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PREAMBLE

“Choosing a PhD topic is quite uncertain task...”.

“I agree, but it can be as the same as if you fall in love. Nobody has to tell you anything. You
just know it, when it happens.” were the words of encouragement, in dear memory to, from
my former head of department Prof. John Hughes.

Since my eatly days, I have enjoyed competing in many sports (swimming, karate, skiing,
tennis, etc.) and later in coaching tennis. Later after graduating (University of Maribor),
besides working professionally as a software developer, I was competing again and coaching
tennis. I have also completed two additional career alternative programmes (University of
Ljubljana): one was for coaching tennis and another one was a post-graduate educational
curriculum; which have both helped me to teach and appreciate diversity in education from
secondary schools in Slovenia (Maritime, Grammar and Italian Grammar) to present teaching
days at AUT University in New Zealand.

Experiencing tennis related injury, not being able to play tennis for a long time and going
through ‘pain barriers’ while returning to tennis made me reflect on my game in a way I could
not have anticipated while playing at my best. Another motivation to reflect and ‘see’ the
game and surrounding aspects of tennis through different eyes was as a parent-coach. This
led me to question: can coaching be supported and advanced via emerging computational
methods? and, can implicit coaching knowledge be modelled in a machine?

After implementing successfully my first hypothesis by using a neural network to allow a
machine to classify between previously unseen good and poor tennis swings, I have added an
additional capability, using evolving computation to facilitate adaptive diagnostic capability.
Following the first few prototypes using collected three-dimensional tennis motion data, I
discovered the book “Qualitative Analysis of Human Movement” (Knudson & Morrison,
2002) that provided encouragement as Prof. Hughes had introduced metaphorically. As a
result, this thesis is a confluence of my coaching, educational, and other professional
experience with the Knudson and Morrison’s book and emerging technologies aimed to

bridge computational intelligence subdisciplines with kinesiology and related subdisciplines.
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ABSTRACT

This research concerns automation of qualitative analysis of human motion in sports, using a
novel approach related to assessment and diagnostics, which is required to provide a general
user with coaching experience in next generations of motion capture video games or sport
coaching software. The research comprises a framework hereinafter referred to as augmented
coaching systems (ACS) and its critical components.

In contrast to formative assessing of knowledge of results, which is based on predefined
objective criteria, a qualitative approach to assessing &nowledge of performance is linked to the
questions: (1) Can qualitative assessment be automated?; (2) If so, how can such assessment
be communicated from a machine to a human?; and (3) Can qualitative assessment
automation be similar to human implicit, multifaceted, empirical, evolving and subjective
criteria?

An investigative development approach was used for automating human motion assessment.
The assessment of qualitative nature incorporated a mix of objectives — such as subjective,
objective, and flexible pre-defined criteria similar to a domain expert or coach. The methods
of analysis and machine learning techniques included: learning-by-example from expert’s data;
integrative visualisation/replay functionality for qualitative analysis and machine learning
modelling; modelling and analysis utilising relatively small and larger unbalanced motion data
sets; modular implementation of common-sense descriptive rules mapped to diagnostic
outputs; and sub-space modelling and temporal and spatial feature extraction techniques. The
introduced ACS framework is generic and it includes a critical analysis applicable to more
than one sport discipline. The ACS architecture is modular, extendible and its wachine learning
system supports global, coaching scenario specific, personalised, evolving, and life-long
learning.

Using captured motion data sets representing novices towards advanced skill levels in two
case studies (golf and tennis), a series of experimental modelling systems integral to ACS
were developed for testing and validation using empirical, subjective, and flexible criteria. The
results achieved on small and on relatively large unbalanced data sets produced human-
intelligible diagnostic outputs in a qualitative fashion. The machine learning diagnostic outputs
were similar to those produced by visual assessment of a tennis coach (81% ... 99.9%) and to
those produced by objective measures from an embedded motion capture system in a golf
club, resulting in 89.5 £2.6%. Flexible assessment criteria were demonstrated by comparing
the two different assessments for tennis swing stances that were based on different subjective
criteria operating on the same motion data set using the same assessment system. The ACS
framework, and developed software components for the next generation of intelligent ACS
using subjective and flexible criteria, is novel in the field.

This thesis has demonstrated that qualitative assessment can be automated, that assessment
diagnostics can be communicated from a machine to human and that coaching insights as
implicit knowledge can be modelled using connectionist and evolving connectionist
approaches.




GLOSSARY AND ABBREVIATIONS

2D data: A data set representing two-dimensional spatial information; e.g. 2D video motion data or
image sequence.

3D data: A data set representing three-dimensional spatial information; e.g. 3D motion data.

Add-ons, plug-ins: ‘Building block’ modules, software components or extensions associated with a
software design approach to support/enable integration of replaceable and future-available extensions;
e.g. a web browser or media player utilising a media codec developed by a third-party.

Assessment: A systematic, formative approach to evaluation of learning that includes collecting
information to measure the improvement in learning or to identify areas for improvement against
specified criteria in a controlled context or environment. An assessment may be subject to diverse
criteria, but may or may not be relevant to the evaluation objective. See also: Coaching Scenario (CS);
Diagnostic elements, diagnostic outputs; Evaluation.

Augmented Coaching System (ACS): A technology-aided coaching environment to support, for example,
a learner’s motion assessment and feedback.

Augmented Reality (AR): A technology that enables projection of electronic images over the view of real
world objects. “The blend between virtuality and reality” (Dix, Finlay, Abowd, & Beale, 2004, p. 736); e.g.
head-up display in aircrafts and modern cars. See also: Virtual reality; Immersive reality.

Catastrophic forgetting: A phenomenon in which a connectionist system ‘forgets’ what it had learned
previously after new examples are presented to it.

Chain of errors: A collection of learner-errors and their dynamic relationship. This is typically addressed
by coaching cycles and different coaching scenarios. See also: Coaching Scenario (CS).

Classification: The result of a connectionist system operation which groups multi-dimensional data
patterns into a finite number of categories.

CLI input parameters: A list of one or more values specifying program run-time options, which would
change the default command behaviour. See also: Command Line Interface (CLI).

Coaching Rules (CR), heuristics: A common-sense description linked to (motor) learning and skill
acquisition.

Coaching Rule Evaluation Module (CREM): An automated machine alternative to diagnostic/atomic
element of qualitative analysis. See also: Diagnostic elements, diagnostic outputs; Motion Heuristic
Evaluation Module (MoHEM).

Coaching Scenario (CS): A teaching and learning scenario as a sequence of educational activities within a
certain context or environment. For example, drill-based training in a controlled environment.

Command Line Interface (CLI): A text or command-based computer interaction paradigm. A program is

typically invoked by typing its file name, often followed by a list of ‘parameters’, followed by the <Enter>
or <new line> key. See also: CLI input parameters.
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Common error (in biomechanics): "Errors that are typically observed in people learning motor skill"
(Knudson & Morrison, 2002, p. 219).

Computational Intelligence (Cl): A sub-discipline of artificial intelligence (Al). Cl is concerned with
problem areas to which there are no effective solutions using traditional algorithmic approaches (Duch,
2007; Duch & Mandziuk, 2007).

Connectionist methods: Modelling and data analysis approaches to support knowledge engineering (KE).
These are often associated with early nature-inspired artificial neural networks (ANN) and newer
connectionist models developed to simulate cognitive brain functions; e.g. neuro-fuzzy clustering.
Connectionist models in general can generalise or operate (on tasks such as pattern recognition,
classification and prediction) using noisy, high-dimensional, missing or imprecise data. See also:
Generalisation; Machine Learning (ML).

Critical features, static and dynamic features (in biomechanics): A critical feature is a measured state or
transition relevant to, for example, a human activity being analysed; Static and dynamic features relate
to the observational focus on anatomical or motor sequence. A set of critical features represents
measured activity. For example, the maximum knee angle before a vertical jump represents a static
observation focus while hip and shoulder turn velocities over time require a dynamic observation focus.
See also: Features (in machine learning).

Cue: A short instruction to a performer which prompts a more complex/previously-introduced action
related to a coaching rule or heuristic. Cue words and cue phrases can be personalised between a learner
and a coach.

Data universe: The set of all possible data. Given the evolving nature of many sport disciplines, the
available data set is limited to a particular context and therefore is a subset of the data universe.

Diagnosis: The identification of human motion errors. The result of judgment based on subjective or
objective criteria. Observing and differentiating symptoms as adherence to heuristics or coaching rules.
Distinctive characterisation of observed motion to establish optimal feedback and intervention.

Diagnostic elements, diagnostic outputs: Modular diagnostic assessment mapped to a set of heuristics
and coaching rules. Automated machine alternative to both assessment and diagnostic evaluation —
representing ‘atomic’ assessment elements of qualitative analysis as diagnostic outputs. See also:
Coaching Rule Evaluation Module (CREM); Motion Heuristic Evaluation Module (MoHEM).

Dynamics: Temporal changes within a given context. The context may contain stylistic execution or other
temporal pattern dynamics; e.g. ‘high-level’ strategic game patterns or game intensity changes in time.

Effectiveness of motion sequence: How well a motion technique/pattern, matches the desired goal(s).
Typically, the motion sequence is optimised for achieving a prioritised set of goals. For example, in a
tennis first-serve return, the effectiveness depends more on timing and safety than the impact speed.
See also: Efficiency of motion sequence.

Efficiency of motion sequence: "economical use of energy in achieving the goal” (Knudson & Morrison,
2002, p. 83). In biomechanics it is difficult to evaluate and establish how to report the mechanical energy
in observed motion. The assessment criteria for a motion technique/pattern may optimised for both
effectiveness and efficiency. See also: Effectiveness of motion sequence.

Embedded system: Computerised electronics or a device typically designed for a specific purpose e.g. for
motion capture, the embedded system would: be lightweight and small in size, have low-energy
consumption, be robust to environment changes, have high processing speed, and suited for both on-line
and off-line data communication.



Error component: See: Validation error component.

Evaluation: A component of qualitative analysis where an overall judgment, rating, or opinion is formed.
For example, judging a learner’s skill and technique for a given context. The notion of quantifying or
categorising; for example, how observed motion activity was performed for given purpose. Evaluation
can provide a summative estimation to guide further learning. Evaluation outcomes may be based on
objective, subjective, or common-sense rules. See also: Assessment; Diagnostic elements, diagnostic
outputs; Coaching Rule Evaluation Module (CREM); Motion Heuristic Evaluation Module (MoHEM).

Expert system: A knowledge-based system that can provide similar-to-expert decisions. Expert systems
contain captured expert knowledge related to specific tasks or domains.

External synchronisation for visualisation and replay: An interactive functional activation and
communication protocol between software components for visualisation and replay; Functionality that
enables interoperability with software for modelling and data analysis of human motion. For example, it
can be used for coaching, qualitative analysis, and integrated in modelling and data analysis tools.

Feature Extraction Technique (FET): Transformation of raw motion data into a machine learning feature
(or variable) set for the purposes of classification or prediction by a connectionist system. Transformed
features data may be also referred to as a ‘feature space’.

Feature Selection (FS): A selection process aimed to identify a subset of features (or variables) with the
most discriminative properties for a classification or prediction model.

Feature space: See: Feature Extraction Technique (FET); Feature Selection (FS).

Features (in machine learning): A set of critical features representing measured activity, transformed
into numeric values for the purposes of classification or prediction by a connectionist system. See also:
Critical features (in biomechanics), static and dynamic features (in biomechanics); Feature Extraction
Technique (FET).

Feedback: Communicating information to a learner relating to previous performance. Feedback is
commonly intended to guide, improve aspects of human motion related to achieve goal(s), or correct
observed motion. Feedback may include intervention.

Generalisation: A desired property of a connectionist system operation (or a machine learning algorithm)
enabling autonomous operation; e.g. learning from a finite data set resulting in autonomous pattern
recognition of a new (previously unknown, unseen) input data. See also: Connectionist Methods;
Machine Learning (ML); Validation (in Cl).

Heuristics: See: Coaching Rules (CR); Heuristics.

High-level transferable property: High-level transferable property of a system or mental model. The
insight or concept that can be captured and transferred between disciplines or transferred into a
computing model. For example, layers in a system architecture or computational model; region of
impact.

Horizontal market segment technology: Technology applicable to a range of diverse sports or scientific
domains. See also: Vertical market segment technology.

Immersive Virtual Reality (IVR): A virtual environment where a user is immersed in the environment
while interacting. IVR is distinguished from VR in that a participant is ‘inside’ the environment being
simulated. For example indoor golf simulator as opposed to a computer golf game. See also: Virtual
Reality (VR).
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Inference process, machine inference: A mapping of input to output space through operation of a
machine learning system.

Intelligent Tutoring System (ITS): An automated system designed to augment the educational/teaching
process of an expert in a specific area of expertise. From a learner’s perspective, a part of ITS interactions
and communications should be experienced in a personalised fashion to augment the learning process.
In general, the term Intelligent Coaching System (ICS) may also be found in the context of ITS.

Inter-rater reliability: The consistency or the agreement of qualitative analysis by a group of people
assessing the same subject.

Intra-rater reliability: The consistency of qualitative analysis by the same person e.g. one person
producing the same outcome over multiple measurements on the same data. See also: Reliability;
Labelling; Expert data labelling.

Kinesiology: An integrative, multi-discipline area considering qualitative analysis, biomechanics,
coaching, and various other sub-disciplines.

Kinesthetic proprioception: Human-internalised sensing information; Internal vision, ‘feel’, self-
awareness. For example, internalised processing of body parts movement and intuitive interaction with
the environment.

Knowledge discovery: Methods of Cl and KE may lead to knowledge discovery extracted, for example,
machine inference or problem space analysis. See also: Computational Intelligence (Cl); Knowledge
Engineering (KE); Problem space.

Knowledge Engineering (KE): A sub-discipline of artificial intelligence (Al). KE is concerned with the
solutions (models, methods, and technologies) to a problem area of an expert’s knowledge acquisition;
Representing and processing of approximate reasoning, implemented in a machine (or knowledge-based
system).

Knowledge of Performance (KP): Subjective knowledge of an activity, for example, of a motion
sequence.

Knowledge of performers: Factors that are important for personalisation modelling and internal
differentiation associated with qualitative analysis. Personalisation may be linked to skill-level, flexible
and subjective assessment, or other forms of similarity grouping.

Knowledge of Results (KR): An objective measure of activity outcomes.

Labelling, expert data labelling: Capturing an expert’s decisions by assigning an output category to each
data sample. See also: Intra-rater reliability; Reliability; Supervised learning.

Learning: A knowledge acquisition or information restructuring process; e.g. ‘learning-by-doing’ or
learning via replay or feedback; Methods associated with machine learning (ML) knowledge acquisition
and consolidation of internalised representation of machine knowledge.

Learning rate: The relationship between increasing the training data set and the resulting classification
accuracy of a system. Can be conceptualised as ‘speed of learning’.

Machine Learning (ML): A sub-discipline of Cl or Al. Methods in ML are associated with creating,
updating, and recording solutions to common-sense problem areas, or problems difficult to implement in
traditional algorithms. Unlike traditional algorithmic solutions, ML involves learning from data. See also:
Knowledge Engineering (KE).
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Mental model: Individualised perception of how to achieve a goal, often influenced by skill-level. This is
generally applicable to movement activity towards achieving a goal or developing a human ability for
utilising tools/equipment or to perform abstract tasks. e.g. a tennis swing; basketball hoop shooting. See
also: Coaching Rules (CR); Heuristics; Knowledge of Performance (KP).

Metaphor: Explaining the ‘unknown’ concept/device/entity using terms that are ‘known’ to a learner or
(broader) target audience; e.g. Interface metaphor for a computer ‘desktop’ where a user may arrange
recent or frequently accessed files by analogy to a physical desk.

Motion Heuristic Evaluation Module (MoHEM): An automated machine alternative to diagnostic/atomic
element of qualitative analysis. See also: Diagnostic elements, diagnostic outputs; Coaching Rule
Evaluation Module (CREM).

Motion sequence: A sequence — for example, of body movements — representing a characteristic pattern
or information that can be transformed to a machine learning feature or sample.

Motion sequence design pattern: A solution for static and dynamic machine learning feature extraction
techniques. A design pattern that includes motion sequence detection and its separation into functional
composition of temporal and spatial processing tasks. An integral component of CREM/MoHEM design.
See also: Software design patterns, design patterns, motion sequence design pattern; Singleton.

OODA, OODA loop: Cognitive processing stages/phases: Observation, Orientation, Decision, and Action.
Applicable to, for example, military training, fire-fighter training, or sporting disciplines.

Orchestration: Adjusting the weights of MoHEM/CREM modules and/or reorganising their collective
motion assessment; Evaluation or modelling of a feature space sub-set. See also: Subspace modelling.

Output class: A finite set of system output values. See also: Output labels.

Output labels: A descriptive list representing output values of a system or output classes, suitable to
represent descriptive categories in qualitative assessment of human motion.

Overfitting: An undesired phenomenon in which a machine learning system has learned too closely from
training data, which may contain noise and, therefore, cannot generalise well on new data.

Performance: A property of exhibited motion that is optimised to achieve a set of goals. For example,
performance may be impeded by conflicting goals and be difficult to assess or quantify. See also:
Effectiveness of motion sequence; Efficiency of motion sequence.

Plug-in: See: Add-ons.

Problem space: A problem space is associated with the notion of data and inherent knowledge via the
mapping of the input domain space into the output solution space. The problem space mapping can be a
simple formula, a complex relation, or a common-sense descriptive set of rules. Knowledge contained in
a problem space may be incomplete or inconsistent. See: Feature Extraction Technique (FET); Feature
Selection (FS); Feature space.

Qualitative analysis: “The systematic observation and introspective judgment of the quality of human
movement for the purpose of providing the most appropriate intervention to improve performance”
(Knudson & Morrison, 2002, p. 220). Also: Systematic analysis and judgment of human motion for the
purpose of providing appropriate feedback.

Range of correctness for critical features (in biomechanics): A set of effective movement solutions to
achieve a particular goal. In biomechanics the critical features are expressed as a human-intelligible
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measure. The range of correctness as value intervals need to accommodate individual diversities and
goal of the movement.

Region of Interest (ROI): A computational phase or method equivalent to cognitive focus of interest; e.g.
a ball throw as a characteristic motion event/pattern. Cognitive focus of interest can be either dynamic
or static, which relate to temporal and spatial ROl in FET. In machine learning some algorithms also use a
term ‘Region of Scan’ (e.g. voice activation detection) to identify possible presence of ROI. See also:
Feature Extraction Technique (FET).

Reliability: Consistency of an expert’s subjective classification. See also: Intra-rater reliability; Labelling;
Expert data labelling; Supervised learning.

Semi-supervised learning: A machine learning technique utilising both expert-labelled and unlabeled
data for training.

Singleton: A program invocation mechanism allowing only one (single) instance to be loaded in memory
at any one time. A software design pattern allowing invocation of a single (or max. number of)
instance(s) of a process or an application.

Software design patterns, design patterns, motion sequence design pattern: A reusable solution to a
common software design problem. Taxonomy of common software design problems and matching
solutions. See also: Motion sequence design pattern; Singleton.

Subspace modelling: The development and training of individual MoHEM/CREM before orchestration. It
includes problem space partitioning into elements in order to reduce problem space and its
dimensionality; Modelling of diagnostic elements that may be mapped to coaching rules or heuristics to
provide intelligible feedback.

Supervised learning: Training of a system with both input and output data; e.g. input feature set with
representative output labels. Output data may be obtained as an objective measure, or captured as
subjective empirical data. See also: Labelling; Expert data labelling.

SWOT, SWOT analysis: Strengths, Weaknesses Opportunities and Threats. A common strategy used in
coaching, talent scouting, team selection, and competitive contexts.

Systematic Observation Strategy (SOS): “A plan to gather all relevant information about a human
movement within qualitative analysis.” (Knudson & Morrison, 2002, p. 220). SOS is linked to critical
analysis and framework for modelling, motion data analysis, and ACS design. See also: Augmented
Coaching System (ACS).

Taxonomies of critical features: Descriptive lists containing global aspects of analysis of human motion.
This assists in a transfer of studies from kinesiology to Cl. For example, it may include critical features for
skills, fundamental movement patterns (sport/context related), common errors, and common cue lists.

Theory for design and action in information systems (IS): Theory for design and action relates to “how
to do something” for development of IS (Gregor, 2006). The associated criteria include utility to a
community of users, the novelty of the artefact, and the persuasiveness/validation of claims that it is
effective.

Validation (in Cl): A testing process to determine how well the system can generalise a solution to
previously unseen data. The results are typically compared with the expert (as captured judgments based
on subjective measure) or objective measure (e.g. measured data). For example, validation to indicate
system operation on transformed selected feature sets. See also: Validation error component; Validity.



Validation error component: An error component with cumulative negative effect to validation results of
a machine learning system on a particular data set. Some examples are: data set size, distribution and
coverage; FET, FS and classifier properties; intra-rater’s reliability/consistency;
observation/visualisation/replay impairments; random sample selection due to validation process.

Validity: The ability of a coach to correctly identify errors, strengths, weaknesses, critical features, and to
conduct specific criterion-referenced observation and analysis. The ability of MoHEM/CREM for specific
criterion-based assessment/analysis.

Vertical market segment technology: Technology applicable to a specific sport or user profile. See also:
Horizontal market segment technology.

Virtual Reality (VR): A state of art multimedia system designed to provide user experience of a synthetic
world. A user interacts with a VR system utilising specialised input/output device; e.g. a flight-simulator
video games. See also: Immersive virtual reality; Augmented Reality (AR).

Note:
Unless quoted and referenced, the glossary terms and abbreviations are applicable to the
context of this thesis rather than representing general meaning.

Supplementary CD and reader’s note:

The supplementary CD accompanying this thesis includes videos explaining how to use the
software with commentary on interdisciplinary concepts and operation evidence.

To improve the reading and the understanding of the thesis, it is suggested you view the video
“Personal Tennis Coach” (User Interface Augmented Coaching.mov) that covers the practical
application and the thesis terminology, before reading Chapters 2-8.

Appendix E includes the summary of expert tennis coaches’ comments after viewing the video,
software and tennis data. The supplementary CD provides coaches’ permissions to include
their names and a summary of their discussion points on the practical use of the software in
the thesis.

Golf video (02_Extract_Golf_Features_from_PDF_Scr_capture.m4v) shows the critical evidence
of exporting automation of the swing data.
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Chapter 1

I. INTRODUCTION

(A snippet of: Raffaello Sanzio. “School of Athens”. Retrieved 14-Dec-11, from
http://upload.wikimedia.org/wikipedia/commons/9/98/Sanzio 01 Plato Aristotle.jpg. Reproduced
under copyright permissions for educational purposes, www.wikimedia.org).

HEURISTICS ...

Two Greek philosophers discussing the rules that govern
someone’s skills and expertise; a possibility that an expert might
have forgotten some of the rules but can apply and break them

when needed; and the role of an educator...

This thesis represents the culmination of a programme of research that set out to understand,
model and automate aspects of augmented coaching. Inherent to coaching is the qualitative
assessment of human motion, which requires consideration of a set of challenging, largely

subjective ‘hard-to-quantify’ heuristic elements. As such, these heuristics are considered as
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difficult to implement using traditional programming approaches, particularly given the need
to be personalised in use and applicable to future, previously unseen motion data.

The demonstrated application of connectionist and evolving methods for the purpose of
achieving automated motion assessment equivalent to that performed by a coach provides
evidence that human motion can indeed be assessed by a machine. As shown in this thesis
through a series of development-experiment cycles, novel outcomes were achieved by
applying candidate connectionist approaches via newly constructed software. Novel
outcomes started with the demonstration of automated assessments of previously unseen
tennis swings (Bacic, 2003a) and concluded with a case study of golf addressing swing

accuracy.

1. Background

Compared to widely researched areas of disciplinary convergence such as between
computational intelligence (CI) and medicine (e.g. bioinformatics), there is minimal evidence
of the application of any of the artificial intelligence (AI) sub-disciplines in coaching or in the
general sport kinesiology domain, comprising sport performance, ergonomics, injury
prevention and recovery. In kinesiology, the coaching and learning process may be focused
on optimising movement for various objectives such as performance, energy efficiency, or
safety. As a teaching and learning activity, coaching incorporates aspects of pedagogy and the
broader field of education. This thesis is positioned at the confluence of all of these
disciplines, first developing then applying advanced computational intelligence (CI) methods to
the modelling, analysis and diagnosis of human motion in sporting activities.

In the field of education, many advances in teaching and learning automation have been
developed over the past two decades'. Examples range from automated grading, plagiarism
detection and intelligent tutoring systems (I'TS) through to the development of advanced

content management and information retrieval systems (e.g. www.blackboard.com,

http://moodle.org and http://turnitin.com, accessed 31 Mar. 2012). The composite elements

of ITS — multidisciplinary design, the underlying information and communication technology

(ICT) infrastructure and the application of Al sub-discipline models (Webb, Pazzani, &

1 Intelligent tutoring systems: applications of Al to education. (2011, 30 Oct.). Retrieved 9 May 2012, from
http://aaai.org/ AlTopics /IntelligentTutoringSystems.
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Billsus, 2001; Bacic, 2002, 2003b) — have reached a level of maturity sufficient to inspire
investigation of these elements in their application to sport. In sport, one might expect to
tind comparable Intelligent Coaching Systems (1CS) designed to support the personalised learning
of a sporting activity; however, there is minimal evidence in the literature of such systems.

In acknowledging the key role of the coach even in a context of automation, rather than ICS
the preferred term used in this thesis is Awugmented Coaching Systems (ACS). Fundamental to
ACS and central to this thesis is a requirement for automated qualitative assessment and
diagnosis of human motion, linked to the provision of feedback in a similar way to that

provided by a human coach.

1.1  Methodology Inspiration: Coaching as an Education Process

The teaching and learning of motor skills so that they can be applied to the performance of a
particular sporting task can be viewed as a process of education. In investigating the
development of intelligent tutoring systems (Bacic, 2003b) there was evidence of growing use
of Al methodologies. This included the application of connectionist methods based on
potentially complex patterns, over traditional and rather one-dimensional answer-matching
algorithms. In particular, connectionist approaches may be more applicable to the assessment
of ‘open-nature’ learning activities, and so might be used to provide automated support to
essay-type marking. In general, the qualitative assessment undertaken in essay-type marking is
based on a combination of a ‘holistic impression” and qualitative and quantitative adherence
to rules or similarity-based criteria or rationale.

An additional perceived benefit of the traditional algorithmic assessment techniques (e.g.
mark calculation by comparing multi-choice or numeric results with a model answer) is the
simplicity of the reporting of results, as learners are less likely to raise questions, make
requests for clarification or challenge the results given that marking is perceived as objective
and therefore likely to be fair and accurate. In contrast to this Anowledge of results mark
allocation, qualitative essay assessment is most likely to be subjected to multiple criteria
assessed individually and weighted against holistic expectations e.g. novelty, originality. When
reporting feedback, it is possible to combine reporting the quantities (i.e. numbers) with a
degree of qualitative ‘fit’ to descriptive categories, indicating possible strengths and

weaknesses described in the marking criteria.
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This thesis is focused on human motion assessment and so draws on the above concepts and
solutions in the context of augmented coaching. The work develops then applies
computational methods that can be used for the purpose of qualitative movement
assessment. This brings several challenges, including: (1) Providing data for modelling and
theory development; (2) Capturing coaching insights, implicit reasoning and empirical
knowledge; and (3) Supporting the use of flexible and subjective assessment criteria (e.g.
including skill level, coaching goals and possibly experts’ disagreement).

Note that it is assumed for the purpose of this thesis that a coach is indeed an expert; while
intra-rater reliability is expected (i.e. that a coach will be consistent in their assessment) the
intent is not to question the sources of a coach’s knowledge or generally accepted empirical

knowledge.

1.2 Limitations of Existing Sport Petformance Technology

In developing and applying elements of an ACS this thesis addresses in part the limitations of
existing sport performance technology. In brief (but covered in more detail in Chapter 2) the
key constraining issues and limitations of current sport coaching technology (Baci¢, 20006a;
Bacic, Kasabov, MacDonell, & Pang, 2007) have been:

e No automated qualitative assessment of human motion. Automation of the
quantitative assessment of human motion has been achieved to a degree by the
processing of biomechanics values computed from motion data;

e No human-like, heuristics-driven assessment inference that can support automated
descriptive categorisation of a muotion sequence, on the basis of the qualitative
assessment of motion data;

e Tack of adaptability, that is, no adaptive, evolving or incremental learning;

e Limited degree of automation for motion event indexing and cataloguing;

e Tack of automated reasoning and explanation that would support the understanding
of coaching heuristics as cause and consequence;

e Limited general availability. The technology that requires time to learn to enable
sports professionals to further refine their skills is typically operated exclusively by
sports professionals or experts with specialised scientific backgrounds (e.g.

www.vicon.com and www.bts.com, accessed 7. Jan. 2012.). Such technologies are
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utilised by horizontal market segments, present in various biomechanics laboratories
or similar institutions. Technologies emerging in the general consumer market are
designed predominantly for vertical segments or for specific sport disciplines (e.g.
Golf ("SmartSwing," 2005; Leadbetter interactive,” 2005); and more recent
technologically advanced systems such as www.trackman.dk, www.flightscope.com,

accessed 7 Jan. 2012 and www.swingprofile.com, accessed 12 Apr. 2012); and

Limited functionality, performance and availability of independent media viewers to
support visualisation and replay for qualitative video analysis and video presentation

in coaching.

Each of the limitations just listed represents an opportunity for research and development.

This thesis addresses these opportunities.

2.

Motivation and Objectives

No great discovery was ever made without a bold guess

Sir Isaac Newton

Before selecting a candidate computational approach, from the theoretical perspective, the

following observations of coaching and sporting activity were made:

Coaches may disagree in their opinions and feedback;
Assessment of a playet’s performance may be personalised;
A successful competitor may not necessarily be a good coach;

A movement pattern may have one or many goals. Such goals may be conflicting and
subject to different priorities, depending on the circumstances;

Coaching and sporting activities are evolving and an ongoing process. Emphasis may
be placed on: game dynamics; individual player progressive achievements; recovery
progress; diversity of coaching scenarios; and feedback associated with observed
similar motion patterns. Flexible and subjective assessment may depend on a coach’s

familiarity with the learner, recovery program and other circumstances;
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e Related to demographics there: (1) Are many players from novices to intermediate
who could benefit from accelerated sport skill acquisition; (2) Are coaches who
would prefer to coach at particular levels; and (3) Is an increasingly aging population
that could benefit from monitoring and maintaining motor coordination.

e It is difficult to capture a coach’s non-deterministic and implicit reasoning,

knowledge, heuristics or coaching rules in a computer model.

The motivation for this thesis work came from a variety of sources and multidisciplinary

foundations:
e An opportunity to extend the principles of intelligent tutoring to sport coaching;
e A desire to address the limited capabilities of existing sport technology; and

e Recognition of the potential of CI methods and candidate connectionist approaches

for motion pattern recognition and adaptive learning from data.

Applying CI to motion data within a learning infrastructure should promote the end-user
experiences of motor skill learning and the enhancement of movement technique ideally
through an experience that is entertaining and fun. As such, these learning environments — or
ACS — are intended to advance coaching, enhance the sporting experience and quality of life.
The intended theoretical contribution is aimed at: (1) Capturing a coach’s insights and
implicit knowledge into a computer model; and (2) Designing the critical elements for the
next generation of intelligent ACS.

As is common in computer science research and in zheory for design and action in information
systems (Nunamaker, Chen, & Purding, 1990-91; Gregor, 2006), the thesis objectives (below)
include developing the ‘building blocks” of an ACS to form a systematic framework enabling
data analysis, modelling, and &nowledge discovery (KD) regarding sports and related activities.
Successtul development of these technical elements relies on extensive prior domain analysis

— understanding human motion, sport performance, and coaching and learning.

2.1  Primary Objective

The primary objective of this thesis was to develop and evaluate the application of candidate
connectionist methods within a systematic framework supporting the analysis and modelling
of data drawn from human sporting activities. Unlike traditional computational approaches,

candidate connectionist machine learning (ML) methods support a problem-solving paradigm
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based on common-sense rules (heuristics); they can generalise and provide output on low-
and high-dimensional data in the presence of noise; and capturing experts’
internalised/implicit knowledge e.g. by learning-by-example (supervised learning). Common
drawbacks to traditional artificial neural networks are: internalised ‘black box’ operation
where machine knowledge is ‘encapsulated’ inside the model; and lack of general usability to
new domains. With the development of neuro-fuzzy and evolving connectionist models that
suppott life-long incremental and adaptive learning as well as rule extraction/insertion, their
properties may lead to knowledge discovery from (evolved) machine inference or to
capturing machine knowledge as a snapshot in time.

Such an approach is eminently suitable for augmenting the coaching process. Central to this
thesis (as depicted in Figure I-1) is the exploration of: (1) What assessment automation tasks
can be performed using motion data; and (2) How can motion data be processed to give valid
human-like expert feedback in a near real-time scenatio (although the latter is outside of the
scope of this thesis). The surrounding, wider objectives of the work within which this specific
development is situated are: (1) To bridge the interdisciplinary gap between kinesiology and
CL (2) To contribute to the broader application of the sub-fields of CI; and (3) To advance
ICT and sport technology in particular. The objectives intentionally include novel synthesis

as cross-disciplinary contributions.

_—— T
~__
///WlDER OBJECTIVES
/ e — A

_— T~ \
/"~ PRIMARY OBJECTIVE .\

[ Modelling and I
|\ assessing human motion ]
\ \\ sporting activity through /
\ ML techniques /

\_ Bridging disciplines, qualitative
G nature of human
"~ reasoning,...

Figure I-1. Depth and breadth of topics in relation to the scope of this thesis.

The specific domain understanding and targeted technical developments required to
undertake the two case studies reported here are representative of a more general vision
towards a methodology that can leverage future advances in ICT not just in augmented
coaching for performance but in other movement-related fields such as injury prevention and

rehabilitation. Two supporting case studies utilising captured motion data from tennis and
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golf activities have been used to demonstrate what can be achieved in automated sports data

modelling and analysis.

2.2 Research Questions

The research questions represent the specific goals of this thesis. Fundamental to intelligent
movement and skill coaching is the assessment of data (in any form), representing acquired
(human) movement, leading to the following key questions:
o Can the assessment of buman motion, as typically performed by a buman coach, be
antomated?
o Can human motion be analysed and modelled through the use of connectionist methods
according to pre-defined criteria? and
o Can gualitative assessment of human motion according to subjective criteria be antomated?
The following sub-questions reflect specific operational goals of an automated assessment
system:
o Can an antomated assessment system provide (meaningful) explanation to a buman, related
to its operation?
o Can automated assessment of human motion be achieved given the availability of relatively
small data sets? and
o Can an antomated assessment system be personalised, provide coaching inference rules,

operate on pre-defined criteria and evolve its assessment knowledge over time?

2.3  Scope and Aims

Considering the primary scope of the thesis as being the enhancement of sport performance

through automated coaching, the aims also included developing capability for:

e Combining systematic approaches from machine learning (ML) data processing with

qualitative analysis of human motion;

e Data processing based on flexible and subjective assessment criteria for diverse goals

and skill levels; and

e Transferring the high-level system operation aspects or methodological properties:

o from one sport activity to be applicable (to some degree) to others; and
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o to related domain areas, such as video gaming and digital entertainment.

The boundaries related to data analysis, modelling and processing are:

e Input boundary: The developed methodology should be flexible and reusable — so
that it could be adapted to work with a diverse range of motion data sources
including future motion acquisition device technology and augmented coaching
environments;

e DMotion data boundary: Motion data in this thesis must be obtained from human
movement. The use of synthetic data is to be avoided (as it is possible to distinguish
‘natural’ from synthetic movements e.g. evident in animation produced with and
without motion capture); and

e  Output boundary: The assessment system should produce output data sufficient for
assessment interpretation and to support further developments in terms of producing

personalised feedback.

3. Multi-discipline Research Design

It is contended in this thesis that it is possible to achieve automated analysis and evaluation of
human motion data by combining diverse sources, incorporating the quantitative approaches
used in CI and biomechanics along with qualitative approaches used in kinesiology and
expert insights. The multi-disciplinary nature of the work developed and evaluated in this
thesis means that it leverages a diverse range of sources and research methods (Figure I-2).
The multi-disciplinary methodology utilised here focuses on the qualitative observation of
human motion in sporting activity but applies analytical methods from the domain of
computer and information science. In summary, this research design:
e Identifies the concepts, characteristics and problems associated with modelling of
motion data and the automation of error detection in movement patterns;
e Develops methods, directions and discipline-bridging concepts associated with the
automated qualitative analysis of motion data directed towards movement, technique

or skill learning; and
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e Jeverages the domain requirements from sport, along with the capabilities of
computer and information science, to implement software components and

demonstrate their utility through two case studies.

Qualitative Analysis
of Human Movement

Motion Data Analysis
Kinesiology, \ /

Biomechanics,
\ Information Science

Al, Cl,
Coaching —

& KE, ML,

Cl in Kinesiology ECOS, ...

Views, Methods,
Models, Architectures,
ICS, ...

Education, /

ITS, ...

& Software

Engineering
/\ Diverse Research

HCI, Epistemology

Cognitive Psychology

Figure I-2. Inter- and intra-discipline confluence culminating in the embodiment of Cl in Kinesiology
—a new discipline of research and practice.

3.1 Research Methodology and Rationale

The research design strategy selected here, taking into consideration the diverse disciplines
and epistemologies that underpin the work, combines a range of research methods that bring
together the areas of kinesiology and ICT. In order to achieve the stated objective of this
thesis, it was necessary to combine the qualitative analysis of human motion data with
quantitative methodologies predominant in the computing disciplines. Combining research
methods led to the use of an integrative model of qualitative analysis (Knudson & Morrison,
2002), data collection, cyclic, flexible and pluralistic research design involving multiple
experiments and two embedded case studies. The result was a cyclic approach to research
that incorporates reflection at the end of each cycle, aimed at directing and guiding goal-
oriented, successive design-build-evaluate cycles as well as informing the context and general

theory (as depicted in Figure 1-3).
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General Outcomes

Motion Data Analysis and
Interpretation
(Chapters: 4 and 5)

Deductive

Case Studies

Inductive Tennis Golf

Specific Outcomes

Figure I-3. Research design — combining research approaches in this thesis.

The outcomes support the effectiveness of the research methodology. In particular, the two
incrementally designed, embedded case studies collectively cover a range of experimental

models and theories that accommodate diverse sources of heuristics and rationales.

3.2  Background on Thesis Research Design

Considering the broad multi-disciplinary context that surrounds it, this thesis is intended to
enable applications in augmented coaching but also in other related areas. The approach
proposed here leverages the combination of connectionist methods and kinesiology starting
from motion data flow, analysis through to processing stages, in a coherent and
comprehensive research framework (Chapter 4). A pragmatic and an investigative
development approach incorporates a series of experimental modelling systems developed

for testing and validation.

3.2.1 Combining Approaches to Research Design

Existing studies (Mingers, 2001; Kampenes, Anda, & Dyba, 2008; Runeson & Host, 2008)
that consider the combining of diverse research paradigms through flexible, multi-cycle,
pluralist methodologies are relevant here, given the need to bridge qualitative and quantitative
disciplines. In conducting and reporting empirical studies in software engineering and
promoting the use of case studies, Runeson & Host in (2008) identified that: “The analytical
research paradigm is not sufficient for investigating complex real life issues, involving
humans and their interactions with technology.”

This thesis considers the combining of diverse research paradigms and methods with a cyclic

research design to be appropriate. The benefits include opportunities to discover a range of
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inter-related insights from the multiple design experiments, informing the general theories

and vice versa (Mingers, 2001; Kampenes et al., 2008; Runeson & Hést, 2008).

3.2.2 Combining General and Specific Outcomes

Combinations of methods embodying different paradigms are developed for specific tasks
and their evaluation, applying a cyclic process of inductive/deductive investigation from
‘bottom up’ feature modelling and informing ‘top-down’ cross-discipline concepts and vice
versa (Figure I-3). Task selection implemented in the two case studies was prioritised by the
question: ‘What general outcomes can be validated’?

The proposed interaction model (presented in Chapter 5) provided a bridging strategy
between hierarchical levels of motion data processing, highlighting the main concepts and
their implementations. The case study in Chapter 6, generated practical evidence of
connectionist modelling and experimentation on raw 3D motion data to automate qualitative
assessment of human motion. The second case study (presented in Chapter 7) generated
further practical evidence from the application of the proposed connectionist methodology
for data analysis, modelling and interpretation operating on pre-processed feature space

originating from motion data.

3.2.3 A Multidisciplinary Focus on Motion Data

Achieving multi-disciplinary synergy of a systematic approach to data processing and analysis
necessarily requires expertise from at least the three discipline segments shown in Figure I-4:
knowledge engineering (KE), kinesiology and software engineering. As highlighted, there is dual
primary reliance on KE and kinesiology in this thesis. The software engineering perspective is
important here as a means to an end, enabling the development of a viable prototype
solution (Chapter 5) and tools for the case studies (Nunamaker et al.,, 1990-91). This also
enables a descriptive research approach (e.g. characterising phenomena in their natural
context), to be combined effectively with the computer science research approach (e.g. the
development of models, methods, implementation, algorithms and examples of application

in the case studies).
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Knowledge Engineering
Strategies
Identifying heuristics, critical
features, feature selection
and extraction techniques,
knowledge extraction;
Data analysis;
Classifier modelling;
Personalisation, ...

I

Kinesiology: Qualitative Software Engineering:

Observational Strategies A 5 Automation Processing
<«—» | MotionData | <«——» Strategies
Focus on observation, : :

identifying critical features, R e ! Automated evaluation/

movement phasing, error assessment;

taxonomy; Computer assisted/augmented
Integration of motion data coac_hmg;

acquisition, ... Application, system

architecture design, ...

Figure I-4. A multi-disciplinary approach to motion data analysis and processing strategies
highlighting the focus on key areas.

3.2.4  Incremental Improvements and Research Design Critique

The use of cyclic and reflective approaches in research design may be more time-consuming
compared to more fixed or singular approaches, but with a long term vision in mind they
should lead to more generalised outcomes and to the creation of reusable elements that could
be further improved as needed. For instance, Chapter 5 describes a 3D viewer (see the video
and stand alone executable on the accompanying CD) developed in this thesis work, whose
original animated ‘3D stick-figure’ algorithm was initially prototyped in MATLAB™ but was
then replaced with the improved equivalent software solution developed for the task of

qualitative analysis and supervised learning required in Chapter 6.

4. 'Thesis Structure

The structure of the thesis (Figure I-5) is organised as follows:
e Introducing the motivation and objectives, key ideas and concepts, the principal
contributions and outcomes of the thesis, as well as the research design as the general

cross-disciplinary research context foundations (Chapter 1);
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e TFoundation background of human motion assessment in sport and critical analysis of
methods supporting the research design related to the analysis of human motion
linked to the subdisciplines of CI (Chapter 2);

e Foundation background of CI, existing connectionist approaches, theories
supporting the thesis and informing decisions for the thesis direction (Chapter 3);

e General contributions (Chapters 4-5) including: (1) Critical analysis of methods
supporting the application of CI to kinesiology; (2) Development of the conceptual
framework and systematic approach for the augmented coaching system design;
(3) Specific developments such as modular design and feature selection and
extraction techniques; and (4) General implementation methods, systems
architecture, visualisation and system properties to support subjective and flexible
assessment concepts;

e Embedded case studies with resulting evidence supporting the general contributions
(Chapters 6 and 7). Collectively the embedded case studies complement and address
mutual limitations extending their common purpose in different sports. As a part of
modelling, both chapters include knowledge discovery interpretation specific to sport
coaching; and

e Conclusion, critique, opportunities and future work (Chapter 8). The novel

syntheses as cross-disciplinary contributions are reported in Appendix A.

Where appropriate, each chapter contains or revisits elements of the literature review as

specific evidence of existing work relevant to the topic being considered in that chapter.
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Ch1
INTRODUCTION
(MOTIVE, RATIONALE, VISION)

Ch2 Ch3

HUMAN MOTION ASSESSMENT Cl - CONNECTIONIST SYSTEMS FOUNDATIONS
(LITERATURE REVIEW) (LITERATURE REVIEW)

Ch4
A NOVEL SYSTEMATIC FRAMEWORK FOR
MOTION DATA ANALYSIS AND MODELLING

Chs

NOVEL CONNECTIONIST APPLICATION
- AUTOMATING EMPIRICAL
ASSESSMENT OF HUMAN MOTION

APPLICATION -
DOMAIN DESIGN

Che Ch7 FOCUS:

CASE STUDY: Tennis CASE STUDY: Golf EXPERIMENT,

ARCHITECTURE and

PROCESS

Chg
CONCLUSION
(CONTEXT, CRITIQUE and FUTURE)

Figure I-5. Thesis structure. All chapters are interlinked as indicated by translucent colour-coded
overlapping layers.

5. Contributions

The major novel contributions of this thesis are:
1. Critical analysis and foundations of human motion learning and analysis for the
purpose of bridging disciplines (Chapters 2-4).
2. Creation of ACS framework and enabling human motion modelling and analysis (HMMA)
in sporting activities using connectionist and evolving connectionist methodology as
critical components for the next generation of intelligent ACS (Chapters 4-5).

3. A method for quantifying the probability of validation incidents for relatively small or

unbalanced motion data sets (Chapter 4).
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The application of connectionist methods for automated analysis of human motion
(both assessment and diagnostic evaluation) based on a mix of objective, subjective
and flexible criteria (Chapters 4-7).

An implementation of temporal and spatial feature extraction to support the modelling
of human motion (Chapters 4-6).

An external synchronisation for visualisation and replay. A solution to supporting
qualitative analysis and integrative CI modelling of human motion data (Chapter 5).

A case study on tennis (Chapter 6). A software system implementation for human
motion modelling of tennis activities. The system learns from data and has been
validated against expert coach assessments, demonstrating the feasibility of
autonomous assessment based on flexible and subjective criteria i.e. by comparing
supervised learning and modelling of motion data to an expert’s assessments.

A case study on golf (Chapter 7). A demonstration that proves the feasibility of
applying the developed methodology and framework to golf swing activity data
analysis, based on objective measures ie. by comparing predicted data to data

measured from embedded electronics in the golf club.

Evidence of the above contributions is structured as follows:

5.1

Experimental evidence, including data analysis and classification results, is

summarised in the case studies presented in Chapters 6 and 7; and

Interdisciplinary contributions — their relevance and significance, and the general

insights gained — are presented in Chapter 8 and Appendix A.

Application of CI to Human Motion Modelling and Analysis

The principal contribution of the thesis is the development of software components capable

of automatically assessing human motion and supporting the modelling and analysis of

human motion. The CI-based application incorporates:

1.

The transformation of critical features for assessing human motion from a
biomechanics perspective to features that can be processed by a machine. Given this,
the modelling and analysis of data linked to machine features extend beyond simply
comparing measured values against predetermined ‘expected ranges of values’ to multi-

dimensional pattern recognition;
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2. General systematic framework for CI/machine implementation. Vatious theoretical
and empirical sources (e.g. expert heuristics and insights) are linked to ACS operations
and implemented via machine learning, and

3. Knowledge discovery from motion data modelling and analysis. The interpretative
findings produced could contribute to the further development of a given sport
domain.

Investigated methods and techniques of feature selection, rule extraction and the
transformation of 3D time-series to n-dimensional data are fundamental to the thesis. Such
an approach is similar to that used in the application of CI in other domains (such as speech
recognition).

Rather than designing new connectionist models applicable to specific sets of case study data,
the intent is to produce a general architecture comprising connectionist approaches within a

framework with elements that are applicable to a wider range of sport disciplines.

5.2 Published Work Pertinent to the Thesis

1. Bacic, B. (2002, 24-27 Jun). Constructing intelligent tutoring systems: Design guidelines. SRCE
University Computing Centre, University of Zagreb. Symposium conducted at the meeting of the 24th
International Conference of Information Technology Interfaces - I'TI 2002, (pp. 129-134). Cavtat,
Croatia.

2. Bacic, B. & Kasabov, N. K. (2002, 30-31 Oct). A general connectionist development
environment for sports data indexing and analysis - a case study on tennis. Knowledge Engineering
and Discovery Research Institute (KEDRI), AUT University. Symposium conducted at the meeting of
the Neuro-Computing Colloquium & Workshop - NCC&W'02, (pp. 25-26). Auckland, New
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Chapter 2

II. HUMAN MOTION DATA ANALYSIS AND
EVALUATION FOR THE PURPOSE OF MOTION
ASSESSMENT: A REVIEW OF LITERATURE

This chapter draws on several narrative reviews of prior work focused on background
information related to aspects of automation related to human motion assessment. The
application of augmented coaching for skill learning is supported by relevant principles from
inter-disciplinary fields such as kinesiology, biomechanics, AI, CI and connectionist
approaches. With a focus on ‘user experience’ and ‘learning-by-doing’, new developments in
digital entertainment, virtual reality and gaming are also considered, as they reflect progress in
enabling ICT infrastructure that will support advancements in augmented coaching
capabilities. It is contended here that advancements in assessment automation will be
achieved if elements of qualitative analysis prevalent to coaching can be transferred into a

machine and then supported via machine-based methods of analysis.

1. Augmented Coaching and Skill Learning

The first part of this review is focused on identifying the aspects of coaching that can be
automated and to what degree. The emphasis is on what has been achieved and what might
be done for a majority of learners - sport enthusiasts (novice to intermediate) seeking to use
technology-supported sport equipment, rather than specialised, proprietary systems operated
exclusively by (and for) specialists. Limited coverage of prior applications/systems indicates a
gap, while enabling technological advancements indicate growing opportunities for widely

applicable augmented coaching.
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1.1 Recent Advances in Technology-Supported Coaching

Coaching is essential to improving as an athlete. Whatever your
goal is - a coach will help you see the things you can't - and help
you improve so that you don't end up to do the same things over

again.

Andy Murray, Professional Tennis Player, showing bis training using Adidas niCoach
(www.youtnbe.com/ watch?v=F QY Uq25nbk, accessed 12 Apr. 2012)

Contemporary coaching technology for the consumer market’ encompasses a wide and
growing range of applications for sporting activity, for indoor and outdoor personal use. For
example, the worldwide spread of mobile technologies, in addition to digital media display
and communication, supports rapid computation and data acquisition. Mobile devices (e.g.
mobile-phones, tablets, PDAs) now commonly include accelerometers, gyroscopes, GPS,

cameras, and wireless communication for external sensors (Bluetooth, WiFi, sensor arrays).

In addition to mobile devices, other prototyping/embedded systems (www.arduino.cc or

www.sunspotworld.com, accessed 11-Jan 2012), can also be utilised in assessing and

potentially improving an individual’s skills.
Another category of augmented coaching technology, but that requires some end-user
training, includes general video-based coaching (e.g. SportsCode www.sportstec.com,

MotionPro!  www.motionprosoftware.com, Dartfish ~www.dartfish.com/en/index.htm,

Quintic Coaching www.quintic.com, timeWARP and silicon COACH www.siliconcoach.com,

accessed 11-Jan 2012), or equivalent combinations/integration of open source alternatives

(Baci¢ & Hume, 2012) (e.g. VirtualDub www.virtualdub.org, Kinovea www.kinovea.org/ and

“LongoMatch - The digital coach” http://longomatch.org, accessed 6 Feb. 2012). In

addition, domain-specific accessories and gadgets (e.g. a digital video camera and Apple’s
iPad with SD card adaptor for video exchange) can also be used for indoot/outdoor video-

analysis, extending iPad’s video capabilities and coaching without the need for a laptop.

2 For non-expert usets.
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These technologies typically reflect intended use by one or more different user profiles, such
as coaches, sport scientists, elite performers and sport enthusiasts.

