
Full citation: Gray, A.R., & MacDonell, S.G. (1999) Membership function extraction from
software development project managers, in Proceedings of the ICONIP'99/ANZIIS'99/
ANNES'99/ACNN'99 International Workshop on Future Directions for Intelligent Systems and
Information Sciences. Dunedin, New Zealand, University of Otago, pp.235-240.

Membership Function Extraction from Software Development
Project Managers

Andrew R. Gray and Stephen G. MacDonell
Department of Information Science

University of Otago, PO Box 56, Dunedin, New Zealand
+64 3 4795282 (ph.) +64 3 4798311 (fax), agray@infoscience.otago.ac.nz

Abstract
Software metrics are measurements of development
processes, products, and resources. Once these
measurements have been specified and collected they
can be used as variables in empirically calibrated
models for a wide range of project management
purposes; including the task of predicting
development effort based on some combination of size,
complexity, and developer experience metrics. One
difficulty encountered when using traditional
algorithmic approaches to estimation has been the
collection of the appropriate metrics required to use
the model in its predictive capacity. Project managers
are generally unable to make precise quantitative
estimates for the independent variables, especially
early in system development when these models are at
their most valuable. The alternative of using
qualitative values for the inputs, as in fuzzy logic, has
been suggested but the stability and consistency of
such labels has yet to be established, as well as
considering the elicitation techniques available for
deriving the membership functions. In this paper we
examine the perceptions of data model size,
functionality size, developer experience, and project
effort in terms of three fuzzy membership functions
from two separate surveys of project managers, each
with a very different approach. The consistency of
results across the two surveys is examined, and some
discussion about the strengths and weaknesses of the
two approaches is provided.

1. INTRODUCTION
Software metrics are measurements that can be made
of the software development process (how the

development is performed), the resultant products
(including code, executables, and documentation), and
resources used in the development process [3]. In
effect the process runs along the project time-line,
taking inputs (resources) such as developers and
transforming them into products (such as code).

The most common use for software metrics is in
the creation and calibration of models for managing
software development, which has become a crucial
task in many organizations as software becomes larger
and more complex. In general terms any measurable
aspect can be regarded as a software metric, although
some are considerably more useful than others. Such
models can have the goals of prediction (how long
will it take to finish the module, how many errors will
there be?), monitoring (is this project progressing at an
acceptable rate?), controlling (how can we best reduce
defects?), or assessing (did the new testing
methodology improve the quality of the software?)
development projects.

One of the most popular uses of such models has
been development effort prediction. The inputs into
models of development effort tend to include some
aspects of system size, system complexity, and
developer experience. There are many other influential
features of projects, but there are limitations brought
about by cost and practical considerations. The output
may be any measure of effort, such as person-days,
and may be made at the system or sub-system level
(perhaps based on individual modules) and could
cover the entire development process or some stage
(such as coding or testing).

Another use for software metrics is in classifying
systems, tools, and developers. For example,
developer remuneration may be based on some scale

of experience. Or different tools may be better suited
for certain types (in terms of size and/or complexity)
of projects. Perceptions of these characteristics may
differ amongst project managers in some systematic
manner with regard to organizational characteristics,
making the creation of standards difficult.

Software metric models have not achieved the
expected levels of performance when predicting
development effort in real-world projects. That is not
to say that software metrics have failed, but rather that
their adoption has been more with larger organizations
with well-defined development methodologies.
Despite the problems of inadequate data collection,
estimating input variables, and data contamination
there is still a need for better project management
techniques. The implications of even slightly better
managed projects can be considerable, both in direct
financial terms and in long-term organizational
strategy.

The particular problem focused on in this paper
concerns measuring system and process characteristics
along with effort using fuzzy membership functions.
Managers and developers can find it difficult, and also
risky from both personal and organizational
viewpoints, to assign what are in effect subjective
numerical values for these measurements.

Attempts have been made to overcome the
difficulties of quantitative metrics by using systems
such as Function Point Analysis where a series of
categories are used with levels of complexity and
adjustment factors for the project [1]. Even here the
number of functions needs to be precisely identified
early in the management process, and they need to be
individually assessed.

