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Abstract 

This paper describes the application of Taguchi methods [1,2,3] to the parameter sizing 

stage of fluid power system design. Taguchi methods have become almost synonymous with 

robust design and are used to design systems that are tolerant to the effects of noise factors. 

Noise factors are defined as anything that causes changes in the functional characteristics 

or performance of the system that are not controllable. In the hydraulic circuit example 

used in this paper, these noise factors are assumed to be effects of component failure. The 

method is therefore being used to select design parameter values such that the resulting 

circuits exhibit some tolerance to the initial development of faults in the system which will 

allow the system to continue to operate for a short period of time without catastrophic 

failure occurring.  

 

1 Introduction 

The robust design approach consists of three distinct phases. These phases are conceptual 

design, parameter design and tolerance design. In the conceptual design phase a number of 

different solution concepts are generated that are functionally capable of solving the 

engineering problem being considered. This phase of the design process often utilises such 

tools as Quality Function Deployment (QFD) and other aspects of systematic design to 

ensure that as large a number of suitable concepts are generated. 

 

During the parameter design phase the specific controllable factors in the chosen concept 

that effect the robustness are identified as well as the uncontrollable noise factors. The 

optimum values for the control factors are chosen so that the system performance is as 

consistent as possible for a range of different noise factor scenarios. Finally, during the 

tolerance design phase the allowable control factor variability is determined and allowable 

limits for additional noise factors are calculated. 

 

In this paper, Taguchi methods are used to optimise the parameters of a hydraulic circuit so 

that it is tolerant to the initial development of faults in the system components. Whilst 

failures such as a broken vane in a pump can be detected by monitoring system pressure 

and output power, a fault tolerant system may allow a brief period of continued operation in 

order to allow maintenance to be scheduled to coincide with other planned downtime 

without secondary failures occurring.  

 

In the example presented in this paper it is assumed that the design concept used is suitable 

for the task and no additional noises will be present. Therefore only the parameter design 

phase is considered. In many respects this can be viewed as an alternative approach to the 

use of numerical optimisation techniques to aid in the sizing and selection of fluid power 

components [4,5,6]. 

 

2 Taguchi Methods 

There are several important concepts that need to be explored in any description of Taguchi 

methods. Most of these concepts are adequately covered in the existing literature [1,2,3] but 

will briefly described here. Taguchi methods have been applied with varying degrees of 



success to a wide range of problems including manufacturing control [7] and structural 

optimisation [8,9]. 

 

2.1 Robustness and Quality 

The perception of quality in an artefact is closely related to the sensitivity of the design to 

noise factors. Noise factors can be defined as potential inputs to the system which cannot be 

controlled. Good examples include environmental factors such as temperature variation. In 

order to achieve a high quality design it is necessary to eliminate any variability in 

performance. There are two courses of action which may be followed. The first of these is 

to eliminate the actual source of noise but this can be costly, time consuming and 

ineffective if the factors are too complex to control easily. The second option is to eliminate 

the artefacts sensitivity to the source of noise. The artefact can then be said to be robust 

even though the sources of noise have not been eliminated. 

 

This robustness can be related to quality through two fundamental factors [10] that can be 

used to assess the quality of an artefact. These are the features of the artefact and 

conformance to those features. The performance of a design solution to meet a need can be 

viewed as a feature. The ability for that design solution to meet the need through a wide 

range of conditions can be viewed as conformance, so providing a direct link between 

robustness and quality. 

 

2.2 Signal to Noise Ratios 

Given that there is a direct relationship between quality and robustness it is important to 

represent the performance of a design across all of the noise conditions for which the design 

is intended to be insensitive. The signal to noise ratio (S/N) metrics are intended for use in 

the optimisation of an artefacts robust performance. 

 

A number of different S/N ratios can be used depending on the aims of the optimisation 

process. However, all S/N ratios have the following characteristics [2]. 

 

 The S/N ratio reflects the variability in the response of the system caused by the noise 

factors. 

