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Abstract

Multi-Task Learning (MTL), as opposed to Single Task Learning (STL), has be-

come a hot topic in machine learning research. For many real world problems in

application areas such as medical decision making, pattern recognition, and finance

forecasting – MTL has shown significant advantage to STL because of its ability to

faciliate knowledge sharing between tasks. This thesis presents our recent studies

on Knowledge Transfer (KT) – the process of transferring knowledge from one task

to another, which is at the core of MTL. The novelly proposed KT algorithm for

correlation multi-task machine learning adapts learner independence into MTL, thus

empowering any ordinary classifier for MTL.

The improvement in the learning rate of MTL as compared with STL relies on KT

between tasks. Given two correlated learning tasks T 1, T 2, previous approaches to

MTL are often modeled as a learner dependent model: ML = L(T i, KTL(T i, T j)),

for i, j = 1, 2, i 6= j, where L is a specific learner such as an k Nearest Neighbour

(kNN), Support Vector Machine (SVM), or Multi-Layer Perceptron (MLP), andML

is the resultant learning model built from task T i and transferred knowledge KTL

from T j to T i. Because representation of the knowledge transferred in KTL depends

on the learner, it follows that the transferred knowledge KT is incompatible for

learners other than L.

To remove the learner-dependent restriction, we propose a learner independent MTL

scheme such that ML = L(T i, KT (T i, T j)), for i, j = 1, 2, i 6= j, where KT is inde-

pendent to the learner L, and MTL is conducted for arbitrary learner combinations.

In the proposed solution, we use Minimum Enclosing Balls (MEBs) as knowledge

carriers to extract and transfer knowledge from one task to another. Since the

knowledge presented in MEB can be decomposed as raw data, it can be incorpo-

rated into any learner as additional training data for a new learning task and thus

improve its learning rate.

The proposed MEB-based KT is on the basis that in the feature space, the two

correlated tasks share some common input data that lie on the overlapping regions



of the feature spaces in-between the two correlated tasks. The main idea is to find

the correlating knowledge – overlapping regions of the two tasks – and transfer the

related data regardless of the learner employed. KT is done by building a correlation

space via MEBs and transferring the enclosed instances from the primary task to the

secondary task. The extent of KT depends on the amount of overlapping instances

between two tasks.

The effectiveness and robustness of the proposed KT is evaluated on multi-task

pattern recognition (MTPR) problems derived from synthetic datasets, University

of California at Irvine (UCI) datasets, and real world face datasets, using classifiers

from different disciplines for MTL. We evaluate the learner independent KT model on

three measures: (A) KT capability – how much knowledge can the method transfer;

(B) contribution of KT – how beneficial is the transferred knowledge to the new

task; and (C) adaptability of KT – how could KT adapt to learning tasks with

varied relevance. It is shown that multi-task learners using KT via MEB carriers

perform better than learners without-KT, and it is successfully applied to all type

of classifiers.

On the other hand, in cases where the two learning tasks are semantically irrelevant,

negative KT could happen to the proposed KT. For example, face recognition is not

able to be supported by knowledge from hand writing recognition – simply overlap-

ping feature domains does not work. How to discover correlated knowledge for MTL

between unrelated topics remains a challenging problem and is left for future work.

Keywords — Multi-task learning, Correlated multi-task learning, Minimum Enclos-

ing Ball, Machine Learning, Knowledge Sharing, Learner Independence, Knowledge

Transfer.



Chapter 1

Introduction

This chapter introduces related work on multiple task learning, knowledge transfer,

and minimum enclosing balls. MTL is described in Section 1 as a computing model

for learning more than one task, enabling knowledge sharing between tasks to opti-

mize the rate of learning individual tasks. The proposed KT for MTL is described

in Section 2, where learner independence is discussed for both KT and MTL, and

Section 2 also introduces the idea of MEB for KT, where MEB is used as a form

of knowledge carrier, transferring knowledge from one task to another. Section 3

provides an overview of the structure of this thesis.

1.1 Multiple Task Learning

MTL is inspired by daily human activities, where multiple learning tasks might be

presented at one time. In this thesis, we target multi-task classification research

despite MTL is potentially applicable to clustering, regression, and many other com-

putational researches. With a comparison to traditional single task learning, we

discuss the definition of MTL, the relationship between MTL and STL, and the

relationship between MTL and traditional learning algorithms.



1.1.1 Definition of MTL

Broadly speaking, MTL is everywhere in our daily life. For example, if one knows

how to ride a bicycle, it will be easy for him to start to ride motorcycle, because

bicycle and motorcycle riding are similar in the sense of balancing. Alternatively, if

one knows how to play basketball, he should not have problem to play netball, as the

rules of basketball and netball are almost the same. The goal of MTL is to model

such brain-like functionality to explore the similarity between correlated activities.

MTL is a principle about learning two or more tasks one after another or at one

time, while the knowledge is transferred between tasks to improve the rate of learn-

ing. The definition of MTL according to (Ozawa, Roy, & Roussinov, 2009) is “in

machine learning, when more than one task learning are required, the relatedness

between tasks are often modelled to facilitate task learning with the prior knowl-

edge retained in other correlated tasks learning. This type of sequential or parallel

tasks learning with KT between tasks is called multi-task learning”. It is also de-

scribed as correlated multi-task learning in the literature (e.g., (Abu-Mostafa, 1989;

Caruana, 1997; Thrun, 1996) and (Thrun & Pratt, 1998)). Rich Caruana (Caruana,

1997) states that “multi-task learning is a model to inductive transfer using prior

information from primary tasks as inductive bias to improve performance of related

secondary tasks”. Figure 1.1 shows an schema of correlated multiple task learning.

Task 1 Task 2 Task 3

Learning

System

Task 1 Task 2

Task 3

Correlation

Input

Task 1 Task 2 Task 3
Output

Figure 1.1: Schematic diagram to show the idea for multiple task learning.



1.1.2 Relationship to STL

STL refers to the building of a model for learning one task at a time, Figure 1.2 shows

the concept of multiple isolated tasks for learning. In an STL, a large problem is usu-

ally decomposed into many small pieces of problem that are learned individually and

separately. However, the learning system simply throws away the knowledge gained

from one learning task before commencing another, rather than retaining the knowl-

edge for future task learning. This model neglects potentially useful information

which could be shared with other tasks.

In contrast to STL, MTL is not simply pooling several isolated tasks together. Ac-

cording to the definition above, it is different to STL in two respects. First, the tasks

are not identical. For example, there could be two tasks to be performed on a face

image dataset: person identification and glasses recognition. Person identification is

to distinguish 271 person identity through facial image classification. Glasses recog-

nition is to recognize whether a face is with glasses or not. Clearly, these two tasks

can not appropriately be combined and treated as one single task problem. Second,

the tasks are related to each other. By separating the multiple task learning problem

into several independent single tasks, knowledge from one task which could be use-

ful to the others are lost. Baxter’s work (Baxter, 2000) approves the advantages of

learning more than one task relies on the assumption that the tasks share a common

hypothesis class. In other words, the precondition of learning more than one task

relies on the relatedness between tasks.

According to the definition of Ozawa et al. (2009), “If multiple tasks are related to

one another, then the learning of a particular task among them can be speeded up if

knowledge is transferred from another related task that has already been learned”,

such transfer of knowledge in-between two correlated tasks is called knowledge trans-

fer, and is also known as transfer learning (Pan & Yang, 2009) in the literature.

Baxter (2000) has shown the principle effectiveness of KT: when there are several

correlated tasks to learn, KT can mutually facilitate the learning process of the tasks.

Note that the definition of MTL also mentions KT between tasks, but this has

been a “black box” procedure in previous MTL approaches (Thrun, 1996; Evgeniou

& Pontil, 2004). Due to KT for MTL is developed based on a specific learning

algorithm, we are not able to see what knowledge is shared and transferred between



tasks. On the other hand, STL does not allow transfer between tasks at all.

Task 1

Task 1

Input

Task 1
Output

Task 2

Task 2

Task 2

Task 3

Learning

System

Task 3

Task 3

Figure 1.2: Schematic diagram to show the idea for single task learning.

1.1.3 Traditional MTL Algorithms

Previous MTL approaches are mostly derived from traditional machine learning al-

gorithms such as kNN, SVM, MLP, etc. Sebastian Thrun (1996) proposes a life-long

learning approach which depends on kNN to perform multiple tasks. Evgeniou et al.

(2004) present a multi-task learning mechanism based on SVMs. Ando et al. (2005)

provide a MTL approach derived from a Bayesian model. Ozawa et al. (2009) give a

multi-task pattern recognition model based on an Artificial Neural Network (ANN).

In all the above approaches, all tasks are learned by a specific learner. On the other

hand, Gao et al. (Gao, Fan, Jiang, & Han, 2008) develop an ensemble framework to

combine multiple classifiers by collaboration and adjustment. The ensemble frame-

work relies on the weight assignments of component classifiers to integrate the ad-

vantages of various learning algorithms. However, the limitation with this approach

is, the ensemble framework still transfers knowledge through the learners in the same

way as the existing MTL approaches. The only difference is that it integrates several

types of classifiers rather than using only one classifier.



1.2 Proposed Method

1.2.1 Limitations of Previous Methods

The disadvantage of most the above MTL approaches is, each method is specific to

one fixed learner such as kNN or SVM, and none of them can take advantage of two

or more classifiers in an unrestricted environment. This is because the KT module of

the MTL has been associated with a specified learner, which makes the transferred

knowledge incompatible to learners other than the original.

1.2.2 An ideal KT Approach

The core of MTL is the modelling of KT. A desirable KT-based artificial intelligent

system should implement brain-like functionality. The idea behind KT is the fact

that the human brain exploits knowledge from previous activities to generalize on

new related activities. Take the examples of basketball and netball, and bicycle and

motorcycle riding mentioned above. For previous known MTL, the task relatedness

estimation and KT are conducted by building a specific learner. The procedure of KT

is not transparent, as the KT approach is specialized to a fixed type of learner, and

the transferred knowledge is unavailable (i.e. no usable) for a learner from another

type.

In this work, we consider an interesting KT approach where the transferred knowl-

edge depends on the correlation in-between two tasks, and is able to work with any

type of learner. Figure 1.3 illustrates how a KT deals with two correlated tasks for

MTL without taking the formulation of the learner into consideration. Given input

data for Task 1, the task can be modelled into a set of knowledge units. For Task 2

learning, we adopt only correlated knowledge units from Task 1, and generate new

knowledge for the learning of Task 2. In this way, the system addresses Task 2 with

transferred knowledge from Task 1, but has no restriction on the choice of learner.

Unlike previous KT methods that are customized to one given learner, this research

aims to come up with a learner independent KT approach for MTL.

The following aspects are pursued in this research:



Knowledge

unit

Task 1 Task 2

Knowledge

Transfer
Information &

data

Rest of

data

The knowledge

of Task 1

New

knowledge

The knowledge of Task 1

New knowledge

Add

Figure 1.3: Illustration of the concept of learner independent KT for MTL.

1. the capability of KT, how much knowledge the method can transfer;

2. the contribution of KT, how beneficial transferred knowledge is to correlated

task learning;

3. the adaptability of KT, how KT acclimatizes learning to tasks of varied rele-

vance.

In order to design an effective KT model, two points should be taken into consid-

eration: (1) what to transfer, that is which knowledge is shared among correlated

tasks; and (2) how to transfer, that is the way to select a suitable knowledge carrier

for transferring.

1.2.3 The idea of MEB-based KT

An ideal knowledge carrier has to satisfy the following criteria. (1) Flexibility in size:

since the extent of KT depends on the amount of overlap/similarity between the two

tasks, the carrier should have the ability to shift its scale according to the size of

the correlated knowledge. (2) knowledgeable representation: the carrier itself should

capture essential discriminant information. In other words, the KT from the primary



task to the secondary task should benefit the learning rate as well as the accuracy of

the second learner. (3) learner independence: the knowledge carrier should not be

restricted to any type of learner, the transferred knowledge can be used by any type

of learner for MTL.

