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Bioinformatics: A Knowledge Engineering- 
Approach 

Nikola Kasabov 

Abstract-The paper introduces the knowledge engineering 
(KE) approach for the modeling and the discovery of new 
knowledge in Bioinformatics. This approach extends the 
machine learning approach with various rule extraction and 
other knowledge representation procedures. Examples of the 
KE approach, and especially of one of the recently developed 
techniques - evolving connectionist systems (ECOS). to 
challenging problems in Bioinformatics are given, that 
include: D N A  sequeuce analysis, microarray gene expression 
profiling, protein structure prediction, finding gene regulatory 
nehvorks, medical prognostic systems, computational 
neurogenetic modeling. 

Index Terms-Bionformatics. knowledge-based neural 
networks, evolving Connectionist systems, DNA analysis, 
microarray gene expression analysis, gene regulatory 
networks, computational neurogenetic modeling 

I. BIOINFORMATICS: AN AREA OF DATA G R O W "  AND 
EVOLVING KNOWLEDGE 

WITH the completion of the sequence draft of the human 
genome and the genomes of other species (more to be 
sequenced during this century) the task is now to be able to 
process this vast amount of ever growing dynamic 
information and to create intelligent systems for prediction 
and knowledge discovery at different levels of life, from 
cells to whole organism and species. 

The central dogma of the molecular biology is that the 
DNA (Dioxyribonucleic Acid) present in the nucleus of 
each cell of an organism is transcribed into RNA, which is 
translated into proteins [l]. 

Genes are complex molecular strnctures that canse 
d y ~ m i c  transformation of one substance into another 
during the whole life of an individual, as well as the life of 
the human population over many generations. 

Even the static information about a particular gene is 
very diMicult to understand (see the GenBank database 
w\~w.ecnebank.com1. When genes are "in action", the 
dynamics of the processes in which a single gene is 
involved are thousand times more complex, as this gene 
interacts with many other genes, proteins, and is influenced 
by many environmental and developmental factors. 

Modelling these interactions, learning about them and 
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extracting knowledge, is a major goal for the scientific area 
of Bioinformatics. Bioinformatics is concerned with the 
applicafion and the development of the mefhods of 
information sciences for the analysis, modelling and 
knowledge discovery of biological processes in living 
organisms. 

The whole process of the expression of genes and the 
production of proteins, and back to the genes, evolves over 
time. Proteins have 3D strnctures that evolve over time 
governed by physical and chemical laws. Proteins make 
some genes to express and may suppress the expression of 
other genes. The genes in an individual may mutate, change 
slightly their code, and may therefore express differently at 
a next time. So, genes may change, may evolve in the life 
time of an organism. 

In the evolutionary processes (evolution) genes are 
slowly modified through many generations of populations 
of individuals and selection processes (e.g. natural 
selection). 

E v o ~ u ~ ~ o M ~ ~  processes imply the development of a 
sequence of generations of populations of individuals 
where crossover, mutation, selection of individuals, fitness 
(survival) criteria are applied in addition to the 
developmental (learning) processes of each individual. 

The more new information is made available about 
DNA, gene expression, protein creation, metabolic 
pathways, etc., the more accurate their information models 
will become. They should adapt to the new information in a 
continuous way. The process of biological knowledge 
discoveq is also evolving in terms of data and information 
being created continuously. 

A biological system evolves its structure and 
functionality through both, life-long learning of ' an 
individual, and evolution of populations of many such 
individuals, i.e. an individual is part of a population and is a 
result of evolution of many generations of populations, as 
well as a result of its own developmental, life-long learuing 
process. 

The whole human genome is evolving as a process of 
development and modification over time. Named genes are 
same in millions of individuals but they may be expressed 
differently - in different individuals, and within an 
individual - in difierent cells of their body. The expression 
of these genes is a dynamic process depending not only on 
the types of the genes, but on the interaction of the 
individual with the environment as well (the Nurture versus 
Nature issue). 

