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Abstract 
 

 

 

A range of signal processing techniques have been adopted and developed as a methodology 

which can be used in developing an intelligent surface electromyography (SEMG) signal 

classifier.  An intelligent SEMG signal classifier would be used for recognising and treatment 

of musculoskeletal pain and some neurological disorders by physiotherapists and 

occupational therapists.  SEMG signals displays the electrical activity from a skeletal muscle 

which is detected by placing surface electrodes placed on the skin over the muscle.  

 

The key factors of this research were the investigation into digital signal processing using 

various analysis schemes and the use of the Artificial Neural Network (ANN) for signal 

classification of normal muscle activity.  The analysis schemes explored for the feature 

extraction of the signals were the Fast Fourier Transform (FFT), Short Time Fourier 

Transform (STFT), Continuous Wavelet Transform (CWT), Discrete Wavelet Transform 

(DWT) and Discrete Wavelet Packet Transform (DWPT). 

 

Traditional analysis methods such as FFT could not be used alone, because muscle diagnosis 

requires time-based information.  CWT, which was selected as the most suitable for this 

research, includes time-based information as well as scales, and can be converted into 

frequencies, making muscle diagnosis easier.  CWT produces a scalogram plot along with its 

corresponding frequency-time based spectrum plot.  Using both of these plots, overviewed 

extracted features of the dominant frequencies and the related scales can be selected for 

inputs to train and validate an ANN.   

 

The purpose of this research is to classify (SEMG) signals for normal muscle activity using 

different extracted features in an ANN.  The extracted features of the SEMG signals used in 

this research using CWT were the mean and median frequencies of the average power 

spectrum and the RMS values at scales 8, 16, 32, 64 and 128.  SEMG signals were obtained 

for a 10 second period, sampled at 2048 Hz and digitally filtered using a Butterworth 

bandpass filter (5 to 500 Hz, 4th order). They were collected from normal vastus lateralis and 

vastus medialis muscles of both legs from 45 male subjects at 25%, 50%, and 75% of their 

Maximum Voluntary Isometric Contraction (MVIC) force of the quadriceps. 
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The ANN is a computer program which acts like brain neurons, recognises, learns data and 

produces a model of that data.  The model of that data becomes the target output of an ANN.  

Using the first 35 male subjects’ data sets of extracted features, the ANN was trained and 

then validated with the last 10 male subjects’ data sets of the untrained extracted features.  

The results showed how accurate the untrained data were classified as normal muscle 

activity. 

 

This methodology of using CWT for extracting features for analysing and classifying by an 

ANN for SEMG signals has shown to be sound and successful for the basis implementation 

in developing an intelligent SEMG signal classifier. 

 

 



 iv

Table of Contents 
 
 
 Page 
Acknowledgement .............................................................................................................. i 
Abstract ............................................................................................................................. ii 
Table of Contents ............................................................................................................. iv 
List of Figures ................................................................................................................. vii 
List of Tables .................................................................................................................... xi 
Statement of Originality ................................................................................................. xii 
 
Chapter 1 Introduction................................................................................................1 
 
1.1 Background..............................................................................................................1 
1.2 Muscles and Surface Electromyography Signals.....................................................3 
1.3 Literature Review on Recent Development.............................................................8 
1.4 Objectives and Methodology .................................................................................13 

1.4.1 Signal Processing by Wavelet Analysis.....................................................14 
1.4.2 Signal Classification by Neural Network ..................................................16 

 
Chapter 2 Digital Signal Processing Techniques.....................................................18 
 
2.1 Introduction ...........................................................................................................18 

2.1.1 Biosignals: Definition and Classifications.................................................18 
2.1.2 Signal Processing: Data Acquisition .........................................................19 
2.1.3 Signal Processing: Feature Extraction (Analysis Schemes) ......................23 
2.1.4 Signal Processing: Feature Selection .........................................................24 

 
2.2 Fourier Transform Analysis...................................................................................25 

2.2.1 Fast Fourier Transform (FFT)....................................................................25 
2.2.2 Short Time Fourier Transform (STFT)......................................................27 

 
2.3 Wavelet Transform Analysis .................................................................................30 

2.3.1 Continuous Wavelet Transform (CWT) ....................................................35 
2.3.2 Discrete Wavelet Transform (DWT) .........................................................38 
2.3.2a Discrete Wavelet Packet Transform (DWPT) ...........................................44 

 
2.4 Quantitative Measures in Feature Selection ..........................................................47 
 
Chapter 3 Data Acquisition and SEMG Signal Processing ...................................50 
 
3.1 Introduction ...........................................................................................................50 
 
3.2 Software Development ..........................................................................................54 

3.2.1 Software Development Concept ................................................................56 
 
3.3 Data Collection and Signal Acquisition ................................................................62 

3.3.1 Maximal Strength Test ..............................................................................71 
3.3.2 Sustained Isometric Knee Extension Test .................................................71 
3.3.3 Signal Acquisition Settings .......................................................................72 



 v

3.4 Signal Pre-processing ............................................................................................73 
 
3.5 Feature Extraction and Selection ...........................................................................75 
 
3.6 Results of One Typical Output Signals .................................................................80 
 
Chapter 4 SEMG Signal Classification Using Artificial Neural Network ...........84 
 
4.1 Introduction ...........................................................................................................84 
 
4.2 Neural Network Fundamentals ..............................................................................85 
 
4.3 Data Assembling and Array Management .............................................................90 
 
4.4 Designing and Training of the Neural Network ....................................................91 
 
4.5 Validation, Results and Analysis ...........................................................................93 
 
Chapter 5 Discussion and Conclusions ..................................................................102 
 
5.1 Introduction .........................................................................................................102 
 