According to Kumar et al. MEB theory (Kumar, Mitchell, & Yildirim, 2003), given

a set of points S = {x1, ..., xm}, where each xi ∈ ℜ
d, the minimum enclosing ball of

S is the smallest ball that contains all the points in S. The MEB can be dated back

to as early as 1857, when Sylvester (1857) first investigated the smallest radius disk

enclosing m points on the plane. It has been applied in various areas, such as gap

tolerant classifier problems, tuning SVM parameters, pre-processing (Welzl, 1991) for

fast farthest neighbour query approximation and similarity search problem, testing

of clustering and collision detection problem. The MEB also belongs to the larger

family of shape fitting problem solvers, which attempt to find the shape (such as a

slab, cylinder, cylindrical shell or spherical shell) that best fits a given set of points

(Chan, 2000). Figure 1.4 illustrates data instances with multiple labels enclosed by

a set of MEBs for knowledge representation. Please refer to Chapter 4 for a detailed

description of MEB.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
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Class B

Class C

*

*
*

*
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* *

*

*

*
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* *

*
*
*

*

*

Figure 1.4: Illustration of MEB knowledge representation for classification learn-
ing.



In this study, we consider MEB as a potential knowledge representation method

towards a learner-flexible KT approach for MTL, because of the following observa-

tions. First, MEB encloses all data points in the smallest ball no matter the size

of the dataset, and the MEB itself is flexible in size. Second, MEB is a learner

independent knowledge representation method. Because the enclosed data in MEB

are basically uncorrelated with any learning model, knowledge contained in MEB is

compatible with any learner.

The proposed method builds an assumption correlation space and transfers knowl-

edge between tasks via MEB. It consists of two components: task relatedness inter-

pretation and the KT algorithm. The task relatedness interpretation searches for

physical task relatedness between tasks and discovers correlation areas in the feature

space. The MEB-based KT algorithm extracts and transfers correlated knowledge

from one learning task to another. The proposed KT method is demonstrated for

MTL using different types of classifiers such as kNN, SVM, and MLP.

1.3 Structure of the Thesis

The thesis is structured as follows:

Chapter 2 contains a review of previous studies on KT methods for multi-task

learning. In the review, the traditional knowledge sharing method – the learner

dependent model is investigated. In the context of the learner dependent model,

various KT approaches for MTL are summarized, such as inductive bias shar-

ing, memory item sharing, and probability sharing. A learner independent

model is then analyzed. The limitations of the existing KT approaches are

pointed out.

Chapter 3 discusses the motivation behind the proposed research and describes

relatedness interpretation as a part of the proposed KT method. The chapter

begins with an introduction to the concept of learner independence in the

context of KT.

Chapter 4 explains the proposed KT method using MEB-based knowledge repre-

sentation. This chapter describes the principle of MEB and MEB learning from



data.

Chapter 5 demonstrates the performance of the proposed KT method. The ex-

periment is conducted in 3 case studies: (1) the capability of KT; (2) the

contribution of KT; and (3) the adaptability of KT. The MTL problems are

derived from three datasets – synthetic datasets, University of California at

Irvine (UCI) datasets, and real world MPEG-7 face image datasets, which are

used to evaluate the performance of the three case studies, respectively.

Chapter 6 shows the results on learner independence evaluation. The MTL tasks

and experimental setup are introduced, and the proposed KT method is eval-

uated using different types of classifiers such as kNN, SVM, and MLP.

Chapter 7 concludes the thesis and provides an overview for future works.

1.4 Denotations

Table 1.1 lists the notations that will be used in this thesis.

Table 1.1: Notations

Notation Descriptions
Q core set of MEB
C center of MEB
C ′ center of updated MEB (expansion or shrinkage)
r radius of MEB
r′ radius of updated MEB (expansion or shrinkage)
p point
X the points contained in MEB
X ′ X + input points of updated MEB
S the data feature space
R task relatedness
D dataset (training or testing)
L learning system (kNN, SVM or MLP)



Chapter 2

Review of KT Methods for MTL

This chapter reviews previous approaches to KT in the context of MTL. Section 1

introduces the concept of KT in MTL. In Section 2, varieties of KT approaches are

summarized into three categories: inductive bias sharing approaches, memory item

sharing approaches, and probability sharing approaches. Section 3 analyzes the im-

portance of learner independence.

2.1 Introduction

According to Pan & Yang (Pan & Yang, 2009),“KT aims to extract knowledge from

one or more primary tasks and applies the knowledge to a secondary task.” Thus,

KT in MTL is more concerned with learning for the secondary task, than learning

for both tasks. In MTL, the strength of the KT is relative to a relationship between

the primary and secondary tasks (Argyriou, Maurer, & Pontil, 2008). With KT, the

learning of the secondary task can be facilitated by the knowledge from the primary

task; without KT, MTL may still implement learning, but correlated tasks can not

be beneficial to each other as in learning with KT (Pan & Yang, 2009; Lawrence

& Platt., 2004; Gao et al., 2008). This thesis focuses on KT scenarios where the

learning system learns from one or more tasks and then makes predictions on a

different but related task.

In previous MTL approaches, KT builds a bridge to exploit the relationship between



traditional machine learning algorithms and various transfer learning settings, in

order to maintain correlated information between tasks via extracting, retaining, and

transferring (Pan & Yang, 2009). Based on characteristics of various KT bridges,

the different approaches to KT in the literature can be divided into the following

categories (discussed in detail in Section 2.2):

• Inductive bias sharing approaches – the learning system gives a prior assump-

tion to the previous knowledge, which is considered as inductive bias to imple-

ment KT (Mitchell, 1980).

• Memory item sharing approaches – the learning system performs KT based on

the training examples stored in long-term memory, known as memory items

(Ozawa et al., 2009).

• Probability sharing approaches – the learning system utilizes the hierarchical

Bayesian framework to provide KT for a new task (Yu, Schwaighofer, Tresp,

Ma, & Zhang, 2003).

In this thesis, we propose a novel approach to learner independent KT which is

compatible with any type of learner. Currently, although a learner independent KT

approach has not been widely adopted in practical MTL solutions, a similar for-

mulation was recently introduced (Gao et al., 2008). This method relies on weight

assignments from each classifier to combine the advantages of various learning algo-

rithms such as kNN, SVM, and MLP.

2.2 Previous KT Methods

Based on the way KT is realized, we categorize KT approaches into three sub-

categories: inductive bias sharing approaches, memory item sharing approaches, and

probability sharing approaches.

2.2.1 Inductive Bias Sharing Approaches

According to (Silver & Mercer, 2002), “The constraint of a learning system’s hy-

pothesis space, beyond the criterion of consistency with the training examples, is



called inductive bias”. In a learning system, when a new task is learned, the learner

takes a prior assumption according to previously learned knowledge and uses this

prior assumption to improve learning for the secondary task. The prior assumption

is known as inductive bias. “Often an inductive bias of a learning system is expressed

as the system’s preference for one hypothesis over another. Inductive bias is essential

of the development of a hypothesis with good generalization from a practical number

of examples” (Mitchell, 1980, 1997).

In the past, the inductive bias sharing method has been a major strategy in mod-

elling KT for MTL. Silver and Mercer (2002) present the ηMTL learning framework

to transfer knowledge across correlated tasks in the context of ANN. ηMTL is a

knowledge-based inductive bias learning system that employs knowledge from the

primary task to adjust its inductive bias. If the prior knowledge favours an inductive

learner, then the knowledge is transferred from one or more primary tasks to the sec-

ondary task, which helps to reduce the hypothesis space and achieve a more accurate

hypothesis from fewer training examples. Most inductive bias sharing methods learn

the bias by simultaneously training models on several related tasks derived from the

same data distribution and imposing constraints on their parameters. Ghosn and

Bengio (2003) extend this idea for a new model that parameterizes the parameters

of each task as a function of an affine manifold defined in parameter space and a

point lying on the manifold. Poirier and Silver (2007) give a context-sensitive MTL

(csMTL) as a method of inductive bias transfer that uses a single output neural net-

work and additional contextual inputs for learning multiple tasks. The csMTL ap-

proach produces hypotheses that are equivalent to or better than standard inductive

bias hypotheses when learning correlated tasks. Silver et al. (Silver & Mercer, 2002;

Silver & Poirier, 2004; Silver, 2000) state that the inductive bias transfer method

provides an indexing guide into the knowledge domain by using a deep structural

measure of task relatedness, in order to improve the learning speed, using the prior

internal hypothesis.

A limitation of the above approaches is that inductive bias transfer is conducted for

MTL within an ANN environment. Figure 2.1 shows how an inductive bias sharing

approach relies on ANN for MTL. ANN is one of the best documented methods for

sharing knowledge representation among correlated tasks (Caruana, 1997; Jonathan,

1995; Intrator & Edelman, 1998). The tasks are input in parallel and share the

internal knowledge representation with each other, so that all tasks can be trained



mutually and benefit each other. The hidden layer in neural network is an inductive

bias, shared by all tasks for facilitating learning (Kasabov, 1996, 2007; Pang, Ozawa,

& Kasabov, 2005). However, there are practical limitations to the ANNs with respect

to computation time and storage space (Silver & Mercer, 2002). Theoretically, the

inductive bias sharing approach is connected with a fixed type of learner, i.e., ANN,

to perform MTL, so this approach is not compatible with other type of learning

algorithms.
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Figure 2.1: Inductive bias sharing approach relies on prototypical 3-layer neural
network for multiple task learning.

2.2.2 Memory Item Sharing Approach

Ozawa et al. (Thrun, 1996; Ozawa et al., 2009) present a learning model for multi-

task pattern recognition problems, called automated online learning, based on train-

ing samples stored in long-term memory (LTM) from previous tasks for faster learn-



ing of new correlated tasks. Here, the training samples stored in LTM are termed

memory items.

Ozawa et al. (2009) input knowledge learned from previous tasks into memory and

kept them inactive (the status flag is set to 0 for all memory items). The inactive

memory items can not be used for learning a new task unless a new task is related to

the existing knowledge. For a secondary task related to the primary task, the memory

items corresponding to the new correlated knowledge are activated (the status flag

is set to 1 for correlated memory items). The memory item sharing approach is the

process of setting the status flag of active memory items to 1 to distinguish them

from inactive ones and using the active memory items to implement KT.

In this memory item sharing approach, KT is achieved through activation of a set

of shared memory items. This method is capable of acquiring and accumulating

task knowledge, and the shared knowledge learned from tasks enhances the speed of

knowledge acquisition of the secondary tasks and final classification accuracy (Ozawa

et al., 2009). However, Ozawa et al. (2009) view the learner as a resource allocating

network (RAN) with long term memory, which could be adapted to different tasks. In

other words, the memory item transfer approach, which is based on the constraint of

a RAN-LTM network structure, can only be applied to intrinsically ANN structures.

Figure 2.2 shows the architecture of RAN-LTM which consists of two parts: resource

allocating network and long-term memory. RAN uses a single hidden layer neural

network structure and is similar to radial basis function (RBF) networks (Roy, Kim,

& Mukhopadhyay, 1993; Roy, Govil, & Miranda, 1995; Roy & Mukhopadhyay, 1997;

Roy, Govil, & Miranda, 1997).

Ozawa et al. (Ozawa et al., 2009) defined x, y, and z as the input vector, the output

of hidden units vector, and the output of the RAN vector, respectively. The output

values of the network are computed as follows:

yj = exp

(

‖x− cj‖
2

2σ2
j

)

, j=1,...,J (2.1)

zk =
J

∑

j=1

wkjyj + ǫk, k=1,...,K (2.2)
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Figure 2.2: Structure of resource allocating network with long-term memory.
Memory item is the bridge of the KT to a secondary task.

where cj = cj1, ..., cjI
T and σ2

j are the center and variance (width) of the jth hidden

unit, wkj is the connection weight from the jth hidden unit to the kth output unit,

and ǫk is the bias of the kth output unit. The variance or width σ2
j is generally fixed

for all RAN networks.

2.2.3 Probability Sharing Approach

Probability sharing approach is a probabilistic KT solution to conduct MTL using hi-

erarchical Bayesian framework. According to Xue et al. (Xue, Liao, & Carin, 2007),

”in hierarchical Bayesian framework, the between-task similarities are reflected in a

common prior distribution placed on the model parameters of individual tasks.” Typ-

ically, the common prior in a hierarchical Bayesian model is specified in a parametric

form with unknown hyper-parameters, e.g., a Gaussian distribution with unknown

mean and variance. Knowledge is transferred between tasks through learning those



hyper-parameters with data in all tasks. Xue et al. present a nonparametric method

for the hierarchical Bayesian model. The common prior is drawn from the Dirichlet

Process (DP). Ferguson (1973) proved that there is positive probability that a sam-

ple function of DP will be as close as desired to any probability function defined on

the same dataset. Therefore, DP is rich enough to model the model parameters of

individual tasks with arbitrarily high complexity, and flexible enough to fit well on

the functional form of the prior distribution without parametric assumption.

