many! Behavior & Information Technology, 15(4), 226 - 236.

Hevner, A., March, T. S., Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. MIS Quarterly, 28(1), 75 - 105.

Highsmith, J. (2000). Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. New York: Dorset House Publishing.

Highsmith, J. (2004). Agile Project Management: Creating Innovative Products.
Boston, MA: Pearson Education, Inc.

Highsmith, J., & Cockburn, A. (2001). Agile software development: the business of
innovation. Computer, 34(9), 120 - 122.

Hodgson, D. E. (2004). Project Work: The Legacy of Bureaucratic Control in the Post-
Bureaucratic Organization. Organization, 11(1), 81 - 100.

Hofstede, G., Neuijen, B., Ohayv, D. D., & Sanders, G. (1990). Measuring
Organizational Cultures: A Qualitative and Quantitative Study Across Twenty
Cases. Administrative Science Quarterly, 35(2), 286.

Hulkko, H., & Abrahamsson, P. (2005). A multiple case study on the impact of pair
programming on product quality. Paper presented at the International
Conference on Software Engineering, St. Louis, MO, USA.

Humphrey, W. S. (1989). Managing the software process. Reading, MA: Addison-
Wesley.

 115

Hunt, A., & Thomas, D. (1999). The pragmatic programmer: From journeyman to
master. Reading, MA: Addison-Wesley.

Jiang, G., & Chen, Y. (2004). Coordinate metrics and process model to manage
software project risk. Paper presented at the Engineering Management
Conference, Changsha, China.

Jiang, J. J., Klein, G., & Balloun, J. (1996). Ranking of system implementation success
factors. Project Management Journal, 27(4), 50 - 55.

Johnson, D. A. (1992). Test-retest reliabilities of the Myers-Briggs Type Indicator and
the Type Differentiation Indicator over a 30 month period. Journal of
Psychological Type, 24, 54 - 61.

Jones, A. (1999). Experience of profile-based group composition. Computer Science
Education, 9(3), 242 - 255.

Jorgensen, M., & Molokken-Ostvold, K. (2006). How large are software cost overruns?
A review of the 1994 CHAOS report. Information and Software Technology,
48(4), 297 - 301.

Jung, C. (1971). Psychological types. (Vol. 6). New Jersey: Princeton University Press.
Jurgen, H. (2000). Realistic Criteria for Project Manager Selection and Development.

Project Management Journal, 31(3), 23 - 32.
Kaariainen, J., Koskela, J., Abrahamsson, P., & Takalo, J. (2004). Improving

requirements management in extreme programming with tool support - an
improvement attempt that failed. Paper presented at the Euromicro Conference
Proceedings, Euromicro.

Karolak, D. W. (1998). Software Engineering Risk Management: Finding Your Path
through the Jungle: Wiley-IEEE Computer Society Press.

Keirsey, D. (1998). Please Understand Me II: Temperament Character Intelligence.
CA: Prometheus Nemesis Book Company.

Kelter, U., Monecke, M., & Schild, M. (2003). Do we need 'Agile' software
development tools? Springer Berlin / Heidelberg, 2591, 412 - 430.

Kim, H. W. (2006). Towards a process model of information systems implementation:
The case of customer relationship management (CRM). Advances in Information
Systems, 37(1), 59 - 76.

Kirakowski, J. (2000). Questionnaires in usability engineering: a list of frequently
asked questions. Cork, Ireland: Human Factors Research Group.

Kirk, D., & Tempero, E. (2006). Identifying Risks in XP Projects through Process
Modeling. Paper presented at the Software Engineering Conference, Australian.

Kitchenham, B., & Pfleeger, S. L. (2002). Principle of Survey Research- Part5:
Populations and Samples. Software Engineering, 27(5), 17 - 20.

Klein, S. A. (1999). Putting methodology in perspective from a project risk viewpoint.
Paper presented at the IEEE Power Engineering Society Winter Meeting.

Koch, A. (2005). Agile Software Development: Evaluating the methods for your
organisation. Boston, MA: Artech House.

Kontio, J. (2001). Software Engineering Risk Management: A method, Improvement
Framework, and Empirical Evaluation., Helsinki University of Technology.

Kontio, J., Hoglund, M., Ryden, J., & Abrahamsson, P. (2004). Managing commitments
and risks: challenges in distributed agile development. Paper presented at the
ICSE.

 116

Koskela, L., & Howell, G. (2002). The underlying theory of project management is
obsolete. Paper presented at the Proceedings of the PMI Research Conference,
Professional Management Institute, Seattle, USA.

Kuppuswami, S., Vivekanandan, K., Ramaswamy, P., & Rodrigues, P. (2003). The
effects of individual XP practices on software development effort. ACM
SIGSOFT Software Engineering, 28(6), 1 - 6.

Lan, C., & Peng, X. (2005). Activity Patterns of Pair Programming. Paper presented at
the Proceedings of the 38th Annual Hawaii International Conference on System
Sciences.

Law, A., & Charron, R. (2005). Effects of agile practices on social factors. Paper
presented at the Proceedings of the 2005 workshop on Human and social factors
of software engineering, St. Louis, Missouri.

Lehman, M. M., & Ramil, J. F. (2001). Rules and Tools for Software Evolution
Planning and Management. Annals of Software Engineering, 11(1), 15 - 44.

Leuf, B., & Cunningham, W. (2001). The Wiki Way. New Jersey: Addison-Wesley.
Lewis, J. R. (1995). IBM Computer Usability Satisfaction Questionnaires:

Psychometric Evaluation and Instructions for Use. International Journal of
Human-Computer Interaction, 7(1), 57 - 78.

Linebarger, J. M., Scholand, A. J., Ehlen, M. A., & Procopio, M. J. (2005). Benefits of
synchronous collaboration support for an application-centered analysis team
working on complex problems: A case study. Paper presented at the Proceedings
of the 2005 international ACM conference on supporting group work.

