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Abstract. In New Zealand’s (NZ) mild climatic conditions, most
residential houses are ventilated naturally, mainly by opening windows.
However, maintaining the indoor thermal comfort characteristics of
a house by modulating natural ventilation is particularly challenging,
as the solution is not explicit. Determining a solution requires a
technique that adjusts openable window area while encapsulating the
complexity, dynamics, and nonlinearity associated with the natural
ventilation driving forces and building thermal behavior. By verifying
that there exists a significant potential of regulating indoor thermal
comfort of a relatively airtight and insulated house by adjusting
window openable area; this work additionally confirmed an excellent
capability of Artificial Neural Network (ANN) technique in predicting
air temperature time-series of the naturally ventilated house. On
the basis of these examinations, this work particularly developed a
co-simulation strategy between building thermal-airflow model and
the ANN model and demonstrated that windows could be regulated
intelligently to modulate the natural ventilation and maintain indoor
thermal comfort level during the summer period by applying Artificial
Neural Network (ANN) based predictive controller technique.
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1. Introduction
In mild climatic conditions, most residential houses are ventilated naturally,
mainly by opening windows (Buckett and Burgess, 2009). However, maintaining
the indoor thermal comfort characteristics of a house by modulating natural
ventilation is challenging, as the solution is not explicit. In this respect, by
examining the thermal behaviour of single-sided natural ventilated house located
in a mild climatic region of Auckland, Pokhrel et al. (2016, 2018) verified
that there is a significant potential of regulating thermal behavior of a relatively
airtight and insulated naturally ventilated house by considering different operating
conditions and values of Window Opening Factor (WOF).

However, determining a solution requires a technique that adjusts openable
window area while encapsulating the complexity, dynamics, and nonlinearity
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associated with the natural ventilation driving forces and building thermal
behavior. In this respect, the problem appears to be well suited to the application
of an Artificial Neural Network (ANN). ANNs are widely accepted as a tool
offering an alternative way to tackle complex and ill-defined problems and are
able to deal with nonlinear problems. Once trained, ANNs can perform predictions
and generalizations at high speed making them well suited to dealing with these
situations (Kalogirou, 1999). Previous studies (Krauss et al. 1998 and Salque
et al., 2014) have successfully demonstrated the use of ANNs for predicting
and controlling the building indoor environment, typically the air temperature
in a closed occupied space. In achieving this, the researchers used an ANN
technique to predict solar radiation and the outdoor air temperature. Similarly,
a recent study for forecasting time series global solar irradiance in NZ locations
verified the applicability of the neural network technique with specific reference
to Nonlinear Autoregressive with Exogenous Input (NARX) ANNs (Ahmad et al,
2015). Building up on this knowledge base, Pokhrel et al. (2017) demonstrated
that the ANN technique can solve the associated intricacy; and was able to predict
a time series of the occupied space air-temperature of a naturally ventilated house.

Capturing all this initial work, this paper particularly aims to demonstrate that
the windows could be actuated intelligently to modulate the natural ventilation
and maintain indoor thermal comfort level by applying ANN-based predictive
controller technique.

2. Methodology
2.1. CREATING A COUPLED THERMAL-AIRFLOWMODEL

To determine the performance of the coupled thermal and airflow environment in
a typical NZ house, the TRNSYS Type 56 model was used in conjunction with a
COMIS (COMIS, 2005) airflow analysis based on a network model of the house.
For this study, a single room of 3 m length, 3 m width and 3.6 m reference height,
as shown in Figure 1, was modeled.

Figure 1. Building 3D Model.