 The S/N ratio is independent of the adjustment of the mean. This implies that the metric 

would be useful for predicting quality even if the target value should change. 

 The S/N ratio measures relative quality because it is to be used for comparative 

purposes. 

 The S/N ratio does not induce unnecessary complications, such as control factor 

interactions, when the influences of many factors on product quality are analysed. 

 

One example of the different S/N ratios is the smaller-the-better type that is used in this 

paper. This S/N ratio is generally used when the response values of the system under 

consideration are continuous and nonnegative and the desired response value is zero. A 

practical example would be the minimisation of a speed error between the actual speed of a 

motor and a desired speed. 

 

Other S/N ratios include the larger-the-better type, the operating window type and the 

nominal-the-best type. These are not used in this paper but are used when different 

performance requirements dominate the design. 

 



The smaller-the-better S/N ratio is calculated by using equation 1. 
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In this equation the performance metric y of a design solution is found for n different noise 

conditions which then allows the S/N ratio to be calculated. 

 

One key aspect of the robust design approach is the decision for which design parameter 

combinations the S/N ratio is calculated and this is usually achieved through the use of 

orthogonal arrays. 

 

2.3 Orthogonal Arrays 

A number of different approaches can be used in the design of experiments. The orthogonal 

array approach is a method of setting up experiments that only require a fraction of the full 

factorial combinations but yet explores a significant proportion of the total possible solution 

space. This possibly provides the most efficient approach. 

 

A typical orthogonal array is shown below in Table 1. 

 

Table 1. L8 Orthogonal Array 

Run A B C D E F G 

1 1 1 1 1 1 1 1 

2 1 1 1 2 2 2 2 

3 1 2 2 1 1 2 2 

4 1 2 2 2 2 1 1 

5 2 1 2 1 2 1 2 

6 2 1 2 2 1 2 1 

7 2 2 1 1 2 2 1 

8 2 2 1 2 1 1 2 

 

This is a two level standard L8 orthogonal array. There are seven possible design 

parameters, each of which may take one of two possible values. Eight experiments are 

carried out where each of the parameters has the value indicated by a 1 or a 2. 

 

The art to developing good orthogonal array experiments is choosing the most appropriate 

design parameters and assigning them to the correct columns. Not all columns need be 

filled and a poor assignment may lead to problems with interactions.  

 

Typically, an array such as the L8 array will be used to determine the parameter value 

combinations that will be searched. However, there are two possible approaches for 

introducing noise into the experiments. The first option is to carry out an independent noise 

experiment where the effects of a number of noise factors and noise factor levels are 

considered for a nominal set of design parameter values. The noise factor effects can then 

be lumped together into two compound noise factors which represent best and worst case. 

This approach has several drawbacks in that the individual noise factor effects become 

hidden and it is necessary to have some idea of nominal operating values for the design 



parameters. For these reasons, the approach used in this paper is the second option which 

utilises crossed array experiments. The typical structure of a crossed array experiment is 

shown in Table 2. 

 

