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Abstract 

Background. In clinical trials, equation 7 from the 
Modification of Diet in Renal Disease (MDRD) Study is 
the most accurate formula for the prediction of 
glomerular filtration rate (GFR) from serum creatinine. 
An alternative approach has been developed using 
evolving connectionist systems (ECOS), which are novel 
computing structures that can be trained to generate 
accurate output from a given set of input variables. This 
study aims to compare the prediction errors associated 
with each method, using data that reproduce routine 
clinical practice as opposed to the artificial setting of 
clinical trials. Methods. The methods were compared 
using 441 radioisotope measurements of GFR in 178 
chronic kidney disease patients from 12 centers in 
Australia and New Zealand. All clinical and laboratory 
measurements were obtained from the patients' center 
rather than central laboratories, as would be the case in 
routine clinical practice. Both the MDRD formula and 
ECOS used the same predictive variables, and both were 
optimized to the study cohort by stepwise regression and 
training, respectively. Results. Mean measured GFR in 
the cohort was 22.6 mL/min/1.73 m2. The bias and 
precision of the MDRD formula were -3.5 mL/min/1.73 
m2 and 34.5%, respectively, improving to -1.2 
mL/min/1.73 m2 and 31.1% after maximal optimization of 
the formula to study data. The bias and precision of the 
ECOS were 0.7 mL/min/1.73 m2 and 32.6%, respectively, 
improving to -0.1 mL/min/1.73 m2 and 16.6% after 
maximal optimization of the system to study data. The 
prediction of GFR using ECOS was improved by 
accounting for the center from where clinical and 
laboratory measurements originated within the 
connectionist model. Conclusion. Algebraic formulas will 
be associated with greater prediction error in routine 
clinical practice than in the original trials, and machine 
intelligence is more likely to predict GFR accurately in 
this setting. 
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1. BACKGROUND 

Accurate evaluation of renal function is fundamental to 
sound nephrologic practice. Early detection of renal 
disease allows for the institution of appropriate diagnostic 
and therapeutic measures, and potentially maximizes 
preservation of intact nephrons. As important, the 
evaluation of greater degrees of renal disease is useful to 
provide additional information to determine the onset of 
end-stage renal failure and facilitate the timely initiation 
of dialysis. 

Glomerular filtration rate (GFR) is recognized as the best 
index of renal function1. GFR is most accurately 
measured by the renal clearance of inulin during 
continuous infusion. This procedure is technically 
demanding, and alternative methods using radioisotope 
tracers produce results of comparable accuracy, and have 
now become the gold standard for clinical research2. 
These are still too cumbersome and costly for routine 
clinical use, and most clinicians over the years have relied 
upon the clearance of creatinine as a convenient and 
inexpensive surrogate for GFR despite methodologic and 
systematic inaccuracies. 

More recently, formulas developed for the Modification 
of Diet in Renal Disease (MDRD) Study have been 
shown to predict GFR from serum creatinine with greater 
accuracy than creatinine clearance3. In the original study, 
over 90% of predicted values by equation 7 were within 
30% of measured GFR. These formulas, however, have 
not been rigorously evaluated in a manner that would 
reflect their use in routine clinical practice, namely in a 
clinically diverse patient cohort using data measurements 
originating from their respective centers. This is 
especially applicable for patients with GFR <30 
mL/min/1.73 m2, where data have been relatively scarce 
and studies conflicting as to whether any formulas are 
sufficiently accurate to support good clinical decision-
making in the predialysis setting4,5. 

Artificial neural networks are an alternative approach to 
algebraic formulas for problem-solving in medical 
research and routine clinical practice6. These are 
computing architectures that can be trained to generate 
accurate output from a given set of input variables. 
Artificial neural networks have several advantages in 
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comparison to traditional statistical models and the 
algebraic formulas derived from them. Noisy data are 
well tolerated, and no limiting assumptions regarding 
distribution are required. They outperform classic 
predictive tools in situations where input variables are 
interrelated, and are increasingly used for nonlinear 
modeling dealing with complex and chaotic problems7. 

