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Abstract 

Worldwide spending on the long-term or chronic care conditions is increasing to a 

point that requires immediate interventions and advancements to reduce the burden of 

the healthcare cost. Managing people with long-term conditions is a global challenge 

and it is mostly driven by the shifts in demographics and disease status. Today, long-

term conditions engage by far the largest and growing share of healthcare budgets 

globally. 

From the literature, it is evident that an immediate intervention is required to slow 

down the epidemic of long-term conditions. The three time-based priorities for the 

long-term conditions are; (1) self-management of long-term conditions using 

advanced technology is identified as one of the immediate recommended actions. (2) 

In the medium-term, a robust mechanism of early detection and prediction of pre-

long-term conditions is required to delay the onset of long-term condition; and (3) as a 

long-term strategy, in-depth research and investigations are required to reduce and 

make a positive impact by taking a holistic approach and multiple domain-

intervention such as diet, education, cultural, physical, lifestyle, environmental, 

economic and more. 

This research is focused on one of the immediate approaches required to tackle long-

term conditions - involving early detection and self-management of pre-long-term 

condition of diabetes using advanced technology and tools. This study deals with the 

three important areas of long-term conditions: wearable/remote and real-time 

monitoring; interpreting and detection for pre-diabetes and self-management of 

diabetes as a long-term condition.  
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This research collected heart rate, heart rate variability, breathing rate, breathing 

volume, activity (steps, cadence and calories), using the advanced body wearable 

vest/sensors in real-time, and combined (the collected data) with manually collected 

blood glucose, height, weight, age and sex for individualised trend, baseline values 

and early detection. The collected data was fed through the clinical knowledge-base to 

set the baseline values using the existing interventions, guidelines and protocols. The 

artificial intelligence model using adaptive-neuro fuzzy interference system was 

developed to early detect pre-long-term conditions, individualised monitoring and 

self-management of diabetes. The performance of the system was validated through 

off-line tests with a high-level of agreement between the system and the physicians.
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CHAPTER 1 Introduction 

1.1 Background 

1.1.1 Long-Term Conditions (LTCs) 

Long-term conditions (LTCs) are defined as any ongoing, long-term or recurring 

conditions that can have a significant impact on the person’s life [1]. LTCs have 

become a priority because of the changing burden of disease and the increasing 

prevalence of conditions such as diabetes, asthma, arthritis and heart disease. 

Individuals with LTCs are more likely to frequently visit their general practitioner 

(GP), get admitted to hospital, and stay in hospital for longer compared to people 

without LTCs. LTC effected individuals are also increasingly involved in managing 

their conditions with the support of the inpatient (acute) care team, outpatient services 

and community care [2]. 

The current practice of reactive, unplanned and episodic approach to care, particularly 

for those with complex conditions and high intensity needs, is simply inefficient and 

unsuccessful [3]. The services are there to help them when their condition reaches a 

crisis point, but often fail to provide the on-going, co-ordinated support needed to 

prevent such crises from happening in the first place [1-4]. LTCs are now a major 

challenge for the New Zealand health system. Two thirds of New Zealand adults have 

been diagnosed with at least one long-term condition and these long-term conditions 

are a leading driver of health inequalities [5]. Along with the detrimental health 

outcomes from LTCs, the individual, their family/whānau, the community and the 

health sector experience considerable financial and social costs. The major risk factors 

also place a significant economic burden on New Zealand society [6, 7]. This research 
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focuses on technology enabled self-management of one such LTC – Type II Diabetes 

(including detection of prediabetes). 

1.1.2 Self-management of Diabetes 

Diabetes is diagnosed when a person has excess glucose (sugar) in the blood. This 

happens because the pancreas cannot produce enough insulin. Glucose is an essential 

source of energy for the brain as well as a source of energy for the body. Glucose in the 

bloodstream comes from carbohydrate foods high in carbohydrates. These 

carbohydrates covert into glucose after consumption. The liver stores and produces 

glucose depending on the body’s need. The stored glucose in the liver is released for a 

later time when the body needs it [8, 9]. 

Diabetes is the result of the body not being able to create sufficient insulin to keep 

blood glucose levels in the normal range. It cannot be cured, but it can be controlled, 

and you can lead a full and active life with self-management of this condition. There 

are three types of diabetes – Type 1, Type 2 and Diabetes of pregnancy (gestational 

diabetes) [10]. 

Prediabetes means a person's blood glucose (sugar) level is higher than normal, but not 

high enough (yet) to be diagnosed with type 2 diabetes. People with prediabetes are on 

the road to develop type 2 diabetes and are also at increased risk for serious health 

problems such as stroke and heart disease [11]. Prediabetes often can be reversed 

through lifestyle changes such as increased physical activity and weight loss. The 

earlier people are diagnosed/detected with prediabetes, the more likely that they can 

reverse it and prevent type 2 diabetes [11]. 

An estimated 670,000 New Zealanders could be unwittingly living with pre-diabetes, 

with a further 267,000 already suffering from type 1 or type 2 diabetes [12, 13]. The 
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prevalence of diabetes has been rapidly rising worldwide. Diabetes can lead to a 

number of complications such as retinopathy, nephropathy, and macrovascular 

diseases, all of which decrease patient’s quality of life and increase healthcare 

expenditures. To prevent and minimize complications, it is important to optimise 

glycaemic control and the basis of glycaemic control is diet and exercise therapy [14]. 

However, it is difficult for patients to change their lifestyles and maintain desirable 

behaviour and good glycaemic control. In a study, adherence to diet and physical 

activity were found to be lower than adherence to medication regimens. As a result, 

only 36% of patients who received inpatient diabetes education could maintain 

improvement of haemoglobin A1c (HbA1c) levels for 2 years [15]. 

With the rapid advance of information and communication technology (ICT), diabetes 

management is expected to be an area in which the use of the internet and mobile 

devices could be beneficial [16]. These technologies can overcome time and location 

barriers through real-time and remote monitoring of data such as vital signs, activity, 

blood glucose levels at home, and can facilitate communication between patients and 

healthcare providers. Many ICT-based self-management tools such as mobile 

applications have been developed for patients with diabetes and have improved 

patients' physical activity levels and glycaemic control [17]. 

Understanding patients' need for ICT-based self-management tools is essential for 

disseminating use of them by patients with LTCs (diabetes)—and that need appears to 

be increasing around the world [8, 16, 17]. 

1.2 Technology Assisted Self-management of Long-Term Conditions 

There are international and national initiatives and protocols available to promote the 

best-practice approaches that will lead to improved services and support for people 
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with LTCs. The specific aims being to produce better health outcomes and quality of 

life, slow disease progression and reduce disability. This in turn will result in improved 

quality of life, helping to relieve discomfort and stress and reduce the need for hospital 

admission [18]. 

Supporting people with LTCs to manage their conditions becomes more important as 

the population ages and people are increasingly managing more than one condition. 

Self-management support can be viewed in two ways: as a portfolio of techniques/tools 

that help patients choose healthy behaviours [19] and as a fundamental transformation 

of the patient–caregiver relationship into a collaborative partnership [20]. This research 

focuses on the techniques and tools that support the self-management of LTC(s) and 

early detection of prediabetes [19-21]. 

As per the Ministry of Health, New Zealand [22], any self-management support must: 

• Be appropriate for the person with the LTC and their family/whānau 

• Be developed in partnership with the person with the LTC 

• Focus on reducing inequities in health 

People with LTCs have better lives when they are supported to take care for their 

conditions themselves [19, 23]. If people have a clear understanding of their condition 

and what they can do, they are more likely to take control themselves [19].  One of the 

priorities from participants in the ‘Your health, your care, your say’ [24] consultation 

was for services based around their needs which help them take control of their health, 

support their well-being and enabling to lead an independent and fulfilling life [23]. 



5 

 

There are three themes identified from the literature for an effective LTC management 

[19-23]:  

• Enabling and supporting health, independence and well-being 

• Rapid and conventional access to high quality, cost effective care 

• Enabling people more in control of their own health via self-management 

Self-management lies at the heart of enabling people in control and plays a key role in 

improving the management of LTCs. Self-management is “led, owned and done by 

people themselves” [19-23]. 

The Long Term Conditions Alliance (now Health and Social Care Alliance Scotland) 

has identified several key stages where people need support to self-manage their LTCs 

[25]. Table 1.2-1 summarises these stages, along with the issues for and impact of self-

management. 

Table 1.2-1 Key stages of support for self-management of LTCs 

Key stage Issues for self-management Impact of self-management 

Diagnosis By this point, symptoms may already 

have seriously affected people’s life 

and ability to manage. 

People feel challenged about their 

place in the world and the reality of 

their situation. 

Helps people come to terms with 

their diagnosis. 

Is a key way of helping people to 

reconnect with themselves and 

others. 

Helps people make better decisions 

about treatment options. 

Living for 

today 

People need information and skills to 

maintain optimum wellbeing. 

People are at serious risk of social 

exclusion. 

Supports people to navigate an 

often difficult journey. 

Challenges social exclusion by 

helping build bridges back to 

society and social roles. 

Progression People experience a cycle of illness 

and wellbeing as their conditions 

fluctuate. 

Helps to avoid flare-ups or 

minimise their extent. 

Enables people to recognise early 
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Symptoms become increasingly 

severe. 

People struggle to get additional 

support during flare-ups. 

They may lose some capacity. 

warning signs and react effectively. 

Tackles psychological impact of 

flare-ups or progression. 

Supports changing needs. 

Transitions People move between services, 

sometimes to different levels/types of 

support. 

They are dealing with multiple 

needs/conditions and therefore a range 

of services. 

It is often a stressful time, which can 

have serious impact, including on 

person’s conditions. 

Supports people to manage 

transition processes. 

Maintains focus on people’s needs 

so that services are organised 

around these. 

Provides people with control at a 

time when this can be undermined. 

End of life This difficult time involves complex 

challenges. 

Death may be premature. 

People may have to cope with 

symptoms of the condition along with 

the challenges of end of life. 

Supports people to meet a range of 

challenges and maintain control. 

Addresses broader needs e.g., 

emotional, family and lifestyle. 

 

We aim to monitor (in real-time) the vital signs, activity of daily life, blood glucose and 

demographics information for point in time capture of key insights as well as trend over 

time to understand the in-depth health measure. In particular, this research aims to 

provide early detection/precondition and self-management of a long-term condition – 

prediabetes and diabetes Type II [25]. 

1.3 Motivation 

This research is motivated by the worldwide rising increase in LTCs, increase in 

healthcare spending and availability of advanced technologies and tools to address 

those current healthcare challenges via self-management of diabetes. Key motivating 

factors are discussed below: 
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1.3.1 World-wide Increase in the LTCs 

In recent years, there is an ever-growing need for a sustainable health eco-system to 

manage not only acute care but also chronic care including LTCs. A LTC is defined as 

the health condition that can be managed but often cannot be cured and common 

examples include diabetes, heart disease, stroke, cancer and arthritis [26]. The number 

of people with LTCs is increasing, and the majority of people aged over 65 may now 

have multiple LTCs [27]. The numbers of people with multiple LTCs is likely to 

continue to increase with the ageing of the population. A couple of major contributing 

factors are unhealthy lifestyles, along with the impact of the economic downturn on 

mental and physical health [28]. One of the emerging mechanisms is the prevention or 

early-detection of LTC by following the health trends using wearable monitoring 

systems to make early interventions [10, 14-21, 23].  

1.3.2 Healthcare Spending on LTCs 

Recent estimates on the amount spent annually on long-term care services in the US are 

between $210.9 billion and $306 billion. For the UK, nearly 29% of the total 

population now lives with a LTC, while as much as 80% of the healthcare budget is 

spent on the management of chronic diseases [29, 30]. Around 15 million people in 

England have one or more LTCs. The number of people with multiple LTCs is 

predicted to rise by a third over the next ten years and accounted for 50% of the GP 

appointments and 70% of all inpatient bed days [31] and around 70% of the total health 

budget is spent on the care of people with LTCs [32]. In Canada, 10.7% of the total 

healthcare spending, expected to reach $219.1 billion or $6105 per Canadian as of 2015 

[33]. New Zealand’s total health and disability spending is about $18 billion, or about 

9.5 percent of gross domestic product (GDP) and recent New Zealand health strategy 

for 2020 focuses on the long-term and chronic condition management, treatment, 
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prevention and early detection [34]. Table 1.3-1 shows the healthcare spending of the 

organisation for economic co-operation and development (OECD) countries, in terms 

of per-person spending, public, private and GDP [35]. 

Table 1.3-1 Healthcare spending of the organisation for economic co-operation and development 

(OECD) countries [35] 

Country *GDP (%) 
Per-person 

Spending (USD) 
Public (%) Private (%) 

United States 17.1 9086 48 52 

France 11.6 4361 79 21 

Germany 11.2 4920 76 24 

Denmark 11.1 4847 84 16 

Canada 10.7 4569 71 29 

Japan 10.2 3713 83 17 

Australia 9.4 4115 68 32 

Finland 9.1 3645 75 25 

United Kingdom 8.8 3364 87 13 

New Zealand 9.5 2983 83 17 

*gross domestic product (GDP) 

1.3.3 International and National Initiatives to tackle LTC  

LTCs consume vast amount of resource in New Zealand – in terms of direct health care 

and indirect costs on the society. Most studies estimated an annual societal costs of 
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more than $100 million per condition or risk factor [35, 36]. Indirect costs generally 

contributed between one-third and two-thirds of the total expenditure. This research 

project is aligned with the current NZ District Health Boards (DHBs) initiatives, 

Ministry of Health’s (MoH) long-term strategic plans and the national health targets 

[37, 38]. Some of the national priorities and initiatives are: 

“Diabetes is a priority long-term condition” for the New Zealand Government [39] 

Addressing the increasing impact of LTCs, including diabetes, is an important task to 

focus on for the Government to support its vision that all New Zealanders live well, 

stay well and get well. An estimated 257,700 New Zealanders have diabetes. In 2014, 

the number of people with diabetes grew by nearly 40 people per day. The high 

personal and social costs associated with this condition presents a serious health 

challenge, both now and in the future [12, 40-42]. The government is committed to 

supporting a sustained and systematic approach to reducing the burden of diabetes, and 

the associated comorbidities. 