Markus, M. L., Majchrzak, A., & Gasser, L. (2002). A Design Theory for Systems that
Support Emergent Knowledge Processes. MIS Quarterly, 26(3), 179 - 212.

Maurer, F., & Martel, S. (2002). Process Support for Distributed Extreme
Programming Teams. Paper presented at the ICSE Workshop on Global
Software Development.

McCarley, N., & Carskadon, T. (1983). Test-retest reliabilities of scales and subscales
of the Myers-Briggs Type Indicator and of criteria for clinical interpretive
hypotheses involving them. Research in Psychological Type, 6, 24 - 36.

McCrae, R. R., & Costa, P. T. (1990). Personality in adulthood. New York: The
Guildford Press.

McKeen, J. D., & Guimaraes, T. (1997). Successful strategies for user participation in
systems development. Journal of Management Information Systems, 14(2), 133 -
150.

McKinney, D., & Denton, F. L. (2005). Affective assessment of team skills in agile CS1
labs: the good, the bad, and the ugly. Paper presented at the Proceedings of the
36th SIGCSE technical symposium on Computer science education, St. Louis,
Missouri, USA.

Melymuka, K. (2000). Born to lead projects. Computerworld, 34(13), 62 - 64.
Meredith, J. R., & Mantel, S. J. (2003). Project Management: A managerial approach.

(Fifth ed.). New York: John Wiley and Sons Inc.
Misic, V. (2006). Perceptions of extreme programming: an exploratory study. ACM

SIGSOFT Software Engineering, 31(2), 1 - 8.
Montgomery, S. (2002). People Patterns: A Modern Guide to the Four Temperaments.

CA: Archer Publications.

 117

Moroney, L., & MacDonald, M. (2006). Pro ASP.NET 2.0 in VB 2005: Create next-
generation web applications with the latest version of Microsoft's revolutionary
technology. Berkeley, CA: Apress.

Morski, J., & Miler, J. (2002). Towards an integrated environment for risk management
in distributed software projects. Paper presented at the 7th European Conference
on Software Quality, Helsinki, Finland.

Moynihan, T. (1997). How experienced project managers assess risk. IEEE Software,
14(3), 35 - 41.

Murthi, S. (2002). Preventive risk management software for software projects. IT
Professional, 4(5), 9 - 15.

Myers, I., & McCaulley, M. (1985). Manual: A Guide to the Development and Use of
the Myers-Briggs Type Indicator. Palo Alto, CA: Consulting Psychologists
Press.

Naur, P., & Randell, B. (1968). Software Engineering: Report of a conference
sponsored by the NATO Science Committee. Paper presented at the NATO
Science Conference, Garmisch, Germany.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile
methodologies. Communications of the ACM, 48(5), 72 - 78.

Newman, M., & Robey, D. (1992). A social process model of user-analyst relationships.
MIS Quarterly, 16(2), 249 - 266.

Nord, R. L., & Tomayko, J. E. (2006). Software Architecture-Centric Methods and
Agile Development. IEEE Software, 23(2), 47 - 54.

Nosek, J. T. (1998). The case for collaborative programming. Communications of the
ACM, 41(3), 105 - 108.

Olsen, L. (2006). Being There: A "teach them to fish..." approach to training and
support using WebEx, videoconferencing, and the telephone. Paper presented at
the Proceedings of the 34th annual ACM conference on user services.

Oriogun, P. K. (1999). A Survey of Boehm's Work on the Spiral Models and COCOMO
II--Towards Software Development Process Quality Improvement. Software
Quality Journal, 8(1), 53 - 62.

P.M.Institute. (2000). A Guide to the Project Management Body of Knowledge
(PMBOK Guide). USA: Project Management Institute Inc.

Packendorff, J. (1995). Inquiring into the temporary organization: New directions for
project management research. Scandinavian Journal of Management, 11(4), 319
- 333

Palmer, S. R., & Felsing, J. M. (2002). A practical guide to Feature-Driven
Development. Upper Saddle River, New Jersey: Prentice-Hall.

Parker, R. (2002). Poor IT purchase planning 'wastes $500bn worldwide'. Supply
Management, 7(8), 11.

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture.
Software Engineering Notes, 17(4), 40 - 52.

Pressman, R. S. (2001). Software engineering: A practitioner's approach. (Fifth ed.).
New York: McGraw-Hill Companies Inc.

Rajendran, M. (2005). Analysis of team effectiveness in software development teams
working on hardware and software environments using Belbin Self-Perception
inventory. Journal of Management Development, 24(8), 738 - 753.

 118

Randell, B., & Buxton, J. (1969). Software Engineering Techniques: Report of a
conference sponsored by the NATO Science Committee. Paper presented at the
NATO Science Conference, Rome, Italy.

Rees, M. J. (2002). A feasible user story tool for agile software development? Paper
presented at the ninth Asia-Pacific Software Engineering Conference, Asia.

Rowe, A. J., & Mason, R. O. (1987). Managing with style. San Francisco: Jossey-Bass.
Roy, G. G. (2004). A risk management framework for software engineering practice.

Paper presented at the Australian Software Engineering Conference, Australia.
Ryder, B. G., Soffa, M. L., & Burnett, M. (2005). The impact of software engineering

research on modern progamming languages. Transactions on Software
Engineering and Methodology, 14(4), 431 - 477.

Schoenthaler, F. (2002). Risk management in challenging business software projects.
Paper presented at the IEEE Conference on Requirements Engineering.

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Upper
Saddle River, New Jersey: Prentice-Hall.

Serich, S. (2005). Prototype stopping rules in software development projects.
Transactions on Engineering Management, 52(4), 478 - 485.

Sharp, H., Robinson, H., & Segal, J. (2004). Customer collaboration: successes and
challenges in practice systems. (Technical Report No. TR2004/10): Computing
Department, The Open University.

Siddiqui, M. S., & Hussain, S. J. (2006). Comprehensive Software Development Model.
Paper presented at the IEEE International Conference on Computer Systems and
Applications.