Evolving connectionist systems (ECOS) are yet a further 
advance in computing architecture. They allow a 
departure from the usual paradigm of so-called "global 
models," in which statistical functions or mathematical 
equations are developed and applied uniformly to the 
entire "problem space." A typical example of a global 
model is the MDRD formula, which implicitly assumes 
that relationships between predictive variables and GFR 
are the same for every patient within a given cohort. In 
contrast, ECOS involve a framework of multiple so-called 
"local models," in which different statistical models or 
mathematical equations are developed and applied in 
different clusters within the problem space. ECOS can be 
provided with a self-mapping function by which new data 
are allocated to whichever cluster or clusters are closest in 
terms of the associated predictive variables. From there, 
the local models unique to the allocated cluster or clusters 
are applied to the new data in a weighted fashion. 

When training data are provided to such an ECOS (that is, 
containing both predictive variables and the output), then 
the ECOS will optimize both clustering and local models 
within the clusters until error cannot be reduced further, 
so-called "adaptive modeling"8,9. 

There are two potential benefits to this ECOS framework 
for medical applications. First, new training patient data 
will result in incremental and autonomous machine 
learning in a rapid continuous manner through on-line 
changes to the connectionist structure and function, 
without the necessity for down-time or complete de novo 
system retraining on a new enhanced data set. Second, the 
use of multiple local models has the potential for less 
predictive error than global models, by optimizing 
accuracy within each patient subset of the total cohort 
rather than relying on the application of a single model or 
equation designed to provide the greatest accuracy to the 
greatest number. ECOS appear particularly suitable for 
the prediction of GFR in chronic kidney disease, where 
the complex interrelation of patient factors and markers 
for GFR make the estimation of renal function very 
difficult. This article has two aims: (1) to evaluate the 
accuracy of algebraic formulas for the prediction of GFR 
across a range of centers using center-specific data 
measurements, and (2) to compare the performance of 
ECOS using local modeling with these formulas on the 
same data set. 

 
2. METHODS 

Study design 
Reference GFR measurements by radioisotope tracer 
clearance were compared with predicted GFR values by 
alternative methods in a sample of patients from Australia 
and New Zealand. The predictions were based upon 
clinical and laboratory data from the day of GFR 

measurement, using the algebraic formulas and the ECOS 
as detailed below. The evolving nature of the latter 
method was evaluated through the degree of improvement 
in ECOS performance using progressively more complex 
testing protocols in several discrete ECOS modeling 
phases. 

 

Data source 
The EPO AUS-14 study was a prospective multicenter 
randomized study conducted from 1998 to 2002 to 
determine if maintenance of serum hemoglobin between 
120 and 130 g/L prevented and/or delayed the 
development of left ventricular hypertrophy in patients 
with advanced kidney disease. The coordinating center 
did the original selection of 12 centers in Australia and 
New Zealand, and all incident patients fulfilling the 
criteria for study were screened for participation. These 
criteria were (1) age between 18 and 75 years, (2) GFR 
between 15 and 50 mL/min, and (3) demonstrated historic 
decline in hemoglobin concentration to 110 to 130 g/L for 
males and 100 to 120 g/L for females. Full details of the 
methods and results of the study have been reported 
elsewhere10. EPO AUS-14 was approved by ethical 
review committees at respective institutions and informed 
consent was obtained from all patients in accordance with 
the guidelines proposed in the Declaration of Helsinki11. 

 

Patients 
A sample of patients was drawn from EPO AUS-14 for 
this study. In the original study, 296 patients were 
consented and screened for randomization. We excluded 
patients from study if the date of GFR measurement by 
the reference method did not coincide with the date of 
laboratory testing, or if the protocol employed for this 
GFR measurement differed from that stated below. A 
total of 178 patients from the original cohort were 
included in this study. The demographic and clinical 
characteristics of these patients are provided in Table 1. 

 

Measurement of GFR by chromium-51-
ethylenediaminetetraacetic acid (51Cr-EDTA) 
clearance 
Reference GFR measurements were made for all patients 
at baseline and then yearly intervals for the duration of 
the study. GFR was measured as the plasma clearance of 
51Cr-EDTA corrected for body surface area (GFREDTA). 
Clearance was determined by either two or three point 
sampling at variable intervals between 0.5 and 4.5 hours 
after tracer injection, with or without a correction for the 
monoexponential assumption. Samples were processed in 
the nuclear medicine laboratories in each of the respective 
centers. Median intratest and intertest coefficients of 
variation within and between these centres were not 
studied and are therefore unavailable. A total of 441 
GFREDTA measurements were available for this study, 
with an average of 2.5 measurements per patient (range 1 
to 4). 
 