Auckland DHB [43]: LTCs are the leading cause of hospitalisations and accounts for 

most preventable deaths and are estimated to consume a major proportion of our health 

care funds. They are also a barrier to independence, participation in the workforce and 

in society. 

Counties Manukau DHB [44]: Counties Manukau has the highest growth rate in the 

population aged over 64 years old in the country. Older people are more likely to have 

multiple LTCs and accounts for nearly 40% of the group with at least one common 

LTC. 



10 

 

Waikato DHB [45]: Midland DHB regional approach to the ‘Impacts Measures of 

Performance’ includes LTC as one of the key impact measures. 

Single National Electronic Health Record: It is essential to have an individualised 

LTCs scale/score embedded in the individual’s health record for timely prevention of 

LTC managed by the clinical professionals. This could be achieved by stand-alone web 

tool, healthcare IT systems and current GP/DHBs patient management systems.  

This research is placed at the centre of the national and international initiatives looking 

at reducing LTC by adopting the latest and advanced tools, technologies and scientific 

methodologies. This will potentially lead to the growth in the wearable body sensors 

(including consumer health and wellness devices), machine learning model and new 

data sources for the future of LTC prediction [46-48]. 

1.4 Research Questions 

There are several important areas where this study makes an original contribution by 

answering the below research questions: 

• How individualised monitoring can benefit the individual with LTCs? 

• What is the impact of using the wearable technology in self-management of 

LTCs? 

• How advanced tools and technologies can enable early detection of LTCs? 
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1.5 Research Contributions 

The research presented in this thesis deals with three main concepts: wearable 

monitoring, interpretation of collect data and early detection of prediabetes. These three 

concepts are interrelated and interconnected as illustrated in Figure 1.5-1. 

 

Figure 1.5-1 Scopes of the research as described in the thesis 

 

The original contributions are summarised as follows: 

• Individualised monitoring framework for self-management of LTC 

This research focused on the idea that ‘no two diabetics are same’ and they 

should be treated individually. This research investigated the existing literature 

for the technology-led LTC interventions – theory building. We focused on the 

individualised trends and self-management using the available and existing 

diabetes self-management programs and methods – relationships and evidence-

based reasoning. Finally, we designed a LTC detection model based on the 
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individual data trends and not the traditional threshold based outcomes – 

Individualised Self-management using ICT. 

• Real-time data collection using wearable monitoring system 

The major contribution documented in this thesis is the configuration and 

design of an integrated wearable healthcare monitoring system. The most 

important components required for understanding the current 

situation/complaint of a person are incorporated into the integrated healthcare 

system including physical observation, vital signs, activity data and history. The 

main idea behind the integrated wearable system is that the system should 

seamlessly integrate with other existing/available systems for a holistic 

approach to tackle diabetes.  

• Development of an early LTCs (diabetes) detection model 

The proposed system is currently capable of identifying pre-diabetic signs that 

may occur during a patient’s life. It has been tested using the recorded data. The 

proposed system has achieved accuracy of 91.49%, sensitivity of 94%, 

specificity of 90% and predictability of 72% when compared with the 

interpretation by a medical expert for the same data. The evaluation of the 

proposed system has been carried out using Kappa analysis, which measures the 

agreement between the proposed system and the medical expert’s interpretation. 

The researcher is not aware of any such system available or in use in New 

Zealand hospitals. The proposed system is superior to other threshold-based 

systems due to the fact that it uses individualised monitoring, evidence based 

reasoning, fuzzy templates and weighted scoring parameters for detection and 

interpretation of diabetes and is fully scalable to incorporate other LTCs as well. 
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1.6 Summary of Outcomes Achieved 

• Ethics approval from the Auckland University of Technology Ethics Committee 

(AUTEC). 

• Configurations and enhancements to the wearable (sensors) monitoring system 

for individualised data collection in real-time. 

• Real-time data collection - This research study collected heart rate, heart rate 

variability, breathing rate, breathing volume, activity (steps, cadence and 

calories), and collected blood glucose, height, weight, age and sex manually for 

data analysis. 

• Data analysis for early detection of long-term conditions (e.g. pre-diabetes) 

using existing long-term condition guidelines/protocols and early LTC detection 

model was designed, developed and tested. 

1.7 Structure of the Thesis 

This chapter presented an introduction to the LTC, diabetes as our focused LTC, 

motivations, challenges and original contributions of the research. The following 

chapters are as follows: 

CHAPTER 2: Literature Review  

This chapter provides an overview of the state-of-the-art wearable monitoring systems, 

methods of activity monitoring and diagnosis with issues and challenges. Different 

monitoring techniques and methods for LTCs are reviewed in order to establish the 

research gap and its associated research problems. 

CHAPTER 3: Methodology 

This chapter presents the methodology adopted in the research and discusses the 

approach used for theory building and observation. 
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CHAPTER 4: Data Collection, Analysis and Results  

This chapter presents data collection process and protocols adopted. Data statistics and 

related information including data transmission, wireless wearable sensors used and 

data analysis are described. The important relationship between vital signs and activity 

data with demographic data is also discussed. 

CHAPTER 5: Discussion  

This chapter discusses the methods and results and other major aspects of this research. 

CHAPTER 6: Conclusion 

This chapter discusses the main conclusions with suggestions for the future work. 
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CHAPTER 2 Literature Review 

As wearable devices, sensors and body-worn garments become smaller, cheaper, and 

more consumer accessible, they will be used more extensively across a wide variety of 

contexts. The expansion of wearable systems and personal data collection offers the 

potential for patient engagement in the self-management of long-term conditions and 

chronic diseases [49]. The rapid curve in the global adoption of the wearable 

monitoring systems started noticing in the last couple of decades. Some of early 

foundation research includes; (1) Wearable health-care system (WEALTHY) project, 

which targets clinical patients during rehabilitation and other high-risk patients using 

the fabric integrated sensors; (2) A custom-developed ubiquitous health-care (u-health-

care) system consisting of custom 802.15.4-capable nodes interfaced with ECG and 

blood pressure sensors as well as a basic cell phone device for data display and signal 

feature extraction; (3) The Human++ project in The Netherlands has developed a body 

area network consisting of three sensor nodes and a base station; (4) The CodeBlue 

project developed by researchers at Harvard University; (5) The researchers from the 

Media Laboratory of the Massachusetts Institute of Technology (MIT) have designed 

LiveNet; (6) SmartVest is a wearable physiological monitoring system that consists of 

a vest and a variety of sensors integrated into the garment's fabric to collect several 

biosignals; (7-9) Three European IST FP6 programs are the MERMOTH project, 

MyHeart and HeartCycle, as recent examples of wearable systems/sensors for patient 

monitoring [50-53]. 

2.1 Wearable Monitoring Systems 

Wearable systems/sensors and wireless medical devices are used to collect individual’s 

personal health data [54]. The wearable monitoring applications use the advanced 

communication protocols and sophisticated sensors to capture the health data 
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continuously. The collected data is then used for processing and interpretation [54]. 

Wearable sensor technology seamlessly integrated into the standardised clinical data 

sets are a few examples of the impact and potential of wearable monitoring on wider 

healthcare systems especially patient monitoring, decision support, self-management of 

long-term and multiple conditions management [55]. 

The chronic and progressive nature of an individual’s health condition often time-

boxed and fluctuate rapidly, require a flexible monitoring model and technology that 

consider the timely nature and precise support [56]. Wearable monitoring applications 

are deployed into the community care to examine the gait, activity of daily life and data 

trends [57]. The increase of wearable monitoring systems will lead to huge streams of 

new data which will amplify the database and, therefore, complement and improve the 

accuracy of its predictive models [58]. 

Majority of wearable technology is distributed into, biopotential sensors, such as 

electrocardiography (ECG), electromyography (EMG) and electroencephalography 

(EEG) sensors. Secondly, motion sensor units, such as accelerometers and gyroscopes. 

Finally, environmental sensor units such as video cameras, vital signs monitors (such 

as heart rate, pulse rate and temperature) and pressure sensors [59]. 

Some studies suggested that the three-dimensional (3-D) printing technology may play 

an important role in this concept [60]. This technology has shown the potential of 

allowing any person equipped with a 3-D printer to fabricate their own 3D 

model/objects and if this technology is combined with a seamless integrated wearable 

sensor then this combination can produce some thoughtful outcomes for the healthcare 

delivery. Such innovations have potential to change the way healthcare is being 



17 

 

managed today and healthcare information exchange will be much more easy for any 

service provider to access the relevant information and provide better care [51]. 

2.1.1 Remote Patient Monitoring Applications 

Remote monitoring applications are based on the integrated network using internet as a 

connectivity channel to transmit the data, including, vital signs, video data, ECG 

recordings, etc. to support the healthcare delivery when distance separates the clinicians 

and patients. Remote monitoring applications are often a combination of mobile 

communication-based systems and wearable monitoring technology. With its many 

advantages, this technology has provided innovative solutions to deliver healthcare by 

remotely monitoring a patient. Some of these applications are still in the development 

stage, and others have already been implemented in the medical environment [61-63]. 

An advanced wearable application has been developed using sensor’s energy to 

communicate and transmit the data in real-time  [64]. In [65], the researchers have 

developed a mobile ECG monitoring application backed by the RFID to transmit data 

continuously to the local server. The system is depended on the battery life of mobile 

and RFID tags. Similarly, another application, Prognosis [66], is based on the fuzzy 

logic, mapped to the various signs, symptoms and disorders for identification of the 

health conditions. Such applications are heavily depended on the specific use-case and 

limited in the saleability to incorporate the wider disease and conditions due to the limit 

of data collection using the sensors and accuracy of the wearable body sensors [67]. 

Such applications aim to surface key physiological parameters for real-time 

information viewing. The data collector application then transmits the data in the cloud 

for complex processing which require high computational powers. The processed data 

will be available on the web for viewing and an alert or warning will be pushed back to 
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the mobile application for timely actions. This communication poses serious security 

and privacy threat to the health data. Security and privacy are considered one of the 

most important issues and a challenge when using such applications in clinical care 

settings. Table 2.1-1 summaries the selected wearable systems. 

Table 2.1-1 Summary of the selected studies related to the wearable monitoring applications 

(including LTCs) 

Author 

and 

Year 

System/ 

Application 

Study Aims Outcomes/ 

Findings 

Platform/ Type of 

Sensor Used 

Etemadi 

et al. 

2016 

[68] 

Long-term 

monitoring; 

chronic care 

monitoring 

To develop a low 

power, low cost patch 

for measuring activity 

using ECG and 

seismocardiogram 

(SCG) sensors 

The developed 

patch measured 

the combined 

activity, 

environmental 

context, and 

hemodynamics, 

for longer than 48 

hours with 

continuous 

recording 

Three-channels of SCG; 

one-lead ECG; the 

pressure sensor; an 

average current 

consumption of less 

than 2 mA from a 3.7 V 

coin cell (LIR2450) 

battery. 

Thomas 

et al. 

2016 

[69] 

Non-invasive  

continuous  blood  

pressure  (BP) 

monitoring 

To develop a wrist 

watch-based BP 

measurement system 

using ECG and 

photoplethysmogram. 

The study 

recorded the 

average root mean 

square error 

between the 

measured systolic 

BP 

A PPG sensor with both 

IR and red LEDs; two 

differential electrodes; 

third bias electrode; 

BioWatch comes with 

two analog front ends 

(AFE): the TIADS1292 

for acquiring ECG 

signal and the TI 

AFE4400 for reading 

PPG.  

 

Wu et 

al. 2015 

[70] 

Biofeedback 

system to monitor 

and learn from 

physiological 

signals 

To develop a wearable 

biofeedback system 

for personalised 

emotional 

management using 

heart rate variability 

The results 

indicated that the 

real-time HRV 

biofeedback is 

significantly 

effective in cases 

of negative 

emotion 

A conductive textile 

material as the 

electrodes for ECG and 

breathing activity; a 

differential separation 

filter and a common 

signal conditioning 

Xu et al. 

2016 

[52] 

Treatment, in-

community 

rehabilitation and 

To develop a 

contextual online 

learning method for 

activity classification 

based on data captured 

Real-time 

learning system 

and contextual 

multi-armed 

bandits (MAB) 

Context driven activity 

classification and 

feedback; a set of 

sensors with a smart 

device attached to the 
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athlete training by low-cost, body-

worn inertial sensors 

approach that 

enables efficient, 

personalized 

activity 

classification 

user; activity 

classification module 

(ACM) and the context 

classification module 

(CCM) 

Sardini 

et al. 