Two relatively new systems are TrackMan and FlightScope. TrackMan (www.trackman.dk,
accessed 6 Feb. 2012) enables 3D golf ball trajectory and other animated data to be
superimposed and compared relative to a target direction indicated in an image (by
combining video capture and radar ball direction).

Viewed as an integration of 3D Doppler ball tracking and earlier concepts developed from
tennis to cricket and golf, FlightScope (www.flightscope.com, accessed 6 Feb. 2012) systems
provide multi-discipline specialised integration of multimedia with real-time 3D data and
scoring including operation and integration with a range of portable devices (Apple 1OS and
Android compatible). While these systems are presently targeted to specialist users, their
capabilities may well reach the consumer market in time.

While not directly oriented to video replays, some digital entertainment technologies
incorporate virtual environments (e.g. www.allsportsystems.com,

www.sportsentertainmentspecialists.com/MultiSportSimulators /index.html,

www.bogolf.com and www.virtualgolf.com, accessed 7-Jan 2012). Such digital entertainment

technologies together with motion data acquisition games are supporting skill-acquisition
through active participation (‘learning-by-doing’). Participants are generally motivated by a
new experience and the results achieved. Such technologies are evident in the motion

acquisition  interfaces  for  popular game  consoles  (www.nintendo.com/wii,

http://us.playstation.com/ps3/playstation-move and www.xbox.com/en-US /kinect,

accessed 6-Jan 2012) pioneered by the Nintendo Wii controller, and followed more recently
by the Sony PS3 Move controller and further advanced by ubiquitous human motion capture

in Microsoft’s Kinect.

1.2 Early Augmented Coaching and Personalised Interactive Systems

Two of the initially prominent augmented coaching systems designed for the consumer
market were Leadbetter interactive (2005) and SmartSwing (2005), both of which were
focused on skill learning in golf. Aspects of automation found in both systems were built on
kinesiology, education and biomechanics foundations. Automation of the coaching aspects
was achieved either by analysing captured video ("Leadbetter interactive," 2005) or 3D

motion data ("SmartSwing," 2005; Nass, 2005). The automated quantitative analysis of
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captured 3D motion data provided by SmartSwing included computation of etical features
indicating measured or predicted swing performance aspects e.g. assessment of the segments
of a user’s swing technique based on expected ranges of values; and variables (also
considered in Chapter 7) predicting ball flight. All analysis and swing motion data for
individual user(s) were kept permanently in the system. In the absence of accurate 3D data
("Leadbetter interactive," 2005), qualitative analysis of captured video required a human to
visually compare and group observation segments of a recorded swing — this enabled a
degree of pre-programmed automated matching of identified swing errors with a set of
relevant interventions. Grouping by observation was based on the user’s perceived similarity
to the sample swing segments provided by the system. Ultilising data as discrete values from
the end-user’s visual grouping, the system would generate ‘personalised’ feedback. Feedback
included a set of instructional video clips containing information and interventions in the
form of recommended practice drills, pertinent to the preceding qualitative analysis. Golf
coaching principles were also evident in a set of introductory and practice drills video clips
and DVDs. From an educational perspective, learner performance, progressive achievement
and other personalisation aspects were supported by a database containing current and prior

activity and associated feedback.

1.3 General Motion Data Assessment Automation

Sporting disciplines may be categorised according to the way performance assessment is
conducted, into quantitative (e.g. 100 m sprint), qualitative (e.g. figure skating) or combined
categories (e.g. ski jump). The assessment concept in the first category is based on numeric
results, while in the second category assessment is based on expert panel assessments. For
machine automation, quantitative assessment requires &nowledge of results (KR) while qualitative
assessment requires &nowledge of performance (KP).

Implementation of automated assessment of KR can be achieved through the application of
traditional ‘hard-coded rules’ in programming approaches, for example:

IF result (current_athlete) = min (all_athletes) THEN Winner = current_athlete.

Assessment by a machine for KR may be identical to human reasoning using logic rules and
as such can be transformed relatively easily into algorithms that are likely to be
comprehensible to the human mind. In terms of validation, the existing numeric criteria of

KR can be leveraged to ensure consistency (or fairness) of a machine-based assessment.
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For automated assessment of KP (also used in coaching), traditional algorithmic approaches
are not well suited to ‘common sense rules’ — #he heuristics that govern human inference in this

context.

1.4  General Challenges in Assessment Automation

Over the past decade, golf excepted, there has been a gap in the application of technologies
supporting interactive and augmented coaching for non-specialists i.e. general users who wish
to improve their movement patterns specific to sport. While there may be many reasons for
this, one asserted here is the difficulty of embedding coaching capabilities in technology.
Arguing the case for the use of expert systems, machine learning and related disciplines (that
include connectionist systems), the eatly opposing view (Dreyfus, Dreyfus, & Athanasiou,
1986) was that such artificial intelligence could not effectively replace the human mind or
intuition. Another rationale (Kecman, 2001) was the slower-than-anticipated development of
connectionist systems after the introduction of the early Perceptron model (introduced in
Chapter 3). Dreyfus et al. (1986) also argue for the existence of more general obstacles:
(1) Existing models (at the time) do not address the issue of evolving perspectives; and (2) It
has been known, since the days of early Greek philosophers, that an ‘expert’” cannot directly
articulate the rules from his/her domain that guide his/her decisions. Instead, an expert must
regress to view the world as would an advanced beginner in order to perceive then explain
some of the rules. From a pedagogical perspective, Dreyfus et al. acknowledged the existence
of rules that govern particular skill or domain knowledge and provided a systematic analysis
of learning incorporating individual progress from novice to expert over five stages. During
that process our inference also evolves from relying on basic rules to problems/solutions in
which an expert appears to ‘break the rules’, or to create what appear to be ‘ad-hoc’ rules but
that are effective all the same.

As noted, human inference and the use of common sense rules — beuristics (of Greek origin,
for discovery of knowledge or learning by themselves) — typically cannot be transferred into a
machine by fraditional algorithmic approaches. This does not, however, preclude all forms of
machine-based support. Computational intelligence (CI) — a sub-discipline of Al — includes
amongst its approaches the use of connectionist systems, focusing on: “studying problems for
which there are no effective algorithms” (Duch, 2007). CI also supports learning from data and

extraction of machine-generated rules that constitute machine inference. For the task of
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automating the qualitative assessment of human motion, modern mathematical methods
from CI include variations of artificial neural networks (ANN) such as evolving connectionist
system (ECOS) (Kasabov, 2007a).

Successful applications of CI methods in a variety of domains have led to the development
of new cross-disciplinary fields, such as neuro-genetic modelling in bioinformatics
(Benuskova & Kasabov, 2007). In education, challenges in assessment automation have been
addressed by both traditional algorithmic computation as well as by the use of connectionist
systems to provide feedback (Bacic, 2003b). For example, the application of technology in
assessment automation, integration and personalisation was found in intelligent tutoring
systems (ITS) (Bacic, 2002). At a more abstract level, the synthesis of automation, cyclic
assessment and the use of supporting I'TS technology in education is summarised in an eight-
stage systematic meta-model (Bacic, 2003b). An equivalent general, four-stage systematic
approach in coaching (Figure 1I-2) may therefore serve as a useful framework and starting
point to investigate candidate aspects for automation and the development of coaching

scenarios.

2. Sport Science: Technique Analysis Perspective

The concept of technigue appears to be well established in the context of sport science as well
as in general sport culture. In contrast, the concepts of performance and technigune analysis — as a
systematic qualitative or quantitative method — may be open to different views and further
research. For technique analysis, several goals may be identified, but the main justification for
its use is to help improve performance (Lees, 2001).

A more detailed consideration reveals that performance improvement can be aimed at short-
term and long-term (permanent) change via feedback, intervention and practice strategies,
leading to targeted and general improvements in a motor skill (Knudson & Morrison, 2002).
The context and concepts (Table II-1) associated with human motion or human movement,
are aligned with a hierarchy of terms (Figure II-1), adopted from Knudson & Morrison
(1997, p. 71).
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Figure Il-1. Hierarchy of concepts relative to data availability and automation complexity of

implementation.

More complex concepts (Figure II-1) are expected to require relatively more data in order to

enable the implementation of automated support using connectionist approaches.

Table II-1. Introductory terms bridging kinesiology and connectionist views.

Term

Connectionist view or example

Kinesiology view or example

Fundamental
movement/motion
pattern

Skill

Technique

Style

Knowledge of
Performance (KP)

Low-level temporal and spatial
motion data patterns with
(recognisable) contextual meaning.

Combined movement patterns that
could be assessed into descriptive
categories.

Specific group of patterns assessed
under more specific than general
criteria.

High-level patterns typical for
actions related to person or group
or task. Difficult to assess given the
complexity of hierarchical concepts,
causal relation of minor variations
influencing performance.

E.g. discrete category representing
assessment or cue. Suitable for
computational intelligence (e.g.
connectionist) approaches.

General purpose movement
categories such as walking,
throwing, striking, kicking.
Fundamental movement patterns
may be combined for a specific
task.

(Motor) Skill adopted or modified
fundamental patterns for specific
task or sport e.g. shot put.

Selected skills associated with more
specific purpose, e.g. banana kick in
soccer.

Techniques may be further divided
into style variations and personal
idiosyncrasies.

Information about movement
process, €.8. as cue.
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Term

Connectionist view or example

Kinesiology view or example

Knowledge of
Result (KR)

Deterministic
Model

Critical Features
(CF)

Any numeric format representing
the outcome. Suitable for
traditional computational
approaches.

Hierarchical tree structure
representing causes and
consequence (e.g. desired outcome,
skill). There are no weights (or other
function) associated with tree
branches.

Inherent to performance and
coaching, critical features need to
be assessed or coached in certain
way (e.g. sequence, angle) / (e.g. by
using cues). CF may be associated
with both KP and KR. CF are not to
be confused with similar concept of
machine learning features.

Information of the achieved
outcome of the movement e.g.
100m sprint race result.

Deterministic model for qualitative
analysis (Hay & Reid, 1982; Hay,
1983) of sport skill e.g. distance of a
long jump. It is possible to use
deterministic models in conjunction
with multivariate statistical analysis
to indicate strength of associations
(Chow & Knudson, 2011).

“Key features of a movement that
are necessary for optimal
performance” (Knudson &
Morrison, 2002, p. 81). The key
aspects used in coaching or
teaching, helping to focus on good
form (e.g. via associated set of
coaching cues) or in qualitative
analysis of the skill.

The two concepts used for developing automated assessment capability in this thesis are: (1)

Swing technique analysis and (2) Motion sequence — event that contains a time sequence of

interest (e.g. a swing kinematic chain with its preparation and recovery movement pattern).

3. Integrated Model of Qualitative Analysis

The integrated model of qualitative analysis (Knudson & Morrison, 1997) describes the cyclic
nature common to the education process in most kinesiology professions. The teaching
activity involving evaluation/diagnosis is desctibed in terms of four major tasks (Figure 11-2).
A weakness in accomplishing one task, as a consequence, diminishes the effect of subsequent
tasks. The model allows flexibility for teaching activities to fit the personal idiosyncrasies of a
performer or to a group as needed.

In this thesis, critical features and a selection of observational models of qualitative analysis
of human movement are aligned with the multi-discipline perspective as promoted by

Knudson & Morrison (2002).
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PREPARATION
- Knowledge of the activity
Identify critical features
Goal of the movement
- Knowledge of performers
- Relevant systematic
observational strategies

INTERVENTION OBSERVATION

- Select appropriate intervention - Implement observational
Feedback strategy
Visual models Situation
Exagggratlon -—— 0 — — Vantage points
Modifying the task (repeat if necessary) Number of observations
Manual/mechanical guidance - Extended observations

Conditioning
- Principles for providing feedback
- Translating critical features into cues
EVALUATION/DIAGNOSIS
- Evaluation of performance
Range of correctness of
critical features
Strengths
Weaknesses
- Diagnosis of performance
Prioritize weaknesses
Rationale of prioritizing

Figure 1l-2. The comprehensive integrated model of qualitative analysis, reproduced from Knudson
& Morrison (1997, p. 27).

3.1 Systematic Observational Strategy and Observational Models

In qualitative analysis of movement patterns, several systezatic observational strategies (SOS) may
be effective, for example: (1) Observational focus on temporal phasing (Figure II-3)
(Knudson & Mortison, 2002, p. 1506); or (2) Origins of the movements — proximal-to-distal
sequencing — from slow-moving to faster-moving segments (Putman, 1991; Sorensen, Zacho,
Simonsen, Dyhre-Poulsen, & Klausen, 1996); or (3) Holistic (Gestalt-type) observation from

general to specific and rating the importance of critical features (Figure 11-4).

3.11 Deterministic Model

A systematic approach associated with both qualitative and quantitative information may be
evident in a deterministic model: “The deterministic model is a modelling paradigm that
determines the relationships between movement outcome measure and the biomechanical
factors that produce such a measure (Hay & Reid, 1988)” (Chow & Knudson, 2011). The
output of a deterministic model may be represented as a hierarchical tree structure (Figure
II-5) showing (desired) outcome and the associated causal movement factors. For example, a
desired outcome may be the primary goal of a movement, a performance-related result, or a

primary cause of injury.
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Temporal and Spatial Model

Body Temporal phasing

Components Preparation Action Follow-through
Over base of Shift forward to Continue

Path of hub support target movement to target

Body weight Over base of Shift forward to On front foot

y 9 support target closest to target

Trunk action Non-throwing Rotate open to Follow arm to
side to target target target

Head action Face target Eyes on target Eyes on target

. Apart, weight on | Step to target Bring back leg

Leg action back leg with closest leg up to front leg

Arm action Throwing arm Bring throwing Throwing arm
extended back arm forward across body

Impact/release Snap wrist

Figure 11-3. Observational model (Gangstead & Beveridge, 1984) with overarm throwing cues.
Adapted from Knudson & Morrison (2002).

Gestalt Model

Dunham Model OVERHAND THROW
Body Orientation:
Preparation: KEYS
Feet: Preparation:
Knees: Body Orientation: Non-throwing
Hips: side to target
Trunk: Feet: Shoulder width apart
Shoulders: Knees: Slightly bent
Arms: Hips: Slightly bent
Hands: Trunk: Back straight
Head: Shoulders: Non-throwing
Execution: shoulder to target
1. Arms: Throwing arm extended
2 back at shoulder height
3. Hands/Fingers: Three middle

fingers on top of ball
Head: Eyes on target

Execution:

1. Step and point with foot
closest foot to target

2. Rotate hips then trunk

3. Elbow comes through first,
staying high

4. Follow through - bring
throwing hand close to floor

Figure 1l-4. Task sheet observational model (Dunham, 1994) and the example of overhand throw
showing keys/cues/critical features and execution sequence (Morrison & Reeve, 1993).
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HEIGHT
TAKEOFF FLIGHT CLEARANCE
HEIGHT HEIGHT HEIGHT
BODY VERTICAL BODY
POSITION VELOCITY POSITION '\g?/\éERMBiNRT
AT TAKEOFF AT TAKEOFF AT PEAK
VERTICAL CHANGE IN
VELOCITY VERTICAL
AT TOUCHDOWN VELOCITY

Figure 1I-5. Basic factors in high jumping (Hay, 19934, p. 448).

From the pioneering work, which has been attributed to Dr. James G. Hay, over the past
three decades the body of research has extended the application of deterministic models in
biomechanics analysis predominantly in athletics, swimming and gymnastics (Chow &
Knudson, 2011). Chow & Knudson included in their review a concise summary of key
findings, statistical approaches, and biomechanical (terminal) factors on subjects performing
various desired sporting activities. The general advantages of using deterministic models
include:
e Prevention of arbitrary selection of performance variables by focusing on the primary
goal and identification of attributing factors;
e Modelling can utilise numeric data as well as qualitative, subjective and discrete
categories; and
e Providing information for statistical modelling where there is a need to ensure
sufficient data set size relative to the number of variables including the subjects’

requirements.

Note that as new findings, equipment advancements or sports governing body restrictions
contribute to sports’ evolving nature, it is possible to develop more than one deterministic
model resulting in the same outcome. For example: Hay (1993b) and Hume, Keogh, & Reid
(2005) reported deterministic models of golf drive ball displacement, while the club and ball

technology has evolved since the earliest deterministic model.
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3.1.2  Evaluation and Diagnosis

A review of concepts surrounding technique analysis (Lees, 2001) presented a view in which
technique analysis is an aid to improve performance and therefore is a part of performance
analysis. Treated as a more analytical method, however, technique analysis provides a basis
for understanding the way in which sport skills are performed and therefore can serve as an
aid in the improvement of performance.

The evaluation/diagnosis stage (Figure II-2) includes technique and performance analysis,
followed by diagnosis as identification of faults in performance and providing rationale for
prioritising weaknesses. Relying on the output from the evaluation/diagnosis stage, the
follow up intervention stage includes remediation or intervention to achieve the desired

outcome.

3.1.3  Intervention and Feedback
Feedback can include elements of analysis such as knowledge of performance (KP) or
knowledge of results (KR). However, feedback should also include qualitative interpretation

of such analysis, for example:

... an amateur runner may not know what to do with a system that
says “your foot is pronating 32 degrees when it hits the ground”.
Simpler instructions like “try lifting your knees” could be more

helpful.

Richard Wheater, head of coaching for England Athletics, (Firth, 2071).

The following guidelines (Knudson & Morrison, 2002, p. 132) would be suitable for

implementing and reporting movement feedback:
e Don’t give too much feedback;
e Be specific;
e Don’t delay feedback;
e Keep it positive;

e Provide frequent feedback, especially for novices;
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e Use cue words or phrases; and

e Use a variety of approaches.

These guidelines are expected to be applicable in ACS as well as in digital entertainment and

future augmented coaching systems.

3.2  Critical Features and Subjective Assessment

The role of eritical features is one of the important aspects of this thesis that is also well
established in coaching and analysis (Morrison & Reeve, 1993; Lees, 2001). For example, for
a critical feature it is common that the analyst would establish: the range of correctness to
establish mapping from analogue scale to ordinal (e.g. ‘inadequate’, ‘within the desirable
range’, ‘excessive’) (Knudson, 2000); or different weight shift for different motion patterns;
or correct the movement sequence (e.g. the stride before forward swing in softball batting).

It is also known that coaches may disagree (e.g. due to their different backgrounds, familiarity
with the learner’s background or ‘knowledge of performers’) and that experts’” advice may be
conflicting in some circumstances. In real life situations a fear of (re)injury, fatigue or pain
may negatively affect aspects of performance of an athlete. For example, an experienced
coach may also detect the detrimental impact of fatigue on an athlete’s performance —
(‘pathomechanics’)  investigated as specific predictable resulting movement patterns
(Fortenbaugh, Fleisig, & Andrews, 2009). Rather than adhering to defined biomechanical
parameters, analysis should therefore also consider possible abstract issues influencing the
analysis and intervention (Table II-2).

In addition to the issues and rationale depicted in Table II-2, assessment may also include:
biomechanical general/universal movement principles (stretch-shortening cycle of muscle
contraction; control of redundant degrees of freedom in the segmental chain); as well as
considerations e.g. Bartlett (2007) on critical feature identification within: phase analysis,
movement principles, deterministic modelling and ideal/elite template approaches.

For example, coaches of high-performance athletes may attempt to train their players to hit
or kick a ball faster, while maintaining an acceptable level of control. As an outcome of
biomechanics research that endeavoured to identify factors integral to success in hitting and

kicking (Werner, Fleisig, Dillman, & Andrews, 1993; Elliott, 2000), the training of techniques
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could be optimised, the risk of injury reduced and rehabilitation programmes better

structured.

Table II-2. Issues and rationale used to justify desirable technique or the identification of
critical features summarised from (Knudson & Morrison, 2002).

Issue Rationale
1. Safety or risk of injury The safety of a particular action or technique depends on
to the performer. many factors (Pluim & Safran, 2004) such as acute/chronic

injury, age, fitness level, muscular imbalance, previous
activity, and resting period.

2. Effectivenessin Deciding whether a particular form or movement pattern
accomplishing the goal  with an associated goal or outcome is effective depends on
of the movement. factors such as weight shift, linear motion components that

flatten the arch movement towards the target, and force
direction towards the target.
3. Efficiency of goal Economical use of energy to achieve the goal. Presence of
attainment. undesirable redundant movement patterns, often difficult
to document.

4. Linking Human Skill Development to Artificial
Intelligence: Critical Problem Analysis

Understanding the human ability to learn motor skills and to improve skill development via
visualisation, replay, assessment and feedback is a key foundation for envisaging and enabling
machine-augmented learning environments (as is the aim in this work). In this thesis the view
of performance concepts extends beyond simply achieving measurable changes in movement
patterns to being directed towards a specific purpose, reflecting diverse rationales including

safety and other qualitative aspects (Table II-2).

4.1  Motor Skill Acquisition and Learning via Assessment

It is commonly noted that, from their early development, children learn movements through
trial and error interactions with their environment and through imitation more so than can be

observed in adults. Pertinent to this thesis, is that during our development we may also attain
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the ability to acquire and improve motor skills through exposure to multi-modal inputs such
as visual cues, or verbal or written instruction. Our learning might also improve if we develop
other mental processing capabilities: Ainesthetic proprioception as inner vision; grouping
characteristic motion events by similarity; or assessing performance with relatively high
degrees of accuracy and certainty. In pursuit of motor skill excellence, from novice towards
expert levels (Table II-3), learners may also entrust coaches to prioritise goals, assessments
and feedback during instruction sessions and may additionally experiment to gain new skills

on their own (Table 11-4).

4.2  Artificial Intelligence, Human Inference, Skill Level and

Modelling Context

Validation of both paradigms for, and implementations of, the ways in which the human
mind transforms explicit knowledge into implicit knowledge on the journey to becoming an
‘expert’ remains a challenge for AL It also explains why top athletes combine a multitude of
information and opinion sources ranging from empirical (e.g. a coach ‘said so’, with intuitive

or logical rationale) to diverse scientific sources (e.g. biomechanics analyses).

Table 1I-3. Skill acquisition and Al assessment — adopted critique from Dreyfus et al. (1986),
“Mind over machine” into a model utilising demonstrable machine learning outcomes.

Skill level Generalised skill acquisition ofa  Applicable to skill acquisition,
learner, adopted from Dreyfus et  assessment and cross-disciplinary
al. (1986) assessment

1. Novice Learning of sub-set or basic rules.  Minimal set of Coaching Rules (CR)

(Beginner) No mental model, insights. assessments.
Can tell what to do but not sure Assessment of KR less important than
why. of KP.

2. Advanced Learning more rules. Adding new, or more complex, CR to

Beginner Gaining basics experience. assessment.

Starting to analyse, rudimentary
mental model forming.

Can execute simple tasks
correctly.

Can follow task/sequence but
cannot apply variations for
unexpected situations.

More data required, need for
personalisation as basic technique
evolves.

KR assessment and refinement of KP
assessment with additional CR.
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Skill level

Generalised skill acquisition of a
learner, adopted from Dreyfus et
al. (1986)

Applicable to skill acquisition,
assessment and cross-disciplinary
assessment

3. Competence Wider mental model, gaining
(Intermediate) more experience.

4. Proficiency
(Advanced)

5. Expert

Taking responsibility for
advancing and linking KP and KR.
Can execute most important
movement techniques, tasks and
add new ones to existing skill set.
Still need to think about the
execution and intention.

Further gain in experience and
wider mental model.

Able to plan and execute
strategically.

On occasions still using rules.
Able to transfer knowledge to
new circumstances.

Elevated concentration on the
task and execution.

Broad experience.

Automatic and instantaneous
execution.

Can invent and identify new rules,
new phenomena and hypotheses.
Can perform with little attention
to task.

Can perform with deep, sustained
concentration ‘in-the-zone’.

Can communicate or read high-
level instruction.

Training to include Coaching Scenarios
(CS).

KR assessment focus mixed with KP
assessment and feedback.

Pressure training and partial CS
assessments.

Situation training as preparation for
strategic execution (next level).
Future studies in novel learning
environments, ICT infrastructures
Learning and feedback to include
individual learning styles.

N/A.

Strategic reasoning,

Adaptation,

Cognitive training aimed to improve
response times (e.g. OODA loop).

N/A.
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Table 1l-4. Assessment of motor skill, technique and style acquisition and adaptation: Example contexts
for different profiles.

Profile Open problem question Possible user scenarios / goals perspective
examples
Learner “How do | identify what can help  Investigating/identifying rules and critical
me to improve my technique”? features for successful learning outcomes.
“Would comparing my and other  Achieving goals with minimal or no prior
players’ mistakes and optimal experience or with expert guidance.
performance help me to identify  Satisfactory perceived improvements as
what needs to be improved”? validation of a selected practical
implementation strategy.
Identifying criteria for choosing input
information/advice and professional help.
Competitor “Am | losing because my Strategic game patterns. Optional
(individual ~ opponent is making fewer competitive skill analysis (when needed
strategic mistakes/scoring more winners”? cognitive activity), outside of execution
reasoning)  “Am | leading because | score phase:
more winners/make fewer Ad-hoc SWOT? analysis with strategic short-
mistakes than my opponent”? term goal to adapt and win.
(McLennan, 2009) Rehearsing/recalling in working (short term)
“Who plays offensively and who  memory selected mental images of
defensively”? previously acquired motor skills and
“Will | potentially jeopardise the  techniques.
present game outcome now, to “Game vision” competitive learning
gain the future insights and characteristics® can be exhibited as
longer term reward”? occasional experimenting (also as “out of
“Did my game or opponent in the the box” strategic thinking) during
previous match damage my competition.
rhythm and technique, or High-level abstraction and adaptation
enhanced it — for my next contexts. E.g. recognising and recalling
match”? strong/weak offensive/defensive
“What should | practice before opponent(s)’ patterns/rhythm to combine
my next match(es)”? them with personal abilities/aspects for
winning outcome (Musashi, 1643).
Targeted (skill, technique or style) training
before the next match.
Coach “Did | identify and diagnose Optimise goals and provide feedback and

errors and their importance for
my student’s perceived skill level
and profile”? , “What is the best
next course of action”?

intervention.

3 Strengths, Weaknesses Opportunities and Threats.

4 “Game vision” — as one of a competitor’s properties included in criteria for scouting young talents (Appino, 2010).
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Since it is not possible for all people to achieve top proficiency or expertise in a particular
recreational skill or sporting domain, it is expected that the majority of participants will seek
and require support for personal development in the first one or two distinct skill levels
(shown as non-shaded rows in Table II-3). Based on this expectation, the focus in this
research is on the application of knowledge engineering to supporting the development of
fundamental and explicit knowledge and capabilities embodied in the first two skill levels.
The assessment automation for the first two skill levels will also be focused on selected
coaching rules relevant to basic stance and performance elements found in basic technique(s).
From the Al and CI perspective, it is expected that for higher skill levels (shaded in grey)
more data would be required as well as demanding integration of a wider range of input
devices.
Topics (introduced partially in Chapter 1) relevant to this thesis are:
1. Similarities and differences between decision boundaries, human inference and
machine learning inference (Duch & Grudzinski, 2001).
2. Degree of observational model comprehensiveness and available data included in
initial prototyping,.
3. Degree of comprehensibility of underlying machine learning (ML) operation mapped to
human reasoning.
4. User acceptance of underlying principles and the opportunities for advancements in
augmented coaching environment.
It is also desirable that high-level transferable concepts, models and frameworks would be
encapsulated in the form of reusable cross-applicable modules for diverse domains so that
the goal of bridging disciplines and developing reusable components based on similar

foundations can be achieved.

4.3 Technique Analysis Linked to Artificial Intelligence

One of the essential coaching skills is the ability to analyse technique — to assess and then
improve the performance of learners. Contemporary technique analysis and coaching have
evolved influenced by established models, concepts and principles such as: Newtonian
physics — forces (Zatsiorsky, 2002) and movements (Zatsiorsky, 1998); anatomical (Bartlett,
1996) and cognitive principles (Knudson & Morrison, 2002). As well as leading to multiple

discipline information being integrated into coaching, the kinesiology sub-disciplines (motor
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context o this thesis.

learning, pedagogy, and biomechanics) have also advanced related fields such as sport
equipment manufacturing, ergonomics and rehabilitation. Table II-5 presents a categorised

analysis of sports science concepts mapped to aspects of Al, to set out the investigation

Table II-5. Linking analytical models and concepts from sports science with Al.

Analysis

Link to Al

Analytical model or concept

Qualitative

Quantitative

Predictive

Investigation and framework on
what coaching aspects may be
automated.

Bottom up, spatial and temporal
rule based pattern recognition
(specific parts of motion) and
classification.

Expert qualitative analysis using
video replay — to machine
learning from data.

Event indexing automation and
region of interest (ROI) concept
(see ‘Feature Selection and
Extraction Techniques’, p. 73).
Gestalt / holistic connectionist
approaches and applications.
Motion data and critical features
transformations. Applicable for
traditional computational
approaches.

Knowledge engineering,
connectionist systems
applications and future work
linking computer graphics,
animation, virtual reality and Al.

The comprehensive integrated
model of qualitative analysis
(Knudson & Morrison, 1997, p. 27)
Temporal phasing; Observational
model (Gangstead & Beveridge,
1984).

Comparison with ‘good’ and ‘bad’
performance examples.

Observation focus: Stance,
anatomical focus and motor
execution sequence in Task sheet
model (Dunham, 1994).

Biomechanics calculus, critical
features to be quantified within a
range of correctness and further
computing.

Mathematical modelling involved
in technique analysis (Marshall &
Elliott, 1998). Computer
simulation and optimisation to
seek new solutions to problems in
sport (Bartlett, 1999). Testing new
ideas and concepts (Nigg, 2006).

relevant literature review.
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In viewing augmented coaching in general as an educational scenario there is also a
requirement for a systematic framework in which technology could be linked to observation,
motion data acquisition, technique analysis and feedback to learners.

Directions for motion data analysis and computational modelling may also be obtained as

integrated information from the domain expert’s interviews, biomechanical principles and
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4.4  Utilising Observation Models to Inspite Creation of Heuristics

and Coaching Rules

Incremental development of individual modules responsible for specific evaluation or
assessment allows experimentation with diverse assessment criteria. This is supported by
modular enabling/disabling and weighting of evaluation/assessment module operational
properties for a given context and the design of appropriate coaching rules (CR) and coaching
scenarios (CS). After the observation of motion events, an analyst/coach must decide which
observational approach is the most appropriate. An analyst may also need to consult relevant
literature, or to produce an observational model and focus on execution sub-tasks (see: Mozor

Phase‘in Figure 11-7) and/or specific body components (Figure I1-6).

HEURISTICS

%nporal Phasi\g
Body
Components Preparatiol Action Follow-through

\
Path of hub

Body weight

Trunk action

Head action

Leg action

Arm action

Impact/release

[ [

Figure 11-6. Individual heuristics on overarm throwing cues. Adapted from the observational model
of body part movement through three phases of the movement (Gangstead & Beveridge, 1984).

The proposed approach for connectionist modelling and designing modular assessment
system architecture combines modular assessment concepts with a generic coaching process
and with qualitative observation models, such as depicted in Figure II-6, Figure 1I-7 and
Figure 11-8.
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HEURISTICS
i // //
i // /
Task:
Dunham Model
) . Anatomical Phase
Body Orientation: ) .
Preparation: Eiody Or|_e fital
: Preparation:

Feet: Feet:
Knees: eet:
Hips: Kf‘ees'

. Hips:
Trunk: .
Shoulders: L g””k- ,
Arms: Ahoul.ders.
Hands: ] S .
Head: E:;g?
E tion: :
1 ASCULON Motor Phase
2' Execution:
3' 1.

' 2.
3' —

Figure 1I-7. Task sheet for qualitative analysis (Dunham, 1994). Each task sheet may be associated
with the basic movement (fundamental movement pattern) and with a coaching scenario.

GOAL OF THE MOVEMENT,

OUTCOME, HEURISTICS,
PRIMARY INJURY RISK FACTOR COACHING RULES,
SUBJECTIVE ASSESSMENTS,

OBJECTIVE MEASURES,
CRITICAL FEATURES

HFI(;UT/

(CONSEQUENCE
U

TAKEOFF

CAUSES

Figure 11-8. Deterministic model (Hay, 1993a) associated with goal (consequence) and structure
indicating one-to-many relationship with the contributing factors (qualitative and quantitative
measure).
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The mapping of heuristics from qualitative approaches (Table 1I-6) to a machine-oriented

representation may inspire an identical rule design or a rule variation to be selected for

modular implementation.

Table 1I-6. Summary of observational models as a systematic strategy for collecting heuristics.

Model

Advantages

Disadvantages

Observational model
(Gangstead &
Beveridge, 1984)

Task sheet
(Dunham, 1994) —
observational model

Deterministic model
(Hay, 1993a) —
modelling paradigm

Systematic temporal and spatial
mapping, bottom-up view,
suitable for transformation
from critical features to ML
features.

Easy to validate each individual
processing segment (as an
individual cell in the table).
Newer model, closer to human
thinking, top-down view,
addressing the disadvantages of
the above model. Holistic
approach inline with (Gestalt
principles).

Widely accepted in many sports
discipline. Suitable for
determining causality, inclusion
and redundancy of qualitative
and quantitative factors.

May utilise both qualitative and
guantitative information.

Bottom-up approach, lack of
holistic approach (Gestalt —
‘big picture’).

Less direct than the above
model, more likely to be
susceptible to human
bias/interpretation.

May not be straight forward to
transform to machine
processing automaton. Could
be more difficult to validate.
To estimate connection
weights using statistical
analysis or connectionist
approaches, a large data set
relative to number of factors
(variables) and subjects’
requirements may be required.
More than one deterministic
model for the same
goal/outcome may exist.

The presented system design (Chapter 5) supports the capability to have critical features

grouped for particular tasks and structured — or orbestrated — by their importance (e.g. by

assigning weight factors) for learning and assessment automation. In addition to supporting

the combination of multiple observational models, Chapter 5 presents a user interface as an

interaction model supporting weighting, orchestration and division by assessment purpose of

a range of evaluation models (e.g. global, local/group and personal).
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Systematic observational strategies and the use of critical features with associated cues
provide a link to the ‘common-sense’ implementation problem area, or “world of heuristics”
(Kasabov, 1996, p. 3) specific to knowledge engineering and related disciplines.
The relevance of systematic observational strategies and the deterministic model in the context of
implementing heuristics in a machine and developing augmented coaching systems is evident
in the following characteristics:

e Systematic approach to gather heuristics;

e Teature extraction technique design (e.g. static and dynamic observation focus on

anatomical or motor sequence);

e FEncourage implementation of personalisation aspects of a group or individual

performer to supplement the qualitative analysis automation; and

e Design of video replay capability to extend observational power.

Taking into account 3D motion data, the advantage of augmented coaching systems extends
to animated viewing of important parts of movements from any virtual camera viewing angle.
For augmented coaching application design, modelling of connectionist systems and expert
system training, video replay is a prerequisite. Developing replay tools also opens a possibility
for software engineering challenges in building reusable libraries, a suitable framework, and

tools for gaming, VR and predictive analysis.

5. Chapter Conclusion

The importance of replay technology has been established in qualitative analysis and coaching
practice. Since the early automated coaching systems, it was also possible to produce
automated feedback and recommended intervention based on: (1) Measured biomechanical
critical features; and (2) Human qualitative analysis — as cognitive similarity comparisons
from replays into discrete categories analysis (e.g. ‘too narrow’, ‘good’, *too wide’). The other
specialised software tools for analysis and feedback visualisation require a coach or a domain
expert in qualitative analysis to produce feedback (e.g. as combined video animation overlay)

involving laborious and time consuming user interaction.
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The need for analysis automation is also similar to a problem area in (qualitative) essay
marking (in intelligent tutoring systems design, introduced in Chapter 1). The common
challenges include: (1) Design of automated assessment capabilities that can perform in a
manner similar to a human expert; and (2) Validation of automated assessment against

predefined subjective/descriptive critetia.

Similar to the ‘blind review’ validation concept, the next chapter introduces supervised learning
and ¢ross-validation methods associated with the foundations of computational intelligence and
modelling of nature-inspired connectionist systems (also known as artificial neural networks).
Although more difficult to validate than traditional approaches, nature-inspired mathematical
models in the form of connectionist systems are considered to provide a valid and acceptable
approach to address such ‘common sense’ problems in a machine.

The identified and addressed problem area of the thesis focuses on automation of qualitative
motion data analysis related to identification of faults in performance rather than
remediation. Implementing automated diagnosis of faults in performance is a challenge for
traditional computing approaches, whereas connectionist approaches have been used for
solving diverse real world commonsense problems similar to this.

As an opportunity to investigate machine-generated inference, and incremental/evolving
machine learning, the next chapter also includes some of the more recent connectionist
systems designs (evolving clustering, hybrid neural network models with fuzzy approaches)
that represent their internalised knowledge as a set of rules constituting the assessment

criteria.
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III. COMPUTATIONAL INTELLIGENCE
FOUNDATION

Complementing the prior chapter’s review of sporting technology and kinesiology, this
chapter draws on connectionist and evolving connectionist approaches and the application of

computational intelligence in the domain of augmented coaching,.

1. Computational Intelligence and Knowledge Engineering:

A Connectionist Systems Perspective

Advancing the field of neural networks and fuzzy systems (Dreyfus et al., 1986; DARPA,
1988; Yoon, 1991; Yamakawa, 1992; Zadeh, 1994; Arbib, 1995; Bishop, 1995; Mitchell, 1997,
Yamakawa & Uchino, 1997) (Figure III-1), with the evolving connectionist systems
paradigm, (Kasabov, 2002), Kasabov had introduced the opportunities as: “?he enormity of
scientific problems” and “the acute need for efficient computer models and systems”. Addressing these
opportunities required new computational paradigms, and various authors have provided
insights into what constitutes CI by identifying interdisciplinary gaps, scientific disciplines,
various problem areas and methods, from the most recent to some more than 40 years old’

(Duch, 2007).

5 As in pattern recognition, operations research and statistics
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Figure lll-1. “Usability of different methods for knowledge engineering and problem-solving depending on
availability of data and expertise (theories) on a problem” (Kasabov, 1996, p. 67).

In evaluating the feasibility of a connectionist system or connectionist methods to solve a
particular problem, a designer would generally consider: available (raw) data, context and the
theories within the context; and possible implementation method(s) (Figure III-1).

Terminology in the field of computational intelligence (CI) and its sub-disciplines (soft
computing, machine learning) is exceptionally diverse and often similar concepts are variously
named because of its broad-based origins (in, for instance, approximation theory, nonlinear
optimisation, statistics), (Kecman, 2001). Given that this thesis sits at the confluence of
several disciplines, synonyms and cross-discipline disambiguation are addressed and

acknowledged here within relevant contexts.

1.1  Data Processing Concepts

A starting point for the consideration of some of the relevant inter-disciplinary concepts is
provided in Table III-1, which introduces a mapping of selected terms used in this thesis
across the fields of connectionism and kinesiology.

Connectionist models acquire their knowledge through the process of farning, changing their
internal structure or properties such as connection weights (Kasabov, 1996). Based on the
principle that internal structure and connection weights are numerical information associated
with operation of a connectionist model, it is difficult to present such numerical machine
knowledge to a human in a readily usable form. This challenge is addressed with the concept

of rule insertion and extraction from a fuzzy neural network.
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Table IlI-1. Introductory terms bridging connectionist systems and kinesiology.

Term Connectionist view Kinesiology example

Information Structured numeric data Stick figure marker position multiple time
with contextual meaning. series, angular velocity, ground resistant

force vector.

Knowledge High-level structured Internalised (machine or mental) rules to
general information on evaluate observed motion event as being
internal connectionist ‘excessive’, ‘within the desirable range’ or
system representation. ‘inadequate’.

Heuristics ‘Loosely’ explained A set of common sense coaching rules,
common-sense rules that enabling a coach to explain assessment of
cannot be directly recognised motion event. A learner is
translated into a computer  able to rationalise on performed basic
program. techniques or acquire new ones.

Inference Matching of current data Conclusions (of a machine or mind) based

Generalisation

sample to output as a result
of training with past data
Best possible matching of
previously not matched
data, as a result of training
with past data

on observed evidence, domain expertise
and reasoning.

Expert’s (competitor or coach) ability to
assess a new player with individual
idiosyncrasies.

Facilitated (or impeded) transfer from

one sport discipline to another.

A second challenge in the context of qualitative assessment of human motion is the
integration of connectionist systems to implement a set of heuristic and human-like (domain
specific) reasoning into a system design, whose evaluation of feasibility is dependent on
availability of data (Figure III-1). A third challenge is to achieve system usability with
inference similar to that of a human that would generalise well on future data and yet be
intelligible to a human mind.

From the machine learning (ML) perspective (a sub-discipline of CI), all introduced concepts
and problem/solution computational contexts must be presented as numeric data (Kasabov,
1996). Such a problem-solving paradigm (Figure III-2) can be viewed as a mapping of
domain space D into solution space S (Kasabov, 1996). A function describing a system
operation of such a mapping is called an objective function (or goal function). The domain space D
holds all possible combinations of values of the input variables and the solution space §
holds all possible combinations of values of the output variables. Heuristic rules in a
knowledge base can be viewed as a ‘simplified’ model of an original, real world model or as
‘patches’ — a collection of input vectors mapped to a collection of output vectors, covering (a

subset of) the solution space (Figure III-2).
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Heuristics

o

Figure llI-2. “Heuristics as a means of obtaining restricted projections from the domain space (D)
into the solution space (S).” (Kasabov, 1996, p. 5).

Data analysis should consider information about data set size such as the number of data
samples and the dimensionality of the feature space plus the number of output classes. The
importance of data analysis concepts in the context of this thesis relates to wodelling and model

validation.

1.2 Modelling, Model Validation and Supervised Learning

Modelling in this thesis is described as finding a general solution in the form of a
connectionist system implementation (or otherwise module, structure, rules, algorithms or
formulas). General solution refers to a property of connectionist systems to generalise based on
learning from available data — being a problem space (Kasabov, 2007a) of a model — towards
autonomous operation on previously unavailable samples from the data universe.

Model validation, based on supervised learning (such as learning from an expert’s decision on
available data), in this thesis (Chapters 6 and 7) includes: split-sample (‘holdout’ method) and
cross-validations technique such as leave one out (LOO) and k-fold (Table III-2). Acquired
or available ‘raw’ data typically is analysed, transferred, represented within a particular context
before and after being processed by a connectionist system. Model validation indicates
processing accuracy relative to the available data — taking into consideration how well the

available data represents the data universe (Figure 111-2).
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Table I1I-2. Model validation decisions.

Validation  Pros Cons Decision
Train-test Larger portion of Not recommended for small To be used
holdout randomly selected test data set due to leaving on mid to
samples ensures insufficient training data set large data
overfitting prevention. portion and possibility of sets.
Expected better general random incidents, where
indication for accuracy training potion may not be
than LOO. representative.
k-fold Compromise between May result in incidents (see To be used in
cross- holdout and LOO. above), e.g. that some folds mid to large
validation could have only one (majority) data sets.
class for testing.
LOO cross- Maximising train portion May lead to model overfitting. To be used
validation  with small data sets. Computationally intensive and  on small
No random incidents, time consuming. data sets.

where an entire cluster
being randomly selected
for testing.

Not practical for large data
sets.

Linked to validation of the experiments in this thesis, standard approaches of model
validation such as those shown in Table III-2 provide quantification of classification accuracy
on subsets of the data universe utilising supervised learning technique(s). For cases where supervised
learning involves human/domain expert data, the classification accuracy is a measure of
agreement between human and machine (model) classification (assessment) based on
available data. The data size property is considered small, for example, if there is either a
small number of samples available for modelling or if the problem dimensionality (number of
features and output categories) is large relative to the number of available data samples. For
relatively small data sets modelling research should consider the selection of appropriate data
analysis and model validation methods e.g. clustering, overlapping investigation, data density
related to output categories and other techniques to estimate how well data may represent the
data universe and where possible an indication of model overfitting. During the modelling
activities it is possible that research activities (knowledge engineering) could lead to &nowledge

discovery — advancing the state of the art of a particular domain.
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2. Motion Data Analysis: A Connectionist Systems

Perspective

As introduced, motion data must be presented in a numerical data form to a connectionist
system. The origin of acquired ‘raw’ motion data may be diverse in nature and for a
connectionist model various transformation techniques may need to be included in
modelling. Different types of numeric data representing measured human activity may be
obtained from video, sound or any analogue or digital source. Sources include:
accelerometers, electromyography (EMG), retro-reflective 3D motion acquisition systems
and various other devices (Bartlett, 1996; Winter, 2009).

Data properties of particular relevance to this thesis include accuracy, sampling frequency
and relative cost of acquisition given the intended application scope (being augmented

interactive coaching infrastructure feasibility).

2.1  Machine Learning: Features and Output Classes

Depending on their form, different types of acquired motion data may need to be
transformed in order to be represented in a machine learning system. The process shown in
Figure III-3 represents general connectionist system modelling, starting with data
transformation from, for example, 3D multi-time series of body positions to a connectionist
system for classification purposes. Figure II1-3 represents: (1) Time-series transformation to
features; (2) Feature selection; (3) Further feature transformation and (4) Feature pattern
matching — data classification into representative groups i.e. output classes.

Data transformation resulting in reduced dimensionality of data/feature space is referred to
as feature extraction, while an investigative/modelling method focusing on feature extraction is
referred to as a feature extraction technigue (FET). A machine learning data format suitable for
discrete output classes may be given as successive integer numbers e.g. {0, 1, 2 ... #}. An
alternative approach commonly used in documenting owfput class and discrete categories,

closer to human reasoning, utilises the synonym output labels e.g. {‘excellent’, ‘average’, ‘bad’}.
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Motion Data

Feature | N
Extraction and Classifier Output
Transformation Class

=

Figure l1I-3. Transforming motion data (as multiple time series) to features for machine
classification.

If needed for classification, feature data may be further scaled within a new interval [min,
max]. Such data transformation from the original scale to another, predefined scale is referred
to as normalisation. For example, formula (I1I-1) shows linear normalisation of current value v,
into scale e.g. x,,. =0, x_. =1 (Kasabov, 2002, p. 299).

V=X,

= —mn_ s X € [xmin > X max ] (IH_l)

max X min

norm

2.1.1  Feature Selection and Extraction Techniques

As stated above, modelling in this thesis is considered to be finding a general solution in the
form of a connectionist system implementation (or otherwise module, structure, rules,
algorithms or formulas). Pertinent to this thesis, in addition to an overview of common
feature extraction techniques, Kasabov (1996, p. 89), provided three contextual insights: (1) A
perspective: "Extracting features is an ability of the human brain for abstraction" which
relates to linking qualitative analytical models and concepts (Table 1I-5) with feature selection
and transformation for machine learning; (2) Topics of pattern recognition, which may be
formulated as classification tasks i.e. associating a new input pattern with the closest similar
pattern(s). Similar to motion data and classification, patterns can be spatial (e.g. images,
signatures and various signs) and temporal (e.g. voice activation detection, speech
recognition, heart and brain signals); (3) In general for spatial and temporal signals, it is
common that temporal transformation methods are applied first, and spatial pattern
recognition is used afterward. This insight is also linked to analytical models in kinesiology
(e.g. Figure II-3 and Figure II-4), where the concept of temporal phasing and related
investigative directions maps to similar temporal and spatial problem areas introduced further

in this thesis.
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In this thesis patterns can also exhibit combined temporal and spatial properties (e.g. video,
motion data). Complementing techniques for feature extraction may utilise a ‘sliding window’
approach e.g. for energy detection before feature selection and extraction used in voice
activity detection (Singh & Boland, 2007) and region of interest (ROI) detection for temporal
or spatial feature analysis (e.g. video and image pattern recognition in fMRI, surveillance,
biometrics, tracking systems, vehicle registration plate acquisitions).

Recording expert’s assessment categories of observed (input) patterns is referred to as expert
labelling (human decision making process output). Combining such input and output data is
used for training (also known as supervised learning) and validation of a connectionist system
operation. The next challenge is in identifying and transforming motion data into machine
features that discriminate well-represented motion data patterns into their respective classes.
For example, before classifier modelling, analytical tasks would involve: (1) Identifying a set
of heuristics (e.g. expressed in cues, critical features, observation models in sports technique
analysis); (2) Data acquisition; (3) Visual grouping of human motion patterns into categories
such as ‘good’ or ‘bad’ (e.g. by expert’s observation/replay and analysis); and (4) Feature
analysis, feature selection and feature extraction techniques.

From a knowledge engineering discipline perspective, for each of the modelling steps shown
in Table III-3 a form of data analysis can provide useful insights to achieve desired outcomes

and generate new findings applicable to real world problems, based on machine learning.

Table 1ll-3. General challenges involved in modelling and prototyping.

Key step Desired outcome

1. Data collection. Sufficient variations and number of data samples to
test a set of heuristics or coaching rules.
Representative data set ensuring generalisation.
High accuracy, sampling rate and low noise.

2. Feature selectionand Small number of features (feature space

feature extraction dimensionality relative to available input data) that
techniques. discriminate well (low correlation) input to output
data.

3. Modelling a classifier.  High classification accuracy relative to human expert.
Low overfitting and good generalisation to future data.

Data analysis may include data visualisation tools (2D and 3D graphs) for visual pattern

recognition, density distribution (e.g. identifying balanced and imbalanced data distribution),
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and other existing statistical visualisation tools for clustering, correlation and variable space
transformations. For example, clustering techniques such as &-zeans (MacQueen, 1967), with
the number of clusters predefined before the start of computation or more recent evolving
clustering (Figure III-8), introduced further (in ECF, p. 82). Statistical methods for feature
analysis and transformation include: correlation ranking/filtering methods such as signal-to-
noise-ratio (SNR); feature transformation (from original variable space into a new one) and
variable ranking visualisation tools such as principal component analysis (PCA) and /linear
discriminant analysis LDA). SNR, PCA and LDA are included in the knowledge discovery tool
“Neuro-computing environment for evolving intelligence” (NeuCom), (Song et al., 2008) and

documented in (Kasabov, 2007a).

2.1.2  Traditional Filtering Methods
Traditional filtering methods are: #test, correlation, and ranking based on signal to noise ratio
(Kasabov, 2007a, p. 16). For example:

e Pearson correlation formula (Kasabov, 2007a, p. 16)

S (x, — M) (v, - My)

Corr =2 (I1-2)
n-)o. 0o,
Where:
x; (i=1,2,...,d;) ... input (independent) variables
yj (j=1,2,...,d;) ... output (dependent) variables
Mx ... mean of the variable x for class 1
My ... mean of this variable y for class 2
O ... standard deviation.
e Signal to noise ratio (SNR) formula
bs(Mx — M
SNRy = 905 M= My) (I11-3)
Gx + Gy

A hybrid approach utilised in (Goh, Song, & Kasabov, 2004) for feature selection and
ranking combined SNR (III-3) and Pearson’s correlation (III-2) formulae. Although similar
(in calculating a feature’s mean and the standard deviation), the reported computation time of
calculating the Pearson correlation matrix increases exponentially with the size of the data set.

The other reported advantage for cases where the number of variables can be reduced
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significantly is that the SNR method is more capable (than Pearson’s correlation) of detecting
and ranking a smaller number of significant variables. Goh et al. (2004) found that with an
increased number of variables, or in the presence of noise, the mean and variance of the rest
of the variables of other classes are dependent on the data dispersion and the number of
variables — which affects the SNR ranking of the significant variables due to the general
increase of noise in the data. Methods for variable ranking and feature space reduction are
important for this thesis given that machine feature space reduction may improve
classification results on available data sets. Methods such as SVM and other traditional
connectionist systems (Table I1I-4) can be utilized for comparison with modern evolving
connectionist approaches. The concept of a ‘filtering method’ has significance to this thesis
for the circumstances in which a designer needs to optimize problem space reduction with
reasonably acceptable classification accuracy for the available data set size and data precision

requirements/constraints (in terms of sampling frequency and resolution).