The model was used to simulate values of the airflow through the opening,
occupied temperature based on heat and mass conservation laws with its
well-mixed assumption (Hiller et al., 2002). While doing this, the temperature
was calculated in the thermal model at each time-step and passed to the airflow
model, so that updated information was used to estimate node pressure and mass
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flow. While doing this, it was assumed that 0 to 5 occupants, producing heating
of 100 Watts per person (sensible-60 and latent-40), occupied the room randomly.
Further, it was assumed that the building was located in Auckland NZ at 36.85˚ S,
174.76˚ E with each wall aligned to the cardinal directions and a single window
on the north face. In addition to this, Table 1 presents the building facade details
for a baseline envelope thermal Resistance (R-value) (Case 1) just meeting the
current standard schedule method for non-solid construction (NZS 4218, 2009),
resulting in a weighted average envelope thermal Resistance (Ravg) value of the
house equivalent to 2.01. Further, intermediate insulation layer R-values of 2.6
(case 2), 3.2 (case 3) and 3.6 (case-4) were considered on the envelope components
(wall, roof, and floor) to explore the overall improved average envelope Ravg of
2.6, 3.22 and 3.44 respectively.

To achieve the ventilation a Large Vertical Opening (LVO type 1) (COMIS,
2005) with a maximum opening size of 0.9 m (width) by 1.5 m (height) as shown
in Figure 1 was used to model a sliding window. In doing this, a WOF defined as
1 for fully open and 0 for fully shut was applied. In addition, intermediate discrete
WOF values of 0.1, 0.25, 0.5, and 0.75 were also considered to explore the effect
of the various window openable area on the thermal conditions.

Table 1. Building facade description.

In addition to this, the housing stock was also discretized by its airtightness
level from a least-airtight Draughty (DTY) house with 0.9 ACH to the
most-airtight Ultra Airtight (UAT) house with 0.03 ACH. While doing this, the
un-controlled infiltration equivalent to intermediate airtightness levels defined
as Airtight (AT) (0.3 ACH), Average (AVG) (0.5 ACH) and Leaky (LKY) (0.7
ACH) houses were also considered. Finally, the thermal behavior of the zone
was assessed by computing the indoor room temperature and a thermal comfort
Index for the free running condition, with no additional heating, cooling or plug
loads. Now, concerning the thermal comfort, index-Predicted Mean Vote (PMV)
is categorized into three comfort categories as shown in Table 2 (EN ISO 7730
2005). Values of PMV ranging between ± 0.5 are broadly considered as a
comfortable environment (ASHRAE-55 2010). The “C” category, having a higher
PMV comfort scale range (± 0.7), was considered acceptable to people accustomed
to naturally ventilated environments in this study.
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Table 2. Thermal comfort categories (EN ISO 7730 2005).

2.2. CREATING THE ANN MODEL FOR PREDICTING THE INDOOR ROOM
TEMPERATURE

While creating the ANN model, the NARX-ANN technique was used to predict
the occupied space air-temperature time-series. In doing so, the work predicted
future values of a time series y(t) from d past values of that time series and d past
values of another time series x(t) as shown in Equation 1 (MATLAB, 2017).

y(t) = f(y(t− 1), . . . , y(t− d), x(t− 1), . . . , (t− d)) (1)
In the development of the ANN, input quantities with low correlation with the
indoor air temperature were eliminated so that the final ANN model could be as
simple as possible without compromising the accuracy. The final NARX model
comprises a set of time series database of hourly values of different input quantities
as mentioned in Table 3. Similarly, the hourly values of the indoor room air
temperature predicted by the TRNSYS simulations formed the database for target
time series.

Table 3. Input quantities for ANN model.

Subsequently, the input and target vectors were randomly divided into three
sets such that 70% of the data was presented to the network for training, 15%
for validation and 15% for generalization. In performing the training, the
Levenberg-Marquardt algorithm was implemented in a bid to fit the input and
target. Despite the good performance demonstrated by the default values, a
sensitivity study was carried out with various combinations of their values to
identify the most appropriate values of hidden layers and delays for the proposed
NARX network. While doing this, the average values of the Regression (R)
and corresponding Mean Squared Error (MSE) for each combination of hidden
layers and delay was assessed for at least three training runs. As seen in Figure 2,
increasing both resulted in better performance (R-value close to 1), however, this
is offset by the expense of an increased time required for the training and also the
increased likelihood of overfitting the network.
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Figure 2. Sensitivity of average regression values with respect to hidden layers and delays.