 
Table 1. Baseline clinical characteristics of patients 

 

Prediction of GFR from serum creatinine by 
algebraic formulas 
GFR were predicted using the following algebraic 
formulas, with clinical and laboratory input variables 
obtained on the day of GFREDTA testing: (1) equation 7 as 
described by the MDRD investigators in the original 
article3 (analytes other than serum albumin in mg/dL, 
serum albumin in g/dL, age in years):  

 
and (2) modified MDRD equation containing the same 
variables, but different regression coefficients and 
multiplicative constants developed using multiple 
regression analyses on the EPO AUS-14 data set 
(GFRmMDRD). Successive GFRmMDRD equations were 
derived for each of the ECOS modeling phases described 
below. 

The rationale for modifying the original MDRD equation 
7 is as follows: equation 7 was developed in a sample of 
the United States population to predict GFR as measured 
by renal clearance of 125I-iothalamate. In this study, 
patients were sampled from an Australian and New 
Zealand population and GFR was measured by plasma 
clearance of 51Cr-EDTA. The original MDRD equation 7 
cannot therefore be expected to perform as well in this 
data set as the original, due to patient related factors and 
also the intertest variability between the two techniques 
for radioisotope GFR measurement. A meaningful 

comparison between the MDRD equation and the ECOS 
developed in the new data set requires that the original 
MDRD equation 7 be remodeled to optimize accuracy 
under the new conditions. The modified MDRD equation 
and ECOS will therefore be products of the same data set, 
and neither will be disadvantaged by being developed 
under one set of conditions and tested under another. 

 

Prediction of GFR by ECOS 
GFR were predicted using the dynamic evolving neuro-
fuzzy inference system (DENFIS)9, an ECOS that 
optimizes its generated output by learning from training 
data using multiple local models. In this case, the 
generated output was GFRDENFIS, and the training data 
were comprised of the target output (GFREDTA) and the 
clinical and laboratory variables to be associated with this 
target output and therefore to be used for computational 
modeling. DENFIS was engineered to report GFRDENFIS 
as the average of ten internal modeling experiments for 
both training and testing data. Background information on 
DENFIS structure and function is available on the website 
http://gfr-ecos.kedri.org. 

 

Modeling phases for ECOS and algebraic 
formulas 
Three phases of modeling were performed. The purpose 
of the first phase of modeling was conventional validation 
of both the ECOS and modified MDRD formula. 
Variables used for the training of DENFIS and 
modification of the MDRD formula were the same six as 
were used in the original MDRD equation 7. The EPO 
AUS-14 data set was randomly divided into training and 
testing subdata sets, comprising 70% (309 renal function 
measurements) and 30% (132 renal function 
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measurements), respectively, of the total. The GFRmMDRD 
equation was derived from the training data set using 
stepwise multiple regression analyses. The model for 
GFRDENFIS was derived from the training data set within 
the ECOS as previously described9. 

The purpose of the second phase of modeling was to 
evaluate the effect of adaptive properties of DENFIS in 
clinical practice. As previously, the EPO AUS-14 data set 
was randomly divided into training and testing subdata 
sets, but this time comprising 80% (353 renal function 
measurements) and 20% (88 renal function 
measurements), respectively, of the total. The GFRmMDRD 
equation was again derived from the training dataset 
using stepwise multiple regression analyses and the usual 
six variables. The modeling of DENFIS was performed in 
a manner to closest reproduce its use in clinical practice. 
The likeliest clinical scenario is that centers would be 
sequentially recruited to the ECOS over time, to join 
other centers already using the trained system. The 
recruitment of the new center would involve provision of 
some center-specific training data to the ECOS, after 
which one could expect accurate prediction of GFR for 
the new patients. 

The "leave one out" method is the modeling protocol that 
best reflects this clinical scenario. This protocol involved 
dividing the EPO AUS-14 dataset into 12 subdata sets 
according to the center of origin of the renal function 
measurement. For a given center of interest, GFRDENFIS 
was initially modeled by training on the other 11 centers. 
GFRDENFIS was then further modeled in the center of 
interest by retraining on a random sample comprising 
80% of renal function measurements from that center. 
This protocol was applied for each of the 12 centers. The 
overall prediction error was then calculated as the average 
error across the 12 centers from testing in the remaining 
20% of the measurements from each center. This 
modeling protocol provides the most realistic reflection of 
ECOS performance with sequential recruitment of centers 
to the system over time. 