2.2 Connectionist Systems

Connectionist systems (COS), commonly referred to as artificial neural networks (ANN) can
be described as nature-inspired, highly interconnected parallel processing structures (Figure
I1I-4) for prediction (approximation) and categorisation (classification) tasks.

A generic artificial neuron as a processing unit has the following parameters:

e Input connections (x,, ..., x,) with assigned weights (»,, ..., »,). The input domain

is usually scaled using normalisation techniques e.g. linear normalisation (I111-1);

e Processing function, which is a functional composition of the input and activation

functions. The input function is usually assumed to be equal to linear combination

n
f(x,w) = in w, of vectors X and W, while the activation function a =g that
i=1

calculates the activation level of the neuron may be linear or non-linear; and
e Output function y = g(f) range is therefore limited to range of activation function
y=a, while the input function range, is expected to be a subset of activation

function domain.
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(a) (b)

Dendrites Neural Cell Axon Input Hidden Output
layer layer(s) layer

INPUT PROCESSING ouUTPUT

Figure lll-4. A nature-inspired generic model representing (a) artificial neuron as a processing unit;
and (b) highly interconnected parallel processing structures.

The first working model of ANN, named the ‘“Perceptron’ (Rosenblatt, 1958), was
introduced over a decade after the introduction of the first mathematical model of an
artificial neuron (McCulloch & Pitts, 1943). The Perceptron learning (training) algorithm
worked well on linearly separable data. For real world tasks, where data may overlap or not
be linearly separable, it was not effective. Three decades later, after a relatively slow start in
the field, two new ANNSs were introduced: the multi-layer Perceptron (MLP) with error
backpropagation learning algorithm (Rumelhart, Hinton, & Williams, 1986; Rumelhart &
McClelland, 1986) and the radial basis function (RBF) with a single intermediate hidden layer
structure (Powell, 1985, 1987b, 1987a). The new advancements and applications of RBF on
real world tasks (Broomhead & Lowe, 1988b, 1988a; Moody & Darken, 1989; Renals &
Rohwer, 1989; Mak, Allen, & Sexton, 1994) generated greater popularity for ANNs in general
from that point in time. Another popular ANN is the support vector machine (SVM),
(Vapnik, 1998, 1999), based on earlier theoretical studies (Vapnik & Chervonenkis, 1971).
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Table lllI-4. Conceptual comparisons of early ANN approaches, summarised from (Bishop, 1995;
Kasabov, 1996; Vapnik, 1998; Kecman, 2001).

ANN Characteristics Modelling issues Classification
visualisation

MLP  As RBF and SVM, it is also Relatively slow learning
universal function algorithm compared to o O
approximator, given RBF. Challenge in OO OO )
sufficient number of neurons  choosing the optimal 0o 000
and layers. Error structure. Local minima a O
backpropagation (steepest problem. oHpg U
gradient) learning. o U

RBF Learning algorithm is faster Choosing the number of
than MLP. Two-stage hidden layer neurons.
learning algorithm: Data analysis -
1. Unsupervised fitting unsupervised learning
classes with kernel functions  may be applied to
(Gaussian RBF) and identify the number of
2. Supervised, linear clusters — indicative to
optimisation of output number of hidden layer
weights. neurons.

SVM Learning optimisation aimed  Data analysis may help

to maximise the distance
between the class separation
function, ensuring improved
generalisation from initially
smaller data sets.

choosing a kernel
function for optimal
linear and nonlinear
separation tasks.
Decision boundary (- - -)
is represented as a
hyper plane in n-
dimensional space.

Note: “...different learning strategies do not have to lead to different models. It is not an easy
task to categorize various learning approaches because increasingly mixed (blended)
techniques are used in training today.” (Kecman, 2001, p. 171).

The SVM decision boundary function is optimised based on sparse available training data,
without a priori knowledge of the underlying probability distribution of the data universe. These
popular early models (MLP, RBF and SVM) are still in use, across a diverse and growing
range of disciplines (Schollhorn, Jiger, & Janssen, 2008), and are commonly benchmarked
against the variations of learning algorithms or newer COS models.

Advantageous properties of ANN applications relevant to the problems being addressed here
include: (non-linear, high-dimensional) approximation and classification capabilities, learning

from data, resilience to noise and generalisation capabilities, parallel processing architectures,
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extensive cross-discipline applications and independent methodology development for
learning algorithms and changing internal COS structures.

Major disadvantages of traditional COS include: difficulty in pre-selecting the system
architecture, catastrophic forgetting, excessive training, and lack of knowledge representation
facilities (Kasabov, 2002, pp. 24-25). To advance the discipline, the same author considered
these disadvantages and identified the need for improved connectionist and hybrid methods
and techniques for learning algorithms and system development under the banner of

evolving connectionist systems.

2.3  Evolving Connectionist Systems

The evolving connectionist systems (ECOS) methodology (Kasabov, 2002) includes the
evolving paradigm combined with the strengths of different Al techniques such as rule based
systems, ANN and fuzzy logic (Benuskova & Kasabov, 2007). Advancements in the fields of
CI, ANN and KE - resulting from Dr. Nikola K. Kasabov’s early work (Kasabov, Kim,
Watts, & Gray, 1997; Kasabov, 1998b; Kasabov, 1998a) — include: adaptation through
incoming data (dynamic changes of internal structure, set of parameters or by performance
optimisation of objective function of internal structure); and adaptive learning (on-line/off-
line, incremental and life-long) that is sufficiently flexible to learn new incoming data patterns
without fully destroying previously formed machine knowledge; rule extraction and
adaptation.

Combining fuzzy set theory (Zadeh, 1965) and ANN, Dr. Takeshi Yamakawa introduced the
‘Neo-fuzzy neuron’ and its hardware implementation (Yamakawa, 1990, 1993; Furukawa &
Yamakawa, 1995; Miki & Yamakawa, 1995; Yamakawa, 1996; Yamakawa & Uchino, 1997)
advancing the state of electronics devices and electronic regulators. From the connectionist
systems perspective, this breakthrough meant the availability of an explanation facility i.e. to
present internalised machine knowledge to humans in the form of if-then-else fuzzy rules.
Figure III-5 represents the concept of rule insertion and extraction from a fuzzy neural
network. Since the introduction of the neo-fuzzy neuron, “different types of fuzzy neural
networks have been developed and applied to different tasks. A fuzzy neural networks
(FNN) is a connectionist model for fuzzy rules implementation and inference.” (Kasabov,

1996).
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Struciure Learning
Knowledge | Explanation
i

Fuizy Rule)
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I-"r-::u,w::.:.lcing

Meuro-Fuzzy Model

Figure Ill-5. A general schematic diagram of neuro-fuzzy HyFIS (Kim & Kasabov, 1999; Kasabov,
2002), supporting both numerical data and fuzzy rules as internalised knowledge representation
facility.

One of the first adaptive fuzzy neural network (FuNN) architectures (Figure III-6) for
adaptive learning and knowledge acquisition was published in (Kasabov, 1996; Kasabov et al.,
1997). The past decade of Kasabov’s contribution (Watts, 2009) was referenced with the
word “evolving” systems rather than “adaptive”, with merits of a broader context’, meaning
systems that can change through time.

Relevant to this thesis, ECOS operation exhibits incremental/adaptive and life-long learning
— which allows machine knowledge to grow starting from a relatively small initial data set,
optimising the internal structure (extracting and storing internal structure into a database
where needed), and continuing to learn as more data becomes available. With the facility to
initialise ECOS with previously stored extracted knowledge, such ECOS can continue
operation in supervised mode, therefore autonomously ‘growing’ the system knowledge in
‘adaptive’ fashion as directed by a user and supplied data. In a fictitious scenario a user may
take a ‘snapshot’ of global assessment machine knowledge, apply new data with additional
assessment criteria (‘bending the rules’ for a specific targeted coaching session or individual
style) and undo/redo changes of machine assessment as needed. In addition to individual
style acceptance, in sport science it is also common knowledge that techniques and

performance evolve due to new findings and new sport equipment technologies.

¢ Different meaning than evolutionaty computation, associated with genetic algorithms and related techniques.
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(a)
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Figure 1ll-6. Foundations of adaptive fuzzy neural networks architecture. (a) Five layers FUNN structure
(Kasabov et al., 1997) and (b) a simplified four layers version of a FUNN structure (Kasabov, 1996, p. 321).
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2.3.1 Evolving Classification Function - Clustering based ECOS

Evolving Classification Function (ECF) is one of Kasabov’s examples of ECOS, used widely
to address various classification problems including those characterised with small data sets
(Bacic & Zhang, 2004; Ghobakhlou, Zhang, & Kasabov, 2004; Huang, Song, & Kasabov,
2005; Kasabov, 2007b; Kasabov et al., 2008; Kasabov, 2009). ECF is based on the evolving
fuzzy neural network (EFulNN) concepts (Kasabov, 1998b) supporting: (1) Adaptive FuNN
L.e. neuro-fuzzy architecture; (2) Clustering based evolving machine learning; (3) Incremental
learning with dynamic change of internalised structure; and (4) Rule extraction as internalised
snapshot of generalised machine knowledge.

As a four layer architecture, in ECF there are no fuzzy output nodes (see Figure III-7 and
comparison in Figure I1I-6) as each evolving rule-node (rule layer — 3) represents a cluster
centre of input vectors that belong to the same output class using a defined maximum cluster

radius Rwax with the use of Euclidean distance (Kasabov, 2007b).

Fuzzy
Inout member
npu nodes Rule nodes
nodes

. . (l \ Output nodes

Figure IlI-7. A simplified structure of an evolving classifier function ECF (Kasabov, 20073, p. 96).

The underlying evolving clustering method (ECM) for ECF is achieved in on-line, one-pass
dynamic distance-based clustering, which is suitable for tasks that require fast learning (as
shown in Figure 111-8 and Table 111-5) and recall/classification (Table I11I-6). The number of
clusters with their properties is unknown as it evolves during the learning task and the
algorithm does not keep any information of past input data examples (Kasabov & Song,
2002). As there is no predefined number of clusters in a distance-based clustering method the

cluster centres are represented by evolved nodes in adaptive mode (Kasabov, 2007a).
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For off-line learning tasks, internal clusters that are produced in one-pass can be further
optimised by applying ECM with constrained optimisation ECMc (Kasabov, 2002; Kasabov

& Song, 2002) for the purpose of improving generalisation and classification.

On-line Evolving Clustering Method

Incremental learning with dynamic change of internalised structure is described on a two-
dimensional example of incoming on-line input data sequence xy...xs. The sequence of
consecutive input examples and resulting change of internal clustering structure is described

as follows:

(a) (b)

* Xi: sample * Cc;": cluster centre + Cj: cluster

Rui*: cluster radius

Figure 11-8. The example of the evolving clustering process of ECM with input data sequence X;...Xg
(Kasabov, 2002, p. 41).
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(Figure 111-8 a) (Figure 111-8 c)

X1 ... Create a new cluster C10 (Figure 11I-8 b)  xs... update cluster Cl1 - Cl2
X, ... update cluster C; — C| Xs ... do nothing

Xs ... create a new cluster Cj x7... update cluster C; = C,

X4 ... do nothing Xg...create a new cluster C3O (Figure 111-8 d)

Xo... update cluster C; — C;.

As a result of more incoming data, some existing clusters will be updated through changing
their centre’s positions with increasing radii.

A cluster may be updated depending on the pre-set threshold radius D#hr, and the distance D
between the current data sample x. Used as default example of distance calculations

D, = ,j=12,...,n, the normalised Euclidean distance formula (III-4) in ECM is

x, —Cc,

further presented in (Kasabov & Song, 2002).

Table IlI-5. The ECF learning algorithm (Benuskova & Kasabov, 2007; Kasabov, 2007b).

1. Enter the current input vector from the data set (stream) and calculate the distances
between this vector and all rule nodes already created using Euclidean distance (by default). If
there is no node created, create the first one that has the coordinates of the first input vector
attached as input connection weights.

2. If all calculated distances between the new input vector and the existing rule nodes are
greater than a max-radius parameter R,,., a new rule node is created. The position of the
new rule node is the same as the current vector in the input data space and the radius of its
receptive field is set to the min-radius parameter R,,;,; the algorithm goes to step 1; otherwise
it goes to the next step.

3. If there is a rule node with a distance to the current input vector less than or equal to its
radius and its class is the same as the class of the new vector, nothing will be changed; go to
step 1; otherwise:

4. If there is a rule node with a distance to the input vector less than or equal to its radius and
its class is different from those of the input vector, its influence field is reduced. The radius of
the new field is set to the larger value from the two numbers: distance minus the min-radius;
min-radius. New node is created as in 2 to represent the new data vector.

5. If there is a rule node with a distance to the input vector less than or equal to the max-
radius, and its class is the same as of the input vector’s, enlarge the influence field by taking
the distance as a new radius if only such enlarged field does not cover any other rule nodes
which belong to a different class; otherwise, create a new rule node in the same way as in
step 2, and go to step 1.
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Table I1l-6. The classification algorithm (recall in trained ECF) (Benuskova & Kasabov, 2007;
Kasabov, 2007b).

1. Enter the new vector in the ECF trained system; If the new input vector lies within the field
of one or more rule nodes associated with one class, the vector is classified in this class;

2. If the input vector lies within the fields of two or more rule nodes associated with different
classes, the vector will belong to the class corresponding to the closest rule node.

3. If the input vector does not lie within any field, then take m highest activated by the new
vector rule nodes, and calculate the average distances from the vector to the nodes with the
same class; the vector will belong to the class corresponding to the smallest average distance.

The ECF initialisation parameters:

Rmax, Rmin, ... maximum and minimum clusters radii

Input MF ... number of fuzzy membership functions (e.g. 1,2,3, ...)
m-of-n ... see Table III-6, recall step 3 (e.g. 1,2,3, ...)

No. of epochs ... number of iterations for training (e.g. 1 for one-pass; and

2,3, ... n for off-line, multi-pass learning).

Normalised Euclidean distance E between points @ and # in #-dimensional space:

E-= /%Z(a b =[a—t (11-4)
i=0

Off-line Evolving Clustering Method Optimisation

For off-line classification tasks, an off-line version of ECM optimisation supports the internal

consolidation of machine knowledge. Given the general benefits of ECOS and the specific

natutre of incremental learning, the ECM enables mixed application/operation scenatios such

as: on-line, off-line, rule extraction (externally stored machine knowledge associated with data

and task) and then on-line operation on new data, which permits further internal machine

knowledge adaptation. For augmented coaching systems, this allows a coach to e.g: (1) Store

a ‘snapshot’ of trained machine automated assessment; (2) Apply new skill variation and

assessment criteria; (3) Augment machine knowledge if there is improvements in the learner’s

technique evident in the machine assessment; or (4) ‘Undo’ changes by abandoning new

technique changes if proven not successful.

A coach may also keep machine knowledge as their intellectual property if the system

assessment accuracy achieved — based on their supervised learning — is higher than others.

From a machine learning perspective, improved generalisation (as a result of internal
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consolidation of machine knowledge) may lead to improved classification performance
including classification tasks on small available data sets (investigated in Chapters 6 and 7). As
an example of the extension of ECM global off-line optimisation, an evolving clustering

method with constrained minimization (ECMc) was introduced in (Kasabov & Song, 2002).

Table 11l-7. The ECMc evolving clustering algorithm with constraint optimisation (Kasabov,
2007a, p. 65).

Step 1: Initialise the cluster centres Cc;, j =1, 2, ..., n, that are produced through the adaptive
evolving clustering method ECM.

Step 2: Determine the membership matrix U

Step 3: Employ the constrained minimisation method to modify the cluster centres.

Step 4: Calculate the objective function J

Step 5: Stop, if: (1) the result is below a certain tolerance value, or (2) the improvement of the
result when compared with the previous iteration is below a certain threshold, or (3) the
iteration number of minimizing operation is over a certain value. Else, the algorithm returns
to Step 2.

Where:

The objective function J:

J = Zn:Jj = Z Zux —chH ci=12,.p (I11-5)
Jj=1 j=1 \ xeC;

As tolerance value, the maximum distance from any cluster centre C¢ to the examples that
belong to this cluster is not greater than the threshold value, D#hr. Constraint D#hras a cluster

threshold value is defined as:

. Ce,| < Dthri=12,..p; j=12..n (I11-6)

The partitioned clusters are defined by a pxn binary membership matrix U, where each

element u, ; is1if the " data point x; belongs to cluster /; and 0 otherwise (Table I11-8).

Table 111-8. Assigning values 0 or 1 to binary membership matrix U.

FOR j=1,2,..n; k=12,..n DO
IF |, - Ce,| <[, — Ce,| AND V(j # k) THEN u, ; =1;
ELSE u,, =0; END IF

END DO
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Once the cluster centres C¢, are defined, the minimising values #; are derived for (I1I-5) and
(III-6). The iterative ECMc technique applies cluster centre optimisation based on
normalised Euclidean distance (III-4) as a measure between an example vector x;, belonging
to a cluster (;, and the corresponding cluster centre C¢, as described with the algorithm
(Table I11-7).

An ECMc addresses the problem of cluster centres not being at the centre of gravity due to
the unpredictable random nature of on-line input (Figure 111-8) (Hwang, 2009). The ECMc
optimises the existing cluster centres (derived from the online ECM algorithm) and moves
the cluster centres to the centre of gravity. Once the cluster centres are updated, the input

vectors are reallocated to the nearest cluster.

3. Open Problems from the Connectionist Perspective: A
View

According to Kasabov (1996, p. 15), good candidates for finding solutions to the main
problems in expert systerzs design are fuzzy systems and neural networks. The main problems

in building expert systems and a thesis perspective are summarised in Table II1-9.

Table 11I-9. Recommendations and thesis perspective.

Problem Recommendations and thesis perspective

1. How toacquire By visualisation and replay of motion data. Capturing implicit
knowledge from experts? expert’s knowledge by supervised learning.

2. How to elicit knowledge By investigating the rule extraction techniques and
from previously collected approaches that enable modelling of heuristics and coaching

large data? rules as means of eliciting knowledge and feedback from
connectionist systems.

3. How to represent By capturing motion data for the case studies that may
incomplete, ambiguous, include: Imprecision, small or unbalanced data set, presence
corrupted or of hard-to-quantify systematic error, data that are ambiguous
contradictory data and (e.g. not strictly adhering to isolated skill level), overlapping or
knowledge? transformations to feature data that are not intelligible to

human reasoning.
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Problem

Recommendations and thesis perspective

4,

How to perform Via developing the artefacts for human motion data modelling

approximate reasoning?  and data analysis relying on connectionist approaches. The
application of ANN is motivated by their ability to always
produce output on data that may be e.g. incomplete,
ambiguous or imprecise.

In comparing fuzzy systems and neural networks (Kecman, 2001, p. 11), fuzzy systems

require no data and can operate on structured expert’s knowledge typically codified as IF-

THEN rules, while artificial neural networks require no previous knowledge but they learn

from data — as measurements, observations or records of known data pairs. Inline with the

research questions of the thesis (p. 32), this indicates that it may be possible to build expert

system components that can capture an expert’s implicit knowledge via learning from data

and to perform approximate reasoning from measurements or observations.

Table III-10 addresses some of the known open problems in regard to evolving connectionist

systems (Kasabov, 2007a) to illustrate the perspective of this thesis, along with the classifier

modelling strategies adopted in this research.

Table 11I-10. Thesis perspective relative to a subset of open problems introduced in (Kasabov,

2007a, p. 29).

Open problem

Recommendations and thesis perspective

1.

“How do we identify the type
of problem space and the
dimensionality in which
processes is evolving”?

“Most of the models use time
as a linear variable, but is that
the only way to present it”?
“How do we define the best
model for the purpose of
modelling an evolving
process”?

With minimal or no prior work in this research domain, the
expert guidance and data are starting points in model
design and feature extraction and space reduction
techniques. Initial data set for a prototype system may be
captured at higher resolution than for the target system.
Reasonably good results with reduced dimensionality may
indicate discriminative properties of features in problem
space and indicate direction in practical implementation
design strategy.

This thesis focus is on temporal event recognition and
temporal and spatial (dynamic and static) feature
extraction techniques (Chapters 6 and 7).

From data, application and CS context. For initial data set
and prototyping (Chapter 6) there are different priorities
for modelling context (Figure 1V-4) than for larger and
possibly representative data sets (Chapter 7).
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Open problem Recommendations and thesis perspective

4. “Can asystem become faster Directing focus on high-level properties transferable among
and more efficient than diverse sports and related disciplines.
humans in acquiring For example:
intelligence, e.g. in learning Software engineering should promote design of reusable
multiple languages”? modaules, incremental design and flexible architectures

with upgradeable structural elements.

As concurred with (Knudson & Morrison, 2002), kinesiology
and biomechanics should promote inter discipline
publications including error and feedback taxonomies —
transferable to Cl data analysis and system design.

4.

Chapter Conclusion

Supported by the review of existing work including the gap in augmented coaching systems,

the following decisions have influenced the scope of the thesis:

Applying methods of AI/CI to automate elements of qualitative analysis of human
motion — known to be difficult to implement using traditional computational
approaches;

Selecting established models of qualitative analysis of human motion is based on their
potential to be transferred to general applications of CI and connectionist approaches
in data analysis and modelling of human motion. Similar to existing models and
systematic observational strategies (flexible and applicable to diverse sport domains),
a new systematic framework(s) including data and heuristic acquisition to machine
feature transformation as well as general connectionist methods for motion data
should be investigated and proposed,;

Existing selection of established models of qualitative analysis, applicable to diverse
sport disciplines to be utilised to: establish the research scope; provide rationale for
boundaties; and validation of detived heuristics;

Model validation — established in machine learning as a measure of
predictive/classification power — compared to a human expert or other reliable
comparative measure. For human (expert and external) validations including motion
data analysis and qualitative technique assessment, specialised visualisation tools
(Alderson & Elliott, 2006) are required. The appropriate validation method for

connectionist approaches is to be chosen based on data analysis, taking into
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considerations data set properties such as size relative to problem dimensionality and
data distribution;

e Need for flexible machine analysis of motion data. Investigation of aspects equivalent
to qualitative analysis include: machine implementation of common-sense heuristics,
descriptive assessment categories, coach’s cues, expert’s subjective criteria and
explanation of machine assessment/analysis back to human. Utllising supervised
learning technique and classifier modelling could lead to achieving motion pattern
matching to a number of discrete categories based on subjective criteria captured
from a domain expert/coach;

e Need for critical analysis to provide insights from numeric data such as data set
properties and knowledge discovery common to knowledge engineering discipline;
and

e Supporting discipline inclusion such as established software engineering principles on
designing reusable and interchangeable software components. Abstract system
function and concepts to be designed for human use including human computer

interaction principles.

Application prototyping should include critical elements required for validation of
connectionist approaches and illustration of possible scenarios for the development of

augmented coaching systems.

Insights from this thesis should lead to opportunities for continuing future research such as
instruction and intervention feedback to learners and the further bridging of CI with related

disciplines.
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IV. ANOVEL SYSTEMATIC FRAMEWORK FOR
MOTION DATA ANALYSIS AND MODELLING

Chapters 2-3 presented multi-discipline methods leading to a new domain in automating
aspects of qualitative analysis in sport and related disciplines.
In this chapter combining computer science with descriptive paradigms of natural science is
viewed as providing important links between CI, software engineering and modelling of
phenomena in their natural contexts. This chapter covers:
1. Critical analysis on human motion learning and connectionist modelling for the
purpose of bridging disciplines.
2. Methodology and a connectionist framework for creation of ACS and human motion
modelling and analysis in sporting activities. The key elements are:
e Augmented coaching system framework;
e Modelling and an incremental design framework for the instantiated multi-
modular data processing operating on evolving principles; and
e A generic research framework for cross-discipline motion data analysis and
modelling purposes. This includes: (1) spatial and temporal feature extraction

techniques and (2) strategic consideration of feature extraction algorithm design.

3. Mental models related to the following contexts: (1) classifier modelling properties,
(2) motion data acquisition for ACS and (3) coaching scenario linked to

personalisation aspects (e.g. goals, skill level, subjective and flexible assessments).
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1. Problem Analysis: Applying Computational Intelligence to
Kinesiology
The process of matching current data from the domain space to

the existing knowledge and inferring new facts until a solution in

the solution space is reached.

Nikola Kasabov, Inference of an Al system

This section provides problem analysis of modelling human motion in sporting activities and

the relationships among the concepts pertinent to augmented coaching.

11  Capturing Human Inference for Machine Learning

Similar to some degree to the processes used in human learning (Chapter 2, Table 11-3) of
motor skills, an automated system can be designed to assess motion in terms of its adherence
to a set of rules and ranges of correctness (Table IV-1). As pointed out in Dreyfus et al.
(1986), expert reasoning is not necessarily bounded by a set of explicit rules; rather the rules
that govern decision-making processes may be internalised in the human mind. Gestalt
cognitive principles, grouping based on proximity and similarity or other pattern recognition
properties of an expert’s mind can be captured to some degree as learning from examples —
commonly referred to in CI as (machine) supervised learning.

In a supervised learning scenario, the resulting expert classification is captured along with
each data sample and presented to a classifier, which after initial #uining may autonomously
categotise/ classify unseen or future data.

For relatively small and mid-size data sets, capturing an expert’s reasoning on examples (as
expert labelling) may be a more efficient approach in system design than trying to capture and
implement all ‘common sense’ rules guiding the expert’s reasoning. For relatively large data
sets, the output labels can also be obtained as measured outcomes from the system’s
operating environment e.g. impact angles, ball flight descriptive category. Utilising measured
KR instead of the experts” KP assessment may represent a practical modelling alternative to

predictions, heuristics/CR testing, and modelling and data analysis.
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The rendered rules governing machine classification may be extracted and presented in an
intelligible way to a human mind. Examples of situations in which machine-generated
knowledge may be challenging for a human to understand are when the number of rendered
rules may be very large; or when they are determined as a result of mathematical functions
(FET, space reduction method) or transformations (e.g. principal component analysis, linear

discriminant analysis, Chapters 3 and 7) that for the human mind are non-reversible.

111  Assessment by Similarity Comparisons

Just as humans generally focus their analysis on critical features of a specific motion event,
motion data analysis may include defining a range of correctness for a specific feature, mental
adherence to a perceived ‘ideal image’, comparisons to heuristic rules and various contexts

influencing the ‘big picture’ — a top down human assessment concept.

Table IV-1. Performance assessment and Cl.

Assessment Design/Implementation considerations

1. Observation and ‘ideal image’ ‘Top-down’ cognitive assessment. Gestalt principles.
comparisons. Implementation challenge, requiring CI/KE methods
such as connectionist systems, orchestrated structures
of multiple connectionist systems.
2. Adherence to descriptive Simplified set of ‘common-sense’ rules (heuristics)
heuristics comparison. referring to expert’s mental model and comparisons or
categorisations of performance. With combined
systematic observation strategies, problem area may
exhibit both ‘top-down’ and ‘bottom-up’ assessment
properties (see the next chapter).

3. Comparisons by ‘range of Predominant ‘bottom-up’ assessment. Implementation
values’. strategy may involve both traditional and ClI
approaches.

The abstract cognitive process embedded in a coach’s mind when diagnosing a motion event
may be described as comparative adherence to an ‘ideal image’. Arguably, such a capability of
the human mind enables the assessment of previously unseen personalised motion
techniques, as well as grouping based on previously seen similar motion techniques. Even
with previously unseen motion technique events a coach can ‘intuitively’ assess efficacy,
effectiveness and other assessment rationales. From a ‘big picture’ perspective a coach may
learn about a new personalised technique and provide diagnosis in a relatively short time.

From a design perspective (Table IV-1), evolving models are able to accommodate
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incremental learning of evolved techniques; although the machine implementation of abstract
cognitive processes is still a challenge for modern CI discipline. In contrast, in biomechanics,
the assessment of quantifiable performance properties, such as the correct or incorrect range
of measured values, may be considered relatively easy to automate.

The capacity to personalise both assessment and feedback should accommodate individual
variations in terms of ranges of correctness. Also accounting for the possibility of multiple
coaches’ diverse opinions (e.g. influenced by prior knowledge or the learner’s background),
personalisation may require data management functionality for diverse assessment criteria for

the same observed set of motion events.

112  Modelling Observations and Grouping by Similarity

In observing movements through the impact zone in diverse sports (Figure IV-1), some
sport categories tend to have more linear movement throughout the action zone (found in
javelin throw, pool/snooker) compared to other movements that are non-linear (including
the circular movements found in cricket bowling, batting or in racquet sports), while some

incorporate both movements (such as the martial arts).

/
\ S — - Time
/ \
/ ™~
g g /
/ IMPACT ZONE

BACK SWING FORWARD SWING FOLLOW THROUGH
PREPARATION RECOVERY

VARIATIONS,
DIVERSITY

Figure IV-1. Diversity of personalised technique through temporal phasing in diverse sport
disciplines. Abstract image showing variations between stroke, swing, kick or throw groups.
Observed individual diversity in characteristic groups’ stroke, swing, kick or throw is evident
through different temporal segments, but there is greatest similarity through the action/impact
zone.
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Action/Impact Zone Insights

In observing individual variations of personalised technique, the impact zone seems to be less
prone to such variations (e.g. immediately after the impact only the laws of physics apply to a
projectile/ball while continuing human motion has no further influence). With this
observation, as an initial hypothesis, the impact zone was considered as the best candidate for
evolving and traditional (non-evolving) global assessment modelling. Global assessment implies
a classifier (trained on a data set) that will work well — that is, it will classify accurately — on

the associated global wniverse data set (or equivalent wniverse-representative large data set).

In observing movements through the phase segments outside of the impact zone these tend
to be more individualised and generally evolving within a sport discipline over time,
indicating in part the problem complexity in attempting to find ‘the best assessment model’.
This observation indicates the necessity to utilise ECOS and other adaptive approaches

introduced in previous chapters.

Temporal segmentation for machine learning and similarity grouping is not restricted to
spotts incorporating an impact/throw/kick zone. It is also generally applicable to other
sports such as skating, skateboarding and skiing where the ‘impact zone equivalent’ or
‘action’ phase (see temporal and spatial observation model, Chapter 2) would map to the
observation of a sub-area of a turn, typically transitioned around maximum ground-resistant
force. The target line equivalent is intended direction or in some cases the down-hill line.
With connected turns, the end of each recovery phase is associated with an equilibrium state
leading to un-weighting, which is typical for the preparation stage of the next turn.
Generalising on multiple sport discipline rationale and experiments from the case studies
(Chapters 6 and 7), it a philosophical view expressed in this thesis that the impact zone and

(motion) action focus — as a new term — can be used interchangeably where appropriate.

11.3  Personalisation and User Profiles

In the process of acquiring skill proficiency over time (Table II-3), individual learners also
develop idiosyncrasies — strengths and weaknesses — that are typically addressed for
improvement through individualised coaching attention. From a temporal perspective this

leads to open coaching questions, in that in addressing one weakness (or strength) it is
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possible to diminish other related weaknesses, or on the contrary, it is also possible to
introduce a new set of weaknesses requiring more immediate attention’.

In terms of delivering personalisation, a modular and incremental architecture and
framework is required so that a system may adapt to different users and users’ profiles.
Moreover, a ‘uset’ can be a learner (performer) or a coach, the latter having responsibilities
regarding assessment criteria settings. Thinking of this issue in terms of connectionist
systems, ECOS is preferred for incremental, life-long learning for personalised classifier
models. With the opportunity to insert and extract machine knowledge, the interaction model
should include database functionality to hold various data such as user profiles, progress
history, skill level, CS exercises and global assessment criteria.

From the perspective of knowledge discovery investigation, classification models that can
provide machine knowledge (e.g. a set of rules) could be included in validation comparisons
with traditional, commonly benchmarked connectionist systems such as RBF, SVM, and the

like.

1.2 Categorising Performance: Human and Machine Learning

In the absence of more direct measures, a qualitative assessment may be quantified as
‘performance categorisation’ by relying on an expert’s mind. From the perspective of
connectionist systems, a classifier for ‘performance categorisation’ tasks should be modelled
to operate depending on the specific context of human motion activities and rationale of the

problem being addressed.

1.2.1  Rationale for Proposed Modular Assessment
A human-intelligible assessable element — instantiated here as a coaching rule (CR) — may be

implemented from one or many heuristics (Figure IV-2).

7'The existence of learnet’s errors and their relationship may be described as a “chain of errors”.
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Coaching
Rules

Heuristics

#1
#2

#n T #m

Figure IV-2. ‘Many to Many’ relationship between sets of heuristics and coaching rules.

For example, a heuristic called ‘swing plane’ (as a loosely described heuristic concept) could
be transferred into similar and yet distinct coaching scenarios (and e.g. task sheets Figure
II-7) for baseball, golf or hockey. Both heuristics and coaching rules (more specific

description associated to a sport domain) are associated with motion data processing — with

assessment automation based on CI approaches.

Common to the experiments conducted in this research is a design rationale supporting the
incremental and modular design of ML assessment units — or modules — that collectively
contribute to the assessment of a wotion event’ | motion sequence. Such modules are referred to

either as a Motion Heuristic Evaluation Module MoHEM) or as a Coaching Rule Evaluation Module

(CREM) — as depicted in Figure IV-3.

Motion Data

Event | N Feature
: Extraction
Extraction .
Techniges

{

Classifier

Figure IV-3. MoHEM/CREM design and modelling stages.

Acquired motion data are imported and processed to extract a motion event, in the form of a

temporal Region of Interest (ROI). The ‘Feature Extraction Techniques’ modelling stage

8 Characteristic sequence pattern of e.g. body movements
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involves the processing of filtered ROI data that are further mathematically transformed as
discriminative numeric properties describing a set of observed critical features (linked to

static and dynamic observation focus) forming the input to the classification stage.

12.2 Modelling a Classifier
Classifier selection for MoHEM/CREM implementation depends on the application context

for a particular motion data set.

CLASSIFIER MODELLING

Classification
Data Analysis Context/Scenario Connectionist Stytem
Data
Representation
Evolving Non-Evolving
Coaf,:i%psigaﬂo Global (Generalised) Hybrid Neuro-Fuzzy
Personalised System

Balanced, Unbalanced

Data Distribution Problem Space Dimensionality Relative to

Data-set Size

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
i i
, Speed (one-pass vs Number of Parameters . L i
! multipass) and Optimisation Learning Curve - Classification Accuracy | !
i i
1 1
i Rule Extraction and Training/Learning and Small Data-set E
! Insertion (Cross)Validation !
i ‘ Mid-size Data-set i
1 1
| Robustness to Relative Large Data-set |
! Catastrophic Forghetting Normalisation Accuracy 9 1
i Requirement i
' Pruning Is data-set representative, Over-fitting Local Min/Max Supervised, unsupervised, semi-supervised, '

likely to increase in size Concerns batch/off-line learning, on-line/incremental/

Concerns . . ; .
lifelong, reinforcement combined learning

Is data-set overlapping

Figure IV-4. Mental model’ — classifier modelling context and investigation directions. For simplicity,
possible relations among diverse properties are omitted.

Although some classifiers are more popular than others for a given classification problem
area, at present there is no ‘best’ or ‘single solution’ universal classifier. The complexity of the
classifier selection problem is exemplified by the mental model in Figure IV-4, and the need
for optimisation of various classifier properties for the task. The following two examples

illustrate the differences in possible strategies for particular modelling contexts:

? Linking relations are omitted for simplicity.
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1. A labelled data set estimated as mid-size to large, with extensive coverage of the
possible data universe for a characteristic motion event. Labels are obtained
automatically as measured categories of KR outcomes. For the purpose of e.g. split-
sample or holdout validation, the data set is to be reshuffled and divided into training
(e.g. 80-90%) and testing (e.g. 20-10%) portions. Both data set portions are to be
normalised within diverse ranges to suit a number of connectionist methods. If
needed for a particular connectionist method, parameter optimisation techniques may
be employed. Both evolving and non-evolving connectionist methods should be

considered for a global assessment classifier module.

2. Small labelled data set, possibly with coverage of general novice motion technique.
Labels are obtained as discrete categories from an expert’s assessment of KP. Pre-
processing data analysis may include an interview with the expert to find out e.g. how
close the output classes are or any other similarity grouping that may influence the
expert’s internal decision boundaries. Similar to Gestalt principles (of similarity and
proximity), human experts are able to visualise or conceptualise clusters of similar
motion event groups, without detailed analysis. Such ability potentially may be
leveraged to overcome the limitations imposed by small data sets (Bacic, 2008b);
hence the benefit of expert input via interview. Initial prototyping is likely to provide
an indication of classification accuracy for a larger data set. Given that we cannot
know for certain that a small data set is representative of the associated data universe,
classifier selection may also include models with few optimisation parameters in
addition to commonly used classifiers in model benchmarks such as RBF, SVM and
similar. To avoid possible validation incidents where, for example, an entire cluster is
randomly allocated to the testing portion of a data set, the lave-one-out (LOO) or
other cross-validation techniques are preferred over split-sample validation (as described

in the large data set example above).

1.2.3  Need for Personalisation, Coaching Scenarios, Subjective and
Flexible Assessment

The range of examples from different profiles’ perspective and contexts (Chapter 2 and

Table 11-4) implies a requirement for personalised and flexible assessment criteria to support
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validation of a wide range of possible specific targeted activity. A proposed link (Chapter 2,
Table II-3) between Al and an established categorisation of human skill implies a
requirement for preset programmes to match a certain skill level. Preset assessment and
feedback programmes (as specific targeted activities) can be applied: (1) to a group of learners
or (2) as general (global) assessment of some of the heuristics that might be typical for a

particular skill level or applicable across multiple skill levels.
Coaching Scenario

The concept of a cwaching scenario (CS), shown in Figure IV-5, enables the user to address

variable assessment criteria within specific circumstances.

COACHING SCENARIO

Evaluation Scenario and
Assessment Criteria

Skill Level e ‘,

| Assessment |

| |

Personalised Global ! - |
: CS Group CS (Generalised) CS : Classification || Prediction /I :
: N _________ _/
Safety/Inj Hidi R '/__L____S___I___\\E
| | Performance afety/Injury iding esponse | arge Samples | | i
| Prevention Intention Time | Observation |
5 — . | [Mid-size Samples | | |
i | “Citius, Altius, " . .- ' . :
Fortius” Cognitive Load | | Efficacy, Efficiency ! Observation !
i Consistency | Small Samples | |
; Robustness, Agility, ACCUrac Stvlistic Constraints ! Observation ¥
i | Stability/Balance y ylistic Lonstraints ~__ __________ I
i Simplicity/Complexity i
Recovery, Court/Space Coverage Isolated Motion Emphasis/Focus

Compensation, Variation Adaptation Forgiveness /Room for Error

Figure IV-5. Mental model — coaching scenario applications and augmented coaching contexts.
Diverse sports may focus on particular goals to be optimised and prioritised in diverse contexts.

Grouped items (Figure IV-5) have a degree of inner connections specific to a connectionist
systems methodology. Non-grouped items are associated with diverse and flexible criteria

linked to the goal(s) of a movement.
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For example:

1. In the coaching process (Chapter 2, Figure II-2) a coach having a set of goals may
plan to set or impose a controlled environment (e.g. a practice drill) for a given
player, which would help them to focus on a particular aspect of the player’s skills,
improvements and adaptations.

2. In competitive circumstances, a coach may produce a SWOT analysis to establish a
(flexible) set of goals. A learning system can also be trained to perform classification
based on subjective criteria (e.g. player’s skill level).

3. In sports or injury recovery circumstances, a coach may collaborate with a
physiotherapist to gradually introduce in training a set of achievable goals, including
helping a player to avoid learning ‘bad habits’. In another scenario a player in
recovery may be periodically assessed against milestone criteria — as part of a ‘back to
competition’ management strategy.

4. In addressing ‘hard to unlearn’ coaching challenges, where a coach may design a set
of practice drills, which would help to correct ‘bad habits’ or ‘unlearning’
phenomena.

In general, CS is linked to the concepts of: sub-space optimisation, orchestration and multiple

assessment function of MoHEM/CREMs.

CS for Controlled Open to Closed-Skill Training Contexts

For both open and closed-skill sport disciplines, CS may also be linked to focus a learner’s
attention on a single heuristic or on a subset of available coaching rules. For open-skill sport
disciplines, CS goals may also be linked to isolating/controlling the open natutre aspects to

reduce variation complexity from open to closed-skill sport discipline (Figure IV-0).

Personalisation and Validation — Implementation Perspective

In order to address the necessary validation of expert labelling and possible coaches’
disagreements, it should be possible for an individual coach to train the system and generated
machine knowledge would be managed externally. This can be achieved by ECOS
capabilities of rule extraction/insertion (see Chapter 2) and by a system function enabling
coach personalisation data management. Similar off-line operation system functionality can
be extended to store learners’ prior motion data and therefore to compute individuals’

progressive achievements.
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Karate, Golf Golf (driving
Sg)s(:(negzball Skiing r2nge)
Tennis ' Figure skating Archery

CS/Dirill based
practice

Open Closed

Figure IV-6. Role of coaching scenarios and drill training to focus on diverse goals or to simplify
external (open) factors including technique aspects, gauging or reducing interaction with the
opponents, environment or team members.

Note: The coaching concept Figure V-6 is not viewed as the opposite to a concept of ‘a
challenge during the practice to be harder than in competition’ but its purpose is to
complement and add variation and use of augmented coaching technology.

2.

Augmented Coaching System Framework

The key components of ACS (presented as a block diagram in Figure IV-7) based on CI and

evolving connectionist approaches are:

The learning system, a central component responsible for automated diagnostic
functionality equivalent to qualitative and quantitative analysis of human motion.
Taking input information in the form of motion data, it performs event recognition,
feature extraction and assessment diagnostic function based on supplied features.
The output of the learning system is conceptualised as dzagnostic outputs,

Supervised learning of the learning system is based on previous ie. historical
motion data assessment by a coach (domain expert). Lifelong, incremental learning is

enabled by applying evolving connectionist approaches;

Intervention and environment control is considered as a component that is

extending the feedback optimisation function'’;

A coach should be responsible for:

10 Disambiguation note: From software engineering perspective, intervention is viewed in this thesis as a module connected
to the feedback module. In kinesiology feedback is considered as part of intervention (Chapter 2).
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o Identifying the goal(s) of movement appropriate for the learner’s personalised
profile, which is to be assessed based on subjective criteria. Subjective criteria
are therefore based on: the goal of the movement as well as the subject’s skill
level and other personal idiosyncrasies.

o Interacting with the learning system, rules, and feedback linked to subsequent
intervention and control components;

e Learner, who is learning by performing a motion-oriented task (sport activity), which
is captured, assessed and returned as a set of multi-modal instructions intended to
improve a particular aspect of that captured motion for recurring activities. Multi-
modal instruction should be based on educational principles combined with
appropriate supporting ICT infrastructure; and

e Rules, extracted machine rules (Chapter 3) of the learning system’s inference as a
snapshot in time that may be reflect global, group or personal assessment based on

subjective criteria.

. INTERVENTION i INTERVENTION & '}
= i ENVIRONMENT CONTROL
. FEEDBACK e N
DIAGNOSTICS DIAGNOSTICS { T
-
| JN A —
MOTION {  FEEDBACK !
> "DATA ™ LEARNING SYSTEM L OPTIMISATION
i1 [ W '
poTTTTITITIEE IR | .”’ i:
LEARNER _{ PERSONAL i RULES i
E IDIOSYNCRASIES :: HISTORICAL .‘\ ______________

.

DATA

o

COACH

Figure IV-7. Augmented coaching systems. Evolving synergy between human learning and machine
learning systems.
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Chapter IV

Augmented Coaching Model Design

In general, an ACS should process motion data captured during the observation task,

evaluate human performance, compute a diagnosis, and provide feedback linked to a desired

intervention.

31

Learning System Architecture

The learning system proposed here (Figure IV-7 and Figure IV-8) supports the following

concepts and capabilities:

Modular assessment of quantitative and qualitative motion data analysis. This
includes: heuristics, coaching rules and characteristic motion event pattern
recognition. The CI approach advocated in this thesis enables data processing of
combined body parts (e.g. pelvis, arm and shoulder action);

An end-user can see diagnostic outputs as individual assessment results of individual

diagnostic elements as CREM/MoHEM mapped to CR or Heuristics;

Personal idiosyncrasies, skill levels and flexible assessment criteria are accommodated
by ECOS training or insertion of prior extracted rules stored as machine knowledge
(also called an expert knowledge base). Incremental learning of trained modules is
facilitated by ECOS; and

For the evolving nature of sports, modular components (e.g. MoHEM/CREMs) can

be incrementally developed then added, deleted or replaced in a system.

The ‘Motion Event Extraction’ module (Figure IV-8) provides characteristic event-type

recognition functionality. The ‘Rule Module Selectot’ is responsible for enabling/disabling

MoHEM/CREMs by utilising uset-configurable selection or input data associated with

recognition of motion event type.
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LEARNING SYSTEM ARCHITECTURE
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Figure IV-8 General learning system architecture for on-line and off-line data processing in
augmented coaching.

3.2  Generic Modelling Framework for Augmented Coaching

Collecting context, insights and knowledge of a motion activity are considered as the key
elements of preparation for prototyping or incremental model/system design.
For prototyping (Figure IV-9), the following assertions are considered:

e Automation goals are identified to form ML transferable hypotheses linked to

heutistics and CR;
e Dxpert-based event or activity recognition is to be recorded with motion data;
e LEvent recognition automation may not be included in the initial model;
e A motion event is considered as a data sample;

e The initial data set should contain a variety of motion events for targeted skill level(s)
comprising heuristics and coaching rules. A variety of captured motion events should
be included in data analysis in terms of output class (output label) distribution; and

e Initial modelling is focused on identifying (machine-transferable) features, followed
by feasibility investigation and design optimisation strategies that may be subject to

cyclic improvements.

Techniques for implementing machine feature selection and transformation include both

qualitative and quantitative approaches.
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Figure IV-9. Generic modelling, prototyping and investigation stages. Stages on the left hand side
are matched with KE/Cl approaches and potential challenges.
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3.3 Modelling Framework for Modular Design of Augmented

Coaching Systems

The intent of the instantiated framework supporting the modular design of an augmented
coaching system is to: (1) Automate components responsible for performance assessments;
(2) Minimise data format dependence by separating processing into specific stages, in which
each stage has a high degree of reusable purpose; and (3) Make modular components to
some degree transferable among sports and related disciplines.

In this thesis, to support/augment human qualitative analyses, the notion of the Coaching
Scenario (CS) is used to unify the architecture (described in Chapter 5) across the processing

layers and user interface (UI).

The derived ACS framework (Figure IV-10) is focused primarily on incremental
implementation of MoHem/CREM with the goal of automated motion assessment/analysis.
The main elements of the depicted research activities within the proposed prototype
framework (Figure IV-10) are as follows:

e The initial heuristics collection stage is mapped to a targeted assessment skill level
(e.g. novice to intermediate);

e The follow-up implementation feasibility stage for the chosen heuristics includes data
collection with initial consideration of accuracy, sampling frequency, degree of
obtrusiveness and relevant issues drawn from multidisciplinary data analysis;

e Resulting outcomes include individually codified heuristics as assessment
components that collectively contribute to a global assessment of an observed
motion event. The proposed system architecture (see Chapter 5), including its on-line
and off-line processing variations, permit the adding, removal, replacement and
amendment of MoHEM/CREM modules, supporting cyclic research and
implementation; and

e TFrom the range of possible heuristics, candidates appropriate for automation of an
observational model are determined, the most important factors influencing
heuristics implementation priority being viewed as: implementation complexity, the

coaching scenario (CS) context and the ease of validation.
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PROTOTYPING FRAMEWORK

Collecting B - Scientific (Kinesiology/Biomechanics origin).
HEURISTICSorCR | - Empirical (Experts interview, Observations,
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\ 4 ™
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I
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Figure IV-10. Research framework illustrating modular MoHEM/CREM design, combining multi-
disciplinary research methodology. The visualisation tools are required for successful data analysis,
expert assessment/supervised learning, modelling and overall prototyping stages.

Each MoHEM/CREM functional design originates from either observing an expert’s efforts,

empirical sources (e.g. indicated by a coach), or from scientific origin (e.g. biomechanics or
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injury prevention). The need for minimising data dependence in the design of
MoHEM/CREM is justified by a desite for modular transferability/reusability across
disciplines and the fact that any given target system may have different data restrictions
compared to its prototype. A KE approach to machine implementation of heuristics and
coaching rules combines utilisation of generic with modular development approaches (as
Figure IV-9 utilised in golf case study, Chapter 7 and Figure IV-10 utilised in tennis case
study, Chapter 0).

4. Generic Framework for Motion Data Analysis and

Modelling

Complementing sporting domain knowledge, the proposed framework (Figure IV-11) for
motion data modelling specifies the order of activities and associated analysis methods for

machine processing, covering low-level to high-level data processing contexts.
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Rules Extraction

Monitoring Performance

and ) Diagnosis
Learning Improvements < )
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~

Figure IV-11. Machine Learning (ML) augmented context. Raw motion data is analysed, transformed
into ML features, further analysed for classification in diverse information processing contexts.
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Knowledge Discovery (KD) may be obtained as a result of extracted classification rules from

a validated model on the available data set.

4.1  Motion Data Modelling: Analysis and Transformations

The systematic approach of motion data modelling focused on analysis and transformation —
as a conceptual framework — is provided to support the transfer of aspects of qualitative
analysis and an augmented coaching process into a machine-based system.

In this thesis, the abstract, qualitative component of human thinking processes underpinning
the creation of mathematical transformations of motion data required in feature extraction
technigues (FET) is perceived as difficult to automate (Figure IV-12 and Figure II-1). For
example, the qualitative component includes the domain insights and human descriptive rules

influencing inference for a given problem.

/N

Automation Edugétio%a\l and coaching strategies =~ DECISION & ACTION
tasks /
~ // Métion context recognition ~ INTENTION RECOGNITION
Q PLAYING STYLE
/ / \\ Intervention
/ Feedbé&l\< optimisation
/ . . \ PLAYING TECHNIQUE
y Modular Diagnostics \
// Simple Assessment \\ PLAYING SKILL LEVEL
// Event recognition \ MOVEMENT PATTERN
RECOGNITION
N
Ay 7

Motion data required for connectionists
approaches

Figure IV-12. Automation tasks in the context of Al and Cl and associated data quantities.

Complementing qualitative approaches, the CI discipline with its bases in quantitative
epistemology may extend the data analysis to incorporate further feature transformations and
evaluation related to selecting features e.g. to identify the feature subset with the most

discriminant capabilities for classification from an available feature set (as demonstrated in
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Chapter 7). Feature selection (FS) in the modelling of an automated processing context may also
involve a decision on what are reasonably good classification accuracy levels relative to
processing demands. In order to automate aspects of augmented coaching, the processes
through which a machine and the human mind perform classification of observed motion
data events may not necessarily involve use of the same feature space or decision boundaries
(Duch & Grudzinski, 2001; Duch, Setiono, & Zurada, 2004), as demonstrated in Chapter 6.

The abstract high-level transferable concepts, cross-disciplinary elements and the conceptual

framework linking motion data and modelling strategies emerged from both case studies.

4.2  Taxonomy of the Research Fields and Associated Data Processing

Complementing the investigation of motion acquisition and data pre-processing, this work is
also founded on the synergy between: (1) The augmented coaching context and goals of
modelling human motion activities; and (2) Possible issues arising in, and the rationale for,
the data analysis, pre-processing, preparation and implementation of diverse feature sets for

soft computational or other analytical processing of low-level motion data (Figure IV-13).
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Figure IV-13. Taxonomy of the research fields and topics related to data analysis and modelling of
human motion activities.
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The ‘bottom-up’ approach includes an investigation of what is required to produce the
isolated and human-comprehensible elements of assessment in the context of motion data
processing. Introduced here, the concepts and methodological directions transferable to

diverse sport domains are validated over two diverse case studies (Chapters 6 and 7).