2015 

[50] 

Posture Monitoring 

and Rehabilitation 

Exercises 

To develop a wireless 

wearable T-shirt for 

posture monitoring 

during rehabilitation 

or reinforcement 

exercises 

The wireless 

wearable sensor 

produced reliable 

data compared 

with the data 

obtained with the 

optical system 

A copper wire and a 

separable circuit board; 

the actuator is a 

vibration micromotor 

(Pico Vibe) 

commercialized by 

Precision Microdrivers 

Spano 

et al. 

2016 

[71] 

Remote patient 

monitoring; ECG 

monitoring 

To develop an ECG 

remote monitoring 

system that is 

dedicated to non-

technical users in need 

of long-term health 

monitoring in 

residential 

environments and is 

integrated in a broader 

Internet-of-Things 

(IoT) 

Developed an 

integrated 1) ECG 

prototype sensors 

with record-low 

energy per 

effective number 

of quantized 

levels and 2) an 

architecture 

providing low 

marginal cost per 

added sensor/user 

The wearable ECG 

sensor consists of a 

battery-powered chest 

belt; two dry plastic 

electrodes and the 

electronic printed circuit 

board; The circuit 

extracts, filters, 

amplifies and digitizes 

the ECG signal, which 

is then acquired by the 

microcontroller 

Melillo 

et al. 

2015 

[72] 

Risk assessment of 

vascular events and 

falls in 

hypertensive 

patients 

To design and develop 

a flexible, extensible, 

and transparent, and to 

provide proactive 

remote monitoring via 

data-mining 

functionalities 

Future vascular 

event was 

predicted within 

the next 12 

months with an 

accuracy of 84% 

BioHarness Bluetooth 

logging protocol 

application was used to 

collect the data 

 

2.1.2 Machine Learning and Decision Support 

With the increase in adoption of wearable patient monitoring systems, it is expected 

that the variety of new data sources will be created, which will also complement the 

health record. Using machine learning, the raw data needs to be transformed in to the 

meaningful and actionable data. But, the current issue with the expert-or knowledge-

based systems is the accuracy and the reliability of these models [73-75]. Majority of 

current models contain medical knowledge about a very specifically defined task and 

can analyse the collected data from individual patients only. When insufficient 
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knowledge is encountered, machine-learning approaches can be used to analyse a series 

of clinical cases to characterize the condition of a given patient or disease. The current 

state of wearable monitoring systems can be further enhanced with the integration of 

such techniques into the hardware or in the cloud for real-time processing [48]. 

One of the bottlenecks to consider for the third generation of pervasive sensing 

platforms is to achieve rapid and scalable processing for large datasets. From a 

software point of view, processing big data is usually linked to programming paradigms 

[76]. Several open-source frameworks such as Hadoop [77] are frequently used to store 

a distributed database in a scalable architecture, as a basis for tools (such as Cascading, 

Pig, Hive) [77] that enable developing applications to process vast amounts of data (by 

the order of terabytes) on commodity clusters. However, when combined with 

continuous streams of pervasive heath monitoring, this also requires capacities for 

iterative and low-latency computations, which depends on sophisticated models of data 

caching and in-memory computation. Thus, other frameworks such as Storm and Spark 

have been created to fulfil this gap [77]. 

2.2 Current Issues and Challenges related to the Wearable 

Monitoring Systems 

The next generation of WPM systems is likely to improve the quality of human life by 

assuring high comfort while increasing the intelligent use of limited resources [78-81]. 

Further improvements in textile sensors design, signal quality, miniaturization and data 

acquisition techniques are required to fulfil these expectations. Figure 2.2-1 shows the 

overview model of WPM systems and lists four key areas which are currently limiting 

the wider clinical adoption of wearable technology [79-84]. The following sections 

elaborate the issues pertaining to these four key areas.  
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Figure 2.2-1 Overview model of wearable monitoring systems 

2.2.1 Sensors and Signals 

The number of biosensors used in current WPM systems is generally large and requires 

specific on-body placement or body postures in order to provide reliable measurements 

[85]. One of the technical barriers when using WPM systems is the obstruction of 

feature extraction from the signal due to motion artefacts. This is due to body 

movement or respiration and needs to be resolved [86]. A study by Etemadi et. al [68] 

utilized advanced signal processing to collect accurate and reliable seismocardiography 

(SCG). To increase the quality and accuracy of the SCG, linear filtering, detecting the 

R-wave peak timings from the ECG, and using these timings as a fiduciary for 

ensemble averaging the SCG were implemented. In a similar study that investigated 

biofeedback training for emotion management and patient monitoring [70], the signals 

collected were unreliable and disturbed by a variety of noises.  

Most body-worn applications reported that the system’s accuracy is hampered by 

noises such as: electromagnetic interference of power line, poor quality of contact 

between the electrode and the skin, baseline wander caused by respiration, 

electrosurgical instruments and movement of the patient’s body. Most of these noises 
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cannot be filtered out completely over the hardware-processing unit due to the 

processing limitations [79, 81, 83]. Therefore, it is necessary to filter out these noises as 

much as possible in the software platform. The researchers from this study adopted the 

Butterworth Notch Filter (BNF) and finite impulse response (FIR) band-pass filter to 

eliminate power line interference and baseline wander, and a novel multi-scale 

mathematical morphology (3M) filter to reduce the impact of the non-linear noises 

caused by poor electrode contact and motion artefacts.  

Similarly, an another study used a wireless wearable T-shirt to monitor the patient’s 

posture during rehabilitation exercise [87]. The researchers manually sewed an 

enamelled copper wire of 1mm diameter to a T-shirt and constituted the sensor (about 9 

cm long and 2.5 cm wide with a total length of 50 cm). The copper wire was stitched 

with a zigzag pattern on the back and the chest, thus allowing the lengthening of the T-

shirt and sensor in the sagittal plane. The study achieved good outcome in a small 

setting, but the impedance value of the sensor changed due to the different factors such 

as the relaxation of the T-shirt or skin conductivity variation. The T-shirt with the sewn 

copper wire was washed (expecting a relaxation) after it was used, but no variation was 

observed [50]. 

2.2.2 Wearable Device Connectivity 

One of the most common issues with wearable systems is the delay in providing results 

and generating alerts due to data loss, buffering, network communication, monitoring 

or processing [69, 88, 89]. These systems were developed for specific setup and care 

settings in order to assist patients’ specific need. WPM systems using 3G/4G data 

suffer connectivity issues due to the remote network, low signal strength in remote 

places, low battery life time, low transmission speed, thus resulting in delay or low 

quality data for periods of short time [88, 90]. To address these issues, a cross-layer 
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framework has been developed based on unequal resource allocation to support secure 

wireless wearable data encryption and transmission [91]. The low battery life issue 

occurs due to continued connectivity of device/sensor with the Bluetooth, Wi-Fi or 

3G/4G networks [92-94]. Moreover, if the power supply is not an issue, then the 

mobility of the device may become problematic, especially for older adults. 

A portable ECG monitoring device developed by Lee et al. [93] can easily measure the 

ECG by connecting the measuring module to a patch with a minimized electrode array 

using a snap button. The measuring module is small (38 mm wide, 38 mm long and 7 

mm thick). The weight of the module including the battery is 10 g. The study reported 

that an ECG signal was collated using a commercial device that was similar to the 

conventional Holter monitor. The study reported that even with the wires firmly fixed, 

the ECG signal quality was often disturbed, as the wires moved depending on the 

subject’s body movements. According to another study, the ratio of motion peaks to 

normal peaks was estimated as being about 10% when the ECG was taken from a freely 

moving patient using the Holter monitor [92]. For this reason, ECGs obtained using 

Holter monitors are limited, and algorithms used to eliminate noise from the data have 

been actively developed. As important as it is to detect and exclude generated noise 

from the analysis, it is even more important to reduce the occurrence of noise itself in 

the first instance, and this is a common issue with almost all sensor-based WPM 

systems [93, 95]. 

In real-time scenarios, wearable data transmission often requires some data processing 

and therefore network delays. Some systems produced good results when tested offline 

but reported delay when tested in real-time [88]. Prakash et.al [96] demonstrated an 

efficient connectivity and communication framework in a real-time wireless hospital 

sensor network, which could be adopted for acute care settings. 
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2.2.3 Data Processing, Integration and Clinical Decision Support 

Machine learning and artificial intelligence techniques have the potential to transform 

healthcare services by improving diagnostics and predictive modelling. The utilisation 

of these techniques in healthcare is still emerging, as it requires considerable analysis to 

provide reliable results that clinicians would actually use [97]. The raw data collected 

from wearable sensors would provide a data source that did not exist before. These data 

would undergo further analysis to be transformed into meaningful and actionable 

information. This process would be supported by real-time machine learning processing 

techniques. Advanced signal processing algorithms for faster processing, low power 

consumption, low cost, and less complexity have been applied to healthcare settings. 

However, such algorithms are often tested by simulation or under fixed conditions. 

Implementation of these algorithms in the wearable monitoring in an acute care 

environment led to poor results due to significant processing time and delay. A medical 

grade remote monitoring system with a reliability exceeding 99% has been developed, 

but a 2.4 second initial buffering delay, as well as a small processing and network delay 

were reported [98]. 

The current concern with the deployment of expert systems in healthcare is accuracy 

and reliability [80, 99]. To achieve higher accuracy in decision support, a complete data 

set must be employed for different stages of training, testing and validating of expert 

systems. Currently, the majority of existing clinical decision support models contain 

medical knowledge of a specific or pre-defined task and therefore can analyse the 

collected data from individual patients or from small data sets only. Thus, highlighting 

the issue of scalability and wider integration is a challenge for future research and 

development [4, 18, 28]. Moreover, machine-learning approaches can be used to 

analyse the streaming of real-time clinical data and map it to known/existing 
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condition(s). The current state of wearable monitoring systems can be further enhanced 

with the integration of such techniques into the hardware or in the cloud computing 

platforms for real-time processing [100]. 

One of the bottlenecks to consider for third generation of pervasive sensing platforms is 

to achieve rapid and scalable processing for large datasets. From a software point-of-

view, processing big data is usually linked with programming paradigms [76]. Several 

open-source frameworks such as Hadoop [77] are being used to setup distributed 

database environments via a scalable architecture. This provides a basis for further 

usage via other tools (such as Cascading, Pig, Hive) [77] that enable developing 

applications to process vast amounts of data (by the order of terabytes) on commodity 

clusters. However, when combined with continuous streams of pervasive heath 

monitoring, this also requires capacities for iterative and low-latency computations, 

which depends on sophisticated models of data caching and in-memory computation. 

Thus, other frameworks such as Storm and Spark have been created to fulfil this gap 

[77]. 

Rich clinical decision support could be achieved by using the insights gained by taking 

a machine-learning approach to the data collected via wearable sensors and/or wireless 

medical devices [101]. A cloud-based clinical decision support system embedded with 

machine learning techniques could include: drug-drug allergies, individualised drug 

dosing, clinical risk scores/scales and gaps in care – alerts, reminders, warnings and 

notifications [99, 102, 103]. 

2.2.4 Information Exchange 

Mostly, mHealth applications are developed either web-based or local machine-based. 

In both cases, they will be connected to other services for the transfer of information. 
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However, the local application usually does not have data integration capabilities with 

other clinical databases to fetch patient data for processing, they mostly relay on local 

patient data and limited to specific area or an issue. Local machine-based applications 

have the advantage of patients’ information security and privacy, but have two critical 

drawbacks; memory space and limited patient data access [104]. However, fully 

connected applications have the advantage of analysing more patient data from other 

data repositories to predict/interpret the decision support. Such applications will also be 

connected to cloud-based environment for information transmission but require an ICT 

infrastructure – with cost implications at the initial stage. Another issue is the privacy 

and security of patients’ personal information [105]. It is suggested that there should be 

balance between clinical use and ICT dependence for mHealth applications. For 

example, if the medical device or hospital internet connectivity fails then the whole 

application will be useless for clinicians, because normally all data is stored in the 

cloud due to the smartphone/tablet’s limited space [104, 106].  

It is recommended that, in a limited resource setting, it is optimal to use the local 

smartphone application for the specific healthcare area so that huge ICT-related costs 

could be saved. Wilcox et al. [107] attempts to minimize such barrier by using 

advanced data encryption process before and after the data transmits, so that the data 

available locally as well as data available on the cloud is secure and no breach during 

the data transmission could take place. The issue of integration/connectivity is 

addressed by using a native application with secure data storage rather than a desktop 

computer with added layer of data security including a browser security for web-based 

forms. This poses the risk of mobile device theft and ending up in remote wipe of the 

whole device data [107], which again points towards the ICT infrastructure to store and 

handle huge amount of incoming patient data. However, storing information on the 



27 

 

hand-held device introduces the risk of losing the device (easier to lose the smartphone 

device than desktop work station) and one cannot physically steal or lose the cloud. 

2.3 Summary of Wearable Monitoring Systems 

We believe that one of the core advantages of WPM systems is the patient’s (user’s) 

self-engagement with the treatment – which is often missing. There is a shift in wider 

thinking of WPM systems as ‘only data collectors’ to viewing them as being self-

engaging and motivating systems which allow rich interactions between patients and 

clinicians [108-110]. Due to WPM systems being traditionally regarded as data 

collectors only, the majority of wearable systems lack user-engagement and user-

interaction aspects. The wearable systems are often focused on providing real-time 

health data to clinicians for timely treatment and actions, but are missing user-

acceptance and engagement. User-engagement and user-interaction are some of the key 

uptake factors among consumers (non-clinical care settings) for wearable technologies 

[111-113]. 