The problem of learning from multiple related tasks is addressed in statistics and

solved over hierarchal Bayesian modeling (Good, 1980). This problem has been the

focus for the machine learning field over the last decade. The hierarchical Bayesian

model is applied successfully to computer vision (Yu et al., 2003) and information

retrieval (Evgeniou & Pontil, 2004). In Xue et al.’s experiment (2007), probability

sharing method is used to transfer prior knowledge to a new task for MTL, which

is based on the Dirichlet Process formulation. It includes two formulations of MTL,

symmetric MTL (SMTL) formulation and asymmetric MTL (AMTL). As it avoids

manipulating a mass of data from past tasks, the AMTL method provides advan-

tageous algorithmic efficiency. The probability sharing approach is used to select

sample data for learning secondary tasks. The prior probability and the posterior

probability are used for the bias of KT between a primary task and the secondary

task.

The probability sharing approach is different from the above two approaches in two

respects. First, it is capable of dealing with new tasks without a need for knowledge

storage. Second, it can possibly make use of all learned data from previous tasks

for future task learning. One of its limitation is that the learning is carried out

sequentially not in parallel. In other words, tasks are not available for learning at

the same time. Accordingly, each model is trained separately and only a future

task can benefit from previous tasks. In addition, probability sharing approach is

embedded into the Bayesian model to implement multiple learning tasks. Thus, this

KT method can only work under the Bayesian model for MTL, and is not applicable

to other type of learning models.

Sethuraman (1994) introduces a constructive definition of the Dirichlet Process, and

Ishwaran and James (2001) also characterize the DP priors with a stick-breaking

representation as:



G =
∞

∑

k=1

πkδd∗
k
, (2.3)

where

πk = vk

k−1
∏

i=1

(1− vi). (2.4)

For each k, vk is drawn from a Beta distribution Be(1, α)1; and another random

variable d∗
k is drawn independently and simultaneously from the base distribution

G0; d∗
k and πk represents the location and weight of the kth stick. When the M +1th

task is given, the learning system transfers the knowledge from the previous M

tasks. And thus the probability sharing approach only focuses on the new task when

transferring previous task knowledge. The knowledge learned from previous tasks

can be rewritten as:

p(dM+1|d1, ..., dM , α,G0) =
α

M + α
G0 +

1

M + α

k
∑

k=1

nkδdk∗ , (2.5)

where α and G0 are parameters of the variational Bayesian.

2.2.4 Learner Independence Analysis

All the aforementioned KT approaches attempt to discover the relatedness between

tasks into an embedding learner/classifier for MTL. Hereinafter, this type of method

is called a learner dependent KT model. In the literature, Gao et al. (2008) pro-

pose an ensemble framework, which combines several classifiers in collaboration and

adjustment for MTL. In contrast to the existing KT approaches, this approach in-

tegrates several types of classifiers rather than using only one. This KT approach

relies on weight assignments from each classifier to integrate the advantages of var-

ious learning algorithms such as kNN, SVM and MLP. However, since the learning

system is trained independently on one fixed learner, this KT method can not break

away from learners to implement KT.



According to (Gao et al., 2008), different learning algorithms have varying success

and not all algorithms are equally successful in all data domains. For example, for

one training set, there are usually several classification models, which can be trained

and built by the different learning algorithms. Different classification models usually

contain diverse knowledge, which may have different advantages over different data

regions. Accordingly, classifiers in various disciplines may be effective for diverse

data structures and distributions. In other words, no single classifier can perform

well in all classification problems.

2.3 Summary

This chapter has reviewed different KT approaches including inductive bias ap-

proaches, memory item approaches, and probability approaches. Most previous

approaches are based on the classical KT model. The limitation for such learner

dependent KT approaches is that tasks are learned by one specific learner, and the

transferred knowledge is not compatible with other type of learners. The importance

of learner independence is also discussed - as noted by Gao et al. (2008), no single

classifier can perform well in all classification problems. This inspires the certain of

a learner independent KT approach as will be detailed in the next chapters.



Chapter 3

Task Relatedness and Motivation

for Learner Independent KT

This chapter introduces the relatedness interpretation as an essential step of the pro-

posed KT method and the motivation of the presented research. Section 1 presents

the concept of learner independence in the context of KT. Task relatedness measure-

ment is introduced in section 2. We seek physical task relatedness between tasks to

discover correlation areas in the feature space. Section 3 defines relatedness inter-

pretation for capturing correlated feature space between tasks, so that the volume of

the correlated knowledge can be measured. Section 4 describes the motivations for

learner independent KT.

3.1 Introduction

With respect to KT in MTL, most early works require that task relatedness measure-

ment be associated to one fixed learner/classifier. The problem with the previous

KT methods is that the process of transferred knowledge is not transparent. Section

2.2.4, explained that various classifiers have the advantages in addressing different

data distributions, and no single classifier can perform well in all classification prob-

lems. Thus from the viewpoint of learner independence, transferred knowledge is

irrelevant to the learner, which is considered to be essential for a desirable KT.



Aiming to break away from any type of learner to measure and extract correlated

data transferred between tasks, in this work we developed a novel relatedness in-

terpretation algorithm for KT, based on the assumption that the knowledge of two

tasks is overlaps in the same feature space. Relatedness interpretation as a keep step

of the proposed KT method is based on the assumption that all machine learning

tasks are derived from the same data distribution, such that the tasks share the same

problem representation and are correlated to each other. In addition, this type of KT

is conducted in a physical layer to extract correlated data rather than in a functional

layer, so it does not need to be embedded into a learner to implement MTL.

An additional perspective we may notice in practice is that, task relatedness con-

ceptually refers to semantic relatedness, i.e., the relative meaning of learning topics.

For example, learning to recognize facial characteristics and digital characteristics

are conceptually irrelevant, but learning how to ride a bicycle and a motorcycle are

relative. For measuring such semantic relatedness, feature space relatedness is often

modelled for MTL as a form of distance metric, shared invariance, or similarity defi-

nition. In MTL practice, feature space relatedness is helpful only if certain semantic

relatedness exits between tasks.

3.2 Measure Task Relatedness

Let T 0 be a primary task, and T k be a secondary task with training data D0 =

[X0, Y 0], and Dk = [Xk, Y k], respectively. Theoretically, k = 1, . . . ,m as there

certainly exits more than one task correlated to T 0. In the presented KT research,

k = 1 as a total of two tasks are given for KT. The relatedness R0k of T 0 and T k

is typically defined over the available training samples and the hypotheses for these

related tasks as,

R0k = fR(L(D0),L(Dk), D0, Dk), (3.1)

where fR can be either a static relatedness measure such as Hamming Distance

or Linear Coefficient of Correlation, or a dynamic measure, between the developing

hypothesis of the primary task and that of the secondary task. L is a learning system

for MTPR, which could be any type of classifier, e.g., in ηMTL (Silver & Mercer,

2002), it is specified as an ANN. In other words, it observes functional relatedness,

rather than the physical relatedness that the presented problem.



In Eq.(3.1), task relatedness is evaluated in the context of L. The advantage of

associating the task relatedness measure with a specific classifier system is, knowledge

retention and transfer/use are modelled efficiently in one integrated procedure by one

consistent learning system. Also, because retained knowledge is customized to L, it is

expected to be more effectively interpreted by the classifier. On the other hand, the

limitation of such a learner-dependent approach is that knowledge shared between

two tasks is customized into a form that suits the hypothesis model (learner), and

the relatedness measure and KT are integrated into a procedure that can not be

treated independently.

To empower arbitrary classifiers/learners for MTL problem solving, we propose a

task relatedness measure which is independent from KT, which will in turn enable

a learner-independent KT procedure. In this case, the above relatedness measure is

modified as,

R0k = fR(D0, Dk). (3.2)

Excluding the influence of L, we seek a physical task relatedness criterion which

measures the “correlation” between tasks, where the “correlation” is defined as the

set of samples that are mutually beneficial to perform the learning task. To this end,

we have the following task correlation definition:

Definition: Given subspace S0 spanned by a subset of D0, cast S0 into T k space, if

S0 in T k space, denoted as S0→k has no ‘class confliction’ for T k, then S0 is correlated

to T k, and the correlation C0→k is extracted by S0 as,

C0→k(S0) = arg maxS0∈S
D0
|S0|

∀(~xk, ~yk) ∈ S0→k, yk ≡ c,
(3.3)

where |S0| represents the size of S0, and SD0 is a space spanned by D0. ‘class

confliction’ here is interpreted as ∀(~xk, ~yk) ∈ S0→k, yk ≡ c, in which (xk, yk) ∈

[Xk, Y k], and c is a class label from T k.

Applying the above definition to search for all subsets related to T k in D0, we have

the correlation of T 0 to T k as

C0→k =
⋃

∀S0∈S
D0

C0→k(S0), (3.4)



which is reflected as a complete set correlation from T 0 to T k. Because of the

symmetry between the primary and secondary tasks, we can also have Ck→0 from the

above definition.

Fig.3.1 gives an example of correlation discovery on two synthetic classification tasks,

whose data distribution and class boundaries are shown in Fig.3.1 (a) and (b), respec-

tively. According to the above correlation definition, the theoretical task correlation

can be represented as seven subregions bounded in Fig.3.1 (c), where each subregion

is labelled by a pair of class labels, one for each task.

3.3 Relatedness Interpretation for MTL

Given dataset D structured as {Xk}Mk=1×{Y
k}Mk=1 for M learning tasks {T k}Mk=1. For

each learning task T k, we have N data points {(xk
1, y

k
1), (x

k
2, y

k
2), ..., (x

k
N , yk

N)} sampled

from a distribution P k on X×Y . MTL is to construct hypotheses f 1, f 2, ..., fM such

that fk(xk
i ) ≈ yk

i for i ∈ {1, ..., N}, and k ∈ [1,M ] (Ben-David & Schuller, 2003),

which minimizes the following MTL cost function,

C = arg min
Lk

{
N

∑

i=1

L(xi)− yi} (3.5)

A straightforward solution to the above equation is to ignore task correlation, and

treat the problem as M independent single tasks, and perform learning separately

for each task one after another, i.e.,

arg min{
M

∑

k=1

Nk

∑

i=1

fk(xk
i )− yk

i } (3.6)

Obviously, when learning a new and related task, it is always beneficial to take

advantage of previous learning by retaining task knowledge and transferring it to the

new task. Specifically, given task T 0 and T k, KT addresses the utility of using D0

together with Dk toward a more effective T k hypothesis than that obtained from Dk.

According to previous studies in the literature, knowledge can be either retained

in a functional form and transferred in a representational form, or retained in a
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Figure 3.1: An example of task correlation discovery from two synthetic classifi-
cation tasks, where data points are marked as {o, *, and star}, and class labels are
identified as A, B, and C for Task 1 (a), D, E, and F for Task 2 (b), respectively,
and where class correlation is shown in (c).



representational form and transferred in a functional manner (Eaton & desJardins,

2006; Eaton, 2006; Eaton, desJardins, & Stevenson, 2007). However, previous KT

for MTL as discussed above mostly attaches to a specific classifier L. Given a set of

training examples, the task level learning problem concerns selecting an appropriate

hypothesis,

fk(x) = f(Dk, R0k) = L(Dk, fR(L(D0),L(Dk), D0, Dk)),

where knowledge is retained and transferred through interaction with L.

In contrast, the proposed KT employs a L independent knowledge retention as

Eq.(3.4), so that the primary task learning can be modeled as

fk(x) = f(Dk, C0→k(D0)) = f(Dk,
⋂

∀S0∈D0

C0→k(S0)), (3.7)

which excludes the affection of L, so that any classifier can be employed for MTL.

3.4 Motivations for the Presented Research

This section introduces the motivation of the presented research. First, we note

the limitations of the traditional KT approaches, then, the proposed KT method is

presented to address these limitations.

3.4.1 The Limitations of Traditional KT

Given correlated tasks T 1, T 2, a sequential MTL T 1 → T 2 has 3 physical operations:

(1) training Li(T
1); (2) extraction of knowledge by detecting task similarity/task re-

latedness between the two tasks, KTLi
(T 1, T 2); (3) training Li(T

2, KTLi
) by adopting

transferred knowledge.