5.2 Software Development.........................................................................................102 
 
5.3 Data Collection and Signal Acquisition...............................................................104 
 
5.4 Signal Pre-processing...........................................................................................105 
 
5.5 Feature Extraction and Selection .........................................................................107 
 
5.6 SEMG Signal Classification Using Artificial Neural Network ...........................108 
 
5.7 Conclusions..........................................................................................................109 
 
5.8 Recommendations................................................................................................110 
 
Appendix A Factors of SEMG Signal Measurement Complexity...........................112 
 
Appendix B1 Signal Processing Program Using Fast Fourier Transform (FFT)  

Analysis by LabVIEW ...........................................................................114 
 
Appendix B2 Signal Processing Program Using Fast Fourier Transform (FFT) 

Analysis by MATLAB ...........................................................................116 
 
Appendix B3 Signal Processing Program Using Short Time 

Fourier Transform (STFT) Analysis by LabVIEW ...........................119 
 
Appendix B4 Signal Processing Program Using Short Time 

Fourier Transform (STFT) Analysis by MATLAB ............................121 
 



 vi

Appendix B5 Signal Processing Program Using Continuous  
Wavelet Transform (CWT) Analysis by LabVIEW ...........................124 

 
Appendix B6 Signal Processing Program Using Continuous  

Wavelet Transform (CWT) Analysis by MATLAB ...........................126 
 
Appendix B7 Signal Processing Program Using Discrete  

Wavelet Transform (DWT) Analysis by LabVIEW ...........................129 
 
Appendix B8 Signal Processing Program Using Discrete  

Wavelet Transform (DWT) Analysis by MATLAB ...........................131 
 
Appendix B9 Signal Processing Program Using Discrete Wavelet 

Packet Transform (DWPT) Analysis by LabVIEW ...........................134 
 
Appendix B10 
 Signal Processing Program Using Discrete Wavelet 

Packet Transform (DWPT) Analysis by MATLAB ...........................136 
 
Appendix B11 

Sub-VIs Designs of ‘demean’, ‘Filter, and ‘PSpec’ by LabVIEW ....140 
 
Appendix C1 Recommendation For Sensor Locations in 

Hip or Upper Leg Muscles – Vastus Lateralis ....................................142 
 
Appendix C2 Recommendation For Sensor Locations in 

Hip or Upper Leg Muscles – Vastus Medialis .....................................144 
 
Appendix D Final Version of Signal Processing Program Using Continuous 

Wavelet Transform (CWT) Analysis by LabVIEW ...........................146 
 
Appendix E Program Notation for Training Using 

Artificial Neural Network (ANN) by MATLAB .................................149 
 
References .......................................................................................................................150 



 vii

List of Figures 
 
Figure No.  page 
 
1.1 Diagram of the organisation of the skeletal muscle  
 from the gross to the molecular level...........................................................4 
 
2.1 Signal classification adapted from Cohen, 1986 .......................................19 
 
2.2 Schematic of signal processing stages .......................................................20 

 
2.3a A typical analogue EMG signal detected by the DE-2.1 electrode ...........21 
2.3b The digital sequence resulting from sampling the signal ..........................21 
 
2.4a Sampling a 1 V, 1 Hz sinusoidal signal at 1.67 Hz ...................................22 
2.4b Reconstructing the sinusoid sampled at 1.67 Hz ......................................22 
 
2.5a A SEMG signal obtained from the vastus lateralis muscle at  
 50% Maximum Voluntary Isometric Contraction (MVIC) .......................26 
2.5b Fourier transform of signal in showing 
 the frequency spectrum of signal ...............................................................26 
 
2.6a A SEMG signal obtained from the 
 vastus lateralis muscle at 50% MVIC........................................................30 
2.6b Results of STFT showing spectrogram of the frequency spectrum of 
 signal with time of occurrence...................................................................30 
 
2.7a Original mother wavelet of Daubechies (db05).........................................32 
2.7b Dilated mother wavelet ..............................................................................32 
2.7c Compressed mother wavelet ......................................................................32 
 
2.8a A SEMG signal obtained from the 
 vastus lateralis muscle at 50% MVIC........................................................36 
2.8b Wavelet transform plot of results by CWT................................................36 
 
2.9a A SEMG signal obtained from the 
 vastus lateralis muscle at 50% MVIC .......................................................37 
2.9b Scalogram of results by CWT....................................................................37 
 
2.10 Wavelet decomposition tree or analysis filter bank using  
 the DWT pyramid algorithm......................................................................39 
 
2.11a Analysis filter bank without down-sampling.............................................40 
2.11b Analysis filter bank with down-sampling by the factor of two .................40 
 
2.12a A SEMG signal obtained from the 
 vastus lateralis muscle at 50% MVIC........................................................43 
2.12b Output signal results of (a) filtered by 
 filter banks using multiresolution analysis ................................................43 
2.12c Wavelet decomposition tree that makes up the output signal in (b) ..........43 



 viii

2.13 Wavelet packet decomposition tree ...........................................................45 
 
2.14 Wavelet packet decomposition tree showing top signal diagram 
 as input x[n] and below it are the output signals of level 1 and 2 
 filtered by low and high filters using DWPT.............................................46 
 
2.15a A SEMG signal obtained from the 
 vastus lateralis muscle at 50% MVIC........................................................49 
2.15b Power spectrum plot of signal in (a) showing the blue dotted lines 
 of mean frequency of 92.22 Hz and median frequency of 73.35 Hz .........49 
 
3.1 Schematic diagram of the various stages undertaken in this research .......53 
 
3.2a Generated centre frequency-based sinusoidal at 0.6667 Hz 
 mapped and translated along mother wavelet Daubechies 05 ...................55 
3.2b Generated centre frequency-based sinusoidal at 0.8125 Hz 
 mapped and translated along mother wavelet Morlet. ...............................55 
 