Silver, M. S., Markus, M. L., & Beath, C. M. (1995). The Information Technology
Interaction Model: A Foundation for the MBA Core Course. MIS Quarterly,
19(3), 361 - 390.

Sommerville, I. (1997). Software Engineering. Reading, MA: Addison-Wesley.
Standish Group. (1995). The Chaos Report. West Yarmounth, MA: The Standish Group

Retrieved May 1, 2006, from
http://www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf

Standish Group. (2001). Extreme Chaos. West Yarmounth, MA: The Standish Group
Retrieved May 1, 2006, from
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf

Swink, M. (2002). Product development--faster, on-time. Research Technology
Management, 45(4), 50 - 58.

Tesch, D., Jiang, J. J., & Klein, G. (2003). The impact of information system personnel
skill discrepancies on stakeholder satisfaction. Decision Sciences, 34(1), 107 -
127.

Theunissen, M. H. W., Kourie, G. D., & Watson, W. B. (2003). Standards and agile
software development. Paper presented at the ACM International Conference
Proceeding Series, South African.

Tolvanen, J. P. (1998). Incremental Method Engineering with Modeling Tools:
Theoretical Principles and Empirical Evidence. Unpublished Doctoral,
University of Jyvaskyla, Finland.

 119

http://www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf

VanDeursen, A. (2001). Program comprehension risks and opportunities in extreme
programming. Paper presented at the Reverse Engineering, 2001, Proceedings of
the Eighth Working Conference Stuttgart.

Verner, J. M., & Evanco, W. M. (2005). In-house software development: what project
management practices lead to success? IEEE Software, 22(1), 86 - 93.

VersionOne. (2006a). Agile tool evaluator guide. Retrieved October 10, 2006, from
http://www.versionone.com

VersionOne. (2006b). The state of agile development. Retrieved November 12, 2006,
from http://www.versionone.com

Warrene, B. (2004). Hardening Apache - A Conversation with the Author. Retrieved
November 20, 2006, from http://www.sitepoint.com/article/hardening-apache

Wellington, C., Briggs, T., & Girard, D. (2005). Examining team cohesion as an effect
of software engineering methodology. Paper presented at the Proceedings of the
2005 workshop on Human and social factors of software engineering, St. Louis,
Missouri.

Williams, L. (2003). The XP Programmer: The few minutes programmer. IEEE
Software, 20, 16 - 20.

Williams, L., & Cockburn, A. (2003). Guest Editors' Introduction: Agile Software
Development: It's about Feedback and Change. Computer, 36(6), 39 - 43.

Williams, L., & Kessler, R. (2003). Pair Programming Illuminated. Boston: Addison-
Wesley.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the
case for pair programming. IEEE Software, 17(4), 19 - 25.

Williams, T. (2005). Assessing and moving on from the dominant project management
discourse in the light of project overruns. Engineering Management: IEEE
Journal, 52(4), 497 - 508.

Winch, G., Millar, C., & Clifton, N. (1997). Culture and Organization: The Case of
Transmanche-Link. British Journal of Management, 8(3), 237 - 249.

Zmud, R. (1997). Editors Comments. MIS Quarterly, 21(2), xxi - xxii.

 120

http://www.versionone.com/
http://www.versionone.com/
http://www.sitepoint.com/article/hardening-apache

10. Appendices

Appendix A. Deploying ASRMT

Deploying ASRMT can be as simple as copying the directory structure (ASRMT) and

the associated files to a web server. Once this is done, simple configuration to a

database and windows user security settings should get ASRMT up and running. Apart

from the implementation of styles, ASRMT was developed using Microsoft software

tools. Using Windows XP professional operating system, IIS was used as the web

server, Visual Studio was used to create ASP.NET web pages, and SQL Server 2005

supported data storage. The remaining sections of this annotation give detail of how the

preceding software can be configured to deploy ASRMT.

Pre-requisites

The ASRMT tool requires the following to be installed prior to its installation:

1. Windows 2003 Server, Windows 2000, or Windows XP Professional operating

system.

2. Microsoft SQL Server 2005.

3. ASP.NET.

4. Internet Information Services (IIS V5.1).

Extracting ASRMT compressed archive

Extract the ASRMT.rar file using WinRar to the desired application directory where

you wish to install ASRMT (Example: C:\ASRMT). After extracting ASRMT.rar, the

following sub-directories will be placed in the ASRMT directory:

1. /ASRMT – Contains the ASRMT application.

2. /ASRMT_DB – Contains the database files.

3. /ASRMT_Help – Contain the ASRMT installation manual and tutorial files.

 121

Configuring ASRMT with Microsoft SQL Server 2005

1. Create a windows system user ‘asp’ having password ‘asp’. If the system user is

created with another username and password, you will need to update the

identity tag (<identity impersonate="true" userName="asp" password="asp" />)

in the web.config file located in the ASRMT directory with your username and

password details.

2. Connect to the SQL Server – Click on SQL Server Management Studio Express

in the SQL Server Start Menu, Click Connect.

3. Configure the SQL Server mixed mode option – Select the SQL object explorer,

Right-click on the server explorer and select properties, select the SQL Server

and Windows Authentication Mode radio button in the security page, Click ok

(see Figure 10.1 for details).

4. Ensure the ‘asp’ user is assigned RW permission to the ASP.NET Temp folder.

5. Attach the ASRMT database (see Figure 10.2 – Right-click on the Database

explorer and select Attach Database, Select the Add Button in the Attach

Database Page, Select the location of the ASRMT database (Example:

C:\ASRMT\ASRMT_DB\CDAPMT.mdf), Click ok. For SQL consistency, you

can copy the CDAPMT.mdf and CDAPMT_log.ldf file from the

C:\ASRMT\ASRMT_DB directory to your local SQL’s default data

location, and then attach the ASRMT database from there.