Many challenging problem in Bioinformatics need to be 
addressed and new knowledge about them revealed, to 
name only some of them [l-4,9]: 
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- Recognizing patterns from sequences of DNA, e.g. 
promoter recognition; 

-Recognizing patterns in RNA data (e.g. splice junctions 
between introns and exons; micro RNA structures; non- 
coding regions analysis); 

-Profiling gene microarray expression data from RNA in 
different types of tissue (cancer vs normal), different types 
of cells, to identify profiles of diseases; 

-Predicting protein structures; 
-Modeling metabolism in cells; 
-Modeling entire cells; 
-Modeling brain diseases; 
-Creating complex medical decision support systems that 

deal with thousands of variables to obtain the right 
diagnosis and prognosis for a patient. 

Modeling adequately the processes in living organisms is 
crucial for their understanding, for the prognosis of their 
development, for the prognosis of dmg and environmental 
effects [l-41. But the enormous complexity of life needs 
sophisticated methods not only to model the processes, but 
to enable knowledge discovery as well. The paper, fmt  
reviews briefly machine learning and knowledge 
engineering (KE) methods, and then applies them to 
solving some of the above problems. As a new and a 
promising technique, the use of evolving connectionist 
systems for modeling and rule extraction from different 
types of biological data is presented in more details. 

11. THE METHODS OF MACHINE LEARNING (m) AND 
KNOWLEDGE ENGINEERING &E) 

’ The methods of ML and KE include: 
Probabilistic learning methods, e.g. Hidden Markov 

Statistical learning methods, e.g. Support Vector 

Case-based reasoning (e.g. k-NN, transductive 

Decision trees [3,4]; 
Rule-based systems (propositional logic dated back to 
Aristotel) and fuzzy systems (introduced by L.Zadeh) 
[5,6,81 

Models [2]; 

Machines (SVM), Bayesian classifiers [2,3]; 

reasoning) [3]; 

Neural networks (e.g. SOM, MLP, RBF ) [7,8]; 
Evolntiomy computation (GA, ES, EP) [8,9,10]; 
Hybrid systems (e.g. knowledge-based neural 
networks [8,9,10]; neuro-fuzzy systems; neuro-fuzzy- 
genetic systems [SI; evolving connectionist system 

The machine learning approach to Bioinformatics 
involves learning from data [3]. There are many learning 
techniques developed so far as shown in fig.2. 

Artificial neural networks (ANN) (connectionist 
systems) are ML models that mimic vaguely the nervous 
iystem in its main functions of adaptive learning and 
generalization. They are universal computational models 
[7,8,9]. ANN can implement any of the ML techniques 
from fig2 and hence - the variety of the ANN architectum 
[7,8]. Many of these architectures are known as “black 
boxes” as they do not facilitate revealing internal 
relationships between inputs and output variables of the 
problem in an explicit form. 

~91). 

Fig. 1. A classification diagram of machine learning techniques 

But for the process of knowledge discovery, having a 
“black box” learning machine is not sufficient. A learning 
system should also facilitate extracting useful information 
from data for the sake of a better understanding and 
learning of new knowledge. 

The knowledge-based ANN WA“) have been 
developed for this purpose [S,9]. They combine the 
strengths of different AI techniques, e.g. ANN and rule- 
based systems, or fuzzy logic. Rules can he ex -c t ed  from 
the KEA” as illustrated below and also - in fig.2 [S,9]: 

Rule r,: IF XI  is Small (0111) and x2 is Small (DDl )  
THEN Output is Small (CFl), 

Rule r j  IF X I  is Large (Dllj and x2 is Large (DI2j) 
THEN Output is Large (CFjl, 

where: xl  and x2 are input variables, and Output is an 
output variable; Small and Large,are fnzzy values defined 
by their respective fnzzy membership functions [5,6,8] and 
DI and CF are degree of importance (membership) and 
certainty factors respectively. 