The purpose of the third and final phase of modeling was 
to develop the most accurate ECOS and algebraic formula 
possible, and compare the limits of optimization for both 
frameworks. It should be noted that virtually all algebraic 
formulas in common clinical use, including the original 
MDRD equation 7 as published, have been optimized by 
using the entire respective data sets for concurrent 
training and testing3,12,13,14,15,16,17. The third phase of 
modeling in this study was similarly undertaken using the 
entire EPO AUS-14 data set for both training and testing 
of both the ECOS and algebraic formula. The variables 
used in the training of DENFIS and modification of the 
MDRD formula were the same six as were used in the 
original MDRD equation 7. 

Modeling for both algebraic formulas and ECOS was 
performed using Matlab® version 6 software (Natick 
MA, USA). 

 

Statistical analysis 
The accuracy of predicted GFR values (GFRMDRD, 
GFRmMDRD, and GFRDENFIS) was determined by their bias 

and precision in relation to reference GFR measurements 
(GFREDTA). Absolute agreement or bias was assessed by 
the mean difference between the predicted GFR values 
and GFREDTA, which is the systematic difference between 
the methods. Relative agreement or precision was 
assessed by the fluctuation of these differences around the 
mean. The standard deviation of these differences can be 
quantified as the root mean square error (RMSE), which 
can be expressed in mL/min/1.73 m2 or as a percentage of 
GFR. The Bland-Altman procedure was also used which 
defines range of agreement. This is the mean difference 
1.96 standard deviations, and represents how far apart 
predicted GFR values are likely to be from reference GFR 
measurements for 95% of cases18,19. Analyses were made 
using Analyze-It® version 1.62 software (Leeds, UK), 
and presented as scatter and bias plots. 

 
3. RESULTS 

Results are presented as mean standard deviation (range) 
unless otherwise specified. GFREDTA in the cohort was 
22.6 10.7 (0.2 to 70) mL/min/1.73 m2. GFRMDRD was 
19.1 9.3 (3.3 to 46.9) mL/min/1.73 m2. GFRmMDRD was 
21.0 8.0 (4.2 to 40.8) mL/min/1.73 m2 after the first 
phase of modeling, 22.3 8.0 (3.0 to 45.4) mL/min/1.73 
m2 after the second, and 21.4 7.8 (6.4 to 41.2) 
mL/min/1.73 m2 after the third. The modified MDRD 
formula for Australians and New Zealanders generated 
using the entire EPO AUS-14 data set from the third 
phase of modeling was (analytes other than serum 
albumin in mg/dL, serum albumin in g/dL, and age in 
years):  

 
GFRDENFIS was 23.2 8.6 (5.0 to 47.6) mL/min/1.73 m2 
after the first phase of modeling, 22.6 8.7 (0.0 – 48.7) 
mL/min/1.73 m2 after the second, and 22.5 9.9 (5.0 to 
64.6) mL/min/1.73 m2 after the third. 

Statistical assessments of bias and precision of predicted 
GFR values are presented in Table 2 and Figures 1 to 4. 
The prediction error of GFRDENFIS versus GFRmMDRD from 
the second phase of modeling for each of the 12 centers is 
shown in Figure 5. It can be seen that the ECOS 
outperformed the algebraic formula in only certain 
centers. This finding can be further explored considering 
Center 2 as a case study. Patients from Center 2 had a 
marginally higher serum creatinine (0.40 0.10 mmol/L) 
but a markedly lower GFREDTA (12.1 6.7 mL/min/1.73 
m2) when compared to the other centers. The relationship 
between these two variables was therefore different in 
patients from Center 2, explaining the improved 
prediction with local modelling via DENFIS in 
comparison to global modeling via the GFRmMDRD. There 
are several possible hypotheses to explain this 



observation. Perhaps the patients from Center 2 were 
biologically different with lower rates of creatinine 
production. Indeed, patients from Center 2 did tend to be 
female (60% of patients), older (mean age 60 years), and 
none were black. Alternatively, laboratory assays for 
serum creatinine or measurements of GFREDTA may be 

systematically lower in Center 2 than other centers. 
Irrespective of the reason, improved ECOS performance 
in this second phase of modeling is due to additional 
clustering and local model optimization, and allows for 
improved prediction for patients within centers by 
accounting for such center disposition. 

