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Abstract: Avocado wastewater (AWW) is the largest by-product of cold pressed avocado oil. The aim
of this study was to valorise AWW by converting it into spray dried powder for use as a lipid
peroxidation inhibiting food preservative. To increase the powder yield of AWW, addition of carriers
and spray drying parameters (temperature and feed flow rate) were optimised. The highest AWW
powder yield was 49%, and was obtained using 5% whey protein concentrate (WPC), with a feed
flow rate of 5.8 g/min and an inlet drying temperature of 160 °C. The liquid chromatography mass
spectrophotometry (LC-MS) analysis showed that AWW encapsulated with WPC had the highest
retention of x-tocopherol (181.6 mg/kg powder). AWW with 5% WPC was tested as a preservative in
pork fat cooked at 180 °C for 15 min. Thiobarbaturic acid reactive substances (TBARS) assay showed
that the effectiveness of AWW powder was comparable to commercial additives such as butylated
hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and sodium erythorbate (E316).

Keywords: avocado wastewater; spray drying; thiobarbituric acid reactive substance (ITBARS); waste
conversion; liquid chromatography—mass spectrometry (LC-MS); food preservation

1. Introduction

Demand for avocado (Persea americana Mill.) has significantly increased over recent years, due
to its health promoting nutrients in the mesocarp. These include saturated, polyunsaturated, and
monounsaturated fats; f-carotene; o-tocopherol; and essential minerals such as magnesium and
potassium [1]. The five largest avocado producing countries, i.e., Mexico, Dominican Republic, Peru,
Colombia and Indonesia, have collectively increased their avocado production from 2.4 million to 4.0
million tonnes from 2012 to 2018 [2].

Avocado fruit has applications in the cosmetics and food industries. The use of avocado oil for skin
moisturisers and cosmetics have been reported since the 16th century. However, commercialisation of
avocado oil for culinary purposes has only been popularised in the past 20 years [3]. Previous extraction
methods of avocado oil for cosmetics and skin products have utilised harsh solvents technology such
as hexane at high temperatures (>60 °C). The extracted oils would then be refined, bleached, and
deodorised to remove any undesirable organoleptic properties [4,5]. Recent advancements in avocado
oil extraction have included ultrasound treatment and supercritical CO, methods [6,7]. Although
successful and feasible, these technologies have yet to be commercialised.
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The first successful development of cold pressed avocado oil (CPAO) was initiated in New Zealand
and commercialised in 2000. CPAO appeals to consumers because of its attractive emerald colour,
buttery flavour, and high smoking point of over 250 °C [4]. Consumers also benefit from its oleic
acid content and presence of phytochemicals such as carotenoids, chlorophylls, and a-tocopherol.
These phytochemicals act as antioxidants, which promote anti-inflammatory actions, regulate healthy
blood lipid profiles, and increase bioavailability of fat soluble vitamins [8,9].

The CPAO process generates large masses of by-products in the form of seed, skin, pomace,
and wastewater. Figure 1 depicts the major by-products generated from a typical CPAO production
line. Using 1000 kg of avocado fruit during the early harvest season as a basis, 12.1% (w/w) and
15.3% of the input are removed as avocado seed and skin, respectively, during the de-stoning stage.
Next, 15% pomace and 44.8% wastewater are removed from the malaxed avocado pulp emulsion at the
three-phased decanting stage. The final by-product is removed through centrifugation as 5% residual
water, producing a final 7.8% of pure CPAO [10].

Avocado fruit
(1000 kg)
Washing
. X Skin (150 kg)
De-stoner Seeds (120 kg)
Avocado flesh
(730 kg)
Grinder
Malaxer
Pomace Avocado
(1(‘»0 ku) Three-phase decanter |————  wastewater
50 kg (450 kg)
X Residual Water
Centrifuge — (50 kg)

Avocado oil
(R0 ko)

Figure 1. Process flow diagram of a typical commercial cold pressed avocado oil (CPAO) extraction
process. All the avocado waste output values from the early harvest season were obtained using an
input of 1000 kg avocado fruits as the basis.

Avocado by-products such as skin and seed can be turned into powders as nutrient-rich storable
commodities, using convective drying procedures [11]. Furthermore, avocado seed has shown potential
as a biofuel, an alternative source of starch, and a natural colour pigment [12-14]. However, valorisation
of the major CPAO by-product that accounts for almost half the mass of avocado fruit input, avocado
wastewater (AWW), is somewhat limited. AWW is a major concern in the avocado oil industry as it
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incurs high disposal costs and cannot be discarded into local drains due to its high organic matter. One
way to circumvent this problem is to convert it into a higher value product.

Proximate analysis by Permal et al. (2019) [10] showed that AWW (% dry basis w/w) was primarily
composed of 53.8 = 9.4% lipids, followed by 22.2 + 3.4% dietary fibres, 17.9 + 0.6% ash, 10.3 = 7.7%
protein, and 0.9 + 3.4% available carbohydrates. The authors successfully converted AWW from a
commercial CPAO production line into dried powder with high antioxidants and total phenolic content.
Furthermore, they successfully incorporated the powder into pork sausages as a preservative to prevent
lipid peroxidation. However, the powder yields from this research were low, ranging from 18.6%
to 32%, because the process was not optimised and no carriers were used. Researchers have found
that products with certain sugars or high fat content could result in low powder yield during spray
drying due to stickiness from sugar with low T (glass transition temperatures) or low melting point
triglycerides [15-17]. To overcome this, gum, protein, or carbohydrate-based carriers can be added to
encapsulate and form a barrier around freely dispersed active material. Microencapsulation through
spray drying has proven to be efficient and practical, favouring product quality, increasing shelf life of
fruit powders, maintaining stability of bioactive compounds, and increasing powder yield [16,18].