In practice, the procedure of existing KT to MTL is not transparent, and Li is a

specific classifier such as kNN, SVM, or MLP. As transferred knowledge KTLi
is

Li dependent, it follows that the MTL is Li specific, which renders a Lj(j 6= i)



incompatible for the MTL. For example, in the online MTL model that Ozawa et al.

(2009) have recently proposed, KT is associated with a RAN-LTM structure, and

thus the knowledge stored in the long term memory is not available to other types

of learners. Especially, memory item sharing and probability sharing are used for a

sequential MTL, in which multiple tasks are learned sequentially one after another,

so that large amounts of data accumulate in the process and may cause an increment

in the learning computation time (Lawrence & Platt., 2004; Thrun, 1996). Figure

3.2 shows the traditional KT model, which is associated to one fixed learner.

Different Tasks

Learner

Figure 3.2: Illustration of the traditional KT model for MTL dependent on one
specific learner. The procedure of KT is not transparent.



3.4.2 The Proposed Learner Independent KT

For STL, approaches in different disciplines may have different advantages and ef-

forts for performing an individual task learning. The limitation of using STL for

multiple tasks learning is, STL approaches forget previous task knowledge whenever

commencing a new task learning. To enable MTL with knowledge share, traditional

methods normally develop a KT model amongst single tasks to address knowledge

forgotten problem, but this model often has to be customized to one specific classifier

to suit its learning discipline. Thus in MTL literature, most MTL methods are found

to involve a KT personalized to an individual classifier (Mitchell, 1980; Ozawa et al.,

2009; Yu et al., 2003; Gao et al., 2008; Silver & Mercer, 2002).

Unlike previous KT for MTL, we consider an assembled MTL with KT that employs

an ordinary STL approach which can be instantly enabled for optimal MTL (with-

KT) by plugging in a KT module independent to any learner/classifier. This model

is akin to an assembled battery that can be separated and exploited in various

situations. When a battery runs out, we can replace it with another battery whatever

the brand. If the use of a battery is restricted to one fixed object, then it loses

functionality in regard to compatibility and independence.

Motivated by this, we propose a learner independent MTL, Li(T
1) + KT (T 1, T 2)

+ Lj(T
2, KT ), where KT is independent of Li, and MTL can be conducted by any

type of learner. We use minimum enclosing balls as a form of knowledge carrier to

extract and transfer knowledge from one learning task to another. The knowledge

maintained in the MEB can be decomposed into raw data that could be added to

any learner as additional training data for the secondary task. In other words, KT

via MEBs depends on neither Li nor the MEB, therefore any learner could be used

for MTL by adopting KT (T 1, T 2) from the primary task. Figure 3.3 presents the

proposed KT model, which is independent of a specific type of learner.
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Figure 3.3: Illustration of the proposed learner independent KT model for MTL.
The procedure of KT is transparent.

3.5 Summary

In this chapter, we have presented the motivation for a learner independent KT

method, which is in contrast to traditional KT approaches which are attached to a

specific classifier L. The proposed relatedness interpretation is an essential element

of the proposed KT method, which seeks a physical task relatedness measure by

inter-task overlapping in the feature space. This not only discloses which data is

correlated between tasks, but also excludes the influence of L.



Chapter 4

The Proposed MEB Knowledge

Transfer Algorithms

This chapter introduces the proposed knowledge transfer method, which is based on

the MEB knowledge representation. Section 1 briefs the principle of MEB. Section

2 describes the learning of MEB from data. The methodology of MEB-based KT is

discussed in Section 3. Finally, the proposed KT algorithm is given in Section 4.

4.1 Introduction

Megiddo (Megiddo, 1983) developed a traditional algorithm for finding exact MEBs

in 1983, but it does not scale well with high dimensional datasets. Later on,

Welzl (Welzl, 1991) presented an approximation algorithm for finding MEBs, where

(1+ǫ)−approximation MEB can be efficiently obtained by using core sets. Addition-

ally, Badoiu (Badoiu, 2002) found that the size of the MEB core set is independent

of both the dimensionality and the size of the dataset. Based on such a size-flexible

characteristic, the MEB can serve as a new knowledge representation technique to-

wards a learner-independent KT approach.

The proposed MEB-based KT includes four major components: (1) MEB algorithm,

(2) MEB expansion algorithm, (3) MEB shrinkage algorithm, and (4) correlation

knowledge extraction algorithm.



4.2 MEB Representation

Given a set of points X = {x1, x2, ..., xn} with xi ∈ ℜ
d, the minimum enclosing

ball of X is the smallest ball that contains all points of X (Welzl, 1991; Kumar et

al., 2003; Tsang, Kwok, & Cheung, 2005). The function is denoted as MEB(X)

in this paper. Let Bc,r represent the ball with center c and radius r, thus we have

Bc,r = MEB(X), and X ⊂ Bc,r.

To search an MEB over X with less computational cost, Welzl (Welzl, 1991) pro-

posed the (1 + ǫ) − approximation by adding a relaxation factor 1 + ǫ in MEB

evaluation. The (1 + ǫ)-approximation, with ǫ as a small positive number, achieves

MEB over X more efficiently via MEB(Q). Q is a subset of X such that an expan-

sion by a factor (1 + ǫ) of its MEB, MEB(Q) = Bc∗,(1+ǫ)r∗ contains all points of X.

Q is called the core set of X, because X ⊂MEB(Q) as well as Q ⊂ X.

A breakthrough on achieving such an (1+ ǫ)-approximation was recently achieved by

Badoiu and Clarkson (Badoiu, 2002). They used a simple iterative scheme: At the

tth iteration, the current estimate Bc,r is expanded incrementally by including the

furthest point outside the (1+ ǫ)-ball Bc∗,(1+ǫ)r∗ . This procedure is repeated until all

the points in X are covered by Bc∗,(1+ǫ)r∗ . Given an ǫ > 0, the (1 + ǫ)-approximation

algorithm then works as follows:

(1) Initialize x0, c0, and r0.

(2) Terminate if there is no training point z such that ϕ(z) falls outside the (1+ǫ)-

ball Bc∗n,(1+ǫ)r∗n .

(3) Find z such that ϕ(z) is furthest away from cn. Set xn+1 = xn ∪ {z}.

(4) Find the new MEB(xn+1) from (5) and set cn+1 = cMEB(xn+1) and rn+1 =

rMEB(xn+1) using (3).

(5) Increment n by 1 and go back to Step (2).

Figure 4.1 gives an example of exact MEB, core set MEB, and core set MEB ex-

pansion, where the dotted circle identifies the exact MEB of the entire dataset X,

and the inside solid line circle gives the exact MEB of core set Q (denoted as points



inside a square). Q does not cover the whole data points, but its (1 + ǫ) expansion

(the outside circle) does.

(1+e) r*

r
r*

Figure 4.1: An example of exact MEB (by radius as r), Core set MEB (by radius
as r∗), and Core set MEB expansion (by radius as (1 + ǫ)r∗).

4.3 Task Knowledge Transfer over MEBs

Given dataset D0 and Dk from two correlated tasks T 0 and T k respectively, for any

subset d0 ⊂ D0 in one class, according to (Badoiu, 2002; Kumar et al., 2003; Tsang

et al., 2005), a subspace can be spanned by modelling a minimum enclosing ball,

B0
c,(1+ǫ)r = MEB(d0

i ) (4.1)

where B0
c,(1+ǫ)r is able to tell whether a new input instance is enclosed by the MEB.

To verify the utility of B0
c,(1+ǫ)r for T k, we cast the MEB into T k data space, and we

have

B0→k
c0→k,r0→k = CAST (B0

c,(1+ǫ)r, D
0, Dk) (4.2)

where B0→k
c,(1+ǫ)r is the resulting MEB casting B0

c,(1+ǫ)r in T k data space, and the CAST



function is implemented by calculating the casting MEB center c0→k and the casting

MEB radius r0→k, respectively.

c0→k = (c0 − ck)
rk
max

r0
max

, (4.3)

and

r0→k =
rk
max

r0
max

r0. (4.4)

where r0
max is the radius of MEB over D0, and rk

max is the radius of MEB over Dk.

The obtained B0→k
c,(1+ǫ)r is expected to cast a subset Sk instances in Dk. B0

c,(1+ǫ)r is

judged as a sharable data space by T k, if all instances of Sk belong to one class

in T k. The instances enclosed by B0
c,(1+ǫ)r are the correlation data of T 0 to T k. In

this way, given ∀d0 ⊂ D0, the entire sharable feature space is obtained as a merge

of all MEBs that satisfy the correlation definition and the smoothness assumption

(Chapelle, Scholkopf, & Zien, 2006) as: given two instances located in a high-density

region, if one is enclosed in a sharable MEB, so for the other instance,

B∗
x = {b0

i } ∪ {x}

Subject to b0
i ∈ one of D1 class, and b0→k

i ∈ one of Dk class

d(c, xj) > r, d(c, xi) < r, and d(xi, xj) < θ.

where θ is a distance threshold that represents the density of data distribution.

Figure 4.2 gives an illustration of the proposed MEB-based KT for a 2D synthetic

dataset. As seen, an individual MEB is able to act as a knowledge carrier, casting

in-between two correlated tasks with the correlation definition and being followed

by the knowledge share criterion (Definition as Equation 3.3). In the case that class

confliction occurs to a MEB casting to the secondary task (as shown in Figure 4.2

(b)), the MEB has the flexibility to shrink (as in Figure 4.2(c)) or expand (Figure

4.2(d)) to suit itself to the criterion of knowledge sharing.

4.4 The Proposed Algorithms

According to the theories discussed above, we summarized and developed the pro-

posed KT algorithm, which consists of four sub-algorithms.
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Figure 4.2: Illustration of MEB-based KT over a 2D synthetic dataset for MTL,
(a) MEBs originated in T 0, (b) results of casting MEB in T k, (c) MEB shrink, and
(d) MEB expand to suit itself to the criterion of knowledge sharing as Equation
3.3.



(1) MEB algorithm – Algorithm 1 to compute an MEB and the core set by given a

set of instances. We choose to use the two points as our initial core-set Q (Step 1,

Algorithm 1). Then, the main loop (Steps 2 to 10) first computes the approximate

MEB of the current subset Q ⊆ P . Step 4 checks if a (1 + ǫ)-expansion of this ball

contains P . If this is the case, then the algorithm returns this expanded ball and

current core-set as the solution; otherwise, the algorithm picks the furthest point in

P from the center of the approximate MEB of Q, adds it to Q, and repeats the loop.

Algorithm 1 MEB Algorithm

Input: Input set of points P ∈ ℜd, parameter ǫ ∈ (0,1)
Output: Outputs a (1 + ǫ)-approximation of MEB(P ) and an O(1/ǫ2)-size core-set

Q, qi ∈ Q
1: Q← Q0

2: loop
3: Compute Bc,r = MEB(Q)
4: if P ⊂ Bc,(1+ǫ)r then
5: Return Bc,r, Q
6: else
7: p← point in P maximizing distance ‖cp‖
8: end if
9: Q← Q ∪ {p}

10: end loop

(2) MEB expansion algorithm – Algorithm 2 to expand an MEB by given a set of

instances and a expansion parameter δ. We initialize the radius r′ (Step 1, Algorithm

2) and enclosed instances X ′ (Step 2, Algorithm 2). In the main loop (Steps 3 to 7),

Step 4 searches for the point xi enclosed by a ball with the expanded radius r′, adds

it to X ′, and repeats the loop. Step 8 returns the X ′ to call Algorithm 1).

(3) MEB shrinkage algorithm – Algorithm 3 to shrink an MEB by given a set of

instances and a shrinkage parameter δ. We initialize the radius r′ (Step 1, Algorithm

3) and enclosed instances X ′ (Step 2, Algorithm 3). In the main loop (Steps 3 to 7),

step 4 searches for the point xi enclosed by a ball with the shrunken radius r′, adds

it to X ′, and repeats the loop. Step 8 returns the X ′ to call Algorithm 1).