Table 2. Crossed Array Experiment 

Run A B C D E F G H      Mean S/N Ratio 

          1 2 3 4   

         R L H H L   

         Q L H L H   

         P L L H H   

1 1 1 1 1 1 1 1 1  y1 y2 y3 y4 (y/4)1 S/N1 

2 1 1 2 2 2 2 2 2  y1 y2 y3 y4 (y/4)2 S/N2 

3 1 1 3 3 3 3 3 3  y1 y2 y3 y4 (y/4)3 S/N3 

4 1 2 1 1 2 2 3 3  y1 y2 y3 y4 (y/4)4 S/N4 

5 1 2 2 2 3 3 1 1  y1 y2 y3 y4 (y/4)5 S/N5 

6 1 2 3 3 1 1 2 2  y1 y2 y3 y4 (y/4)6 S/N6 

7 1 3 1 2 1 3 2 3  y1 y2 y3 y4 (y/4)7 S/N7 

8 1 3 2 3 2 1 3 1  y1 y2 y3 y4 (y/4)8 S/N8 

9 1 3 3 1 3 2 1 2  y1 y2 y3 y4 (y/4)9 S/N9 

10 2 1 1 3 3 2 2 1  y1 y2 y3 y4 (y/4)10 S/N10 

11 2 1 2 1 1 3 3 2  y1 y2 y3 y4 (y/4)11 S/N11 

12 2 1 3 2 2 1 1 3  y1 y2 y3 y4 (y/4)12 S/N12 

13 2 2 1 2 3 1 3 2  y1 y2 y3 y4 (y/4)13 S/N13 

14 2 2 2 3 1 2 1 3  y1 y2 y3 y4 (y/4)14 S/N14 

15 2 2 3 1 2 3 2 1  y1 y2 y3 y4 (y/4)15 S/N15 

16 2 3 1 3 2 3 1 2  y1 y2 y3 y4 (y/4)16 S/N16 

17 2 3 2 1 3 1 2 3  y1 y2 y3 y4 (y/4)17 S/N17 

18 2 3 3 2 1 2 3 1  y1 y2 y3 y4 (y/4)18 S/N18 

 

In this experiment a three level L18 array is used for the inner array of design parameters 

and a smaller two level L4 array is used for the noise factors. For each design parameter 

combination the response is determined for each noise factor combination. This allow both 

the mean response and the signal to noise ratio to be calculated. 

 

In general, the solution that exhibits the best performance has the highest signal to noise 

ratio. In many published applications of Taguchi methods the best solution from the 

orthogonal array is selected and claimed to be the optimal solution. However, this simple 

selection does not exhibit the power of the method and by using an analysis of means 

(ANOM) it is possible to determine the contribution of each parameter on the robustness of 

the performance and hence select the best levels for each parameter. It is likely that the 

proposed solution will have a parameter combination that does not appear in the orthogonal 

array but exhibits a more robust performance. 

 

2.4 Analysis of Means 

The analysis of means provides an approach to determine the contribution of each design 

parameter, or factor, on the overall robustness of the solution. The analysis of means is 

done by taking average values for the performance metric that correspond with the factor 

levels. Consider the simple example shown in Table 3 which shows an L4 arrays used in 

with a single noise state. 



Table 3. L4 Orthogonal Array 

Run A B C  

1 1 1 1 y1 

2 1 2 2 y2 

3 2 1 2 y3 

4 2 2 1 y4 

 

For example, the factor effects for factor B at each level can be calculated using equation 2 

and equation 3. 
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Plotting these values on a simple graph would show something similar to that in Figure 1 

which has plotted factor effects in S/N ratios. 

 
Figure 1. Simple Factor Effect Plot 

 

By comparing the range of the factor effect for each factor or design parameter it is possible 

to determine which factors have the greatest effect on system robustness. It is also possible 

to determine potentiality optimal parameter settings by selecting the level for each 

parameter that exhibits the highest average S/N levels. In the above example, the parameter 

B should be set to level 2. 
 

3 Fluid Power System Design Example 

The circuit considered in this example is shown in Figure 2. The functional aim of the 

circuit is to ramp the load up to a constant speed of 300 rpm and maintain that speed despite 

there being a step change of applied load torque after two seconds. This functionality is 

achieved through the use of a PI controller and a proportional servo valve. This circuit has 

been considered in previous work [5] where the circuit parameters were optimised using a 

Tabu search algorithm. In this previous work a smaller number of control factors were used 

and the circuit was only optimised for a single operating condition and therefore the effects 

of noise were not considered. 
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Figure 2. Hydraulic test circuit 

 

3.1 Selection of Noise Factors and Control Factors 

An important aspect of the parameter design phase is the selection of both the noise factors 

and the control factors to be considered. It is essential that the noise factors used represent 

the actual variabilities that are likely to cause dissatisfactions. Noise factors are defined as 

factors that can cause fluctuations in the performance of a system but are not controllable in 

normal use. The noise factors selected in this example are intended to represent failed 

components. The noise factors used are the slip loss of both the pump and motor, null 

leakage in the servo valve and the friction of the load. 