3.3 LabVIEW development flowchart for analysing and displaying 
 the results of a SEMG signal using Fast Fourier Transform (FFT). ..........57 
 
3.4 LabVIEW development flowchart for analysing and displaying the 
 results of a SEMG signal using Short Time Fourier Transform (STFT)...58 
 
3.5 LabVIEW development flowchart for analysing and displaying the 
 results of a SEMG signal using Continuous Wavelet Transform (CWT) .59 
 
3.6 LabVIEW development flowchart for analysing and displaying the 
 results of a SEMG signal using Discrete Wavelet Transform (DWT) ......60 
 
3.7 LabVIEW development flowchart for analysing and displaying the 
 results of a SEMG signal using Discrete Wavelet 
 PacketTransform (DWT) ...........................................................................61 
 
3.8 Schematic diagram of equipment setup for signal acquisition ..................63 
 
3.9 Biodex upright chair for participant to sit on.............................................65 
 
3.10 The load cell lever arm part of the Biodex upright chair ...........................65 
 
3.11 The amplifier Grass Model P511...............................................................66 
 
3.12 The force data for each level of 25%, 50%, 75% and MVIC  
 were displayed on the screen .....................................................................66 
 
3.13a Electrode placement for the vastus lateralis site ........................................67 
3.13b Electrode placement for the vastus medialis site .......................................68 
 
3.14 Location of surface electrodes EMG, front view.......................................68 
 



 ix

3.15 Location of surface electrodes EMG, top view .........................................69 
 
3.16a A subject executing MVIC ........................................................................69 
3.16b A closer look at the knee and leg ...............................................................70 
 
3.17 Closer look at the location of surface electrodes 
 EMG on vastus lateralis .............................................................................70 
 
3.18 LabVIEW development flowchart for final analysing and  
 displaying the results of a SEMG signal using  
 Continuous Wavelet Transform (CWT) ....................................................74 
 
3.19 Graph of force trace and raw signal showing  
 the region for processing and analysing.....................................................77 
 
3.20 Schematic diagram of EMG processing procedure 
 in the frequency domain by analysing the EMG spectrum........................78 
 
3.21 Force trace and the SEMG raw data of 75% of MVIC 
 from right leg’s vastus lateralis of a male subject (Subject No.4) .............81 
 
3.22 The quasi-stationary region analysed with the power spectrum 

and the scalogram ......................................................................................82 
 
3.23 The reproduced quasi-stationary signals with  
 the scales of 8, 16, 32, 64 and 128 .............................................................83 
 
4.1 Single-layer neuron model.........................................................................87 
 
4.2 Log-Sigmoid transfer function...................................................................88 
 
4.3 Tan-Sigmoid transfer function...................................................................88 
 
4.4 Linear transfer function..............................................................................88 
 
4.5a Three layers version of multilayer neuron model ......................................89 
4.5b Abbreviated notation of 4.5a .....................................................................89 
 
4.6 Array management of the input data to the output vector .........................91 
 
4.7 Network architecture built for this research...............................................92 
 
4.8 ANN net1 parameter setting, architecture and training curve ...................94 
4.8 (cont) ANN net1 validation data results...............................................................95 
 
4.9 ANN net2 parameter setting and architecture............................................95 
4.9 (cont) ANN net2 training curve and validation data results.................................96 
 
4.10 ANN net3 parameter setting, architecture and training curve ...................97 
4.10 (cont) ANN net3 validation data results...............................................................98 



 x

 
4.11 ANN net4 parameter setting and architecture............................................98 
4.11 (cont) ANN net4 training curve and validation data results.................................99 
 
4.12 Training curves of net1, net2, net3 and net 4  
 showing efficiency in reaching performance goal ...................................100 
 
 
 
 
 
 
 
 
 



 xi

List of Tables 
 
Table No.  page 
 
2.1 Time and frequency resolution by window width .....................................28 
 
3.1 Comparative table of results and aspects from five analysis 
 methods using LabVIEW and MATLAB..................................................56 
  
3.2 List of equipment used for data collection of signal 
 of vastus lateralis and vastus medialis muscles .........................................64 
 
3.3 List of specifications required to process data signal using CWT.............75  
 
3.4  Extracted features from the right leg’s vastus lateralis 
 of a male subject at 75% of MVIC (Subject No.4)....................................81 
 
4.1 Summary of results of training and validating  
 neural networks using tan-sigmoid transfer function...............................100 
 
  
 



 xii

Statement of Originality 
 
 
 
 
 
‘I hereby declare that this submission is my own work and that, to the best of my knowledge 

and belief, it contains no material previously published or written by another person nor 

material which to a substantial extent has been accepted for qualification of any other degree 

or diploma of a university or other institution of higher learning, except where due 

acknowledgement is made in the acknowledgements.’  

 

 

 

 

 

 

Jeff Kilby 

31 October 2005 

 

 
 
 
 
 
 
 
 



 1

Chapter 1 

Introduction 
 

 

1.1 Background 
 

Feature extraction and pattern recognition is the key in processing and analysing biomedical 

signals.  The use of the signal analysis is apparent in the field of clinical health for diagnosing 

health related problems and rehabilitation using biomedical signals such as 

Electrocardiography (ECG or EKG) and Electromyography (EMG) signals.  The EMG 

signals, also commonly known as myoelectric signals, are obtained by means of recording the 

electrical activity of striated muscle using sensors or electrodes.  ECG signals from the heart 

record the signals from the heart activity whereas EMG signals are from the skeletal muscles 

and record the activity of muscle as it contracts during movement. 