An advanced WPM system named HexoskinTM [114] (ClinicalTrials.gov Identifier: 

NCT02591758) with a vest and embedded sensors is being developed. It provides the 

user with seamless and fully integrated information regarding heart rate, breathing rate, 

minute ventilation, heart rate maximum, resting heart rate, heart rate recovery, maximal 

oxygen uptake and cadence. It uses textile-integrated sensors for activity, respiration 

and heart rate and intelligently makes use of the three-cardiac dry and textile electrodes. 

The cardiac sensors for ECG uses 1 channel, 256 Hz, heart rate 30-220 beats/min, 1Hz 

with QRS event detection, RR intervals and heart rate variability analysis. For 

breathing monitoring, the system uses two channels, 128 Hz; breathing rate 3-80 

breaths per minute, 1Hz; tidal volume (last inspiration) 80-10000 mL, 1Hz; minute 

ventilation (inductance plethysmography) 2-150 L/min, 1Hz and inspiration and 
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expiration events: 8 ms resolution. HexoskinTM provides users with real-time and 

remote monitoring via secure Bluetooth connected mobile app (iOS and Android), a 

web dashboard, up to 14 hours of battery life (rechargeable), free data storage in cloud 

and secure access anytime [114, 115]. HexoskinTM allows users to download the raw 

data in machine readable format, as well as provide users with raw, processed and/or 

meaningful data. The access to the application programming interfaces (APIs) and raw 

data in machine-readable format enables the healthcare professionals, researchers and 

developers to leverage the existing open platform for data mining, machine learning for 

various clinical, social, behavioural and physical (activity-related) use-cases and 

explore the data further for enormous healthcare benefits. 

  



29 

 

CHAPTER 3 Methodology and Approach 

3.1 Introduction 

In this research, mixed method approach is applied to gain deep insights from the 

analysed qualitative literature and medical data and apply the protocols on the collected 

quantitative data. This research adopted the well-established and robust multi-

methodological approach used in the information systems research (ISR), originally 

introduced by Nunamaker Jr et. Al in 1990 [116]. It consists of four research 

strategies/phases - observation, theory building, systems development and 

experimentation. The phases are not in any particular order but they are all mutually 

connected to support creation and validation of a system with multiple iterations. 

Nunamaker Jr et al. [116] believes that having an integrated approach will enable ISR 

to keep pace with technological advancements and organization acceptance. Figure 

3.1-1 shows Nunamaker’s multi-methodological approach to IS research and below is a 

summary of four research phases from Nunamaker Jr et al. [116].  
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Figure 3.1-1 Nunamaker’s Multi-Methodological Approach to IS Research [116] 

3.2 Multi-methodological Approach 

For this study we adopted the multi-methodological approach used in information 

systems research. Figure 3.2-1 shows the high-level multi-methodological approach 

workflow diagram adopted in this research. The four research strategies/phases of this 

research are described in detail below – observation, theory building, experimentation 

and systems development and its associated workflow is depicted by numbers #1 to #9 

[116]. 
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Figure 3.2-1 Adopted multi-methodological approach displaying research phases for this research 

study (based on [116]) 

3.2.1 Observation 

This phase includes research methodologies such as case studies, field studies and 

empirical review to bring clarity to the research domain [116]. This research uses the 

quantitative, experimental research approach to minimise the preconceptions due to the 

fact that the technology-led diabetes self-management interventions have few or no 

predetermined research available to support the success or failure of this method. We 

reviewed the existing literature for existing LTCs programs, technology-led LTCs 

intervention and outcomes of self-management of LTCs to determine the known and 

existing facts and establish the research gap and strengthen our focus on solving the 

LTC using technology-led self-management of diabetes. Figure 3.2-2 shows phase 1 of 

the multi-methodological approach we adopted. 
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Figure 3.2-2 Phase 1 Observation of the multi-methodological approach to IS Research (dotted 

lines represent the direct association and dashed lines represent the indirect association) 

3.2.2 Theory Building 

Figure 3.2-3 shows phase 2 – Theory Building of the multi-methodological approach. 

This phase includes design and development of new ideas, models and frameworks 

[116]. Mostly, the artefacts identified in the observation phase could be 

used/implemented here to construct the design concept of the framework and thus, 

support in suggesting research hypotheses and design of experiments. 

This research followed the below methods in order to conceptualize the theory: 

• Investigation and evaluation of the existing best-practice clinical guidelines, 

national recommendations and care plans for diabetes 

• Design the clinical mapping of the existing information 
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• Design to conceptualize the latent data patterns, trends and structures of the area 

of interest through the process of constant comparison and evaluation including 

the use of an inductive approach to generate substantive insights or trends from 

the data 

• User engagement and interaction approaches for an effective data collection 

application 

• Analysis and mapping of New Zealand specific best-practice clinical guidelines, 

national recommendations and care plans for diabetes with the detection model 

• Review of the existing pre-build models on diabetes as a base threshold for 

detecting pre-LTCs 

 

Figure 3.2-3 Phase 2 Theory Building of the multi-methodological approach to IS Research (dotted 

lines represent the direct association and dashed lines represent the indirect association) 
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3.2.3 Experimentation 

Phase 3 is conducting lab/field experiments, simulations or interviews. The design of 

experiment in this research is heavily motivated by the theory building (phase 2) and 

partially supported by system development (phase 4) [116]. The experimentation was 

supported by Hexoskin using their advanced body sensors vest as wearable monitoring 

system. 

The data collected to conduct this research study are; heart rate, heart rate variability, 

breathing rate, breathing volume, activity (steps, cadence and calories), blood glucose, 

height, weight, age and sex. The existing and available pre-build models are used to 

validate the proposed study, which is validated for NZ long-term conditions to provide 

early indication of any pre-long-term condition detection, including in the UK [117, 

118]. This will measure the impact of the proposed intervention among NZ population 

from wider areas of community than those studied previously on geriatrics 

rehabilitation wards or with specific set of patient cohort [119-121]. 

In summary, we conducted the data analysis for individualised and personalised 

monitoring and early detection (rather than threshold-based limits) using the data 

clustering approach and weighted parameters mechanism. 

Advanced data analysis technique was applied using the identified LTC models for 

detecting pre-LTCs (fuzzy logic-based artificial intelligence technique). The developed 

model is then deployed and compared to test the accuracy and efficiency. 
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Figure 3.2-4 Phase 3 Experimentation of the multi-methodological approach to IS Research (dotted 

lines represent the direct association and dashed lines represent the indirect association) 

3.2.4 System Development 

There are five stages of system development: concept design, constructing the system 

architecture, prototype, product development, and technology transfer. Concept design 

is incorporation of technological and theoretical concepts into potential practical 

applications. Development of prototype (proof-of-concept) is used to demonstrate 

feasibility of the system [116]. 

An adaptive-neuro fuzzy inference system (ANFIS) was developed to interpret and 

detect early pre-LTC using collected vital signs and activity data. It plays an important 

role in the diagnosis of individualized monitoring instead of threshold-based or age-

based detection. The system learns the normal parameters for each individual using 
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adaptive-neuro fuzzy system modelling. The relation between vital signs and activity 

data with the set pre-diabetic conditions can be established by consulting with 

physicians and related medical assessment. 

The interpretation of the diagnostic values and the relationship between vital signs, 

activity data, demographics data and their clinical interpretation are mapped to the 

ANFIS rules. Moreover, clinical acceptability of assessment procedures via expert 

agreement analysis is evaluated and factors that affect on-going data collection, barriers 

to this intervention, accuracy and the potential for person’ self-management will also be 

measured. 

Figure 3.2-5 shows a block diagram overview of the interpretation engine and the 

proposed multi-layered outcome for early detection of pre-LTC. The proposed system 

has been tested for both real-time as well as offline data. Extensive data analysis and 

pre-processing were carried out so that the input feeding data has a unique path and 

features throughout the monitoring phase. The interpretation engine consists of four 

key components (individualised monitoring, evidence-based reasoning, weighted 

parameters and medical knowledge base) which complement each other when the 

information is complete and works individually when information is limited and/or 

incomplete. A multilayer concept has been introduced to enhance the overall outcome 

reliability and accuracy of the proposed system. The multilayer outcome has the 

potential of early detection of LTC. This mechanism is best utilised in this context by 

feeding a multiple input-output combinational relationship. Detailed results and 

validation of testing and enhancements are described in Chapter 4. 
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Figure 3.2-5 Overview of interpretation engine using four components - Individualised monitoring, 

Evidence-based reasoning, Knowledge-base and Weighted parameters 

3.3 Diabetes Screening Mechanism and Protocols for New Zealand 

The New Zealand Guidelines Group [12] recommended that HbA1c screening for type 

2 diabetes be completed as part of a LTC risk assessment. The New Zealand Society 

for the Study of Diabetes [12] advised that the following groups be given priority for 

diabetes and pre-diabetes screening [122, 123]: 

• Those adults over 25 years of age who: 

o have known ischaemic heart, cerebrovascular or peripheral vascular disease 

o are on long-term steroid or antipsychotic treatment 

o are obese (BMI ≥30 kg/m2 or ≥27 kg/m2 in Indo-Asian) 

o have a family history of early age onset of type 2 diabetes in more than one 

first degree relative 

o are women with a past history of gestational diabetes mellitus. 

• Obese children and young adults (BMI ≥30 kg/m2 or ≥27 kg/m2 in Indo-Asian) if: 

o there is a family history of early onset type 2 diabetes 

o they are of Māori, Pacific or Indo-Asian ethnicity.  
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3.4 Diabetes Screening Mechanism and Protocols for the United 

Kingdom 

In England, integrating care for the self-management with a LTC, including the ability 

to promote and support self-care, has become a core strategy for its National Health 

Service (NHS). For example, the government set a central commitment to provide the 

opportunity for all 15.4 million people in England who have a LTC to receive an 

integrated and personalised care plan [124-126]. Figure 3.4-1 shows the NHS and 

social care LTC model. This research is highly aligned with one of the successful LTC 

model - the NHS LTC model. The model highlights the infrastructure of decision 

support system required to support the self-care to cater for the self-management of 

LTC [29, 127].  

 

Figure 3.4-1 The National Health Services (UK) and social care long-term conditions model [127] 

Some of the core LTCs’ policies for the UK are [128, 129]: 

• The active promotion of self-care strategies to enable people with LTCs 
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• To live independently in the home environment 

• Investment in population-oriented health management through the use of 

predictive modelling techniques that enable at-risk individuals and populations 

to be targeted with appropriate interventions 

• A movement towards new integrated care organisations, which potentially 

provide an in-house set of comprehensive health and social care services to 

registered patients 

3.5 Stratification Mechanism for Managing the Risk of LTC for 

Prediabetes 

This research used a combined use case for detection the pre-LTCs using the below key 

points [10, 18, 27, 47, 123]: 

• People with pre-diabetes are at increased risk of developing diabetes  

• Given the disproportionately high prevalence of diabetes and pre-diabetes in 

Māori, Pacific and Indo-Asian people, these groups are especially at risk of 

developing type 2 diabetes and associated comorbidities 

• Pre-diabetes should be managed along with associated cardiovascular risk 

factors e.g., tobacco smoking, high blood pressure, high cholesterol 

• Lifestyle interventions can delay or reduce progression to type 2 diabetes, and 

possibly reduce long-term morbidity and mortality 

• A range of interventions are effective and the choice will depend on individual/ 

whānau/family preferences and community resources 

• Many interventions can provide better results than usual care, but ongoing 

support and follow up are required to enable behaviour change 
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• Efficacy increases with multiple behaviour changes, with weight loss being 

dominant 

• For overweight or obese people, aim for a long-term loss of at least five percent 

of initial weight 

Randomised controlled trials of subjects with LTCs have confirmed the potential for 

lifestyle interventions (such as dietary counselling, increased physical activity, weight 

loss and behaviour modification) [49]. These interventions could lead to a 27% 

reduction to the incidence of diabetes over 15 years. Lifestyle interventions could delay 

the development of diabetes by 3 to 4 years. For every one kilogram of weight loss, the 

risk of diabetes could reduce by 16 percent. Addition of vital sign data to the activity 

data gives this research study a unique combination for accurately detecting early long-

term conditions [29-31, 49, 68]. 

3.6 Guidelines and Standards on the Risk of Prediabetes 

The symptoms of Pre-diabetes are [11-13]: 

• Feeling tired and lacking energy 

• Feeling thirsty 

• Going to the toilet often 

• Getting infections frequently 

• Getting infections which are hard to heal 

• Poor eyesight or blurred vision 

• Often feeling hungry 



41 

 

Globally, it is agreed that in order to manage type 2 diabetes [11-13], the person has to: 

• Stay physically active and get regular exercise. Aim for at least 30 minutes of 

moderate physical activity each day or 5000 to 10000 steps per day (according 

to the person’s physical health) 

• Eat healthy food 

• Keep your weight in a healthy range 

Table 3.6-1 shows the global pre-diabetes guidelines and risk measures adopted in the 

proposed detection model. Figure 3.6-1 shows one of the most common and widely 

used pre-diabetes risks score (paper version), designed and developed by 

DoIHavePrediabetes.org. 
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Table 3.6-1 Global comparison of pre-diabetes guidelines and risk measures 

Questions NZ UK US 

Overweight or Obese (BMI) ✓ ✓ Check Height and 

Weight 

Male or Female ✓ ✓ ✓ 

Inactive Lifestyle Activity Activity/Exercise 

Family History ✓ ✓ ✓ 

High Blood Pressure ✓ ✓ ✓ 

Have given birth to a baby 

who weighed over 9 pounds 

(4kg?) 