 

Table 2. Agreement between predicted glomerular filtration rate (GFR) values and reference GFR measurements 

 

Fig. 1. Agreement of glomerular filtration rate according to the Modification of Diet in Renal Disease formula 
(GFRMDRD) with ethylenediaminetetraacetic acid (GFREDTA) clearance (mL/min/1.73 m2). In the scatter plot (A), 
the dotted line ( ) represents the line of identity between methods. In the bias plot (B), dotted lines represent the 
bias between methods, broken lines (- – ) the range of agreement, and the solid line the line of regression indicating 
bias according to level of GFR. 

 

 

Figure 6 shows the ECOS interface, with one of the fuzzy 
rules generated by the trained DENFIS. Each rule 
represents a local model associating predictive variables 
with the generated output within a given cluster. All rules 
together represent the equivalent of a global model that 
can be applied for the prediction of GFR for any new 
patient. 

 
4. DISCUSSION  

There seems little doubt that most clinicians will continue 
to rely on estimates of renal function from serum 
creatinine to assist with clinical decision making, and an 

array of algebraic formulas have been developed using 
regression techniques to predict GFR from standard 
clinical variables20. In the setting of clinical trials, the 
most accurate of these formulas are those from the 
MDRD Study21,22,23. 

The data from this study indicate that these formulas will 
be less accurate than expected in routine clinical practice. 
However, modification of the original MDRD equation 7 
by multiple regression analyses within the EPO AUS-14 
data set did achieve some improvement in absolute 
prediction error (bias) from -3.5 to -1.2 mL/min/1.73 m2, 
and in relative prediction error (precision) from 34.5% to 
31.1%. This represents the best accuracy that can be 
achieved in the study cohort by an algebraic formula 



using the MDRD equation 7 template. It should be noted 
that the modified MDRD formulas generated for these 
analyses are not suitable for clinical use, as this study 

constitutes insufficient validation in terms of (1) patient 
numbers and (2) the range of GFR measurements over 
which the modified formulas were tested. 

 

Fig. 2. Agreement of glomerular filtration rate according to the modified Modification of Diet in Renal Disease 
formula (GFRmMDRD) and dynamic evolving neuro-fuzzy inference system (GFRDENFIS) with 
ethylenediaminetetraacetic acid (GFREDTA) clearance (mL/min/1.73 m2) from modeling phase 1. In the scatter 
plots (A, C), the dotted lines ( ) represent the line of identity between methods. In the bias plots (B, D), dotted 
lines represent the bias between methods, broken lines (- – ) the range of agreement, and solid lines the line of 
regression indicating bias according to level of GFR. 

 

 
 

A fundamental methodologic feature of this study is the 
prediction of GFR in multiple centers using center-
specific clinical and laboratory measurements. This study 
design reproduces the use of these formulas in routine 
clinical practice. To our knowledge, there are no similar 
studies in the literature for comparison. Previous studies 
have usually been undertaken in single centers, or in 
multiple centers but using central laboratories. The 
prediction error from each of these individual studies 
cannot be simply averaged for comparison with the data 
presented here, although raw data could be pooled and 
reanalyzed. 

There are several factors that led to the greater than 
expected bias and imprecision of algebraic formulas in 
this study. The minimum prediction error for GFR that 
might be achievable by any method will be no less than 
the measurement error of the reference method. The use 
of central laboratories for the reference GFR 
measurement reduces error since it is dependent on intra-
test error only (variation between the reported clearances 
of two forms of the same marker administered to the same 
patient simultaneously). In this study and also in routine 
clinical practice, the variety of reference methods that 
might be used in different laboratories leads to additional 
interest error (variation between the reported clearances 
of different marker standards administered to the same 



patient simultaneously). There are few published data that 
definitively quantify these errors for GFR measurement, 

although the most widely quoted estimates are 5% to 
10%2,24,25. 

 

Fig. 3. Agreement of glomerular filtration rate according to the modified Modification of Diet in Renal Disease 
formula (GFRmMDRD) and dynamic evolving neuro-fuzzy inference system (GFRDENFIS) with 
ethylenediaminetetraacetic acid (GFREDTA) clearance (mL/min/1.73 m2) from modeling phase 2. In the scatter 
plots (A, C), the dotted lines ( ) represent the line of identity between methods. In the bias plots (B, D), dotted 
lines represent the bias between methods, broken lines (- – ) the range of agreement, and solid lines the line of 
regression indicating bias according to level of GFR. 