 

An accurate and computationally efficient means of classifying myoelectric signal patterns 

has been the subject of considerable research effort in recent years where having effective 

feature extraction is crucial for reliable classification [1].  Numerous research and studies 

concentrated on feature extraction and pattern recognition in the biomedical signal or 

biosignal processing have achieved tremendous contribution to the facilities developed and 

available for the signal analysis in the clinical field today. 

 

With computers and software becoming more and more powerful tools which are able to 

process complex algorithm on numerous data at high speed, the advancement in digital signal 

processing applied to biomedical signals is an inevitable one and ongoing.  Software such as 

LabVIEW and MATLAB are well known for their use in mathematical processing and virtual 

instrumentation for laboratory requirements.  They are commercially available where both 

have built-in functions or tools for signal processing. 

 

In signal processing, determining the frequency content of a signal by Fourier transform is 

one of the main aspects in feature extraction and understanding the characteristics of a signal.  

However, obtaining the frequency content alone is not sufficient for analysing biomedical 
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signals due to it being non-stationary in nature [2, 3].  Fourier transform loses the time 

information after transforming time-based signal to frequency-based signal. 

 

It is an essential and in the interest of analysing biosignal to obtain ‘time-based’ information 

of when a particular frequency content occurs [3, 4].  Wavelet transform is a method capable 

of achieving this so called the time-frequency content or the time-frequency based 

representation. 

 

Other aspects of a signal such as the mean and median frequency of the power spectrum and 

the (RMS) value of signal’s electrical potential also play an important role to the whole task 

of features extraction for signal characterisation.  The ultimate aim of this exercise is to 

develop a system with the ability for signal classification by features, a powerful and 

promising tool for diagnosing problems. 

 

The application of wavelet transform in analysing biological signals has only become 

increasingly developed in the last fifteen years [3, 5].  The wavelet theory is a relatively 

recent mathematical development where its application is a potentially promising and 

exciting area of research.  Its application to the analysis of EMG signals is even more recent 

[3]. 

 

In the field of Surface Electromyography (SEMG), wavelet analysis has not been as widely 

used compared with the ECG signals [3, 4].  Some of the other established research in this 

field did not provide and record many details on the procedure in developing and designing 

the software system to process SEMG signals with wavelet analysis.  In addition to this 

scarcity of the extensive use of wavelet analysis in SEMG signals feature extraction, there is 

no prominent system yet developed to manage and file these signal features.  Building 

records of a database of the signal features is of importance in creating a system to the further 

use in signals classification. 

 

SEMG uses surface electrodes placed on the skin overlying the muscle observed.  The other 

common EMG uses needle electrodes penetrated into the muscle, thus signals obtained are 

focused on a particular muscle motor unit.  Needle EMG is an invasive method which can 

cause stress to the patient involved [6], hence SEMG is a preferable method of gathering 
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signals.  Further, SEMG obtains signals sourced from a group of muscle rather than one 

single muscle unit. 

 

In summary, there are practical gaps which need to be filled by this research within the use of 

wavelet analysis for SEMG signal processing.  This research designed and developed 

appropriate practice-oriented methodology and descriptive procedures for SEMG signal 

acquisitions, feature extraction processing, classification and validation by Artificial Neural 

Network (ANN). 

 

This research explored and demonstrated the ability and potential in achieving reliable means 

for the diagnostic equipment development of a SEMG signal analyser using comparative 

database by this proposed technique. 

 

The following sections discuss the background of muscles, EMG signals and reviews recent 

developments in the literature relating to SEMG, wavelet analysis and the application of 

ANN in research.  The aim, objectives and research methodology are also presented. 

 

 

1.2 Muscles and Surface Electromyography Signals 
 

The study of electromyography signals or EMG signals is the study of muscle activity 

obtained in the form of electrical signals.  EMG is sometimes referred to as myoelectric 

activity.  EMG is measured using similar techniques to that used for measuring ECG and 

other electrophysiological signals such as electroencephalography (EEG) in sleep assessment 

[7]. 

 

A muscle is comprised of many small fibres.  In humans, the muscle systems are classified 

based on by their appearance and location of cells [8].  The two types of muscles are striated 

muscle and smooth muscle (non-striated).  Striated muscle includes skeletal and cardiac 

muscle.  Skeletal muscle is almost exclusively attached to the skeleton and constitutes the 

bulk of the body’s muscle tissue.  Skeletal muscle contraction maintains posture and produces 

movement.  Its structure is composed of multinucleated skeletal muscle fibres shown in 

Figure 1.1. This is the type of muscle where EMG is applicable.  Cardiac muscle allows the 
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heart to contract and propel blood through the circulatory system.  It is regulated by the 

sinoatrial node or the heart’s pacemaker where its signal study is known as ECG.  The 

smooth muscle differs in structure from that of striated muscle as it is composed of elongated, 

thin fibre and contains a single nucleus.  Its major role is in the physiologic regulation of the 

airways, blood vessels and gastrointestinal tract [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Diagram of the organisation of the skeletal muscle from the gross to the 
molecular level.  Cross section F, G, H and I are at levels indicated.  Sourced from Bullock J, 
Boyle, J and Wang, M B: textbook of Physiology, ed 3, Philadelphia, PA, Williams & Wilkins, 

1995 [8]. 
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Skeletal muscle consists of groups of motor units [9].  A motor unit is made up of all skeletal 

muscle fibres supplied by one motor neuron from the spinal cord.  A muscle can have few or 

many motor units associated with them.  A muscle with many motor units is capable of more 

precise movements than a muscle with fewer motor units for the same number of muscle 

fibres [9]. 