4.3 Motion Data Modelling and its Impact on ACS Design

The taxonomy (Figure IV-13) depicts a ‘data flow’, incorporating both novel and existing
concepts, drawing on multiple disciplines involved in distinct processing stages. In each stage,
the symbol & indicates a complexity increase combined with the need for more data,
previous and additional concepts and modelling requirements.

A key distinction made in this thesis is the separation of Tow-level’ and ‘High-level’ processing
and the modelling of the processing stages (Figure IV-13). All stages can be seen as layers of
implementation complexity of augmented coaching systems and in the area of (machine-

based) knowledge discovery of the activity of a performer.

One of the boundaries of this thesis is the stance that a learning system’s output is viewed as
feedback. In this thesis feedback is restricted to a diagnosis which is constituted by a set of
automated assessments on supplied motion data.

Another boundary related to the implementation and feasibility aspects of the approach is
linked to physical data acquisition and motion data format and nature (Figure IV-14).
Although the motion capture topic is fundamental to this thesis, it also extends well beyond
the scope of this thesis. That said, it is necessary here to consider the issues of motion data
capture constraints, pre-processing and implementation as relevant to higher-level motion

data processing.
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MOTION CAPTURE (MoCAP) SYSTEMS
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Figure IV-14. Mental model — motion capture systems (MoCap) properties and usability context.
The included items are identified taking into account the issues emerging from the case studies for
the scope of bridging multiple disciplines relevant to this thesis.

Augmented coaching system design is bounded by restrictions requiring tradeoffs and

optimisation of the requirements and properties of a motion capture system, depicted as a

mental model in Figure IV-14. Although the elements of the mental map are interconnected,

the following two examples illustrate their importance from different perspectives:

e Motion data type with precision and sampling frequency is important for modelling

motion data and the ability to extend system operation function; and

e The degree of obtrusiveness is important for the usability of an augmented

coaching system and software engineering discipline.

113



Chapter IV

4.4 The Insights in Transforming a Coaching Process into ACS

Design and System Operation

A coaching  process  (preparation,  observation,  assessment/diagnosis  and
feedback/intervention) is typically cyclic in nature. Within each training session, a task and an
observation goal may be the same as in a previous cycle (e.g. for incremental improvements),
or it may be different (e.g. oriented towards a new coaching goal). Before an exercise a coach
would inform the learner about the next task, which could be from the learner’s perspective
an intervention addressing a prior error/weakness or (re)introducing a new lesson or goal. It
may also be a description of expected adherence to a prepared lesson from a learning
programme or a step of an exercise plan, working on competitive strengths prepared by a
coach. The observation and evaluation that can then occur during the learner’s task execution
can be considered in terms of diverse criteria. For example, the evaluation criteria for
beginners may not include consideration of fine movements but it may focus only on
fundamental pattern/skill activity (e.g. large muscle group activity or balance related aspects —
stance and weight-transfer relative to action zone). In another CS focused on pressure
drill/training, a coach may initially focus their evaluation attention more on foot work and
balance and less on the resulting outcome accuracy.

Activity in the preparation stage would involve determining appropriate details for both the
CS and management of the experiment e.g. environment considerations, protocol for
conducting the experiment, recording the observation, verifying the recording, followed by

motion data post editing/pre-processing for low-level processing stage.

4.4.1  Task Challenges
Given the exploratory and cyclic nature of the proposed investigation and framework (Figure
IV-9 and Figure IV-10), it is not possible to predict with complete certainty the details of
each step of the design and all associated design challenges. In transitioning from the generic
framework (Figure IV-9) to the modular design framework (Figure IV-10), the important
components of KE/CI are explained further:

o Knowledge of activity and data capture — challenges and insights; and

e Feature selection and extraction techniques influencing classification results —

strategic design properties.
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The Table IV-2 summarises the anticipated tasks and associated challenges of the

incremental design paradigm.

Table IV-2. Tasks and challenges summary.

No. Step Task

Challenges

Collect heuristics.
Select model for
qualitative analysis.

1. Preparation

Collect data set for
modelling.

2. Observation

Select feature set, feature
selection or extraction
technique.

Select classification
algorithm and
optimisation.

Select event extraction
algorithm.

3. Evaluation

Weighting heuristics relevance and prioritising
critical features for skill level.

Addressing possible shortcomings, combining
or extending model to be suitable for ML.
Plan to observe most important CS
Experiment setup, instruments, acquisition
protocol. Subject concerns.

Acquiring representative data set with good
generalisation

Data analysis and visualisation.

Visualisation for both machine learning and
qualitative analysis.

Highly discriminative property for
categorisation (machine inference).

Test most significant first and if necessary to
improve add less significant features.
Avoiding (where possible) overlap between
groups and highly correlated features.
Choosing classification algorithm - criteria:
evolving, accurate, computational cost, ability
to extract rules, learning via rules or data and
rules, can knowledge (set of rules) be inserted
and extracted?, etc.

Choosing validation related to data set size and
problem space dimensionality

Event extraction criteria: high detection rate
vs. false positives

4.4.2

Knowledge of Activity and Data Capture — Challenges and Insights

Imposing a high-level of control over the experimental setup is important for ensuring
rigorous data acquisition, observation (Knudson & Morrison, 2002), incremental acquisition
(including merging data for further ECOS training) and further modelling as well as reducing
potential error components. For example, a part of the coaching instructional video set
comprising the video-based augmented golf coaching system ("Leadbetter interactive," 2005)

specifies a desired experimental setup, involving camera settings and placement relative to a
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subject. Associated with the use of 3D retro-reflective markers, issues to be addressed
(Chapter 6) include: proximity clearance e.g. causing marker tracks to be swapped; number of
markers e.g. the physical requirement for at least three markers per isolated moving segment
if internal rotation is important or two for displacement only; markers attached to non-bony
landmarks may provide noise component due to muscle and skin volume — tissue movement
travelling in a wave-like pattern noticeable at higher frame rates.

It is generally desirable to capture data at higher precision and frequency than is necessary for
the target system. This enables incremental model design using the same available data set so
that it may be analysed with increasing sophistication as new techniques emerge. The same
rationale for incremental model design applies for the use of additional markers or for space

reduction of machine features.

4.4.3  Feature Selection and Extraction Techniques Influencing
Classification Results — Strategic Design Properties

The abstract mental processes executed by a coach in identifying hypotheses, heuristics,

coaching rules and the associated critical features to be used for modelling (Figure IV-15) is

not perceived as a linear flow of thoughts that would be relatively easy to automate. For

example, a range of possible trade-offs and conflicting design constraints must be considered

(Figure IV-16) — as a part of the strategic design process, influencing feature extraction and

selection — before modelling a classifier.

Expert FET -

CR . FET , . Combining o

definition Observatpn Data context FE coding tes_tlng_, features Modelling Vahgatmn|

selection and grouping ) analysis ) and design and_ _ validation and expert's / classifier .a’:n retsutlts
to output rationale optimisation/ and data interpretation
classes graphs

Reassessment and target
platform optimisation

Figure IV-15. Heuristics inspired coaching rules (CR) modelling. Individual or adjacent stages may be
subject to reassessment and cyclic improvements.

The machine feature sets associated with a given heuristic or a coaching rule may vary when

experimenting with diverse requirements or when considering different design stages such as:

e Proof of concept, hypothesis testing;
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e Prototyping;
e Experimental and exploratory design; and

e Target platform design.

4.4.4  Strategic Design Rationale for Feature Extraction Algorithm

Optimising for diverse feature selection and extraction algorithm variations would likely to
result in diverse feature sets alternatives — which after being supplied to a classifier, are likely
to produce different classification results. Making informed design decisions may lead to
knowledge discovery from motion data (see Chapter 6). Surrounding constraints influencing
optimal strategic design of feature selection and extraction techniques for different

implementation contexts are shown in Figure IV-16.

To achieve optimal classification performance within given circumstances for a target system,
ML space reduction is justified with optimisation of surrounding constraints, and strategic

design rationale (Figure IV-16).

Coach’s empirical rules, opinions and
decision boundaries

Fast computation Small data set

Strategic
level

Discriminative feature Sampling constraints

set property

Noise presence
Human intelligible

< b

Feature Extraction
Algorithm design decision

Space reduction

Figure IV-16. Strategic design rationale influenced by surrounding constraints — resulting in problem
specific feature extraction algorithm. Implementation variations of algorithm may be considered at
early design stage for modification purposes when the circumstances of the context change.

The following insights are intended to illustrate that elements of the prototyping investigation
including coach’s empirical rules, opinions and decision boundaries are qualitative in nature

and evolving i.e. subject to change. Although error diagnostics are less likely to be disputed,
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the priority of intervention and feedback opinions may be subject to disagreements. The

design rationale may be illustrated by the following questions and reflections:

Can a system provide flexible and personalised assessment?

A small data set may require investigation whether the available data is representative

in relation to the data universe or if the available data set is unbalanced;

Sampling frequency or accuracy may be too low i.e. may not be suitable to provide
data for particular coaching rule assessment automation. With future data becoming
incrementally available, is it possible for an algorithm to process motion data
captured e.g. at higher frequency without recoding/modifying its algorithm? and

The qualitative nature of human expert insights and the quantitative representation
required for machine knowledge may be similar, or potentially very different e.g. the
machine-based representation may become incomprehensible due to high
dimensionality, large numbers of complex rules in inference, or general problem
space transformation. From an implementation perspective for automated KP
diagnostics, a system may be optimised for higher accuracy with results close to those
resulting from human expert assessment, or may instead accommodate lesser
accuracy while enabling more comprehensive error diagnostics and greater

transparency in operation.

A feasibility investigation resulting from data analysis may also include information on

distribution of &nowledge of activity (e.g. from captured context, as reported in the case studies),

relative to available motion data.

Sub-space modelling of e.g. a particular activity or a derived feature subset in isolation relative

to its surrounding activity and available data may additionally require modelling strategies for

unbalanced data set problem areas.

Resulting data distribution analysis (e.g. including distribution of motion events or

grouping/clustering information) may influence modelling decisions such as utlisation of

novel ML validation and training incident prediction (IV-1) for small or unbalanced data sets.

At a strategic level, the strategic design rationale (Figure IV-16) unifies the concepts, mental

models and frameworks introduced in this chapter.
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4.4.5  Data Analysis: Cluster Distribution and Validation Incident Concerns
For cases in which there is a small data set relative to problem dimensionality or a larger data
set containing unbalanced data'' additional information may be required to determine

whether the sampled data set is representative of a larger population data set.

Distribution of &nowledge of activity (or captured context) for augmented coaching system oftf-
line data may be grouped into clusters indicating the occurrence of a particular activity
practice within training or competitive circumstances. Another example of cognitive
clustering is similarity grouping analysis by an expert, which may be especially useful for small
data sets that utilise information about grouping subjects by similarity (e.g. gender, age,

performance).

In the case of machine learning, data analysis may include quantitative analysis e.g. clustering,

and investigation of overlapping data classes (as shown in Chapter 7).

Motion data analysis may also be motivated by a desire for inference similarity in system
design and modelling i.e. machine and human inference operating on the same or similar
feature set with similar decision boundaries; or by experimental rigour to ensure that one or
more of the output classes would not incidentally be absent from the testing or training sub-
sample portion. The novel pre-processing analytical formula (IV-1) investigated and applied
in (Baci¢, 2000b; Bacic et al, 2007; Bacic, 2008b) can help an analyst to estimate the
probability of such walidation incidents and also to choose an appropriate cross-validation

method and data split ratio.

Event Cand the zncidents cases examples (A, B, D) are defined as:
A ... entire cluster selected for testing
B ... one sample is selected for training
C ... k cluster samples are selected for testing
D

... entire cluster selected for training.

11 E.g. one output class is substantially less represented than other(s).
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B

Where:
n .. size of the sample space S
S .. sample space, S={1,2,...n}
i .. size of the observed cluster
k ... number of samples in test data from observed cluster
m ... size of the test data set M

Y,

(C) ... probability (of k cluster members randomly selected in test data set).

The application of the formula (IV-1) may be extended to include probability distributions —
for example, the probability of £ samples from a minority class appearing in the test data set
— forming as a result Gaussian bell shaped curve, where £ (samples) is included in a graph as
an independent variable (see Chapter 7). The results of such probability distributions can be
used to inform decisions such as a choosing validation method and the setting of parameters
such as the percentage for holdout validation split ratio or cross-validation fold size. The
application of the formula (IV-1) may therefore improve modelling of human motion activity

and related problem areas.

Data analysis may indicate if a data set is representative of the expected data universe or may
provide an estimation of data set size relative to problem space dimensionality. Classification
results of a trained classifier may therefore vary, should more test data become available.
Therefore for research rigour, post-processing of an optimal classification model analysis may
also address the possible existence of overfitting. In such cases it is possible to illustrate the
difference between overfitted and investigated proposed models, so that the classification
results can include comparisons with additional sub-optimal models (see Chapter 0)

classification results, or an overfitted solution can knowingly be investigated (Chapter 7).

4.4.6  Heuristics, Coaching Rules and Modular Assessment Integrative
Modelling

In order to exhibit the desired degree of automation in a targeted augmented coaching
system, the system should also be able to recognise characteristic activity as motion events

and parse motion event data automatically.

120



Chapter IV

Temporal and Spatial Feature Extraction for Motion Sequence Design Pattern
Automated machine assessment of motion data is enabled by autonomous recognition of
characteristic motion patterns and associated data transformations of such characteristic

motion patterns into machine representative features (Figure IV-17).
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Figure IV-17. Mental model for motion sequence design pattern or generic machine learning data
pre-processing based on temporal and spatial concepts. Recognised and extracted motion event §;
is processed further based on multistage temporal and spatial analysis.

The novel motion event (as motion pattern) recognition from multi-time series of motion
data is based on identifying a local maximum or a peak of: energy, force, acceleration or
velocity of moving parts (body or equipment) of interest, relative to the target line. When a
local maximum is detected — typically around the action/impact phase — the next
computational step provides start and stop information of a recognised motion event around
the detected local maximum. As demonstrated in Chapter 6, both ROI and Feature

Extraction may involve temporal and spatial computational techniques.

Modular Assessment
The specific instance represented in Figure IV-18 is an implementation diagram unifying

modular MLL Assessment rationale (Chapter 3) with experiments addressed in later chapters.
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Multistage integration of MoHEM/CREM design and algorithms are described further in
Chapter 5.

(a) Event Extraction as
Region of Interest (ROI)

Motion Data

N | siding 1N\ Rol
[ Window { Interval [
)

(b) Feature

ROI Extraction Extraction Classifer

= i ROI |
CAPTURED i \|[{ SLIDING i : |
MOTION ::) { WINDOW i {INTERVAL ::) FET :>ECOS _:>
DATA ; P g

MoHEM / CREM

Figure IV-18. Modular motion data processing. (a) Concept of automated motion event filtering. (b) Event
filtering, recognition and assessment classification integrated in MoHEM / CREM block diagram. Adapted
from (Bacic, 2004).

4.4.7  Prototyping Tasks and Challenges

In parallel to the MoHEM/CREM design, given the goals of the research there is also a need
for visualisation software that can show both motion data for qualitative analysis and for
modelling activities (Figure IV-10). This visualisation software needs to be provided along
with the motion capture equipment e.g. 3D stick figure viewer and supplemented data export
capabilities for spreadsheet graphing or similar application; without flexible multi-data format
support, visualisation may become a critical challenge or an obstacle at each stage of the

framework.

Addressing Visualisation Requirements

. video replay can provide important information for the analyst

to improve qualitative analysis.

(Knudson & Morrison, 2002, p. 200)
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Within the context of this research, visualisation tools are required: (1) for qualitative data
analysis and (2) to support the abstract process of design of appropriate feature extraction
techniques (FET). For example, utilising 2D and 3D viewing of motion activities can support
the ML implementation of heuristics into features, or the inspecting of a range of correctness
for critical features. Visualisation can also enable a degree of validation of the proposed
research design steps (as shown, for example, in the design steps underlying the case study in
Chapter 6). The necessity of observational rigour, qualitative analysis of motion replays and
planning for vantage points were introduced in Chapter 2. From a modelling perspective, the
availability of visualisation tools eliminates or reduces the cognitive load on the
analyst/coach, allowing their mental focus to shift to design issues e.g. abstracting the
problem associated with FET tasks. In addition to 2D and 3D motion data viewing,
animation capabilities enable the analysis and visual inspection of both spatial and temporal
events (motion sequences). Accurate animation and interaction control, the ability of a user
to replay a particular sequence (A-B repeat) at different speeds (e.g. real-time, slow motion),
step-by step operation, zoom in/out and file access management are amongst the most
desirable usability functions of motion data viewing and qualitative assessments. It is
expected that some of the visualisation tools may be designed'? and further reutilised as

components for other practical applicative software deployments.

Data Collection Challenges

Kinect ...

This '"natural interface"” will really amaze people over the next
decade, we will just take it for granted, that's very big, and that

along with robotics and understanding the diseases ...

Bill Gates, Philanthropist, the founder of Microsoft.
Referring 1o Kinect, as  “natural interface”  (Retrieved 10 Nov. 2010, from

www.youtube.com/ watch2v=xDnoO4 W1 2ec)

12 'That may also include developing layered and replaceable/reusable “building blocks” architecture and proprietary libraries
for the purpose of stand-alone deployment, portability or for independence of the third party’s (installed) software.

123



Chapter IV

Data collection, unquestionably a broad topic, is considered here as providing a surrounding
context to the central scope of this thesis. Identified important questions regarding data
collection relevant to ACS development (Figure IV-14) are as follows:

1. What are the degrees of obtrusiveness, resolution, sampling frequency and accuracy
required for a prototype and how might they differ from those in a target system?

2. What are the restrictive properties of a motion capture system regarding, for example:
on-line and off-line processing; low-level captured data pre-processing; motion data
formats; bandwidth restrictions; and availability of supporting tools and libraries for
integration with other software?

3. To what degree could the outcomes from the experiments (case studies, Chapters 6
and 7) be generalised for future applicability and cross-disciplinary use with other

motion capture systems?

5. Chapter Conclusion

This chapter has introduced a novel generic ACS framework and a particular instantiation
associated with a modular approach, proposed to support error detection in the qualitative

assessment of human motion, in a similar manner to human reasoning.
Building on the concepts and challenges introduced here, the next chapter focuses on generic

application aspects of augmented coaching automation and implementation of those into a

system.
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V. NOVEL CONNECTIONIST METHODS FOR
MODELLING AND ANALYSIS OF HUMAN
MOTION: SYSTEM AND ARCHITECTURE

Continuing from the previous chapter, this chapter presents general methods,

implementations and development aspects of an augmented coaching system.

The architecture and associated methods introduced here are aimed to address practical key
aspects of ACS automation: (1) Incremental development of motion assessment capabilities
relying on evolving machine learning; (2) Processing task separation to an n-tier architecture;
(3) User profiles, tasks and interactive requirements; and (4) Diagnostics as human-intelligible

itemised assessment feedback.

Central this chapter are the examples of motion data transformations to machine features (as
implemented in back-end processing with other CI methods), which are tested, integrated
and validated in the first case study (Chapter 6). The included algorithms are based on low-
level, raw, 3D multi-time series motion data sampled at regular time intervals — representing
movements of characteristic points of the body. The same is true for data in the algorithms

supporting visualisation required for modelling, analysis and other user tasks.

1. System and Architecture

The prototype system development described here is intended to support the novel inter-

disciplinary concepts, research and modelling requirements identified in prior chapters, and
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to provide a tool to enable the validation of case scenarios of automated motion assessment

modelling.

1.1  Multi-discipline Background

In addressing relevant aspects of the human computer interaction (HCI) discipline, this
chapter reports on the prototype architecture and its application usability for multiple user
profiles, supporting the main scope of the thesis. The development leverages software
engineering principles including software reusability, portability and implementation of open,
non-proptietary standards. The key areas of kinesiology and CI/KE ate supported by the
software engineering discipline in terms of prototype development to support qualitative
analysis and connectionist modelling of the same motion data set. Hence, the prototype
system’s user interface should unify and functionally support three major multi-discipline

tasks:

1. Incremental functional and modular development of automated assessment
capabilities relying on connectionist and other CI approaches with minimal changes
to the user interface.

2. Qualitative assessment validation and experimental rigour for motion data modelling.

3. Learning and coaching educational activities.

1.2 ACS Prototype: Concepts and Components

The main concepts and associated interactive tasks for an ACS includes: training and
validation of connectionist-based modules; flexible assessment criteria (via sub-space
modelling, CR orchestration, machine knowledge extraction/insertion); and expert
assessment via replay of motion data. The general capabilities are illustrated using 3D tennis

motion data and coaching rules — linked to the case study that follows in Chapter 6.

121  Prototyping Architecture with Front-end User Interaction and
Visualisation Aspects

The multi-tiered architecture of the prototype (Figure V-1) consists of the three parts:

1. The computation server (back-end COM server) is responsible for data exchange

with the front-end client and computations of all ML algorithms. As such, it allows
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direct interpretation of MATLAB™ code and function libraries (e.g. external data
access, feature processing, classification tasks and learning architecture (Figure IV-8)
implementation).

2. The front-end client is responsible for user interaction via the graphical user interface
(GUI), presentation logic and session management with the back-end computation
server and the 3D viewer. Session management ensures maintaining state in szgleton
operation of the 3D viewer and MATLAB™ COM Server.

3. The 3D viewer (developed specifically to support this research) is responsible for
animated 3D stick figure screen representation, user interaction and data exchange
with the front-end client. While session management ensures sizgleton viewing of the
currently assessed motion event, for multiple event viewing (e.g. to enable similarity
grouping and/or compatisons) there are also available variations of the 3D viewer
operating mode. Specific to 3D data, functionality includes interactive” virtual
camera view (angle, position and zoom), playing and recording a replayed animation
sequence as a set of viewed images. The P/zy function includes step-by-step viewing,
variable play speed, loop and file play list. Similarity grouping operation (using
multiple stand-alone 3D viewers) includes interactive preset and persistent virtual
camera view settings with drag-and-drop of desired 3D motion data files, to ensure
identical viewing angles.

The main benefit of the layered approach (Figure V-1) is that it results in a reusable and
replaceable (modular and layered) architecture, where each layer can be modified or upgraded
within its own specific operation, with minimal or no changes required for the rest of the
system. For example, the 3D Viewer layers (‘Animation’, ‘Camera View’, and 3D to 2D
View’) can be replaced with a generic media player abstraction layer supporting a variety of
input media formats (as plug-ins). For interoperability between different software and tools,
the common commands for interactive 3D or video replay, event communication,
synchronisation and initialisation parameters can be achieved by using external synchronisation
for visualisation and replay.

Other than the benefits of bounded testing and debugging, within each layer, with new

connectionist models being invented, these new models can be incrementally added to

13 Similar to video games, camera view can be changed via keys and mouse during static frame or playback. Appendix B
shows resulting 3D views and reference planes.
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improve the system (in accuracy, performance) and to broaden its set of available assessment

modules.

3D Viewer
Front-end Client )
Interaction
Back-end MATLAB™
COM Server Animation
Application Camera View
MATLAB™ Presentation 3D to 2D View
Session Session Session

! ik }

Figure V-1. Layered computational architecture enabling prototype operation and task separation.

1.2.2  Learning System Architecture as Back-end Prototyping
Practical implementation of on-line and off-line processing functionality can also be achieved
through variations of the learning system architecture (see Figure IV-8) e.g. as a prototyping

instance for racquet sports in Figure V-2.

The key benefit of this architecture (Figure V-2) is that it can be implemented as per the
initial design, upgraded if needed and integrated into an incrementally more complex parallel
architecture. Such variation is suitable for prototyping stages in the incremental modular
design as shown in (see Figure IV-10). Without having to rely on automated
enabling/disabling of modules and/or during prototype (or a MoHEM/CREM)
development, a developer may start by manually extracting temporal ROI and assigning an
identification number to a characteristic motion event — which as an added feature — results
in one extra dimensional increase of the feature space. As a separate task, the ‘Rule module
selector’ (see Figure IV-8) intended to recognise a set of possible characteristic events is likely

to be implemented later in development, in contrast to initial FET. ‘Event Extraction’ as
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swing parsing (Figure V-2) may also be included in CREM as ‘Swing Recognition’ — a ROI

filtering function (see the algorithm in Table V-3).

Swing
Recognition

o |

: | Feature b\ Ecos
'Y | .

’ Event L _ _ _ _ jV|Extraction —
1 - Extraction | \[Swings CREM, ]
( — [ ) as { coa

1 | % I

Final Evaluation

[ swing [ = I
parsing =
! Feature 2? :
A OFF-Line : ﬁj Extraction ECO? .
3D VIEW 3D Motion Data I\éotion Data —C—REK/I-‘ — _ ﬁiﬁ:‘
, . ) eposito | ~
(multiple time series) postiory 1 Criteria

Coaching Rule Evaluation
Module (CREM)

Skill Level, Coaching Scenario and Weights

Figure V-2. On-line and off-line prototyping learning system architecture modification for modelling
framework applicable to racquet sports (Chapter 6).

The machine knowledge created (i.e. extracted from the ECOS classifier) for each
MoHEM/CREM along with the associated criteria can be structured into a database in
relation to a specific analysis instance: as an individual coach, personalised trainee, skill level

profile, coaching scenario (Table V-1), or as a contribution to global machine knowledge.

1.2.3  Subspace Modelling and Module Orchestration as Weighted
Selection of Collective Assessment

Subspace modelling and orchestration as a form of augmented coaching supporting training of
targeted or specific skills is related to concepts of optimisation of a coaching scenario (CS)
(see Figure IV-5).

The orchestration concept that leverages a modular design in this thesis is implemented via
weighted assessment criteria (Figure V-3). Weighted assessment may correspond to a CS for
global, group or personal idiosyncrasies such as skill level. Ultimately, augmented coaching
support systems should be designed to adapt their behaviour depending on a coach’s

intentions in given set of circumstances.
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Figure V-3. Weighted selection of collective assessment modules. (a) Modifying weighted selection
of coaching rules via GUI. (b) Back-end weighted computation of collective assessment of CREM
processing supplied as inputs X.

The incremental formula (V-1) (as introduced eatlier in relation to the orchestration concept)
enables the scalable and collective assessment operation z of CREM modules i € {1...n} . For

an end-user, the weights vector W can be normalised to interval [0...1] or assigned as a

percentage or to an interval of any preference.

n

(VK ’ xi)
7 = =l . (V-1)
2,
i=1
Where:
z ... common assessment as orchestrated operation of CREM modules
X, ... output of the CREM module with index i, where i € {1...n}
w ... weights vector or matrix matching skill level or programme level.

12.4  Matching Skill Level and Programme Level

The benefit of using a simple evolving weighted orchestration formula (V-1) is that its weight
configuration is transparent to an end-user. Rather than relying on more complex topological

structures or neural network ensemble variations, or other possible connectionist
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orchestration principles proposed in (Bacic & Zhang, 2004), in this prototype an end-user

can at any point re-evaluate and refine the final assessment criterion by manual modification
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of weights. The other benefits of ‘glass box’ transparent design principles are in:

e its similarity to human thinking which involves error assessment and the concept of

diagnosis based on individually assessed elements and their importance;

e modelling machine-based assessment with inclusion of small data sets containing

matching motion patterns to be assessed with flexible skill level and diverse

assessment criteria; and

e simplicity, which is important for given thesis’ multiple context, as well as visibility of

ACS inter-disciplinary aspects, extendibility, adaptability and explanatory power.

Table V-1. Skill level and coaching scenario (CS) coded as two-dimensional weights matrix (in
grey). Diverse coaches may create diverse CS and assessment criteria. A matrix column

represents weights W supplied in formula (V-1).

Skill-level progress Coaching Scenario (CS)
Coaching Novice  Adv. Inter- #1. #m.
Rule (CR) Beginner mediate
CR#1 1 1 1 0.7 1
CR #2 1 0.7 0.5 0 0.2
CR #n 0 0.5 0.7 0 0.8

2. Feature Extraction Techniques Linked to Back-end

Modelling and Implementation

The algorithms include generic examples of motion event recognition based on temporal and
spatial concepts with derived examples of: (1) impact zone and motion data transformation,

and (2) stance (body posture) computation. Specific applications of the algorithms from this

chapter and their validation are reported in the tennis case study (Chapter 6).
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2.1 Motion Sequence Design Pattern: Temporal and Spatial Feature

Extraction

A generic approach for motion pattern recognition, the temporal and spatial feature
extraction technique (from multi-time series) for motion event recognition and coaching rule

modelling, is described as a functional composition (V-2) of the following filtering stages:

S8, 0 f1:8r;0 frCR o f4CR,; i, jeN (V-2)

Where for each coaching rule FET functional steps are:
i ... coaching rule number
... current motion event index

J

fTSj ... temporal motion event extraction filtering

fTSSrj ... temporal and spatial swing recognition — as a motion event indexing and recognition
f+CR, ...temporal coaching rule region of interest

fsCR; ... spatial computation within the region of interest.
The generic multistage ROI computing of coaching rules — a design pattern integral to

MoHEM/CREMs — is based on the design desctibed in Table V-2.

Table V-2. Motion sequence design pattern: Temporal and spatial multistage computation for
dynamic and static region of interest.

Multistage dynamic and static ROI

1: WHILE Motion event type recognition (from observed motion activity) DO
2: Sliding Window — to detect local maximum
3: Determining ROI Interval Sj

// Dynamic and static CR focus: Within a ROl interval Sj — further temporal and spatial ROI
4. Event recognition (e.g. swing type in racquet sports, Table V-3)

5: REPEAT

6 Sub-event separation, ROl interval [ROIstart, ROlend]

7: Computing spatial ROI

8: UNTIL the last functional composition as in equation (V-2)

9: END WHILE

Human motion activity is shown (see Figure IV-17) as a series of motion events .5, occurting
at random times. The 3D motion data set U is represented here as multiple time series of M

markers’ positions in three dimensional (x,),3) coordinates — as in equations (V-3).
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S,cU; S, ={M(@)|t,<t<t,,}

m; =(x;,;,2;)

mi(t) = (xi(1), yi(1), zi(t)) (V-3)
meM, i=1..,n; M=(m,m,,.,m,)

i,j,neN.

Typically, as is common in biomechanics, the markers would be positioned around selected
anatomical landmarks and sport equipment. Marker topology information is then used to
create an animated stk figure model, representing the captured human body movements
(coupled with relevant equipment of interest). Name-labels assigned to each marker would
typically represent location as an abbreviated mnemonic (e.g. in descriptive form PSHD ...
‘Playing Side Hand’ or as more accurate PSGT ... ‘Playing Side Great Trochanter’ bony
landmark). Where possible, this same convention should be wused in algorithm

documentation.

For example, in racquet/bat sports” event recognition (Table V-2 — line no. 4: ) or f;4Sr;

(V-2) there are common swing types known as ‘forehand’ and ‘backhand’. Having available
3D hip markers and hand information, the novel, generic algorithm can be used to determine

a swing type (Table V-3).

Table V-3. Swing type recognition for racquet sports 3D motion event data.

Swing type recognition

1: Initialise parameters and read filtered input data as a stroke ( S))
S, ={M(t)|t € {l...lastFrame},M € {PSGT,SSGT,PSHD}} also noted as:

S[1...LastFrame; PSGT, SSGT, PSHD]
2: determine a frame number iFrame of the local stroke S; [1...LastFrame; PSHD] as
maximum scalar distance fmax() towards the estimated target projections ValuesX:
: iFrame<&fmax(ValuesX [1...LastFrame; PSHD])
: determine the shortest distance between the PSHD and hip markers [PSGT, SSGT] as:
: IF ValuesX [iFrame; PSGT] < ValuesX [iFrame; SSGT] THEN
near_rear_hipMarker < PSGT
Swing & FOREHAND
: ELSE
near_rear_hipMarker < SSGT
10: Swing & BACKHAND;
11: END IF
12: RETURN ( Swing, near_rear_hipMarker )

©o0oNOU AW
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Where:
PSGT ... hip marker — playing hand (holding a racquet or a bat) side great Trochanter'*
SSGT ... hip marker — non-playing hand side great Trochanter
PSHD ... playing hand wrist marker.

Note:

Either one of the hip markers (PSGT, SSGT) could be labelled as near_rear_hipMarker. The
algorithm it is not designed to recognise characteristic patterns for all possible swings (e.g.
serve, smash, swing between legs, recovery from lob or passing shot attempts).

Inherent to ROI extraction analysis, modelling and algorithm development is a characteristic
motion event recognition capability that functions as a shot selector. A shot selector module
may be functionally extended to activate assessment modules responsible for rule-based
assessment (see also: ‘Rule Module Selector’ in Figure IV-8). Alternatively a swing or shot

selector/recognition function may be implemented in parallel module operation.

2.2  Example 1 - Event Extraction and Indexing Automation

As introduced in Chapter 2, existing approaches for event extraction in augmented coaching
systems utilise captured sound filtering and/or detection of impact vibration. The rationale
for an alternative approach, and its instantiation in algorithms (Bacic, 2004), is based on
insights drawn from energy preservation and movement efficiency in nature — leading to the

concept of measuring maximum velocity around the expected impact zone.

In phase one of the event extraction process (Table V-4), incoming data are processed in
successive windows using approximately regular intervals of e.g. one second. Within each

window, the system evaluates the possible presence of a motion event S; (see Figure IV-17).

The heuristic rule for detecting motion events S; relies on two mutually dependent
parameters:
e relative stroke magnitude (i.e. local stroke maximum) — a descriptor insensitive to a
player’s absolute displacement (i.e. position) and
e swing/kick velocity orientation relative to the target line.
If both conditions of phase one are met for a given sliding window W; then the phase two

computation is invoked.

14 Bony landmark in pelvis region.
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Table V-4. Phase I: Sliding window approach algorithm.

Phase_one: Sliding window sequence

1: Initialise parameters and read input data

2: WHILE more input windows left DO

3: update W, data structure

calculate local_stroke_maximum

calculate maximum end_velocity

IF ( end_velocity > velocity_threshold ) AND
(local_stroke_maximum > stroke_magnitude_threshold ) THEN

invoke Phase_two(W))
END IF
: END WHILE

O U

01 00 =

Where:
local stroke maximum ...calculated peak of e.g. velocity relative to target line
end_velocity ...velocity at impact/release surface or points (e.g. badminton
racquet — string bed impact surface)
velocity threshold ...a threshold parameter for Phase two() invocation
stroke magnitude threshold ...a global threshold parameter for Phase two() invocation.

When invoking the phase two process (Table V-5), to ensure that the entire ROI pattern is
passed, the sliding window data interval W is extended to include the prior and post window
neighbours e.g. W=(W.1,W;,Wi1). Variation of the generic algorithm (as done in Chapter 6)

can in addition detect and compute other characteristics within the motion event.

Table V-5. Phase II: Determining ROl interval — generic approach.

Phase_two(input_Window): Determining ROl interval

1: Initialise parameters and read ‘input_Window’ data as W;

2: determine a frame number of local stroke maximum as Lmax;
3: WHILE ROJ;interval not computed DO

4:  reduce frame number

// focus on motion event heuristic/coaching rule:
5:  determine ROlend; frame number

6: determine ROIstart; frame number

7: END WHILE

8: RETURN (ROlIstart;, ROlend; )

Desired properties of the event extraction process that can be measured and validated are the
accuracy of event detection and the processing time. Furthermore, one may be traded off

against the other depending on relative priority e.g. for on-line detection in real-time it may
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be desired that the algorithm’s properties are optimised in the following order: detection

speed, detection accuracy, with preferred missing events over false positive detection.

2.3 Example 2 — Feature Extraction and the Insights Focused on

Action/Impact Zone

From this thesis’” perspective, a connectionist approach to the impact zone computation (see
Figure IV-1) can be generalised into applications related to throwing, kicking, hitting or
swinging (the latter being the natrrow time segment before a release/impact). In motor skill
learning, as we progress from a beginner towards more advanced skill levels, we also develop
kinesthetic proprioception including cognitive focus for impact/action — ‘feel’ — that is hard to

define in terms of heuristics or coaching rules.

A coach can teach many things, but they cannot teach feel, that is

something you must master on your owi.

Nick Bollettieri — an insight from a tennis coach

The original hypothesis underlying the ‘feel’ modelling approach (Bacic, 2003a) postulated
that it is possible for motion data captured with high precision and sampling rate around the
action/impact zone to be utilised for machine based assessment into simple categories e.g.

(‘good’, bad’).

General heuristics and insights related to the algorithm’s design are as follows: from temporal
segmentation of the whole movement (see Figure IV-1) it is the narrowest zone delivering

highest velocity relative to the target line.

Aspects of the Algorithm

When replacing sampled motion data around the action/impact zone with an approximation
formula (for machine learning purposes) it is expected that only one local extreme (min or
max) will be evident per plane — during the estimated duration of the impact zone. For

example, to approximate captured movement of a point over time, with second polynomia
ple, to app te captured t of a point time, with d poly 1,
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as in a two-dimensional space there would be three parameters i.e. polynomial coefficients

required: pg , p; and p> (see equation (V-4), below).

f(O)=pt"+p, 1" +..+ pt+p, (V-4)

Where:
n ... is the polynomial order and
p ... are the coefficients.

Although challenging for human comprehension, the polynomial coefficients representing
the approximation of a movement trajectory segment can be used as a set of machine
features (as demonstrated in the case studies that follow). It is expected that classifications of
diverse execution techniques will be candidates for global machine classification of previously
unseen execution techniques into simple categories such as (‘good’,'bad’). As such, in this
thesis, this approach is also considered as the best machine equivalent for a human-like

holistic approach to qualitative analysis.

In addition, there is value in the approach in respect of noise and noise filtering —
interpolation of the second degree polynomial acts as a noise filter on converted motion data
segments. The implication of inherent noise filtering is that it allows strategic design for
inputs from motion capture systems of lower accuracy and sampling rate, without additional
computation. The second implication (related to strategic design Figure IV-16) of utilising an
interpolation algorithm is the possibility of adding more incremental data captured utilising a

different sampling frequency, without the need to modify the code.

With the ability to capture motion data with high precision and frequency it is possible for a
machine to process motion data resulting in a machine-based analysis equivalent to a
human’s perception of ‘feel’ around the action/impact zone for e.g. the speed and spin

components of a moving projectile or in ball rebound.

The spin component Spin = Motion-sin(«) is introduced by not having an impact or
release”” action intended to maximise projectile velocity to the target line

velocity = Motion-cos(ax). As a result, absolute motion velocity (scalar value) at

15 E.g. ‘elastic fingers’ release action on a ball at the end of a kinematic chain.
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impact/release is divided into two components, rotational and directional (as depicted in

Figure V-4).
(a) (b)

Spin Spin

/
\“o\\O \\0
- a i - a i

> >
Impact velocity Impact velocity

Figure V-4. Two-dimensional motion vector (x,y) translating into spin and velocity components.
(a) The angle & indicates impact or release angle relative to the target line. (b) Rotational and
directional energy component passed to an object, typically a ball at the impact or release.

Important to connectionist approaches is that if parameters such as relative elasticity
response to force, rebound factor, contact surface gripping and rotational mass distribution
can be categorised, then it is possible to build a predictor model, based on spin and impact
components. For a coaching scenario, a coach may look for presence of a deliberate motion
(e.g. ‘low-to-high’ cue in Chapter 6), when learners learn by active practice the required ‘feel’

L.e. to control the spin in a similar fashion to that modelled in a connectionist system.

2.4  Example 3 — Stance as Static or Dynamic Feature

A performer’s/player’s stance can be numerically expressed or computed as an angle between
the feet and the target line. In some sports the ‘stance’ may also include more holistic angular
positions of specific body parts (e.g. a set of characteristic stances in traditional karate kata)
and balance transfer commencing before and after a recognisable motion event. The stance
may be statically maintained throughout the motion event in some sports (e.g. snooker,
archery), while in others stance may dynamically vary through the (swing) phases (e.g. boxing,
badminton). Combined with characteristic motion event recognition and indexing, a coach
may establish a range of correct stance angles for a given CS criterion.

A feature extraction algorithm expressing a stance angle in racquet sports (Table V-06) is

applicable to sampled motion data for a right handed coordinate system (see Appendix B).
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Table V-6. Stance angle feature extraction.

Stance as dynamic body position relative to the target line

1: Initialise parameters and read filtered input data as a characteristic motion event ( Sr;)
Sr;={M(t)|t e{l...lastFrame},M € {M ..M, }}

// Step #1. Optional 3D motion event ( Sr;) stance angle compensation (see Appendix B)
2: Rotate markers’ data around y-axis to offset x-axis to be parallel to the intended target
line.

VM = rotate({Xm,Ym, Zm}, S)
3: Event < Swing Type Recognition (Srj ) — see the algorithm (Table V-3), where:

Evente {Swing, near_rear_hipMarker }

// Step #2. Calculate body centre as virtual marker PelvisC_GT the Step #3.
4: PelvisC_GTe {Xbody centre,Ybody centre,Zbody centre}

where:

Xbody _centre <

‘Xssgt B Xpsgt‘ . {Xvsgt, Xssgt < Xpsgt

2 Xpsgt, Xssgt > Xpsgt

// Step #3. Next stage of temporal ROI filtering — (Figure 1V-17 and equation (V-2))
5: Extract Temporal Region Of Interest S; [startFrame...endFrame; PelvisC_GT], where:
St; = ROI(fTCRI,);St]. < Sr;

St; ={M (i) | startFrame <i < endFrame}

6: Calculate relative stroke displacement Xssroke displacement between the centre of the

player’s body as virtual marker ‘Body Centre’ and a player’s wrist marker PSH relative the
target as:

Xstroke _displacement <— Xpshd — Xbody _centre

// Determine the Start and End interval:
7: startFrame as a frame number <& max(Xstroke _displacement) of the stroke
Sr; [1...lastFrame] at maximum displacement
8: endFrame as a frame number ¢ min( Xstroke _displacement) of the stroke
Sri[1...lastFrame] at minimum displacement

// Step #4. Further Temporal and Spatial filtering
/1 Sttr; = ROI(f3CR,) > ROI(f;CR,);Sttr < St; c Sr, —also see equation (V-2)

9: Sttr; ={M (i) | newStartFrame <i < newEndFrame}

// Determine a frame within [startFrame, endFrame] interval, in which hand marker
// PSHD orthogonally towards the target passes Near_front_hipM marker as newEndFrame

10: Determine distance vector as h_dist < |Xnear _ front hipM — Xpshd‘

11: newEndFrame < min(k _ dist)

12: newStartFrame & startFrame
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Stance as dynamic body position relative to the target line

13: no_of frames ¢ newEndFrame — newStartFrame

// Step #5. Final Temporal and Spatial filtering — see equation (V-2):
// Calculate average angle as stance angle a between weight-transfer-moving-feet individual
// markers PSM, SSM positions in transverse plane

/] {Zssm[i], Xssmli],{Zpsm[i], Xpsm[i]}} , {Vi € T | newStartFrame < i < newEndFrame}
// and referenced target line:
newEndFrame Z 1 Z 9
Z N ssm[i] — Zpsm[i]
Xssm[i]— Xpsm)[i]

no_of _ frames

i=newStartFrame

14: o « transf

where
transf() function is further transforming the angles (see Figure V-6 and equation (V-5))
15: RETURN ( Event, ¢ )

The labelled marker set is identical to that shown in Figure VI-1 (Chapter 6). The x-axis in
the experiments (i.e. data acquisition equipment set-up) is parallel to the target line for all

motion events'’. Stance is computed as dynamic body position relative to the target line.

Computer-based Transformation of Angles to Features

The purpose of additional angle transformation is the mapping of machine learning features
to produce 1) monotone angle function transformation and 2) space conversion for 3D
viewing and representation as in mathematically positive oriented x-y space.

Motion data are internally recorded in the right-handed 3D coordinate system. For the
human mind, the inverse order of quadrants in transverse plane (as x-z plane in stick figure
representation, Figure VI-1, Chapter 6) results in viewing angles seen as mirrored angles
(Figure V-5).

In addition, the feet angles from forehands (motion event in racquet sports) are not

necessarily all limited to the 5 <x< Py interval. The tangent function is defined as

sin(x)

. T V4
tan(x) = over the domain — B <x<—.

cos(x)

16 See Vertical Rotation algorithm in Appendix B, for diverse motion capture orientation setups.
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As an example, for feet position calculations, where stance angles a lie within the II-
quadrant, the resulting feet angle calculations may change to negative (Figure V-6 b) — which

is counterintuitive to the human mind, expecting monotone positive angle increase.

m y
| \Y 1 |
(+4)
) (+7) () A
oA
[ P o 0
(-4) o' () (+7)
(+4)
1 | 1l vV
z -y

Figure V-5. Comparison of x-z plane of a 3D right handed coordinate system with commonly used x-
y coordinate system (with quadrants I-IV ordered in mathematically positive direction).

For example, a monotone positive increase (Figure V-6 ¢) would be expected for feet angle

o change for the interval between [45< o <135] degrees Figure V-6 a).

(a) (b) ()

— angle o, change —
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Figure V-6. Arctan function transformation for (a) a defined interval, from (b) non-monotone to
(c) monotone function.

In addition, from a connectionist systems perspective it is also expected that monotone linear
function approximations would be less computationally expensive (e.g. in number of
committed neurons, clusters) than for cases of non-monotone or non-linear approximations.

For negative angles in the IV-quadrant (e.g. closed-stance forehand), a design decision was
taken in favour of preserving the negative angle sign over adding 360 degrees to a resulting

angle (Figure V-7).
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(-+)
y / a>0
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i <0
y
L+27>0

Figure V-7. Angle calculation between imaginary line d between feet and angle relative to target
line x. Angles may be expressed as positive angle & within the interval of [0, 360] degrees or as
positive and negative stance intervals.

The #ransf) function formula (V-5) for angle transformations in the algorithm for racquet
sports is also configurable in taking into account coaches’ preferences for angle expression

related to the swing, kick or throw type action.

newEndFrame 1 .
arctan Zssm[i] — Zpsm[i]
Xpsm[i]— Xssm)[i]

no_of _ frames

i=newStartFrame

] ,if {BACKHAND}

newEndFrame i} -
Zpsm|i]|— Zssm[i
arctan( P L] L]

o= i=newStartFrame Xssm[l] - Xpsm)[l]] ’ U(‘{FOREHAND} A {m[l] _ w)[l]) S 0}
no_of _ frames

(V-5)

newEndFrame 7 e _— .
arctan Zpsmli]— Zssmli]
Xssm[i]— Xpsm)[i]

no_of _ frames

i=newStartFrame

J +27 |,if (FOREHAND}, ~ {(Xssm[i]— Xpsm)[i]) < O}

Temporal and Spatial Filtering Uncertainties

Considering the filtering performed in steps #4 and #5 of the stance angle feature extraction
algorithm (Table V-0), it is possible that experts’ uncertainties/disagreements over narrow
decision boundaries may arise from observed swing stances executed from non-steady
(moving) positions. For example, for non-steady swings, the steps #4 and #5 computation
may require additional rules to further reduce temporal ROI; or to produce an ‘average’
stance within the last temporal ROI interval.

The stance angle expressed in this example as a feature for machine learning is also

comprehensible in terms of human reasoning (as a critical feature).
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Feature Extraction Insights — Broadening the Context

The following critiques and views are expressed with the intention of bridging disciplines,

broadening the context and expressed perspectives of the research reported here as well as

highlighting the scope for further studies on FET:

The ‘feel-equivalent ML computation (Figure V-4) and transformation of data
associated with the human notion of ‘feel”’ would involve numerically expressing ‘feel’
components such as: internal rotation and momentum ‘feel’ actions prior to
impact/release, joint rigidity vs. elasticity ‘feel’; and ‘push through’;

The difference between the machine-based temporal and spatial feature extraction
(introduced in Figure IV-17) and qualitative temporal phasing observation is that the
generic multistage ROI computation for individual coaching rule feature extraction:
(1) Is not bound by ROI observation focus of body segments, but it may include any
interrelated subset of markers; (2) Temporal phasing (preparation, action, follow
through) may be extended to more than three phases and temporal ROI observation
may not be strictly bound within an individual phase; and (3) Machine pattern
recognition from motion activity may require multistage temporal and spatial ROI
filtering;

Event detection (noted as 5, in Figure IV-17 and in event recognition Table V-3) are
expected to employ CI approaches, computer vision mixed with traditional
algorithmic-based computation and be optimised for either speed or accuracy. The
proposed approach may also be combined into a hybrid approach with prior work
including sound and impact vibration filtering and detection; and

Stance (Table V-6) CR is an attributing factor to complex execution of balance and
balance transfer throughout the characteristic motion event. Stance CR computation
for each discipline may require modification of the generic algorithm (see Table V-0).
Static balance as achieved equilibrium could be transferred to machine assessment
similar to the task sheet model (Chapter 2). Dynamic balance at present is considered
as a complex research area of processing, with equivalent results to a human mind
abstracting &inesthetic proprioception with sensory inputs and internal and external forces

during the movements.
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3. User Interaction Aspects Linked to Application Front-end

Prototype

The prototype is intended to demonstrate integrated concepts relevant to motion data
analysis. Interactive tasks associated with the processing of motion data samples include
expert assessment, training and validation of connectionist-based modules and flexible
assessment criteria (via sub-space modelling, orchestration and machine knowledge
extraction/insertion). The general capabilities delivered via algorithm integration operating
on 3D motion data are illustrated using 3D tennis motion data and coaching rules — linked to
the case study that follows in Chapter 0.

The user interface is designed to hide the complexity of background processing (using
connectionist approaches) and to communicate assessment of motion data files based on
human-comprehensible (coaching) rules and associated criteria.

The extracted machine features from 3D tennis motion data (from Chapter 6, case study) are
utilised for Cl-based assessment to mimic (coaching) rule-based assessment conducted by
humans. For the purpose of automated assessment, the prototype supports both
autonomous and manual (visual interactive) data selection for training/testing and validation
of connectionist systems responsible for performance assessment.

Interactive selection of ML features as data samples for classification modules is enabled
utilising 3D visualisation of the original motion data. Autonomous data selection for the
purposes of training and validation supports initial modelling scenarios utilising small data
sets that can be extended at a later stage. A user may also select validation methods (see

Table I11-2) such as: LOO, iB-fold (Bacic, 2008b), holdout, and the like.

The main intent of the user interface design can be considered in terms of the following goal
statements:

1. Interactive prototype for data analysis and modelling of human motion. The GUI
front-end enables end-users to accomplish common tasks without the need for
coding or entering commands via a keyboard. Linked to the GUI front-end,
MATLAB™  background processing utilises existing prototyping programs (FET,
ECOS), whose intermediate processing data can be further examined, processed or

visualised.
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2. Leveraging expert insights. The GUI prototype enables 3D visualisation of motion
event samples linked to extracted ML features, expert grouping (including data
labelling) and assessment validation as classification comparisons between humans and
a connectionist system. Those common tasks can be achieved directly via the GUI or
directly in the MATLAB computation (COM) server, whose background process
visibility (or accessibility) to an end-user is also controlled via the GUI. Using session
control between the GUI and the COM server (Figure V-1), it is also possible for an
end-user to include additional interim computational steps manipulating intermediate
operation data.

3. Proof of concept testing that includes different coaching rules and ML feature
extraction integrated via a high-level rapid prototyping programming language.

4. Extensible modular structure that can evolve. As they are independent of the GUI
the assessment modules can be modified or replaced. In addition to evolving
assessment modules (utilising ECOS classification) the entire assessment structure
can be extended or reduced in terms of the number of CREMs orchestrated for a
targeted assessment criterion.