6. The ASRMT tool can now communicate with the database.

 122

Figure 10.1. Security object tab of Server Properties

Figure 10.2. Attaching the ASRMT database

 123

Configuring IIS for ASRMT

ISS is included with windows; however it is not installed with a default windows

installation. While it is recommended that a server version of windows should be

installed to publish web application, IIS can be setup on XP professional to allow up to

10 concurrent user connections. The following explains the steps for configuring ISS on

windows 2000, or windows XP professional:

1. Click start, select settings – Control Panel.

2. Choose Add or Remove Programs.

3. Click Add/Remove Windows Components.

4. If Internet Information Services is checked (see Figure 10.3), you already have

this component installed. If not, check IIS and click next to install the required

ISS files; you may be prompted for your windows setup CD.

 124

Figure 10.3. IIS is currently installed

You have two options for deploying ASRMT using IIS:

1. When IIS is installed, the C:\Inetpub\wwwroot directory is automatically created on

your computer. This directory represents your website. To configure ASRMT with IIS

you can copy the ASRMT directory directly into the c:\Inerpub\wwwroot directory.

You can then test ASRMT by requesting it in a browser using the URL

http://localhost/ASRMT. You should see the ASRMT login screen (see Figure 10.4).

 125

http://localhost/ASRMT

Figure 10.4. ASRMT login screen

2. The technique used above for configuring ASRMT is uncomplicated. However, if

you are using the wwwroot directory to organise other files this mode of configuration

may become disorganised. Therefore, ASRMT can be more efficiently configured

through IIS virtual directory. The following steps are required to configure ASRMT

using an IIS virtual directory:

1. Click start, select settings – Control Panel.

2. Choose Administrative Tools.

3. Click Internet Information Services from the Start Menu.

4. Right-click the Default Website item in the IIS tree.

5. Choose New – Virtual Directory, a wizard will start to manage the process.

6. The wizard requires three (3) sets of information (Alias, Directory, and

Permission).

7. For Alias type ASRMT.

8. For directory select the ASRMT physical directory on the hard drive that will be

exposed as the virtual directory (Example: C:\ASRMT\ASRMT).

 126

9. For Permission check ‘Read’ and ‘Run Scripts’.

10. Click Next, then Finish.

ASRMT can now be accessed using the URL http://localhost/ASRMT. If your internet

browser does not open the login page (see Figure 10.4) you should restart your web

server using the Default Website icon in the IIS tree. To verify that your ASP.NET

installation is working, enter the URL http://localhost/ASRMT/test.aspx in your

browser, you should see Figure 10.5. If the text ‘the date is’ appears without the local

system date, you may have to repair IIS using the following utility:

 C:\[WinDir]\Microsoft.NET\Framework\[Version]\aspnet_regiis.exe –i

 (See http://support.microsoft.com/_default.aspx?scid=kb;en-us;325093 for further

details regarding IIS troubleshooting).

Note: Before you can connect to the ASRMT database (log on and use ASRMT) you

must change the Data Source name in the connection string tag located in the

C:\ASRMT\ASRMT\web.config file. The Data Source name should be the name of the

instance of SQL server installed on your computer.

Example: <connectionStrings>

 <add name="ASRMT" connectionString = "Data Source= SQL;

 Initial Catalog =ASRMT; Integrated Security=SSPI"/>

 </connectionStrings>

 127

http://localhost/ASRMT
http://localhost/ASRMT/test.aspx
http://support.microsoft.com/_default.aspx?scid=kb;en-us;325093

Figure 10.5. ASRMT test page

 128

Appendix B. ASRMT Requirements Specification

User

Figure 10.6. UML use case diagram depicting user functionalities

 User

 Logon

View/Edit Personal Details

Complete Survey

View/ Edit Feature

 Change Password

 Only registered users can logon to the system.
 Users can view and edit their personal details as desired.
 Users must complete the Belbin self-perception inventory (SPI) survey; this

survey should automatically assess users 2 major personality traits.
 Users can view and edit features.
 Users can also change their password.

The following notes further describe the preceding use case diagram in Figure 10.6:

Logon - Description: A registered user can/is able to logon to the system. The user must
enter a username and password for validation. Users with invalid username and
password should not be allowed to logon.
Pre-conditions: User must be registered.
Post-conditions: User can complete the Belbin SPI survey and proceed and use other
system resources.

View/Edit Personal Details - Description: A user views or edits their personal details.
The logged on user can modify their personal details.
Pre-conditions: User must be logged on to the system.
Post-conditions: User can edit, and save changes to their personal details.

Complete Survey - Description: A user completes Belbin’s (SPI) survey. The user must
complete Belbin’s SPI survey as a part of the registration process in order to assist

 129

project team with decision making. After the survey is completed the system stores
summary information regarding the user’s major personality traits.
Pre-conditions: User must be logged on to the system.

View / Edit Feature - Description: A user views or edits a previously entered feature
request. Users can view all features that are a part of their project; Users can edit all
features that are a part of their project; Users belonging to the client category can only
edit features if the status is Requested, Estimated, or Scheduled (a log of all the client
feature changes should be maintained).
Pre-conditions: User must be logged on to the system, User must be a member of a
project, and Client previously made a feature request.
Post-conditions: Feature is updated with user changes.

Change Password - Description: A user changes their password.
Pre-conditions: User must be logged on to the system.
Post-conditions: User can save new password.

Client

Figure 10.7. UML use case diagram depicting the client functionalities

 Client Add Feature

 Clients can add a feature request (example: for XP projects, features are entered
as stories) for the project developers. For this they must be part of specific
project teams; the client selects the required project, inputs the feature
description (this serves as the feature name), inputs the feature details (an area
for additional feature information), selects the business value (low business
value, moderate business value, significant business value), selects the priority
(high, medium, or low), selects the type of feature (New Feature, Defect, or
Enhancement) and whether the feature should be discussed.