 

 
 

Another factor to consider is that the MDRD formulas 
were developed and validated within a study cohort where 
only 3% had diabetes mellitus, and validated further in 
the African American Study of Hypertension and Kidney 
Disease study cohort where 100% were African 
Americans and 0% had diabetes mellitus26. Similarly 
unrepresentative patient samples have been used for the 
development and validation of other popular formulas, 
such as that by Cockcroft and Gault14. It is possible and 
even likely that different ethnic populations such as 
Asians, Hispanics, and Polynesians and also patients with 
different comorbid medical burden will have different 
biologic and therefore algebraic relationships between 
GFR and its predictive variables such as serum creatinine. 

Finally, analytical differences between laboratories in 
measurement of analytes such as serum creatinine 
contribute to the prediction error of these algebraic 
formulas. Interlaboratory error has been evaluated in a 
number of studies and may be as high as 15%, as a result 
of calibration differences to a great extent. It should be 
noted that this error has progressively less impact with 
decreasing GFR, and may be clinically insignificant in the 
predialysis setting27,28. Minimization of this error in the 
routine clinical practice is possible through improved 
calibration in laboratories to a single external standard, 
although there will still be some error attributable to 
laboratory methodology until it becomes more precise. 

 



Fig. 4. Agreement of glomerular filtration rate according to the modified Modification of Diet in Renal Disease 
formula (GFRmMDRD) and dynamic evolving neuro-fuzzy inference system (GFRDENFIS) with 
ethylenediaminetetraacetic acid (GFREDTA) clearance (mL/min/1.73 m2) from modeling phase 3. In the scatter 
plots (A, C), the dotted lines ( ) represent the line of identity between methods. In the bias plots (B, D), dotted 
lines represent the bias between methods, broken lines (- – ) the range of agreement, and solid lines the line of 
regression indicating bias according to level of GFR. 

 

 
 

Given the difficulties in predicting GFR from serum 
creatinine, should the clinician abandon such methods and 
rely exclusively on the measurement of tracer clearance? 
Radioisotope methods are accurate, and are known to 
have a high degree of reproducibility across different 
centers as long as computing algorithms are 
similar29,30,31,32. These methods have been recommended 
as routine by some authors33, although their expense and 
logistics limit utilization in most centers. The most 
accurate and clinically accessible methods for 
measurement of GFR by tracer clearance are first 
measured creatinine clearance with cimetidine blockade1, 
and second averaged measured urea and creatinine 
clearance3. The main disadvantage of these methods is the 
requirement for accurate 24-hour urine collection, and the 
potential for collection error which can result in spurious 
day to day variation in GFR of up to 70%1. 

 

 

Fig. 5. Prediction error for glomerular filtration rate 
according to the dynamic evolving neuro-fuzzy 
inference system (GFRDENFIS) ( ) and the modified 
Modification of Diet in Renal Disease (GFRmMDRD) ( ) 
in each of the 12 centers from modeling phase 2. 

 
 



Fig. 6. Illustration of one of the dynamic evolving neuro-fuzzy inference system (DENFIS) computer interfaces. 
The problem space is visualized, as is the progressive partitioning of the space for the ongoing creation of fuzzy rules. 
At each moment, GFRDENFIS is calculated through a fuzzy inference system based on the most activated fuzzy rules that 
are dynamically selected from the existing fuzzy rule set. New fuzzy rules are created and updated during the operation 
of the system. As an example, rule 13 is illustrated in the interface. Note that input variables are normalized between 
zero and one. The entire complement of rules for the modeling of GFRDENFIS (modeling phase 3) are provided in the 
Web site http://gfr-ecos.kedri.org. 

 
In this article, we present a genuine alternative to all these 
methods in a convenient and inexpensive form of 
machine intelligence. ECOS has been shown to predict 
GFR with greater accuracy than what is regarded as the 
best of the available algebraic equations, even when the 
latter was also optimized using conventional statistical 
modeling within the EPO AUS-14 data set. Moreover, the 
second phase of modeling in our study illustrates the 
potential beneficial of adaptive modeling with sequential 
recruitment of centers to the system. In our study, such 
improvement, however, was not achieved through the 
development of discrete models for each center. Within 
each center, up to 21 models were used to calculate 
GFRDENFIS, with renal function measurements often 
allocated to areas of the problem space partitioned to 
several overlapping clusters. It is the weighted application 
of these local models within the ECOS framework that 
provides the clinical benefit over and above global 
models such as algebraic formulas. 