Previous research by Permal, Leong Chang, Seale, Hamid, and Kam [10] added spray dried AWW
powder in sausages for inhibiting lipid peroxidation and found it to be as good as sodium erythorbate
(E316). However, the bioactive component of AWW powder responsible for effective inhibition of
lipid peroxidation was not determined in the study. Therefore, to add to the current body of literature,
the aims of this study were to increase and optimise AWW powder yield through spray drying and
to quantify the fat-soluble antioxidants responsible for preventing lipid peroxidation. Finally, the
incorporation of this AWW powder into pure pork fat as a natural preservative was tested against
commercial preservatives commonly used in the food industry.

2. Materials and Methods

2.1. Collection of Avocado Wastewater Samples and Fresh Avocado Fruits

Orangewood orchard in Northland, New Zealand supplied the Hass avocado fruits to Olivado
Ltd. for commercial extraction of CPAO in late October 2019. The percentage of dry matter of these
early season avocados was found to be 24%. The fruits were held at 20 °C inside wooden crates for
ripening before processing. AWW was collected from the output of a three-phase decanter (Figure 1),
on Olivado Ltd.’s CPAO processing line. Three batches of AWW was collected in 5 L PET bottles
on three separate production days and immediately stored at 4 °C before spray drying. The fresh
samples were freeze dried using the Alpha 1-2 LDplus Laboratory Freeze Dryer for 48 h, at =75 °C,
and 1 X 107 mbar, and stored at —18 °C until further analysis.

2.2. Chemicals

Neocuproine, ammonium acetate, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic
acid), propyl gallate, TBA (2-thiobarbituric acid), TEP (1,1,3,3-tetraethoxypropane), gallic acid,
(-carotene, a-tocopherol, and butylated hydroxytoluene (BHT) were purchased from Sigma-Aldrich,
Auckland, New Zealand. Copper (II) chloride dihydrate was purchased from VWR International,
Aurora, CO, USA. Chloroform, methanol, hexane, and ethanol were purchased from Thermo Fisher
Scientific, Auckland, New Zealand. Butylated hydroxyanisole (BHA) was purchased from BDH
chemicals Ltd., Poole, England. Sodium erythorbate (E316) was obtained from D.M Dunningham Ltd.,
Auckland,New Zealand. Maltodextrin with a 10-12 dextrose equivalence (MD 10-12 DE) and MD
17-19 DE were both purchased from Davis Food Ingredients, New Zealand. Acacia gum was obtained
from Hawkin Watts Ltd., Auckland, New Zealand. Lactose was purchased from BDH Chemicals and
whey protein concentrate (WPC) sourced from Thompson’s, Auckland, New Zealand. Tri-chloroacetic
acid (TCA) and Nay-EDTA (ethylenediaminetetraacetic acid disodium salt dehydrate) were purchased
from Scharlau, Barcelona, Spain.
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2.3. Spray Drying

AWW was spray dried using a laboratory scale Buchi mini spray dryer B-290 equipped with a
Buchi B-296 dehumidifier (Switzerland) to remove all moisture in the spray drying air. The spray
dryer unit was coupled with a 0.70 mm spraying nozzle. Preliminary tests found that atomising air
at 49 m3/h, and an aspiration rate at 37 m3/h, were the most suitable parameters for optimal yield of
AWW powder without carriers. To prepare each emulsion for drying, carriers were homogenised with
AWW using the Silverson L4RT, at 5000 rpm, for 5 min. Four parameters were varied to find the ideal
spray drying conditions for the highest yield of AWW powder. Firstly, the addition of different carriers
including MD 10-12 DE, MD 17-19 DE, acacia gum (AG), lactose, and whey protein concentrate (WPC)
was explored. The AWW feed rate was adjusted, varying between 3 to 11 g/min. The inlet temperatures
were varied from 120 °C to 180 °C, at 20 °C increments, and carrier concentration of 1%, 5%, and 10%
were used. All the parameters were collectively investigated for screening purposes to determine their
effects on AWW powder yield using Equation (1) as described by Permal, Leong Chang, Seale, Hamid,

and Kam [10]:

Yield % — Powder collected in cyclone (g)

100 1
Mass of sample be fore spray drying (g) % @

2.4. Scanning Electron Microscopy (SEM) Imaging of Spray Dried Powders

Particle morphology for AWW powders using the five different carriers was evaluated as described
by Permal, Leong Chang, Seale, Hamid, and Kam [10]. The particle size (um) of SEM images was
measured using Image]J, an open source software (version 1.52u) developed at the National Institutes
of Health (NIH), Bethesda, MD, USA.