5. High-level concepts that can be transferred to other human motion activities.

3.1 Augmented Coaching Application Context

Selected demonstrations of CR in this thesis are based on and reflect demonstrable principles
of fundamental technique assessment. Interaction with individual samples is designed for off-
line operation and modelling. With manual selection of new samples, an end-user may
investigate how system knowledge evolves or displays a learnet’s progress in particular shot
sequence assessment, hence simulating on-line operation mode without the need for motion
event parsing'’ and predetermined normalisation min and max values (required for extracted
features).

For an end-user, a pre-selected set or sequence of motion events also enables the
investigation of system behaviour regarding: 1) learning progress or 2) tracing of incremental

progressive skill acquisition as an indication of personal technique achievement.

17 Event parsing of tennis swings is demonstrated in Chapter 6, with tennis swing recognition and with temporal phasing
FET
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From the perspective of personalisation, a coach may select which rules would apply to a
selected group or individual and adjust their importance (weights) for automated assessment.
If a particular CREM is not implemented, a coach may help in creating a new CREM, to be
added later to the prototype, by taking into account the context (previous chapter) and the
framework (Figure IV-9). For user scenarios in which a coach may or may not be familiar
with a patrticular CREM operation, a coach may compare in isolation his/her expert’s

assessment against CREM classification validation on the same data set.

3.2  Application Prototype and Specific Tasks Requirements

In the previous chapter the diversity of assessment criteria was described, covering aspects
such as CS (Figure IV-5 and Figure IV-06), and learner and coaches’ preferences. As a result
the prototype is intended to be flexible and accommodating of such diversity, providing
personally modifiable aspects at the front-end level and at the back-end allowing for CREM
to be trained as personal, group/CS or global modules. Such requitements are also embedded
in the flexible Ul that enables interactive selection and supports the modular scalable
architecture. For example, the MoHEM/CREM modules should be integrated as add-ons
(following the plug-in concept) managed by the GUI front end.

Chapter 6 reports the practical examples of CREM modelling (Figure IV-10), supporting the
underlying architecture (Figure V-2).

3.2.1 Research Framework and Visualisation Support

The research framework supporting back-end processing is primarily focused on incremental
implementation of heuristics with the goal of ML motion assessment. Modelling activities
associated with machine motion data processing e.g. MoHEM/CREM design, are not
expected to be conducted in the front-end but rather using other specialist programming

environments.

Visualisation Tools and Tasks

The visualisation toolkit supporting all stages of the research framework (Figure IV-10)
incorporates 2D and 3D graphing (e.g. MATLAB plot function library) and a stand-alone
animated interactive 3D stick-figure player. A subset of these visualisation tools is included

and modified in the GUI prototype e.g. the 3D stick figure viewer is added to the GUI with
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the purpose of exchanging and depicting assessment results (Figure V-8) for the currently
observed motion file, therefore operating in singleton operation mode. For qualitative
assessment such as assigning labels ( ‘good’, ‘bad’ ) and similarity grouping, it is also possible
to run simultaneous multiple instances of the stand-alone version of the 3D stick figure
viewer. Simultaneous viewing of ten motion samples has been found to operate successfully

without noticing ‘freezing frames’ (tested on single core CPU/2.2 GHz with 2 GB of RAM).

3.2.2  Synchronising Data Linking and Representation

3D motion data samples for end-user viewing and qualitative assessment are linked to their
individually represented ML data samples. ML data samples contain features that are
computationally derived (or extracted) from 3D data and the expert’s data. The extracted
features are required for the purpose of automated motion event assessment while additional
discrete data values of the expert’s prior assessment are required for the purpose of training
and validation of a connectionist system. Each individual 3D data sample is a temporal
portion of continuous motion data sequence that contains an individual event. A racquet
sport event sample — for instance, a swing sample — includes initial foot movement, followed
by preparation, backswing, swing and impact until the end of the follow through and
recovery phase.

For the purpose of ML, data for off-line modelling are provided by a set of independent
modules utilising CREM-specific feature extraction from selected motion data samples. For
modelling, training and validation, feature data for ML are extracted a-priori and stored
together with motion data. Feature filtering, based on temporal and spatial computation is

demonstrated further in Chapter 6.

3.3 Front-End Client: Users, Tasks and Requirements

The interface (Figure V-8) for the prototype’s front-end client is designed as a trade-off of
complexity and cognitive load (such as number of visual interactive items that can be
grouped visually into tasks associated with operational intention), specific to a user profile. In
addition, a 3D player that can operate as a standalone program in multi-view mode is
integrated into the client. Integration is exhibited as two-way communications (e.g. similar to
a media play list, in which the playing activity is synchronised between the front-end client

and a 3D viewer); the front-end can invoke 3D viewing in singleton mode for the current
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sample, and pass information such as a motion sample data; on user request the 3D viewer

can replay a sequence, leaving the next motion event sample waitlisted in the virtual queue.

Test / Training Data

Skill level

Coaching Rules

¥

1
-
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Figure V-8. Proposed interface as the GUI front-end (left-hand side) is supporting connectionist
methods with integrated 3D viewer. The user interface shows visualisation of tennis motion data
and CREM module integration from the case study (Chapter 6). Flexible stance CR assessment is

shown as CR-2 and CR11.

For the educational purposes of augmented coaching, the prototype is intended to provide

augmented 3D replay capability with flexible diagnostic assessment of a currently observed

motion event.

3.3.1 User Profiles

The front-end (Figure V-8) is designed to suit four user profiles:

1. Learner, who can follow personalised progressive achievements, review prior

movements, compare expert and machine assessments and select a skill level and

follow a recommended coaching scenario (to address specific skills acquisition).
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2. Coach, an expert who can store his/her criteria, CS, demonstration motion samples
and trained CREM knowledge, and can advise learners regarding the most
appropriate settings for the next coaching scenario and their analysis of the captured

data.

3. Analyst with cross-discipline expertise in kinesiology, biomechanics and CI, who can

create new methods, models and module implementations.

4. System designer, implementing and integrating new modules and overseeing overall
connectionist/ KE approaches for motion data processing in the back-end. The
front-end application provides the interface and modular interconnectivity to another
programming environment (MATLAB ™) responsible for back-end operation such
as MoHEM/CREM processing tasks.

Specific functional aspects for users require information persistence between the use sessions

of a prototype — warranting the use of a database'®.
p p g

3.3.2 Database Purpose and Utilisation by User Profiles
To support the functionality needs of the different users and to retain data between use

sessions an intended database associated with the prototype should manage the following:

e Instant access to previously stored motion event samples;

e Predefined programs for skill level and weighted selection of CR;

e A repository for various CS e.g. drill-based coaching sessions with weighted selection
of CR and demo event samples (e.g. if a coach prefers video over his/her demo or as
instructional material for standardised progress/skill level/CS programme). Where
needed, data samples may be grouped into categories and associated with start-up
information and optimal virtual camera viewing details;

e Individual coaches’ assessment criteria as machine knowledge;

e Learner’s previous data samples and progress; and

e Prototype default start up and other operational settings.

18 As a concept of storing and retrieving information. Database systems as a discipline is outside of the scope of this study.
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For prototyping purposes, data are stored in ASCII format and event samples are stored as

individual files.

3.4 Novel Visualisation Supporting Augmented Coaching, Modelling

and Qualitative Analysis of Motion Data

In order to support augmented coaching, modelling and qualitative analysis (and also to
demonstrate novel approaches developed in this thesis), a practical solution requires external
synchronisation for visualisation and replay. This solution supports flexible and automated
replay tasks linking selected ML data samples with their equivalent (or representative) motion

data samples.

3.4.1 The Need for a Visualisation Tool as a Bridging Link

An observation and replay tool is a prerequisite in automated assessment inference modelling
and expert labelling in diverse sport disciplines. A video or 3D stick figure player as a tool
for observation (and replay) is needed for viewing and qualitative assessment from
appropriate viewing angles, to enable rigorous analysis from the perspective of biomechanics
and kinesiology discipline (Knudson & Morrison, 2002). In a 2D scenario, as part of a video
acquisition protocol, the vantage points — placement of the camera — must be reported in
research, while in a multi-camera 3D acquisition scenario, research would also report on
acquisition volume and sampling resolution/frequency. 3D visual assessment suppotts a
virtual camera view, implemented via 3D to 2D transformations from the original 3D data to

enable 2D screen viewing,.

The benefit of using an external synchronisation for visualisation and replay as a visualisation tool in
supervised learning can be demonstrated, for example, in visual stance assessment. Such an
approach is closer to human stance assessment than asking an expert for numeric angle
values defining correct or incorrect stances. Determining stance angles subsequently can be
based, for instance, on average values extracted from a neuro-fuzzy connectionist system as a
set of rules, or it may also be analysed and computed directly from the available data. In
addressing the issue of human decision boundaries, selected motion samples can be
compared by replay, synchronised externally by other software or manually e.g. by setting the

same virtual camera viewing parameters for multiple viewing,.

150



Chapter V

In general, viewing motion events associated with transformed data could be achieved
through an application prototype (front-end) or by integrating a viewer with other specialist
programming environments. As added value to qualitative analysis, coaching via replay
(augmented coaching) and expert data labelling, the novel concept of external synchronisation for
visualisation and replay enables automation of replays for tasks such as: ‘best’ viewing angles for
similar groups of 3D data, or synchronisation of comparative multi-view of the samples

representing similar temporal events.

External Synchronisation for Visualisation and Replay in Modelling of
Connectionist Systems
The novel concept of external synchronisation for visualisation and replay in motion data modelling

and associated tasks of qualitative analysis is linked to three key points:

1) Parsed samples are extracted motion events from available motion data. Parsed or
extracted samples are to be treated as data samples, subjected to analysis common to

qualitative analysis and modelling for machine learning.

2) Viewing of motion data and selected motion data sample(s) is enabled in both machine
problem space (common to above mentioned analysis) and in human cognitive space (as
qualitative replay analysis). Chapters 6 and 7 illustrate the results and visualisation aspects
of machine learning space and associated views (for human observation) where
appropriate. The chosen method is an animated stick figure with replay functions and a
mechanism of integrative communication with an external system (software environment
invocation, initialisation parameter passing or maintained from previous viewing, and

interactive viewing features).

3) Selecting or supplying a mechanism to match viewed sample(s) with machine feature set
sample(s) for modelling and training/testing or validation activities. External synchronisation
Jor visualisation and replay of motion data events and associated machine data samples can
be achieved through user interaction or in an automated fashion by an external
programme or environment (such as an operating system environment or rapid
development environment associated with a programming or scripting language). This
can be technically achieved by program invocation parameters and a communication
protocol between a viewer and the invoking program. For example, a part of a program

may need information if a replay of a current sample has finished before proceeding to
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actions associated with the next samples. In a such scenatio, the program would supply
sample information (about to be viewed) and receive updated status information from a
viewer during its runtime to synchronise other program activities. The viewer can
maintain its state (e.g. camera angle between different observing samples) or invocation
status as a singleton (allowing qualitative analysis of a sample at time) or in multiple

viewing operations (for analysis requiring sample comparison).

External synchronisation for visualisation and replay also includes programming techniques

to supportt: command line input parameters and event messaging.

Technical Requirements for a 3D Viewer

Technical approaches underpinning the animated 3D stick figure design draws on established
practice in computer graphics and game development. In embracing the growing importance
of the gaming and digital entertainment industries, visualisation may be additionally extended
to artistic design and rendering of avatars compared to 3D wire frame stick figure animation.
However, real time 3D stick figure animation is not as computationally expensive as in
general 3D gaming animation. Furthermore, interaction, functionality and accurate replays
are expected to be of higher priority for qualitative analysis (e.g. responsive accurate 3D

movements, restricted z-axis rotation) than creating a game-like interaction experience.

3.4.2 Enabling Human Assessment via External Synchronisation for
Three-dimensional Visualisation and Replay Capability

In the era of video replay/VCR supported qualitative analysis, additional VCR interactive

features used for video coaching and analysis were: frame freeze (pause), JOG/SHUFFLE,

frame advance, play and (added later) Play A-B as a repeated sequence. With 3D motion data,

VCR usability extends to the concept of virtual camera view control, which includes

transformations (move, zoom, rotate) and a transformation processing pipeline commonly

used in computer graphics (Eberly, 2007; Parent, 2008).

Specitic 3D player design priorities adopted here, based on their perceived importance related

to this thesis, include:

e Portability: Single executable file, able to be run without installation (e.g. from a

memory stick).

152



Chapter V

e Accurate and smooth virtual camera movement through static or real-time animated
viewing operation. For visual testing and coding of FET that includes event, angles
and other comparisons, the current status (e.g. frame number) and other reference

data (e.g. coordinate origin) must be displayed.

e Multiple-viewing or singleton-restricted operation mode, without animation delays

(‘freezing frames’).

e TFunctionality associated with interaction (such as capture of frame(s), storing
replayed frames as individual files, reset view). For example, for qualitative analysis,
an implementation decision of choosing to restrict virtual camera rotation of the
vertical axis only matches the common natural observation tendency to keep the eye
level horizontal. This restriction would not apply to augmented coaching scenatios

such as: bob sledge or acrobatic flying.

e Communication and integration with hosting application or processing environment.
The program can be invoked with pre-loaded motion data (externalised
synchronisation feature) from other programs, via a command prompt or from MS
Windows file explorer, MATLAB or other applications. Communication permits
analysis and video coaching with a predefined data table containing the playing order
of multiple motion files and commands for their segment viewing (e.g. paused/play,
A-B looped). Virtual camera view parameters can be pre-set to allow multiple motion
files to be compared e.g. at the same frame or characteristic event occurrence in
multiple viewers. As an illustration, a single command can close all currently open
viewers to allow the next viewing set of motion files. In another example, the hosting

application (Appendix D) can obtain the status of the currently played motion file.

3D to 2D view

A stick figure topology of a 3D wire frame model is drawn in 2D screen view via xyzTo_x()
and xyzTo_y() functions (Table V-7 and Table V-8) that may be already available via installed
graphics libraries or via 3D graph tools. Independent of installed graphics libraries, this
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approach is based on the two functions (Table V-7 and Table V-8) engineered for CPU

processing19 of 3D to 2D points transformation.

Table V-7. Computing x pixel location on the screen ‘canvas’ from 3D motion data.

Function xyzTo_x(x,y,z)

1: result <— mh+ round(x - cos(CameraView.h) + z - sin(CameraView.h) - CameraView.sz)
2: RETURN result

Table V-8. Computing y pixel location on the screen canvas from 3D right-handed motion data.

Function xyzTo_y(x,y,z)

1: result < (mv + round((y - cos(CameraView.v) + (z - cos(CameraView.h)
— x -sin(CameraView.h)) - sin(CameraView.)) - CameraView.sz))
2: RETURN result

Where:

horizontalPixels ) .

mh = round ( 5 ) ... is the half of the screen ‘canvas’ length in pixels
verticalPixels , .

myv = round (f) ... is the half of the screen ‘canvas’ height in pixels

CameraView.sz ... is the virtual camera zoom

CameraView.h ... is the horizontal virtual camera angle

CameraView.v ... is the vertical virtual camera angle

round() ... round to nearest Integer number.

Drawing a Stick Figure Topology
The animation effect can be achieved by redrawing a stick figure over the screen or form
canvas (or in a 3D graph if available) at regular time intervals that are matched with the

sampling rate of the acquired 3D motion data.

19 Acknowledgement: General explanations on wire-frame/mesh computer graphics and a 3D to 2D points transformation
demonstration (by Josh Code, grefjos@hotmail.com) inspited CPU based ‘stick figure’ computational approach
, accessed in Dec 2009).

www.programmersheaven.com/d/click.aspx?ID=F23102

20 The algorithm performance can be improved by programming frequently computed formulae in Assembler. E.g. the
equivalent formula mh = shr(horizontalPixel) requires a single CPU instruction cycle, which can replace operations
(integer division by two and rounding) by right-shifting binary number.
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User mouse gestures and keystroke combinations are interpreted as designated commands
for changing viewing parameters between every frame computation (achieved in real-time).
This approach provides the user with the experience of smooth and accurate interactive

motion control of the virtual camera view during playback.

Table V-9. Drawing a stick figure on a 2D ‘canvas’ from a single 3D right-handed motion data
sample.

drawsStickFigure(3D points sample, wire frame topology)

1: lines ¢ combineTostructure(wire frame topology , 3D motion data)
2: FOR i ¢ count(lines) DOWNTO 1 DO

// the first point of the line
3: moveTo(xyzTo_x(lines[i].pl.x, lines[i].pl.y, lines[i].p1.z),
xyzTo_y(lines[i].p1.x, lines[i].pl.y, lines[i].p1.z))

// draw the line from the first point to the last point of the line
4. lineTo(xyzTo_x(lines[i].p2.x, lines[i].p2.y, lines[i].p2.z),

xyzTo_y(lines[i].p2.x, lines[i].p2.y, lines[i].p2.z))
5: END FOR

4. Chapter Conclusion

The framework and architecture described in this and the previous chapter have been
developed to be universal, adaptive, to work with initially available sparse data or large-scale
data sets; and yet be sufficiently simple to cover the fundamentals of general human motion
modelling in a variety of sport and rehabilitation domains.

Given the competitive and evolving nature of sports disciplines, the introduced framework
and extensible and evolving architecture address the challenges of: (1) Extensible and
evolving incremental development of motion assessment capabilities; (2) Flexible and
subjective assessment relying on evolving machine learning; and (3) Human-intelligible
assessment feedback.

Human-intelligible feedback is addressed via replay and itemised diagnostic-elements

(developed in Chapter 6) as analysis of observed motion events. Each diagnostic-element
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item represents MOHEM/CREM operation on motion data to provide output as desctiptive
assessment categories i.e. as output labels. The evolving architecture integrating ECOS linked
to a user interface with replay capability provides a viable solution for ACS.

The front-end user interface is viewed as a generic concept — unifying ML/connectionist
approaches with expert’s assessment and various user-centred tasks associated with sporting
activities (Figure V-9). The user interface with motion data visualisation are surrounding,
wider objectives of this thesis and at the same time they represent enabling technology

supporting the design framework.

User Interface
Multi-modal
High-level System
Data \} Processing \i  Output
Acquisition —/ ML —/ e.g. learner’s
Inference intervention/
feedback

Information Processing Flow I:\N/

Figure V-9. Augmented coaching system — logical tasks separation, modified from (Bacic, 2008a).

This interaction model (Figure V-8) provides a ‘bridge’ between the ‘High-level Processing
ML Inference’ and ‘Multi-modal System Output’ stages (Figure V-9) intended for future
work. The general role of the UI and visualisation is to: (1) Present replay capabilities with
high-level assessment to an end-user, while hiding the complexity associated with 3D motion
data and connectionist modelling; (2) Facilitate expert assessment by providing accurate view
and specific replay usability functions; and (3) Enable learning as visual motor rehearsals and
replays of motion data samples (e.g. as extracted tennis swing data in the first case study).

Software component integration with motion data visualisation for this thesis is facilitated by
novel external synchronisation for visualisation and replay functionality. A multi-layered modular
architecture (Figure V-1) is developed to demonstrate general principles independently of the
motion data acquisition and back-end processing tasks. For such generic reasons, the UI,
distributed processing and visualisation focus is covered in this chapter separately from the
case studies (Chapter 6 and 7). Automating coaching analysis based on flexible and subjective
criteria utilising generic stance feature extraction is demonstrated and tested in the next

chapter.
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VI. A CASE STUDY OF MODELLING HUMAN TENNIS
ACTIVITY

Qualitative assessment of human motion is a systematic and yet subjective activity open to
interpretation of a key question: what is the goal of each assessment? This chapter describes
the conduct of a series of novel experiments (started in 2003 and continued up until the
previous year), that have utilised the approach described in previous chapters to automate
aspects of qualitative assessment by combining connectionist and other approaches found in
the discipline of computational intelligence.

This group of experiments on tennis data is considered the main case study in this thesis,
demonstrating the application of connectionist approaches in automation of qualitative
assessment in augmented coaching.

The chapter structure and grouping of the embedded case studies are organised to address
evolving practical questions reflecting on the outcomes achieved and to build foundations of

experimental evidence to address the main research questions in this thesis.
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1. Introduction

This chapter provides experimental evidence through which the higher-level questions set
out in chapters one and two can be answered. As a starting point specific to tennis, the intent

of this case study is to answer the question:

Can a machine accurately detect good and bad tennis shots?

The fundamental assertion central to this thesis is that motion assessment can be automated
by combining connectionist and general CI methods with qualitative analysis of human
motion.

In addition to autonomous swing detection, this chapter reports on evidence supporting
previously introduced derived observational models and concepts and the framework

enabling prototype construction.

1.1  Background

Doubles aside, tennis is considered to be an individual and open-skill sport (Figure IV-6). As
such it brings particular challenges to the building of a useful and effective prototype as well
as to the use of that prototype in the assessment of tennis shots. This is due in large part to
the real-world variations in a large number of individual factors, such as: grip, hitting stance,
technique, individual playing style, anthropometrics/biometrics, agility, flexibility, mental
approach to the game, age, gender, out-of-comfort-zone/under-pressure technique

adaptation, and others.

The connectionist approaches applied here are executed via background processing (see:
Back-end MATLAB™ COM server, Figure V-1). The selected tennis heuristics and CR
considered in the experiments are aligned with the fundamental concepts and principles of
tennis, such as those included in the “traditional method™" originated by Van Der Meer.
Some of the more abstract or strategic/complex principles requiting more available data,
applied by experts when scouting top tennis talents or selecting sponsorship candidates

(Appino, 2010), are considered to be included based on the foundation of these experiments.

21 A method for coaching tennis adopted and modernised world-wide.
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1.2 Research Context and Experimental Design

The cyclic nature of the research and the development/use of the prototyping framework in

this case study, as shown graphically in Figure IV-10, can be summarised as follows:
1. Select sport domain (tennis, in this case)

o Identify key factors — to evaluate human motion

o Identify and develop hypothesis

Design experiment

Collect data

Generate models

Evaluate results

Revise steps 2-5

Integrate models — to explain high-level and generic system properties

Identify key components of integrated models for control and further directions

e A

Revise and modify models — to be re-applied to a new sport domain

10. Repeat the above steps for new domain (golf in this case, as addressed in Chapter 7).

2. Data Collection and Laboratory Setup

Motion data for this case study has been obtained in a laboratory from a capture system
(SMART-e 900, developed originally by eMotion®) using 9 cameras (at 50 fps with resolution
of < 0.3 mm on a volume or 3x2x2 m). The input data was exported into ASCII text format
showing recorded (X, y, z) positions of a set of infrared retro-reflective markers attached to
an arbitrary selection of characteristic ‘bony’ anatomical landmarks on a tennis player’s body
and a racquet. Markers’ coordinates, as multi-time series data, have been recorded using a
right-handed 3D (¥, y, z) coordinate system (Figure VI-1).

Motion data (47 captured tennis swings) were obtained from a single person — a tennis expert
(the author of the thesis) acting as a player with novice to intermediate skill level when
performing typically ‘cood’ and ‘bad’ swings (i.e. mimicking characteristic swing patterns and
common errors). Prior to this data acquisition, typically good and common error swings were

performed and recorded interchangeably by two different tennis experts over a number of

22 Acquired by BTS Milan: www.bts.com
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days, with incremental improvements, until agreement was reached on the laboratory

protocol, occurrence and execution of commonly observed mistakes.
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Figure VI-1. Tennis player’s stick figure model represented with labelled markers in right-handed
coordinate system. The x-axis orientation is parallel to the intended target line.

The final data acquisition occurred in one session, without the need for marker reattachment
or camera recalibration. A second qualified tennis coach, (resident clinic’s professional) was
responsible for the data capture and laboratory setup (see Acknowledgement).

Note that due to restrictions on laboratory space, the acquired data did not include the ball or
player’s position relative to a court. It is asserted here that ball information is not required for
qualitative assessment of stylistic execution of tennis swings, whether for human- or
machine-based connectionist assessment approaches evaluated in this study.

For the purpose of maximising inter-rater reliability, the acquired data were manually and
independently labelled by the two tennis experts into two distinct groups of good and bad
tennis swings. The two experts reached 100% agreement in their classification of the swings
into the groups based on their assessments of the captured motion data. Further validation of
the views expressed regarding common errors and swing executions was achieved by the two
independent, elite coaches in New Zealand, who inspected only 3D motion data via the

animated 3D stick figure viewer (see Appendix E).
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3. Experimental Evidence

The reported experiments and evidence (from multiple investigative development case
studies) are logically grouped into three categories, distinguished by consequent milestone

advancements in implementation, architecture, framework and overall contribution to the

thesis (Table VI-1).

Table VI-1. Experiments summary including multiple investigative development case studies

grouped into three categories.

Experiment Main questions Milestone advancements — summary

1. Global Can a machine This experiment suggests the answers to the
assessment accurately detect following: How to demonstrate a machine-
model. good and bad tennis equivalent qualitative evaluation model relying

2. Tennis swings
extraction and
recognition.

3. Adaptive
assessments
and evolving
principles.

forehand swings?

Can motion events be
automatically
extracted from
motion data?

Can a machine
identify errors in
stylistic movement
execution according
to human-intelligible
rules?

Can assessment
criteria based on
error identification be
subjective, flexible
and adaptable?

on small-scale data? Is it possible to demonstrate
machine implementation similar to Gestalt
principles/‘top-down’ observation of swing
assessment that may indicate that e.g.
“something may not be right in a big picture”?
This experiment demonstrates automated
recognition of tennis swings from 3D motion
data as multi-time series temporal segmentation
of the region of interest. Assessment automation
can be achieved in near-real time by combining
experiments 1 and 2.

This set of experiments demonstrates the
applicability of a range of
topics/theories/concepts with high-level
transferable properties to other sports and
related disciplines. Machine evolving principles
build upon and extend the structured and formal
observational models, spatial and temporal
segmentation by also including: bottom-up
modular assessment, diagnostic outputs,
incremental architecture and rule based
performance assessment, performance criteria,
evolving rules extraction, sub-space modelling,
and weighted and connectionist orchestrations.

The obtained results, prototypes, architectures, modelling findings and related decisions are
linked to prior chapters. With respect to Figure III-1 and the connectionist approaches
discussed in Chapter 2, the tennis experiments considered in this chapter have the property
of being ‘theory-rich’ and the heuristics reflect relatively large problem space dimensionality

and the requirements of small data set modelling. No attempts were made to synthetically
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create missing marker positions from some of the captured data samples or to create artificial

data to augment the existing data set with additional synthetic samples.

3.1 Experiment 1: Global Assessment Model

In terms of skill acquisition, Handford, Davids, Bennett, & Button (1997) summarised
previous studies and concluded that a tennis forehand stroke suffers a ‘curse of
dimensionality’. Learning such a stroke requires a player to co-ordinate 800 independent
muscles acting around numerous (100) joints and must account for physiological
considerations and individual variability in anatomical and mechanical properties. In the
absence of a single ‘best’” biomechanical model of a forehand stroke, the large number of
possible stylistic and strategic executions (Crespo & Higueras, 2001; Bahamonde, 2008;
McLennan, 2009) and stances (Knudson, 20082) had to be considered and investigated.
Taking into account that connectionist systems in general may operate well in high-
dimensional problem spaces, Experiment 1 investigates the following: (1) If a connectionist
system can be utilised for forehand stroke assessment; and (2) If so, can a connectionist
system classify forehand strokes based on a relatively small data set?

The starting hypothesis was to create and evaluate a machine-based capability equivalent to
an assessment of a player’s ‘feel’ around the impact or action zone. If motion capture systems
are capable of providing sufficiently accurate data measuring movement actions over a short
period of time (60-120 ms) around an estimated impact or action zone, the resulting
hypothesis asserts that it is possible to accurately observe hitting, throwing, and rebound
surface motion vectors, and evaluate the performance of motion event(s) associated with the

impact or action (Bacic, 2003a).

3.1.1  Data Analysis for the Global Assessment Model

For the purpose of the experiment, out of the 47 captured tennis swings, data analysis
revealed that 14 forehand swings contained the complete markers’ track information needed
for the machine feature extraction. The motion swing data representing a ‘time event’ around
the impact zone consisted of up to 13 frames (for the slowest forehand from the acquired
data). In Figure VI-2 it is possible to visualise clusters of good and bad forehand swings in

the 2D representation of the 3D view.
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ROI space

Data Clusters:

_____ Bad strokes

2000

200 0

Figure VI-2. Clustering visualisation of forehand swings in three dimensional view.

3.12  Feature Extraction Technique Insights
For the purpose of testing of the hypothesis, at least three points should be used to assess a
stroke. The three selected referencing marker tracks (Figure VI-1) required for machine

feature extraction that represents a stroke motion are labelled as:

1. RQUP ... racket’s head upper marker
2. RQDWN ... racket’s head lower marker
3. PSHD ... player’s hand marker.

The markers’ non-linear motions were presented as a multi-time series of marker positions

and as curvature shapes and were transformed using polynomial interpolation (VI-1):

n Vl—l
_ + ot px+
Sx)=px"+p,x DX+ p, (VI-1)

Where:
n ... the polynomial order and
p ... the coefficients.

Due to the momentum of the racquet (approximate weight 300 grams) and hand mass
through the relatively narrow time interval around the impact zone, the selected marker
tracks (RQUP, RQDWN, PSHD) as curves in sagittal and fransverse motion planes were
transformed as a second polynomial order with three parameters i.e. polynomial coefficients:

Po» Py and p, . Figure VI-3 shows the comparison between actual and interpolated data.
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Figure VI-3. Curve fitting segment of a marker’s trajectory within a time interval around the impact
zone.

3.1.3  Classifier Modelling and Assessment Results
Supervised training and classification evaluation of the first experimental classifier prototype
tested on this small data set was undertaken using the leave one out (LOO) cross-validation

procedure.

Table VI-2. Leave-one-out cross-validation for forehand data utilizing an RBF classifier with 2, 3
and 4 hidden neurons.

Classification parameters and results

Number of cross-validations 20

Number of input vectors 14

Number of input features 18

Number of output classes 2
2 hidden neurons 66.4 [%]
Average classification accuracy 3 hidden neurons 99.9 [%]
4 hidden neurons  99.9 [%]

Note: Classifier modelling steps taken to ensure that over-fitting was avoided include:
a sub-optimal model utilizing 2 hidden neurons and a possible over-fitted model with 4 hidden
neurons that were tested and included in the results.

In addition, because of the random nature of the selected radial basis function (RBF)

classifier training, the LOO cross-validation was repeated multiple times (20) as part of the
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validation process (see Table VI-2). The input feature set was normalised between [-
0.8...0.8], before using the RBF classifier. The RBF code — written in MATLAB™ — is
included in the NETLAB Toolbox (ver. 3.3)*. The NETLAB Toolbox is an open source

product (available from: www.ncrg.aston.ac.uk/netlab/index.php, accessed 3 Apr. 2009) and

it is also referred to in Nabney (2004) as the book’s accompanying code.
Average classification accuracy ¢ is computed as the number of correctly classified samples

divided by the number of all input samples (VI-2):

m
5= e o) vi2)
m -
Where:
& ... average classification accuracy as a percentage
Neorreet ... number of correctly classified samples
n ... number of input samples
m ... number of cross-validations.

3.14  Experiment 1 Insights

The RBF architecture achieved an average classification accuracy of 99.9% on a relatively
small data set. The machine learning problem space was in this case expressed as a high-
dimensional mathematical space, with values altogether incomprehensible to the human
mind. Even with machine features that are not necessarily identical to human-
comprehensible biomechanics critical ~features (see Chapter 2), for the same
obsetrved/captured movement, the connectionist systems ate still able to exhibit classification
function properties needed to separate good and bad tennis swings. Gestalt grouping and
proximity cognitive principles are demonstrated in this application of connectionist systems

for human movement in sport and related areas.

A visual inspection of motion data did not reveal the need for a low-pass filter (i.e. to remove
presence of high frequency noise). In observing polynomial curve fitting it is possible to

conclude the following:

e Curve fitting may also act as a low band pass filter. The generalisation property of
interpolation of known movement curves/shapes could be demonstrated by
removing  undesired  high-frequency  filtering  (e.g.  originating  from

sampling/digitisation noise);

23 Acknowledgements for the RBF NETLAB code integration into: (1) this experiment — Dr. Zeke Chan and (2) the
NeuCom [Ver. 0.920 Student ed.] software — Dr. Peter Hwang,
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e Minimal differences were observed between the original and fitted (approximated)
data (Figure VI-3) and classification results (Table VI-2) indicated that the fitted data
should not influence the discriminant properties of features within the machine
problem space and consequent classification accuracy;

e A concept of a transformation algorithm involving curve fitting could also be used
for future higher accuracy capture systems, operating above 50 samples per second.

e The curve fitting method provides data compression; and

e Titted curves or shapes contained in the problem space i.e. without a redundant noise
component, could potentially provide better generalisation vs. overfitting in this

classification problem area.

A shortcoming of this embedded case study is similar to that associated with a human holistic
assessment; that is, while the machine-based approach was able to identify error in basic
tennis swings, it could not articulate the rules that governed that decision. A second
shortcoming is that the system was not able to evolve its operation utilising additional data in

an incremental, life-long learning fashion.

3.2 Experiment 2: Tennis Swing Extraction and Recognition

A key goal of this experiment was to achieve a high-degree of automation of near real-time
tennis swing extraction and recognition. Figure VI-4 depicts the integration of experiments 1

and 2.

Experiment 2 Experiment 1

Event
P P A Extraction A\ Feature LN
) ) i Output
- as Extraction Classifier Class
7/ Tennis Swing [ /| Processing [ ]
Parser

Captured or 3D Motion Data

Viewed 3D imyitiple time series)
Motion Data

Figure VI-4. Integration of experiments 1 and 2 for automation purposes. Captured data are
represented as multi-time series and viewed as 3D animated stick figure. The single head arrows
represent the data flow between processing stages. Adapted from Bacic (2004).
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When compared to the purpose of experiment 1, the added value of an incremental
integrative design is in achieving a higher degree of assessment automation from motion data
with testing and validation of the design milestones.

The focus in this experiment is the design and development of the processing stage labelled
‘Event Extraction as Tennis Swing Parser’ (Figure VI-4), whose operation was to be
compared to a human expert who manually extracted the tennis swings, with their impact

zone region of interest (ROI), as used in experiment 1.

3.2.1  Data Analysis for Tennis Swing Extraction and Recognition
Compared to the 14 forehands used in experiment 1, for the marker set to be used in the
event extraction algorithm, data analysis revealed 5 additional data samples (meaning there
were 19 forehands in total out of U=47 samples) suitable for event extraction algorithm
validation.
The experimental input motion data are summarised as follows:

e Multidimensional topological representation of n-markers as a 3D stick figure (Figure

VI-1) representing a human holding a racquet. Within each frame M, a marker m; was

defined as a point in 3D coordinate space (VI-3):
m; = (‘xi’yi?Zi)

meM, i=l..,n (VI-3)
M =(m, m,,....,m,).

Where M is a set of n markers.

e A tennis stroke S; was a subset of a motion data set — a (3-M) time-series, containing
random time delay between successive strokes. Each stroke S; was a set of
consecutive frames M(t,...,t+k) of individual duration k (VI-4).

Sng

m, () = (x,(1), y,(2),z,(2)) (VI-4)
S, =M@ |1, <1<t ,}.

A motion sequence was described in this experiment as a 3D time series of rigid body
positions over an arbitrary time period. Motion sequences constituting tennis strokes could

also be defined as typical sets of finite state automata. Some motion sequences contained typical
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postures — spatial features, as a set of rigid body characteristic position patterns (e.g. hitting
the ball phases).

After observing 3D animated stick figure samples and comparing the corresponding x and g
axes’ time series (Figure VI-5 and Figure VI-6) it was possible to recognise visually
characteristic 2D patterns related to tennis strokes. Furthermore, the y axis’ time series

indicated the player’s intention relating to impact energy transfer to ball rotation (e.g. slice or

top-spin).

Position “elocity

25
25
05 H H H H 5 H H H H
0 5 m 15 20 0 5 m 15 20 25
Tirne [] Tirme [s]

Figure VI-5. Selected markers’ displacement and velocity time series for hips and hand swing
motion patterns.

The heuristic rule for detecting the presence of a particular stroke type (e.g. backhand or
forehand) relies on two mutually dependent parameters:
e Relative stroke magnitude (i.e. local stroke maximum within each sliding window W)
— a descriptor: (1) insensitive to a player’s absolute displacement (i.e. position), and
(2) indicating the possible presence of a stroke within the current window
neighbourhood as in Figure VI-6.

e Swing velocity relative to hitting orientation.
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If both conditions of Phase I (Table V-4) were met for a given sliding window W; then the
Phase II computation (Table V-5) was invoked.

Figure VI-6 shows the results of the Phase I (Table V-4) computation, which recognised the
presence of characteristic patterns of the five swings in a row. The five sliding windows’
starting times, indicating the presence of characteristic swing patterns, are marked with

vertical dashed lines.

Linear cambination of marker displacements as relative stroke magnitudes
T T T T, T

: : : 2 Local stroke maximum

— Hand velocity: APSHD \ At

---- PRGT

--- SSGT
- PSHD

| P I i : Ul __ (Brbitrai Swing Velocly_treghold)

old]

Th@’}

Displacement in [m], Yelocity in [m/s]

302 6.02 10.02 14.02 18.02
Windw\tﬂ), time [s]

Figure VI-6. Stroke magnitude and velocity. For comparison the SSGT, PSGT and PSHD markers are
superimposed with the computed swing velocity.

Although it is possible in real life tennis play for volley swings to be exchanged with ground
strokes (forehands and backhands) at a rate faster than one per second, the chosen interval
for the sliding window W; = 1 [s] was sufficient to illustrate the recognition concept on the

test data.

3.2.2  Feature Extraction Technique
The algorithm (Phase I: Table V-4 and Phase II: Table V-5, Chapter 5) for the ROI
computation required as input only three (slower moving) markers motion data that were

attached at approximately half of the player’s height:

1. PSGT ... playing hand side great Trochanter
2. SSGT ... opposite side great Trochanter
3. PSHD ... player’s hand marker.
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The assumptions underlying this swing recognition experiment can be rationalised in terms
of the different qualitative observational perspectives of a (tennis) expert versus a tennis
enthusiast watching tennis. In the expert’s view there are more and less important body parts
that direct mental focus for a given time event during play. Translated into, and implemented
by, a machine the heuristic that influenced the algorithm was related to the hip region (as eatly
indications) and maximum hand acceleration (as the follow up indication) of characteristic

curves relative to the target line before the impact.

Feature Extraction Technique and Generic Temporal and Spatial Computational
Model

The two-stage computation of tennis swing detection was based on the generic temporal and
spatial multistage computation for dynamic and static ROI (Table V-2 and Figure IV-17).
The first computation stage (Phase I) could invoke the second stage (Phase II) and pass the
necessary parameters. The second stage concept was intended to access ‘buffered’ data
without interfering with the continuous operation of the first stage computation. The first
stage computation was responsible for evaluating the presence of a tennis stroke Sj, providing
its ROI interval (start-frame, end-frame) from the available multidimensional time series
contained a tennis swing.

When invoking the Phase II computational process (Table V-5), the sliding window data
interval W; was extended to include the prior and post window neighbours W; «— (W1, W;

Wis1). Ultimately, three markers (SSGT, PSGT and PSHD) time series were presented as

markers’ traces in the 2D transverse plane (x,z) in Figure VI-7. To visualise the motion
pattern dynamics, an additional ‘virtual’ marker — ‘Body centre’ was computed for visual
evaluation of the centre of the pelvis (or human body) in a transverse plane.

Since the markers’ positions were obtained through the acquisition system with equidistant
sampling time, each marker’s velocity was calculated as the first order derivative of relative
position displacement over time (VI-5), while acceleration is the second order derivative.
Figure VI-6 shows the markers’ calculated displacement and velocity. Further notions are

detailed in Appendix B.

Position = (x, y,z)

o o o (VI-5)
Velocity = (x,,2).

170



Chapter VI

Note:

The notation x represents the first derivative of x with respect to time as:

. dx . Ax

X = —0r x = —— ,

dt At

where x is a difference between two points A x

intimeinterval At = (¢,,, — t,).

= (x,,, — x,) measuredi.e. computed
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Figure VI-7. 2D transverse plane motion data view. The results of the Phase Il variation computation

are labelled as ROIstart and ROlend.

Algorithm Instantiation and the Experimental Context

In order to provide data for experiment 1, the generic two-stage algorithm was extended to

the third computational stage — temporal filtering — to provide the impact-zone RO (VI-6)

extraction of the presence of a tennis stroke S from the available data set.

ROIJ.CSJ. ; ROI, €[ROIstart,,ROlend, ]

(VI-6)

In this experiment a variation of the Phase II algorithm (Table V-5) was designed to provide

direct computation of impact-zone ROI, instead of producing a data sample interval .S;.

The second Phase II algorithm variation also included automated tennis stroke recognition

(Table V-3) into forehand and backhand for the purposes of extracting forehand strokes.
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Note:

The program for extraction of ASCII text formatted motion data utilising (start-frame, end-
frame) parameters is shared as open source in Appendix C and is free for users to modify as
needed. The intended purpose of this generic extraction program is: (1) to operate from
command line environments (MS Windows based) and (2) to extract motion samples needed
for machine modelling relying on an off-line motion sample database (Figure V-2) and (3) to
provide parameters for novel external synchronisation for visualisation and replay capability.

3.2.3 Swing Extraction Results

The subjective results obtained from an expert (the author of the thesis) have been compared
to those acquired from the prototype system (Table VI-3). The expert used 3D stick figure
visualisation software (described in Chapter 5) to annotate time periods of selected ROI
intervals for a series of tennis strokes U ( p=19 forehands), with the complete markers’ track

information needed for the algorithm (Table V-4 and Table V-5) operation.

Table VI-3. Result comparison between the expert and prototype automated solution.

Expert evaluation Proposed solution comparison
File ROI ROI Duration Duration
# Start frame End frame [frames] Astart frame A End frame [frames] A Duration

1 157 162 6 0 0 6 0
1 333 338 6 1 0 5 1
1 519 523 5 1 6 -1
1 714 718 5 1 1 5 0
1 921 926 6 1 0 5 1
2 207 215 9 2 -1 6 3
2 372 381 10 3 -1 6 4
2 551 558 8 2 1 7 1
2 737 744 8 1 -1 6 2
3 340 348 9 1 -1 7 2
3 521 529 9 0 1 10 -1
3 695 701 7 0 -1 6 1
3 866 873 8 0 0 8 0
4 151 160 10 1 -1 8 2
4 326 338 13 1 0 12 1
4 506 516 11 1 -1 9 2
4 880 890 11 0 -1 10 1
4 1058 1068 11 0 0 11 0
5 864 868 5 0 1 6 -1
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The labelled parameters in Table VI-3 are:

File# ... motion data stream number
A ... Delta = Expert Value — Machine Value.

The computed ROlend; frame number was further reduced (VI-7) from the local stroke
maximum (Lmax;) (as also depicted in Figure VI-7). The extraction of the ROlend;
parameter was subject to human heuristics and possibly inexact interpretation of the end
frame of the ROI; interval during the qualitative assessment of 3D motion data. This
problem was addressed in the extraction algorithm through the inclusion of a parameter ¢ or
angle Phi (¢) to keep the automatically extracted ‘impact zone’ interval as similar as possible

to the manually extracted ROI intervals used as input data for experiment 1.

ROlend ; = f(L max ;, ¢) (VI-7)

The best experimental results were achieved when ¢ = 0.25 (shown in the Table VI-4).

Table VI-4. Result summary.

Results summary

Number of tennis swings in total 19

o 025
A Start A End Duration
Duration frame frame [frames] A Duration
Average 8.263 0.789 -0.16 7.316 0.947
Max 13 3 1 12 4
Min 5 0 -1 5 -1
Median 8 1 0 6 1
Range 8 3 2 7

Note that although there was no impact recorded in the motion data, there were no instances
of undetected tennis stroke events or false positives when testing the algorithm on the small
limited data set.

3.2.4  Swing Recognition Results
For the purposes of the swing recognition module, the presented novel algorithm (Table
V-3), utilising a traditional algorithmic approach on the tennis data set, is capable of 100%

accurate classification of tennis motion data sequences into two output classes namely

(‘forehand’, ‘backhand’).
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3.2.5 Experiment 2 Insights
The integrative modular design utilised in this research supported the concept of replaceable
‘building blocks’ to achieve optimised algorithm performance for a given (sport) discipline
and application context.
As introduced in Chapter 2, existing event indexing solutions based on impact vibration or
sound recognition for simple event indexing may be prone to false positives or failing to
detect motion events™. Although such solutions may appear to provide the fastest
computational solution, a hybrid solution — that is designed to compare results of diverse
methods in parallel — may be more appropriate for future systems.
In line with the point of view that this thesis is a ‘snapshot’ in time that should provide a
foundation for future systems, two otherwise peripheral requirements were achieved for this
experiment:

1. Low extracted feature dimensionality and

2. A relatively fast computation algorithm that could be ported to future hardware

(single and multi-processing) platforms.

The current tennis swing recognition implementation as a two stage modular design could be
converted from its present computational model into a parallel, multithreading computation
paradigm. The skding window concept (Table V-4 and Table V-5) was optimised to suit a fast
computational model of possible prerequisites for the existence of a region of interest interval
whose parameter computation could be invoked as another parallel computational thread. It
is also expected that with more motion data available from more diverse subjects the
complexity of a future solution working on linearly non-separable data (e.g. computed hand

velocity maximum) will warrant further research combining various neuro-fuzzy approaches.

3.3 Experiment Set 3: Adaptive Assessments and Evolving Principles

The aim of the third set of experiments embedded in this tennis case study was to
demonstrate adaptive assessments of heuristics and coaching rules, subject to flexible criteria.
The adaptive and incremental operational capabilities of ECOS support rule extraction at any
point of the knowledge acquisition process. The flexible and modular architecture design
adopted in this thesis enabled substitution of traditional classifiers (e.g. non-evolving RBF)

with ECOS. As investigated on the tennis data set (Bacic, 2003a; Bacic & Zhang, 2004; Bacic,

24 Also addressed in Chapter 7, data recording protocol and camera setup for experimental validation.
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20062), complex machine knowledge (e.g. as reflected in a large number of complex rules)
extracted as in-principle human-comprehensible rules may still be difficult for humans to
understand (Figure VI-8). However, while potentially difficult for human comprehension,
this extracted machine knowledge can be saved as a ML snapshot in time and, when needed,
inserted into a system as a preconfigured ‘system start-up’ machine knowledge, which can
then continue to learn in an incremental and evolving fashion. This approach enables

machine knowledge as flexible criteria to be kept externally in a database if needed.

IF
x1is Forehand AND
x2 is Arm - body distance (close: 44%) AND (too wide: 56%) AND

Extracted fuzzy rules

A THEN
Ll D Class is: Bad swing [# samples = 3, Radius = 0.14719]
IF VERBAL
x1is (low: 0.045455) AND x1 is (high: 0.95455) AND ~ ~
X2 is (low: 0.44107) AND x2is (high: 0.55893) AND e |
x3is (low: 0.36728) AND x3 is (high: 0.63272) AND MMK Fuzzy rules
x4is (low: 0.31908) AND x4 is (high: 0.68092) AND 7 .
X5 is (low: 0.95455) AND x5 is (high: 0.045455) transformation
THEN
Class is 1 [#samples = 3, Radius = 0.14719]

Figure VI-8. Example of (machine) extracted fuzzy rules and further verbal and visual
transformations. Modified from (Bacic & Zhang, 2004).

Building on the human-understandable MoHEM/CREM diagnostic outputs as a functional
concept, the experiments highlight the diagnostic principles on examples of a set of heuristics
and coaching rules in tennis. Continuing from the previous two experiments, this set of
experiments demonstrates the integration of proposed tennis coaching concepts,

implementing practical evidence linked to the central focus of the thesis.

Note on experimental context of subspace modelling and MoHEM/CREM assessment
orchestration:

Rather than attempting to translate holistic machine classification rules that govern the
equivalent of qualitative human assessment of motion data, the philosophy of these
investigative development case study experiments is in achieving machine-based alternatives
to ‘atomic’ assessment elements (equivalent to taking a bottom-up approach) that are human-
comprehensible and relatively easy to validate in isolation. Flexibility of assigning and choosing
their importance is left to the end-user (a coach or learner). Adaptive mechanisms are
demonstrable in the application of evolving connectionist systems, and in the flexible
architecture enabling addition or removal of assessment elements without the need to
manually re-do previous steps (e.g. retrain the network with previously stored data samples).
Mathematical methods from Cl can learn from data, evolve and generate internalised rules
(Duch et al., 2004) constituting in the resulting machine inference (Kasabov, 2002).
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As a software application, the prototype’s purpose is to demonstrate proof of concepts, via
the user interface Figure V-8 (Chapter 5), which is designed for users from different

disciplinary backgrounds.

3.3.1 Coaching Rules in Embedded Case Studies

This embedded set of investigative development case studies utilised the existing database of
extracted tennis swings (motion event samples) demonstrating the last stages of temporal and
spatial filtering (see equation (V-2), Chapter 5):

e f.CR, ... temporal coaching rule (CR) region of interest

o f,CR, ...spatial computation within the region of interest.

A small set of CR was selected for prototyping and implementation to demonstrate principles

central to the thesis and this case study, as set out in Table VI-5.

Table VI-5. Selected CR for prototyping.

CR-ID CueorCR Rationale description

CR2  ‘Square’stance —side E.g. feet approximately parallel to the target
body hitting position. line during the swing action phase.

CR11 ‘Semi-open’ stance — Assessed at intermediate skill level, a
body position. variation of a CR 2 assessment criterion.

CR5 ‘Low to high’ —swing Controlling the ball’s top-spin, ball flight and
path. placement properties and margin for error.

Cause and consequence reasoning.

CR6  ‘Swing width’ —wrist Safety vs. performance or ‘reach’ vs. margin

to body distance. for error.

Note: CR-ID is shown for reading convenience i.e. to visually match the numeric order of CR
within the user interface (Figure V-8). Also a ‘CR-ID data set’ comprises extracted machine
learning data associated with the accompanying coaching rule CR-ID.

Motivating factors for choosing the CR implementation candidates implemented in the initial
prototype were as follows:
1. Required CR to be suitable for novice skill level criteria computation.
2. Low dimensionality of problem space relative to number of samples for validation
purposes.

3. Simple and fundamental CR, logically acceptable to cross-disciplinary areas.
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4. Demonstrability to wide cross-disciplinary areas for:
a. Qualitative human observation and classification, and
b. Automated-CR based classification.
5. Provide sufficient coverage of thesis concepts and application (e.g. performance vs.

safety optimised assessment, discussed in Chapter 5).

The Stance Coaching Rules (CR 2 and CR 11) and Heuristic Context

The concept of balance has an important role in coaching tennis as well as in basic motor
skills. Computationally assessing balance, as a problem area, would fit into the category of
“problems for which there are no effective computational algorithms” (Duch, 2007),
suggesting the consideration of connectionist methods or broader CI approaches. As a part
of addressing balance, typically during initial tennis training sessions, learners are taught the
‘square stance’ (i.e. to hit the ball ‘side-on’ cue) assuming a side body position during the
swing. As an open-skill endeavour, the game of tennis has evolved over the years of play
from ‘traditional’ to ‘modern’, resulting in a shift in preference from ‘square stance’ to ‘semi-
open’ stance (Crespo & Higueras, 2001; Knudson, 2008a). Although it is possible to see
modern elite players hitting the ball ‘on the run’ from all positions (closed, square, semi-open
and open) the semi-open position seems the most common in ‘modern’ tennis and it is
typically taught after learning the square stance. Concepts also associated with balance
include ‘weight transfer’ for different strokes, and static (‘steady’ position) and dynamic
stance (hitting the ball on the run), and these are also commonly addressed in subsequent

coaching scenarios.