The second phase of modeling also demonstrated an 
important limitation of ECOS in clinical practice. In the 
case study of Center 2, the ECOS was unable to 
distinguish whether the discrepancy between GFRmMDRD 
and the corresponding GFREDTA arose from patient-
related factors or measurement error in laboratory 
parameters or radioisotope tracer clearance. ECOS is still 

a tool based on association rather than causality. 
However, unlike conventional artificial neural networks it 
is still possible to examine relationships among input and 
output variables within the ECOS. The local models are 
in the form of fuzzy rules that can be extracted and 
studied. Such rules may allow for generation of 
hypotheses for further laboratory or clinical testing, and 
also have the potential to directly add to our 
understanding of underlying biologic processes. 

A feature of all of our modified MDRD formulas is the 
factor of less than unity that is used to account for black 
race, as opposed to 1.18 in the original MDRD equation 
7. In this study, the ethnic mix of "black" patients in 
Australia and New Zealand included Maori, Polynesian, 
and Aboriginal patients, who are quite distinct from 
African Americans. It should not be assumed that 
creatinine generation is higher in these ethnic groups as is 
the case in African Americans. In our study cohort, the 
mean GFR was 18.73 mL/min and the mean serum 
creatinine 0.42 mmol/L for patients classified as black. 
The corresponding parameters were 22.9 mL/min and 
0.34 mmol/L for patients classified as white. If one 
equates GFR with creatinine clearance and assumes a 
steady state, the mean 24-hour creatinine generation is 
11.3 mmol for both blacks and whites. The only other 
available published data support this finding. The 
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relationship between calculated creatinine clearance and 
urine creatinine was not different in Maoris, Polynesians, 
and Europeans (P.A. Metcalf, personal communication, 
July 26, 2004)34. This issue highlights again the potential 
in applying a formula such as the original MDRD 
equation 7 in a population that is different from that in 
which it has been developed. 

The engineering of machine intelligence into tools of 
medical practice is not difficult. Many medical devices 
already have such systems embedded in them such as 
arrhythmia detectors. Alternatively, the systems can be 
placed on a central server as an internet or intranet-based 
utility. If such computing resources were not available, 
these systems are amenable to rule extraction as 
described. Such rules may be imported in a non-evolving 
form into a hand-held device, although they would need 
updating whenever advances in predictive modeling were 
made. 

This study has two limitations. The first of these is that 
multiple GFR measurements were included for each 
patient. This methodology has occasionally been a feature 
of previous studies of this nature17, although is 
undesirable as formulas derived from regression analyses 
will be biased toward patients with more frequent 
measurements. We have compared demographic, clinical, 
and laboratory characteristics of the patients in this study 
with one or two GFR measurements, versus those with 
three or four measurements. There were no demonstrable 
differences in any of these parameters (data not shown), 
indicating that the average frequency of 2.4 GFR 
measurements per patient was unlikely to have 
confounded our results. Ultimately, any limitation of the 
data set was the same for both the algebraic formulas and 
the ECOS, and the comparison of the two methods at the 
core of this study still valid. The other limitation of this 
study is its sample size: the MDRD study used 1070 and 
558 GFR measurements for training and validation, 
respectively, compared with 309 and 132 corresponding 
GFR measurements in this study. This will inevitably 
limit the power of the analyses presented in this study, 
although we believe that study of a larger cohort would 
not have produced different results. 

 
5. CONCLUSION 

This study strongly suggests that published algebraic 
formulas for the prediction of GFR will be less accurate 
than expected in routine clinical practice and confirms 
that their performance can be improved somewhat by 
additional regression analyses prior to clinical use in 
diverse populations. This study demonstrates machine 
intelligence to be workable with greater accuracy than 
such algebraic formulas. Furthermore, there is potential to 
enhance modeling further within the ECOS framework by 
the sequential inclusion of further clinical variables with 
training data in the final model in the future. A Web-
based implementation of GFRDENFIS has been developed 
by this group for further prospective multicenter study, 
and it is hoped that the computational models so 
developed may in turn shed light upon biologic processes 
that influence renal function and mitigate renal disease. 
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