2.5. Extraction and Liquid Chromatography Mass Spectrophotometry (LC-MS) Analysis of Acid B-Carotene
and a-Tocopherol

The method to quantify 3-carotene and x-tocopherol from AWW using liquid chromatography
mass spectrophotometry (LC-MS) has not previously been studied, Therefore, the extraction method
used in this research was specifically designed for this purpose. Briefly, 1 g of AWW powder was
measured into 15 mL falcon tubes. Then, 0.5 mL of methanol followed by 1 mL hexane were added to
the powder. Each solvent addition was vortexed for 30 s. The falcon tubes were, then, centrifuged for
5 min, at 2700 rpm, using the Vortex-Genie II. The resulting top layer of hexane was removed using a
glass pipette and dispensed into a 5 mL glass test tube. The extraction using 1 mL hexane was repeated
two more times. All the hexane was evaporated using nitrogen. Then, the reduced viscous solution
was re-dissolved in 0.2 mL of ethanol, vortexed for 30 s, centrifuged for 5 min at 2700 RPM, and
transferred into silanised inserts. The inserts were capped inside 1.5 mL amber vials and immediately
analysed in the LC-MS.

Quantification was performed by using commercial 3-carotene and x-tocopherol standards to
generate a calibration curve in the range of 0.16-20 mg/L (R? = 0.999). Chromatographic repeatability
(n =10) was estimated and the residual standard deviation (RSD) was calculated at 6% for «-tocopherol
and 11% for -carotene. Recovery for a-tocopherol and (3-carotene was calculated using Equation (2).
The recovery experiment was carried out by spiking 0.1 g of powder with 50 uL of 10 mg/L standards
and underwent the same extraction method for samples as described above.

LC MS concentration (%) reading

Recovery % = x 100 2)

Theoretical vitamin concentration (ng)

LoD = 3.3 X Sresiduals (3)
' Slope
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Limit of detection (LoD) and limit of quantification (LoQ) were calculated based on Equations (3)
and (4) [19]. Sresiduals, is the residual standard deviation from the calibration curve of compounds in
the LoD region, and slope is the slope from the calibration curve of each component. LoD and LoQ
for o-tocopherol were 0.04 mg/L and 0.13 mg/L, respectively, and for 3-carotene, LoD and LoQ were
0.39 mg/L and 1.30 mg/L, respectively.

The LC-MS analysis was conducted using an Agilent 1260 Infinity Quarternary LC System
(Santa Clara, CA 95051, USA). The system consisted of the following components: 1260 infinity
quaternary pump, 1260 infinity ALS sampler, 1260 infinity TCC column component and a 1260 infinity
diode array detector (DAD) connected to a 6420 triple quadrupole LC/MS system with multimode
ionisation source. A Waters XSelect CSH C18 (2.1 X 100 mm, 3 pm) column was used for the analysis.
The mobile phases were composed of water containing 0.1% (v/v) formic acid (A) and methanol (B).
The initial gradient condition was 5:95 (A:B). From 0 to 1 min, B was increased to 100% and held for 7.5
min, then, from 8.5 to 9.2 min, B was decreased to 95%. The injection volume was 3 pL and the total
run time was 15 min for each sample.

The MS ionisation source conditions were set as outlined: Capillary voltage of 2 kV and corona
current of 4 pA, drying gas (Ny) temperature of 300 °C at a flow rate of 5 L/min, vaporiser temperature
of 250 °C, and nebuliser pressure of 50 psi were used. The positive ion mode was performed with MRM
for quantitative analysis. Precursor-to-product ion transition used for «-tocopherol was, [M+H]* m/z
431 — 165,137 with a fragmentor voltage of 100 V and collision energy of 32 eV and 50 eV, respectively.
The precursor-to-product ion transition used for 3-carotene was [M+H]+ m/z 537 — 537, 277 with a
fragmentor voltage of 160 V and collision energy of 1 eV and 16 eV, respectively.

2.6. Preparation of Pork Fat for Lipid Peroxidation Tests

Pork fat was purchased from a local butcher in Auckland, New Zealand and used to quantify the
absolute degree of fat peroxidation using the TBARS (thiobarbaturic acid reactive substances) test. Pork
fat was used instead of protein-rich meat, as research has shown that proteins can interfere with TBARS
test by giving higher MDA (malondialdehyde) values [20-22]. To prepare the samples, pork fat was
minced using a Kenwood Pro 1400 mincer, and then equally divided into seven treatments. Treatment
1 was used as a control with no additives and Treatment 2 contained 0.04% (w/w) sodium erythorbate
(E316). FSANZ [23] states that 0.04% (w/w) of E316 is the maximum allowable limit to be added into
meats. Therefore, Treatments 3, 4, 5, and 6 were based on the cupric ion reducing antioxidant capacity
(CUPRAC) equivalence of each additive to E316. Treatments 3, 4, 5, and 6 contained 1.5% (w/w) AWW,
0.1% (w/w) BHT (butylated hydroxytoluene), 0.01% (w/w) BHA (butylated hydroxyanisole), and 1.86%
(w/w) o-tocopherol respectively. Treatment 7 was used as a positive control and contained 0.1% (w/w)
WPC. Once prepared, the samples were transferred into glass beakers in triplicate and baked at 180 °C
for 15 min using a Piron PF4005D oven (Italy). Then, all samples were cooled to room temperature and
immediately analysed for degree of fat oxidation using the TBARS protocol.