Evolving connectionist systems (ECOS) have been 
recently developed to facilitate both adaptive learning in an 
evolving structure and knowledge discovery [9]. ECOS are 
modular connectionist-based systems that evolve their 
structure and functionality in a cootinuous, self-organised, 
on-line, adaptive, interactive way from incoming 
information; they can pmcess both data and knowledge in a 
supervised and/or unsupervised way. Learning is based on 
clustering in the input space and on function estimation for 
this cluster in the output space. Prototype rules can be 
extracted to represent the clusters and the functions 
associated with them. 

Different types of rules are facilitated by different ECOS 
architectures, i.e. Zadeh-Mamdani d e s  [5,6] - in the 
evolving fuzzy neural networks E f u ”  [ll] - see fig.2, or 
Takagi-Sugeno rules - in the dynamic nenro-fuzzy 
inference systems DENFIS [U]. The ECOS grow and 
“shrink” in a continuous way from input data streams. 
Feed-forward and feedback connections are both used in 
the architecture. The ECOS are not limited in number and 
types of inputs, outputs, nodes, connections. All learning 
methods from fig.lare facilitated in different types of 
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ECOS that have been applied to the Bioinformatics 
problems from section I 191. MATLAB codes of EfuNN 
and DENFIS, as well as some other ECOS techniques, are 
available from wwu .kcdri.mnfo/. 

111. THE KNOWLEDGE ENGINEERING APPROACH TO 
BIOINFORMA~CS 

The knowledge engineering approach to Bioinformatics 
includes the following processes: 

Data analysis and feature estraction (using statistical-, 
PCA-. clustering-, SNR-. and other techniques); 
Data modelling for the purpose of classification, 
prediction, optimisation, etc. with the use of 
alternative machine learning methods to chose the 
most suitable for the task; 
Model validation; 
Rule extraction and rule interpretation; 
Data and existing model (e.g. regression) integration; 
Multi-model system development; 
Adaptation on new data and tracing the knowledge 
evolution. 

4 output 

Fig. 2. A simple EFuNN structure of two inputs and one output 

To facilitate the KE approach to data analysis, 
modelling and knowledge discovery, a software 
environment NenCom has been developed and made 
available from \yw~~.IIicn~iicoin.coiii, or from 
~ ~ ~ \ \ ~ , ~ ~ ( i i i , i i i f o ~ .  NeuCom includes about 60 various 
techniques (see a screen snapshot in fig. 3.) that include the 
above discussed methods of ML and E. 

In the following sections problems from Bioinformatics 
are explained and solutions are shown with the use of the 
KE approach and the NeuCom environment in particular. 

IV. A KE APPROACH TO DNA AND RNA SEQUENCE DATA 
ANALYSIS AND PATTERN DISCOVERY 

The KE approach applied to the problem of finding 
informative pattern from complex sequences, such as 
DNA, or RNA, can generate rules that represent significant 
pattern of data. Such patterns can be promoter regions - 

regions in the DNA that bind to enzymes and cause a gene 
sequence to be transcribed into RNA. A promoter defines 
the region where transcription will begin. 

Fig. 3. A snapshot of the NeuCom environment for data analysis, 
madelling and knowledge discovery (from -) 

A KE system can be trained on promoter regions data 
and used to discover a new promoter sequence in either the 
same species or new ones [13]. 

A gene sequence in an RNA consists of two main parts - 
exons (the sections that are translated into proteins) and 
introns (sections that do not translate into proteins). Finding 
the boundaries between the two sections from an RNA 
sequence may help to predict what proteins and how much 
of them will be produced later in the cell. 

In [9] an EfuNN is trained on sequence data that 
represent boundaries between introns and exons and then 
the system was used to not only predict these boundaries 
(junctions) on new data, but to extract d e s  that explain 
where in an RNA such boundaries are likely to occur. Two 
of the extracted rules are shown below: 

Rule]: IF _ _ _ _ _  ~ ______....__....._____ AGGT-AG ___.__._...__- 

__-_-__ ____ THEN[Exon Intron junction] 

Rule& IF .._.______________ T T.CAG .._________________- 

THEN [Intron Exon junction], 

where the dash positions represent unimportant information 
as any of the nucleic bases can appear there, but the 
positions where A,G,C and T bases appear are significant 
for the pattern 191. 