 

Within the study of EMG, normal striated muscle is electrically silent at rest [10], but when it 

is active, as during contraction or stimulation, an electrical current is generated.  When a 

muscle contracts, microvolt level electrical signals are created within the muscle which can 

be measured from the surface of the body [11].  The action potentials produced by the muscle 

cells induce potential differences in the overlying skin that can be recorded by surface 

electrodes.  The more fibres that are stimulated the stronger the muscle contracts and a 

greater force is produced.  The successive action potentials or electrical impulses produced by 

the muscle activity can be displayed on a cathode-ray oscilloscope screen in the form of 

continuous wavelike tracings. 

 

Surface electromyography or SEMG, which is the focus of this research, is the procedure that 

measures muscle activity from the skin.  Through the application of SEMG, the combination 

of electrical activity or action potentials from the numerous muscle fibres that contribute to a 

muscle contraction can be collected and analysed [12]. 

 

The EMG signal from the muscle is sensed by electrodes placed on the skin surface overlying 

the muscle and then sent to a computer.  The EMG signals are collected in data files where 

they are then processed and analysed using special mathematical procedures.  Procedure such 

as wavelet analysis allows the frequencies within the EMG signal to be broken down into 

features.  The features represent the electrophysiological characteristics of the muscle fibres 

contributing a muscular contraction [13].  These measures can also be related to force 

production [14], muscle fatigue [15] and deficits in the musculoskeletal system [16]. 

 

The amplitude characteristics of SEMG signals have a random or stochastic behaviour with 

no periodic form in the wave pattern as there is in the ECG signals [13]. The amplitudes of 

these signals can range from 0 to 10 mVpp or 0 to 1.5 mVrms [14, 17].  The usable frequency 

range of the signal is between 0 to 500 Hz, with dominance being in the 50 to 150 Hz range 

[17].  Usable signals are those with energy above the electrical noise level.  Signals above 
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500 Hz is considered noise and does not contain much important information and hence it 

needs to be filtered out by a low pass filter [14, 17]. 

 

Hence, SEMG signals are the summation of electrical activity of muscles.  Since surface 

electrodes are placed on the skin surface, the signals contain information from all muscle 

activity within the ‘pick-up’ range of the electrodes, so not necessarily summation of activity 

from one motor unit.  SEMG represents the average motor unit activity of most superficial 

muscles whereas using needle EMG, electrical activity obtained from muscle contraction is 

represented as the motor unit action potential (MUAP) as produced from a single anatomical 

motor unit [18]. 

 

The benefits of SEMG over needle EMG is that it provides unique spatial information besides 

the conventional MUAP variables such as amplitudes [19].  These extra spatial features are of 

the endplate position that determined the fibre length, the depth and direction of MUAP.  

SEMG is also non-invasive and patient friendly whereas patient acceptance for needle EMG 

is limited due to pain.  However, needle EMG is versatile, quick and gives a unique 

opportunity to measure muscle membrane instability.  Within MUAP variables it shows the 

recruitment pattern and spontaneous activity while SEMG does not, but only shows the 

muscle fibre conduction [19].  The analysis time for needle EMG only can be taken in a short 

period while SEMG can be taken moderately longer.  By using needle EMG, many more 

muscles can be analysed than by SEMG where it is limited.  The analysis of SEMG signals 

generally uses more data in quantitative form, where although possible but not usually is used 

in needle EMG analysis [19]. 

 

Surface Electromyography is used to control prosthetic devices and to study neurological 

control in human movement.  It is recently used as a diagnostic tool for the clinicians [2].  

The frequency spectrum of signal has been used to determine muscular fatigue, force 

production and muscle fibre signal conduction velocity.  The analysis at low frequency power 

spectrum provides information about spatial and temporal recruitment of motor units [2].  

Each muscle is suggested to exhibit differing high-energy frequency bands and characteristic 

power spectrum, therefore it is possible to analyse SEMG patterns to see which muscle is the 

source of activity [2]. 
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De Luca, one of the leading professionals in the field of biomechanics, has executed thorough 

research into the use of SEMG which can be grouped in three applications [20]: 

 

1. The activation of muscles where signals can provide the timing sequence of one or 

more muscles performing a task. 

2. The force/EMG signal relationship which provides information about the force 

contribution of individual muscles and groups of muscles. 

3. The use of the EMG as a fatigue index where the signal displays time-dependent 

changes prior to any force modification so having the potential to predict the onset of 

contractile fatigue. 

 

The difficulties in interpreting SEMG signals are due to several factors involved during 

signal acquisition.  The SEMG signals are affected by anatomical and physiological 

properties of the muscles.  They can also be affected by the control scheme of the nervous 

system and/or electronic instrumentation used to detect and record signal [2].  De Luca also 

described the factors that affect the information contained in EMG signal and force produced 

by a muscle [20].  Quantitatively the signal amplitude normally indicates the amount of 

torque or force measured about a joint.  It is impossible to get the accurate relationship due to 

the complexity and interaction of the many physiological factors such as the fibre membrane 

properties, anatomical such as length of fibres and technical factors such as size and shape of 

electrode related to measurement of the force and/or accompanying muscle activity.  Proper 

detection helps manage and minimise these effects of complexity.  De Luca [20] had 

discussed, identified and classified these factors which gave rise to the complexity of SEMG 

signal measurement much in depth and details in his work which can be viewed in Appendix 

A. 

 

In summary, the factors that influence the surface EMG are classified into two categories, the 

non-physiological and the physiological [21].  The non-physiological factors include aspects 

from: 

• The anatomic such as due to the shape of the volume conductor, thickness of the 

subcutaneous tissue layer, tissue inhomogeneities, distribution of the motor unit 

territories in the muscle, size of the motor unit territories, distribution and number of 

fibres in the motor unit territories, length of the fibres, spread of the endplates and 
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tendon junctions within the motor units, spread of the innervation zones and tendon 

regions among motor units. 