2.7. Cupric lon Reducing Antioxidant Capacity (CUPRAC) Analysis for Equivalence of Antioxidant Activity
amongst Selected Preservatives

The extraction of antioxidants from samples was carried out as reported by [10]. Cupric ion
reducing antioxidant capacity (CUPRAC) assay was conducted as detailed by [24]. Firstly, 1 mL of
appropriately diluted sample, was added into 1 mL of CuCl,-2H,0 (0.01 M), NH4AC buffer (1 M,
adjusted to pH 7), neocuproine (0.075 M), and then 0.1 mL of distilled H,O (total volume of 4.1 mL).
The sample solutions were held for 5 m at room temperature and absorbance was measured against a
reagent blank (1 mL, neocuproine, CuCl,-2H,0O, NH4AC buffer solution, and 1.1 mL water) using a GE
ultrospec 7000 spectrophotometer at 450 nm. Concentration was calculated from a Trolox standard
curve (5 to 170 mg/L, R? = 0.9965).
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The CUPRAC analysis (Table 4) indicated that the antioxidant capacity of 3-carotene was not
significantly different from the AWW powder (p > 0.05). However, preliminary TBARS analysis
of -carotene produced MDA values far higher (~6 mg MDA/kg of pork fat) than the control.
This could have been attributed to its intense orange pigment interfering with spectrophotometry
results. Therefore, 3-carotene was not presented in Figure 4.

2.8. Lipid Oxidation of Pork Fat Using TBARS

The Thiobtrbaturic acid reactive substances (TBARS) value was determined colorimetrically [10].
Therefore, 1 g of pork fat sample was measured out in triplicate, inside 15 mL falcon tube, and mixed
with a 5 mL solution containing 7.5% trichloroacetic acid solution (TCA), 0.1% propyl gallate, and 0.1%
EDTA-Najy, along with 5 mL of TBA reagent (0.02 M thiobarbituric acid in distilled water). The tubes
were incubated at 100 °C for 40 min and cooled to ambient room temperature in an ice bath. Once
cooled, the absorbance was measured at 532 and 600 nm. The extent of peroxidation in terms of
malondialdehyde equivalents was determined based on a series of TEP (1,1,3,3-tetraethoxypropane)
standards (R? = 0.9996).

2.9. Statistical Analysis

Samples were analysed in triplicate and data were expressed as mean + standard deviation.
One-way analysis of variance (ANOVA) with Tukey pairwise comparison of means was performed
using the XLSTAT software (version 2018.7). A difference of p < 0.05 was considered to be significant.

3. Results and Discussion
3.1. Optimising Spray Drying Conditions

Previous research by Permal, Leong Chang, Seale, Hamid, and Kam [10] on spray dried AWW,
exhibited low yields not exceeding 32%, because of powder sticking to the spray drier chamber wall.
Proximate analysis from this study revealed that AWW was high in lipid content (53.8 + 9.4% w/w dry
basis), which could result in stickiness due to the presence of low melting point triglycerides [15]. One
way to circumvent this issue was to spray dry AWW using dehumidified air as a drying medium and
to encapsulate the avocado oil present in AWW using carriers such as MD 10-12 DE, MD 17-19 DE,
AG, lactose, or WPC. Other spray drying parameters including, feed flow rate (g/min), temperature,
and carrier concentration were also varied to optimise AWW powder yield.

The optimising process started with the selection of the best encapsulating carrier for AWW
during spray drying. Figure 2A shows that the WPC carrier gave the highest average powder yield at
48% followed by lactose at 32%. There were no significant differences (p > 0.05) between MD 10-12 DE,
MD 17-19 DE, and AG as compared with the control with yields ranging from 19 to 24%. Therefore,
WPC was chosen as the carrier of choice for the consecutive spray drying experiments.

Altering feed flow rate (g/min), as shown in Figure 2B, had a significant impact on powder yield
(p < 0.05) when 5% WPC loading and 140 °C drying temperature were kept constant. The highest
average yield was observed at a feed flow rate of 5.8 g/min. Further increase in feed flow resulted in
decreased yields. Spray drying of AWW with 5% WPC resulted in an increase in powder yield with an
incremental increase of spray drying inlet temperatures (Figure 2C). The highest average yield of 49%
AWW powder was obtained at inlet temperatures of 160 °C and 180 °C. As shown in Figure 2D, carrier
concentration of 5% WPC resulted in significantly higher (p < 0.05) yield than 1% WPC (32%) and 10%
WPC (43%).
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Figure 2. Yield of spray dried avocado wastewater (AWW) under different spray drying conditions.
Each data point was measured in triplicate (n = 3) where error bars represent standard deviation of
means. (A) Effect of carrier types on powder yield when drying temperature of 140 °C, 5.8 g/min feed
flow rate, and carrier concentration of 5% w/w with respect to AWW were kept constant; (B) Effect of
feed flow rate on powder yield when drying temperature of 140 °C and 5% whey protein concentrate
(WPC) carrier loading were kept constant; (C) Effect of spray drying temperature on powder yield
when flow rate of 5.8 g/min and 5% WPC carrier loading were kept constant; (D) Effect of WPC carrier
loading at a constant feed flow rate of 5.8 g/min and drying temperature of 160 °C. Superscript letters
that are the same do not differ statistically based on Tukey’s test (p < 0.05).