V. A KE APPROACH To GENE EXPRESSION DATA 
ANALYSIS, MODELLIHG AND KNOWLEDCE DISCOVERY 
Contemporary technologies, such as gene microarrays, 

allow for the measurement of the level of expression of up 
to 30,000 genes in RNA sequences that is indicative of how 
much protein will be produced by each of these genes in 
the cell. The goal of the microarmy gene expression data 
analysis is to identify a gene or a group of genes that are 
differently expressed in one state of the cell or a tissue (e.g. 
cancer) versus another state (normal). Generally, it is 
difficult to fmd consistent pattern of gene expression for a 
class of tissues. 

In many research papers the machine learning approach 
was used to obtain a classifier or a predictor model based 
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on gene expression data [14-181. A KE approach to this 
problem was proposed in [9,18]. Microarray data was used 
to evolve an EFuNN with inputs being the expression level 
of a certain number of selected genes (e.g.lOO) 'and the 
outputs being the classes (e.g. cancer and normal). After an 
EFuNN is trained on examples, each taken from a tissue 
sample, rules were extracted from the EFuNN that 
represent disease vs normal tissue profiles (fig.4). 

Fig. 4. Five profiles of five sub-groups of cancer tissue (the last 
colmm) versus normal tissue (the nexl to the left column), each of them 
representing a panem of gene expression (the rest of the columns) (from 
19, 181) 

In this application an ECOS would adapt in time through 
learning from new data. The issue of data and model 
integration is addressed in [I91 where a method for this 
integration is proposed and tested on Lymphoma data [14]. 
An EFuNN prognostic model to predict snrvivaYfata1 
outcome of the disease based on gene expression of 11 
genes was developed based on the available data [14]. The 
model was trained and tested with the leave-one-out 
method on the 58 data samples. 90% prognostic accuracy 
(88% class cured and 92% class fatal) was achieved 
(compared with the 75% accuracy achieved in [14]). In 
additioq rules that represent the gene profile of the survival 
versus the fatal group of patients were extracted; one of 
them is shown below: 

Rule: IF GI is (2: 0.8) and G2 is( 2: 0.8) and 
X3  is ( I :  0.9) and G4 is( I :  0.9) and GS is( 3: 0.9) and G6 
is( I :  0.9) andG8 is( I :  0.9) and G9 is (1: 0.9) and GI0  is 
(3: 0.9)ai1dGll is(1: 0.8) 
THEN Class is Fold, 

where: GI,  ..., G11 are the selected 11 genes; 1, 2 and 3 
denote Small, Medium, and Large expression value 
respectively, and the numbers after these values represent 
the fuzzy membership degrees. 

A specialized gene expression profding software that 
iniplements the KE approach called SIFTWARE, has been 
developed (www.oebhlz.co). 

Fig. 5. A simple gene regulatory network of 5 genes and links between 
them that represent the interadon - either inhibition or excitation to a 
certain degree. 

VI. A KE APPROACH TO GENE REGULATORY NETWORKS 
MODELLING AND DISCOVERY 

In a living cell genes interact in a complex. dynamic way 
and this interaction is crucial for the cell behaviour. This 
interaction can be represented in an approximate way as a 
gene regulatory network (GRN) -as  example shown in fig. 
5. 

GRN models can be derived from time course gene 
expression data of many genes measured over a period of 
time. Some of these genes have similar expressions to each 
other as shown in fig. 6 [9]. 