(4) Correlation knowledge extraction algorithm – Algorithm 4 to extract correlation

knowledge in-between two sets of data points. Step 1 initializes the subset V by

one set of data points. The main loop (Steps 2 to 18) first computes a minimum

enclosing ball by V , and then casts into another one data set space. Within the



Algorithm 2 (1 + δ)r MEB Expansion Algorithm

Input: Input center c, radius r, P ∈ ℜd, xi ∈ P, i = {1, 2, ...,m}, parameter ǫ ∈
(0,1), expansion parameter δ

Output: Outputs a set of instances X ′ ⊆ P
1: r′ ← (1 + δ) ∗ r
2: X ′ ← φ
3: for i← 1 to m do
4: if ‖xi − c‖ < (1 + ǫ) ∗ r′ then
5: X ′ ← X ′ ∪ {xi}
6: end if
7: end for
8: Return [X ′]← Call Algorithm 1 with input X ′ and ǫ

Algorithm 3 MEB Shrinkage Algorithm

Input: Input center c, radius r, subset X ⊂ P ∈ ℜd, xi ∈ X, i = {1, 2, ...,m},
parameter ǫ ∈ (0,1), shrink parameter δ

Output: Outputs a set of instances X ′ ⊂ X
1: r′ ← (1− δ) ∗ r
2: X ′ ← φ
3: for i← 1 to m do
4: if ‖xi − c‖ < (1 + ǫ) ∗ r′ then
5: X ′ ← X ′ ∪ {xi}
6: end if
7: end for
8: Return [X ′]← Call Algorithm 1 with input X ′ and ǫ

main loop, it consists of two sub-loops, the first sub-loop (Step 6 to 10) checks if

the enclosed data of the MEB, casting from P<2> belongs to one class. If this is the

case, then the algorithm calls the expansion algorithm (Algorithm 2) repeatedly until

class confliction occurs. The second sub-loop (Step 11 to 15) checks if the enclosed

data of the MEB, casting from P<2> are not in one class. If that is the case, the

algorithm calls the shrinkage algorithm (Algorithm 3) repeatedly until the enclosed

data belongs to one class. Step 16 stores all MEBs which enclose the correlated data.

Step 17 finds all other data instances which are not yet extracted from D<1>, and

repeats the loop.



Algorithm 4 Correlation Knowledge Extraction Algorithm

Input: Input set of points P<1> ∈ ℜd, P<2> ∈ ℜd

Output: Output a set of minimum enclosing balls B
1: V ← P<1>

2: while V 6= φ do
3: D<1> ← Subset(V )
4: Bc,r,Q ← Call Algorithm 1 with input D<1> and ǫ
5: D<2> ← CAST Bc,r,Q into P<2>

6: while D<2> is in one class do
7: B′

c′,r′,Q′ ← Call MEB Expansion Algorithm with input Bc,r,Q

8: Bc,r,Q ← B′
c′,r′,Q′

9: D<2> ← CAST Bc,r,Q into P<2>

10: end while
11: while D<2> is not in one class do
12: B′

c′,r′,Q′ ← Call MEB Shrinkage Algorithm with input Bc,r,Q

13: Bc,r,Q ← B′
c′,r′,Q′

14: D<2> ← CAST Bc,r,Q into P<2>

15: end while
16: B ← [B ∪Bc,r,Q];
17: V ← V −D<1>;
18: end while

4.5 Summary

MEB is capable of enclosing all data points by the smallest ball in high dimensions.

Usually, (1 + ǫ) − approximation MEB can be regarded as effective as the exact

MEB. The proposed KT algorithm is developed based on the MEB algorithm, it

contains four parts: (1) MEB algorithm for creation; (2) MEB expansion algorithm

for expanding the correlation domain; (3) MEB shrinkage algorithm for shrinking the

correlation domain; (4) Correlation knowledge extraction algorithm for extracting

the knowledge in-between two correlated tasks.



Chapter 5

Experiments on KT for MTL

In this chapter, we evaluate the performance of the proposed KT method. Section 1

gives the experimental setup. We provide and discuss the KT results for the proposed

method using three case studies: case study 1 is introduced in section 2 as KT capa-

bility, case study 2 is presented in section 3 as the contribution of KT, and section 4

describes the adaptability of KT. A discussion on KT performance is given in section

5.

5.1 Introduction

In our experiments, the proposed KT method is evaluated on a series of correlated

multi-task pattern recognition problems, i.e., synthetic datasets, UCI datasets, and

real world face image datasets. For each experiment, we use a 10-fold cross-validation,

where accuracies are averaged over 10 runs and at each run, one tenth of the data is

used as a testing set and the rest as the training set. For each cross validation, we

define two classification tasks. We set one task as the primary task, and the other

task is set as the secondary task. KT is always conducted from the primary task to

the secondary task. The obtained correlated data is then used as additional training

data for the secondary task. As the proposed KT is classifier independent, classifiers

with different characteristics are applied for MTL. For comparison, we also report the

results of MTL without KT. The proposed MEB-based KT algorithm is implemented



on the platform of Matlab 7.80 (R2009a), and the experiments are carried out on a

PC with an Intel Core2 Duo 3.0 GHZ CPU and 3G-byte memory.

To evaluate the robustness of the task learning system, the multiple task problems

with noisy, overlapping classes are defined based on three case studies. The effec-

tiveness of KT is evaluated on: (A) the capability of KT, to answer the question

how much knowledge can the method transfer; (B) the contribution of KT, for the

question that how beneficial is the transferred knowledge to a classifier for MTL;

(C) the adaptability of KT, to show how KT adapts to learning tasks with varied

relevance.

5.2 Case Study 1: KT Capability

While investigating the capability of KT, we conduct an experiment on a synthetic

MTL case study. Figure 5.1 (a) and (b) depicts two synthetic classification tasks for

MTL. Task 1 has 219 samples, and Task 2 has 199 samples. Task 1 and Task 2 are

correlated because their data distribution overlaps.

Principally, all 418 samples should be useful for the learning of the secondary task.

Figure 5.1(c) plots the correlated data (i.e. C12 ∪ C21) extracted by the proposed

KT method, where the task boundaries identify seven subregions – the ground truth

correlation knowledge between the two tasks. The obtained correlated data consists

of 395 data points, which implies that approximately 94.5% (395/418) of the total

correlated data has been extracted. Despite some correlated samples being mistak-

enly labelled, the usefulness of obtained correlated data on the classification of either

task 1 or task 2 is confirmed by SVM subregion approximation in Figure 5.1(d).

5.3 Case Study 2: Contribution of KT to MTL

We selected five datasets from the UCI Machine Learning Repository, i.e., Segmen-

tation, Thyroid, Vehicle, Vowel, and Yeast. The information of these five datasets is

summarized in Table 5.1. Since the UCI datasets are designed for STL, we combined

the original classes in different ways for MTL to create additional tasks such that

every task has some relatedness to the others. The created tasks for each dataset
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Figure 5.1: KT for a synthetic MTL. (a) Task 1, (b) Task 2, (c) correlation data
from proposed KT method, and (d) SVM approximation on the discriminability of
obtained correlation data



Table 5.1: Information on the five UCI datasets

Datasets #Attributes #Classes #Train Samples #Test Samples

Segmentation 19 7 210 2100

Thyroid 21 3 3772 3428

Vehicle 18 4 188 658

Vowel 10 11 528 462

Yeast 8 10 744 740

are listed in Table 5.2, where the new class labels for the newly created task are

numbered after the original labels.

For each MTL topic, we do KT from Task 1 to Task 2 and Task 3, and from Task 2

back to Task 1. For performance evaluation, we conduct learning on every dataset

for 100 rounds with 10-fold cross validation. We count the number of times that

KT contributes positively to the secondary task learning and record the average and

standard deviation of the classification accuracy difference between MTL with and

without KT.

Table 5.3 shows the performance statistics for MTL on each of the five UCI datasets.

As seen from the results, although MTL with KT does not always outperform that

without KT, the proposed KT evaluates all 15 tasks from the five UCI datasets

regardless of the type of classifier for MTL. This indicates that the proposed KT

method is valid, as the contribution of KT is almost always positive for MTL.

Now we check the characteristic of classifier independence. It happens that negative

KT occurs in our experiments. Because the transferred knowledge in the proposed

KT is a set of raw data that reflects correlation from the primary task to secondary

task, thus the transferred knowledge basically adapts to any classifiers. However,

the relatedness interpretation of transferred knowledge varies among the classifiers.

It seems that kernel-based classifiers, like SVM, are likely to interpret transferred

knowledge better than prototype-based classifiers, like kNN – as SVM performs bet-

ter than kNN on most MTL tasks.



Table 5.2: MTPR problems created from five UCI datasets

(a) Yeast data
Original Task 1 Task 2 Task 3

1 1 11 13
2 2 12 14
3 3 11 15
4 4 12 16
5 5 12 16
6 6 12 16
7 7 11 16
8 8 12 16
9 9 11 16
10 10 12 16

(b) Vowel data
Original Task 1 Task 2 Task 3

1 1 12 14
2 2 12 15
3 3 12 14
4 4 12 15
5 5 12 14
6 6 12 15
7 7 13 14
8 8 13 15
9 9 13 14
10 10 13 15
11 11 13 14

(c) Thyroid data
Original Task 1 Task 2 Task 3

1 1 4 6
2 2 4 7
3 3 5 7

(d) Vehicle data
Original Task 1 Task 2 Task 3

1 1 5 7
2 2 5 8
3 3 6 7
4 4 6 8

(e) Segmentation data
Original Task 1 Task 2 Task 3

1 1 8 10
2 2 8 10
3 3 8 11
4 4 9 11
5 5 9 12
6 6 9 12
7 7 9 12

5.4 Case Study 3: Adaptability in Real World

MTPR Applications

In the experiments on real world datasets, we used a MPEG-7 face database which

includes 1,355 face images of 271 subjects (5 different face images per person). Each

face image has a size of 56 × 46 pixels. The majority of the images are collected

from AR(Purdue), AT&T, Yale, UMIST, University of Berne, and some face images

are obtained from MPEG-7 news videos (Kim, Kim, & Lee, 2002; Ozawa, Pang, &

Kasabov, 2006b, 2008, 2006a).

From the above face image database, we manually defined five face pattern recogni-

tion tasks as follows:

1. Person Identification (PI): to distinguish 271 subjects’ identity by face image

classification;

2. Pose Recognition (POR): to recognize a face in one of 5 poses: face up, face



Table 5.3: Final probability (in percent) of classification accuracy improvement
of the pattern recognition tasks based on different classifiers, i.e., kNN and SVM,
for the five UCI datasets. The probability is calculated on the result of 100 runs of
KT. The three values in each cell are the average probability, average accuracies
increment by KT, and standard deviation in the form of (average) ± (standard
deviation). These accuracies are averaged over 100 runs.

(a) Yeast
classifier Task 2 → Task 1 Task 1 → Task 2 Task 1 → Task 3

KNN 100/100 (1.79% ± 1.04%) 100/100 (1.24% ± 1.11%) 100/100 (1.83% ± 1.15%)
SVMrbf 75/100 (0.40% ± 1.41%) 87/100 (0.75% ± 1.48%) 93/100 (1.08% ± 1.55%)

(b) Vowel
classifier Task 2 → Task 1 Task 1 → Task 2 Task 1 → Task 3

KNN 92/100 (0.52% ± 1.01%) 99/100 (0.42% ± 0.56%) 100/100 (0.87% ± 0.81%)
SVMrbf 100/100 (4.21% ± 2.88%) 100/100 (3.25% ± 2.12%) 100/100 (15.25% ± 6.82%)

(c) Thyroid
classifier Task 2 → Task 1 Task 1 → Task 2 Task 1 → Task 3

KNN 94/100 (0.14% ± 0.25%) 99/100 (0.25% ± 0.29%) 100/100 (0.18% ± 0.15%)
SVMrbf 100/100 (0.22% ± 0.12%) 100/100 (0.33% ± 0.19%) 99/100 (0.15% ± 0.16%)

(d) Vehicle
Classifier Task 2 → Task 1 Task 1 → Task 2 Task 1 → Task 3

KNN 24/100 (−0.39% ± 1.66%) 0/100 (−1.67% ± 1.31%) 89/100 (1.00% ± 1.59%)
SVMrbf 56/100 (0.00% ± 2.43%) 15/100 (−0.88% ± 2.41%) 88/100 (1.15% ± 2.24%)

(e) Segmentation
classifier Task 2 → Task 1 Task 1 → Task 2 Task 1 → Task 3

KNN 100/100 (0.84% ± 0.58%) 100/100 (0.52% ± 0.54%) 100/100 (0.92% ± 0.56%)
SVMrbf 100/100 (14.21% ± 2.34%) 100/100 (8.75% ± 1.67%) 100/100 (13.18% ± 1.90%)



down, face left, face right, and face front;

3. Glasses Recognition (GLR): to recognize if a face is with glasses or not;

4. Gender Recognition (GER): to recognize the sex of subject by his/her face

image.