In this study, WPC resulted in the highest powder yield as compared with other carriers. Proteins
have many desirable functional properties as a wall material, including, solubility, ability to interact
with water, film formation, emulsification, and stabilization of emulsion droplets. Proteins are effective
at encapsulating oils, as they change their structure during emulsification through unfolding and
adsorption at the oil water interface. These proteins form resistant multilayers around oil droplets
and with the help of repulsive forces they make stable emulsions that are critical for encapsulation
purposes [25]. Bae and Lee [17] reported that WPI (whey protein isolate) was more effective in
encapsulating CPAO when used alone as compared with the incorporation with maltodextrin at a 1:1
ratio. Similarly, Jimenez et al. [26] reported WPC as a good encapsulating agent for CLA (conjugated
linoleic acid). Their study indicated a lower degree of CLA oxidation using WPC as compared with
WPC/MD (1:1 ratio of WPC and maltodextrin) or GA (gum Arabic). Du et al. [27] compared the
efficiency of five different carriers to overcome stickiness tendencies of persimmon pulp powder.
The study concluded that powder yield with addition of 25% WPC was equivalent to the yield of using
45% MD 14-16 DE, 30% GA, and 30% starch sodium octenyl succinate (SSOS). Comparable results
were also reported by Fang and Bhandari [28] who used maltodextrin and whey protein isolate (WPI)
as carriers for spray drying bayberry juice. This study found that 1% WPI was sufficient for powder
recovery (>50%), whereas carrier loading of more than 30% of maltodextrin was required for the same
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purpose. Du, Ge, Xu, Zou, Zhang, and Li [27] attributed protein as an effective carrier agent due to the
surface activity of protein. The surface activity of a protein allows it to transfer through the interface
of a feed solution and rapidly form a film while drying. This film effectively overcomes bonding of
consecutive droplets and the stickiness between droplets to the chamber wall.

Figure 2B shows a gradual decrease in AWW powder yield with an increasing feed flow rate.
Khalilian, Movahhed, and Mohebbi [29] explained that increasing feed flow rate could produce dried
samples with higher moisture content as larger feed volumes were being passed over at the same time
period. Therefore, plasticisers, such as water (Tg = -135 °C), decrease the Tg of atomised feed material,
leading to insufficient drying of the powder and lower powder yield [15].

Figure 2C shows that increasing inlet temperature consequently increases AWW powder yield.
Similarly, Fazae et al. [30] reported the positive effects of increasing inlet temperatures (110 °C to
150 °C) on the output of mulberry powder. The authors attributed this higher yield to the greater
efficiency for heat and mass transfer processes. Increasing inlet temperatures decreased the chance
of inadequately dried powders attaching onto the spray dryer’s chamber wall. In contrast, Dantas,
Pasquali, Cavalcanti-Mata, Duarte, and Lisboa [18] concluded that utilising a lower inlet temperature
(80 °C) in conjunction with adjusted atomization flow rates, produced higher yields for avocado
powder. Dantas, Pasquali, Cavalcanti-Mata, Duarte, and Lisboa [18] utilised inlet temperatures on the
lower spectrum (80-120 °C) as their feed material (avocado flesh and milk) contained considerable
amounts of low molecular weight sugars with low Tg, as well as high amounts of fats. Dantas, Pasquali,
Cavalcanti-Mata, Duarte, and Lisboa [18] found that application of inlet temperatures above 80 °C
would have resulted in lower powder yield as a result of stickiness with drying temperatures coming
closer to glass transition temperatures.

The improved yield increasing from 1 to 5% WPC (32% to 49%, respectively), as shown in
Figure 2D, was consistent with studies by both Fazaeli, Emam-Djomeh, Kalbasi Ashtari, and Omid [30]
and Dantas, Pasquali, Cavalcanti-Mata, Duarte, and Lisboa [18]. Both studies found that increasing
carrier concentrations, significantly increased process yield of black mulberry juice and avocado
powder, respectively. The authors reported that increasing carrier concentration increased Ty values
of other amorphous fractions present in the mixture which were naturally low in Tg components.
Tonon et al. [31] demonstrated that increasing carrier concentration decreased process yield, which
could be due to an increase in mixture viscosity. This may explain the decreased yield in this study
when using 10% WPC to encapsulate AWW as compared with 5% WPC.

3.2. Powder Morphology for Spray Dried AWW Powder

AWW powder samples in Figure 3B-F were produced with a feed flow rate of 5.8 g/min, 5%
(w/w) carrier loading, and spray drying inlet temperature of 140 °C. The SEM analysis of spray
dried AWW encapsulated with MD 10-12 DE (4.3 + 2.36 um), MD 17-19 DE (4.6 + 1.75 um), AG
(4.6 + 3.39 pm), lactose (4.14 + 1.41 pm), and WPC (4.4 + 2.23 um) showed little difference in average
particle size. Morphology of freeze-dried AWW (Figure 3A) was the most unique as compared with
those spray dried with carriers. The powder appeared as, agglomerated, irregular flake particles.
The highest degree of polymerisation of encapsulated powders was seen in lactose (Figure 3E) because
of its low Tg, 101 °C [15]. However, AG, MD 10-12 DE, MD 17-19 DE, and WPC were in a mass of
spherical agglomerates.
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Figure 3. SEM images of AWW powders. The following data represents powder treatment as well
as mean particle size + standard deviation of powder. (A) Freeze-dried AWW, 1.57 + 0.29 pum;
(B) Maltodextrin with a 10-12 dextrose equivalence (MD 10-12 DE), 4.3 + 2.36 um; (C) MD 17-19
DE, 4.6 + 1.75 pm; (D) Acacia gum, 4.6 + 3.39 um; (E) Lactose, 4.14 + 1.41 um; (F) WPC, 4.4 + 2.23
pum. Samples were randomised images of what was seen under the SEM for the various parameters.
Samples (B) to (F) were subjected to spray drying conditions of 140 °C, 5.8 g/min feed flow rate, and
carrier concentration of 5% w/w with respect to AWW.