The following notes further describe the preceding use case diagram in Figure 10.7:

Add Feature Request - Description: A client adds a feature request to the development
team (clients are only allowed to add features for projects that they are a member of).
The feature request is entered as a simple statement (example: create GUI to allow users
to select items for sales).
Pre-conditions: Client must be logged on to the system.
Post-conditions: Client can save feature, Feature is added to feature set for project.

 130

Developer

igure 10.8. UML use case diagram depicting the developer functionalities

 Developer can view individual client’s or all clients’ contact details once they

 lts at any given time, but should be

he following notes further describe the preceding use case diagram in Figure 10.8:

iew Client Personal Details - Description: A developer views previously entered client

 be logged on to the system, for developer to view client

iew Survey Information - Description: A developer views their personality
elbin’s

 to the system, and developer previously

F

 Developer View Client Personal Details

View Survey Results

share the same project with clients.
Developer can view their survey resu
restricted from viewing others’ SPI survey information.

T

V
personal information. The developers are only allowed to view client personal details
that are a part of their projects.
Pre-conditions: Developer must
details client must also be registered.

V
information assessed by Belbin’s SPI survey. After the developer completes B
SPI survey, they can view this information anytime in the future. Developers are
restricted to viewing their information only.
Pre-conditions: Developer must be logged on
completed Belbin’s SPI survey.

 131

Project Manager

igure 10.9. UML use case diagram depicting the project manager functionalities

 Project Manager can add software project to the system. To add a software

 nager can register new users (client and developers).
em to specific

 system.
n and enter project

 also have developer’s functionalities.

he following notes further describe the preceding use case diagram in Figure 10.9:

dd Project - Description: A project manager adds software projects to the system.

can enter a project

egister User - Description: A project manager registers users to use the system. The

r

F

Add Project

 Project Manager

Register User

project, project manager must indicate project name, project description, and
start date.
Project Ma

 Project Manager can approve clients and developers, by adding th
projects. By adding developers and clients to projects, they are allowed to
manage features specific to those projects.
Project Manager can disable users from the

 Project Manager can edit software project informatio
completion date.
Project managers

T

A
Project managers are allowed to add details for software projects to the system.
Pre-conditions: Project manager must be logged on to the system.
Post-conditions: After projects are completed, the project manager
completed date.

R
project manager must complete a draft registration for the clients and developers.
Pre-conditions: Project manager must be logged on to the system.
Post-conditions: User is registered and able to logon to the system (to complete the
Belbin SPI survey), Clients and developers are approved by the project manager afte
they complete the Belbin SPI survey.

Approve Client/Developer Disable User

Edit Project

 132

Approve Client/Developer - Description: A project manager approves a client or a

 are

ust be registered, and Project manager previously

isable User - Description: A project manager disables previously entered users from

ns: Client or developer personal details must exist.

dit Project - Description: A project manager edits software projects. Project managers

e changes to the project.

otes:

 For feature updates, developers can enter the feature start date, the technical

d).

 ny developer’s or group of
ime

 lete the
 are

Feature Summary

developer. After a client or a developer is registered, and completed the Belbin SPI
survey, the client or developer must be approved by the project manager before they
allowed to interface with projects. Approval is done when the project manager adds the
client or developer to particular projects. The client or developer can only interface with
projects with which they were added.
Pre-conditions: Client or Developer m
added projects.

D
the system. Project managers are allowed to disable users (clients, and developers) from
the system.
Pre-conditio

E
are allowed to edit the details of software projects and enter a project completion date.
Pre-conditions: Project data must exist.
Post-conditions: Project manager can sav

N

risks, date estimated, estimated hours for completion, date scheduled, actual
hours taken for completion, and date completed (feature status should
automatically change to reflect the feature different states when feature
information is updated - Estimated, Scheduled, In Progress, or Complete
Project Manager is allowed access to view all clients contact details if the
project manager is logged on to the system.
Project Manager should be allowed to view a
developers’ contact details, or any client’s SPI assessment details at any t
(this feature should be offered in the project summaries section).
New project managers must log in as the administrator then comp
registration form. When a project manager registers to use the system they
also given administrative privilege.

 All features for Specific project
 Type (New Feature, Defect, or Enhancement)

 specific Priority (High, Medium, or Low) for each project
ect

or Completed) for each project

 All features of a specific Feature
for each project
All features of a

 All features of a specific Risk Rating (High, Medium, or Low) for each proj
 All features of a specific Status (Requested, Estimated, Scheduled, In Progress,

 133

Pro tjec Summary

f All projects
 Summary for Specific project

ojects
cts

SPI Su

 Summary o

 Summary of Completed pr
 Summary of Outstanding proje

mmary

 Summary by Category
 Summary by Role

roject and Feature summaries should be driven by a date range.

 Summary by User

P

 134

Figure 10.10. Domain Model illustrating the relationships among system objects

0 - *

User Details

Developer

Client

PM

Project

SPI Questionnaire

SPI Result

1

1

0 - *

1

1

1

0 - *

0 - *0 - *

0 - *

0 - *

Feature

 135

Table 10.1. Summary of System Features and Time Estimate

User Activity ID Subject Area
(Feature(s)) Task (s) to enable activity.

Estimated
Time

 (day (s))
System Security P001 Store registration data

for users.
Create GUIs to capture new users’
personal information.
Create tables in a database to store
information.
Create classes to write data to the
database.

4

 P002 Log on authenticated
system users.

Create GUIs to capture user login and
password information.
Create classes to validate user.

3

 P003 Allow Viewing and
Editing of Personal
Information by users.

Create GUIs to capture user previously
stored personal information.
Create classes to retrieve user
previously stored personal information.
Create classes to update changes made
by users to their personal information.

4

 P004 Secure Passwords by
allowing change
password functionality
for users.

Create GUI to capture password
information.
Create classes to update password data. 1

 P005 Disable Users
functionality should
exist for the project
managers.

Create GUI to capture users’
information.
Create classes to retrieve previously
added users.
Create classes to update user database
for disabled users.

2

P006 Add Project
functionality should
exist for the project
managers.