5. Face Membership Authentication (FMA): is to authenticate the membership of

an input face, when a subset of a total of 271 subjects are assigned to a member

group, and the remaining people are assigned non-members of the group.

Table 5.4 (a) describes the datasets for 5 face pattern recognition tasks. The 5 tasks

are correlated, because the topics are more or less linked to each other. Furthermore,

they are defined on the same primary face data. However, the depth of correlation

varies from task to task. For example, PI and FMA are two clearly correlated tasks,

as face membership refers to a grouped personal identity. However, little correlation

exists between GER and GLR, as gender is a concept irrelevant to wearing glasses.

In the experiment, we created 10 MTPR problems by combining two of the 5 tasks.

Table 5.4 (b) lists the produced MTPR problems categorized by conceptual correla-

tion depth. The top 3 problems are in a group with high correlation, the bottom 3

problems have little correlation, and the remaining 4 problems are in-between. For

each MTPR problem, we conducted KT by extracting correlation data from the pri-

mary task, and appended the obtained correlation data as additional training data

to the secondary learner, i.e., an RBF SVM.

For each MTPR problem, we observed the amount of correlation data transferred

for MTL in Figure 5.2 (a), and evaluated the contribution to MTL in Figure 5.2 (b)

in terms of the average accuracy difference between MTL with KT and without KT.

5.5 Discussion

As seen, the amount of correlation data transferred for problems with little task

correlation (i.e. GLR vs POR, GER vs POR, and POR vs FMA ) is approximately

10% of that from problems with high task correlation (i.e. PI vs GLR, PI vs GER,

PI vs FMA), and about 40% of problems with medium task correlation (i.e. GLR



Table 5.4: MTPR problems constructed on face image dataset

(a) 5 single tasks defined for face pattern recognition

Tasks # class Class distribution

Person Identification (PI) 271 5 samples/class

Pose Recognition (POR) 5

Up: 16

Down: 21

Left: 36

Right: 36

Front: 51

Glasses Recognition (GLR) 2
NG: 985

WG: 370

Gender Recognition (GER) 2
M: 975

F: 380

Face Membership Authentication (FMA) 2
ME: 200

NME: 1155

(b) 10 MTPR problems created
on face PR tasks in Table 5.4(a)

#Problem Task 1 Task 2

Problem 1 PI GER

Problem 2 PI GLR

Problem 3 PI FMA

Problem 4 POR FMA

Problem 5 GLR FMA

Problem 6 GER FMA

Problem 7 GER GLR

Problem 8 POR GLR

Problem 9 POR GER

Problem 10 PI POR
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Figure 5.2: KT in MTPR in the case that the depth of task correlation varies.
(a) Amount of correlation data transferred, and (b) average accuracy difference
between MTL with KT and without KT



vs GER, GLR vs FMA, GER vs FMA). It indicates that the proposed KT is able to

adjust itself to the extent of task correlation in terms of the amount of correlation

data transferred.

Also as shown in figure 5.2 (b), the contribution of KT is positive for all seven

MTL problems with more or less task correlation. Negative transfer happens only

to those problems with little task correlation. It follows that the proposed KT is

valid as long as a conceptual correlation exists between two tasks. Although a small

amount of correlation data is extracted from problems with little task correlation,

their contribution to MTL may often be negative. In other words, if a small amount

of correlation data is transferred but with a negative contribution, then the two tasks

are conceptually irrelevant.

5.6 Summary

The effectiveness and robustness of the proposed KT is demonstrated through exper-

iments using classifiers of different disciplines for MTL. Various multi-task pattern

recognition problems derived from synthetic datasets, UCI benchmark datasets, and

real world face datasets are employed in the case studies. We evaluate the learner

independent KT model in three respects: (A) KT capability, to answer the ques-

tion how much knowledge the method can transfer; (B) contribution of KT, for the

question that how is transferred knowledge beneficial to an MTL classifier; (C) adapt-

ability of KT, to show how the KT adapts to learning tasks with varied relevance.

We found that algorithms with MEB-based KT performed better than algorithms

without-KT, and MEB-based KT is successfully applied to all classifiers. However,

negative KT is found in cases where two learning tasks are semantically irrelevant

or have little relevance, e.g., face membership authentication and pose recognition.



Chapter 6

Learner Independence Evaluation

This chapter discusses the learner independence of the proposed KT method. Section

1 introduces the MTL tasks and experimental setup. We conduct MTL using clas-

sifiers in different discipline with the proposed KT. Sections 2–4 describe the MTL

experiments with kNN , SVM, and MLP, respectively. We summarize the learner

independence of the proposed KT in Section 5.

6.1 Introduction

To demonstrate the learner independence of our proposed method, we use the pro-

posed KT algorithm for MTL on a series of correlated multi-task pattern recognition

problems using different classifiers. We define MTPR problems over 5 UCI datasets

in Table 5.2 and face image datasets in Table 5.4(b). We implement Algorithm 4 for

KT over the tasks in Table 6.1. In the experiment, we intentionally employ classi-

fiers with different characteristics. The classifiers examined include kNN, a prototype

based classifier; SVM, a kernel based classifier; and MLP, a neural network based

classifier.

For experimental setup, as the performance of the learning system could potentially

be influenced by how much knowledge is transferred from one task to another, the

proposed KT algorithm is evaluated by 100 runs with 10-fold cross validation for



Table 6.1: The list of tasks for KT.

Datasets Defined Tasks

UCI dataset

Task 2 → Task 1

Task 1 → Task 2

Task 1 → Task 3

Face image dataset

PI → GLR

GLR → PI

PI → GER

GER → PI

PI → FMA

FMA → PI

every MTL dataset. For each cross validation, we set one task as the primary task,

and another task as the secondary task, and conduct KT (as Algorithm 4) always

from the primary to secondary task. Then, we use the obtained correlated data as

additional data for the training of the secondary task.
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Figure 6.1: Illustration of experiment setup.



We test the algorithm on a set of problems to see: (1) whether the proposed KT

mechanism enhances the classification accuracy, (2) how much of a contribution the

proposed KT approach can make to classification accuracy, and (3) whether the

proposed KT method has the steadibility to be able to be applied to any classifier.

In the following, we identify these issues in detail.

KT effectiveness. It measures the rate (number of times) of successful KT which

enhances classification performance compared with classification without KT.

In the experiment, we conduct 100 runs with the proposed KT method for each

MTL problem, and count the times that a classifier with KT from the primary

task contributes positively to the secondary task. Thus it is easy to verify how

many of these KT are effective.

KT contributions. We compare MTL with KT and without KT, and measure

the contribution of KT by evaluating the difference in learning on classification

accuracy. In the experiment, we take 100 runs for each MTPR problem, and

measure the average result of classification accuracy difference between MTL

with KT and without KT. The results are averaged over 100 runs.

KT steadibility. It measures the deviation value of the improved accuracy. The

improved accuracy is the difference between MTL with KT and without KT.

In the experiment, KT contributed accuracy is different in every round of 100,

so to prove whether the proposed KT method has steadibility to a learner,

standard deviation of the improved accuracy is measured. If it is high, the

proposed KT does not consistently improve accuracy.

Here we introduce the results of the comparison of the three types of classifiers and

show the experimental results for each task. In the following section, the concept of

each classifier is introduced, then the MTL results are presented for each classifier

with KT on both UCI datasets and face image datasets.



6.2 Multi-task Learning by kNN

6.2.1 k Nearest Neighbour Classifier

kNN (Thrun, 1996) is one of the most popular and simplest classifiers for data

mining. kNN is a prototype based learning algorithm, which classifies objects through

calculating the k nearest neighbours of incoming data, using the Euclidean distances

for similarity evaluation. Since it is a simple and effective classification algorithm, it

is widely used for many domains, such as pattern recognition and DNA sequencing.

Given a set of training datasets D and a query set X. For each point x ∈ X, it is

classified by searching for its k nearest neighbours (xi, yi) ∈ D in order to compute

the output label y. Euclidean distance is the most commonly used dissimilarity

measure. Figure 6.2 demonstrates a simple example of kNN classification. The set

of training samples D are blue squares and green triangles, a query point, x, is shown

as a red disk. x should be classified to either the first class of green triangles or the

second class of blue squares. If k = 3, it is classified to the green triangle class,

because there are two triangles and only one square in the neighbourhood (circle I).

If k = 5, it is classified to blue square class, because there are three squares and two

triangles in the neighbourhood (circle II).

Circle I

Circle II

?

Figure 6.2: Example of kNN classification.



6.2.2 MTL Experiments by MEB-based KT-kNN

In a kNN-based MTL learning system, there are several parameters. These param-

eters can be divided into two groups: (1) the ones related to the kNN classifier, (2)

the ones related to KT.

[Parameter for kNN Classifier]

In a kNN classifier, the parameter k has to be set, different k value might lead

to different classification results. The best choice of k value depends upon data

distribution. In this experiment, we use cross validation technique to select the k

value. For example, as the k value must be an integer, we sequentially check the

classification rate of a range of possible k values (k ∈ [1, 9] in the experiment), in

order to improve the classification accuracy by finding the proper k value.

[Knowledge Transfer]

β is the control parameter to smooth the MEB, the radius of the KT region is

equivalent to the radius of MEB +β.

For MEB-based KT-kNN parameter selection, k and β are determined by cross vali-

dation prediction tests on each dataset. Figure 6.3 shows the classification accuracy

of KT-kNN for k and β on the Segmentation dataset. Our proposed KT method

suits most of the k values, but k = 1 and β = 0.6 is the best choice in the experiment.

The experimental results on the kNN classifier are demonstrated in Table 6.2. Among

the 5 UCI datasets, it is worth noting that most of the MTL tasks on kNN classi-

fier achieved high performance. As can be observed in Table 6.2, the MEB-based

KT-kNN persistently produces a perfect result (100% probability of accuracy im-

provement) on the Yeast and the Segmentation datasets. However, the MEB-based

KT on the Vehicle dataset failed for Task 2→ Task 1 and Task 1→ Task 2, but the

result for Task 1→ Task 3 is an acceptable 89% probability of accuracy improvement.

The reason is considered to be that the data samples extracted by the MEB-based

KT were few in-between Task 1 and Task 2. For the face image dataset, the proposed

KT method is significant (with over 90% probability of accuracy improvement) from

PI to other tasks (GLR, GER, FMA), but negtive KT occured from the other tasks

to PI. The reason for this is PI holds all feature data about individuals, including

the feature data included in GLR, GER, and FMA and so on. Therefore, little data

is extracted by the MEB-based KT from other tasks for PI.
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Figure 6.3: Parameter selection for MEB-based KT-kNN. The figures show the
classification accuracies for the Segmentation dataset by different values of pa-
rameter k and β. The best result is obtained when k= 1 and β = 0.6. (a) kNN
parameter k. (b) Smoothing value of KT region β, KT is from Task 2 to Task 1.



Table 6.2: Final probability (in percent) of classification accuracy improvement
of the pattern recognition tasks based on kNN classifier for the five UCI datasets
and the face image dataset. The probability is measured after the completion of
100 KT runs. The three values in each cell are the average probability, average
rising accuracy between with-KT and without-KT, and standard deviation in the
form of (average) ± (standard deviation).