• The detection system such as from the skin electrode contact that gives impedance 

and noise to the signal, spatial filter for signal detection, interelectrode distance, 

electrode size and shape, inclination of the detection system relative to muscle fibre 

orientation and location of the electrodes over the muscle. 

• The geometrical where muscle fibre shortening occurs and shift of the muscle relative 

to the detection system. 

• The physical such as from the conductivities of the tissue and amount of crosstalk 

from nearby muscles. 

 

The physiological factors that influence the SEMG signal measurement includes [21]: 

• The fibre membrane properties such as from the average muscle fibre conduction 

velocity, distribution of motor unit conduction velocities, distribution of conduction 

velocities of the fibres within the motor units and shape of the intracellular action 

potentials. 

• The motor unit properties such as from the number of recruited motor units, 

distribution of motor unit discharge rates statistics and coefficient of variation for 

discharge rate and motor unit synchronisation. 

 

Although all of these factors exist, it is still constructive to use EMG signal to describe the 

state of the muscle by placing surface EMG in the location isolated from where these factors 

can significantly affect the intended signal quality [20]. 

 

 

1.3 Literature Review on Recent Development 
 

Research in SEMG signals range from signal acquisition techniques, surface electrodes, 

signal processing, electrical potential, muscle activities and algorithm design to the use of 

Artificial Neural Network (ANN) for signal classification.  Since this research focused in the 

feature extraction and signal classification, this section discusses more about the recent 

development in signal processing for analysis or feature extraction and the application of 

ANN for signal classification. 
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Research by Anctil et al [22] discussed modelling surface electrode which recorded EMG 

responses.  This method determined potential derived from an analytical expression instead 

of the standard approach of using surface electrode being presented as a series of discrete 

point electrodes.  This method introduced and offered significant computational advantages 

in terms of efficiency for modelling surface electrodes potentials [22]. 

 

The field of biosignal analysis research is very wide itself.  For example, Thakor and Zhu 

[23] focused their research more into the filtering and noise cancellation techniques of signal 

processing the ECG signals.  Another research by Chu et al [24] used EMG activity to detect 

muscle activity in regards to hamstring flexibility assessment of stand-and-reach and sit-and-

reach.  The signal would provide a comparison of the myoelectric activities in hamstring and 

low back muscle during stand-and-reach and sit-and-reach and ultimately, to know which 

method is a potential danger in terms of high loading for muscle strain. 

 

More recent significant advances in signal processing include research by Englehart et al [1] 

which was concerned with improving the accuracy of transient myoelectric signal pattern 

classification.  This was achieved by incorporating time-frequency based representation such 

as the Short Time Fourier Transform (STFT), the wavelet transform (WT) and the wavelet 

packet transform (WPT) in the feature sets.  The outcome showed an effective representation 

for classification in the later stage using ANN [1]. 

 

Crowe et al [4] applied wavelet transform to the Electrocardiogram (ECG) where their 

research preliminary results showed that wavelet transform is worthy of further investigation 

as a signal analysis tool for application of ECG and ECG’s compression.  It was discovered 

that wavelet transform offered an extremely efficient means of compressing raw ECG data.  

The wavelet transform was obtained directly by using the dilated sampled mother wavelets 

with the data using the discrete version of the wavelet transform. 

 

Crowe et al research [4] showed how apparent wavelet transform was formed graphically for 

the ECG signals due to its periodic pattern where heart muscle contracts and beats in a 

rhythmical manner.  It showed that by applying wavelet transform to ECG signals which is 

periodic in nature, you are able to extract quite easily useful information in terms of features 

and patterns of the original signal.  However, with EMG signals which are random and non-
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stationary in nature, applying wavelet analysis is much harder in terms of recognising pattern 

and features of the raw signal. 

 

Sparto et al [3] used wavelet transform for their research on EMG signals of fatigued back 

muscles which is a risk factor for a commonly known complaint such as lower back pain.  

They discussed how Fourier transform was successfully being used to measure the level of 

muscular fatigue in terms of analysing frequency contents but with the assumption of EMG 

signals being stationary, which is not in nature [2, 3].  The wavelet transform is a novel 

technique for analysing non-stationary signals that has only recently been applied to the study 

of EMG.  Their main objective is also to develop techniques, using the wavelet transform to 

analyse the EMG for quantification of the back muscle fatigue during dynamic repetitive 

working conditions which produce a non-stationary EMG signal. 

 

Sparto et al [3] described and showed comparison of the frequency spectrum of the fatigue 

signals using both Fast Fourier transform and wavelet transform.  The traditional Fourier 

transform could not detect temporal patterns of frequency changes as there is no information 

gained describing when the frequency components dominate the signal.  Although a practical 

way to overcome this lack of temporal or time domain information is to decrease the 

sampling time, as it is called Short Time Fourier Transform (STFT), the common problem 

due to this technique is that it suffers from poor frequency resolution.  Fatigue during 

sustained isometric contractions consistently demonstrated a shift of the frequency content of 

the signal from higher to lower frequencies using STFT.  Hence the assumptions of 

stationarity of the EMG signals may be violated in most practical applications, due to 

variation in the tension, length and velocity of the muscle when dynamic work is performed. 

 

Sparto et al [3] demonstrated that wavelet transform could eliminate this problem.  Wavelet 

transform maps signals using a set of basis functions that can be designed depending on the 

needs of the analysis.  Morlet mother wavelet was used for scaling and translating version 

with the original signal.  The complete set of wavelet coefficients constituted the wavelet 

domain representation of the original signal.  Thus the wavelet transform expresses a signal 

simultaneously in both time and frequency domains where its time-frequency transformations 

can be distinguished when changes in the frequency content occurred. 
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Sparto’s experimental investigation involved subjects standing in a frame and pushing against 

a force sensor at 70% of their maximal voluntary contraction (MVC) strength, while 

extending their trunk from a forward posture of 35 degrees to upright standing, at a constant 

velocity of 15 degrees per second.  The subject was able to control the amount of force that 

he was generating by obtaining feedback from a computer monitor.  Ten repetitions per 

minute were performed and the pacing was controlled by the sound generated from the 

computer. 