Previous SEM micrographs of spray dried AWW powder without encapsulation appeared as
agglomerates of smaller particle sizes (<4 um), rather than separate individual components [10]. In the
present study, increasing inlet temperature resulted in a lower degree of coalescence, thus, producing
distinguishable spherical particles. With the addition of carriers, spray dried AWW particles still
appeared to be agglomerated, but the degree of particle separation and spherical morphology were
higher. There was low particle size variability between MD 10-12 DE and MD 17-19 DE (Figure 3B,C).
However, Tonon et al. [32] found that agai powder particles produced with MD 10 DE exhibited a
median diameter higher than MD 20 DE and AG. They reported that the increase in particle size was
influenced by the molecular size of each carrier agent.

Spray dried AWW powder had a high degree of particle agglomeration, making it difficult to
distinguish individual particle sizes (Figure 3B-F), possibly due to the presence of surface fat bridging
between particles. Surface topology of powders, as shown in Figure 3B-F, indicated the presence of
some pores, cracks, and surface depression. Kim et al. [33] explained that quick formation of powder
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crusts could cause surface fissures or breakages. Alternatively, if the microcapsule crust is moist and
supple, the particle could deflate and shrivel upon cooling.

3.3. Quantifying Total B-Carotene, a-Tocopherol Content in AWW Powder Using the LC-MS

In a previous study, spray dried AWW powder was found to be rich in antioxidants, more so than
freeze-dried avocado flesh [10]. The powder was successfully added into pork sausages as a natural
preservative and showed no significant differences in terms of lipid peroxidation as compared with
use of the synthetic E316 (sodium erythorbate) preservative. Analysis of antioxidants were conducted
spectrophotometrically providing total antioxidant capacity and activity. However, research from
Permal, Leong Chang, Seale, Hamid, and Kam [10] did not identify compounds contributing towards
the inhibition of lipid peroxidation. Wong et al. [34] stated that CPAO contained high concentrations
of naturally occurring antioxidants, specifically a-tocopherol (70-190 mg kg™ oil) and carotenoids
(1.0-3.5 mg kg ! oil). Yang et al. [35] reported that not all avocado oil droplets were removed from
AWW during CPAO production, which suggested that the preservative properties of AWW could be
largely influenced by the presence of carotenoids and tocopherol.

The LC-MS analysis carried out in this study focused on total 3-carotene and «-tocopherol content
in AWW powder because of their solubility in lipids. This is the first time such an analysis has been
conducted on spray dried AWW. The current extraction method was relatively efficient in recovering
a-tocopherol (93.4%) (Table 1). The powder samples which were analysed included those spray dried
with carriers, freeze-dried avocado flesh, and neat AWW. As shown in Table 2, avocado flesh had
the highest concentration of x-tocopherol (278.7 + 11.76 mg x-tocopherol/kg powder), nearly triple
the amount of what was present in freeze-dried AWW. Interestingly, freeze-dried AWW showed no
statistical difference to AWW powders encapsulated with lactose, acacia gum, MD 10-12 DE, and
MD 17-19 DE (p > 0.05). AWW encapsulated with WPC was the only spray dried sample that had
significantly higher x-tocopherol content as compared with freeze-dried AWW. This demonstrated the
ability of WPC to maintain and protect a-tocopherol from degradation. Powders dried at 110-160 °C
(Table 3) without the addition of carriers exhibited a higher concentration of «-tocopherol than
encapsulated samples (Table 2). This is due to the concentration effect of carriers, as addition of carriers
would have increased solid content of the sample without increasing phytochemical content.

Spray drying temperatures from 110 °C to 150 °C showed no statistical differences in terms of
a-tocopherol content (p > 0.05) of AWW powder. Furthermore, the highest inlet temperature of 160 °C
produced AWW powder with a significantly higher (p < 0.05) x-tocopherol content (320.2 + 51.09 mg
a-tocopherol/kg powder) than AWW powders spray dried at 140 °C and 150 °C WPC (186.3 + 44.77
and 196.9 + 23.7 mg a-tocopherol/kg powder, respectively). However, due to the high variability in
a-tocopherol content, results utilising an inlet temperature of 160 °C was not significantly different from
110 °C, 120 °C, and 130 °C treatments (187.9 + 23.09, 226.8 + 23.44, 201.0 + 33.57 mg o-tocopherol/kg
powder, respectively).

Table 1. LC-MS recovery of a-tocopherol and (3-carotene.

Initial Expected LC-MS Actual LC-MS

: 1 : 2
Coid:)‘;een t Concentration Amm:nt )SplkEd Reading Reading Re(o(:)/o;/ ery
()
P (ug/g) H8 (ug/g) (ug/g)
a-Tocopherol 1.0 0.5 15 14 93.5+3.1
B-Carotene 0.2 0.5 0.7 0.1 18.0 £ 8.5

1 Concentration of spiked a-tocopherol and B-carotene. 2 Data is mean + standard deviation (1 = 3).
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Table 2. Total x-tocopherol and [3-carotene content of freeze-dried and spray dried AWW and
avocado flesh.