In addition, an unsolved problem is how to
calibrate these models for different environments.
Function Point Analysis requires extensive, and
expensive, training and is notoriously subjective in
any case. What the software engineering community
really needs is a more accessible and realistic means
of assessing systems and their development
characteristics. Ideally such a system would allow for
increasing the level of precision in inputs into the
models, as more detailed information becomes
available.

The outputs from such effort models developed
using conventional methods are generally in precise
numerical terms, and these can create an unhealthy
and unrealistic adherence to estimates made early in
the development life-cycle. Here a worthy goal would
be to represent the expected effort in a sufficiently
vague manner early in the development process to
prevent these problems, but with the capability to

refine the estimate progressively as development is
completed and more accurate plans are required.

The idea behind using fuzzy variables in software
metric models is that fuzzy logic allows for qualitative
estimates of inputs and also qualitative outputs for the
effort estimate. These can later be refined using
fuzzy-numbers, and eventually become numerical
values if this is desirable (and possible for that
matter). All of these levels of detail can be obtained
from a single system of membership functions and
rules making the process more consistent and efficient
over the projects’ life cycles. There is no need to have
separate models for each level of precision in inputs
and outputs, which introduces problems in terms of
maintaining the models and in ensuring that the
models behave consistently.

Fuzzy logic however introduces a number of new
problems for the software metrician, including the
question of the stability of managers’ perceptions
across organization types and sizes and the manner of
elicitation for the rules and membership functions.
Here in this paper the focus is on membership
functions, which must be overcome before attention
can be paid to rule elicitation.

2. OBTAINING MEMBERSHIP

FUNCTIONS
One method of eliciting membership functions is that
of polling [4, p. 258]. This involves interviewing a
number of experts and asking them to categorize
values as belonging to two or more labels. The values
of the membership functions at each point are
determined as the proportions of experts who used
those labels to describe the point. This provides a
simple method for deriving membership functions
without demanding high levels of understanding of
fuzzy logic from the project managers in this case. It is
also an effective technique when faced with a large
number of experts where reaching consensus would
prove impractical. This also allows for weighting
expert opinion based on the degree of their expertise.

While fuzzy logic is often argued, sometimes with
considerable fervor, as being distinct from probability,
it can also be argued that proportions are related to
membership degrees. For example, a system that a
typical manager would regard as medium to a degree
of 0.8 and large to a degree of 0.2 may also be
regarded as medium by 80% of all managers and large
by 20% of all managers (with a suitable defined
population of course). Managers from a small
company with a handful of developers could
reasonably be expected to differ from those of a

manager in a large multi-national software
development company, so a ‘base population’ is
necessary for meaningful discussion of the
membership functions.

Other alternatives that involve managers drawing
such membership functions require these managers to
have an understanding of fuzzy logic that defeats, in
our opinion, some of its ease of use as a modeling
technique. Other expert-based methods include
exemplification where memberships are ascribed to
values at a set number of levels of belief [4, p. 257]
and directly as membership functions [2, pp.
282–286]. These will not be considered here. Many
other methods are available in the literature for
deriving the membership function from the numerical
data using statistical and machine-learning techniques
[2, pp. 290–300], but these, in our opinion, again
defeat the purpose of fuzzy logic as an intuitive
method.

3. SURVEYS
The survey results presented here were obtained from
two mail-based surveys of developers in New
Zealand. The initial mailing list, and its additions and
subtractions for the second survey, was constructed
from lists of major New Zealand software developers,
previous surveys, and lists of major New Zealand
companies who could be thought to be likely to carry
out their own software development.

The number of respondents were 38 and 34,
although not all answered all questions. These surveys
are therefore not claimed to be representative of New
Zealand developers, nor is the sample size sufficient
for any concrete conclusions to be drawn for the
population of developers that did respond (even if it
could be defined). However, the following analyses do
provide some suggestive ideas that could be used in
subsequent surveys of a similar nature as well as
illustrating the process of deriving and critiquing
membership functions.

The first survey involved getting 38 project
managers to indicate the range within which three
labels, being small, medium, and large, were most
appropriate for three variables; namely, data model
size (as measured by the number of entities in the
Entity Relationship Diagram), module size (as
measured by the number of distinct modules, defined
as screens, reports, and processing modules), and
developer experience (measured in years).