Therefore, considering a balance between the times required for the
training and achievable performance, an ANN-NARX open loop (series-parallel)
architecture, as shown in Figure 3, with 15 number of hidden layers and 5 number
of delays were considered for further assessment. The weights-W and biases-b as
illustrated in Figure 3were optimizedwhile doing the network training tominimize
the MSE.

Figure 3. The optimum neural network architecture.

2.3. APPLYING PREDICTIVE CONTROL CONCEPT WITH CO-SIMULATION
TECHNIQUE

The coupled thermal-airflowmodel of a house was simulated for various operating
conditions creating big data. The big-data was translated in the form of an
ANN function that can be used to predict indoor room temperature of the house.
Finally, as shown in Figure 4 schematic, a controller was conceptualized in
TRNSYS-MATLAB co-simulation platform based on the simple model predictive
control concept such that the operation of the ANN function was reversed to
achieve a desired indoor temperature with given ambient conditions.
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Figure 4. A schematic demonstrating co-simulation strategy of ANN and thermal model.

3. Result and Discussion
Complementing to the preliminary outcomes (Pokhrel et al. 2016, 2018), a further
assessment of 120 simulations (each for 8760 Hrs with a time step of 1 hour) was
carried out to examine the level of thermal comfort regulation potential of the
model house. While doing this, 6 discrete values of different WOF (0 to 1), 5
discrete values of airtightness level (0.03 to 0.9) and 4 different envelope thermal
resistance cases (Ravg 2.01 to Ravg 3.44) were considered. These simulations’
generated hourly time-series of occupied zone air temperature and the PMVprofile
for each individual set of operating conditions as defined. Demonstrating the
assessment in terms of percentage of thermally comfortable hours, Figure 5 as an
example indicates that there is a significant potential of thermal comfort regulation
by the opening in a relatively better-insulated (Ravg 3.4) and airtight house.

Figure 5. Percentage of thermal comfort duration (-0.7<PMV<0.7) relating to discrete values
of WOF (Ravg 3.4, January).

As obvious, these preliminary assessments demonstrated that the improved
thermal resistance and air-tightness of the envelope helps to store thermal
energy generated internally by occupants, solar load and thermal load due to
air temperature. Furthermore, the stored thermal energy can either reduce
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uncomfortably cool periods or result in an increase in uncomfortably warm
periods. However, as the fixed window opening increases, it essentially increases
the leakiness of the building by allowing higher air exchanges rates to occur.
Ultimately, opening the window can help reduce uncomfortable warm period.

Now, the next step was to verify that how robust the ANN technique in
predicting the indoor thermal behavior regarding indoor air temperature. While
doing this, the optimized ANN model was trained with the hourly input and
target values corresponding to the WOF (0, 0.25, 0.5 and 1), average envelope
thermal insulation (Ravg 2.01, Ravg 2.6 and Ravg 3.44) and envelope airtightness
level (LKY - 0.7, AT - 0.3 and UAT - 0.03) ACH for a year. As the generated
function is the core for the deployment of the control concept, the robustness of the
function needs to be verified so that it can be used globally for any value of WOF,
airtightness, and Ravg within a threshold of the respective variables defined in the
model. Illustrating in Figure 6, a comparison was made between time series of the
indoor air temperature generated by both models with WOF values of 0.75. The
demonstrationwas tested for Ravg 3.2 andAVGhouse for the first week of January
and July as representative months at the peak summer and winter respectively.

Figure 6. Indoor air temperature from the ANN and TRNSYS model (WOF 0.75, AVG house
with Ravg 3.2, 1st week of January and July).