(a) UCI Datasets
UCI Datasets Task 2 → Task 1 Task 1 → Task 2 Task 1 → Task 3

Yeast 100/100 (1.79% ± 1.04%) 100/100 (1.24% ± 1.11%) 100/100 (1.83% ± 1.15%)
Vowel 92/100 (0.52% ± 1.01%) 99/100 (0.42% ± 0.56%) 100/100 (0.87% ± 0.81%)

Thyroid 94/100 (0.14% ± 0.25%) 99/100 (0.25% ± 0.29%) 100/100 (0.18% ± 0.15%)
Vehicle 24/100 (−0.39% ± 1.66%) 0/100 (−1.67% ± 1.31%) 89/100 (1.00% ± 1.59%)

Segmentation 100/100 (0.84% ± 0.58%) 100/100 (0.52% ± 0.54%) 100/100 (0.92% ± 0.56%)

(b) Face Image Datasets
PI → GLR GLR → PI

PI vs GLR 100/100 (1.20% ± 0.85%) 0/100 (−0.72% ± 0.76%)
PI → GER GER → PI

PI vs GER 91/100 (0.41% ± 0.63%) 3/100 (−0.75% ± 0.89%)
PI → FMA FMA → PI

PI vs FMA 91/100 (0.01% ± 0.01%) 4/100 (−0.01% ± 0.01%)

6.3 Multi-task Learning by SVM

6.3.1 Support Vector Classifier

The original support vector machine (SVMs) by Boser et al. (Boser, Guyon, &

Vapnik, 1992) was derived from the generalized portrait algorithm invented earlier by

Vapnik and Lerner (Vapnik & Lerner, 1963). Since then, SVM has become one of the

most popular classification methods based on statistical learning (Evgeniou & Pontil,

2004), and it is widely used in the machine learning area as a powerful approach

for solving problems with high dimensional classification. SVM is an approach to

maximize the margin (|L1 − L2|) for separating classes in high dimensional data

space. Figure 6.4 shows a simple example of an SVM optimal separating hyperplane

for a two-class classification.

We assume that we have a training set D = (x1, y1), (x2, y2), ..., (xi, yi), where x ∈ ℜd

is the d-dimentional input vector, y ∈ {−1, 1} is a class label, i ∈ ℜ, for which there

exists a norm vector w ∈ ℜd with ‖w‖2 = 1 and a bias parameter b ∈ ℜ such that



Margin is the optimal separating hyperplane

The same space

distance

L1

L2

Figure 6.4: Example of SVM optimal separating hyperplane for two-class classi-
fication case. The black disks and the white disks are samples from two different
classes.

〈w, xi〉+ b > 0, for all i with yi = +1,

〈w, xi〉+ b < 0, for all i with yi = −1.
(6.1)

In other words, the affine linear hyperplane described by (w, b) perfectly separates the

training set D into the two groups (xi, yi) ∈ D : yi = +1 and (xi, yi) ∈ D : yi = −1.

According to Vapnik’s SVM theory (Cortes & Vapnik, 1995), a non-linear decision

function f(x) of SVM is the form of

f(x) = sign (w · Φ(x) + b) (6.2)

where “·” means a dot product and Φ(x) refers to an implicitly mapped vector in

the feature space induced by the kernel function k(x, x́) = 〈Φ(x), Φ(x́)〉.

We can convert the above classification problem into an optimization problem as:

minimize 〈w,w〉 over w ∈ ℜd, b ∈ ℜ

subject to yi(〈w, xi〉+ b) ≥ 1 i = 1, ..., n.
(6.3)

To resolve the optimization problem in 6.3, we first map the input data xi, ...xn into a

feature space by a typically non-linear mapping Φ : X → H0. Then, the generalized



portrait algorithm is applied to the mapped dataset ((Φ(x1), y1), ..., (Φ(xn), yn)). To

training an SVM, a quadratic optimization problem need to be solved as:

minimize 1
2
〈w,w〉+ C

∑n

i=1 ξi for w ∈ H0, b ∈ ℜ, ξ ∈ ℜn

subject to yi(〈w, Φ(xi)〉+ b) ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n,

(6.4)

where C > 0 is a positive constant which is used to balance the objective function and

ξ is slack variable which controls the trade-off between the objective function and the

number of miss classifications. These two parameters can be typically determined

by cross validation. We can rewrite the equation 6.4 as:

L(yi, 〈w, Φ(xi)〉+ b) =

{

0 if |yi − 〈w, Φ(xi)〉+ b| ≤ ξ

|yi − 〈w, Φ(xi)〉+ b| − ξ otherwise,

(6.5)

where L is the loss function. This quadratic optimization problem need to be solved

in a high or infinite dimensional feature space H0. It is easy to use Lagrange multi-

pliers approach to obtain a dual optimization of the problem in 6.4,

minimize
∑n

i=1 αi −
1
2

∑n

i,j=1 yiyjαiαj 〈Φ(xi), Φ(xj)〉 α ∈ [0, C]n

subject to
∑n

i=1 yiαi = 0,
(6.6)

Let (α∗
i , ..., α

∗
n) be the solution of the equation 6.6, the solution (w∗

D, b∗D) of the

equation 6.4 can be computed as

w∗
D =

n
∑

i=1

yiα
∗
i Φ(xi)

and



b∗D = yj −
n

∑

i=1

yiα
∗
i 〈Φ(xi), Φ(xj)〉 ,

where j is an index with 0 < α∗
j < c. w∗

D only depends on the samples xi whose

weights satisfy α∗
i 6= 0. Geometrically, this means that the affine hyperplane de-

scribed by (w∗
D, b∗D) is only supported by these Φ(xi), and hence the corresponding

data points (xi, yi) are called support vectors (Cortes & Vapnik, 1995). The decision

function fw∗
D

,b∗
D
(x) can be written by the constructed affine hyperplane as,

fw∗
D

,b∗
D
(x) = 〈w∗

D, Φ(x)〉+ b∗D =
∑n

i=1 yiα
∗
i 〈Φ(xi), Φ(x)〉+ b∗D, x ∈ X. (6.7)

In both the dual optimization problem 6.6 and the decision function 6.7 only inner

products of Φ occur. Therefore, instead of computing the feature map, it is sufficient

to know the function 〈Φ(·), Φ(·)〉 : X ×X → ℜ. According to the theory of Vapnik

et al. (Cortes & Vapnik, 1995) , there are some cases which we can compute the

function 〈Φ(·), Φ(·)〉 without knowing the feature map Φ itself, such as Gaussian

RBF kernels. The kernel function that satisfies Mercer’s conditions can be written

as:

k(x, x
′
) =

〈

Φ(x), Φ(x
′
)
〉

, x, x
′
∈ X. (6.8)

We can use kernels directly instead of explicit feature vectors in the feature space in

algorithms where only the inner product of the feature map but not the feature map

itself are involved. Some well known kernel functions are listed below (Table 6.3).

Table 6.3: SVM Kernels

SVM Kernels
Polynomial (homogeneous): k(x, x́) = (x · x́)d

Polynomial (inhomogeneous): k(x, x́) = (x · x́ + 1)d

Radial Basis Function (RBF): k(x, x́) = exp(−γ‖x − x́)‖2), for γ > 0

Gaussian Radial basis function: k(x, x́) = exp(−
‖x−x́)‖2

2σ2
)

Sigmoid: k(x, x́) = tanh(κx · x́ + c) for some (not every) κ > 0 and c < 0

To evaluate the validity of MEB-SVM, we compare SVM with MEB-based KT



against a SVM without KT. The Support Vector Classification (SVC) employs trans-

ferred knowledge D
′
from primary tasks to secondary task in addition to the training

data D for secondary task.

f(x) = sign(w · Φ([x ∪D
′

]) + b) (6.9)

6.3.2 MTL Experiments by MEB-based KT-SVM

In the SVM learning system, several parameters have to be set. As shown below,

those parameters can be divided into two groups: (1) the ones related to the SVM

classifier, (2) the ones related to KT.

[SVM Classifier]

g – gamma: the constant in the Radial Basis Function Kernel function.

c – cost: the penalty parameter from the original SVM formulation.

[Knowledge Transfer]

β – It is the control parameter for smoothing MEB, the radius of KT region = the

radius of MEB +β.

Figure 6.5 shows the final classification results of SVM with different g, c and β

parameters on the Segmentation dataset. g = 0.001, c = 8 is the best choice for

SVM parameter. We use the same cross validation technique to determine the SVM

classifier parameters and β parameter for each dataset. After parameter selection,

the experimental results on SVM classifier are demonstrated as follows.

For MTL experiments by SVM classifier, the generalization performance for most

UCI datasets is acceptable, except the Vehicle – negative KT is occurred same as

by kNN classifier. The result for Yeast dataset is not as well as MEB-based KT by

kNN. For the face dataset, the proposed method produces probability of accuracy

improvement with 91% and 97%, from PI to GLR and from PI to FMA, respectively.

The MEB-based KT is most successful. See Table 6.4 for additional results.
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Figure 6.5: MEB-based KT-rbfSVM for different model parameters: The classi-
fication accuracy for the Segmentation dataset with different values of parameters
g, c and, β. The best result is obtained when g = 0.001, c = 8, and β = 0.2(a) The
gamma of kernel function g. (b) The margin parameter c of C-SVC. (c) Smoothing
value of KT region β, KT is from Task 2 to Task 1.



Table 6.4: Final probability (in percent) of classification accuracy improvement
of the pattern recognition tasks based on SVM classifier for the five UCI datasets
and the face image dataset. The probability is measured after the completion of
100 runs KT. The three values in each cell are the average probability, average
rising accuracy between with-KT and without-KT, and standard deviation in the
form of (average) ± (standard deviation).

(a) UCI Datasets
UCI Datasets Task 2 → Task 1 Task 1 → Task 2 Task 1 → Task 3

Yeast 75/100 (0.40% ± 1.41%) 87/100 (0.75% ± 1.48%) 93/100 (1.08% ± 1.55%)
Vowel 100/100 (4.21% ± 2.88%) 100/100 (3.25% ± 2.12%) 100/100 (15.25% ± 6.82%)

Thyroid 100/100 (0.22% ± 0.12%) 100/100 (0.33% ± 0.19%) 99/100 (0.15% ± 0.16%)
Vehicle 56/100 (0.00% ± 2.43%) 15/100 (−0.88% ± 2.41%) 88/100 (1.15% ± 2.24%)

Segmentation 100/100 (14.21% ± 2.34%) 100/100 (8.75% ± 1.67%) 100/100 (13.18% ± 1.90%)

(b) Face Image Datasets
PI → GLR GLR → PI

PI vs GLR 91/100 (0.50% ± 1.14%) 53/100 (−0.02% ± 1.29%)
PI → GER GER → PI

PI vs GER 72/100 (0.24% ± 0.92%) 40/100 (−0.15% ± 1.23%)
PI → FMA FMA → PI

PI vs FMA 97/100 (0.50% ± 0.70%) 48/100 (−0.08% ± 1.21%)

6.4 Multi-task Learning by MLP

6.4.1 Multi-layer Perceptron Classifier

Multi-layer perceptron (MLP) (Jusman et al., 2009) is a feed-forward artificial neural

network model, in which the tasks are inputted in parallel and share the internal

knowledge representation with each other. An MLP network consists of several layers

of neurons: the input layer is the first layer, and the output layer is the last layer,

remaining layers are called hidden layers. There are complete connections between

the nodes in successive layers but there is no connection between neurons within the

same layer. Every node, except the input layer nodes, computes the weighted sum

of its inputs and apply a sigmoidal function to compute its output, which is then

transmitted to the nodes of the next layer (Haykin, 1999). The objective of MLP

algorithm is to set the connection weights such that the disagreement between the

network output and the target output is minimized.

For pattern classification, MLP adjusts the free weights during supervised training

and partition the input space using linear hyperplanes. To separate various classes,

MLP estimates a function in the form which partitions the input space into polyhe-



dral sets or regions so that each point in the domain is assigned to one out of the m

classes of Y . Each node has an associated hyperplane to partition the input space

into two half-spaces. The combination of the individual, linear node-hyperplanes in

additional layers allows a stepwise separation of complex regions in the input space,

generating a complex decision boundary to separate the different classes (Haykin,

1999). Figure 6.6 shows a simple mechanism of MLP-based pattern recognition.

Task 1 Task 2
Bias

Figure 6.6: Example of MLP classification.

MLP has three distinctive characteristics, according to (Haykin, 1999):



1. The model of each neuron in the network includes a nonlinear activation func-

tion. The important point to emphasize here is that the nonlinearity is smooth,

as opposed to the hard-limiting used in Rosenblatt’s perceptron (Rosenblatt,

1959). A commonly used form of nonlinearity that satisfies this requirement is

a sigmodial nonlinearity defined by the logistic function:

yj =
1

1 + exp(−vj)
,

where vj is the induced local field (i.e., the weighted sum of all synaptic inputs

plus the bias) of neuron j, and yj is the output of the neuron. The presence

of non-linearities is important because otherwise the input-output relation of

the network could be reduced to that of a single-layer perceptron. Moreover,

the use of the logistic function is biologically motivated, since it attempts to

account for the refractory phase of real neurons.