The ‘Low to High’ Coaching Rule (CR 5)

The ‘low to high’ coaching rule is associated with ball spin heuristics. A ‘low to high’ hand
movement (or ‘brushing the ball’ — cue) is important for controlling ball placement, speed
and other properties of the ball’s trajectory (Bahamonde, 2008). The low to high” movement
as a swing segment can be a deliberate action or a consequential action occurring as a result
of an individual backswing. Just as human players ‘feel’ and make adjustments during play,
connectionist systems also have the potential to utilise supervised learning to differentiate
swings into their specific assessment categories and can be emphasised or given less attention

during coaching.
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The ‘Swing Width’ Coaching Rule (CR 6)

The ‘swing width’ is typically not coached in isolation but it is normally communicated in
feedback or coached as an intervention (Bollettieri, 2001). Due to the very high number of
possible execution styles and grip preferences, it is expected that a coach may assess a player’s
‘swing width’ but not to express it to his/her learners in absolute terms. Although tennis is an
impact sport, most people do not appreciate the intensity and severity of ball
impact/collisions on the body until there is an injury (Knudson, 2008b). Among the factors
increasing the risk of injury, ‘swing width’ assessment criteria may also be influenced by a
coach’s familiarity with the learner and awareness of their recovery from injury. The ‘swing
width’ may be assessed in a CR with the idea to improve safety or (in this case, mutually
exclusively) to improve performance of the impact speed. In another example, in a CS for a
return stroke practice it is a common expectation to extend the swing width to ‘reach’ the ball

— within reduced reaction times but within the safety of a particular range of motion.

3.3.2 Data Analysis

Due to the presence of NaN values (as missing digitised marker locations) and the
requirement for more marker tracks than in previous experiments, for this set of experiments
and coaching rules, the data set comprised 43 samples (21 forehands and 22 backhands).
Given the likelihood of unbalanced data set modelling problems (including three output
classes for two tennis swings), data analysis included output class distribution and swing
categories for each CR.

All expert labelling was performed retrospectively (justifying the need for external
synchronisation for visualisation and replay in 3D) as for a coach it would not be common to assess
‘stance’, ‘low to high’ or ‘swing width’ relying on real-time computation of mathematical
values e.g. static or dynamic feet angle during the swing.

Data analysis also incorporates qualitative interpretation of captured context. This provides
an indication of whether the data set is representative of the target skill level’s data universe,

which is viewed as part of the subjective coaching experience captured in the human mind.
Data Analysis for Square and Semi-Open Stance Captured Context Interpretation

Table VI-6 illustrates different assessment criteria resulting in different output class data for

‘square’ CR 2 and ‘semi-open’ CR 11 stances.
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Table VI-6. Stance visualisation examples and different output class assessment criteria.

Closed Stance
(to a minor degree)

Square Stance

Semi-open Stance Open Stance

(

_— N

Target line direction

No. of samples: 15
Output class Output class

CR 2: 1 CR 2:

CR 11: 2 CR 11:

No. of samples: 19

0
1

No. of samples: 4 No. of samples: 5
Output class Output class

CR2: 1 CR 2: 2

CR11: O CR 11: 1

Where the output class of a coaching rule (CR-ID) is labelled as:

0 ... very good
1 ... average
2 ... bad.

As each coaching rule and associated assessment criteria are mapped to different ML data
sets, it is possible to see (Figure VI-9) that for the square stance there was balanced presence
of ‘very good’ and ‘average’ positions, while for the semi-open stance the number of ‘very
good’ swings appeared to be represented as a minority output class. Before concluding that
the number of swings executed from a semi-open stance was a minority class it was necessary
to undertake further data analysis of swing distributions, taking into account that more than

half of the swings were single hand backhands, which were less likely to be executed from a

semi-open or open stance compared to a forehand.

Square Stance (X' =43)

N
o

Number of Samples (n)
5 & 3

o

Average Bad
Output Class

Very good

Semi-open Stance (X' =43)

Number of Samples (n)

Very good

Average Bad
Output Class

Figure VI-9. Comparing assessed output class distributions for square and semi-open stances.
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Data Analysis of Swing Distributions and Interpretation of Captured Context

The following analysis provided visual information on swing distributions to indicate how
well the acquired data set matched or represented the expected data wmiverse and also to
indicate possible unbalanced set modelling concerns.

(a) Stance and Swing Distribution (X =43)
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Figure VI-10. Tennis swings and distributions for: (a) Stance; (b) Low to high; and (c) Swing width.
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Visual data analysis (Figure VI-10) from coaching and ML perspectives indicated the
following observations from the available data set — intended to represent beginner to
intermediate players’ swings:

e Tigure VI-10 (a) shows that forehand swings were executed from all stances, while
single-hand backhands were executed from square and closed-stance. For forehand
swings, a minority output class was evident for ‘closed’ stance swings. ‘Square’ stance
was balanced to the aggregated set of ‘semi-open’ and ‘open’ stances;

e Tigure VI-10 (b) infers that the ‘low to high’ swing segment action appeared to be
easier to achieve with forehands than with single-hand backhands, for the target skill
level of novice to intermediate-level players; and

e Tigure VI-10 (¢) infers ‘swing width’ bad output class would indicate wider swing
(e.g. as a potential safety concern or desired increase in impact speed or extending
‘reach’). As such, forehands were used more than backhands to execute variations of

swing width.

The above insights drawn from the data analysis indicate that motion data contains captured
context.

The interpretative insights associated with the ‘low to high’ (Figure VI-10 b) and ‘swing
width” (Figure VI-10 ¢) rules would represent new findings or knowledge discovery based on
the data analysis, if it were to involve multiple players producing a sufficiently large data set to
satisty validity requirements. Together with quantitative data analysis the above interpretative
insights could: (1) indicate if the available data set was representative of the expected data
universe, and (2) confirm the feasibility of the intended motion data set modelling goals (see

Chapter 4, Figure IV-10).

3.3.3 Coaching Rules and Feature Extraction Techniques
Temporal and spatial feature extraction techniques depicted in Figure IV-17 (Chapter 4) may
be useful in facilitating generic concepts and specific implementation details or identification

of insights of FET between interdisciplinary experts (Chapter 4). Together with Figure IV-17,

Figure VI-11 provides visual evidence of the temporal transformation stage f,CR, that
occurs after swing type recognition fSr;. Figure VI-11 shows visual evidence common to

feature extraction algorithms for producing data sets CR-2, CR-11, CR-5 and CR-6 for

machine classification on tennis motion data. All feature extraction algorithms producing
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data sets CR-2, CR-11, CR-5 and CR-6 were robust to minor missing marker values (Figure

VI-11 b).
For example, for feature extraction oriented toward computing player stance:

e In Figure VI-11 (a) the time frames beyond computed index #26 indicate the hand
marker was in front of the body (hand marker passed hip marker SSGT and virtual
Body Centre”) relative to the target line — which is known as the desired or intended
impact zone start (a cue ‘hitting in front of the body’), and can be utilised for ROI in
which the stance is computed (see: Calculation of average angle as stance angle
o between weight-transfer-moving-feet individual markers PSM, SSM positions in
transverse plane, Step #5, Table V-6, Chapter 5); and

e In Figure VI-11 (b) the hip action movement pattern is common for a single-hand

backhand in contrast to the forehand hip turn action around the body.

The feature extraction algorithm (Table V-6) for stance position (CR-2 and CR-11) is generic

to racquet sports and so is provided in Chapter 5.

The input motion data for stance position CR requires five markers’ time series:
1. PSGT ... playing hand side great Trochanter
2. SSGT ... opposite side great Trochanter
3.PSHD ... playing side hand marker

4.PSM ... playing side shoe tip marker

5.SSM ... opposite side shoe tip marker.
(a) (b)

Temporal Region Of Interest (ROI) Filtering Temporal Region Of Interest (ROI) Filtering
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Figure VI-11. Temporal regions of interest computation examples during (a) ‘steady’, forehand and
(b) ‘step-in’ single-hand backhand.

The feature space for stance position is two dimensional, containing the following variables:

1. Swing type (Forehand, Backhand). See generic algorithm in Table V-3
2. Feet Angle a, is relative to the target line during the initial part of a swing.
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Temporal phasing was filtered from the beginning of a swing and before the impact zone.
Spatial computation was demonstrable as the angle between the feet markers and the
estimated target line. The estimated target line would be based on the rationale that a player
from each side of the court can hit a parallel (along the line) or diagonal shot from an
assumed stance i.e. once the stance is taken. A player’s position on the court indicates an
imaginary division between the preferred backhand and forehand hitting target angles.

The feature extraction technigues used in this thesis represent a novel concept, which is diverse
from qualitative methods (Chapter 2) in terms of processing a subset of markers: (1) From
diverse, non-adjacent parts of the body; (2) From not strictly bound observation/ROI
processing of proximal-to-distal sequencing — from slow-moving to faster-moving segments;
and (3) Using temporal sub-phasing that is not strictly bound to phases (preparation, action,
follow-through).

The ‘Low to High’ Feature Extraction Technique and Insights

The algorithm for feature extraction of CR-5, the ‘low to high’ swing segment (Table VI-7)
specific to captured tennis ground-strokes, ignored individual backswing motion but also
extends computation of motion data through the action — impact zone.

The input motion data required the time series of three markers:
1.PSGT ... playing hand side great Trochanter
2.SSGT ... opposite side great Trochanter
3.PSHD ... playing side hand marker.

Table VI-7. Swing path — ‘low to high’ segment feature extraction technique.

Swing path - ‘low to high’ CR-5

1: Initialise parameters and read filtered input data as a stroke ( Sr))
Sr; ={M(2) |t €{l...lastFrame},M € {PSGT,SSGT, PSHD} },

VM= {Fm,ﬁn,Z—m} , Where Xm is marker’s projection vector towards the target line

// Constant values depending on the capture frame rate of motion data
2: EVAL POINTS =6 as extended points for initial angle calculation
3: MAX_CNT =5 as max. number of frames for minimal hand height relative to front hip

// Step #1. Expert’s observation ‘decision boundary’ for stance angle compensation
4: Swing € Tennis Swing Type Recognition( Srj ) asin (Table V-3)

5:IF Swing = FOREHAND THEN
6: Near_rear_hipM & PSGT
7: Near front_hipM & SSGT
8: ELSE

9: Near_rear_hipM & SSGT
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10: Near_front_hipM & PSGT
11: END IF

//Step #2. Temporal ROI filtering — swing event

12: Extract Temporal Region Of Interest S; [startFrame...endFrame; PSGT, SSGT, PSHD], where:
St; = RO](fTCRl.);Stj < Sr;
St; ={M (i) | startFrame < i < endFrame}

13: Calculate relative stroke displacement Xswroke displacement between the centre of the

player’s body as virtual marker ‘Body Centre’ and a player’s wrist marker PSH towards
the target as:

Xbody _centre <

Xssgt— Xpsgt‘ + {Xssgt, XNssgt < Xpsgt
—

Xpsgt, Xssgt > Xpsgt

Xstroke _displacement <— Xpshd — Xbody _centre

// Determine the Start and End interval as:
14: startFrame as a frame number < max(Xstroke _displacement) of the stroke

Sr; [1...lastFrame] at maximum displacement
15: endFrame as a frame number < min(Xstroke _displacement) of the stroke

Sr;[1...lastFrame] at minimum displacement

// Step #3. Further Temporal and Spatial filtering
16: Determine local minimum search and angle calculation and transformation as:
Sttr; = ROI(fsCR,) o ROI(fCR,); Sttir = St; < Sr;

Sttr, = {M (i) | newStartFrame <i < newEndFrame}

// CR detail — determine:

// 1) a ROl within [newStartFrame, newEndFrame] interval, in which hand marker PSHD has
// the lowest height and

// 2) when PSHD passes Near_front_hipM marker as frontHip_i

17: Determine distance vector as (h_dist) « ‘Xnear_front_hipM —Xpshd‘

18: Determine a frame number as frontHip_i & min(Tdist)
19: Determine frame count relative to front hip frontHip_i and local_min_i, truncated
within the boundary { (—-MAX_CNT) ... MAX_CNT }as:
frameCnt <& countOffset(frontHip_i, local_min_i, MAX_CNT )
20: Determine a frame number of lowest height of hand marker as local_min_i¢& min(m
21: Determine Sttr; ROI interval as:
[newStartFrame, new EndFrame] ¢ extendROl(local_min_i, EVAL_POINTS)
by extending adjacent frame positions around local_min_i, containing additional
number of EVAL POINTS as in (Figure VI-12).
22: Calculate linear approximation expressed as:
line_Y=kX +n
within Sttrj of PSHD hand marker positions in sagittal plane x-y (see Figure VI-12) where:
{M[i],m[i]} ,{Vi € 3| newStartFrame < i < newEndFrame}
23: Calculate from linear approximation, initial low to high swing angle, as: a < arctan(kX)
24: RETURN ( Swing, &, frameCnt )
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The resulting feature space is three dimensional, containing the following variables:

1. Swing ... swing type (Forehand, Backhand)
2. ... initial swing angle
3. frameCnt ... frame count of lowest hand position relative to front hip.

For the ‘low to high’ stage of feature computation, after determining ROI as a swing segment
in which a hand passes the hip region, the sampling frequency for some swings was not
sufficient to determine low to high approximation. To arbitrarily address this issue, in
computing the CR-5 data set (consisting of all 43 samples), neighbouring frame samples were

used to extend the ROI as shown in Figure VI-12.

{a) Forehand swing in Sagittal plane  (b) ROl zoom

1800 — — 1200
T 1600l 1100L + ROl hand PSHD |
‘Hand PSHD ==ROI hand motion
B 400F [ERTRTRRRRRR: < 1000} —6—Extended ROI
E — Approx. angle
= A200F 5 Hoeemreee e e 1 apot
T
@ 1000| 800}
- : T local min.
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% (PSHD) [mm] -

Figure VI-12. ‘Low to high’ temporal and spatial feature extraction of (a) forehand swing in sagittal
plane and (b) ROl zoom.

The concept based on the idea of determining where the low to high movement starts
relative to body position and intended impact would require a relatively high sampling rate,
preferably superseding human vision for accurate detection and extraction of the swing
properties of fast tennis swings. As for more complex variations of this algorithm, the desired

sampling frequency would be higher with added ball impact information.

The ‘Swing Width’ Feature Extraction Technique and Insights
The algorithm for feature extraction of CR-6, ‘swing width’ (Table VI-8), also specific to
tennis, results in three alternative output feature sets suitable for further classification
investigation (note that the body_height in the experiment was preset to 1800 mm).
The input motion data requires three markers’ time series:

1.PSGT ... playing hand side great Trochanter

2. SSGT ... opposite side great Trochanter
3.PSHD ... playing side hand marker.
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Table VI-8. Swing width feature extraction technique.

Hand to body swing distance - ‘swing width’

1: Initialise parameters and read filtered input data as a stroke ( Sr; body_height )
Sr; ={M(?)|t €{l...lastFrame},M € {PSGT,SSGT, PSHD} },

VM= {ﬂ,ﬁ,%} , Where Xm is marker’s projection vector towards the target line

// Step #1. Expert’s observation ‘decision boundary’ for stance angle compensation
2: Swing €& Tennis Swing Type Recognition( Srj ) asin (Table V-3)
3: IF Swing is FOREHAND THEN
4:  Near_rear_hipM & PSGT
5:  Near_front_hipM & SSGT
6: ELSE
7:  Near_rear_hipM & SSGT
8:  Near_front_hipM & PSGT
9:END IF

//Step #2. Temporal ROI filtering — swing event
10: Extract Temporal Region Of Interest S; [startFrame...endFrame; PSGT, SSGT, PSHD], where:
St; = ROI(f;CR,);St; < Sr;

St; ={M (i) | startFrame <i < endFrame}

// Calculate relative stroke displacement Xstroke _displacement between the centre of the
// player’s body as virtual marker ‘Body Centre’ and a player’s wrist marker PSH towards the
// target as:

11

" Xbody centre <

2

Xpsgt, Xssgt > Xpsgt

12: Xstroke _displacement < Xpshd — Xbody _centre

// Determine the Start and End interval as:
13: startFrame as a frame number & max(Xstroke _displacement) of the stroke

Sr;[1...lastFrame] at maximum displacement
14: endFrame as a frame number < min(Xstroke _displacement) of the stroke

Sr;[1...lastFrame] at minimum displacement.

// Step #3. Temporal and Spatial filtering
15: Determine static swing width feature:
Sttr; = ROI( f{CR,) o ROI(f;CR,);Sttr < St; < Sr;

Sttr, = {M (i) | newStartFrame = i = newEndFrame}

// Heuristic/ CR’s detail — determine:

// 1) a ROl as [newStartFrame = newEndFrame] static interval, in which hand marker

// PSHD passes Near_front_hipM marker as frontHip_i and

// 2) a minimal distance when PSHD passes a hip marker (i.e. BodyM algorithm variations)
//  asfrontHip_i
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Hand to body swing distance — ‘swing width’

16: Determine distance vector as j, dist < |Xnear _front _hipM — Xpshd‘

17: Determine a frame number as frontHip_i < min(h_ dist)

// Determine static Sttrj ROl interval as:

18: newStartFrame < frontHip_i
19: new EndFrame & newStartFrame;
20: Calculate Euclidean scalar distance expressed as:

c=+a’+b’
within static Sttrj ROl interval, where spatial feature extraction ROl within the frame i is:

{i = newStartFrame = newEndFrame}
a < XBodyM|[i]|— Xpshd|i]
b <« ZBodyM|i]— Zpshd|i]
21: in transverse plane x-z as in (Figure VI-13) the static ROl require two points coordinates -
defined as:
{Xnear _front hipM|[i],Znear _front hipM[i]} = Dataset FET 1
{XBodyM][i],ZBodyM|i]} = {Xbody centreM|i],Zbody _centre[i]} = Dataset FET 2
{Xnear rear hipM]|i],Znear rear hipM|[i]} = Dataset FET 3

{Xpshd[i], Zpshdli}
Resulting in algorithm variations are producing diverse output data sets for classification
comparison are named:
( Dataset_FET_1, Dataset FET 2, Dataset FET 3)

22: Calculate conversation from absolute distance to arbitrary normalised, relative to players
height as:
o

¢

< body _height
2

23: RETURN ( Swing, & )

The feature space and swing width alternatives:
Dataset FET 1 ... front hip — hand
Dataset FET 2 ... body centre — hand
Dataset FET 3 ... rear hip — hand.

The feature space is two dimensional, containing the following variables:
1. Swing ... swing type (Forehand, Backhand)

2.0 ... swing width relative to the player’s height.

For the swing width feature set CR-6, three experimental variations have resulted in different
classification accuracy values using the same classifier and the same feature extraction
algorithm. In addition to the front hip marker utilised in the spatial and temporal feature

extraction for CR-2, CR-5, CR-6 and CR-11 (Figure VI-11) two other markers (‘Body Centre’
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and PSGT in Figure VI-13) were investigated in order to improve classification accuracy in

this case.

Tennis Swing in Transverse Plane
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Figure VI-13. ‘Swing width’ and spatial ROI feature extraction.

For the experiment variations in which each of the additional two markers’ motion data were
used as an input, the same feature extraction algorithm produced a different data set. Note
that in a coaching scenario where a coach is feeding the balls while facing a learner, it is
typical to see the front hip, while e.g. in a square stance, the rear hip is occluded. The
extracted features from the ‘front hipY motion data were found to produce inferior
classification results (Table VI-9) when compared to extracted features from the ‘rear hip

(PSGTY or from the virtual marker ‘body centre’.

3.3.4  Classifier Modelling and Assessment Results

For small data set prototyping as encountered in the above scenarios, the selected modelling
preference for the obtained feature sets (CR-2, CR-11, CR-5 and CR-6) was to utilise an
evolving connectionist system with a minimal set of optimisation parameters using LOO
cross-validation. LOO cross-validation was used because of the possibility that with
unbalanced data, an entire minority class, due to random selection, could have been

incidentally selected only for inclusion in the training or testing subset.
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Table VI-9. Summary of classification results using LOO cross-validation and evolving clustering
function (ECF) for embedded case studies.

Parameters Classification results

CR-2 ‘Square’ stance CR-11 ‘Semi-open

stance
E=4, 91% OA; 91% OA,;
MF =3, 2, 1. 39/43 correct. 39/43 correct.
E=1; 88% OA; 88% OA,;
MF = 2, 1. 38/43 correct. 38/43 correct.
E=1; 88% OA; 91% OA,;
MF = 3. 38/43 correct. 39/43 correct.
CR-5 ‘Low to high’
swing
E=2,3,4,5; 81% OA;
MF=3, 2, 1. 35/43 correct.
E=1; 60% OA;
MF =3, 2, 1. 26/43 correct.
CR-6 ‘Swing width’: CR-6 ‘Swing width’: CR-6 ‘Swing width’:
Front hip — hand Body centre — hand Rear hip — hand
(Dataset_FET_1) (Dataset_FET_2) (Dataset_FET_3)
E=4,3and2; 81% OA; 91% OA; 91% OA;
MF =3, 2, 1. 35/43 correct. 39/43 correct. 39/43 correct.
E=1; 58% OA; 67% OA, 72% OA,
MF = 3. 25/43 correct. 29/43 correct. 31/43 correct.

Where:
CR-n = feature data set for the designated coaching rule; E = Epochs;
MF = Membership functions; OA = Overall accuracy.

Classification results were obtained using the Evolving Clustering Function (ECF) model in
NeuCom Student ver. 0.919 (Song et al., 2008). Note that additional connectionist systems

and validations were used and evaluated in Chapter 7 on the larger golf data set.

3.3.5 Experiment 3 Insights

The prototype system and its background processing capabilities using connectionist
approaches were incrementally developed and tested using a relatively small data set.
Classification results supported the system as providing a proof of concept solution to a
‘theory-rich’ problem area. With more data and further detected errors, follow-up design
would enable the inclusion of additional coaching rules and feedback optimisation to support

pedagogical principles in tennis skill acquisition.
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It is also evident that MOHEM/CREM can indeed be trained as personalised, coaching
scenatio/group/skill-level or global assessment modules. Combining the flexible modular
architecture with a data repository (Chapter 5) enables both online and off-line supervised
training and the storing/retrieving of machine knowledge as snippets of time seties matching
coaching assessments and learners’ activity. The system’s autonomous operation is able to
support diverse coaches’ opinions, assessment criteria, training priorities and coaching

scenarios.

Coaching Instruction and Feedback
Classification results for flexible assessment criteria on the experimental data (CR-2 and CR-
11, Table VI-9) demonstrated the ability of evolving assessment modules to be trained using

both subjective and flexible assessment criteria for ‘square’ and ‘semi-open’ stances.

The proof of concept and associated prototype performance demonstrated the novel
automated assessment of qualitative diagnostic aspects of tennis ground strokes in a manner
comprehensible for a coach and learner (as itemised diagnostics from MoHEM/CREM
assessment output, Chapter 5). This was achieved via assessment of movement errors by
collective classification operation of the enabled CREMs (see Figure V-8). The list of errors —
or absence of them — may be presented as output labels and as colour-coded feedback. If
required for the diagnostic outputs as feedback, presented as a list of movement errors, the
list may be limited e.g. to display one item only, while the ACS system may generate a

recommended intervention that is based on the list of movement errors.

Knowledge Discovery Contribution to Coaching

The data analysis reported in this chapter has indicated two potential knowledge discoveries
related to ‘stance’ and ‘swing path’. In addition, the associated ‘swing width’ CR-6 results
obtained from all 43 data samples, lending greater certainty to this element of Anowledge
discovery and supporting ‘swing width’ assessment improvements in tennis coaching, injury
prevention and competitive level playing. In terms of coaching, interpretation of the results
of these machine automation experiments suggests improved assessment of ‘swing width’ for
coaching scenarios when a coach facing his/her student is feeding the balls for swing
practice. A coach should be taking into account the player’s entire hip region instead of

focusing observation on just the (non-occluded) leading hip during the swing action.
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Linking Chapters 6 and 7 Case Studies

A pragmatic investigative development process oriented towards the goals of this case study
justified the need for an interdisciplinary experimental design approach. A demonstrated
proof of concept of the automation of qualitative tennis swing assessment was achieved and
reported in this chapter. A flexible modular architecture supporting various coaching
scenarios and criteria was combined with evolving connectionist systems to enable
incremental and adaptive machine learning, flexible to the ever-evolving game of tennis.
Complementing this chapter as a main case study, the next chapter’s investigative focus
utilises connectionist approaches to modelling, data analysis and the introduced framework in
a different sport domain. From a validation perspective, the next chapter leverages a relatively
large data set with objective measures for outcome assessment — in the form of processed
swing data obtained from the embedded electronics in a golf club instead of subjective
assessment by an expert. The data set is associated with a single heuristic and is acquired in

an outdoor golf driving range with multiple subjects striking a ball.

4. Chapter Conclusion

This chapter introduced the connectionist modelling and data analysis of human motion
activity in tennis. Research outcomes and artefacts including generic ACS architecture
components (Figure V-1, Figure V-2, Figure V-8), feature extraction techniques, classifiers,
and the algorithms from Chapter 5, were combined with other elements specific to tennis.
When applied to tennis data, background processing components (Figure V-1) — that learn
from data or transform data) — were validated in this chapter. The demonstrated
implementation of autonomous qualitative analysis in the form of automated assessment was
mapped to diagnostic outputs that allow adaptable and evolving operation over time to
support a coach and a learner. Diagnostic outputs based on subjective and flexible criteria
were validated via supervised learning using an expert’s diverse judgments on the same model
and motion data. For example, computation of the ‘stance’ coaching rules was based on
supervised learning utilising the two diverse output label data sets from judgments adhering to

conflicting criteria for ‘square’ stance and ‘semi-open’ stances. In addition to this
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demonstration, the system was also able to accommodate flexible weighting of subjective
coaching rules that can either be chosen or ignored — depending on the scenatrio.

Validation of the machine-equivalent modelling approach around the impact zone has
resulted in high similarity to expert motion data evaluation when valuated holistically as
‘good’ or ‘bad’ swing technique. In addition to related work in biomechanics reporting on the
curve fitting transformations related to impact zone and tennis ball interaction (Knudson &
Bahamonde, 2001), for this experiment, curve fitting was simplified and to a degree ‘over-
smoothed’. Such simplified curve fitting of motion data to n-dimensional polynomial
coefficients, as the features for autonomous ML operation, were still considered as not
intelligible to humans. This also demonstrates that the system is able to operate in a separate
problem space obtained from a high sampling rate and high precision, in contrast to human
vision where an expert would observe an extended impact zone (i.e. swing kinematic chain)
before assessing a swing. The 3D stick figure viewer and captured motion data can be utilised

for visual assessment of technique.
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VII. A CASE STUDY OF MODELLING HUMAN GOLF
ACTIVITY

The golf case study was focused on the use of the framework for motion data analysis and
modelling (Chapter 4) and on complementing the tennis case study presented in the previous
chapter. Preliminary experiments utilising some of the early augmented coaching systems for
learning golf (reviewed in Chapter 2) provided valuable insights into technology-supported
coaching and into supporting various coaching scenarios conducted on a driving range.

The connectionist approaches applied here demonstrate classification operation, or more
specifically the prediction of a category of lateral deviation of ball trajectory relative to the
target line, at the point of impact of a club face with a golf ball. This classification operation
is based on collected biomechanical features relevant to the concept of a ‘swing plane’ — a
heuristic referring to the ‘Gdeal’ plane of a golf swing. Key methodological concepts (as
introduced in Chapters 3 and 4) are demonstrated through inter-subject real world golf data
analysis and through the utilisation of specialised sport equipment infrastructure. These
concepts include: data visualisation, pre-clustering and classification; feature space
transformation and reduction, and rules generation that governs classification; and associated
issues such as overlapping data clusters, unbalanced data and the feasibility of generating
machine rules that could potentially be transferred to human coaching. While achieving
relatively good classification results (around 89%) on an overlapping and unbalanced data set,
reducing and presenting the machine generated rules to a human was considered infeasible

due to the rules’ dimensionality.
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1. Introduction

The golf case study centres on the investigation of known heuristics of a ‘swing plane’* and
their relationship to predicting the characteristic club face path around the impact resulting in
ball flight error from the desired target line. The real world data set was obtained in an
unobtrusive manner, by using augmented coaching technology, with subjects hitting a ball
with a driver club on a driving range. Being a relatively large data set (531 samples) acquired
from multiple subjects (# = 13) it also enabled analysis of a variable set related to swing
deviations from within the segments of an idealistic ‘swing plane’ and their importance
relative to discriminating contribution properties to predicting ball flight category. In addition
to data analysis, diverse connectionist models (evolving and non-evolving/traditional) were
modelled, validated and compared in terms of their ability to classify the category of lateral
deviation relative to the target line based on the ‘swing plane’ variable set that was obtained

from the captured golf data.

1.1  Background

In contrast to golf course play, golf skills are often practised in controlled environments such
as on a driving range. Practising golf on the driving range is considered a dosed-skill sport (see
Figure IV-6, Chapter 3). Contrary to the name ‘driving’ range, it is common for golfers to
include into their practice golf swing variations using diverse golf clubs in addition to a
driver. Other variations covered in the literature include (Hay, 1993b; Knight, 2004; Hume et
al., 2005; Suttie, 2006; Keogh & Hume, 2012; Langdown, Bridge, & Li, 2012): functional vs.
detrimental movement variability; constraint-led approach of employing swing parameter
variability, and block vs. random practice coaching scenarios.

To promote a safe warm-up and to accommodate the ‘feel’ for different clubs, it is also
common to start with shorter head-heavy clubs, and gradually progress towards longer clubs
such as the driver.

By utilising augmented coaching technology in an assisted and supervised fashion, the
experiment’s context was to incorporate the driver’s motion data capture and to create a
positive learning experience as a part of a driving range learning routine, with a minimal

degree of obtrusiveness. By utilising four or more driving range bays, a fixed equipment

25 Described as a loosely defined concept of intended swing path, used in golf coaching.
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setting and multi-subject pipelining, it was possible to combine individual progress with
learning programmes and to capture relevant snippets of subjects’ swing samples, in which
subjects were utilising the driver only.

In contrast to the previous case study, the focus in this golf experiment was on a single
heuristic, modelled on a larger data set originating from inter-subject data collection on a golf
driving range with reference to real ball impact. Compared to Chapter 6, this case study
investigation included some of the high-level, or more abstract, strategic and complex
connectionist principles (introduced in the Chapter 2) requiring more available data but

leading to more modelling-related insights.

1.2 Research Context and Experimental Design

The starting point for this case study was based on a critical review of the previous case study
and on insights drawn from Chapter 2 — acknowledging the possibility of practical
application of augmented sport coaching systems with multiple subjects. Further motivation

and justification for this case study include the following:

e Applicable to multiple disciplines, the sub-space modelling concept can be
demonstrated with a selected subset of features related to heuristics of a ‘swing
plane’, therefore focusing this case study on a single heuristic associated with few
dependent variables and their (relative) importance;

e The coaching scenario concept employing qualitative analysis can be supported by
available augmented coaching technology ("SmartSwing," 2005; Leadbetter
interactive," 2005), reviewed in Chapter 2. By combining the advantages of both
technologies there is the possibility of a further usability study (common to the human
computer interaction discipline) to develop or advance the next-generation technologies;

e An opportunity for study and validation of connectionist modelling and analysis of
motion data from another sport discipline. Motion data would be collected in an
unobtrusive fashion and in a ‘natural’ environment (outside of the lab) providing a
relatively large motion data set of multiple subjects striking a ball; and

e Compared to the previous case study, conducting research on a larger data set would
enable better generalisation, validation and meaningfulness of interpretation of
analysis, to generate knowledge discovery applicable to sport, coaching and sport

equipment.
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Combining the approaches used in previously reviewed augmented technology systems
("SmartSwing," 2005; Leadbetter interactive," 2005) meant that the framework proposed here
could support: golf learning, the qualitative observational cycle, CS, and introductory lessons
(under human supervision and guidance). During and after the course of data acquisition, and
as a result of observed technological shortcomings, additional tools were developed for
coaching and analysis, including a video sequence player. The video sequence player has a
similar interactive and presentation %ok and fee/’ to the 3D viewer described in the previous
case study, except for the 3D interactive virtual camera view. Appendix F lists additional
tools developed by the author to support the research and experimental design in this thesis.

The experimental design of this case study also included the following aspects:
e Repeated measurements (golf driving range, the same driver and shoes), variation in
subjects and their individual learning improvements; and
e [Existing (standardised) methods in CI originating from statistics and connectionist

methods for analysis, comparison, testing and validation.

1.3 Investigated Coaching Heuristic

The investigated coaching heuristic from SmartSwing ("SmartSwing," 2005) asserts that ball
flight may be a consequence resulting from deviation of a golf swing from an ideal swing
plane (Figure VII-1). In Figure VII-1 (a), the side (sagittal) view is:

“Showing the reference pro at address with a plane line extending through the club shaft (lower plane) and the

other plane line going through the shoulder tip (upper plane).”

A good swing is one in which the club is on the lower
plane line until it reaches a position roughly parallel to
the earth. From this position, it moves upward until it is
just under the upper plane line. The downswing should
follow a plane roughly between the upper and lower
plane lines.

The swing plane is too high or steep and therefore the
club is over the top, above the plane line, on the
downswing.

This may result in a slice, fade, or pull.
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The club is too far inside (under plane) on the
downswing.
This may result in a hook, draw, or push.

Figure VII-1. ‘Swing plane’ as a simple coaching heuristic, comprehensible to human reasoning. While the
(a), (b) and (c) figures have minor modifications, the text shown in italics is originally cited from the
SmartSwing software document (ImprovingYourSwing.pdf). The text highlighted in red in figure (b)
represents output class (1) in the experiment while in figure (c) it represents output class (3). Output
class (2) indicates a straight ball flight.

Although this case study is focused on analysis supporting the ACS framework (Chapter 4), a
question based on the heuristics represented in Figure VII-1 is, can a machine also categorise

the golf ball trajectory from captured real-life swing plane data?

2. Data Collection

Golf swing motion data were acquired using a SmartSwing driver golf club (consumer model
L.5300) of 2 common shape and ‘feel™. The club head is 400 cc titanium with a clubface loft
of 10.5% and standard length, regular flex graphite shaft with embedded electronics in the
handle of the shaft (see Figure VII-2, SmartSwing club electronic circuitry).
The club was designed to collect up to 100 swings of motion data in an off-line fashion and
to transfer swing motion data to a PC. The club manufacturer claims:
SmartSwing clubs record their position in space at 1000 times or more per second, over 30 times
Saster and more accurately than traditional consumer-based video systems. SmartSwing Intelligent
Clubs use a series of gyroscopes and accelerometers in what is called a 6-degree of freedom inertial
measurement unit.”’
(www.smartswinggolf.com/site/tic/science.html, accessed 23 Jul. 2009).
With reported sampling frequency of 1000 or more samples per second, and one hundredth
of an inch resolution (in swing sample reporting), the SmartSwing augmented coaching
system was designed to be accurate enough to measure specific differences in observed

biomechanical features/variables in this expetriment.

26 Consulted NZ PGA affiliated expert was also able to confirm standard look and feel of a golf club, comparing SmartSwing
with other drivers (without embedded electronic) after hitting the ball on a driving range.
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Figure VII-2. SmartSwing club electronic circuitry. Embedded electronics in the shaft of the club with
further technical insights (Nass, 2005) are provided in the electronic article containing the Internet link to
the image from above (retrieved 23 Jul. 2009, from

http://i.cmpnet.com/eet/news/05/07/DC1386 TEARDOWN PG 67.gif).

2.1 Experiment Setup and Motion Data

Before commencing data acquisition, the SmartSwing driver required the following:
(1) sufficient battery recharge, (2) deletion of eatly recorded data and (3) initialisation specific
to a user profile (Figure VII-3) via a software utility provided with the club.

Individual measurements and example parameters for a male subject of approximately 180
cm in height are shown in Figure VII-3. In the absence of more accurate instruction (from
the club instruction manual) of the exact shoulder point, anatomical shoulder (acromial)
landmark related measures were taken by the same researcher for all test subjects. In addition,
each test subject had agreed prior to the experiment to wear the same golf shoes during the

recording of profile measurements as well as during the entire experiment.
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Figure VII-3. Subject profile information associated with the golfer’s name required for SmartSwing
software operation.

2.1.1  Camera Setup for Experimental Validation and Qualitative Video
Analysis
In addition to SmartSwing motion data acquisition used in this machine learning experiment,
the experimental setup also included video recording of golf swing data following the
instructional guidelines from ("Leadbetter interactive," 2005).
Information from the video and SmartSwing system was used for: (1) Visual validation of
recorded swings by the SmartSwing system; and (2) Qualitative analysis and communicating
personalised individual feedback.
Each practice session was video recorded at approximately subject waist height from two
perpendicular camera angles: (1) Towards-the-target line, behind the ball trajectory (i.e.
allowing reviewing of the actual swing plane) pointing approximately at the hands during the
addressing posture; and (2) A front view toward the centre of the subject’s body (i.e. allowing
a reviewer to see the key elements of stance and technique e.g. grip, top of the backswing
horizontal variations and so on).
The distance between the cameras and the subject in each case was approximately 5 m,
allowing vision of the club head throughout the entire swing motion with only minor
distortions of the peripheral viewing of horizontal and vertical angles (e.g. fence poles — as
reference to vertical angles), from the surrounding environment. The shutter speed was set to

‘sport mode’ (SONY® model DCR-TRV110E, high-speed shutter mode). The benefit of
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digital recording on a video tape is that it is possible to computationally extract a double
frame rate (i.e. PAL interlaced standard allowing computational extraction from default 25

fps to 50 fps).

2.1.2  Coaching Programme for the Beginners

A coaching programme is included to illustrate learning progression for the majority of
subjects without the emphasis on learning of a single heuristic such as a ‘swing plane’”’. The
concept of a learning programme is in line with the augmented coaching system ("Leadbetter

interactive,"

2005) that was used in qualitative analysis of the recorded swings. The
heuristics/coaching rules priotities (Table VII-1) and the learning programme for novices are

provided in the Table VII-2.

Table VII-1. Heuristics/Coaching rules and feedback as subject learning priorities.

Priority and feedback focus Remarks

1. Grip. Lesson #1 ... Introduction.

2. Square stance: posture and ball Lesson #1, 2, 3.
addressing.

3. Swing motion. Collected SmartSwing variables.

4. Ball impact: angle of attack; angle Output class for machine learning experiment
parallel to target line. from collected SmartSwing variables.

5. Ballflight. Factors influencing the ball flight.

As a result of each lesson, the target number of collected swings was 10 — 30. The time
intervals of golf swing recordings were dictated by each individual subject’s comfort and
pace. Lessons were internally divided into: 1) warm-up, 2) coaching information (including
lesson objectives) and swing recording, feedback and ‘homework’ information and 3) cooling
down and a stretching routine. Coaching and ‘homework’ information also included selected
intervention routines from video analysis using ("Leadbetter interactive," 2005). From the
subjects’ perspective the last part of the warm-up routine involved (as semi-supervised by the

researcher) hitting in the separate bays around 20-30 balls using different clubs, starting with

27 Similar to “swing width” CR/Heutistics in Chapter 6, “swing plane” was not included as a session learning objective.
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a heavier head, shorter shaft — preferably a sand wedge (SW) club. Subjects would receive
minor corrections during the approximate 1 min. break after hitting 5-10 balls in a row.

Subjects were also advised to take at least one day of rest between practice sessions and if
possible, to also play or practise on their own. They were required to send email notes of
their subjective learning expetrience before the next session. Such a teaching/learning
strategy allowed: (1) Time for data processing and analysis, including reflection on subject
email notes; (2) Subject’s recovery and (3) Room for learning-by-doing at individual pace,

reinforcing recently acquired feedback and learned motor skills in diverse environments.

Table VII-2. The coaching programme as an experimental activity. Subject learning was
structured and focused on the main coaching rules (CR) and coaching (teaching topics)
priorities.

Lesson Introduced concept and focus Remarks

1. Introduction lesson: Information pre-session included general and
Grip, ball addressing and stance local driving range routine information,
basics information (leg width biometrics measurement for club initialisation
and body alighment). and consent sign-off. Getting to know subjects
Basic swing information. and their relevant background.

Making sense of basic technique.

2. Stance focus: Posture and ball Upper body and knees corrections, technique
addressing. corrections, comfort zone.
Hand and arms ‘softness feel’ Importance of using the large muscles
Back swing (right knee and coil (consistency) over small muscles (variations).
resistance) information

3. Basic swing motion and Introduced wrist release, length of the swing,
dynamic posture stability: head, upper body and knees corrections.
Focus on ‘steady knees’, hips, Visualisation and improving of achieving
trunk and head. comfort zone.

4. Ball impact: Angle of attack, Introduced concept of ball flight trajectory
swing path parallel to target being influenced by angle of incidence.
line, speed information.

5.... Improving the ball flight. Including individual intervention. Advanced

beginner or higher skill level.

Information given to the subjects adhered to the coaching information from Leadbetter

interactive learning ("Leadbetter interactive,"

2005). The concept of progressing from
beginner to expert and associated learning relevant to this study’s perspective was introduced

in Chapter 2.
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2.2 Subjects and Golf Swing Data

Prior to the golf experiment, ethics approval for this component of the research (AUTEC
number 06/105) was obtained from the AUT University Ethics Committee (Appendix E).
Subjects participating in the study were 13 golf learners, 5 females, 8 males, who ranged in
age from 17 to 50+ years and in height from 157-181 cm. A sub-group of 10 beginners
included 5 males and 5 females. The other 3 males in the sample represented those of
intermediate to advanced skill level.

The data set available at the conclusion of the data collection sessions consisted of 531 golf
swing samples (including 12 diverse golf swings captured from the ‘demo user’ included in
the initial database with the SmartSwing club software ("SmartSwing," 2005) for analysis
demonstration purposes). The remaining 519 swings were obtained from an original
collection of 541 samples after removing the swings that were labelled as erroneous by the
club software.

Captured data from the SmartSwing system database were exported to ASCII comma
separated (CSV) text format for the purposes of the ML experiments and to overcome the
two major constraints i.e: (1) The unavailability of a software development kit to access golfers’
SmartSwing data; and (2) To adhere to the terms of the SmartSwing end-user licence
agreement (SmartSwing Manual 2005, pp. 27-30), which prevented access to the internal
workings of the club or to the system database.

To overcome these two major constraints, a set of stand-alone programs was designed to
assist export from individual swing PDF data reports to the text based CSV data format
suitable for use in the analysis environments used in this study (NeuCom, MATLAB and MS
Excel; see: The supplementary CD, '02_Extract_Golf_Features_from_PDF_Scr_capture.m4v’).
The next section of this chapter reports on modelling of the feature set comprising
biomechanics values obtained from the SmartSwing golf club motion acquisition. All golf
swing data used in subsequent computations were obtained solely from the unobtrusive
SmartSwing system. No complementary data were added to the golf swing data set or were
combined from alternative sources (e.g. video, microwave speed radar and the like). The golf
club data were synchronised with video by: (1) The player profile selection in the club
software; and (2) The player pressing the button for the first of the 5 consecutive swings.
Video information contained the date, player and ball count information.

The 12 diverse golf swings from the ‘demo user’ (as the 14" golfer), containing eight swings

with ‘Parallel’ output class, were not used for feedback, but to: (1) Help with modelling and
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analysis of the captured unbalanced data set; and (2) Provide data ambiguity reflecting real-

life club usage by multiple player profiles.

3. Data Analysis

The swing motion data (Table VII-3) when transformed to the relevant problem space

consisted of six input variables and one output class labelled as ranges (‘Inside-out’, ‘Parallel’,

Outside-in’).

In a form comprehensible to humans, the report format contained instances of ‘name=value’

and the units of measure. Where appropriate, a unit of measure was also provided with a

descriptive form (e.g. computed output class labelled as ‘Outside-in’).

Table VII-3. Swing sample variables and values obtained from the SmartSwing system.

Swing sample data obtained from the
SmartSwing system.

Selected variables related to ‘swing plane’
for the machine learning experiment.

Swing Segment Chart # 2 = 3.53" inside
Swing Segment Chart # 3 = 20.09" inside
Swing Segment Chart # 4 = 3.27" outside
Swing Segment Chart # 5 = 18.54" inside
Swing Segment Chart # 6 = 1.51" outside
Segment #4=Across the line (42.2 degrees)

Angle of Incidence=Qutside-in (5.2 degrees)

Address Shaft Lean=neutral (-0.6 degrees)

\ Selected Input Variables:

1. 'Swing Segment Chart # 2"
2. 'Swing Segment Chart #3'
3. 'Swing Segment Chart #4'
4. 'Swing Segment Chart #5'
> 5. 'Swing Segment Chart#6"
6. 'Segment #4'

Output Class:
7. 'Angle of Incidence'

J
J

Backswing

Top of the
swing
Downswing

Top of the
swing

Note: The variable 'Length of Backswing' was not selected for this experiment because of the
unclear and undocumented relationship to the swing plane.
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In exporting non-discrete data from the SmartSwing system, where needed the values
assigned to the first sub-category were multiplied by -1, denoting ‘being short of the ideal
value. For example, the ‘Segment # 4’ value reported by the SmartSwing software could fall
into three ranges or sub-categories: ‘Laid-off’, ‘Parallel’, ‘Across the target line’. Values found
to fall into the first sub-category during export were converted to negative numbers, while
the other two sub-category values were left as reported by the SmartSwing system (to avoid

overlapping values).

3.1 Problem Space Visualisation

A selected subset of variables from Table VII-3 is associated with the ‘swing plane’ heuristic

and this is further depicted in Table VII-4.

Table VII-4. Swing plane variables visualisation in relation to a golf swing phasing. The
thumbnail images were obtained from the SmartSwing application user interface and modified
for viewing comparisons.

Input Output
Start Backswing Top of the swing Downswing Ball Impact
Sequence - == ~ - A~ = - A~ =
“Across...”
=} | ) | ' f | ¥
| .., ! S" ;'.—9.:‘ { ’.-“' & al *‘ L HLA A \ﬁ;
“Laid-off”
Variable 1 Variable 2 Variable 3 Variable 6 Variable 4 Variable 5 Variable 7
Swing Swing Swing Swing Swing Angle of
N/A Segment Segment Segment Segment #4 Segment Segment incidence
Chart # 2 Chart # 3 Chart # 4 Chart #5 Chart#6

The output class, angle of incidence, was known (Hay, 1993b; Suttie, 2006) to produce

resulting lateral deviations from a desired direction (i.e. the target line).
ulting lateral deviations f; desired directi the target li

An idealised conceptual model of ball trajectories was mapped to output classes from the
SmartSwing system. The actual characteristic ball trajectories’ curves and distance were
occluded. Thus, the indicated output class could not indicate the actual ball flight direction

but only a group of possible ball flight patterns (Figure VII-4).
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Figure VII-4. Conceptual model of golf ball trajectories mapped to output classes (‘Inside-out’,
‘Parallel’, ‘Outside-in’) used in this experiment. The conceptual model of golf ball trajectories figure
was retrieved 23 Jul. 2009, from www.tutelman.com/golf/clubs/ballflight/theUsual.jpg).

Alternative figures including detailed descriptions of ball flight patterns and their

classification can also be found in Suttie (20006, p. 12).

3.2  Feature Analysis, Evaluation and Clustering

Before attempting to design a classifier for swing angle of incidence based on swing quality
(measured by a variety of characteristics), preliminary data analysis was undertaken to
understand the wider context associated with the motion data relevant to this investigation
(Figure VII-5). In this particular instance of the data analysis and modelling taxonomy
(Chapter 4), which is related to golf activity, the issues addressed and the resulting outcomes
comprised a combination of interlinked activities that were transferable between similar
motion data contexts. For example, data analysis may reveal modelling challenges such as an
unbalanced data set distribution relative to the output class, overlapping variable patterns and
a possibility to extract rules from a connectionist system to inform coaching. While some
classifiers could produce good classification results on balanced data, they may not be an

optimal choice for unbalanced data sets.
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Figure VII-5. Related connectionist research contexts associated with the captured golf data set.

Data analysis may also include assessment of how each feature/vatiable might contribute to
classification accuracy. Such an investigation could enable input space reduction if certain
evidence was found e.g. diverse presence of noise in data variables, redundant positive or
negative correlation between variables and how important each variable’s role was to separate
samples into corresponding output classes (also known as the discriminative property).
Variable space reduction may also have resulted in a consequent reduction of complexity of
machine-extracted rules. These rationales motivated the following investigation areas: 1)
distribution of ball flight trajectory categories; 2) feature analysis — evaluation, selection and
transformation linked to rule extraction as machine generated knowledge with data clustering;
and 3) production of alternative golf data sets for further connectionist

modelling/classification purposes.

3.2.1 GolfData Set Distribution

A distribution of the output class ‘Angle of incidence’, as &nowledge of results from the imported
golf swing data, is shown in Figure VII-6. From a kinesiology perspective, it is important to
note that the six input variables related to swing plane used in the experiment are not all that
a golfer needs to consider in order to control ball flight patterns — there are a number of
other factors (e.g. wrist release timing, shoulder angle, addressing the ball, involuntary

mishitting the ‘sweet spot’ of the club face) that influence the outcome of a golf swing.
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Figure VII-6. Unbalanced output class (1="Inside-out’, 2=‘Parallel’, 3="Outside-in’) distribution.
Analysis, calculations and figure visualisation were developed in MATLAB ver 7.1.

Hypothetically, if in this challenge, for this unbalanced data set (Figure VII-6) a classifier
would have only one rule (output=‘Outside-in”, regardless of input) then its overall

prediction accuracy would be 83.8%.
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Figure VII-7. Example of probability of k samples from minority output class (‘Parallel’) to appear in
test data set. Resulting calculations and visualisation were developed in MATLAB® ver 7.1. Formula
(IV-1) that produced Gaussian bell shaped curve and parameters naming convention from Chapter
4 are additionally included in the graph for the reader’s convenience.
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In this case study, classification results included visualisations such as a ‘confusion table’ (e.g.
an actual/predicted [‘true positive’, ‘false positive’; ‘false negative’, ‘true negative’]
visualisation matrix) and a histogram of individual class classification accuracy. Further
visualisation and analysis (Figure VII-7) included application examples of the novel formula
(IV-1) aimed to prevent (or evaluate) probability of validation incidents (e.g. entire minority

output class to appear in the test data set) for the golf data set.

3.2.2  Feature Analysis

Before attempting to design a classifier for swing angle of incidence, preliminary feature
analysis was undertaken in order to assess how each feature (variable) might contribute to

classification accuracy.

Correlation and Signal to Noise Ranking Comparisons and Variable Space
Reduction

Introduced previously (Chapter 3) to indicate discriminative properties of the variables for
classification purposes, both correlation and signal to noise ranking may produce similar results.
Because of the pairwise comparison nature of the tests, before attempting a classification on
the full dimension data set, it may not be possible to know for certain how a variable would
contribute to classification (e.g. cases of inter-dependence between the dependent variables).
With this question in mind, creating alternative data sets representing a reduced original
problem space can be used for classification comparisons or for the various strategic goals in
augmented systems design (Figure IV-16).