The second survey involved 34 managers
indicating the most appropriate label from seven
possible labels for pre-specified values of the four
variables. With the greater number of labels, to
produce results comparable to the first study, the
labels were combined into three groups: being very
low and low (combined to produce low), below
average, average, and above average (combined to
produce average), and high and very high (combined
to produce high). The proportion of managers
ascribing a label to a particular value is plotted as the
membership function. This survey used the same three
variables as the first with the addition of development
effort (in person hours). There were 13 levels for
expertise, 14 each for the two size measures, and 17
for the effort measure.

In the graphs below (Figures 1, 2, 3, and 4) the set
of subgraphs for the first survey use equally spaced
intervals, while the second set of subgraphs uses the
predetermined points.

It should also be noted that some very unusual
values were returned in the first survey that may
reflect very unusual development practices or a lack of
understanding as to what constituted an entity in an
ERD or a program module, although these were
explained in the survey. These have not been edited
out since they presumably reflect at least some
uncertainty in the membership functions. The results
presented here are from the entire data set collected
from the survey.

4. RESULTS AND DISCUSSION
The graphs of the raw membership functions,
membership functions smoothed using Bezier curves,
and combined membership functions (to show that the
Bezier curves preserve the apparent meanings in the
functions) are shown in Figures 1, 2, 3, and 4.

Despite the arbitrariness of the reduction in
granularity from the second survey, there is
remarkable good agreement with the experience
functions. This is also the one that was best defined in
the first survey, suggesting that the perception of
developer experience is more consistent amongst
developers. In the second survey the medium and
large membership functions for the size variables has
shifted to the right by about the same amount in each
case, suggesting that the samples could perhaps differ
in terms of organization size despite being from very
similar mailing lists.

Figure 1: Size of data model

Figure 2: Number of modules

Figure 3: Developer experience

Figure 4: Development effort

5. CONCLUSIONS FROM MEMBERSHIP

FUNCTION SURVEYS
Using the ‘classify pre-specified values’ approach seems
to work much better than ‘give a range of values that fits
the label’. Membership functions show more consistent
definition under the first approach, especially for the
middle functions. No difference were observed for
developer experience though, which suggests that this is
a much less variable concept for managers. The two
surveys involved similar (in some cases the same)
project managers so there is some evidence that the
differences are due to the elicitation method rather than
the vagaries of the samples.

Questions that need to be considered include the
possibility that giving values leads to clearer

classification, or it may simply limit choice. A new
survey is being designed to test these two possibilities

It would also appear from the above analysis that the
use of standardized fuzzy logic models for software
metrics is likely to be hampered by the significant
individual variation in perceptions of even three
membership categories for size measures (although the
three functions in the second survey are slightly
artificial since they involved reducing the granularity of
the actual results).

In fact, such standards would appear to be doomed
unless they were restricted to a single organization with
a reasonably homogeneous development process and
managers with comparable perceptions. In many cases
from the first survey the membership functions for the

medium categories are not even strictly convex and
there is considerable evidence of disagreement in terms
of size perceptions when expressed as ranges of values.

The most agreed upon measure was obviously that
of developer experience. The membership functions
derived here have a nice textbook look about them and
would be easy to implement in a fuzzy logic system and
subsequently use for inference.

While it is disappointing that the size based
measures were so inconsistently viewed by the
managers, this does not invalidate any of the managers
using such membership functions themselves. Merely, it
would appear unwise for them to share such functions
or use labels for communication without ensuring that
they shared common perceptions. Presumably each
manager has a well-defined set of membership functions
that could be used if they were able to understand the
fundamentals of fuzzy logic well enough to draw these.

The next stage of this research project will be to
examine the stability and consistency of rule extraction
methods from project managers, given their particular
set of membership functions and given predetermined
membership functions. In order to extract such rules a
variety of elicitation techniques will be examined in
terms of their efficacy.

REFERENCES
[1] A. J. Albrecht and J. Gaffney. Software function,

source lines of code and development effort
prediction. IEEE Transactions on Software
Engineering, 9(6):639–648, 1983.

[2] D. Dubois and H. Prade. Fuzzy Sets and Systems:
Theory and Applications. Academic Press, London,
1980.

[3] N. E. Fenton and S. L. Pfleeger. Software Metrics: A
Rigorous & Practical Approach. PWS, Cambridge,
1996.

[4] R. R. Yager and D. P. Filev. Essentials of Fuzzy
Modeling and Control. Wiley, New York, NY,
1994.