Create GUI to capture project
information.
Create table in the database to store
project information.
Create classes to save project
information.

2

Team Collaboration
and Feature
Management

P007 Edit Project
functionality should
exist for the project
managers.

Create GUI to capture project
information.
Create classes to retrieve previously
added project information.
Create classes to update project
information if there are changes.

2

 P008 Add/Approve
Developer or Client to
be done by the project
managers.

Create GUI to capture project
information.
Create classes to retrieve project
information, existing developers, and
existing clients.
Create classes to update developers or
clients project information.

2

 P009 Add Client Feature
Request to be done by
the clients.

Create GUI to capture feature
information.
Create a table in a database to store
client features.
Create classes to write feature
information to the database.

4

 P010 View or Edit Feature
should be possible for
all users.

Create GUI to capture feature
information.
Create classes to retrieve previously
added features.
Create classes to update features if

5

 136

User Activity ID Subject Area
(Feature(s)) Task (s) to enable activity.

Estimated
Time

 (day (s))
they are edited.
See requirements for specific levels
of access.

 P011 Viewing of Client
Contact Information is
permitted by
developers.

Create GUI to capture client personal
details.
Create classes to retrieve client
personal details.
Include security feature to restrict
developers from viewing clients’
information that are not a part of their
project(s).
See requirements for specific levels
of access.

2

 P012 Main Interface should
be presented to users.

Create the main GUI with links to the
various system options. 4

Personnel
Capability
Management

P013 Allow Completion of
SPI Survey by users.

Create GUI to ask survey questions
and capture user responses to survey
questions.
Implement survey logic in classes to
return assessment summary.
Create tables to store user assessment
summary.
Create classes to write summary to
database.

7

 P014 View Survey Summary
functionality is
presented for
developers.

Create GUI to capture survey
summary.
Create classes to retrieve survey
summary.
See requirements for specific levels
of access.

2

Help and
Documentation

P015 Provide Help for users. Create help GUI for all user features.
Create installation manual for the
system.

10

* Number of Developer(s) --- 1
* Number of System Features --- 15

* Estimated time for development --- 54 days --- A work day is expected to be 8 hours -

-- total hours 432

* Restriction --- Security feature should prevent clients and developers from accessing

projects which are not assigned to them. Security feature should prevent clients from

editing features that are not Requested, Estimated, or Scheduled. Security feature should

prevent users from deleting records.

 137

Figure 10.11. Database Diagram

Project
Project

Project_Description

Client_Feature
Project

Feature_Desc...

Feature Details

Project_Assignmen
Project

Login

User_Registratio
FName

LName

User_SPI
Login

Code No

SPI_Details
Code_No

Business_Value
Business_Value

Priority
Priority

C d N

Feature_Type
Feature_Type

Code_No

Status
Status

Category
Category

Code_No

 138

 139

Glossary

 Client - In this context a client is seen as the customer representative who is

actively participating and involved in requirement specification, software

testing, and other development practices often recommended by agile models.

 Developer – A software builder who occupies one or more specific roles in the

software team.

 Project Manager - A software development team leader.

 Non-registered User - A user (client, developer, or project manager) whose draft

registration details have not been entered on the system by the project manager.

 Draft Registration – Temporary personal information entered for a specific user

by the project manager.

 Registered User – A user whose draft registration is completed.

 Personal/Contact Details – User personal information which includes: name,

address, telephone number, email address, login. For registration purposes, the

password becomes part of user personal details.

 Belbin’s SPI Survey - A simple inventory used for assessing personality traits

(see Belbin (2002) for further details).

 Client Feature – A client-valued system function.

 Project – An agreement between a client and the development team to deliver a

software solution.

 Add/Approve User – The project managers’ user approval process; includes

completing a draft user registration, and adding a user to projects after the

Belbin SPI survey is completed by the user.

140

Table 10.2. ASRMT Development Summary

ID Implemented Modified New Activities Estimated
Time (days)

Actual
Time (days)

Rework
Time (days)

Rework
Activities

GE P001 Yes No - 4 3 1
P002 Yes No - 3 3 - -
P003 Yes No - 4 3 - -
P004 Yes No - 1 1 - -
P005 No - - 2 - - -

GE P006 Yes No - 2 2 1
P007 Yes No - 2 2 - -
P008 Yes No - 2 2 - -

GE P009 Yes No - 4 4 1
GE P010 Yes No - 5 6 1

P011 Yes No - 2 3 - -
GE P012 Yes No - 4 5 1
GE P013 Yes No - 7 6 3
GE P014 Yes No - 2 3 1
- P015 No - - 10 - -

Key: GE – GUI Enhancement

* 7 days were utilised for designing and implementing ASRMT reports (summaries)

* 6 days were utilised for planning and implementing the ASRMT database

* 14 days were utilised for ASRMT (development) research activities

Additional Development Activities (beyond initial estimates)

*** Total time taken for development --- 79 days

Appendix C. Agile Social-Risk Mitigation Tool (ASRMT) User

Evaluation

This evaluation is for the test version of ASRMT, a personality assessment and feature

management tool that has been designed and built to primarily assist software project

managers in their handling of some of the social aspects of agile software development.

This scenario-based evaluation is informal and is aimed at verifying whether ASRMT

demonstrates proof of the concepts proposed in the research project (Title: Tool Support

for Social Risk Mitigation in Agile Projects). As someone with expert knowledge

regarding software development, your feedback and suggestions will be extremely

valuable for the current study.

ASRMT Purpose

Among the concepts explored in this study, managing group dynamics, personality

differences, and team cohesion have been identified as major factors contributing to

software development projects’ success. However, research examining the means of

supporting the management of group dynamics, personality differences and team

cohesion is scarce. As a consequence, this research project has proposed a way to

address this gap by offering a toolset called ASRMT which allows personality

assessment and management using Belbin’s Self-perception Inventory (SPI), and client

feature management, extending customer involvement through an interface.