The Figure 6 demonstrates that the predicted time series from the ANN model
agrees quite well with the time series generated by the TRNSYS thermal model of
the house. This confirms that the prediction capability of the ANN model for the
indoor room air temperature is quite reliable at the relatively higher value of WOF
0.75. By exploring this further, additional tests were also carried out for relatively
smaller values of WOF (0.4 and 0.1) and for an extended period throughout a year.
As expected, the prediction also holds extremely well throughout the year even for
the lower opening area, where the balance of the in and out flow from the space is
restricted in nature and thus increases the nonlinearity.

As the reliability of the ANN model for predicting the indoor air temperature
of the naturally ventilated house model was satisfactory, the potential of it to be
used as a basis for actuating windows intelligently for a naturally ventilated house
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was further investigated by applying the co-simulation strategy as demonstrated
earlier in Figure 4. The co-simulation was performed for houses with different
combinations of airtightness level and Ravg values. Demonstrating the window
actuator performance for a typical day in January for an AVG house with Ravg
3.2, the Figure 7 shows that how the regulation of the values of the WOF
between 0 and 1 modulates the natural ventilation (Inf) to help sustain the
indoor room temperature (Ta) around the desired indoor set point of 24˚C. By
keeping the settings of envelope thermal resistance and airtightness intact, the
co-simulation of the thermal and the ANN model was extended for the 1st week
of January, to observe the actuator performance for an extended period. The
resulting frequency distribution (Figure 8) illustrates that the implementation of
this intelligent window actuating system can alone achievemaintaining the thermal
comfort level (-0.7<PMV<0.7) of the model house for 92.63% of the instances.

Figure 7. Actuator performance for the model (AVG house with Ravg 3.2) for a typical day in
January in Auckland.

Figure 8. Frequency distribution of PMV after using window actuator (AVG house with Ravg
3.2 for 1st week of January).
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Comparing this result with different cases of fixed openings (discrete values
of WOF) resulted in achieving a relatively lower proportion of the indoor thermal
comfort period as demonstrated in Table 4. This indicates that a significant
improvement on maintaining indoor thermal comfort period can be achieved by
employing the ANN model predictive control window actuation technique with
respect to any fixed opening positions of the window. While doing this, an AVG
airtight house with thermal resistance of Ravg 3.2 was considered ensuring that
all the settings (including time step size of 7.5 minutes) and input values remain
exactly the similar.

Table 4. Comfort period proportion with respect to different values of WOF and window
actuation (AVG house with Ravg 3.2 for 1st week of January).

These results illustrate that a relatively higher value of WOF would give
better exposure to natural ventilation in the summer period resulting in better
achievement of a thermally comfortable period by extending its free cooling
potential. However, there are many instances throughout a year, when the indoor
air temperature is colder than the desired comfort temperature. Those instances
depend on many factors like relatively colder weather condition, lower level of
building envelope resistance, weak envelope airtightness, less internal loads, etc.
In those situations, any opening of the window resulting natural airflow would
obviously worsen the indoor thermal comfort level making it more uncomfortable
cold. For those instances, the actuator not only needed to completely shut the
window or open it to a minimum threshold to let only a minimum airflow to ensure
fresh air ventilation but also needed to trigger any other available auxiliary heating
sources (electric heater or heat pump, etc.).

4. Conclusion
The ANN technique could be used to predict the occupied space indoor air
temperature time-series of the naturally ventilated house; and that this can be used
as part of an intelligent window control strategy for maintaining thermal comfort
of the next generation of sustainable naturally ventilated residential houses.

As a future work, a more advanced controller can be conceptualized such that
it access the thermal comfort of the residential house in terms PMV or adaptive
thermal comfort index criteria rather than only indoor air temperature. As such,
the resulting time series function/algorithm of the thermal comfort index might
be used as a basis to devise an intelligent model predictive control strategy with
the window actuation optimization strategy having objective function to directly
maximize the indoor thermal comfort level of a naturally ventilated residential
house and minimize the heating or cooling energy consumption.
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In a summary, the use of ANN appears to offer a positive outlook in the
development of intelligent control of actuated windows for the next generation
naturally ventilated sustainable buildings.
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