 

Using a bipolar surface electrode, the EMG signals were preamplified with a gain of 1000, 

low-pass filtered at 1000 Hz and also amplified more to obtain peak-to-peak voltage of 5 V 

during MVC.  The signal was then digitised at 1536 Hz using 12-bit, ± 10 V range, analogue-

to-digital board and stored on computer for subsequent analysis.  The data from 5 exertions at 

the beginning (0-30 sec), middle (75-105 sec) and end (150-180 sec) of the repetitive 

endurance test were carried for the wavelet analysis.  The wavelet decomposition of the EMG 

signal was performed using the Daubechies wavelet of order 4 within the Wavelet Toolbox in 

MATLAB.  The original signal and wavelet representation of the signal was at scales 1-9.  

Comparison was also being made for the EMG signals analysed using STFT.  The research 

ultimately will allow clinicians gain insight into working conditions that are likely to cause 

fatigue.  It was proposed that if back muscle fatigue can be documented using these tools, it 

may be possible to make recommendations for altering potentially risky work conditions.  

What this paper does not present is a user friendly technique in storing and using the data for 

interpretating the conditions read from the signal features, which will be another further very 

useful procedure that can be developed. 

 

A way of managing data of EMG signals to be used for diagnosis is through feature 

extraction and classification.  To build a form of database for an intelligent signal classifier, a 

technique called the Artificial Neural Network (ANN) is increasingly well known for this 

type of use and capable for applications such as biosignal classification and modelling. 

 

ANN used by Wang and Buchanan [25] was applied to the modelling of muscle activation 

dynamics.  They developed a neural network algorithm for the muscle activation and 

compared it with the actual EMG signals obtained from the joint moment of arm muscles, 

biceps and triceps.  The objective was to predict activation muscle from EMG signals and 

their relationship.  The outcome showed that the predicted result of the ANN is similar to 
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actual muscle activation from the EMG signals measured in the experiment.  Thus, the ANN 

model can be used to represent the relationship between EMG signals and joint moments 

well.  EMG signal is correlated with muscle activity where the larger the EMG signal, the 

more activated the muscle is. 

 

The introduction of ANN brought new possibilities in the development of adaptive methods 

of structures recognition and solving complex classification problems.  Another application 

of ANN in classification through signal pattern recognition was used in the research of EEG 

artifact removal by Ksiezyk et al [26] for sleep assessment.  The recognition and elimination 

of artifacts in EEG signal is an essential to the development of practical systems of EEG 

analysis.  The artifacts or unwanted aspects in the raw EEG signal are such as physiological 

artifact of body movement and respiration and other electrical noise.  The method of ANN 

identifying these artifacts is by certain mapping from the set of the realisation examples.  

However, performance of ANN depends heavily on input parameters where its outcome can 

be validated for different input parameter sets [26]. 

 

Birkedal et al [27] made a pattern recognition system with ANN which was able to 

distinguish five intentions of movement, sit down, stand up, stand quiet, walk right and walk 

left from subjects suffering from spinal-cord injury.  This research aimed to regain voluntary 

control of their paralysed muscle in the lower limb by means of functional electrical 

stimulation using the correlation between the paralysed limb and the contraction of another 

non-paralysed limb from the upper body.  The EMG obtained from the upper body movement 

was employed as a control signal to enable paralysed subjects to move again using the signal 

processing method.  The EMG signal was processed and analysed using STFT and 

Continuous Wavelet Transform (CWT).  ANN is used to classify a given intention of 

movement on the basis of the selecting features.  The neural network was trained to take two 

approaches for the EMG data [27].  The first approach was to extract features at the moment 

of movement intention defined by the change of the upper limbs angles.  Two thirds of the 

files were used to train the neural network and the last third to validate it.  The second 

approach consisted of an extraction of several features, before, during and after the period 

which define the intention of movement.  The system is also trained to recognise the non-

intention of movement [27]. 
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Other applications of ANN in the field of biosignal classification were shown in the works by 

Englehart et al [1], Ferguson and Dunlop [28] and Moshou et al [29].  Englehart et al [1] used 

neural networks Linear Discriminant Analysis (LDA) for statistical use and Multilayer 

Perceptron (MLP) for neural classifier that evaluated the performance of each form of signal 

representation involved, which were STFT, wavelet transform and WPT.  Their emphasis of 

research was the signal representation that most dramatically affects the classification 

performance by LDA and MLP.  Although this was the case, the performance of the feature 

extraction and the dimensionality reduction was dependent upon the capabilities of the neural 

network used. 

 

 

1.4 Objectives and Methodology 
 

This research is part of an ongoing research to develop an intelligent and user friendly EMG 

classifier.  This research aims to investigate the possibility of using wavelet analysis to 

extract features from muscle contractions and to use ANN in training and validation as a base 

methodology for classifying and recognising patterns for normal muscle signals. 

 

In this research project, wavelet analysis techniques are used to extract features from muscle 

fibre firing patterns and electrophysiological characteristics of muscle during varying levels 

of force production.  By collecting data from healthy or normal subjects, a normative 

database is built for normal muscle signal where ultimately the ANN classifier would 

differentiate the abnormal from the normal muscle.  It is important to develop this normative 

database with respect to differential diagnosis of neurological and musculoskeletal disorders.  

Existing research evidence clearly indicates that when any type of neurological or muscle 

injury occurs the recruitment and electrophysiology of the muscle is altered [30-32]. 