✓ ✓ ✓ 

South Asian 

Asian 

 

✓ (also 

Maori/ 

Pacific) 

✓ (also White 

European) 

✓ (also Asian 

American) 
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Figure 3.6-1 One of the most common and widely used pre-diabetes risk score (paper version) 

 

  



44 

 

CHAPTER 4 Data Collection, Analysis and Results 

4.1 Introduction 

Healthcare organisations want to reduce costs and improve their financial assets while 

seeking maximum level of care, accuracy and patient satisfaction. In fact, health 

professionals have to anticipate the increasing demand in healthcare services caused by 

the ageing population, chronic conditions and LTCs [130]. These factors clearly 

emphasise the need for efficiency, and the necessity for further enhancements in the 

self-management of LTCs. The past few decades have failed to witness a real 

improvement in the self-management of LTCs and patient monitoring using wearable 

body sensors [131]. 

One of the important areas related to this research is the person’s vital signs, activity 

data and the demographics data on which the whole development is based. This chapter 

in-detail discusses the data collection methodology, adoption of data collection 

(including ethics approval) and the test-bed prepared for the data analysis and early 

detection of prediabetes and Diabetes. 

The vital signs are an essential part of the patient’s medical record. Even the best of 

healthcare cannot be defended or referred to if there is no clear record that such care 

took place. The essential purpose of maintaining the electronic record of the vitals data 

is to analyse the individual’s trends, range, history and known health issues. Overall the 

record also helps to understand how an individual patient responds to the treatment.  

The rapid development of telecommunication and information technologies has 

accelerated development in the patient’s electronic record [132]. This work also 

explores the possibility of realizing a reliable and efficient wearable monitoring and the 
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development of an early detection of LTCs. Wearable patient monitoring systems not 

only increase the mobility of patients and medical personnel, but also improve the 

quality of health care [133]. With respect to the remote monitoring of patients, many 

groups have demonstrated the transmission of vital signs and activity data using: 

GPRS, 2G, 3G, 4G and 5G (under development) networks [134]. Some researchers 

have used cellular phones to transmit vital signs from the ambulance to the hospital, 

either in store-and-forward mode [135] or in real-time mode [136]. In the following 

sections of this chapter, the details of patients’ data collection are discussed, followed 

by data acquisition devices, protocols and the proposed model. 

4.2 Ethical Approval, Wearable Smart Shirt and Data Collection 

4.2.1 Ethical Approval 

The collection of vital signs and activity data from humans (patients) is considered as 

clinical trial, and it is defined by World Health Organisation (WHO) as, 

‘a clinical trial is any research study that prospectively assigns human participants or 

groups of humans to one or more health-related interventions to evaluate the effects on 

health outcomes. Clinical trials may also be referred to as interventional trials. 

Interventions include but are not restricted to drugs, cells and other biological 

products, surgical procedures, radiologic procedures, devices, behavioural treatments, 

process-of-care changes, preventive care, etc. [137]’ 

The research described in this thesis has successfully obtained ethics approvals in order 

to conduct the data collection from the Auckland University of Technology Ethics 

Committee (AUTEC): 
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• Auckland University of Technology Ethics Committee (AUTEC) approval 

number – 16/412, approved November 2016) - APPENDIX A 

• Participant information sheet (page 1 of 2) – APPENDIX B 

• Participant information sheet (page 2 of 2) – APPENDIX C 

• Consent Form - APPENDIX D 

• Participant Advertisement Sheet - APPENDIX E 

4.2.2 Participant Recruitment, Inclusion and Exclusion Criteria 

a) Acceptance and Rejection Criteria: Any healthy, 16 years (or over) individual 

who can give their own consent will be considered for this study.  

Participants with a known medical condition, which may restrict the activity of 

daily life performance, participants who cannot give their own consent and 

participants with known skin allergy are excluded as there will be no useful data 

in such case 

b) Data Storage: The data will be stored securely on AUT premises in a location 

separate from the consent forms. Electronic data is downloaded to an external 

storage device (e.g. an external hard drive, a memory stick etc.) and securely 

stored for up to 10 years 

c) Number of participants: 02 (due to the data collection time and the project 

scope and timelines) 

d) Participants selection: First in first served to required number of participants 

e) Participant Invitation: the participants are invited using study advertisement 

and participant information sheet 

f) Consent: The consent of participants is obtained via written consent form. 

Participants have given the right to decide whether or not they wish to 
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participate in research. They need not give reasons for refusing to participate in 

research 

g) Risk or discomfort: There is no way that the participant will be put under any 

sought of risk 

4.2.3 Selection of Wearable Monitoring System 

This research adopted market available and clinically validated body-wearable sensors 

that were incorporated into one vest. Development of a wearable monitoring system 

was beyond the scope of this research. Extensive market research, involving senior 

engineers, clinicians, IT firms and healthcare companies has been conducted to refine a 

reliable, advanced and wearable patient monitoring system. The selection of wearable 

system was made after finalising the system architecture, and a number of critical as 

well as functional requirements were identified as essential for the device to be 

considered for this project.  

Table 4.2-1 describes the features/functionalities considered for a suitable wearable 

monitoring system. System features are divided into five categories; wearable (project 

theme), reliability (to collect data in real-time), transmission (seamless data 

transmission to other machines), size/power/cost (end user’s ease and affordability) and 

operational usability. 
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Table 4.2-1  Features identified for inclusion of wearable monitoring system 

Categories Features 

Wearable (Wireless) Bluetooth Class II 

Wireless Range 

Standard Data Transmission Protocol 

Reliability Clinically Validated 

Stable 

Certified (International Standards) 

High Accuracy 

Transmission Continuous/Time based Data Collection 

Automatic Transmission 

Customisable data collection 

Size/Power/Cost Small Size 

Light Weight 

Battery Operated 

Low Cost 

Low Maintenance 

Operational Simple to Understand 

Easy to Operate 

High Readability 

Multi-Capture 

Fully Customisable 

Clear Message/Indicators 

 

4.2.4 Body-Wearable Shirt for Real-time Monitoring 

This research project used market available wearable vest – Hexoskin 

(www.hexoskin.com) through the research collaboration. Hexoskin’s biometric shirt 

can provide more biometric data than any other wearable on the market [138]. It can 

monitor heart rate, breathing rate, ventilation, recovery, cadence, and oxygen levels. It 

is designed to be an equally effective sleep-tracking device. Hexoskin is used by space 

agencies, military organizations, and sports teams around the world [139]. The shirt 

pairs with an app that tracks the wearer’s performance across different activities and 

can be used to monitor health, fitness, and more. It is machine washable and comes in 

several different models for men and women [138-142].  

Figure 4.2-1 shows the overall architecture diagram with data flow from Hexoskin 

wearable shirt, smartphone application, desktop/laptop application and cloud 

connectivity. 

https://www.hexoskin.com)/
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The Hexoskin smart shirt can monitor: 

• Heart Rate, HRV (allowing to estimate stress and fatigue), Heart Rate 

Recovery, and ECG 

• Breathing Rate (RPM), Minute Ventilation (L/min) 

• Activity intensity, peak acceleration, steps, cadence and sleep positions 

The key features of the Hexoskin shirt are: 

• 14+ hours of battery life 

• 600+ hours of standalone recording 

• Bluetooth connectivity with iPhone, iPad and Android 

• Safe for any kind of activity 

Sensors Details: 

• Analog 256Hz ECG data 

• Analog dual-channel 128Hz breathing sensors 

• Analog 3D 64Hz acceleration 

 

Figure 4.2-1 Overall architecture diagram with data flow 
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4.2.5 Data Collection 

This research collected three types of data sets: (1) vital signs: heart rate, heart rate 

variability, breathing rate, breathing volume, oxygen saturation and pulse rate, (2) 

Activity Data: steps, cadence, distance and calories and (3) Demographic Data: height, 

weight, age, sex and blood glucose. 

4.2.6 Participant Information and Data Statistics 

Statistical information was found to be an important feature in developing a reliable 

interpretation model. Data trends from various viewpoints gave deep insight into the 

pattern modelling, for example, data trends between 65+ males and females are 

different and the 65-79 age groups is different from the 80+ age group. The difference 

is minor but this data analysis gave the interpretation model high reliability by 

considering minute details such as: gender, age group (65-79 and 80+) and maximum, 

minimum, range and standard deviation (SD) for each individual. 

Table 4.2-2 and Table 4.2-3 below show the variety of statistical information related to 

the patient data collected. In the tables below HR is heart rate in beats per minute, 

SpO2 is oxygen saturation in percentage, B Glu is blood glucose level in mg/dl (mg/dl 

divided by 18 gives mmol/l and mmol/l times 18 gives mg/dl) and activity data is in 

number of steps and calorie. Due to the limited time, this research collected data from 

two participants only, Table 4.2-2 gives the statistics information of the collected data 

and Table 4.2-3 shows the participant’s statistical information for demographic data, 

vital signs and activity data including blood glucose readings. Detailed statistics for all 

collected variables are shown in APPENDIX F. 
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Table 4.2-2 Mean values of the collected data 

Parameter Mean Value 

Number of Patient 02 

Age (years) 57 

Sex (M/F) % 50/50 

Heart Rate (beats per 

minute) 
149.5 

Oxygen Saturation (%) 96.12 

Minute Ventilation 38.5 

Blood Glucose 61 mmol/mo 
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Table 4.2-3 Participant’s statistical information for demographic data, vital signs and activity data 

Data/Participant Participant 1 Participant 2 

Demographic 

Data 

• Age: 60 

• Sex: Male 

• Weight: 84 kgs 

• Height: 168 cms 

• Age: 53 

• Sex: Female 

• Weight: 69 kgs 

• Height: 149 cms 

Vital Signs Data 

• Heart rate (Min=70; 

Max=191; AVG=158) 

• Breathing rate (Min=9; 

Max=82; AVG=43) 

• Ventilation (Min=51; 

Max=65; AVG=32) 

• Heart rate (Min=66; 

Max=172; AVG=141) 

• Breathing rate 

(Min=10; Max=42; 

AVG=23) 

• Ventilation (Min=44; 

Max=69; AVG=45) 

Activity Data 

• Activity (Min=0; 

Max=1.9; AVG=0.63) 

• Cadence (Min=51; 

Max=243; AVG=132) 

• Activity (Min=0; 

Max=1.1; AVG=0.55) 

• Cadence (Min=69; 

Max=191; AVG=122) 

Blood Glucose 

(average) 
• 70.33 mmol/mo • 52 mmol/mo 

Time 3.5 hours (multiple sessions) 3.5 hours (multiple sessions) 
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4.3 Overview of the Proposed Model 

High importance has been given to the accuracy and reliability of the overall system. 

Figure 4.3-1 shows the key building blocks of the proposed model. This section 

discusses in detail the core modules (methodologies) integrated into the interpretation 

engine. 

 

Figure 4.3-1 The proposed model’s overview diagram 

4.3.1 Fuzzy Logic-based Early Detection Model 

The primary objective of fuzzy logic is to map an input space of ‘data’ to an output 

space of ‘useful information’. This mapping is controlled by using IF-THEN statements 

known as rules. The order in which these rules are applied is irrelevant, since all rules 

run concurrently. It provides a remarkably simple way to draw definite conclusions 
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from vague, ambiguous or imprecise data. In a sense, it resembles human decision 

making with its ability to work with approximate data yet find precise solutions [143]. 

The concept of Adaptive Neuro Fuzzy Interference system (ANFIS) [144] as system 

identification has been used in this project. The fuzzy-logic defuzzification used by 

ANFIS is based on a zero-order Sugeno fuzzy model (or FIS, Fuzzy Inference System) 

[145]. The following sections will present and develop ideas such as sets, membership 

functions, logical operators, linguistic variables and rule bases. 

4.3.2 Fuzzy Sets, Membership Functions and Logical Operators 

Introduction to Fuzzy Sets, Fuzzy Logic and Logical Operators of the fuzzy control 

systems establishes a strong foundation for designing and analysing fuzzy control 

systems under uncertain and irregular conditions. 

4.3.2.1 Fuzzy Sets 

Fuzzy sets are sets without clear or crisp boundaries. The elements they contain may 

only have a partial degree of membership. They are, therefore, not the same as classical 

sets in the sense that the sets are not closed. Fuzzy sets can be combined through fuzzy 

rules to represent specific actions/behaviour and it is this property of fuzzy logic that 

will be utilised when implementing a fuzzy logic controller in subsequent sections. 

4.3.2.2 Membership Functions 

A membership function (MF) is a curve that defines how each point in the input space 

is mapped to the set of all real numbers from 0 to 1. This is really the only stringent 

condition brought to bear on an MF. A classical set may be, for example, written as: 

 A = [x | x > 3] (4.1) 
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Now if X is the universe of discourse with elements x then a fuzzy set A in X is defined 

as a set of ordered pairs: 

 A = [x, μ A (x) | x  X] (4.2) 

 

Note that in the above expression μ A (x) may be called the membership function of x 

in A and that each element of X is mapped to a membership value between 0 and 1. 