2. The network contains one or more layers of hidden neurons that are not part of

the input or output of the network. These hidden neurons enable the network

to learn complex tasks by extracting progressively more meaningful features

from the input patterns (vectors).

3. The network exhibits a high degrees of connectivity, determined by the synapses

of the network. A change in the connectivity of the network requires a change

in the population of synaptic connections or their weights.

The error signal at the output of neuron j at iteration n (i.e., presentation of the

nth training example) is defined by

ej(n) = dj(n)− yj(n), neuron j is an output node, (6.10)

We define the instantaneous value of the error energy for neuron j as 1
2
e2

j(n). Cor-

respondingly, the instantaneous value ℘ of the total error energy is obtained by

summing 1
2
e2

j(n) over all neurons in the output layer. We may thus write

℘(n) =
1

2

∑

j∈E

e2
j(n), (6.11)



where the set E includes all the neurons in the output layer of the network. Let

N denote the total number of patterns contained in the training set. The average

squared error energy is obtained by summing ℘(n) over all n and then normalizing

with respect to the set size N , as shown by

℘av =
1

N

N
∑

n=1

℘(n) (6.12)

For an M -class classification problem, let ykj be the kth output of the network

produced in response to the prototype ~xj, as shown by

yk,j = Fk(~xj), k = 1, 2, ...,M (6.13)

where the function F (·) defines the mapping learned by the network from the input

to the kth output. Let

yj = [y1,j, y2,j, ..., yM,j ]

= [F1(~xj), F2(~xj), ..., FM(~xj)]

= ~F (~xj)

(6.14)

where ~F (·) is a continuous vector valued function. ~F (·) minimizes the empirical risk

functional:

R =
1

2N

N
∑

j=1

∥

∥

∥

~dj − ~F (~xj)
∥

∥

∥

2

, (6.15)

where ~dj is the target output pattern for the prototype ~xj, ‖·‖ is the Euclidean

norm of the enclosed vector, and N is the total number of examples presented to the

network in training.

To evaluate the validity of MEB-MLP, we consider a comparison of MLP with MEB-

based KT classification against a without KT classification. The MLP classifier

employs transferred knowledge x
′
from primary tasks to secondary task in addition

to the original training data for MLP learning. Let x
′
be the transferred data to the

secondary task, then equation 6.13 is extended for MLP+KT as



yk,j = Fk([xj + x
′
]), k = 1, 2, ...,M. (6.16)

6.4.2 MTL Experiments by MEB-based KT-MLP

In the MLP learning system, several parameters have to be set. As shown below,

those parameters can be divided into two groups: (1) those relates to the MLP

classifier, (2) those relates to KT.

[MLP Classifier]

α – Weight decay of MLP.

[Knowledge Transfer]

β – It is the control parameter for smoothing MEB, the radius of KT region = the

radius of MEB +β.

Figure 6.7 shows the final classification of MLP classifier for the parameter α and β

on the Segmentation dataset. α = 10 is the best choice for MLP parameter. We use

the same cross validation technique to determine the MLP classifier parameters and

β parameter for each dataset. After the decision of parameters, the experimental

results on MLP classifier are demonstrated as follows.

Table 6.5 shows final probability of classification accuracy improvement of the pattern

recognition tasks based on MLP classifier. As shown in Table 6.5 (a), the best

accuracies appear in processing KT amongst two or three pattern recognition tasks

on Vowel and Thryoid datasets. In addition, such accuracies decrease, to some

extent, to a low level but still approaching to 50%. Afterwards, Table 6.5 (b) reveals

acceptable results in comparing accuracies of KT in triple pairs of pattern recognition

tasks, such as PI vs GLR, PI vs GER, and PI vs FMA.
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Figure 6.7: MEB-based KT-MLP for different model parameters: The classifica-
tion accuracy for the Segmentation dataset with different values of parameters α

and β. The best result is obtained when α = 10, and β = 0.1. (a) Weight decay of
MLP α. (b) Smoothing value of KT region β, KT is from Task 2 to Task 1.



Table 6.5: Final probability (in percent) of classification accuracy improvement
of the pattern recognition tasks based on MLP classifier for the five UCI datasets
and the face image dataset. The probability is measured after the completion of
100 runs KT. The three values in each cell are the average probability, average
rising accuracy between with-KT and without-KT, and standard deviation in the
form of (average) ± (standard deviation).

(a) UCI Datasets
UCI Datasets Task 2 → Task 1 Task 1 → Task 2 Task 1 → Task 3

Yeast 56/100 (0.06% ± 1.01%) 74/100 (0.24% ± 1.14%) 44/100 (−0.01% ± 1.01%)
Vowel 100/100 (3.91% ± 1.11%) 100/100 (4.07% ± 1.82%) 100/100 (9.24% ± 3.89%)

Thyroid 100/100 (0.24% ± 0.11%) 100/100 (0.63% ± 0.17%) 100/100 (0.21% ± 0.09%)
Vehicle 52/100 (0.14% ± 3.90%) 52/100 (0.06% ± 6.14%) 48/100 (0.04% ± 5.09%)

Segmentation 43/100 (−0.01% ± 2.34%) 53/100 (0.36% ± 9.09%) 40/100 (−0.29% ± 4.78%)

(b) Face Image Datasets
PI → GLR GLR → PI

PI vs GLR 90/100 (0.88% ± 1.40%) 0/100 (0.00% ± 0.00%)
PI → GER GER → PI

PI vs GER 92/100 (0.80% ± 1.22%) 0/100 (0.00% ± 0.00%)
PI → FMA FMA → PI

PI vs FMA 86/100 (0.49% ± 1.22%) 0/100 (0.00% ± 0.00%)

6.5 Discussion

We have shown the MTL results of both UCI datasets and face image datasets with

classifiers of different characteristics. Figure 6.8 demonstrates the performance of 4

UCI datasets by kNN, SVM and MLP classifiers. Surprisingly enough, for the SVM

classifier, we obtained a 100% probability of accuracy improvement on the Vowel

dataset.

For UCI datasets, the proposed learner independent KT method provides good learn-

ing results on both kNN and SVM, the results for MLP are not as good as kNN or

SVM. There are two possible reasons for this. First, the proposed KT method ex-

tracts a set of raw data from the primary task to the secondary task, kNN, which is

a prototype based classifier, and SVM, which is a kernel based classifier, are able to

interpolate the transferred knowledge better than a neural network based classifier

like MLP. Second, MLP depends on hidden nodes, and the performance of MLP

requires a sufficient number of hidden units, whereas some of the UCI datasets could

not generate a sufficient quantity of hidden units to partition the feature space. The

Vehicle dataset has poor performance on learner independent KT. The reason for

this is that the classes of the Vehicle dataset are sparsely distributed, and our pro-



posed MEB-based KT method is not able to extract enough correlation knowledge

to improve the learning process.

For the face image dataset, we achieved an overall results of 95 percent of performance

improvement on the 3 classifiers, kNN, SVM, and MLP. According to the semantic

correlation we mentioned in Chapter 5, the correlated knowledge from PI to GLR,

GER, and FMA is more significant that the knowledge in the reverse direction,

because PI holds all the information of a person’s face, the other 3 tasks (GLR,

GER and FMA) are a part of this information (PI).

6.6 Summary

Learner independence evaluation on five UCI datasets and real world face image

datasets was conducted by the proposed MEB-based KT. Experimentally, the valid-

ity of learner independent KT is implemented by 3 different types of classifier, i.e.,

kNN a prototype based classifier; SVM, a kernel based classifier; and MLP, a neural

network based classifier. From the results, it appears that many of the properties

hold for the proposed method. We can summarize the main findings as follows:

KT effectiveness. The probability of classification accuracy improvement is over

70%, and surprisingly, some tasks can achieve 100 times out of 100 runs where

KT successfully enhances classification performance compared with classifica-

tion without-KT.

KT contributions. The improved accuracy significantly contributes to the sec-

ondary task from the primary task via classifiers in various disciplines on most

MTL tasks, except the Vehicle dataset.

KT steadibility. The deviation value is not above 10% on the evaluated datasets,

which proves the steadibility of the MEB-based KT.
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Figure 6.8: Learner independent KT evaluation on UCI datasets by kNN, SVM,
and MLP. Points above the dotted line indicate positive KT and those under the
line negative KT. (a) Yeast, (b) Vowel, (c) Thyroid, and (d) Segmentation.



Chapter 7

Conclusions and Future Work

In this chapter, we first summarize our KT method. Secondly, we conclude the

strengths and limitations of the proposed method. Finally, we discuss possible future

researches based on our KT approach.

7.1 Conclusion on MTL Knowledge Transfer

In this thesis, we studied KT for MTL as a way for sharable knowledge to be extracted

from a task, and used in the learning of correlated tasks. While most existing KT

methods are learner dependent for MTL, we adopt a learner independent approach

and enabled MTL for ordinary classifiers like k-NN, SVM, or MLP.

In the proposed KT, MEB is taken as a size-flexible knowledge representation method,

for which multi-resolution domain knowledge mapping is conducted for correlation

knowledge extraction from the primary task to the secondary task. (1 + δ)r MEB

expansion and (1 − δ)r MEB shrinkage both serve to find a maximum subset of

sharable samples that have no class confliction. This cast light onto an approach to

multi-resolution KT, as correlation is often blurred at varying scales, but is revealed

on a smaller scale with higher resolution.

Moreover, MEB is also used as a knowledge container or carrier, such that the

contained knowledge is represented as a multi-labelled feature subspace spanned



by shared data from two correlated tasks. Under the smooth assumption of feature

space, they can be merged in the same multi-label subspace. At knowledge level, they

are sharable by two correlated tasks; at data level, they are a set of data instances

spanning the multi-label subspace. Thus they are informative to any classifier which

performs learning for a new task.

7.2 Strengths and Limitations of The Proposed

Method

The main strengths and limitations of the proposed approach for multi-task learning

are summarized in the following.

Adaptability. Since MEB has the characteristics of compactability (optimizes sub-

space, enclosing the data within one class) and size-flexibility (expanding and shrink-

ing capabilities), the proposed method can adaptively extract the correlation part

depending on the size of correlation proportion changing over learning tasks. For

example, from a semantic point of view, there is little correlation between glasses

recognition and gender recognition, so the KT may result in a small proportion of

sharable data. On the other hand, a large correlation exists between glasses recogni-

tion and individual identification, the KT may result in a large proportion of sharable

data. In general, we are able to evaluate KT effectiveness depending on the semantic

relevance understanding from the objective of the learning tasks.

Validity. Experiments conducted on a synthetic dataset, five benchmark datasets

(UCI Machine Learning Repository datasets), and a face image dataset show that

our approach is effective in exploiting correlated areas and extracting potentially

useful data in learning tasks. A learning algorithm with KT, via MEB carriers,

outperformed that without KT.

Independence. The proposed KT method has the advantage of learner indepen-

dence. Experiments are carried out on the proposed KT method together with three

well studied learners (e.g., kNN, SVM, and MLP). The results verify that our method

can improve accuracy for multi-task learning for all of the tested classifiers.

In the proposed method, we make the assumptions that (1) class labels are known for



every sample with respect to all of the multiple learning tasks, and (2) the feature

space is consistent for all learning tasks. In some special cases, two tasks may

share the same feature space, but the topic of the learning task is semantically

irrelevant, then correlation is considered meaningless. For example, we may have a

consistent feature space for a face recognition task and an object recognition task, the

correlation extracted from the proposed method may have no significance to improve

the learning rate despite the overlap of the different tasks in the feature space.

7.3 Directions for Future Research Work

In this thesis, we focus on the validity of learner independent KT for MTL. For

example, MEB-based KT can be instantly applied to any type of learner such as kNN,

SVM or MLP. However, technical soundness has not been tested – such as comparing

an algorithm with learner-independence with one without learner-independence – this

would be worthwhile future work to follow this study.

It is also worth noting that negative transfer happens in the proposed KT in cases

that (1) correlation knowledge is not able to be exploited by the classifier, (2) two

learning tasks are semantically irrelevant. For example, a face recognition task is

not able to be supported by knowledge from a hand writing recognition problem.

However, facilitating MTL with unrelated topics is a hot topic in MTL, which will

be an interesting direction for future work. Moreover, MTL on related learning tasks

over different data domains will also be one of the directions to pursue in future work.

Gao et al. (2008), for example, have been working on such KT via multi-model local

structure mapping.
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