ASRMT is by no means meant to replace current project management tools, but is

intended to complement them, offering developers a way to extend interaction with

customers by allowing them to enter and manage requirements in the form of feature

requests. In addition, ASRMT offers software team members a way to verify their main

personality profile in order for project leaders to properly assemble teams with the right

mix of expertise and to manage according to team members’ capabilities.

 141

ASRMT User Evaluation

The evaluation has two (2) parts. In the first part (part I) you will undertake a few tasks

in order to test the tool’s functionality, in the roles of Project Manager, Developer, and

Customer. The intention of part II is to solicit feedback regarding your experience

whilst conducting these tasks.

Part I: Tool Functionality - Personality assessment and client feature management

Project Manager

Users belonging to the ‘Manager’ category have administrator privilege. Thus, in this

role you are allowed access to all of ASRMT functionalities. The following tasks are

aimed at verifying ASRMT project management system functionalities:

1. You are a project manager that has just started work with an agile development

company. Log in to ASRMT as the administrator (login: asrmtadmin, password:

asrmtadmin) and sign up as a new user with ‘Manager’ privilege using the New

User menu.

2. Every new user (including project managers) needs to provide information on

their personality, so that teams can be composed of compatible people. Logout

as asrmtadmin, and re-login with your new user details (from 1 above).

Complete the Self-perception Inventory (SPI) survey using the Complete SPI

Survey menu.

3. Add a new project to the system using the Add Project menu (Project Name –

AUT Security System, Project Description - Security of Student’s Novell

Network, and Start Date – 10/03/2007). Note: other project data exists in

ASRMT.

4. Other users exist in the ASRMT database; assign a customer (garybeaton) and a

developer (christlill) to the project just created (AUT Security System) by using

the Assign User-Project (s) menu. The project is now available to accept feature

requests from the customer.

 142

5. Next you need to change an ongoing project – the Credit Card System. Edit a

feature previously added using the Edit Feature menu. The status of the feature

determines what data is added to the feature; for example, if the values for

‘Estimated Hours’ and ‘Date Estimated’ is entered, the feature status

automatically changes to Estimated. Let the feature traverse state by updating

its associated information (enter the Date Scheduled, notice the status changes to

Scheduled). (Features entered by clients have ‘Requested’ status by default,

features then traverse status in the following order: Estimated, Scheduled, In

Progress, and Completed).

6. Take some time to check out the other different menu options in the

Administration section of the ASRMT main menu (Change Password,

View/Edit Personal Details, View Contact Details, and Edit Project).

7. As a new employee you decide it would be useful to get an overview of the

current projects. Go to the Project Summaries Section of the main screen and

view summaries for the projects. To get a feature summary, select the Feature

Summary menu - information should exist pertaining to the features previously

entered (Select the Credit Card System, Banking System or AUT Website

Project, you want features requested by the client between 01/10/2006 (Start

Date) and 01/05/2007 (End Date), Filter By (in any order) – All, Type, Priority,

Risk Rating, or Status). To get a project summary, select the Project Summary

menu. This should enable you to retrieve information pertaining to the projects

previously entered that are started with features (Filter By (in any order) – All

Projects, Selected Project, Completed Projects or Outstanding Projects, Start

Date (01/01/2007), End Date (01/05/2007)). You can also get a summary of the

SPI survey data by selecting the SPI Survey Summary menu (Retrieve User List

(in any order) – All, By Category, By Role, or By User).

8. You can continue to use ASRMT to exhaust the different features as desired.

9. Logout using the Logout link at the bottom-left of the screen.

 143

Developer

Users belonging to the ‘Developer’ category are assigned certain restricted privileges.

Thus, in this role you should only be allowed access to specific ASRMT functionalities

(for instance, developers can only access projects that they have been added to). The

following tasks are aimed at verifying ASRMT developers’ system functionalities:

1. Your name is Christoph Lill, an agile software developer. In the last few months

you have been working on the Credit Card System and AUT Website projects.

Log in to ASRMT (login: christlill, password: christlill).

2. View your SPI survey data using the SPI Survey Summary menu. (You should

only be able to see your data, not that for anyone else.)

3. Take some time to check out the other different menu options in the

Administration section of ASRMT main menu (Change Password, View/Edit

Personal Details, and View Contact Details).

4. You have been on holiday for the last week and need to catch up with the

current status of your projects. Go to the Project Summaries Section of the main

screen and view the summaries for them. (Note: you are only allowed to see

project summaries for projects that you have been added to by the Project

Managers.) Get a feature summary for the Credit Card System project –

information should exist pertaining to the features previously entered (Insert

Start Date (10/09/2006), End Date (05/03/2007), Filter by Priority, then by

Status). Then retrieve a project summary filtered by Outstanding Projects, Start

Date (05/01/2007), and End Date (10/04/2007).

5. You can continue to use the ASRMT to exhaust the different features as desired.

6. Logout using the Logout link at the bottom-left of the screen.

Customer

Users belonging to the ‘Customer’ category are assigned certain restricted privileges.

Thus, in this role you should only be allowed access to specific ASRMT functionalities

(for example, customers can only access projects that they have been added to). The

following tasks are aimed at verifying ASRMT customers’ system functionalities:

 144

1. Your name is Gary Beaton, a customer who has contracted the software

development company to produce a Credit Card System for you. Log in to

ASRMT (login: garybeaton, password: garybeaton).

2. It has been some time since you used the tool and you cannot recall completing

a Self-perception Inventory survey. Try to complete the SPI survey using the

Complete SPI Survey menu.

3. Add a few client feature requests to the Credit Card System project using the

Add Feature menu (only customers can add features).

4. Edit a previously added feature using the Edit Feature menu (for example,

Feature – Create automated email); please note the feature Status, can you

change it? Now come out of the Edit Feature Menu and change your password

using the Change Password menu under the Administration section of the tool).

Return to the Edit Feature menu, try to edit the same feature – note the feature

Status again.