Typical membership function shapes include triangular, trapezoidal and Gaussian 

functions. The shape is chosen on the basis of how well it describes the set it 

represents.  

Figure 4.3-2 shows the example of fuzzy sets created in the triangular shape. In this 

example, the MFs are created as S is small; MS is medium small; M is medium, ML is 

medium large and L is large. The values of these sets vary from 0 to 1 in both the axes. 

 

Figure 4.3-2 Example of Fuzzy Set. S is small; MS is medium small; M is medium, ML is medium 

large; L is large 

Figure 4.3-3 shows the example of fuzzy sets created in the Gaussian shape. In this 

example, the MFs are created as poor, good and excellent. The value of these sets on x-

axis is 0 to 100 and on y-axis is 0 to 1. 



56 

 

 

Figure 4.3-3 Example of a three-part Gaussian shaped MF 

4.3.2.3 Logical Operators 

Fuzzy logic reasoning is a superset of standard Boolean logic, yet it still needs to use 

logical operators such as AND, OR and NOT. Firstly, note that fuzzy logic differs from 

Boolean yes/no logic in that although TRUE is given a numerical value ‘1’ and a 

FALSE numerical value is given ‘0’, other intermediate values are also allowed. For 

example, the values 0.2 and 0.8 can represent both not-quite-false and not-quite-true, 

respectively. It will be necessary to do logical operations on these values that lie in the 

[0, 1] set, but two-valued logic operations like AND, OR and NOT are incapable of 

doing this. 

4.3.3 Individual parameters 

The majority of systems used today have adopted the generalised monitoring model 

based on either set threshold ranges or standard deviation changes which are 

implemented specifically for certain age groups (older adults, adults and children) [146, 

147] and/or particular illness/health issue(s) [148, 149]. The proposed model has 

adopted individualised monitoring because of the fact that vital signs and activity data 

are different in each individual, hence threshold or SD based monitoring models often 

give high false alarms [150], eventually reduce the reliability of the overall system. 

Table 4.3-1 shows the heart rate statistics for the age range vs. participant data 
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(participant #1 and participant #2). Figure 4.3-4 shows the graphical view of difference 

between participant 1, participant 2 and the age range for 50-60 years old in terms of 

mean, maximum and minimum. 

Table 4.3-1 Heart rate statistics for the age range vs. participant data (participant #1 and 

participant #2) 

Heart Rate (beats per 

minute) 

Age range (50-60 

years) 

Participant 

#1 

Participant 

#2 

Mean 80-140 158 141 

Maximum 170 191 172 

Minimum 65 70 66 

 

 

Figure 4.3-4 The graphical view of difference of heart rate values between participant #1, 

participant #2 and age range for mean, maximum and minimum 

The implementation of the threshold or SD range based model would have high 

chances of getting high false alarms due to the difference between the mean, maximum 
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and minimum values of participant #1 and participant #2 when compared to the age-

based range data.  

The proposed model uses the individual data for the interpretation called 

‘individualised monitoring’ and fixed ranges (based on age or gender) only serves as 

the baseline of the framework. The unique feature of the individualised monitoring 

module is that its adaptive boundary limits will be changing throughout the monitoring 

phase. Every 10th recording, or every 10 minutes, the engine updates the limits and 

compares this with the previous ones so that any considerable changes can be detected. 

The adaptive limits have an accuracy advantage over the set limits, in cases of diabetes 

where blood glucose will be high (higher than normal for that particular person) and 

upon treatment (medication) blood glucose may be normal, this doesn’t mean that the 

patient will always have normal blood glucose from now on.  

While set individual limits will detect the confirmed diabetes, it resets the status to 

normal upon/after medication because no attempt has been made to update/change the 

set limits. Whereas, the proposed adaptive limits will detect the prediabetes, early 

diabetes and upon continuous update of the limits, will have a higher accuracy for 

transient or persistent diabetes detection, if the particular health issue persists in the 

future for that patient (iterative optimisation). 

4.4 Medical Knowledge-base 

Medical Knowledge-base (MKB) has become a successful technique for evidence-

based systems in this context. Briefly, MKB means retrieving former, already solved 

problems similar to the current ones and attempt to modify their solutions to fit the 

current problems. The underlying idea is the assumption that similar problems have 

similar solutions. Though this assumption is not always true, it holds for many practical 



59 

 

domains. MKB fulfils two main tasks: the first is the retrieval, which means to search 

for or to calculate the most similar events. If the event base is small, a sequential 

calculation is possible, otherwise faster non-sequential indexing or classification 

algorithms are applied. The second task, the adaptation (reuse and revision), means a 

modification of solutions of former similar events to fit a current one. If there are no 

important differences (defined by the system) between a current and a similar previous 

event, a simple solution transfer is sufficient. 

The evidence based reasoning module sets the universal (already known) facts as 

standards and establishes the main association link between the input and the output 

parameters. The baseline values using MKB was pre-loaded into the system as this 

functionality and development is huge and complex, thus out of scope of this research. 

4.5 Weighted Parameters Mechanism Adopted for the Proposed 

Model 

We adopted the Centre for Disease Control (CDC) Prediabetes Screening Test (US), 

NICE Diabetes guidelines (UK), Diabetes New Zealand (NZ) and 

DOIHavePrediabetes.org as our reference screening tool to creating the scoring model. 

The globally accepted seven questions (as mentioned in Table 3.6-1) are assigned each 

“Yes” answer, add the number of points listed. All “No” answers are 0 points. 

• Are you a woman who has had a baby weighing more than 9 pounds at birth? (1 

point, if yes) 

• Do you have a sister or brother with diabetes? (1 point, if yes) 

• Do you have a parent with diabetes? (1 point, if yes) 
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• Find your height on the chart. Do you weigh as much as or more than the 

weight listed for your height? (5 point, if yes) 

• Are you younger than 65 years of age and get little or no exercise in a typical 

day? (5 point, if yes) 

• Are you between 45 and 64 years of age? (5 point, if yes) 

• Are you 65 years of age or older? (9 point, if yes) 

Additionally, we used the below factors for the point-based analysis (in addition to the 

above): 

• BMI more than 25 (10 points, if yes) 

• Heart rate (avg) less than 120 and more than 150 (10 points, if yes, for a 10 

mins activity window) 

• Breathing rate (avg) less than 20 and more than 40 (10 points, if yes, for a 10 

mins activity window) 

• Ventilation (avg) less than 35 and more than 40 (10 points, if yes, for a 10 mins 

activity window) 

• Number of steps within a 24 hour period less than equal to 5000 (10 points, if 

yes) 

We excluded the blood glucose and HbA1c due to the fact that, it is highly unlikely to 

find high blood sugar levels in pre-diabetic (also given the scope of this project using 

two participants). The abnormal or high HbA1c values are considered only for the 

confirmed type 2 diabetes, thus, would be considered as part of the diabetes self-

management module of the workflow. 
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4.6 Data Analysis and Processing 

4.6.1 Data Processing 

The data analysis tasks performed on the raw data, such as: plotting data, computing 

descriptive statistics, performing linear correlation analysis, data fitting, removing and 

interpolating missing values, removing outliers, smoothing and filtering and de-

trending the data (explained in the following sections). 

4.6.2 Removing Missing Values 

The missing data has been removed in order to make the data more accurate for the 

processing. Each row with missing or zero values has been deleted including the time 

section for the accurate results with respect to time. This removes the activity data, vital 

signs and other relevant data points for that time for accuracy and meaningful data 

analysis. As this study deals with two participants, replacing the missing values or 

zeros with the average values would significantly bias the outputs and overall outcome. 

4.6.3 Sampling Data 

The raw data collected contains a sampling rate of 10sec to 30sec, which means in one 

minute the participant data has sample value at every 10 seconds, which is 6 samples in 

one minute of data, in some files the sampling rate was 30sec, so to have a uniform data 

throughout, all the data has been sampled at 30sec.  

The collected ventilation data value was multiplied by 100 to its original value, so 

Vent. value was made to its real range for all data by dividing by 100. 



62 

 

4.6.4 Plotting Raw Data 

The sample data contains some noise, zero values, missing values and outliers. Figure 

4.6-2 shows the raw (noisy) data is plotted in its original state, as collected and received 

from the wearable sensors. Figure 4.6-1 shows the snap shot of the excel sheet exported 

from the Hexoskin cloud dashboard. The data points collected are time, breathing rate, 

minute ventilation, activity, heart rate and cadence. 

 

Figure 4.6-1 Participant #1 data in exported excel sheet 
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Figure 4.6-2 Participant #1 raw data plotted in Matlab 

 

4.6.5 Calculating Mean and Standard Deviation 

Calculating mean of the whole data set (approximately 5000 samples values) and 

calculating the standard deviation to carry out the data processing. 

Matlab command returns the values, where me is the Mean and SD is the standard 

deviation of HR, Vent. and Breathing respectively. 

Matlab algorithm for Mean and Standard Deviation 
me = 
 
   71.1683  119.5440  25.2603 
 
st = 
 
   11.7159   22.6697  26.0972 
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4.6.6 Checking and Removing Outliers 

In the data plot, there are some points that appear to dramatically differ from the rest of 

the data. In such case, it is reasonable to consider that such points are outliers, or data 

values that do not appear to be consistent with the rest of the data. 

First, we check for any outliers in our data set and if there are any then we remove it. 

The condition for this data set is that, outliers work only when it is more than 4 STD 

away from the mean value. 

Matlab algorithm for Checking Outliers 

 
% checking for outlier 
% Outliers works only when it is more than 4 STD away from Mean 
[n,p] = size(p1); 
% Create a matrix of mean values by replicating the me vector for n rows 
MeanMat = repmat(me,n,1); 
% Create a matrix of standard deviation values by replicating the sigma vector for n rows 
SigmaMat = repmat(st,n,1); 
% Create a matrix of zeros and ones, where ones indicate the location of outliers 
outliers = abs(p1 - MeanMat) > 4*SigmaMat; (shows the 4 STD condition) 
% Calculate the number of outliers in each column 
nout = sum(outliers); 
 

 

Matlab command nout for outliers returns these values, 

nout = 

 5     5     0 

This means there are 5 outliers in the HR data, 5 in the Ventilation data and none in the 

breathing data. To remove the entire row of data containing the outlier, Matlab 

command used is: 

P1(any(outliers,2),:) = []; 
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Same process was carried out for rest of the data sets 

4.6.7 Smoothing/Filtering Data 

This technique is not applied to all collected data, instead, after initial investigation of 

the data and by its statistics, the filtering is done on that selected data. Using this 

moving average filter the data will be smoother. By using the moving-average filter the 

noise from the raw data is filtered and also the filtered data is further smoothed. The 

average data signals over a 4-hour window. Matlab function used in this case is; 

Matlab algorithm for Smoothing/Filtering the data 

 
% Smoothing/Filtering the data 
% Moving average filter 
a= 1; 
b=[1/4 1/4 1/4 1/4]; 
hr=p1(:,1); 
hrfiltered=filter(b,a,hr); 
Vent=p1 (:,2); 
ventfiltered=filter(b,a,bp); 
br=p1 (:,3); 
brfiltered=filter(b,a,pv); 
 

 

4.6.8 Comparing Original and Filtered Data 

Matlab coding for plotting the comparison of filtered data over original data is; 

Matlab algorithm for comparing the original data and the filtered data 
 
% comparing the original data and the filtered data 
t1 = 1:length(hr); 
figure; 
subplot (3,1,1); plot (t1,hr,'-.',t1,hrfiltered,'-'),grid on 
title('Heart Rate'); 
legend('Original HR','Filtered HR',2); 
xlabel('Number of samples'); 
ylabel('Value of Samples'); 
t2 = 1:length(vent); 
subplot (3,1,2); plot (t2,vent,'--.',t2,ventfiltered,'--'),grid on 
title('Ventilation'); 
legend('Original vent','Filtered vent',2); 
xlabel('Number of samples'); 
ylabel('Value of Samples'); 
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t3 = 1:length(br); 
subplot (3,1,3); plot (t3,br,'-..',t3,brfiltered,'--'),grid on 
title('Breathing Rate'); 
legend('Original br','Filtered br',2); 
xlabel('Number of samples'); 
ylabel('Value of Samples'); 
figure; 
plot (t3,hr,'-.',t3,hrfiltered,'-*'),grid on 
title('Heart Rate'); 
legend('Original HR','Filtered HR',2); 
xlabel('Number of samples'); 
ylabel('Value of Samples'); 
figure; 
plot (t1,vent,'-.',t1,ventfiltered,'-*'),grid on 
title('Ventilation'); 
legend('Original vent','Filtered vent',2); 
xlabel('Number of samples'); 
ylabel('Value of Samples'); 
figure; 
plot (br,pv,'-.',t2,brfiltered,'-*'),grid on 
title('Breathing Rate'); 
legend('Original br','Filtered br',2); 
xlabel('Number of samples'); 
ylabel('Value of Samples'); 
 

 

Apart from the sample code snippets shown above, APPENDIX G shows the Matlab 

code for the various data analysis and processing techniques used in this model. 

4.7 Fuzzy Rules 

A rule set represents one fuzzy logic rule and performs the preconditioned matching of 

a rule. The knowledge of a fuzzy rule comes from two sources: one from data analysis 

and pre-processing (as discussed in the above section) and the other source is from the 

medical expert/knowledge-base. The optimised rule set is given below, the total 

number of rules were limited to seven for high accuracy and low noise-error ratio. 