Samples mg «-Tocopherol/kg Powder 3 mg B3-Carotene/kg Powder
Freeze-dried samples
1 Flesh 278.7 £11.76 2 8.6 +1.02°
T AWW 99.7 £16.81 ¢ 2.5 £ NAC
Spray dried AWW
2 Carrier Material
WPC 181.6 +32.24° 151 +0.232
Lactose 131.4 +21.67 ¢ 0.0¢
Acacia gum 108.1 +4.02 € 0.7 £+ NA€
MD 10-12 DE 95.5+9.72°¢ 0.0°¢
MD 17-19 DE 1154 +£13.39 ¢ 1.5+ NAC€

Data are mean + standard deviation on dry weight basis, all sample analysis was performed in triplicate (n = 3).
Superscript letters within the columns for a-tocopherol and 3-carotene do not differ statistically using the Tukey’s
test (p < 0.05). ! Samples were freeze dried. 2 Powders used were spray dried with 5% carrier loading, an inlet
temperature of 140 °C, and a feed flow rate of 5.8 g/min. 3 Due to low B-carotene recovery, some triplicate samples
only produced one reading. Hence standard deviation was not available (NA) for these.

Table 3. Total a-tocopherol and (3-carotene content of spray dried AWW without the addition of carriers.

Samples mg «-Tocopherol/kg Powder mg (3-Carotene/kg Powder
110 °C 187.9 + 23.09 @b 50+ NA?
120 °C 226.8 +23.44 b 8.6+4.832
130 °C 201.0 + 33.57 &P 34+6.192
140 °C 186.3 + 44.77P 43+381°2
150 °C 196.9 +23.7P 0.4+0142
160 °C 320.2 £ 51.09 2 5.0 +3.832

Data are presented as mean + standard deviation values based on dry weight basis. Analysis of samples was
performed in triplicate (1 = 3). Superscript letters within the columns for «-tocopherol and (3-carotene that are the
same indicate that mean values do not differ statistically using the Tukey’s test (p < 0.05).

The LC-MS recovery protocol for 3-carotene was relatively low (18%, Table 1) which consequently
produced inconsistent data for total -carotene in AWW powder, as shown in Tables 2 and 3.
Nonetheless, the LC-MS analysis in Table 3 shows no statistical differences for 3-carotene content
in powders dried between 110-160 °C. Table 2 shows that WPC retained a significantly higher
(p < 0.05) concentration of 3-carotene (15.1 + 0.23 mg (3-carotene/kg powder) as compared with AWW
encapsulated with lactose, acacia gum, MD 10-12 DE, and MD 17-19 DE (0.0, 0.7 £ NA, 0.0, 1.5 £ NA
mg [3-carotene/kg powder). The results showed that WPC was the most efficient carrier for retaining
both a-tocopherol and (3-carotene content in AWW powder. Several reports have suggested that
protein was an ideal carrier for preserving nutraceutical components of powders due to its excellent
film forming ability. The high recovery of powder and «-tocopherol retention with only 5% of WPC
could be due to surface active properties of WPC in solutions. Fang and Bhandari [28] found that
proteins migrated towards the air and water interphase, reduced surface fat composition of droplet
particles, and consequently decreased exposure of the oils to the temperature extremities in the drying
chamber. Secondly, the migration of protein onto the surface of sprayed dried powder was capable of
rapidly forming a very thin protein rich film. This protein film could have a higher Tg, allowing it to
remain in the glassy state and protecting the oils from attaching onto the hotter surfaces of the spray
dryer. Moreover, a study by Dian et al. [36] found that maltodextrin and sodium caseinate retained
higher levels of carotene in encapsulated palm oil than a blend of maltodextrin and acacia gum.

Utilising the highest spray drying temperature of 160 °C did not degrade «-tocopherol
concentration in AWW powders without carriers. Similarly, Permal, Leong Chang, Seale, Hamid, and
Kam [10], reported that increasing the spray drying inlet temperatures (110-160 °C) for AWW without
carriers either increased or maintained the level antioxidant activity for AWW. Sabliov et al. [37]
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reported that a-tocopherol was stable at high temperatures in the absence of oxygen, but under
normal atmospheric conditions the rate of degradation for a-tocopherol increased with increasing
temperatures. They showed a reduction in a-tocopherol under atmospheric pressure at temperatures
ranging from 40 to 180 °C and concluded that increasing temperature not only decreased o-tocopherol
content but also increased the rate of decrease, i.e., 55% of x-tocopherol had degraded after 2 h at
180 °C, and almost 80% of free x-tocopherol reduced after 5 h of exposure. There was no difference
observed at temperatures below 120 °C, whereby only 30% of free a-tocopherol degraded after 5 h.
Contrary to holding times reported for x-tocopherol degradation, spray drying is an efficient system
for delivering powders straight into the collection vessel without being held at high inlet temperatures
for a long time. Hence, the degradation of «-tocopherol should be minimal. Even so, this increase in
a-tocopherol could be a result of rapid crust formation at the surface of the powder, forming a barrier
to protect the «-tocopherol rich oils at the particle center [10,17].