5. Take some time to check out the other different menu options in the

Administration section of ASRMT (for example, View/Edit Personal Details).

6. You want to know how the team is getting on overall with the project. Go to the

Project Summaries Section of the main screen and get a summary. (Note: you

are only allowed to see project summaries for projects that you have been added

to by the Project Managers.) Get a feature summary for the Credit Card System

project – information should exist pertaining to features previously entered

(Insert Start Date (22/02/2007), End Date (15/04/2007), Filter by Priority, then

by Status, then by Risk Rating). Note the restrictions.

7. You can continue to use the ASRMT to exhaust the different features as desired.

8. Logout using the Logout link at the bottom-left of the screen.

You have finished testing out the functionality of the system – thank you. Please move

on to the next page so that you can give us your impressions of the tool and your use of

it.

 145

Part II: User Experience Feedback

Please read the instructions and supply an appropriate answer for all questions. This will

either be a ticked box (normally indicating the extent to which you agree or disagree

with a statement) or some free text. If you make a mistake please put a large cross

through your original answer and then select your new answer.

ASRMT Stability and Learning

1. You found it easy to use the features of ASRMT.

Strongly agree Agree Disagree Strongly disagree

2. Did you encounter any bugs whilst using ASRMT?

Yes No

If yes, approximately how many distinct bugs did you encounter?

1-2 3-5 6-10 More than 10

3. You were able to successfully complete the tasks in part I.

Strongly agree Agree Disagree Strongly disagree

4. It was easy for you to learn to use ASRMT.

Strongly agree Agree Disagree Strongly disagree

5. When there was an error using ASRMT, you recovered easily and quickly.

Strongly agree Agree Disagree Strongly disagree

6. You found using ASRMT frustrating to use.

Strongly agree Agree Disagree Strongly disagree

7. ASRMT is intuitive and simple to use.

Strongly agree Agree Disagree Strongly disagree

 146

ASRMT Usefulness and Research Objectives

8. ASRMT would be useful if used in live projects.

Strongly agree Agree Disagree Strongly disagree

9. ASRMT offers functionality to address the features discussed in the ‘ASRMT

purpose’ section at the beginning of this document.

Strongly agree Agree Disagree Strongly disagree

10. In terms of your overall impression of ASRMT…

List any negative aspect (s):

1 ………………………………………………………………………..

2 ………………………………………………………………………..

3 ………………………………………………………………………..

List any positive aspect (s):

1 ………………………………………………………………………..

2 ………………………………………………………………………..

3 ………………………………………………………………………..

11. Please outline any suggestions you have for improving ASRMT.

1 ………………………………………………………………………..

2 ………………………………………………………………………..

3 ………………………………………………………………………..

Thank you for your participation!

 147

	Table of Contents
	 List of Figures
	 List of Tables
	 Attestation of Authorship
	 Acknowledgements
	
	1. Introduction
	1.1. Intended Contributions and Research Objectives
	1.2. Research Design
	1.3. Thesis Structure

	 2. Evolution of Software Development Practice
	2.1. History of Software Development
	2.2. Conventional Software Development Methodologies
	2.2.1. Representative Conventional Methodologies
	2.2.2. Characteristics of Conventional Methodologies
	2.2.3. Criticisms of Conventional Methodologies

	2.3. Agile Software Development Methodologies
	2.3.1. Representative Agile Methodologies
	2.3.2. Characteristics of Agile Methodologies
	2.3.3. Criticisms of Agile Methodologies

	2.4. Conventional Vs Agile Methodologies
	2.5. Summary

	 3. Software Project Risk Management
	3.1. Introduction to Projects and Software
	3.2. Conventional Project Risk Management Techniques
	3.3. Agile Project Risk Management Techniques
	3.3.1. Inherent Schedule Flaws
	3.3.2. Requirements Inflation
	3.3.3. Employee Turnover
	3.3.4. Specification Breakdown
	3.3.5. Poor Productivity

	3.4. Summary

	 4. Agile Processes: The Effects of Stakeholders’ Interaction
	4.1. Human Collaboration
	4.1.1. Psychology of Human Collaboration
	4.1.2. Management Background and Role Theories
	4.1.3. Role Theories and IS Research
	4.1.4. Risk of Customer Involvement

	4.2. Summary

	 5. Software Development Tools
	5.1. Introduction to Software Development Tools
	5.2. Importance of Project Management Tools in Software Development
	5.3. Contemporary Project Management Tools
	5.4. Agile Project Management Tools
	5.4.1. Collaboration, Technical Information Sharing, and Project Management Tools

	5.5. Summary

	 6. Design and Implementation of the ASRMT Tool
	6.1. Introduction to the Agile Social-Risk Mitigation Tool (ASRMT)
	6.1.1. Research Project Goals
	6.1.2. Software Development Methodology Used for ASRMT
	6.1.3. Development Platform
	6.1.4. ASRMT Overview

	 6.2. ASRMT Features
	6.2.1. List of Features in ASRMT
	6.2.2. Using ASRMT
	6.2.3. ASRMT User Options

	6.3. Summary

	 7. ASRMT Evaluation and Discussion
	7.1. Reflections on the Development Process
	7.2. Benefits of using ASRMT: Risk Mitigation Capability
	7.2.1. Support for Remote Clients
	7.2.2. Support for Personnel Capability Management
	7.2.3. Other Indirect Benefits of ASRMT: Project Management Capability

	7.3. The ASRMT User Evaluation
	7.3.1. Method for ASRMT User Evaluation
	7.3.2. ASRMT Evaluation Findings and User Feedback

	7.4. Discussion and Contribution
	7.5. Summary

	 8. Conclusions and Recommendations
	8.1. Summary
	8.2. Conclusions
	8.3. Limitations and Recommendations

	 9. References
	 10. Appendices
	Appendix A. Deploying ASRMT
	 Appendix B. ASRMT Requirements Specification
	Appendix C. Agile Social-Risk Mitigation Tool (ASRMT) User Evaluation