1. If (SEX is male) and (FAMILY is No) and (BMI is Normal) and (AGE is 40-50) and 

(HR is Normal) and (STEPS is 5000+) then (Diagnosis is Normal) (1)        

2. If (SEX is Female) and (FAMILY is No) and (BMI is Normal) and (AGE is 40-50) 

and (HR is Normal) and (STEPS is 5000+) then (Diagnosis is Normal) (1) 
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3. If (SEX is male) and (FAMILY is yes) and (BMI is Overweight) and (AGE is 51-60) 

and (HR is High) and (STEPS is 3001_-_5000) then (Diagnosis is Prediabetes) (1) 

4. If (SEX is male) and (FAMILY is yes) and (BMI is Obese) and (AGE is 51-60) and 

(HR is Ver_High) and (STEPS is 3001_-_5000) then (Diagnosis is Prediabetes) (1) 

5. If (SEX is male) and (FAMILY is yes) and (BMI is Obese) and (AGE is 61+) and (HR 

is High) and (STEPS is 0-3000) then (Diagnosis is Prediabetes) (1) 

6. If (SEX is Female) and (FAMILY is yes) and (BMI is Obese) and (AGE is 61+) and 

(HR is Ver_High) and (STEPS is 0-3000) then (Diagnosis is Diabetes_Type_2) (1) 

7. If (SEX is male) and (FAMILY is yes) and (BMI is Obese) and (AGE is 61+) and (HR 

is Ver_High) and (STEPS is 0-3000) then (Diagnosis is Diabetes_Type_2) (1) 

Rules are carefully derived from the knowledge source and auto-generated rules from 

the fuzzy inference rules engine based on the given data set. The rules are interpreted as 

below: 

• SEX – male or female 

• Family – covers parents and siblings 

• BMI – automatically calculates the BMI using height and weight 

• Age – represents the age range for the baseline values 

• HR – heart rate 

• STEPS – is the number of steps in a 24-hour period 

• Diagnosis – the outcome is categorised as normal, prediabetes and diabetes 

type-II 
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• (1) – at the end of each rule (1) represents the confirmation that, the number of 

fuzzy rules equals the number of nonzero ‘Lagrange’ multipliers (to avoid the 

exponential increase of fuzzy rules with the increase in the inputs) 

4.8 Results and Outcomes  

4.8.1 Diabetes and Prediabetes Detection 

In total, we collected 7.25 hours of data (combined, in multiple sessions), total of 435 

minutes of data. We applied 1 minute (60 seconds) sampling window on the 435 

samples for moving-window data analysis. The four possible outcome arrangements for 

an accurate diagnosis are; true positive, true negative, false positive and false negative. 

Figure 4.8-1 shows the prediabetes detection using adaptive-neuro fuzzy inference 

model. The (red) highlight shows the model matched the clinical guidelines and global 

standards for prediabetes for the sample values from 450 to 520 (Partial data sample list 

is shown in APPENDIX H). 

 

Figure 4.8-1 Prediabetes detection using adaptive-neuro fuzzy inference model. The (red) highlight 

shows the model matched the clinical guidelines and global standards for prediabetes 
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Figure 4.8-2 shows the diabetes type 2 detection using adaptive-neuro fuzzy inference 

model. The (red) highlight shows the model matched the clinical guidelines and global 

standards for diabetes type 2 for the sample values from 1750 to 2050 (Partial data 

sample list is shown in APPENDIX H). 

 

Figure 4.8-2 Diabetes detection using adaptive-neuro fuzzy inference model. The (red) highlight 

shows the model matched the clinical guidelines and global standards for diabetes type 2 

4.8.2 Kappa Analysis 

For computing the level of agreement between the clinicians’ diagnosis and system 

diagnosis, the output was divided into four classes. Based on the positive or negative 

diagnosis generated by the proposed model and the diagnosis by the expert, there were 

four possible permutations for pre-diabetes diagnosis: 

a) Both Model and Expert agree that pre-diabetes exists (TruePOS). 

b) Both Model and Expert agree that pre-diabetes does not exist (TrueNEG). 

c) Model gives positive diagnosis while Expert gives negative diagnosis 

(FalsePOS). 
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d) Model gives negative diagnosis while Expert gives positive diagnosis 

(FalseNEG). 

Using these classifications, the Kappa analysis was performed on the collected data and 

Table 4.8-1 shows the values for TruePOS, TrueNEG, FalsePOS and FalseNEG 

derived from the expert analysis as shown in APPENDIX H. 

Table 4.8-1 Kappa Analysis values for the collected data 

 Expert (+ve) Expert(-ve) Total 

System (+ve) 82 (TP) 32 (FP) 114 

System (-ve) 5 (FN) 316 (TN) 321 

Total 87 348 435 

 

Based on the data from Table 4.8-1 the sample Kappa analysis is carried out. The 

calculation shows the positive agreement (Ppos) and negative agreement (Pneg) indices 

were calculated as follows. 

𝑃𝑝𝑜𝑠 =  
82 + 82

(82 + 32) + (82 + 5)
 = 0.82 

 

𝑃𝑛𝑒𝑔 =  
316 + 316

(32 + 316) + (5 + 316)
 = 0.94 

The third index of agreement gives the overall agreement (Po) level between the expert 

and the proposed model. 
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𝑃𝑜 =  
82 + 316

435
= 0.91 

 

𝑃𝑒 =  (
114

435
.

87

435
) + (

321

435
.
348

435
) = 0.64 

 

Agreements between the two diagnoses may be affected by chance. Kappa (k) is a 

measurement of agreement between the expert and the model which has been corrected 

for error by chance. Kappa (k) is calculated by subtracting the proportion of readings 

that are expected to agree by chance (Pe) from the overall agreement (Po) and dividing 

the remainder by the number of cases on which agreement is not expected to occur by 

chance. 

𝐾 =  
𝑃𝑜 − 𝑃𝑒

(1 − 𝑃𝑒)
 = 0.75 

The standard error (SE) of k is, 

𝑆𝐸 =  √
𝑃𝑜(1 − 𝑃𝑜)

𝑛(1 − 𝑃𝑒)2
 

 

𝑆𝐸 =  √
0.91(1 − 0.91)

435(1 − 0.64)2
= 0.038 
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The 95% confidence intervals (CIs) for k could be calculated with the following 

equation. 

 

𝐶𝐼95% = 𝐾 ± 1.96 × 𝑆𝐸   

 

CIs for k were  

a) 0.75 + 1.96 * 0.038 = 0.82 , and 

b) 0.75 - 1.96 * 0.038 = 0.67 

 

Table 4.8-2 Kappa analysis of the whole collected dataset 

Overall 

Agreement 

Positive 

Agreement 

Negative 

Agreement 

Agreement by 

Chance 

Standard 

Error 

95% Confidence Intervals for K 

Po Ppos Pneg Pe SE CI95% 

0.91 0.82 0.94 0.64 0.038 0.82 and 0.67 

 

The overall Kappa value was K = 0.75, Table 4.8-3 shows the K-values expressed as 

strength of agreement. 
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Table 4.8-3 K-values expressed as strength of agreement 

K – Value Strength of Agreement beyond 

chance 

<0 Poor 

0 - 0.2 Slight 

0.21 – 0.40 Fair 

0.41 – 0.6 Moderate 

0.61 – 0.8 Substantial 

0.81 - 1 Almost perfect 

 

For the tests (retrospective analysis) performed, the Kappa based statistical analysis 

showed substantial level of agreement (k = 0.75) between the experts’ and system’s 

diagnoses as shown in Table 4.8-3. 

The proposed system has been successfully tested. The initial result shows the higher 

efficiency and accuracy in wearable monitoring system with the K value of 0.75 (Table 

4.8-2). The performance results of the system (k value) placed the overall performance 

of the detection model at a substantial level (Table 4.8-3). 

After the determination of the described overall agreement, quantitative categories like 

sensitivity, specificity and predictability is also calculated: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

= ∑  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ∑  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ∑  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∑  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
 

 

From the above equations, it has been calculated that the detection model has an 

accuracy of 91.49%, sensitivity of 94%, specificity of 90% and predictability of 72%. 

4.9 Summary  

In this chapter, selection of wearable monitoring system was reported as this was one of 

the critical block of this research – to collected multiple data sets accurately in real-

time. The data analysis, pre-processing, fuzzy logic model and results were also 

described. The unique feature of the developed model is the capability to self-adjust the 

baseline-values by ‘individualised monitoring’ and ‘weighted parameter’ to gain high 

accuracy and overall reliability.  
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CHAPTER 5 Discussion 

5.1 Overview 

The use of automated monitoring and detection systems in clinical care can improve 

quality of care as well as efficiency in healthcare delivery. With the advancement of 

wireless sensor technologies, the wearable monitoring systems becomes much accurate, 

advanced and cheaper than before [151]. Wearable monitoring system used in this 

research is an advanced-sensors integrated vest with Bluetooth connected mobile app 

and a cloud-based web dashboard to access your data in real-time. There is a huge 

potential for such systems to be utilised in clinical care settings (inpatient) as well 

community care settings, including home care for remote patient monitoring [151, 

152].  

The proposed early detection model could be customised to suit the most common 

chronic diseases and long-term conditions encountered in New Zealand population. 

This research work will yield a highly-specialised model that has the potential to lower 

the LTC rates of the nation’s population due to automated, accurate and early detection 

of prediabetes. This research was aimed to evaluate and develop an intelligent detection 

model using multiple data sets; activity data, vital signs and demographic data for early 

detection of prediabetes. It was also aimed to improve the performance of current LTC 

programs by identifying the shortfalls of existing technology and barriers.  

Three main concepts have been addressed in this thesis: wearable monitoring, 

development of detection model using multiple data sets and early detection of 

prediabetes and diabetes type-II. This section serves to present the major conclusions of 

this thesis. It summarises important concepts and justifies the adopted methods. 
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5.2 Timeline View of the Participants’ Diabetes Profile 

The timeline view of the HbA1c of the participant #1 is illustrated in Figure 5.2-1, 

shows the HbA1c values taken at the start of the study, during the study and at the end 

of the study with poor management. Participant #1 was not using any technology 

(wearable) or tool to self-manage diabetes type-II (Participant #1 was on the usual 

diabetes management treatment as prescribed by the participant’s General Practitioner). 

 

Figure 5.2-1 Participant #1 HbA1c profile showing the values before, during and after the study 

 

Figure 5.2-2 shows the HbA1c values taken at the start of the study and Figure 5.2-3 

shows the HbA1c values taken at the end of the study from participant #2, shows an 

excellent control and self-management of diabetes. Participant #2 was using the 

wearable vest, mobile apps/tools to self-manage the diabetes and was registered for the 

online patient portal (Participant #2 was also on the usual diabetes management 

treatment as prescribed by the participant’s General Practitioner). 
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Figure 5.2-2 Participant #2 HbA1c profile showing the values recorded at the start of the study 

 

 

Figure 5.2-3 Participant #2 HbA1c profile showing the values recorded towards the end of the 

study 

5.3 Major Learning Outcomes 

Some of the important areas covered in this research are: 

• Literature Review: This research is backed by literature review, theory building 

and observations to understand and establish the current research gaps. Due to 

the wear-ability, the issue of accuracy and power is the most identified, 

followed by the comfort and usability. There is a growing evidence available 

that identifies the user (clinician and/or patient) acceptance is also equally 

important and should be addressed. Currently, there is no balance between the 
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technical design and development vs information presentation, which could be a 

reason delaying the global adoption of wearable healthcare application in acute 

care, outpatient, home and community care settings (see section 2.2 and 3.2). 

• Data Collection: Data collection phase of this research was very critical for the 

overall success of the proposed model. We obtained ethics approval and other 

related requirements to collect data. The understanding of wearable monitoring 

shirt/vest was challenging and time taking due to the complex integration and 

access to the data. Accurate data collection using wearable shirt with integrated 

sensors and visualising the collected data in real-time for errors was a good 

learning curve. The data accuracy was one of the highest priority, as the 

collected data will be fed to the model (after pre-processing due to the noise and 

missing values) (see section 4.2). 

• Clinical Knowledge and Interpretation: Deep understanding of the medical 

side of this project work was curtailed to map the data with its associated 

outcome. The clinical knowledge support was gathered from the authentic 

medical knowledge-bases and clinicians (experts) from Auckland District 

Health Board. The most important data points to collect, data points with most 

influence on the person’s diabetes, time of data collection, duration, frequency 

and observational data to support the proposed model was challenging and 

sensitive to handle the participant health data (see section 3.3, 3.4, 3.5 and 3.6). 

• Detection Model: Fuzzy logic has been studied for the development of the 

proposed detection model. The important areas in fuzzy logic that were 

investigated are ANFIS, FIS, clustering, and different types of fuzzy models. 

The individualised monitoring and weighted parameter mechanism proved to be 

accurate in detecting prediabetes and diabetes type 2 (see section 4.3, 4.6 and 

4.7). 
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5.4 Outline of Outcomes Achieved 

5.4.1 Results Analysis 

The collected data is mapped against the pre-build LTC models and approved clinical 

guidelines for known LTCs. The proposed model is compared with a clinician’s finding 

using ‘Kappa’ analysis. Kappa measures and allows the agreement between the human 

expert and the computer system (i.e. a machine learning model) using the true positive, 

true negative, false positive and false negative measures. The importance of observer 

reliability lies in the fact that it represents the extent to which the data collected in the 

study are correct representations of the variables measured. 