 

Increased slip losses are intended to represent a faulty pump or motor which may have 

failed in such a way as a broken vane or piston which results in less fluid being supplied to 

the circuit. Null leakage in the servo valve is being used to consider a spool valve that has 

become significantly underlapped which then results in a leakage between ports without 

losses occurring out of the system. Finally, an increased load friction is being used to 

represent a faulty bearing. Two terms are used which represent the stiction torque friction 

and the steady state coulomb friction. 

 

The selection of control factors is also of vital importance. The selected control factors 

must have the ability to introduce robustness into the design by minimising the effects due 

to noise. The control factors used in this work are the gains for the PI controller, the pump 

displacement, the motor displacement and the servo valve current rating. 

 

Noise factors and control factors are normally illustrated through the use of a P-diagram 

which shows that both types influence the system performance. The P-diagram for this 

example is shown in Figure 3. 

 



 
Figure 3. P-Diagram 

 

Given the noise and control factors it is now possible to define a quality performance 

metric and then design experiments using crossed orthogonal arrays as described in section 

2.3. 

 

3.2 Quality Metric 

The performance of each solution for each simulation is determined by applying equation 

3.1. In this equation the squared error between the desired speed and actual speed at each 

time step in the simulation is further penalised by considering the proportion of the pump 

flow rate that is returning to tank through the relief valve. 
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This extra penalty term is included to force the method towards finding solutions that 

exhibit good operating characteristics as well as being robust to the effects of noise. 

 

3.3 Parameter Optimisation Experiments 

A crossed array experiment has been used to analyse the response of different parameter 

values and noise conditions. Crossed array experiments were discussed in section 2.3. 

 

In the experiment the outer array of noise factors is a standard L9 array that allows for three 

levels for four different noise factors.  This is shown in Table 4. 

 

Table 4. Outer Array of Noise Factors 

Run Pump 

Slip Loss 

Motor 

Slip Loss 

Valve 

Null Leakage 

Load 

Friction 

1 Low Low Low Low 

2 Low Medium Medium Medium 

3 Low High High High 

4 Medium Low Medium High 

5 Medium Medium High  Low 

6 Medium High Low Medium 

7 High  Low High Medium 

8 High Medium Low High  

9 High  High Medium Low 

 



The three levels for each noise factor each correspond to real values as shown in Table 5. 

 

Table 5. Noise Factor Level 

Factor High  Medium Low 

Pump slip-loss 

coefficient 

3 × 10
-8

 1.65 × 10
-8

 3 × 10
-9

 

Motor slip-loss 

coefficient 

3 × 10
-8

 1.65 × 10
-8

 3 × 10
-9

 

Valve null leakage 0.75 l/min per 150 Bar 0.50 l/min per 150 Bar 0 

Load friction 

(stiction torque) 

50Nm 30Nm 0 

Load friction 

(coloumb friction) 

30Nm 20Nm 0 

 

A modified L16 array is used for the control factors in the inner array which is shown in 

Table 6. This array has been modified so as to provide four different levels for five 

parameters. The array has been modified in this way so as to provide a greater number of 

levels for each control factor. One criticism of Taguchi methods when compared to 

numerical optimisation approaches is the restricted number of levels each control factor can 

take. In the crossed array approach, each parameter value combination is run for each of the 

noise factor combinations in the outer array. The response and performance metric is 

calculated for each control factor combination for each noise condition, though only the 

mean error and S/N ratio is shown for each control factor combination in Table 6. The 

signal to noise ratio used is the ‘smaller-the-better’ type as shown in equation 1. 