. .~ Cluster 72- 43 Members 

Y 
- 2 0  3 . B &,* 10 A 1. >e 

Fig. 6. A cluster of gene expression time course data of 72 genes 191 

Genes that share similar functions usually show sinular 
gene expression profiles and cluster together. In a GRN 
clusters can be used and represented by nodes instead of 
genes or proteins. A GRN model can be used to predict the 
expression of genes and proteins in a future time and to 
predict the development of a cell or an organism [9,20-3 I]. 
The process of deriving GRN from data is called reverse 
engineering [20-31]. Many methods of computational 
intelligence and machine learning have been used so far for 
the problem, that include: correlation and regression 
analysis, Boolean netwolks, graph theory, differential 
equations, evolutionary computation, neural networks, ect 

In [31] a KE approach, based on EfuNN and DENFIS, 
was used on a small data set of Leukemia cell line data to 
extract a GRN and to represent it as a set of d e s  
associating the expression of the genes at time t, with the 
level of their expression in the next time moment (1 + dt). 
The rules are of Zadeh-Mamdany form when EFuNN was 
used, e.g.: 

[20-3i]. 

IFgl(t) isHigh (0.87) andg2(t) isLnw (0.9) 
THEVg3 (t+dt) is High (0.6) ondgS(t+dt) is Low. 

or of the Takagi Sugeno form (when DENFIS was used), 
e.g.: 

If gl (0  is ( 0.63 0.70 0.76) and 
g2(t) is ( 0.71 0.77 0.84) and 
g3(t) is ( 0.71 0.77 0.84) and 
g4(t) is( 0.59 0.66 0.72)and 

then g5(1+dt) = 1.84- 1.26gl(f) - 1.22g2(t) 
+ O.S8g3(t) - O.O3g4(1) 

where the gene expression values in the condition part are 
defined as triangular membership functions specified by the 
center, the left and the right arms of the triangles. 
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Extracting rules from a model gives an insight of the 
gene regulatoty processes and helps understand better inter 
relationships. 

mI. A APPROACH TO PROTEIN DATA ANALYSIS AND 
STRUCTLIRE PREDICTION 

Proteins are complex molecular 3D structures and one of 
their important feature, still not well known, is how they 
bind to each other and when - fig.7. A protein is a 
sequences of amino-acids, each of diem defined by a group 
of 3 nucleotides (codons). There are 20 amino acids all 
togetlier denoted by capital letters (A,C-H,I,K-N,P- 
T,V,W,Y). Proteins have complex 3D structures defined as: 
Primay (linear); Secondary (3D; defining functionality); 
Tertiay (energy minimization packs); Quaternary 
(interaction between molecules). Segments from a protein 
can have different shapes: Helix; Sheet; Coil (loop). The 
Protein Data Bank - iwiv.rcsb.or:: contains a large amount 
of information on protein structures. 

Fig. 7. Proteins are complex molecular structures that bind to each 
other 

The primary structure of a protein can be derived from 
the RNA code. The prediction of the secondcay structure 
from the priinaty one has been investigated in many 
publications. In [9] an EfuNN was used not only to evolve 
a protein structure prediction model, but to extract rules 
that are behind these structures. 

WII. INTEGRATING BIOINFORMATICS AND BRAIN STUDY - 
TOWARDS COblFUTArlONAL NEURCGENETIC MODELLING 
GRN are iiiipoltant for the processes in living cells 

including neurons. Some genes and proteins relate directly 
to the activity of the neurons and thus - to the behavior of 
the whole ensemble of neural networks. The integration of 
neural networks and gene networks in computational 
models that are biologically plausible and thus applicable 
to model brain functions and diseases is called 
conipufalioiial neurogenetic modeling [32-341 and 
constitutes a new disciplinc that brings tlie areas of 
molecular biology, brain science, and computer science 
together. 

1x. CONCLUSIONS AND FUTURE DIRECTIONS 
The problems in Bioinfomiatics are too complex to be 

adequately modelled with the use of the current methods of 
ML and KE. New methods are needed in the future for: the 
integlation of biological data - both molecular and clinical; 
for a personalised drug design and personalised medicine; 
for building embedded KE systems and implementing them 
into biological environments; for drug design; for 
computational neurogenetc modelling; and for the solution 
of many other challenging problems in Bioinfonnatics. 
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