5.4.2 Data Mapping and Interpretation 

The existing clinical models, LTC guidelines/checklists and known LTC data is 

mapped to the collected data. The model mapped the input required to the intended 

outcome/diagnosis using weighted parameter mechanism (see section 4.5). The data 

interpretation was developed using the age-based range to set the baseline values. The 

individual data trends were used to further refine the baseline values as well as the 

overall threshold model for detection prediabetes and diabetes type 2. This research 

aims to leverage the success of the IoT, wireless, remote and body-wearable technology 

for accurate and continuous patient monitoring. 

5.5 Challenges and Limitations 

Below are some of the challenges and limitations identified in this research: 

• Wearable monitoring systems lack holistic approach in healthcare – Majority of 

systems are heavily focused on the technical considerations to make it a clinical 

success and thus, failing the clinical acceptance. The negligence of the wider 
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integration of clinical and non-clinical data is making such applications under-

utilised and limited to a specific use-case only. 

• It is evident from the literature that there is a clear gap in detecting LTCs using 

computerised detection model. It is also evident in the literature that the early 

detection of LTC can reverse or delay the onset of LTC significantly. Thus, 

there is an immediate need of an automated pre-LTC detection model to serve 

as a global framework, standard protocol or guideline in order to reduce LTCs. 

• Data was limited to two participants due to the time and resource of this 

research. However, the developed model is capable to detect prediabetes and 

diabetes type 2 with any number of participant data. 

•  The complexity of ‘big data’ computation requires significant amount of 

processing power during data analysis and also at the time of 

processing/executing the complex algorithms/models. These complex models 

are beyond the capabilities of the current wearable monitoring systems to 

support point-of-care delivery. 

• The self-management of diabetes type 2 was covered in this research, but to 

prove its success, further 6-12 month of monitoring is required to see the 

participant’s activity level, vital signs and diabetes profile/control using 

wearable shirt and detection model. The model will then be able to compare the 

initial trend vs data trends at 6 or 12 months to establish the success of self-

management of diabetes type 2. 
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CHAPTER 6 Conclusion 

The early detection model tested in this investigation is not designed to replace 

clinicians, but rather to assist them in making better and informed decisions by rapidly 

processing the vast amount of information available from wearables/sensors, and to 

convey this information in a meaningful manner so that rapid intervention can occur. 

6.1 Overview of the Wearable Monitoring Systems 

Wearable monitoring systems (WMS) for people with single or multiple LTCs are 

getting good clinical acceptance due to versatile nature of the connectivity with the 

individual. It gives the individual freedom and flexibility while they are monitored. 

Very few studies have reported a high percentage of acceptances for wearable 

monitoring systems mainly due to its low-invasive nature and non-interference in their 

normal daily activities. A study by Bergmann and McGregor reported that 93% of 

patients in an elderly care facility accepted the wearable system, because of its low 

invasiveness and its non-interference with their normal daily life activities [153]. 

A recent study [151] reviewed 20 wearable monitoring systems by selecting peer 

reviewed articles published between 2015 to 2017 in order to evaluate the technological 

advancements, implementation of advanced sensors and data collection techniques. The 

design concepts of wearable systems, identified key specifications and parameters such 

as sensors and signals, data processing, integration, signal quality and user-engagement 

and user-interaction that require attention are highlighted (addressed in this research, 

see section 2.2) [151]. 

With the ever growing use of WMSs, end-user acceptability is becoming an important 

aspect of the design of such systems. The acceptance of any system in the healthcare 
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domain depends on user-awareness, as well as clinician and patient acceptance. Data 

connectivity is one of the main drawbacks of deployed WPM systems where patients 

are ‘constrained’ within fixed spaces fitted with monitoring devices within small 

Bluetooth range [31, 94, 109, 154, 155].  

6.2 Detection and Prediction Models 

A marked change in healthcare delivery is occurring which has been made possible by 

the ever-growing prediction and detection using machine learning models. Such models 

are supported by the technological revolution and advancements in wearables, medical 

devices, consumer devices, the Internet of Things (IoT), and the potential of employing 

machine learning and artificial intelligence to the ‘big data’. The treatment of many 

medical conditions are guaranteed to benefit from the use of wearable technology [90]. 

Validation of clinical and scientific findings is an important task to take on in this new 

context. The determination of repeatability and reliability of the new assessment tools 

based on wearable technologies and the IoT remains challenging. Likewise, the extent 

to which these new methods of diagnosing and treatment will replace or complement 

the existing assessment, therapeutic tools and detection/prediction models is a wide 

open topic for experimentation and to debate in the global healthcare community [89, 

94]. 

In conclusion, the advancement of wearable technology and possibilities of using 

artificial intelligence in healthcare is a concept that has been investigated by many 

studies but lack in chronic care or long-term conditions. The outcome of this research 

shows the future LTCs monitoring and its medical treatments will build upon efficient 

and affordable solutions of predictive modelling integrated with wearable/IoT 

technology. 
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6.3 Key Highlights/Achievements of this Research 

The overall aim of this research was to design and develop a novel, automated LTC 

detection model using multiple data sources; vital signs, activity data and demographic 

data. The specific objectives achieved in this research are: 

a) Identification of the important factors in improving the accuracy of 

computerised early detection of long-term condition (prediabetes and diabetes 

type-II) 

b) Evaluation of vital signs and activity data towards a reliable detection of various 

long-term conditions 

c) Analysis of the collected data and to map it with the clinical checklist for 

accurately detecting multiple pre-long-term conditions 

d) Investigating the effective factors for individualised long-term condition 

detection and accuracy of the detection using weighted parameter approach 

6.4 Future Work 

It is forecasted that the healthcare information will be available on to the cloud where 

pieces of observations from various ubiquitous devices (including wearables) would be 

integrated. Furthermore, data analytics and machine learning techniques could be 

applied to the collected data for precise care, accurate outcomes and individualised 

treatment (precision medicine) [156, 157]. This research is the first step toward the 

forecasted future of healthcare journey. 

This research supports the effectiveness of artificial intelligence (fuzzy logic) in patient 

monitoring and detection of LTC. The model is tested in a real-time environment to 
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show its full clinical worth with two participants. Testing this model with diverse and 

large number of participants would surely increase the accuracy and reliability of the 

model.  

Further enhancements to the early detection model will mature the current application 

to better handle the clinical care environment. Extending the current detection model to 

other common long-term conditions would be beneficial. 

Some of the areas to make further improvements are accuracy in data collection, 

integration of clinical and non-clinical data sources and real-time detection using a 

mobile device are some of the future works identified. 

As stated in the introduction of this thesis, the research presented here sits at the 

intersection of a number of domains. The potential for further research in related areas 

is therefore enormous. The above paragraphs outline the possibilities ranging from 

theoretical to practical innovations. However, the research presented in this thesis 

would be an investigation of other suitable approaches applied to wearable monitoring 

and LTC detection, as a deep knowledge representation. 
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Appendix G – Sample Matlab Code 

gui _Si ngl et on = 1;  

gui _St at e = st r uct (' gui _ Na me' ,        mfi l ena me,  ... 

                   ' gui _Si ngl et on' ,  gui _Si ngl et on,  ... 

                   ' gui _ Ope ni ngFc n' , @unt i tl ed_ Ope ni ngFc n,  ... 

                   ' gui _ Out put Fcn' ,  @unt itl ed_ Out put Fcn,  ... 

                   ' gui _La yout Fcn' ,  [] , ... 

                   ' gui _Cal l back' ,   []); 

if nar gi n && i schar( var ar gi n{1})  

    gui _St at e. gui _Cal l back = st r 2f unc( var ar gi n{1});  

end 

  

if nar gout  

    [ var ar gout {1: nar gout }] = gui _ mai nf cn( gui _St at e,  var ar gi n{: }); 

el se 

    gui _ mai nf cn( gui _St at e,  var ar gi n{: });  

end 

% End i niti ali zati on code - DO NOT EDI T 

  

  

% - -- Execut es j ust bef or e untitl ed i s ma de vi si bl e.  

f unct i on unt itl ed_ Ope ni ngFc n( h Obj ect, event dat a, handl es,  var ar gi n)  

% Thi s f uncti on has no out put ar gs,  see Out put Fcn.  

% h Obj ect    handl e t o fi gur e 

% e ve nt dat a  r eser ved - t o be defi ned i n a f ut ur e ver si on of MATL AB  

% ha ndl es    str uct ur e wi t h handl es and user dat a (see GUI DAT A)  

% var ar gi n   co mma nd li ne ar gu me nt s t o untitl ed (see VAR AR GI N)  

  

% Choose def ault co mma nd li ne out put f or untitl ed 

ha ndl es. out put = hObj ect;  

  

% Updat e handl es st r uct ur e 

gui dat a( h Obj ect, handl es);  

  

% UI WAI T ma kes unt itl ed wai t f or user r esponse (see UI RES U ME)  

% ui wai t ( handl es. fi gur e1);  

  

  

% - -- Out put s fr o m t hi s f unct i on ar e ret ur ned t o t he co mma nd li ne.  

f unct i on var ar gout  = unt itl ed_ Out put Fcn( h Obj ect, event dat a, handl es)  

% var ar gout   cel l arr ay f or ret ur ni ng out put  ar gs (see VAR AR GOUT) ;  

% h Obj ect    handl e t o fi gur e 

% e ve nt dat a  r eser ved - t o be defi ned i n a f ut ur e ver si on of MATL AB  

% ha ndl es    str uct ur e wi t h handl es and user dat a (see GUI DAT A)  

  

% Get  def aul t co mma nd li ne out put  fr o m handl es st r uct ur e 

var ar gout {1} = handl es. out put ;  

 
f unct i on cr eat efi gur e( YMat ri x1)  

%C RE ATEFI GURE( YMAT RI X1)  

%  YMAT RI X1:   mat ri x of y dat a 

  

% Cr eat e fi gur e 

fi gur e1 = fi gur e;  

  

% Cr eat e axes 

axes 1 = axes(' Par ent' , fi gur e1); 

hol d( axes 1,' on' ); 

  

% Cr eat e mul t i pl e li nes usi ng mat ri x i nput t o pl ot  

pl ot 1 = pl ot ( YMat ri x1,' Par ent' , axes 1);  

set ( pl ot 1( 1),' Di spl ay Na me' ,' recor d113334v2. br eat hi ng_r at er p ma pi dat at ype33' ); 

set ( pl ot 1( 2),' Di spl ay Na me' ,' recor d113334v2. act i vit ygapi dat at ype49' ); 

set ( pl ot 1( 3),' Di spl ay Na me' ,' recor d113334v2. heart _r at ebp ma pi dat at ype19' ); 

set ( pl ot 1( 4),' Di spl ay Na me' ,' recor d113334v2. cadences p ma pi dat at ype 53' ); 

  

% Cr eat e xl abel  

xl abel ( {' Nu mber of Sa mpl es' }); 

  

% Cr eat e titl e 

titl e( {' Ra w Dat a Anal ysi s and Pr e Pr ocessi ng' }); 

  

% Cr eat e yl abel  

yl abel ( {' Sa mpl e Val ue' }); 

  

box( axes 1,' on' ); 

% Cr eat e l egend 
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l egend( axes 1,' sho w' ); 

% Cr eat e fi gur e 

fi gur e1 = fi gur e;  

  

% Cr eat e axes 

axes 1 = axes(' Par ent' , fi gur e1); 

hol d( axes 1,' on' ); 

  

% Cr eat e mul t i pl e li nes usi ng mat ri x i nput t o pl ot  

pl ot 1 = pl ot ( YMat ri x1,' Par ent' , axes 1);  

set ( pl ot 1( 1),' Di spl ay Na me' ,' recor d113334v2. br eat hi ng_r at er p ma pi dat at ype33' ); 

set ( pl ot 1( 2),' Di spl ay Na me' ,' recor d113334v2. act i vit ygapi dat at ype49' ); 

set ( pl ot 1( 3),' Di spl ay Na me' ,' recor d113334v2. heart _r at ebp ma pi dat at ype19' ); 

set ( pl ot 1( 4),' Di spl ay Na me' ,' recor d113334v2. cadences p ma pi dat at ype53' ); 

  

% Cr eat e xl abel  

xl abel ( {' Nu mber of Sa mpl es' }); 

  

% Cr eat e titl e 

titl e( {' Ra w Dat a Anal ysi s and Pr e Pr ocessi ng' }); 

  

% Cr eat e yl abel  

yl abel ( {' Sa mpl e Val ue' }); 

  

% Unc o mme nt  t he f oll o wi ng li ne t o pr eser ve t he X-l i mi t s of t he axes 

% xl i m( axes 1, [ 995. 088868101029 2996. 95977549111]);  

% Unc o mme nt  t he f oll o wi ng li ne t o pr eser ve t he Y-l i mi t s of t he axes 

% yl i m( axes 1, [ 0 247. 742052023121]);  

box( axes 1,' on' ); 

% Cr eat e l egend 

l egend( axes 1,' sho w' ); 

  

% Cr eat e col or bar  

col or bar(' peer' , axes 1);  
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Appendix H – Kappa Analysis for Complete Data Set 
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82 316 32 5 

*N is negative, P is positive, 1 represents agreement for either true positive, true negative, 

false positive or false with respect to the table column and this is not the full list of the data 

analysis as is very long with approximately 25,000 rows, if exported in excel sheet or table. 
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