Correlations and signal to noise ratio visualisations were produced using NeuCom (ver. 0.919
Student ed.). Numeric correlation testing (Appendix C, MATLAB sample code) using
MATLAB™ (P<0.05) produced identical results shown in Figure VII-8. Correlation matrices
indicated that variable pairs 2-4 and 6-3 respectively were more highly correlated than others
(i.e. R=0.85 and 0.83 respectively) as highlighted in bold in Figure VII-8 (a). Related to the
output variable 7 (Figure VII-8 b), the signal to noise ratio variable ranking (Figure VII-9) and
pair wise numeric correlation variable ranking are, as expected, in the same order (Rvar[5-

71=0.56, Rvar[3-7]=0.32, Rvar[6-7]=0.31, Rvar[1-7]=0.15, Rvar[4-7]=0.1, Rvar[2-7]=0.03).
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a
) Numeric Correlation Colour-coded Visualisation
Variable 1 2 3 4 5 6 @ 2
1 1.00 | 056 | -006 | 025]| 045]| -0.07
2 0.56 100 | o000| o085 | o052 -034 : 1
3 -006 | 000 | 100| 012 | o0.16 | 0.83 i ‘
4 025 | o085 012| 100| 053 -0.19 N .
5 0.45 052 | 0.16 | 0.53 1.00 | 0.04
6 -0.07 | -034| o083 -019| o004 1.00
(b)
Numeric Correlation Colour-coded Visualisation
Variable 1 2 3 4 5 6 7
1 1.00 0.56 -0.06 0.25 0.45 -0.07 0.15 I_’ . - ‘
2 0.56 1.00 0.00 0.85 0.52 -0.34 0.03 » H,
3 -0.06 0.00 1.00 0.12 0.16 0.83 0.32 '
4 025 | o085 | 012 100 | 053] -019 | o010 ) i,
5 045 | 052 | 016 | 053 | 100 | 004]| 0.56 o »
6 -0.07 -0.34 0.83 -0.19 0.04 1.00 0.31 !
7 0.15 0.03 0.32 0.10 0.56 0.31 1.00

Figure VII-8. Numeric correlation of the problem space. Matrix in figure (a) shows pair-wise
correlation between input variables, while the matrix in figure (b) reveals how the input variables
were correlated to the output ranking, for comparison to signal to noise ratio.

Since the data set was not highly dimensional (relative to its data set size) the correlated
results (denoted as Rvar[n-m] values) exhibited an identical order to the signal to noise ratio
ranking. Both correlation and SNR analyses suggested that variable 5 or variables 5, 3 and 6
were related to variable 7, but because variables 3 and 6 were also mutually related
(highlighted in bold in Figure VII-8 a), variable 5 or variables 5 and 3 seemed to be suitable
candidates for further modelling on a reduced data set (not included in further investigation).
Since one of the goals of efficient processing is space and rule reduction, variable 5 (the last
downswing segment) and variable 2 (a segment, before the top of the swing) were chosen as
an alternative ‘best’ and ‘worst’ (one input variable) golf data sets (noted as data sets #2 and

#3, in Table VII-5) for comparison purposes.
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‘Swing Plane’ variables signal to noise ranking

14 T T T T T T

1.2F

0.8F

SNR Value

0.6

0.4r

0.2F

IIII-_
3 e 1t 4 2

Variables

Figure VII-9. SNR ranking of input variables (NeuCom ver. 0.919 Student ed.).

While the variable 5 ranking, as expected, confirms the importance of the point of impact
(linked to the Chapter 6 global model), it may be relevant for golf coaching to note that
variable 4 (early downswing segment) did not follow variable 3 (top of the swing) in the signal/

to noise ranking order.

Data Clustering

To enable comparison and interoperability with diverse connectionist systems, and for
clustering visualisation, the golf data set was linearly normalised within the interval [0...1]
(see equation (III-1), Chapter 3).

While quantitative data clustering may indicate data patterns, cluster boundaries may or may
not be similar to an expert’s grouping as delivered through expert-based clustering (e.g.
cognitive Gestalt-based grouping). The results of golf data clustering showed how the data
could be grouped together based on mathematical similarity (e.g. distance-based grouping of
n-dimensional space). Coloured samples (in NeuCom ver. 0.919 Student ed.) indicate

overlapping data clusters (Figure VII-10).
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Figure VII-10. Clustering visualisation as part of the machine learning data analysis (NeuCom ver.
0.919 Student ed.). For figure (a) k-means clustering technique, the number of clusters is
predefined before the start of computation. For figure (b) evolving clustering method the number
of clusters depends on a predefined distance threshold (0.34 for 3 clusters and 0.2 for 8 clusters)
and it evolves in adaptive fashion based on incoming data.

‘Swing Plane’ Feature Space Transformations and Reductions

In addition to the SNR variable ranking and correlation analysis that may inform variable
space reduction (described above), the following two methods — principal component analysis and
linear discriminant analysis work on the principle of transforming a variable space into a new,
lower dimensional space (e.g. Figure VII-11).

The expectation that the new space may lead to better generalisation of an associated
classifier model is based on increased data separation comparing the original data space with
the new transformed space (created by one of the two methods). The rationale is also based
on the assumption that transformed variables that are ranked lower may contain noise.
Excluding noisy variable(s) from the problem space as redundant dimension(s) could

therefore lead to both improved general classification accuracy and operation on reduced
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feature set dimensionality. In contrast to that assumption, if a classifier shows higher
classification accuracy than expected on small to mid-sized noisy data sets it is possible to
assume that any desired increase in generalisation classification accuracy may in fact occur

due to potential overfitting (discussed in Chapter 4).

(a)

-J \NeuCom - Principle Component Analysis D@@
File  Help
Available Datasets | out_subdlass_GOLF_shots_OK_v053 Linear_Nomalise — | | #5amples 531 #harizbles : 7 ‘ ‘
Original Space PCA Space Parameter
[¥ Data contains output?
[V Classification Data?
~
3 — Diiginal Plotting Parameters —
o4 « s
® 1
s : T
E < V[T Al [
5 I~ Sample Number on / off
=
s
" — PCA Platting Parameters —
®*[ 1 4 |
ariable 1 Principle Component 1
‘ ‘ : : : : e Al [
[ Sample Mumber on/aff
= 40
E ——  MarkerSyle ———
=
& see [0 [
@
g2 Style - ?
& 201 twle |« I~ Fill
t
> Save Parameter
& 10 Number of varisbles to save
o 8 4 & ! . ﬂ
Principle Components Current Status
Start Fesst Process Finished.
) [NeuCom - Linear, Discriminant Analysis D@@
File Help
Avallable Datasets | out_subolass_GOLF_shots_OK_v033_Linear_Nomlise + | ‘ #5amples 531 Warisbles H “
Original Space LDA Space

— Original Platting Parameters —
14 |
| 2 [} -5

[~ Sample Number on / off

Variable 2
Eigen “ectar 2

— LDA Platting Parameters —
S I |
A0 IR N |

[ Sample Mumber on/off

Save Parameter

Eigen ‘alues

Mumber of features to save

[ Al [ ¢

Discriminant Vectors Current Status
Process Finished
Start | Resst |

3 4

Figure VII-11. (a) Principal component analysis and (b) linear discriminant analysis transformations
and analysis (NeuCom ver. 0.919 Student ed.).
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When applied to the golf data set, both principal component analysis and linear discriminant analysis,
as expected, demonstrated improvements in reducing the overlap between transformed
components (new variables) that contributed the most to the variations of the computed data
set (Figure VII-11). One of the reasons why Znear discriminant analysis (Figure VII-11 b) could
have resulted in better performance of expected factors (separation, variation and noise) than
principal component analysis is because linear discriminant analysis computation takes into account
both input and output space (i.e. output class, the supervised learning concept), while principal
component analysis works on the input space only (i.e. the unsupervised learning concept).

As a modelling decision, in addition to the original golf data set, two Jnear discriminant analysis
transformed and reduced dimensionality spaces were used (noted as data sets #4 and #5,

Table VII-5) for classification comparison purposes, where needed.

The key issues identified from feature analysis here, were: 1) Unbalanced &nowledge of results
data; 2) Overlapping variable patterns; and 3) Rule extraction (surrounding ‘swing plane’
heuristics) as machine generated knowledge.

As a result of the analysis, research in this case study included a classifier modelling to
achieve a relatively high degree of classification accuracy on an unbalanced data set, but also
to provide insights into a wider context extending to motion data modelling (including model
validation on alternative golf data sets, with reduced dimensionality where needed) linked to

the augmented coaching system design.

3.3 Alternative Golf Data Sets for Diverse Modelling Objectives

Diverse modelling objectives (Figure IV-16) for predicting the characteristic golf ball
trajectory included: fast computation, rule extraction and rule reduction intended to inform
coaching. For the purpose of comparative analysis, alternative data sets (Table VII-5) were
created from the original golf data set.

For fast computation and extracted rule simplification, variable 5 was chosen as the most
suitable candidate to substitute and simplify the six-input-variable data space with a single
variable input space. Both signal to noise ratio and correlation ranked variable 5 (last downswing
segment) as the most strongly contributing single factor, and variable 2 (before top of the

backswing) as the least contributing single factor to the classification inference.
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Table VII-5. Data sets provided for classification after data analysis investigations. All data sets
originated from the golf data and were modified to suit diverse modelling goals (Figure 1V-16).

Data set # Rationale

1. Golf data set, linearly Main golf data set. Normalised ([0 ... 1] interval) for operation
normalised. with a variety of existing models and approaches.

2. Golf data subset, Can a single variable model result in a reduced set of extracted
variable 5. rules with minor decrease in classification accuracy?

3. Golf data subset, Verifying if preliminary data analysis (signal to noise ratio
variable 2. Figure VII-9) would indicate an expected decrease in

classification accuracy and/or expected increase in the number
of extracted rules compared to the results from data set

#2/variable 5.
4. Golf data set LDA Linear discriminant analysis (supervised) transformation results
space converted, outperformed principal component analysis (unsupervised).
two new variables. Selected two most significant new variables (Figure VII-11) for

classification comparisons. Both methods may result in
removing noise from data and provide potential for better class
separation and classification accuracy then in data subsets
(Data set #: 2 and 3).

Can reduce dimensionality of space and still produce good
comparative classification accuracy.

5. Golf data set LDA Possible improvements in classification accuracy than from golf
space converted, data subsets (Data set #: 2-4). Selected four most significant
four new variables. new variables (Figure VII-11) for classification comparisons.

The last two data sets (#4 and #5, Table VII-5) were considered as not suitable for rule
extraction to human coaching due to: (1) The complexity of the Znear discrinzinant analysis
(ot principal component analysis) transformation to inform coaching or learning; and (2)

Operating requirements (e.g. direct transformation) for future on-line operation.

4. Classification Results

In addition to employing common classification models (RBF, SVM) as reviewed in Chapter
2, this case study also reported ECF modelling in more detail, where needed. This included:
evolving clustering, rule extraction, and on-line (one epoch) and off-line (multi epoch) batch
optimisation. Supporting concepts for ECF (also revised in Chapter 2) were that clustering
techniques could be used for classification if the output class was associated with each cluster

and that such underlying connectionist structures could be used for rule extraction. Although
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not intelligible for human reasoning, the large number of generated clusters (nodes) as

extracted machine rules may indicate more sub-rules and specific swing patterns than

described in the ‘swing plane’ heuristic (Figure VII-1). As an indication of whether the ‘swing

plane’ heuristic can be implemented in a machine, classification results were obtained using a
holdont validation (see Table III-2) on traditional ANNs and a newer ECOS (i.e. SVM (Table
VII-6), RBF (Table VII-7) and newer ECF (Table VII-8). Given the available unbalanced

data set, the results included zndividual class accuracy histograms ot confusion tables (see also

Appendix B).

4.1

Traditional ANNs Classification Results

Table VII-6. SVM classification accuracy for 80-20% holdout, using golf data and linear

discriminant analysis (LDA) transformed data sets with reduced dimensionality.

Overall accuracy and individual class accuracy visualisation

Model Parameters

SVM Kernel:

linear

polynomial,
2 deg.

polynomial,
3 deg.

Data Set 1
All golf data set
variables

Overall
accuracy = 85.85%

Data Set 4
LDA - 2 variables

Overall
accuracy = 82.08%

Data Set 5
LDA - 4 variables

Overall
accuracy = 83.96%

Overall
accuracy = 87.34%

€ T

ccccc

Overall
accuracy = 87.74%

€ 0

Overall
accuracy = 87.74%

Overall
accuracy = 87.74%

Overall
accuracy = 86.79%

Overall
accuracy £ 87.74%
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Table VII-7. RBF classification accuracy for 80-20% holdout, using golf data and linear
discriminant analysis (LDA) transformed data sets with reduced dimensionality.

Overall accuracy and individual class accuracy visualisation

Model Parameters DataSetl Data Set 4 Data Set 5
RBF Training All golf data set LDA - 2 variables LDA - 4 variables
cycles = variables
100
Linear
output
function
No. of Overall
hidden accuracy = 86.79%
nodes = 36

Overall

No. of accuracy = 86.79%
hidden
nodes =21

Overall Overall Overall
No. of accuracy = 82.07% accuracy = 81.13% accuracy = 86.79%
hidden " : :
nodes =12

Overall
No. of accuracy = 79.24%
hidden
nodes =6

Note: Overall accuracy is provided to 2 decimal points for comparative purposes.
The histograms provide insight related to classification accuracy of individual output classes,
which was relevant for the minority classes.
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Further experiments using ECF included: (1) rule reduction and (2) cross-validation. The
overall classification accuracy ¢ (see equation (VI-2) used in Chapter 6) was the ratio between
the number of correctly classified examples and the number of all examples from the input
data. All classifications with associated visualisations and validations were produced using
NeuCom (ver. 0.920 Student ed.).

As an observation from Table VII-6 (SVM), the best results were achieved using a 3" degree
polynomial SVM kernel. For the same kernel, alternative ‘Data Set 5 LDA - 4 variables’
containing reduced dimensionality (4 new/transformed variables) produced identical
classification results. Minor classification decline was noted with less complex kernel settings.
Regardless of the SVM kernel, the original data set provided the best overall classification
results for the minority class (‘straight’ impact).

As an observation from Table VII-7 (RBF), the number of hidden nodes and their impact on
overall accuracy is difficult to estimate. The increase from 21 to 36 hidden nodes did not
result in improving overall accuracy — suggesting possible model overfitting.

Because of minor classification accuracy improvements of the RBF relative to incremental
parameter change, only one experiment (12 hidden nodes — as a possible sub-optimal model)
included classification results using alternative data sets. For that case, RBF performed better
when using a transformed data set (‘Data Set 5 LDA - 4 variables’). Another observation
specific to RBF was that even with relatively lower overall classification results compared to
SVM, the RBF was still working relatively well with the minority classes of the supplied
unbalanced data set.

For the purpose of extracted rule reduction, alternative data sets #4 and #5 were replaced

with #2 and #3 in the next classification results.

4.2  Classification Results Using Evolving Classifier Function

ECF classification accuracy for the original data set only indicated the highest overall
accuracy for both one-pass online and for four epochs off-line modes (Table VII-8).
The class that was most susceptible to misclassification with all classifiers (SVM, RBF and

ECF) was class 2 ‘straight shot’.
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Although delivering the highest accuracy and the fastest model, ECF showed lower

classification accuracy for class 1 than the other classifiers.

Table VII-8. ECF classification accuracy for 80-20% holdout, using the golf data set.

Overall accuracy and individual class accuracy visualisation

Model Parameters Data Set1

ECF All golf data set
variables

Max No. of Overall

field=1 epochs =4  accuracy = 90%

Min At 80 Rule nodes

field=0.01

MoN=3 ’

MF=2 i

No. of Overall
epochs=1 accuracy =90%
At 69 Rule nodes

ECF parameters: Max Field = 1, Min Filed = 0.01; Number of nodes which are referenced to determine
the class of the current sample MofN = 3; Number of Membership Functions (MF) = 2.

Contrary to the results obtained (Table VII-8), it was expected that for a computationally
slower, off-line mode there would be higher classification accuracy with possibly fewer
generated rule nodes than in the faster one-pass algorithm alternative. Although these
observations with maximising classification accuracy would warrant further investigation they

were considered outside of the primary scope of this study.

ECF Classification and Rule Reduction

ECF rules and their reduction strategy by using alternative, reduced dimension data sets (see
Table VII-9 and Table VII-10) were investigated. To address the relatively high classification
results with one epoch parameter, an ECF with the same settings was investigated further

applying computationally more expensive cross validation.
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Table VII-9. ECF rules reduction on alternative data sets (Table VII-5) classification accuracy for
80-20% holdout.

ECF - Overall accuracy and rule nodes visualisation

Data Set 2 Data Set 3

Golf data set variable #5 Golf data set variable #2

Overall accuracy = 84% Overall accuracy = 74%

No. of rule nodes = 63 (single input variable) No. of rule nodes = 101 (single input variable)

Accuracy Accuracy

S0 T T

% Comect
% Comect

2

2
Class Class

RN Radii RN Radii
T T

0.4 0.14
036+ 1 012 F
03rF 1 a1l
025+
0.08 -
. Dzr _
3 ER
= ooasf =
0.04
0.1 F
ool | Dozt
ol allpron —ma il = ol . ok l.nl- — Pa— — - 4
-0.05 L L L -0.02 L L L
1 2 3 1 2 3
RNs RNs
Comparison
Better overall classification. Less accurate classification.
Smaller number of rules. Larger number of rules.

Considerable decrease in class 1 accuracy.
Minor decrease in class 3 accuracy.

As expected, a data set containing the highest ranked variable 5 (see SNR ranking, Figure
VII-9), produced relatively good overall classification accuracy (84%) when compared to data

set #1 (Table VII-8) containing all the variables (90%).
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A view in this thesis is that machine-generated rules should be close to arbitrary number 7 (as
the number of random items we may hold in working/short-term memory). Another view is
that a coach and learner will associate items with an output class e.g. what constitutes a ‘good’
swing, rather than considering all variations of critical features associated with e.g. ‘good” and
‘bad’ swings. For this reason the equations (VII-1) take into account input space reduction

and ignore the output class dimensionality.

Table VII-10. Summary of Rule Number (RN) and input space dimensionality reduction resulting
from classification results.

No.ofrule  No. of Dimension
nodes variables
Data Set 1,
All golf data set variables: 69 6 414
Data Set 2,
Golf data set variable #5: 63 1 63
Difference: 6
Calculation from the Table VII-10:
Reduction Ratio = 0.15
Reduction = 85 [%].
Where:
Dimension = (Number of Rule Nodes) x (Number of Variables)
Reduction Ratio = (Reduced Dimension) / (Original Dimension) (VII-1)
Reduction = (1 — ( Reduction Ratio)) x 100 [%].

Machine rule reduction and their presentation to humans are considered a separate research topic
not central to the thesis, but important for future bridging of CI, kinesiology and other

related areas.

Cross-validation of ECF Classification of the Golf Data Set

To investigate the ECFE classification with the same parameters further, the more
computationally demanding A-fo/d cross-validation approach was used. Table VII-11
compares two cross-validation folds. Both cross-validations resulted in slightly less than 90%
overall accuracy. Compared to the 80-20% split holdout, the results from 5-fold cross-
validation are the nearest equivalents in proportional £-fo/d data split. The 10-fold cross-

validations have shown the increased Class Performance 1 ariance.
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Table VII-11. 10-fold and 5-fold cross-validation results for ECF classification of the golf data set
(text report produced in NeuCom ver. 9.19 Student Ed.).

5-fold cross-validation 10-fold cross-validation

=== Parameters settings === === Parameters settings ===
Maximum Influence Field :1 Maximum Influence Field :1
Minimum Influence Field :0.01 Minimum Influence Field :0.01
MofN :3 MofN :3

Number of Membership Functions :2 Number of Membership Functions :2

Number of Epochs :1 Number of Epochs :1

=== Overall accuracy for each fold === === Overall accuracy for each fold ===
Fold 1/5:93.46 % Fold 1/10:98.15 %
Fold 2/5:87.74 % Fold 2/10:86.79 %
Fold 3/5:90.57 % Fold 3/10:90.57 %
Fold 4/5:87.74 % Fold 4/10 : 88.68 %
Fold 5/5:87.74 % Fold 5/10:90.57 %

Fold 6/10 : 83.02 %
Fold 7/10 : 83.02 %
Fold 8/10: 86.79 %
Fold 9/10: 83.02 %
Fold 10/10 : 88.68 %

=== Summary confusion table ===
23 11 1

6 10 2

12 24 442

=== Summary Overall Accuracy ===
89.45 +/-2.56 %

=== Summary accuracy per class ===
Class 1:56.10 %

Class 2:22.22 %

Class 3:99.33 %

Class Performance Variance : 0.65

=== Summary confusion table ===
22 10 2
11 8 6
8 27 437

=== Summary Overall Accuracy ===
87.93 +/-4.65%

=== Summary accuracy per class ===
Class 1:53.66 %

Class2:17.78 %

Class 3:98.20 %

Class Performance Variance : 0.71

This observation of classification variance on a mid-sized unbalanced set (Table VII-12) led
to the conclusion that similar cross-validation phenomena may occur as the incidents with
small data sets introduced and investigated in Chapter 4. The incidents in the case of golf
data would be defined as probability for increased distribution variance in test/train portions
for a classifier that shows different classification accuracy for each individual class. With the
unbalanced proportion of test data compared to training data there is an increased probability

for accidents influencing class performance variance.
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Table VII-12. ECF classification results, confusion matrix showing included class presence in test
portions for saved data for 10-fold cross-validation and comment linked to probability event

P(C).
Fold# Overall Confusion Classl Class2 Class3 Comment linking:
Accuracy Table samples samples samples P(C), OAandCT
(OA) (CT)
1/10 98% 400 5 1 48 The highest proportion of
010 class 3. Non-proportional class
1 048 distribution resulting in high
OA.
2/10 87% 530 7 6 40
210
2 40
3/10 91% 110 3 3 47 All class 2 samples
100 misclassified. Majority
1247 class = 100% accuracy.
4/10 89% 210 3 4 46
101
0 345
5/10 91% 300 4 4 45
00O
1 445
6/10 83% 112 4 6 43 High presence of minority
231 classes.
1240
7/10 83% 120 2 7 44 High presence of class 2.
112
0 4 42
8/10 87% 010 3 3 46
101
2 246
9/10 83% 310 5 7 41 High presence of minority
111 classes in testing portion
1540 (excluded from training
portion).
10/10 89% 200 5 4 44
210
1344

Note: Unlike in Experiment 1 (Chapter 6), where classification results were larger than 99% but
smaller than 100%, the Overall Accuracy (OA) here is rounded to nearest integer.
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To validate the above mentioned assertions for an ECF classifier (Table VII-11), the highest
and the lowest achieved classification accuracy and their test/train distributions should be
investigated:

1) More minority data difficult to classify in the testing portion — higher than average overall

accuracy (Fold 1/10 : 98.15%).

2) Less minority data difficult to classify in the testing portion — lower than average overall

accuracy (Fold 9/10 : 83.02%).

Table VII-12 includes comments and observations for selected folds of saved data from 10-
fold cross-validation from Table VII-11. This is inline with the novel formula for validation
incidents probability P(C), IV-1) (introduced in the Chapter 4) and are an example of

‘parallel’ minority class probability distribution of £ samples to be selected for testing portion

(Figure VII-7).

Reflection Points
The analysis of data collected from the subjects, predominantly novices, reveals that the most
common (majority class) swing tendency is to produce ‘outside-in’ ball incidence that may

result in a tendency to slice rather than produce a straight shot (see Figure VII-4).

During the time you are practicing and training it's 80% physical
and 20% mental, but for some reason, when it comes time and the
gun goes off it's just the opposite: it's 80% mental and only 20%
physical.

Mark Spitz, Olympic gold medallist,
(Pos: [7:10 - 7:25], www.youtube.conr/ watch?v=ed231uG81BI, accessed 16 Oct. 2012).

For learners passing beyond an initial learning programme enabling them to establish a
routine with a desirably ‘correct’ technique, a possible assumption regarding tendency to slice
may be related to the impact zone and ball addressing. For example, when addressing the ball
with an iron club, the ‘feel’” for the impact zone and wrist motion could be described as ‘a bit
eatly’, while for a driver it could be ‘a bit late’. By experimenting with a single variation of a
swing parameter to an established routine of swing technique (together with combining

practice to regaining technique and rhythm), a player may hypothetically accelerate learning
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and adaptation control of the ball flight and help to develop coping strategies to correct the

swing at the competitive stage.

For coaches, integrating an emphasised focus on the impact zone and variations of swing
parameters may inspite new coaching scenatios/practice drills. For coaches in other
disciplines, the high-level property of this case study could be transferred to coaching tennis

serving, for example.

For golf manufacturers the finding indicates a potential to design golf drivers optimised to
compensate for targeted customer group skill level (club head, impact ‘gear effect’, weight

distribution, shaft flex, club face properties and others).

For kinesiology and biomechanics research the above reflection may inspire new research

directions to inform coaching, bridging cross-disciplines and sport equipment manufacturing.

5. Chapter Conclusion

In this case study, the ‘swing plane’ heuristic predicting a ball flight category has been
validated using data collected from multiple subjects with successful implementation using
ML./connectionist models and supervised learning based on objective measures (see Chapter
4 and Figure IV-9). While achieving relatively good classification results (approximately 90%),
machine generated rules that govern the inference are considered too numerous and too
complex for human comprehension at present.

The cross-validation analyses have shown a presence of randomly selected test samples that
are not representative of the available unbalanced data set resulting in variations of overall
accuracy, demonstrating the need for prior data analysis (e.g. Figure VII-7) and novel
validation incident estimation formula (IV-1).

As a result of analysis of the swing plane variables (Table VII-3 and Table VII-4), the impact
zone segment (or variable 5, the last downswing segment) has the highest discriminative
prediction property related to swing error, while the backswing towards the top of the swing

has the lowest. This finding is consistent with Figure IV-1 and Table VI-1, Experiment 1.
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VIII. CONCLUSIONS, CRITIQUE AND FUTURE
DIRECTIONS

Not everything that can be counted counts, and not everything

that counts can be counted.

Albert Einstein

As introduced, this thesis represents a programme of work that “set out to understand,
model and automate aspects of augmented coaching. Inherent to coaching is the qualitative
assessment of human motion, which requires consideration of a set of challenging, largely
subjective ‘hard-to-quantify’ heuristic elements” (p. 25). The demonstrated application of
candidate connectionist methods for the purpose of achieving automated motion assessment
equivalent to that performed by a coach provides evidence that human motion can indeed be
assessed by a machine. Although only the critical components of augmented coaching systems
were addressed in this thesis, through a series of development-experiment cycles, novel
outcomes were achieved by applying candidate connectionist approaches via newly
constructed software components™. The novel outcomes started with the demonstration of
automated assessments of previously unseen tennis swings achieved on a relatively small data
set and concluded with a golf case study addressing swing accuracy or a relatively large and

unbalanced data set.

28 Disambiguation note: The software components referred in this thesis were ‘building blocks” or critical components of
ACS design, rather than the object oriented design components, packages, or Web services.
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1. Summary of Achievements

The aim of this thesis was to advance sport science and to automate aspects of qualitative
analysis required to assess human motion in sporting activities. The novel design approach
adopted incorporates the ability to model and automate a coach’s implicit knowledge.

The automation of augmented coaching achieved through this research was based on the use
of connectionist methods. Automated qualitative assessment encompassing movement error
detection similar to that a coach would perform provides capabilities equivalent to: (1)
Holistic subjective assessment (mapping to ‘top-down’ view); and (2) Predefined subjective
adherence to coaching rules or heuristics (reflecting a ‘bottom-up’ view).

An approach to movement evaluation that is both subjective and flexible was demonstrated
via supervised learning and weighted assessment orchestration. This approach supports the
personalisation of automated assessment for a targeted skill level and specific goals associated
with coaching scenarios.

The experiments linked to the extraction of machine rules indicated: (1) The possibility of
additional support personalisation by combining evolving and incremental learning with
extraction and insertion of previously extracted machine rules; and (2) That the number of
extracted rules, for the scenarios considered in this thesis at least, may be too complex to
directly inform the coaching process.

By combining weighted sub-space modelling mapped to individual coaching rules it was
demonstrated that: (1) The output from the learning system can be used for feedback as a
‘bottom-up’ diagnostic assessment; (2) The assessment system can provide meaningful
explanations to humans (as diagnostic outpuss); and (3) It is possible to achieve assessment
automation utilising relatively small data sets.

Experiments in sub-space modelling utilised feature extraction techniques that produced low
feature space dimensionality relative to the available data. This was possible because the
selected coaching rules in the experiments represented relatively isolated ‘bottom-up’
assessment elements (as a sub-set of the problem space). Mapping of coaching rules to
assessment elements could be included in qualitative analysis (e.g. systematic observation strategy)
and then included in the developed framework, in diverse sports. The ACS framework,
architecture, models, algorithms and visualisation are considered to be flexible and reusable in
terms of mapping of the assessment elements that are relevant to diverse sport disciplines

and related contexts.
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Of value in coaching and in kinesiology, the production of replays with visualisation of
diagnostic ontputs is laborious and time consuming. In this context, novel automation
outcomes were achieved by combining ICT infrastructure technologies; the qualitative
analysis of human motion, using systematic approaches derived from kinesiology, coaching
and biomechanics; and connectionist and evolving methods. The contributions that follow
represent multiple outcomes in terms of research and practice (see also additional detail,

Appendix A).

Note that novel contributions to a number of areas have a degree of overlap because of the
cross-disciplinary nature of this work. The same is true for novel contributions regarding
applications that utilise specific existing technologies in new discipline areas.

1.1 Contributions to Augmented Coaching Systems

Contributions to ACS and delivering a synthetic coaching user-experience are based on:

Automated assessment of motion data which incorporates qualitative and
quantitative analysis approaches. Unlike traditional algorithmic approaches, the prototype
functionality supports: (1) Supervised learning as captured expert assessment decisions and as
measured knowledge of results (KR); (2) Assessment of previously unseen motion data with
adaptation of internal machine knowledge through the use of ECOS; (3) Human-intelligible
motion analysis automation, which was achieved as descriptive error detection linked to
coaching rule diagnostics (i.e. MoHEM/CREM operation); and (4) Personalisation via
flexible (i.e. user-configurable) and subjective assessment criteria. In addition, personalisation
is supported via machine learning (ML) rules extraction and insertion i.e. ECOS can store
and recall ML knowledge by extracting/inserting rules as subjective ctitetia ot as snapshots in
life-long learning. In a hypothetical example, if as a result of injury a learner is required to
undergo a rehabilitation program with different assessment criteria until fully recovered, it
would be possible to re-initialise the machine knowledge to the assessment capability at an
appropriate point in time before the injury had occurred and to continue evolving the
machine learning system’s operation.

Layered architecture for augmented coaching systems. The layered software design
approach delivered here enables various components from this thesis to be developed and
tested in isolation and incrementally added to a system for external validation for a given

sport or other context. The novel prototype utilises an evolving, extensible, replaceable,
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multi-tiered architecture that supports: (1) Communication between the modules, enabling
synchronisation of motion data viewing and machine feature processing; and (2) Separation
of each sport’s domain-specific user interface from the processing and replay capabilities (as
excternal synchronisation for visualisation and replay).

The generic design intention of the prototype includes: (1) User-profile oriented tasks such as
self-coaching/learning, qualitative analysis and supervised machine learning; and (2) The
potential for modification to suit other sports with similar assessment requirements to golf
and tennis. Such systematic technology transfer also supports application to and integration
with embedded, mobile, pervasive systems to virtual reality (VR) for ACS environment
applications (e.g. Lee et al., 2012; Lefkow, 2012).

Framework related to ACS and modular MoHEM/CREM design, which includes
critical feature design optimisation taking into account the constraints associated with the
operating environment, contexts and motion capture. The MoHEM/CREM modular
assessment in the form of diagnostics provides a means of capturing and providing human-
comprehensible feedback and assessment validation criteria. By considering the motion
capture constraints the approach also supports the design of a set of feasible
MoHEM/CREM modules that (will) work with a variety of I/O devices e.g. low cost motion
capture systems (e.g. Microsoft’s Kinect).

Enabling automated, diagnostic-based intervention-feedback suitable for future
analyses, based on connectionist approaches, large motion data sets, feedback optimisation
and the matching of interventions to diverse goals.

Media Player Abstraction Layer, for qualitative analysis and (re)viewing human motion.
For novel external synchronisation for visualisation and replay functionality, two diverse media
visualisations of motion data were designed and used in both case studies. The first viewer
for 3D motion data was an animated stick figure player that supported interactive viewing
from any angle. The second viewer was a 2D media player equivalent (developed to facilitate
feedback to subjects in the golf case study from captured DV video format). The functional
design for both viewers including external synchronisation for visualisation and replay was optimised

for the task of qualitative video analysis.

Some of the resulting achievements were: smooth concurrent multi-video replays of pre-
defined sub-sections of video and incremental frame step navigation. External synchronisation
Jor visualisation and replay is shown in integration with: user interface and modelling

environments such as MATLAB® (Chapter 5 and Appendix B).

228



Chapter VIII

1.2 Contributions to Bridging Disciplines

Cross-discipline contributions include:

Combining qualitative and quantitative approaches such as modelling techniques
derived from qualitative human motion analysis, biomechanics and connectionist methods.
Similar to the identification of key elements and critical features considered in biomechanics,
the determination of dynamic and static machine features obtained from motion data was
derived from multi-level temporal and spatial transformations. Novel concepts associated
with buman motion modelling and analysis (HMMA) and machine features that bridge disciplines
include: personalisation, otchestration/sub-space modelling, coaching rules, coaching
scenarios and skill level.

A framework for ACS design, feature selection and feature extraction techniques
applied to HMMA — inherent to the connectionist approaches used here — which can be
influenced by strategic design and the data processing concerns for the machine learning
system. For example, the feature extraction algorithms can be optimised for the purpose of
specific operational requirements and trade-offs (e.g. processing speed, feature space
dimensionality and motion capture prerequisite requirements).

Introducing and addressing the principle of similarity grouping and associated decision
boundaries. This was investigated in terms of: (1) Predicting the random nature of
training/validation incidents; (2) Output class distribution; (3) Analysis in relation to
observed groups, internalised data profiles (e.g. swing type) and individual classes; and (4)
Enabling external synchronisation for visualisation and replay capability, linking subjective (expert)
grouping of motion data samples with numeric machine data.

External synchronisation for visualisation and replay functionality was integrated in
processing layers: communication, presentation and interaction logic. This functionality
provided interactive replays and modelling tasks associated with motion data and (cross-
discipline specific) software integration. Adding external synchronisation for visnalisation and replay
capability to existing modelling environments enhances their existing functionality (e.g. replay
control capability linked to ML data) as well as enabling rapid modular prototyping based on

qualitative and quantitative modelling tasks associated with motion data.
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1.3  Contributions to Coaching

In detail, the contributions include the following:
Qualitative assessment automation based on flexible, subjective and objective criteria
was enabled by allowing the user to adjust assessment skill levels and to select appropriate CR
and by the machine capability of supervised learning. Machine-based supervised learning was used
to capture expert’s knowledge in the form of coaches’ observations to be transferred into an
initial system before its autonomous operation on future data. If needed, measured outcomes
can also be utilised for supervised learning, as assessment automation based on objective criteria.
A selection of coaching concepts, principles and rules associated with diagnostics of
human motion with criteria related to skill level and strategic/personalised training
levels which are transferable to a machine. These were enabled by the evolving and
incremental modular system architecture design and user interface that may reflect human
thinking. The incorporated two-way communication visualisation/replay tool (as external
synchronisation for visualisation and replay) supports motion data in 3D data format.
Interpretation of knowledge discovery focused on prioritised impact/action phase
and its integration into movement. The knowledge discovered from the demonstrated
methods of data analysis and modelling interpretation suggest that priority should be given to
specific movement phases that contribute the most to the outcome(s) of the movements. For
coaches, that implies specific coaching activities focused on or ‘around’ prioritised movement
phases and their integration into coaching of a whole movement (see Appendix A). Inferring
this finding to coaching/practicing of the segment around the impact, throw or kick, the
expected benefits are: learner’s gaining a ‘feel’ for the action zone, and increased ability to
modify the movement techniques (if needed) in earlier segments, to correct or add controlled
variations to standard movement or to adapt to a new technique.
Contributions to tennis coaching. Chapter 6 includes the following interpretative
findings™ in this problem space context, based on motion data analysis of 43 swings and
connectionist modelling:

e Attention to occluded parts of a player’s pelvis. The algorithm and model

associated with the ‘swing width’ heuristic/coaching rule and injuty prevention

29 Related to the available data set — representing captured context in data — that may be in line with a coach’s personal
experience and expertise.
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showed higher accuracy in comparison to a human expert when taking into account
occluded parts of a player’s pelvis;
e ‘Low to high’ swing rule data analysis showed that it appears easier to achieve low

to high’ swing action with a forehand than with a single-hand backhand; and

e ‘Swing width’ performance versus safety — the forehand is likely to be executed
with more focus on performance (showing variation of swing width), while the
backhand swing seemed to be executed with a tendency to safety or injury prevention

for the novice to intermediate skill level player.

Contributions to golf coaching. Chapter 7 includes the following findings based on 531

recorded golf swings from 14 golfers:

e Natural learning tendency to produce swings with ‘outside-in’ incidence error.
Most learners will produce a golf swing with an ‘outside-in’ incidence error. A coach
may advise if needed; e.g. use of a complementary driver club with a property to
compensate for consistent slicing during the learning progress from beginner to

intermediate or until a player learns to improve control of the ball flight trajectory;

e Swing plane impact zone segment has the highest discriminative prediction
property related to swing error while the backswing towards the top of the swing has
the lowest. This finding was based on the analysis of measured and reported errors as
variations from linear swing plane segments by the SmartSwing club system; and

e Based on visualisation of the swing plane and the SmartSwing assessment model,
the discriminative prediction ranking indicated that the ‘ideal’ golf ‘swing plane’
boundaries may not be linear (v-shaped) but instead, may be visualised more as a ‘y-
shaped funnel’. For coaches, interpreting this machine knowledge discovery based on
the captured data would suggest for the resulting ball flight that the ‘feel’ and
movement around the impact are more important than focusing on correcting
individual swing variations that are perhaps more noticeable e.g. around the last
backswing segment. In the context of HMMA (Chapters 2 and 3) and developing a
learner’s &inesthetic proprioception, this would not apply to novices but to more advanced

skill level profiles.

The user’s coaching experience for learners in this thesis was linked to ACS capabilities of
replay and intelligible automated movement diagnosis, which can lead to fully developed

instruction and intervention feedback. Other supporting concepts from this thesis include:
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skill acquisition, kznesthetic proprioception, awareness of the ‘feel” around the impact, learning-

by-doing’ and personalisation.

1.4  Contributions to Kinesiology

The main contributions to kinesiology are in: (1) Bridging disciplines and contexts linked to
automation aspects of qualitative analysis of human motion; (2) Human-intelligible
diagnostics, based on subjective and flexible assessment criteria; and (3) Advancing the state

of augmented coaching systems and sports performance technology. Examples include:

The novel application of computational intelligence in sports and related discipline
areas. As demonstrated in this thesis, since 2003, novel CI/connectionist approaches can
provide machine-equivalent capabilities to human qualitative motion analysis/assessment.
The ideas and concepts presented as a foundation for this work are generally applicable to
multiple sports disciplines and related areas. In these contexts, the new application of
CI/connectionist systems demonstrates a system design that can assess human motion based
on subjective human (expert) and/or objective measurement assessment ctiteria. After being
trained on initial examples by an expert, a system can continue its autonomous operation on
previously unseen data. With the application of the evolving paradigm, such systems can
evolve and adapt their operation in an incremental life-long learning fashion. The novel
concepts and framework include interlinked strategic aspects of: (1) Data processing and
feature transformation; (2) The prerequisite of data capture constraints; (3)
Incremental/evolving architecture; and (4) Aspects covering modelling, coaching and user

learning contexts.

The added value of cross-discipline research. Ultilisation of CI disciplines such as
knowledge engineering enables, supports or provides insights based on data and algorithms

that have the potential to improve and extend related disciplines including coaching practice.

Aligning existing qualitative analysis models with CI-based approaches,
incorporating temporal and spatial analysis for machine feature extraction and
transformation. This includes the notion of dynamic and static CR. Machine features
obtained via the experiments may be identical to measured critical features in biomechanics

analysis or ML-alternative high-dimensional spaces, incomprehensible to the human mind.
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Impact/action zone temporal segment computation is indicated as the most suitable
machine equivalent global assessment model, based on similar findings from both case
studies (tennis and golf). The discriminative properties of swing plane segments in golf are in
line with cross-discipline findings related to the discriminative properties of the impact zone
in tennis, which was used in the global assessment model to categorise tennis swings.
Although these initial findings and concepts are promising, it would be beneficial to confirm
and validate these outcomes as general principles by conducting further complementary
studies and by involving more athletes performing characteristic movement patterns in a

variety of styles.

1.5  Contributions to Computational Intelligence
The main contributions to CI include the following:

Extending CI to new application areas and disciplines related to human motion in
sporting activities. From identified gaps (Chapter 1), this will enable further advancements in

sport science, augmented coaching and sport performance technology, and related areas.

Experimental evidence supporting the application of connectionist and other CI
approaches to automated analysis of previously unseen motion data in a manner similar to

qualitative analysis conducted by an expert. Novel contributions include:

¢ New contexts of sport and human motion modelling. The supporting examples
include: automated aspects of human motion analysis, implementation of heuristics
and coaching rules into a machine, combining critical features in biomechanics with
temporal and spatial zachine learning approaches; and
e Impact/action zone automated assessment model. As indicated in the
expetriments, the global assessment model around the impact/action zone was found
to be the best candidate for machine assessment across more than one sport
discipline (requiring relatively high-levels of data acquisition precision and sampling
rates).
Taxonomy of the research fields and contexts linked to data analysis and human
motion modelling and analysis (HMMA). This includes: expected scope of CI modelling

tasks and related data quantities; identified computational data processing and automation

contexts; and the notion of task separation into independent software components to achieve
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a modular architecture for augmented coaching systems (ACS) applicable to a diverse range
of sports and related disciplines.

Framework for ACS and HMMA, relying on CI approaches.

Two-way communication for visualisation replay and qualitative analysis as a
modelling tool for supervised learning (external synchronisation for visualisation and replay)
enabling linking of a motion data sequence in 3D or 2D video format with a representative
machine learning sample. In this thesis machine learning samples or features were identified as

being potentially high-dimensional or incomprehensible to the human mind.

Novel probabilistic formula supporting modelling of human motion activities applied
to predicting A-samples from a ‘sub-group’ to be randomly selected for
training/learning/validation. A ‘sub-group’ may be based on an expert’s similarity grouping
perception, ML, statistical or distance-based clustering or output class distribution of a
captured activity. The novel formula is linked to issues such as: predicting the cluster or
output class selection into test/training portion; cross-validation fold size estimation;
discrepancy in cross-validation results on unbalanced data due to random data selection (see
Chapter 7, cross-validation classification results). The distribution analysis of £-samples as
independent variable was found to produce a shaped curve similar to Gaussian bell (Figure
VII-7). The formula validation using simulation with large numbers and holdout cross

validation was reported in (Baci¢, 2006b; Bacic, 2008b).

1.6 Contributions to Information Science and ICT Infrastructures

Prior to this thesis and summarised in the literature review, there were no solutions to
automating aspects of qualitative analysis of captured human motion, a critical element in
enabling an automated coaching experience based on captured motion data. Contributions to

information science and ICT infrastructures include the following:
The novel application of connectionist systems in sports and related discipline areas.

Addressing the gap in automating the coaching cycle (preparation; obsetvation/data
capture; analysis — evaluation/diagnostic; and feedback/intervention) by automating the
analysis — evaluation/diagnostic stage. Existing approaches related to sport performance
technologies involve direct computation through the application of traditional algorithmic

and analytical approaches. Automated aspects of qualitative analysis delivered here are similar
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to the actions of a coach, who observes, diagnoses and provides an appropriate level of

feedback.

Augmented coaching systems for providing end-user coaching experience based on
CI incorporate an automated diagnostics assessment capability with a focus on swappable

and extensible components.

2. Implications, Limitations and Critique

The motivation for this subsection is to reach a broader audience from a range of disciplines
by linking the contributions with consideration of the thesis’ implications, limitations and
critique, from different perspectives e.g. the technologist, researcher and practitioner

communities.

2.1  Implications Specific to Coaching and Biomechanics

The introduction of automated qualitative assessment in augmented coaching and sport
performance systems is not promoted here as a technological substitute for the role of a
coach or of human intuition, but rather as a new dimension in coaching and learning. If a
machine-learning based augmented coaching system is trained using inconsistent coaching
assessments, then the augmented coaching system will not deliver automated assessment to
its full potential. Ultimately, the machine learning system, that may well produce automated
diagnostic outputs as feedback, is not viewed as a substitute for an expert coach’s judgment
or thinking.

In terms of enhancing the human experience, it is plausible that augmented coaching and
promoting human movement (e.g. via ‘learning-by-doing’, digital entertainment or
augmented coaching environments) should improve health, longevity and quality of life, and
for some learners it may accelerate the journey from beginner to expert.

It is contended, in this thesis, that the following implications are relevant and of value:
Shifting low-level cognitive coaching tasks to machine-equivalent automated tasks,
enabling a coach to focus on higher-level tasks. For example, if a player’s motion data is
available, the components developed for this thesis can be modified to provide instant

assessment statistics regarding the player to an end-user. For a coach observing his/her
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student(s), mental focus can be shifted from attention to low-level diagnostics to a more
holistic Gestalt-type observation and perceptual consideration, including game patterns,
vision for the game and identifying goals that can then be followed up with individuals
and/or compatible groups in appropriate coaching scenarios (e.g. interventions and drills
with associated assessment criteria). It is also expected that a coach’s cognitive response may
be quicker or less prone to bias if a part of the diagnostic process is offloaded to a machine.
Opening new perspectives and opportunities for the use of coaching insights
(including related coaching scenario activities) in facilitating supervised learning and the
consequent design of augmented coaching systems, video games and digital entertainment
environments associated with motion and motion capture systems. In addition to having
access to facilitate the optimal operation of MoHEM/CREM-based qualitative diagnostics
assessment, a coach will be able to apply coaching scenarios, provide feedback and conduct more
strategic assessment of play/competitive situations, for opponent and trainee, based on
acquired motion data.

The customised ability of a learning system to assess motion could be captured as
the intellectual property of a coach or biomechanist or as his/her contribution to
systems design. A given coach’s subjective assessment criteria on observed motion data
transferred into a machine may produce better classifications or prediction results than if the
same learning system was trained by other coaches. The same is true for feature selection and
feature transformation. As such, assessment data associated with observed motion represents
a coach’s (or a design team’s) tangible intellectual property linked to modelling, classification
and system assessment accuracy. Chapter 6 included a demonstration of the same algorithm
resulting in better classification when taking into account occluded parts of the pelvis
associated with the ‘swing width’ coaching rule (tennis case study). Together with the
assessment, a coach’s role can be extended in terms of becoming a member of an augmented
coaching system design team or in an equivalent design role in the development of game or
digital entertainment systems.

Specifically, a biomechanist in an augmented coaching system design team may contribute to
the associated systematic observational strategy, data acquisition rigour, critical feature insights and
their transformation to machine features, as well as validation aspects during design stages.
Examples of knowledge discovery from motion data. As shown in the examples of the
‘swing width’ coaching rule, and in relation to the ‘swing plane’ in the golf case study,

knowledge discovery findings can be obtained as a result of utilising methods from the &nowledge
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engineering discipline, leveraging machine learning or associated modelling or data analysis to
advance the state of the art of coaching. It is contended in this thesis that the prospect of
knowledge discovery contributing to kinesiology would be increased with the conduct of further

cross-discipline research similar to this and by broadening the research community.

2.2  Implications for Analysis of Human Motion

Hybrid, multimodal motion data acquisition. Where video cannot produce satisfactory
motion data sampling accuracy and resolution, the augmented coaching system can be
integrated with additional motion acquisition hardware (e.g. embedded electronics) achieving
a trade-off of higher accuracy, sampling and real-time performance with lower obtrusiveness
as dictated by the scope of the project (see Chapter 4). Future systems are expected to
combine video information with real time animation and overlay data relevant to learning.
Lowering the cost/functionality ratio of available video analysis software. Utilising a
viewer that can be integrated with various software environments for a coach may lead to
commercial alternative low-cost solutions for video presentation and analysis. For research in
CI, this represents an opportunity to create ‘building blocks” and disseminate software that
can automatically recognise video or 3D motion data events and be integrated with diverse
ICT infrastructures.

Reusable libraries and utilities for human motion data modelling. Experimenting with
3D viewer animation performance relying on a single-core CPU allows multiple replays
without freezing frames or frame drops, with smooth interaction, as required for qualitative
analysis. Future work is likely to include 3D, virtual reality and immersive reality
viewing/replay capabilities merging data, animated surroundings and video. The external
synchronisation for visualisation and replay usability and functionality specific to qualitative analysis
and CI modelling are likely to be extended to internet video viewing content providers (e.g.
YouTube interfacing controls and libraries, and video trans-coding where needed for video

coaching purposes).

2.3  Limitations and Critique

The following limitations are acknowledged, many of them representing avenues for future

research and development:
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The need for further work to confirm and extend achieved results based on additional
data sets from diverse sports and athletes, to provide prospective evidence of efficacy in
helping individuals to improve their movements.

The coverage of the case studies. The purpose of having two case studies is to
demonstrate the ACS framework with various critical CI components providing novel
contributions that are applicable to more than one sport discipline, rather than giving deeper

consideration to a single software application specialised for one domain. In doing so, the

case studies complemented one another’s limitations as shown in Table VIII-1.

Table VIII-1. Complementary coverage and limitations of the case studies.

Property Tennis case study Golf case study

1. Experiment environment. Indoor (laboratory). Outdoor (driving range).

2. Ball impact. No. Yes.

3. Participating subject(s). Intra-subject. Inter-subject

4. Perceived degree of Moderate. Minimal.
obtrusiveness. Retro-reflective markers  Golf club had ‘normal

attached to bony look-and-feel”°.

landmarks and racquet.  Subjects had to press
‘Start’ button on the club
(Figure VII-2).

5. Rule based concept. Multiple Coaching Single Heuristic of a
Rules/Heuristics. ‘swing plane’.

6. Assessment criteria. Subjective. Objective.

7. Dataset—number of samples Relatively balanced and  Relatively unbalanced
relative to problem small to mid-size (43 and mid-size to large
dimensionality. samples). (531 samples).

8. 3D datatransparency. Access to raw ASCII 3D replay and access to

motion data. computed values from
Temporal and spatial swing motion from
computation (e.g. swing  SmartSwing software.
and event recognition).

9. Machine learning features. Temporal and spatial Feature selection and
feature extraction feature transformation.
techniques.

10. Probability of incidents P(C) Internalised expert Cluster analysis and

included in analysis.

grouping and swing
distribution.

output class/label
distribution.

30 Verified by NZPGA affiliated golf-professional.
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The two case studies together sufficiently demonstrated the viability and feasibility of the
ACS framework, providing more than adequate coverage of the concepts, theoretical
foundations and practical aspects related to the scope, aims, and boundaries of the thesis.
Closed-skill activity selected as the initial problem domain. In contrast to golf driving
range practise, tennis is recognised as an open-skill sport, but the preliminary experiments
were oriented towards closed-skill assessment. Variations in swing execution were
differentiated in terms of clusters representing good and bad swing technique.