 

Table 6. Inner Array of Control Factors and Response 

Run KP KI Pump 

Displacement 

Motor 

Rating 

Valve 

Rating 

Mean 

Response 

S/N 

Ratio 

1 0.25 10 60 300 150 34078.24 -92.7667 

2 0.25 20 80 400 200 23640.76 -89.4589 

3 0.25 30 100 500 250 19501.82 -87.728 

4 0.25 40 120 600 300 17925.28 -86.8557 

5 0.5 10 80 300 300 4748.614 -73.565 

6 0.5 20 60 400 250 492092.2 -113.963 

7 0.5 30 120 600 200 16975.53 -86.4175 

8 0.5 40 100 500 150 116248.2 -101.394 

9 0.75 10 100 600 200 243329.7 -107.864 

10 0.75 20 120 500 150 1850.204 -66.8796 

11 0.75 30 60 400 300 470021.1 -113.579 

12 0.75 40 80 300 250 1599214 -124.089 

13 1.0 10 120 400 250 3668.911 -71.3196 

14 1.0 20 100 300 300 3104.06 -70.9323 

15 1.0 30 80 600 150 770003.4 -117.766 

16 1.0 40 60 500 200 978676.7 -120.224 

 

The best solution in the orthogonal array is found in experiment 10. This solution has the 

lowest mean error and therefore the highest S/N ratio value. The actual response of this 

solution can be considered on a number of noise factor conditions. The three conditions 

considered are when all the noise factors are set to low, medium and high. By considering 



the noise factor combinations in Table 4 it can be seen that only one of these noise 

conditions has been used in the parameter optimisation experiment. 
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Figure 4. Response of best solution for noise factors at low values 
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Figure 5. Response of best solution for noise factors at medium values 
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Figure 6. Response of best solution for noise factors at high values 

 

From these results it is possible to determine the effects on response of each of the control 

factors using an Analysis of Means (ANOM) approach. The effects on the response for 

each factor at each level are given below in tabular form. 

 

Table 7. Results of ANOM 

Factor Level Error (Average) Error (S/N) 

KP 0.25 

0.50 

0.75 

1.00 

23786.53 

157516.14 

578603.80 

438863.26 

-89.20 

-93.84 

-103.10 

-95.06 

KI 10 

20 

30 

40 

71456.37 

130171.81 

319125.45 

678016.09 

-86.38 

-85.31 

-101.37 

-108.14 

Pump Displacement 60 

80 

100 

120 

493717.04 

599401.75 

95545.95 

10104.98 

-110.13 

-101.22 

-91.98 

-77.87 

Motor Displacement 300 

400 

500 

600 

413580.44 

247355.74 

279069.22 

262058.48 

-93.66 

-97.08 

-94.06 

-99.73 

Valve Rating 150 

200 

250 

300 

230545.01 

315655.67 

528619.29 

123949.76 

-94.70 

-100.99 

-99.27 

-86.23 

 

This information can also be plotted graphically to assess the significance of each factor. 

Figure 7 shows the S/N values plotted for each level of each factor. 

 



 

Figure 7. Factor effect plots 

 

It can be seen that each factor has a different effect on the robustness of the system. An 

optimal parameter set can be proposed by considering the relationship between signal to 

noise ratio and system performance. In general, lowest speed error is likely to occur for the 

parameters chosen so that the S/N ratio is maximised for each factor. The proposed optimal 

parameter set is therefore 

 

 KP = 0.25   M = 300 cc/rev 

 KI = 20  V = 300 mA 

 P = 120 cc/rev 

  

However, the range of variation for the motor displacement is very small and it is 

recommended that this be used as a ‘fine tuning’ control parameter. The output 

performance for each of the possible solutions can now be considered. The response figure 

of merit has been calculated for three noise conditions, low medium and high for each 

potential solution. 

 

Table 8. Performance values for noise factors set to low, medium and high values 

Motor 

Displacement 

Response of low 

noise 

Response for medium 

noise 

Response for high 

noise 

300 31830.28 12440.16 15594.59 

400 3716.20 4045.21 4925.62 

500 2960.74 3334.91 3777.80 

600 3208.69 17764.12 40867.85 

 

It can be seen that the predicted optimal solution in fact suffers from very poor 

performance. This is likely to be due to the effects of interactions between the circuit 

components that have not been dealt with in the spacing of parameters in the orthogonal 

array. The predictive equations on which the optimisation through ANOM is based does not 

hold true for when such strong interactions exist. 