Similar to the stability of a-tocopherol, altering the spray drying inlet temperature did not have
a significant impact (p > 0.05) on the concentration of (3-carotene in spray dried AWW. In contrast,
Khalilian, Movahhed, and Mohebbi [29] reported a sharp decrease in 3-carotene content for carrot
celery juice when increasing spray drying inlet temperatures (120-170 °C). Interestingly, the authors
reported that increasing carrier loading (10% to 30% maltodextrin) decreased [3-carotene content.
However, the addition of 5% WPC as a carrier in the current study significantly increased retention of
B-carotene (15.1 + 0.23 mg -carotene/kg powder, p < 0.05) as compared wirh spray dried powder
without carriers (0.4 mg (3-carotene/kg powder at 150 °C). Compared to lactose, AG, MD 10-12 DE, MD
17-19 DE, and AWW powders without encapsulation, WPC’s rapid film forming capabilities provided
superior protection for 3-carotene.

3.4. Inhibition of Lipid Peroxidation Using AWW Powder

Lipid peroxidation is a major cause of deterioration in fat rich foods, especially those containing
polyunsaturated fats (PUFAs). Sodium erythorbate, BHT, BHA, and «-tocopherol are common lipid
soluble antioxidants used by food industries to prevent lipid oxidation in foods. The CUPRAC
assay was carried out on four other synthetic additives to match their antioxidant effect to E316.
These included 3-carotene, BHT, BHA, and x-tocopherol. Table 4 shows the mg Trolox equivalent/100 g
of powder for each additive, as well as their equivalent concentration needed to produce an antioxidant
capacity, similar to 0.04% of E316. The antioxidant capacity of BHA was significantly higher (p < 0.05)
as compared with the other six additives and approximately 150 times more potent than AWW powder.
Figure 4 shows that adding 1.50% AWW was just as effective as 0.04% E316, 0.10% BHT, 0.01% BHA,
and 0.20% a-tocopherol in inhibiting lipid peroxidation. There were no statistical differences in mg
MDA/kg of pork fat after cooking the fat with different antioxidants at 180 °C for 15 min. Interestingly,
a-tocopherol was not significantly different from the control (p > 0.05) with respect to preventing lipid
oxidation. Permal, Leong Chang, Seale, Hamid, and Kam [10] reported that AWW powder was an
alternate antioxidant additive, effective in preventing fat oxidation in pork sausages. The study also
found that there were no significant differences in levels of MDA complexes formed using 0.20% w/w
AWW without carriers and 0.04% E316 in the sausages. In contrast, Table 4 shows a higher equivalent
of AWW (1.5% w/w) required to match E316 (0.04 w/w). The higher concentration of AWW is likely
due to the concentration effect of WPC, increasing non-phytochemical concentration of AWW powder
produced in the current study.
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Table 4. Trolox equivalence of additives added to pork fat determined by cupric ion reducing antioxidant
capacity (CUPRAC) assay.

Additives mg Trolox eq./100 g Powder % wfw in Pork Fat
1 E316 83724 b 0.04
2 AWW 2233 ¢ 1.50
BHT 35095 © 0.10
BHA 330787 @ 0.01
a-Tocopherol 16745 4 0.20
B-Carotene 1803 ¢ 1.86
3 wpC of 0.10

Sample analysis was performed in triplicate (n = 3). Superscript letters within the columns for «-tocopherol and
{3-carotene that are the same indicate that the mean values do not differ statistically using the Tukey’s test (p < 0.05).
1 E316 was used as baseline for all other additives. The percentage of additives added into pork was calculated as its
CUPRAC equivalence to 0.04% E316. 2 Powder used were spray dried with 5% WPC at 160 °C inlet temperature
and, feed flow rate of 5.8 g/min. 3 Positive control.

mg MDA / kg

0.5

Comral (Mo Preservates ot o . . N
Preservatives

Figure 4. Thiobarbaturic acid reactive substances (TBARS) values (mg MDA/kg) in cooked pork fat
containing various synthetic and commercially available additives and spray dried AWW powder.
Superscript letters that are the same indicate that mean values do not differ statistically when using the
Tukey’s test (p < 0.05). The analysis of each sample was conducted in triplicate. Error bars represent the
standard deviation of means. AWW powder used was spray dried at 160 °C at a flow rate of 5.8 g/min
and encapsulated with 5% WPC.

Of the four control antioxidants studied, pure x-tocopherol was not as effective in preventing lipid
oxidation. Ottaway [38] explained that, x-tocopherol was readily oxidised by air. It is heat-stable in
the absence of oxygen, but if heated in the presence of oxygen it will degrade faster. The results of this
study showed that WPC was able to protect x-tocopherol from degradation during high temperature
processing of AWW. The encapsulation of AWW using WPC could preserve the effectiveness of
a-tocopherol as an antioxidant, as shown in Table 2. However, previous research has shown that
proteins could interfere with the TBARS assay [20-22]. Therefore, the WPC powder which was used as
a positive control for the TBARS test was shown to increase MDA content (Figure 4). However, when
AWW was encapsulated with WPC, there was no interference with MDA formation due to the low
concentration of WPC in AWW as compared with the positive control.
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4. Conclusions

The design of this study was aimed at optimising existing spray drying conditions of AWW to
increase AWW powder yield. The highest yield (49%) was obtained using 5% WPC as a carrier, feed
flow rate of 5.8 g/min, and an inlet temperature of 160 °C. The SEM images revealed that the addition
of carriers was beneficial in terms of powder morphology. There was a lower degree of particle
agglomeration with encapsulation. Encapsulation using WPC was efficient in protecting «-tocopherol
and (3-carotene. The addition of spray dried AWW into cooked pork fat was as effective as synthetic
additives such as BHT, BHA, E316, and o-tocopherol in preventing lipid oxidation.
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