Extending the existing data set from the tennis case study with an affordable 3D
online data acquisition system would be immediately beneficial to further develop an ACS
with greater commercial and communal adaptational potential to assist players with a large
variety of swing execution styles. The size of the data set used here, captured in a controlled
environment by a tennis expert, ensured sufficient data context and coverage required for
embedded tennis case studies, ranging from heuristics and CR that were relatively simple to
label to those with relatively narrow decision boundaries, requiring the non-trivial
development of a novel specialised 3D animation viewer for their accurate and rigorous
inspection. The captured context in the 3D motion data set for tennis was also sufficient for
demonstration, as acknowledged by the New Zealand coach (Appendix E) who recognised
the immediate commercial potential related to the 3D data set and the associated 3D
animated stick figure viewer used in the tennis case study (see the supplementary CD).
Adaptive diagnostic outputs as MoHEM/CREM weighting is not a universal
assessment solution. A single approach to the weighting of MoHEM/CREM has been
experimented with in this thesis. Non-linear weighted combinations or other forms of
orchestration (e.g. through an evolving system) could be investigated as possible candidates
to be integrated in the modular architecture based on future extended motion data. However,
an adaptive architecture based on MoHEM/CREM weighting is considered as a simple
machine alternative for more complex topologies or the tree representation of a deterministic
model (Hay & Reid, 1982; Hay & Reid, 1984). Alternative modular architecture integrations
(tree structures, connectionist ensembles) would address the opportunity to investigate
contextual relationships between errors, changes, unlearning (‘bad habits’) and re-learning,.
The need to extend the set of MoHEM/CREM. The MoHEM/CREMs considered in
the tennis case study represent demonstrable experimental evidence that meets the intent and
putrpose of this thesis. As such these MoOHEM/CREMs represent a subset of those that

could be used in a more extended analysis of motion. Future work will necessarily involve the
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development of additional MOHEM/CREM case studies (addressing, for example, aspects of
grip, balance and fluidity of movements).

Prior to the release of this thesis, the state of the art in motion acquisition-driven video
games or augmented coaching systems did not deliver similar capabilities in automated
coaching. As a result, the case study analysis and results could not be compared or

benchmarked against existing technologies.

3. Future Directions

The future directions and building blocks of this work will:

1. Extend and advance the augmented coaching infrastructure supporting the thesis’ main
contribution — to enable the use of CI to automate aspects of human motion analysis and
coaching based on advancements in ICT infrastructures;

2. Broaden its constituent methodology — to consider further applications of novel CI
approaches to kinesiology; and

3. Extend and advance into surrounding contexts — to address a wider range of cross-

disciplines and applications as well as more effective data acquisition and multi-modal

feedback (see Postamble).

3.1 Extending and Advancing Augmented Coaching ICT

Infrastructures

Future advancements in ICT infrastructures that would have the greatest effects on ACS
improvements are expected in three separate directions:

1) Input — towards a range of motion capture devices with no (or a minimal degree
of) obtrusiveness; minimal setup time and effort; and high portability or operational
autonomy where required. In order to advance the work reported in this thesis to reach a
broader audience, there is a need for low-cost motion data acquisition and data
communication devices. For example, several technologies have been introduced in the last
year including Microsoft’s Kinect, and development tools such as the Dynamic Vision Sensor
(asynchronous temporal contrast silicon retina,

http://siliconretina.ini.uzh.ch /wiki/index.php, accessed 11 Jan. 2012), the DepthSense™

Camera (with time-of-flight sensing technology) including iisu™ middleware —
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(www.softkinetic.com, accessed 19 Nov. 2011); and the low-power Bluetooth® 4

(www.bluetooth.com  for sports, fitness and health monitoring devices —

www.bluetooth.com/Pages/Sports-Fitness-Market.aspx, accessed 19 Nov. 2011).

Future investigations will be aimed at the integration of: (1) Video; (2) Embedded solutions
(e.g. using open source Arduino); (3) Sensory networks; (4) Real-time computer vision (e.g.
building on eatly work on Intel’s OpenCV and NVIDIA GPUCV (Viney & Green, 2007);
and (5) Integration with consumer electronics including game controllers, motion sensing
mobile and tablet devices.

2) Processing, platforms and distributed processing. Computational demand associated
with existing and future connectionist models, data capture and other processing tasks can be
addressed with distributed processing, including the use of embedded systems and parallel
computing.

For example, the current prototype’s layered approach and program communication with the
single instance of a MATLAB server could be extended to multiple processing instances,
multiple platforms or other programming languages operating with multi-core CPUs, with
CUDA GPUs” and scaling up to clusters, grids and cloud computing platforms.

3) Output — visualisation and usability oriented towards unobtrusive feedback and
intervention. Further case studies will be used to extend the external synchronisation for
visualisation and replay capability to new interface metaphors and to test it in a variety of sports
disciplines and user scenarios as well as interfaced with diverse tools and platforms. Further
studies in human computer interaction will combine augmented coaching and human motion
modelling and analysis with: (1) Multi-modal feedback; (2) Augmented reality,
interactive/artificial world environments combined with the latest advancements in 3D
spatial immersive environments e.g. including volumetric 3D viewing (Blundell, 2011) based

on processed motion data in near-real time; and (3) Robotics to provide interaction.

3.2  Advancing CI in Kinesiology

It was demonstrated through the two case studies presented that CI methods and concepts
are transferable between sport research domains. Common to the use of connectionist

approaches in other disciplines, there is a need for preferably large databases containing a

31 High-end NVIDA cards with CUDA libraries( http://developer.nvidia.com/cuda-gpus, accessed 28 Sep 2011 )
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variety of motion events that will enable future work on event extraction algorithms and their
validation and automation. For example, future work on an extended tennis case study with
more data would support research into the utility of non-linear weighted or other evolving
orchestration approaches as well as diverse feedback optimisations to be integrated into the
existing modular architecture.

Continuing to extend CI to coaching and kinesiology, future research will also be more
focused on augmented coaching synthesis. Future investigations will include:

Advancing multi-time series event extraction. Future advancements are envisaged in
applications of modern evolving connectionist approaches such as: (1) The evolving spiking
neural network (eSNN) and liquid state machines (Schliebs & Hunt, 2012); (2) Advancing the
work on personalised modelling (Hwang, 2009); and (3) Advancing the selection of
personalised data neighbourhoods for example, by extending Fuclidean distance approaches
(Kasabov, 2007b, 2009) with quantified cognitive distance modelling.

Knowledge discovery transfer. Sharing the interdisciplinary vision advocated by others
(Knudson & Morrison, 2002, p. 32), early experiments directed towards transferring high-
level properties of the golf case study translated to assessment of the tennis serve show
encouraging preliminary results.

Capturing the subjective notion of similarity at multiple levels. At a high-level of
processing, this refers to extending the preset weights or manual configuration to utilising
automated weight adjustment (Cardle, 2003; Bacic & Zhang, 2004). The corresponding
algorithms, based on the use of large data sets, may include artificial neural network
ensembles, or other structures that use relevance feedback in refining the weights.

At a low-level of processing, the subjective notion of similarity will inform the continuation
of iB-fold algorithm (Bacic, 2008b) variation development utilising pre-partitioned
randomisation based on supervised learning data. Case studies will include motion data with
expert assessment in terms of both output labels and captured subjective similarity; or
configurable distance measures for machine learning cluster analysis. The expected benefits
include an improved learning rate. Similarly, for cases where there is evident similarity in
human and machine decision boundaries, this would open up the opportunity for semi-
supervised learning utilising large data sets for the purpose of minimising interactive activities for
expert-based supervised training.

Using external synchronisation for visualisation and replay of video with matching

3D animated models to facilitate feedback. Existing 3D animated models would include
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avatar rendering in order to produce useful (and possibly real-time) feedback in virtual reality
systems and immersive environments.

Motion data and video/3D synthesis integration. Extending the capabilities of the
system prototype should support the use of synchronised video and processed motion data
in order to provide augmented feedback and visualisation.

High-level educational concepts. In addition to matching skill level and programme level,
personalised and group learning including teaching aspects would include fuller consideration
of user profiles, learning styles, and individual and group incremental achievement dynamics.
Providing automated augmented feedback. Future research in providing automated
augmented feedback optimised for diverse goals, including education, injury prevention, and
rehabilitation, will be based on the foundation established through this work drawing on the
availability of larger data sets and architectural advances into evolving novel ensembles of

CREM/MoHEMs.
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In the author’s vision, further advancements of CI in modelling human sporting activities and
related disciplines are expected to enable:
1. Personalised coaching environments based on various ICT infrastructures and
supporting various coaching scenarios and pressure drills;
2. Strategic competitive pattern recognition, feedback and multi-modal intervention; and
3. Regulation and control for prosthetic control mechanisms (Matsuoka, 1997; Burck,
Zeher, Armiger, & Beaty, 2009), based on MoHEM and CREM diagnostic approaches.
Based on this thesis, projected future work includes a range of applications in advancing
control mechanisms in intelligent prosthetics (Adee, 2009) and exoskeletons (Strickland,
2012) personalisation, movement learning and optimisation to meet diverse goals.
Implementing the augmented coaching paradigm into embedded control devices linked to
new brain-machine interfaces (Carmena, 2012), will enable control of prosthetic devices in a
natural way with a supervised learning paradigm. This concept will exploit the plasticity
phenomenon of the brain and enable cognitive activity to be translated into prosthetic device
driving signals via such embedded control devices.
Other control applications include work on future coaching environments based on recent
advancements in 3D display technology, virtual and immersive environments (Blundell, 2011)
combined with robotics. For sport performance technology and augmented learning
environments, the further advancements in applications of CI would be aimed at: (1)
Modelling opportunities for various sources of synchronous motion data input” in related
areas of cognitive prosthetics (shortening OODA loop response times, autonomous advising
strategy with real-time processing capabilities of game patterns); (2) Automated injury
detection as pathomechanics pattern recognition (Fortenbaugh et al, 2009) to skill
modification and skill reacquisition in rehabilitation; (3) Umpiring of stylistic executions (e.g.
synchronous diving); (4) Digital entertainment and gaming experience based on augmented

coaching/learning; and (5) Combining active and passive machine learning paradigms.

32 Heterogeneous acquisition devices from environments providing synchronous input (e.g. force-plates, electromyography
(EMGQG), electroencephalogram (EEG) and 3D motion capture) data.
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APPENDIX

This section includes in more detail contributions, concepts, mathematical notations, selected
source code snippets and additional background information associated with this thesis.

This section also comprises ‘loosely referenced’, supporting and non-mandatory reading

material to reach a wider audience from related disciplines.

COMPUTER SYSTEM MODEL REAL WORLD APPLICATION
m FEEDBACK HUMAN EXPERIENCE
_ s i PEOPLE
] | PIGhLEVEL 2N SPORT APPLICATIONS
e ]
==}~ ) i 4 ACTIVITY IN SPORT CONTEXT
o - = LOW-LEVEL BROADINFRA- |~ ACTIVITY IN TENNIS AND GOLF
~ (DATA PROVIDER) STRUCTURE
13 RESPONSE TASKS IMPROVEMENTS
APPLICATIONS
) cT (values - SENSORS)  PRE- COGNITIVE ACTIVITIES
"y THEORY and (3D Data - VIDEO) OTHER DOMAINS:
o INFRASTRUCTURE ERGONOMICS, RECOVERY, ...

- I ey -
Study efforts = n_EE + @I + :i; + (q_uy
[P =

Holistic research efforts linked to contributions in augmented coaching.

The figure above depicts the thesis as mixed study efforts, designed with consideration to be
transferable to present and future parallel and distributed processing platforms to achieve

real-time processing needed for diverse real world applications.
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Appendix A: Achievements Summary

Specific discipline and contributions abbreviations (see the table below):
... all cross-disciplines included in the thesis
... augmented coaching systems

All
ACS
C

CI

G
ICT
K
KD
KE
SE
SM

... coaching

. computational intelligence including knowledge engineering, connectionist approaches

(general) and pattern recognition (specific)
.. gaming and digital entertainment production
.. information and communication technology infrastructures
.. kinesiology (general) and biomechanics specific discipline aspects
.. knowledge discovery context
.. knowledge engineering
.. software engineering
.. sport equipment manufacturing.

Summary of achieved novel synthesis as cross-discipline contributions.

Contribution Description, relevance and significance Specific
discipline
1 Cl in Kinesiology Novel ability to model and automate coach’s
implicit knowledge into a machine.
1.1 Application of Cross-discipline theoretical foundations required ACS, CI, K
connectionist for data analysis and modelling of human motion
approaches to in sporting and related activities.
augmented Automation of aspects from augmented coaching
coaching systems. including qualitative assessment of performance
and error diagnostics.
Demonstrated automated aspects of qualitative
analysis of (human) motion data include: evolving
assessment, flexible and subjective assessment
criteria, movement error diagnostics and
personalisation.
1.2 Flexible generic Generic architecture supporting augmented ACS, Cl, K,
modular extendible  coaching and evolving functional growth. G, ICT

and evolving
architecture
allowing integrative
and subspace
modelling.

Extensible MoHEM/CREM modular architecture
supporting motion data problem-sub-space
assessment.

Demonstrated automated assessment is similar to
human qualitative/descriptive error diagnostics of
an observed and recognised motion event (a
tennis swing).
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Contribution Description, relevance and significance Specific

discipline

1.3 Providing human For the purpose of providing human intuitive ACS, CI, K,
intuitive feedback feedback, qualitative assessment of human G, ICT
of the observed motion is modelled as diagnostics — using ML
movement implementation of heuristics and coaching rules.
associated with Demonstrated problem segmentation is shown in
goal of movement,  applying a sub-space modelling and ML
based on flexible implementation mapped to concepts of heuristics
and subjective and coaching rules.
criteria. In addition, demonstrated holistic motion

modelling approach shows that a motion segment
can be autonomously assessed e.g. as
(‘good’,’bad’) swing.

1.4 Personalisation of Novel personalisation assessment approach is ACS, Cl, K,
automated based on combining ECOS and flexible, subjective G, ICT
assessment by criteria. Demonstrated: (1) evolving ML principles;
using ECOS that can  (2) utilisation of extracted rules — that can be
extract/insert rules. stored externally (e.g. in a database or a text file)

as ML knowledge snapshots; and (3) supervised
learning paradigm.

2 ACS framework, Proposed and demonstrated the functionality
applicable to and the utility of the various concepts and
augmented artefacts.
coaching system
design

2.1 Generic ACS Resulting connectionist method for modelling All
framework motion data analysis from the thesis. Incremental,
and specific evolving modular design approach to automating
framework qualitative aspects of performance analysis.
instances
(Chapter 4).

2.2 Feature Selection Strategic algorithm design and properties ACS, CI
(FS) and influenced by surrounding constraints of
Feature Extraction augmented coaching system design and data
Technique (FET). contexts.

2.3 Motion sequence Generic algorithm design approach that relatesto  ACS, Cl
design pattern: motion data transformations to targeted motion
Temporal and event and coaching rules. Identified a software
spatial FET for design pattern integral to MOHEM/CREMs. See
qualitative also mental model for motion sequence design
assessment pattern (7.4).
automation.

3 Case studies Conducted two complementary case studies to

provide supporting and practical evidence.
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Contribution Description, relevance and significance Specific

discipline

3.1 Tennis case study Focus on connectionist methods and modelling ACS, Cl,
(Chapter 6). various assessments of tennis coaching rules, KD, K

tennis stroke recognition and feature extraction
techniques.

3.2 Golf case study Focus on data analysis of critical features of a Cl, KD, K
(Chapter 7). ‘swing plane’ in golf.

4 Impact or action Interdisciplinary assessment related to
zone modelling performance, safety or various combined

movement objectives.

4.1 Global performance The implementation of the (first) hypothesis Cl
assessment model investigating machine assessment of performance
(Chapter 6). of diverse (tennis) swings over relatively narrow

time period or displacement segment within
motion data.

4.2 Human Extending global performance model and adapting ACS, Cl, K
interpretable error  models of qualitative analysis such as temporal
diagnosis. observation and task sheet (Chapter 2 and 4).

Adapting qualitative methods for performance
assessment to ML.

4.3 Coachingrules as Critical features, heuristics and coaching rules are  ACS, Cl, K,
diagnostic outputs human interpretable and better suited than a G
(Chapters 3-6). large number of extracted (machine) rules.

5 Knowledge - interpretative outcomes - KD
Discovery
(Chapters 6 and 7)

5.1 Impact/action zone If a machine can diagnose what ‘a human eye ACS, C, K,
assessment model.  cannot see’, a coach may combine emphasised cl

impact/action segment practice (together with full
swing practice) to develop cognitive focus for
impact/action ‘feel’ and possibly improve factors
such as: consistency, adaptability and accuracy.

5.2 ‘Swingplane’is not  Feature analysis of the golf swing plane collected K, SE, KE
linear plane when data revealed that the impact zone had greater
seen as a ‘room for  importance for error than the segments from the
error’. rest of the golf swing plane, as perceived in

literature and by a sport equipment
manufacturer’s error indicating method.

5.3 Swing width Interpreting results of diverse algorithms enabled  ACS, K, Cl
assessment. knowledge discovery related to the pelvis area

observation for coaching. A coach may pay
attention to the whole hip region (which is
typically occluded when e.g. feeding the ball) to
identify potential risks of injury or to maximise
swing impact performance.
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Contribution

Description, relevance and significance Specific

discipline

5.4

6.1

6.2

6.3

Novice and
advanced beginners
tend to drive ‘slice’.

Tools

Validation incident
prediction formula.

External
synchronisation for
visualisation and
replay for
qualitative analysis
and Cl modelling.

Automated golf
data extraction.

Findings obtained from data analysis from SM, C, K,
participating subjects. Beginners program was KE
focused on the grip, stance, swing and ‘ball flight’
qualitative properties (KP) rather than direction

and distance outcome (KR). Beginners to

intermediate players (not limited to) may buy a

club designed to compensate for slice or have
adjustable properties to compensate for ball

trajectory between the target-line and slice

direction. For golfers who may have difficulty to

modify their standard golf swing (to control

‘hook’, ‘pull’, ‘push’ or ‘slice’, the logical choice on

the golf course would be to compensate the

stance relative to target line to compensate the
likelihood for a ball trajectory between ‘straight’

or ‘slice’.

ACS, Cl,
ICT, G, SE
Statistical tool applicable for: modelling on Statistics —
relatively small data sets; Subspace modelling of a  Probability,
particular coaching rule may not have available Cl
balanced data set. Validation incident distribution

for pre-clustered data (Chapter 7). Indication of

data set size validation strategy, therefore

contributing to overall modelling of motion data

and related problem areas.

Generic viewing capability for video based ACS, G, C,
coaching and qualitative analysis — with ability to K
communicate to Cl modelling tools and operating
environments. Mental model of operating a VCR -
replay qualitative analysis. Interactive and
portable 3D viewer/video implemented with
extended VCR - replay usability features. A viewer
model communication and integration with other
environment for modelling and data analysis
purposes (Chapter 5 and Appendix).

A tool to extract automatically golf swing data,
within compliance to golf manufacturer’s end-user
licensing agreement. Human data entry error was
eliminated.

Utility of various concepts and artefacts.

K, KE
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Contribution Description, relevance and significance Specific
discipline

6.4 Architecture and A demo prototype (applicable to connectionist All

GUI platform for models linked to Chapter 6) and the multi-tier

multidiscipline application supporting personalisation and the

analysis and user profiles for coaching, learning, qualitative

learning. analysis and incremental/evolving architecture

modelling.

Modular assessment and integrative modelling
concepts and approaches.

Multi-tier support for state and session between
GUI, MATLAB COM server and 3D viewer (Chapter
5 and Appendix). Enabled evolving weighted
modular architecture.

6.5 Impact or action Global assessment model to categorise tennis ACS, Cl
zone as holistic swings into discrete categories (‘good’ and ‘bad’).
assessment model.

6.6 Automated 1) Stance assessment feature extraction method. ACS, C, K,
assessments Generic static and dynamic stance (around Cl
modules impact/action) conversion producing angle (with
(MoHEM/CREM) monotone increase) and body orientation (specific
for: to racquet sports swings) as machine features.

2) Spin and velocity connectionist assessment
method. Machine feature for classifying ability of
(hand) movement to produce top-spin in racquet
sports, similar to kinesthetic proprioception of a
swing — extending it to human ‘feel’ for the
outcome without measuring: the ball rotation
outcome or physical properties such as elastic
deformation, surface friction or rebound. Tennis
coaches may refer to it as ‘low to high’ cue.

3) Swing width assessment. Performance vs.
safety - flexible assessment criteria based on
supervised learning and flexible assessment
criteria. Interpreting results of diverse algorithms
enabled knowledge discovery related to pelvis
area observation for coaching.

7 Mental models and Graphic representations aiming to: (1) guide
concepts various aspects of coaching, explanation, design
integration or application focus; and (2) assist
with remembering the intricacy of cross-
discipline insights after returning to the field.

7.1 Motion capture Considerations for design and integration of ACS, K, G,
infrastructures. augmented coaching systems and virtual ICT, SE,
environments (Figure 1V-14). SM,
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Contribution Description, relevance and significance Specific

discipline

7.2 Coaching scenario Flexible assessment criteria to improve various ACS, K, C
flexible assessment  learning aspects. Performance criterion is subject
modelling. to top down (goal) and bottom up (critical

features) assessment — linked to flexible ML
assessment and HMMA.

7.3 Classifier modelling  The elements of classifier modelling on features ACS, CI
considerations. from motion data emerged from the case studies

(Chapters 6 and 7).

7.4 Motion sequence Temporal and spatial techniques for machine ACS, Cl, K
design pattern, features modelling and critical analysis related to
FS and FET. human motion data. Transforming motion data to

relevant extracted machine features, features
optimisation and assessment model architecture
is viewed as the most complex interdisciplinary
process and reported across the thesis from
diverse perspectives. Utilised FET were based on:
(1) processing of a subset of markers that are not
necessarily from adjacent parts of the body or
proximal-to-distal sequencing — from slow-moving
to faster-moving segments; (2) temporal sub-
phasing that are not strictly bound to phases
(preparation, action, follow-through); and (3)
spatial ML patterns.

7.5 Subspace modelling  Problem space partitioning subject to prior ACS, Cl, K
and orchestration. analysis. Prior analysis is intended to reduce

problem space dimensionality for modelling
purposes and to produce flexible assessment and
diagnostic outputs matched to heuristics and
coaching rules.

7.6 Subspace modelling  Subspace modelling for global assessment may ACS, CI, K,
for global, utilise evolving and traditional ANN. Coaching C
personalised and scenario subspace modelling and assessment may
coaching scenario. be mapped to skill level, drill or personal

circumstances such as recovery programme.
8 Providing coaching  Findings and capabilities from this thesis All

experience to an
end-user

(e.g. application of automated qualitative
assessment in gaming and augmented
environments ) and GUI prototype represent the
opportunity to combine embedded and
ubiquitous motion capture sensors (e.g.
Microsoft’s Kinect, "Hawk-eye’ and surveillance
technology) for the purpose of providing real-time
coaching experience in digital entertainment
systems, sport/rehabilitation immersive virtual
reality environments and motion based gaming.
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Thesis Notations, Symbols and Formulas

Sets of Numbers

N ... the set of Natural numbers, N ={1,2,...}.
R, R ... the set of Rea/ numbers.

[7] ... compact notation for {1, ..., #}.
Data

U ... the Universe of all possible data.
X ... the input domain.

xe [xmm , xmax] ... notation for interval [x,,, to x,,.] or x_, <x<Xx

min max max *

Motion Data Calculus

Position = (x,y, z) as a point in 3D space.

Distance = (Ax, Ay, Az) asavector or as a scalar i.e. \/((Ax)2 + (Ay)? + (Az)z).

Velocity = ().c,)./,;).

Acceleration = (.);, y,z).

Note: the notation x represents the first derivative of x with respect to time as

¥ dx . Ax
X = —O0Ofr X = —— s
dt At
where x is a difference between two points Ax = (x,,, — x,) measured in time

interval At = (¢,,, — t,) .

The notation x represents the second derivative of x with respect to time as

. d’x .. A x
X = 3 or x =
dt At
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Scalars, Vectors and Matrices
In this thesis, unless defined otherwise, the identifiers in algorithms and in programming are

as documented as follows:
e Lower case first letter in identifier denotes scalar variables (e.g. i, lastFrame);

e Upper case first letter in identifier denotes objects and other programming structures

including #-dimensional arrays (e.g. Z, Xmotion_vector).

Identifier with all letters in upper case: Fixed values, programming constants, reserved words
representing common programming constructs (e.g. IF, WHILE).

In this thesis, vector calculations are used in biomechanics calculus and machine feature
extraction algorithms. Scalars are single values that can be expressed with positive and
negative amounts such as weight, height, temperature. Vectors are values and directions
determined as projections in A-dimensional space such as force, speed, acceleration.

Depending on circumstances and in diverse disciplines, a vector (see below) may be denoted

D

as AB or a or simply as a.

ISy

A
Vi
V ...vector V = [v1 vk] of (I,k)elements or v =| * | of (k,1) elements.
Vi
Vi
z ...scalar z:[vl Vk]' .
Vi

Z ...1s a single element value e.g:

The length z of vector V is z = ”v” =V =2
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Vi

X ... matrix X =] : -[v1 vk] of kxk elements.
Vi
X110 Xin

X ... matrix X =| : i | of mxn elements.
me xmm

The scalar p between the two vectors ;,l; of (k,1) elements is:
T —T—

p=a b=b a=ab +...+ab,.

The angle between the two vectors ;,E of (k,]) elements is:

#Tl; ab +...+a.b,

lallle]~ fa? +. +ak\/b2+ +b

cos(a) =

If cos(ar) =0 then the two vectors are orthogonal.

The projection of one vector on the direction of the other (scalar or dot product):

e

-T

b =|jalp,

(@) = ”b”"(m :
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Change the Coordinate System
For cases where acquired data and viewing tool are using different coordinate systems, the
transformation below is resulting in ‘mirror’ effect. This observation can be used for left-

handed player data to be converted and processed as a right handed for machine learning.

PSE N 1%
ﬁspsm SPSISts
P R SGT SGTISSHD
FSHD
Y

FSK SK a 7

RQDWN
H X

7 qpsa;‘i"‘}?bm
X

Right-handed 3D space Left-handed 3D space

FA 3D player: R_aq12.emt @”Z”EWE F3 3D player: R_aq12.emt E”ZHEWEI

l< << > B> I le< <« > b 31

[ Play Loop [&-B]
——

[ Play Loop [&-B]
——

. -~

JFrame: 2 {out of 44) Paused  |Marmal Camera Zoom: JFrame: 2 {out of 44) Paused  |Maormal Camera Zoom

Right-handed 3D space can be translated to left-handed by changing the sign for z-axis values.

Note: 3D space and transformation matrices are common in computer graphics (outside of the
scope of the thesis).

For left-handed players, appropriate video replay (e.g. coaching by comparisons) can also be

achieved by swapping line pixels horizontally within each frame.
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Viewing Anatomical Reference Planes

Replay function with virtual camera view of observed region of interest is important usability

feature for qualitative human analysis.

\VU’“X@/\
A Y | é
J\ :

I X

4 % z X

Randomly chosen Sagittal Transverse Frontal view
camera view view view

Directional Reference and 3D stick figure views of a tennis player.

Vertical Rotation
For cases in which the approximate ‘target line’ may not be parallel with x-axzs, the markers
data set can be rotated in xg-plane to offset the angle & between intended target line and x-

axis. For example, a 3D marker point p = (x, y, g) results in transformed marker point p,,,,~

rotate( p,oS) , as shown in the algorithm below:

Algorithm: rotate(p, o)

// Rotate 3D markers’ data around y-axis for angle (&)
x-cos(d) 0 z-sin(o)| |1

L Phany < 0 y 0 |1
—x-sin(0) 0 z-cos(0)] |1

2: RETURN (Dtransf)
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Random Sampling from Internalised Input Data Clusters and Output Classes —

Novel Probability Formula and Rationale

P(C) probability of event C formula:

=

P(C) ... probability of event C

A ... entire cluster selected for testing, k=0
B ... one sample is selected for training, k = 1
C ... k cluster samples are selected for testing
D ... entire cluster selected for training, k =

.. size of the sample space S

.. sample space, S= {1,2,...n}

.. size of the observed cluster

.. size of the test data set M

.. number of samples in test data from
observed cluster.

Formula rationale:

( possiblek cluster _ members)(no. of _other(m—k) possible _non _cluster _ members)
(no. of _all possible combinations _in _test _dataset )

P(C) =

The formula above can be also be used for expert’s internalised grouping such as (backhand,
forehand, open stance, closed stance) as well as for the clusters and output class/labels, such

as (good, bad) swing.

Split-sample Validation Simulation
Prior to simulation, random generator for uniform distribution has been tested for the
experiment purposes. Simulation refers to holdont validation method i.e. by selecting elements

for test data set without replacement, disregarding selected elements order.

Simulation data:
Data samples = 40
Clusters 9
Holdout split 35 samples for training and 5 for testing.

Cluster 7 have 0 elements and is there for control purposes. Five clusters have size 5, two

clusters have size 4 and cluster 6 has 7 samples.
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Analytical results for holdout validation.

k P(Cj=4) P(Cj=5) P(Cj=7) Comment

0 0.5729 0.4937 0.3607 Cluster data not tested; P(D).

1 0.3581 0.3979 0.4353 Desired case for small clusters.

2 0.0651 0.0995 0.1741 Possible incident or desired case.
3 0.0038 0.0090 0.0281 Incident; P(B).

4 0.0002 0.0003 0.0018 Incident; P(A) and P(B).

5 N/A 1.519e-6 3.191e-5 Incident P(D) for small clusters.

Calculation and simulation results (repeated experiments snapshot at E = 100,000).

Probability holdout Simulation Results
k P(C,j=4) P(C,j=5) P(C,j=7)
0 0.5722 0.4930 0.3621
0.3595 0.3979 0.4355
0.0644 0.0997 0.1729
0.0039 0.0091 0.0280
0.0000 0.0003 0.0016

1.0000
2.0000
3.0000
4.0000
5.0000

0

0 0.0000

Probablility Calculation Results

k P(Cj=4) P(C,j=5) P(C,j=7)

0 0.5729 0.4934 0.3607
0.3581 0.3979 0.4353
0.0651 0.0995 0.1741
0.0038 0.0090 0.0281
0.0001 0.0003 0.0018
NaN 0.0000 0.0000

1.0000
2.0000
3.0000
4.0000
5.0000

Start experiment: 25-Nov-2006 02:31:05
End experiment: 25-Nov-2006 02:43:58

Time elapsed:

% Difference
>> out = Sim - Calc

out =

0 -0.0007

0 0.0014 0

0 -0.0007
0 0.0001

746.10 [s]

-0.0004 0.0014

0.0002

0.0002 -0.0012
0.0001 -0.0001
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Simulation Accuracy for P{C)

- Calculated F(C) )

Averagel Simulated F{C)

E ...number of repeated experiment simulations

Simulations differences from calculated and simulation values seem to disappear after large
number (> 10°-10°%) of repeated holdout validation experiments.

Reporting Classification and Event Recognition Results
As shown in Chapter 7, where appropriate, reporting of classification results may include: (1)
bar graph (i.e. individual class accuracy histograms) showing classification accuracy per individual

output class, (2) confusion table (see table below).

Confusion table.

Actual class

Predicted class True_Positive False_Positive

False_Negative | True_Negative

(T rue Positive) + (T rue Negative)
(T rue Positive) + (T rue Negative) + (F alse Positive) + (F alse _ Negative)

Overall _Accuracy =

Where:
True Positive, True Negative ... number of correctly classified data samples
False_Positive, False Negative ... number of incorrectly classified data samples.
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Appendix C: Code Resources

Sample code (MATLAB® ver. 7.1) for probability and correlation matrix from golf
data (see Chapter 7).

Correlation.m

Correlation (Golf_data)

o

%% Correlation
Author : Boris Bacic
Purpose : Comparing NeuCom and Matlab results demonstration

o° o° oo

oe

Excerpt from MATLAB Help - see command below:
help corrcoef

oe

oe

'alpha' A number between 0 and 1 to specify a confidence level of
100* (1 - alpha)
Default is 0.05 for 95% confidence intervals.

oC o° oo

oe

Matrices:

oe

RLO and RUP
are of the same size as R, containing lower and
upper bounds for a 95% confidence interval for
each coefficient.

o° P oo

oe
]

oe

a matrix of p-values for testing the hypothesis of

no correlation.

Each p-value is the probability of getting a correlation
as large as the observed value by random chance,

when the true correlation is zero.

If P(i,j) is small, say less than 0.05, then the
correlation R(i,3j) is significant.

[1,3] = find(P < 0.05); % Find significant correlations.

o d° d° o° o P d° o
sl

oe

correlation coefficients calculated from an input
matrix X whose rows are observations and whose columns
are variables.

The matrix R = corrcoef(X) 1is related to the covariance
matrix C = cov(X) by:

A o oo oe

oe
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o)

% Modfy read input Golf data as needed ---------------—---
Golf data = 'out subclass GOLF shots OK v093 Linear Normalised 1.txt';
disp ('Loading data...')

importfile ('out subclass GOLF shots OK v093 Linear Normalised 1.txt')
X = out subclass GOLF shots OK v093 Linear Normalised 1
% end of read input data ----------------—--—-———————————

CR = sprintf('\n'");
[R,P,RLO,RUP] = corrcoef (X);

disp (CR) ;

disp (['Probability = ' CR])

probability = num2str (P, $3.2f");

disp (probability);

disp (CR) ;

correlation = num2str(R,' %3.2f'");

disp (['Numeric Correlation = ' CR])

disp (correlation)

Probability =

1.00 0.00 0.18 0.00 0.00 0.09 0.00

0.00 1.00 0.92 0.00 0.00 0.00 0.49

0.18 0.92 1.00 0.01 0.00 0.00 0.00
0.00 0.00 0.01 1.00 0.00 0.00 0.02
0.00 0.00 0.00 0.00 1.00 0.32 0.00
0.09 0.00 0.00 0.00 0.32 1.00 0.00
0.00 0.49 0.00 0.02 0.00 0.00 1.00

Numeric Correlation =
1.00 0.56 -0.06 0.25 0.45 -0.07 0.15
0.56 1.00 -0.00 0.85 0.52 -0.34 0.03

-0.06 -=0.00 1.00 0.12 0.16 0.83 0.32
0.25 0.85 0.12 1.00 0.53 -0.19 0.10
0.45 0.52 0.16 0.53 1.00 0.04 0.56

-0.07 -0.34 0.83 -0.19 0.04 1.00 0.31
0.15 0.03 0.32 0.10 0.56 0.31 1.00
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ASCII file 3D motion data sample-rows extraction
Motion data extraction source code for Microsoft’s Windows OS family. Motion data must
be in text format, each row representing a captured frame sample. For safe program

operation, it is recommended to use short file naming convention (also known as ‘DOS 8.3).

3

Extract.bat

Extract Source_file Start_Frame End_Frame

@echo off

REM Author: Boris Bacic

REM Sep. 2003.

REM Purpose: Extract adjacent horizontal portion of 3D tracks from ASCII EMT file.
REM Caveats: Avoid illegal characters for naming of data files.

set SOURCE_FILE=%1

set START_FRAME=%2

set END_FRAME=%3

set STEP=1

REM Uncomment and modify the following 2 lines if adding more input options
:tif %1.#==# goto help

=if "%1"=="/?" goto help

if NOT DEFINED SOURCE_FILE goto help

REM uncomment and modify the following 2 lines if you need headers in exported file
:: find /i "Selected labels:" < %SOURCE_FILE%
::find /i "Frame " < %SOURCE_FILE%

REM the first column of motion file refers to the frame number, which is used for extraction
for /L %%i in (%START_FRAME%,%STEP%,%END_FRAME%) do find " %%i " < %SOURCE_FILE%
goto end
:help

echo Purpose:

echo %0 source_file start_frame end_frame
:end

set SOURCE_FILE=

set START_FRAME=

set END_FRAME=

set STEP=

Note: Inline with external synchronisation for visualisation and replay, this programme can be

invoked from DOS command line or from the modelling environments such as MATLAB®.
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P ROI_ag21.txt - Notepad

File Edit Format Wiew Help

Felected Tabels: S5H PSH 55K PSK PSGT 55GT S5PSIS  PSPSIS  S1 T7 PSAC SSAC ~

Fiame Time oL Y1 =2 Y2 z2

207 4.120 TE8.25 122.10 -129.65 1003, 71 56.29 184.0
208 4.140 T67.50 122.89 -120.83 1003.17 56.12 184.1
209 4.160 TE6.43 121.22 -110.26 100z, 80 56.08 184.2
210 4.180 765.71 115.29 -G8, 95 1002, 54 55.08 184.4
211 4.200 765.16 115.78 -86. 84 1001.73 56.41 184.9
212 4.220 766,90 120.06 -74.77 1000, 38 57.44 184.9.
213 4.240 767.31 120.25 -52.68 993. 74 58.22 186.2
214 4.260 768,548 124,10 50,28 005,95 58.71 187.5 o

< >

3D motion data — ASClI file layout.

Running instructions

Copy the source code in e.g. notepad and save as BAT or CMD file (e.g. extract.bat).

Save the program (e.g. extractbat) to a folder containing motion data (e.g. "D:\Cutrent
Work\data").

Copy the motion data folder path into a clipboatd (e.g. "D:\Current Work\data").

Open a command line window and change directory to the motion data folder (e.g.
"D:\Current Work\data"):

<Window key>R
cmd /k cd /d "D:\Current Work\data"
In text based console, type the command below:

Extract filename start stop
or

Extract filename start stop >> outputFilename

Where:
filename ... 1s a motion data file name,
start and stop ... represent corresponding row numbers,
outputFilename ... is extracted motion event file. If not specified output data will be displayed on

screen or in MATLAB command window.

MATLAB code required to integrate the program with its environment:

| Extract filename start stop
or

eval([‘! Extract ‘ filename num2str(start) num2str(stop)])
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Data Viewing and Distributed Processing

Interactive MATLAB™ Functionality of a Back-end COM Setver
The back-end functionality allows access to modify intermediate data during the processing
session with the GUI front-end. Such functionality allows performing additional functions

over data including various graphs display.

Personal Tennis Coach [C)[O)fX) ) player: R_a S Personal Tennis Coach =1
File Stdent Coach Assessment and 3D Replay Knowledge Discovery | Tools Help | s | @ Paloo  14-B] File Student Coach Assessmentand 30 Replay Knowledge Discovery | Tools Help.
o 2 [#) Start Mattab Server Session { 2 2 g ) Start Mattab Server Session
2 NP o [} Close MatLab Server Session a0 NI P [ Close MatLab Server Session
Feodback
[#) Restart MatLab Server Session 1) Restart MatLab Server Session
PersoniData R PersonaiData
o 6ip
e v Show MatLab Server Command Line Window ° Tenrt - Hoton Dota Pl S Matab Serr Command L Wi |1
oo Sl b Wy Dot <14 PHD_fenor ED_viner o A b L e S Slnce [DNDorumets and Sefings e Wy Documerts\ 4_FHD_Geman CHoND_viowerTey " Matab Server Workspace
s and Selinge\haccly Documerk14.PHD_demos\CHE\D. viewer\Ter ™5y 0. Vit ab Server Path Browser Hitg InFrent = > = - Show MalLab Server Paih Browser
Assessment (Test] Data Student Name Progess Assessment (Test] Data Student Name Progiess:
[lchn Doef - —— [ichn Doe <] $Rea - I~ Autom Assessing
v Rosazzem = Wi R sqgemt ,
e T T e Ll B
“ Baem Fll Options View WindowsHel < Alsazent c e
o Foangent & Coo P 3 o Faaszent © Comranum D) | e Qv
e [Pombatins | prcesss | pertormance | networing P || N v | -
hotnFion
Tosk stas
Machine Learing ML) = oy o Mechine Leaing ML), Feare Extiacion Techriaue FET)
e Rumning T (Gutor54) pased [loop  [Camera Zoorod Triing Dot Assesment |~ MLVt FET andGrphe QualaiveAnshs
e | change Workspace Runing 2| A | ChengeDetauk [80 :(201% [ [ ——
e o . Workspace [ [OX]  Hoou ¥ Eosibdslond |
Roaaziemt '
Laazien e Fll Edit View Graphice Debug Window Help = —r = -
Roazent o SComo e S Windows Task Manager [E)B)X] £ Windows Task Manager EEx
;ﬁggfﬂ il File Options View Windows Help Eile Options Yiew Help
a3t en e Noms - Ve
Fooa et atons | processes | performance | Netwrk cesses
Raadl ent vl Assesament <11 sinuct> ~ Hoplcatons [p o Netvrking | Bspictions | Processes | erfomance | Networkng
Ratzen v | € Lea €] CREM <11 struct>
— ennictshor T il et | e stos Image e s e 5. cul 1A
o N Breanaternsios | g Pasanaeriscosh.oe  boacc o
R —— ; e e o w
a 5 . o) ireryen i 0w
MATLAB Command ot eve bhacc 0w
ndz cxe bhacc 0w
Coaching Rules Weight Asses| | e LCHON EXE bbacic o
1.6 [ o] e c 58 2 sonneie e om
7 2 SquseStance [T [Vey ofProcesses: 40 GPUsage: 0% _ Commit Charge: 366/ 39 whos = g bhack. o
= N si 2 Rausbrohexe bhacc 0w
7 3 Hitng nFront [1 Ve oo 3 fane ize afnoneie bhacc o
7 4 Diectin Cont. [1  [Vepoood 3 Assessnent 11 exphsr exe bhacc 0 o0
cREN 11
I 5 Lowtabign” [0 WA Tennis_shot m ssonsr.xe SISTEn 0 w0
- tasimgr cxe bhacic 0w
17 6.SwingWidh [T [Vey good 3 il Ycol Tx1 explorer.exe bbacic o 0
Uraws 1x1 vl nSvcAppFl.exe SYSTEM o o
7 7. Follow Thiugh [T [Veygood 3 < 3 - 2 ¢ 2 @
< > < >
© 8Backewing  [05  [Veyowd 3 — p
e~ = 40 | CPU Usage: 3% Commit Charge: 388M /39 _ | 4y | CPUUsage: 0% | Commit Charge: 375M /33
acesses e ammit Charge: rocesses: jsage: 0% Commit Chr
I 1. Seniopenst [0 A sag o oo oo
Tl s B[R | 5 /
Y, /

a) Back-end enabled for ‘power-user’ requirements. b) GUI front-end is visible, while hiding
background processing of windows processes.

Background process visibility in a) and b) menu options. The front end hides or allows direct interaction
with MATLAB™ back-end. The session control allows access to intermediate processing data.
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Expert Validation and Ethics Approval

Expert Validation Summary

The separate informal interviews with two coaches included a presentation of: video (see
supplementary CD, ‘User Interface Augmented Coaching.mov’), use of software (Chapters 5
and 6) and motion data (Chapter 6). Both coaches gave their permission for their short

biographies and their comments to be included in this thesis appendix.

Coaches’ Biographies

Shelley Bryce (nee Stephens), Resident head coach at Milford Tennis Club, since 2005 and
also a coach at Tennis Northern regional junior academy. She was a professional tennis
player for ten years and was number one in New Zealand for five years, with international
rankings of 246 in singles and 132 in doubles. Shelley is also a selector and manager for the
national for Ul2s, Ul4s and women’s Federation Cup teams. Shelley also managed the
winning Milford women’s Chelsea Cup team. Shelley was selected by Tennis Northern as rep
team coach for the U12 age group at the National Teams Event. She is also a national coach
and coordinator including travels with NZ girls U16 team. She has been recognized as the
Coach of the Year 2012 for Tennis Northern. Shelley provides coaching pathways for several
junior players and coaches, training young players as assistant coaches.

Kevin Woolcott, Resident coach at Forrest Hill Tennis Centre, Auckland for the past
eighteen years. He 1is the co-founder and a director of Tennislife Coaching

(www.tennislife.co.nz). Kevin is a strong believer in coaching education and application of

technology to augment coaching. He was the chairman of Coaching New Zealand for the
two terms (four years) in the early 90’s and is a life member of Tennis Coaching New
Zealand (TCNZ). Kevin’s roles in tennis after playing internationally have included Tennis
New Zealand national coach (six years), Fed Cup coach captain and World Youth Cup
coach. Kevin was also a member of the United States Professional Tennis Association

(USPTA). Kevin is one of the first coaches who utilized and shared his expertise with
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siliconCOACH and timeWARP software in his coaching and influenced the most recent

ISBS 2012 publication associated with my PhD and augmented coaching software.

Interview Background
During the informal interview the coaches viewed the demo material including:

1. The “Personal Tennis Coach” video — introducing the thesis concepts,

2. Software demo — associated with the tennis coaching case study, and

3. Tennis swings data — reviewed all tennis swing samples, prior assessment and similarity

grouping,.

After viewing the video, each coach reviewed the use of the interactive software and the data
views available with the assistance of the author of this thesis. Each coach focused on high-
level operations including data similarity grouping and diagnostic tasks associated with the
tennis swing data. For example, both coaches directed the desired vantage points for virtual
camera views and change of speed during the loop replay. When shown data similarity
groupings, both coaches agreed to the swing grouping that was arranged before the
demonstration. The software demonstration also included the use of the “Personal Tennis
Coach” and a stand-alone 3D player (see the supplementary CD: StickFigure_Player.exe)

related to possible usage scenarios and assessment reporting.

The open-ended questions included the following:

1. In your opinion, can this software be used for coaching and what other potential use
may you see?

2. In your opinion, can a 3D stick figure be used for recognizing swing patterns and
qualitative replay analysis of the selected coaching rules? Any comments on using the
stick figure data and 3D software?

3. Tennis swing samples data — do you agree with swing patterns and grouping based on

the similarities? Any comments related to good swings and common errors?
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Coaches comments — the summary of the tennis coaches’ comments after viewing the video,
software and tennis data.

Shelley Kevin

Coaches’ comments
Bryce Woolcott

| would like to use the on-line version of the prototype with my
assistant coaches. They would be able to have support for v v
autonomous error detection consistent with my subjective criteria.

| would be able to share my coaching philosophy (e.g. grip, stance

and swing patterns) and to improve management of my assistant N
coaches teaching at different coaching scenarios and levels from

beginners to intermediate.

| would be able to personalise my coaching for diverse groups, goals N
and skill levels.

| agree with the first coach’s assessment of tennis swing data

() [v)
including similarities of group patterns. 100% 100%

| recognised common errors in motion data that are common for
novices to intermediate levels. | also agree on ‘very good’ swings 100% 100%
group selection and their demonstration.

| can use 3D animated stick figure replay to assess tennis swings. | N N
like interactive replay from different angles.

| am keen to immediately use the demo software and available 3D

stick figure data in my coaching to show ‘hard-to-learn’ critical

concepts using 3D interactive features. In particular, | acknowledge \*
the high demonstration standard of the swing samples included in

the category ‘very good’.

To reach a wider number of players | would be keen to use motion
acquisition to combine demonstrated interactive 3D stick figure \*
replay with automated ‘progressive achievement’ functionality.

| would recommend commercialising this software and data. This \*
would also include extending it to smart phone/tablet technology.

| would recommend improving the 3D stick figure with fast and
short loop replays without the pause and sense of orientation when
using front and rear views.

Need
improvement

V*)Background: | have used a variety of software for video coaching and | have also worked
with injured tennis players to help them through their personal rehabilitation program. In the
past, before using siliconCOACH, | hired a software developer to develop a “stick figure”
drawing for automating the reports on students’ progress and to develop presentation
materials for coaching. Being responsible for running a coaching business, reporting was too
time-demanding to be considered as rewarding when managing the large groups of students.
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MEMORANDUM
Auckland University of Technology Ethics Committee (AUTEC)

T Hik Kasabov

From: Madeline Banda Executive Secretary, AUTEC

Drate: 2 March 2007

Subject Ethics Application Number 08/105 Golf data acquisition for computational modelling of
coaching process.

Drear Mik

| am pleased to advise that the Chair and | as the Executive Secretary of the Auckland University of Technology
Ethics Committee (ALUTEC) have approved an amendment to your ethics application allowing the experiment to be
conducted with two or more repetitions per participant and removing the provision of feedback by an MZPGA golf
pro.  This delegated approval is made in accordance with section 5.3.2 of AUTEC's Applying for Ethics Approval:
Guidelines and Procedures and is subject to endorsement at AUTEC's meeting on 12 March 2007.

| remind you that as part of the ethics approval process, you are required io submit to AUTEC the following:

. Ahﬁndmmmﬂflnﬁﬂh‘umﬂmuﬁhe&ﬂmﬂgmmmmm
which is available online through bl efhics. including when necessary a
mqmﬂfwmﬁemdﬂewmﬂumnmhpruhﬂsemwmﬂhmm

. Ah‘EFrEpu'tmlhestatLEufthepm]ec:tLElrgfmn EA3, which is available online through
4 3 rege cfhicz. This report is to be submitted either when the approval expires on 6
Juﬁﬂ]ﬂ@mmmﬁhﬂmufﬂueplqactﬂldmmmr

It is also a condition of approval that AUTEC is notified of any adwerse events or if the research does not
commence and that AUTEC approval is sought for any alteration to the research, including amy alteration of or
addition to the participant documents imohed.
fiou are also reminded that, as applicant, you are responsible for ensuring that any research undertaken under this
approval is camed out within the parameters approved for your application.  Any change to the research outside
the parameters of this approval must be submitted to AUTEC for approval befiore that change is implemented.
Flease note that AUTEC grants ethical approval only. If you require management approval from an institution or
oganisation for your research, then you will need to make the amangements necessary to obtain this. Also,
should your research be undertaken within a jurisdiction outside Mew Zealand, you will need to make the
amangements necessary o meet the legal and ethical requirements that apphy within that jurisdiction.
T enable us o provide you with efficient service, we ask that you use the application number and study title in all
written and verbal comespondence with us. Should you have any further enquiries regarding this matter, you are
welcome to contact Charles Grinter, Ethics Coordinator, by email at gharles grinter@aut ac nz or by telephone on
@21 0090 at extension 8860,
On behalf of the Committee and myself, | wish you success with your ressarch and look forward to reading about it
in
fours sincerely

A

_/{fi%,& e

Madelime Banda

Executive Secretary

Auckland University of Technology Ethics Committee

{27 s End!Ea:lcbu‘lshu:lcﬂul.ar.m:..&Ll‘l‘EE Faouty Representatve, Design and Creative Technologles

Ethics approval (AUTEC number 06/105).
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Ethics application timeline:
e Tirst Submission: May 2000,
e Approval Granted: March 2007.

The main guidelines associated with the subjects’ learning are:

1. Injury prevention. The Chapter 7 outlines the protocol for subject’s warm-ups, data
collection and post-stretching routine. Subjects were required to take at least one day
rest between the practice sessions and to communicate any physical discomfort
during and in-between the sessions.

2. Basic skill acquisition programme and learning were inline with NZPGA programme
(allowing the subjects to continue their golf coaching programme) and with the

augmented coaching software ("Leadbetter interactive," 2005).

During the golf experiment conducted in a case study (Chapter 7) the subjects would receive
teedback in the form of a report document which combined data from the 3D SmartSwing
("SmartSwing," 2005) analysis and selected frames from captured video along with

highlighted observed/measured critical features and desired critical features.
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Appendix F: ICT Infrastructure and Utilities

The list of software and utilities developed in supporting this case study:
1. Tennis demo — multi-tier application.
2. Libraries:
o Delphi - MATLAB session,
o Memory handling and import of ASCII 3D data in Delphi,
o MATLAB visualisations for: feature, motion data and data statistics,
o 3D to 2D viewing prototypes developed in: MATLAB, Delphi and Lazarus
(Linux/Ubuntu ver. 9.10 and 11.10, 64-bit).
3. External synchronisation for visualisation and replay with instructional feedback
capabilities:
o Animated 3D viewer with virtual camera interaction capability,
o0 Media player (native DV video capture format with codec plug-in capability),
o Modified VirtualDub for single-step video capture with capture file(s) auto
naming.
4. Optimisation log spreadsheets (supporting data acquisition protocol):
o Video capture parameters optimisation,
o Battery life (charging and emptying dynamics of the SmartClub).
5. Miscellaneous utilities:
o Remote mouse gesture recognition ‘digital clapper board’ for golf
experiment,
o Multistage SmartSwing PDF report to TXT data export utility,
o ASCII file 3D motion data sample-rows extraction,
o Unit converter to metric system for Golf experiment tools.
6. Data and backup utilities:
o Project milestone undo/redo,
o Multi platform data exchange and synchronisation,
o SmartSwing incremental data backup supporting undo/redo.

7. Automated subjects’ registration and information pack distribution via e-mail.
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