 

However, the approach that utilises the least significant factor to tune the solution to give 

the best performance does allow some flexibility in the optimisation process and the best 

predicted solution does not have such poor performance. The following figures plot the 

response of the circuit for the low, medium and high noise conditions. 
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Figure 8. Response of predicted solution for noise factors at low values 
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Figure 9. Response of predicted solution for noise factors at medium values 
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Figure 10. Response of predicted solution for noise factors at high values 

 



These graphs show that the performance of the best predicted solution differs from that of 

the best solution in the orthogonal array. The character of the speed response is more 

consistent across the three noise conditions with only minor instabilities in the initial ramp 

up to operating speed. In the best of the solutions found in the orthogonal array the 

instabilities in this region were very high, probably due to an overtuned controller. 

 

However, the best of the predicted solutions does not maintain constant speed after the 

initial ramp period and the reaction to the change in load torque takes a considerable length 

of time to settle down. This possible indicates that the controller is undertuned. 

 

4 Discussion 

By considering the responses of both the best solution in the orthogonal array and the best 

predicted solution it can be seen that applying Taguchi methods blindly in the parameter 

sizing stage of fluid power circuit design is unlikely to lead to the design of high quality, 

robust circuits. One of the main reasons the approach cannot be applied blindly is due to the 

effects of interactions in the fluid power circuit that restrict the applicability of the 

predicted equations to find truly optimal and robust designs. 

 

Whilst the effects of interactions are detrimental to the performance of the method there are 

other possible reasons why the approach has not resulted in satisfactory designs. Firstly, 

previous work on this circuit using a numerical optimisation algorithm [5] has shown that it 

is not easy to automatically select parameter values for a single operating condition let 

alone multiple operating conditions that represent faults in the circuit. The controller in the 

circuit does provide the circuit with the functional capacity to maintain constant speed as 

the load torque changes but it is likely that the tuning of the controller gains does not 

guarantee stability on a wide number of different operating conditions. 

 

One other possible contributing factor relates to the use of dynamic simulation to assess the 

performance of each circuit. Previous work [6] has shown that the specification of a fixed 

time period at which the evaluation takes place can lead to an apparently acceptable 

performance when considering the numerical objective function value. However, these 

circuits are generally simulated using a variable time step integrator and plots of the 

performance parameters show that low errors exist at the specified times but instabilities 

exist between the evaluation points. 

 

Other factors may have contributed to the poor results including the fact that the 

performance of individual solutions outside of the parameter optimisation experiment is 

assessed for noise conditions that are not present in the original optimisation. However, as 

the aim of this work is to design fault tolerant systems then there is some justification for 

this as it is difficult to determine which combination of circuit components may fail during 

operation. One other possibility is that modifying the standard array to include extra levels 

for each control factor has limited the extent to which the solutions in the array are 

representative of the entire solution space. 

 

5 Conclusions 

The results presented in this paper illustrate some of the problems in applying Taguchi 

methods to the parameter sizing stage of fluid power circuit design. The highly interactive 

nature of fluid power circuits implies that considerable thought is required in dealing with 



interactions when choosing and populating an appropriate orthogonal array for the 

parameter optimisation experiments. 

 

The effects of interactions can be partially dealt with in a less rigorous approach by 

allowing parameters which are shown to have low significance on the performance of the 

solution to be changed so therefore acting as a buffer between highly interactive 

components. 

 

Whilst some advances have been made towards designing fault tolerant systems using 

Taguchi methods the general conclusion is that given the interactive nature of fluid power 

circuits then the use of orthogonal arrays may not lead to acceptable solutions in all 

circumstances. However, there may be merit in embedding a signal to noise ratio 

calculation in an objective function used by a numerical optimisation algorithm so that 

robust systems can be design by a hybrid approach. 
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