 

In the future, the normative database of different muscle disorders can be produced for a 

further research project where they can be used as a diagnostic tool for determining whether 

an individual may have a specific neurological and, or musculoskeletal disorder.  The 

advantage of such technique is that it is non-invasive and relatively inexpensive.  This should 

have implications to the wider community in terms of aiding the early diagnosis of 

neurological and musculoskeletal disorders.  Such technique can also be used to monitor the 
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progression or regression and the effect of rehabilitation on musculoskeletal [33] and 

neurological disorders [34].  

 

The research thus aims to construct a database of processed SEMG signals that have had their 

features extracted by wavelet analysis, a technique which has become more common in signal 

processing [16].  This allows an ANN to be developed for classifying and validating signal 

features where ultimately an intelligent signal classifier can be built.  A commercially available 

database based on this type of signal processing, however, is not available at this stage. An 

established database will become very useful for further use and research in designing an EMG 

signal analyser to compare and diagnose normal or abnormal muscle. 

 

The aims of this research are: 

• To build a database by collecting SEMG signals from healthy subjects and extract 

features of the signals using the wavelet analysis technique. 

• To train and validate data using ANN for classification of normal muscle signals. 

 

The project comprises a number of different procedures such as program design and pre-

processing; signal collection, processing and analysis or features extraction; database 

development, classification and validation using ANN. 

 

To achieve these aims, the outline of the procedures are grouped into two stages which are 

the signal processing by wavelet analysis and signal classification by ANN. 

 

 

1.4.1 Signal Processing by Wavelet Analysis 

 

This stage of research is to conduct feature extraction of SEMG signals by building system 

programs to digitally process signals using the wavelet analysis technique.  This system 

program will be developed using LabVIEW along with the MATLAB for software validation 

purposes.  The objectives in this part of research are as follows: 
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1. To develop system programs using LabVIEW which is to build programs known as ‘virtual 

instruments’.  These programs are to be tested and validated using known sample signals 

and comparing them with results by MATLAB programs, which are built separately.  

Five programs are designed to analyse EMG signals using the following schemes or 

techniques: 

 

• Fast Fourier Transform (FFT) which shows the frequency spectrum and power 

spectrum of the EMG signals. 

 

• Short Time Fourier Transform (STFT) which shows the windowed frequency 

spectrum in terms of time.  This is presented in a spectrogram. 

 

• Continuous Wavelet Transform (CWT) using the Morlet mother wavelet.  The 

output is presented in a scalogram showing the scales of the wavelet in time 

domain.  From this, suitable scales which give valuable information for 

determining RMS values of the signal, mean and median frequencies from the 

average power spectrum were selected. 

 

• Discrete Wavelet Transform (DWT) using the most suitable mother wavelet 

Daubechies (db05) [35].  This program shows the multiresolution analysis of the 

wavelet transform at a particular scale.  Prior to the execution of discrete wavelet 

transform analysis, the most suitable wavelet was selected by statistical analysis of 

a decomposed and reconstructed EMG sample signal [35]. 

 

• Discrete Wavelet Packet Transform (DWPT) using the mother wavelet 

Daubechies (db05).  This program shows the signal decomposed down to level 6 

on the low-pass filter tree within the time domain. 

 

From five of these programs, the one that gives the most satisfactory results for signal 

classification in ANN will be selected. 
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2. To collect a sufficient number of raw SEMG signals from real subjects with healthy or 

normal extensor knee muscles, the vastus lateralis and the vastus medialis.  The participants 

are to undergo Maximum Voluntary Isometric Contraction (MVIC) tests. 

 

3. To process and analyse signals by extracting their features using a program with the most 

suitable technique selected in step 1, which in this case is the CWT.  The feature parameters 

obtained are the root mean square (RMS) values of the signals, the mean and median 

frequencies from the average power spectrum. 

 

 

1.4.2 Signal Classification by Artificial Neural Network 

 

The objectives of this stage of research are as follows: 

 

1. To feed the extracted features of the SEMG signal data into the MATLAB’s neural 

network toolbox in order to train the ANN to recognise the features of normal muscle 

signal pattern. 

 

2. To validate the ANN signal classifier by testing it with a number of untrained normal 

muscle signal data. 

 

3. Analysing and interpreting results from the tests and validations upon performance of all 

the developed methods involved. 

 

Therefore apart from the general background, literature review and aim of this research as 

described so far in chapter 1, the following chapters are structured accordingly in line with 

the objectives.  Chapter 2 Digital Signal Processing describes the principles of digital signal 

processing for biosignals which will include brief theories of Fast Fourier Transform and 

wavelet transform analysis.  This chapter also explains the software development 

environment involved for the use of this research.  Chapter 3 Data Acquisition and SEMG 

Signal Processing covers the practical procedures for data collection and the final software 

design for data acquisition, signal processing for analysis and feature extractions.  Chapter 4 

SEMG Signal Classification using Artificial Neural Network describes the development and 
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operation of ANN for signal training and validation.  Chapter 5 Discussion and Conclusion 

discusses the pros and cons of the results and techniques from chapter 4 and 5 along with the 

conclusions and recommendations for future work in this field of research.  
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Chapter 2 

Digital Signal Processing Techniques 
 

 

2.1 Introduction 
 

This chapter covers the principles of some digital signal processing techniques as applied to 

biosignals, and in particular the myoelectric EMG signals.  Biosignal will be defined and its 

characteristics are described.  The signal processing techniques as applied to EMG signal are 

then outlined and important aspects will be explained in more details.  Moreover, this chapter 

presents specific brief theoretical principles underlying the feature extraction methods used, 

which are Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT), Continuous 

Wavelet Transform (CWT), Discrete Wavelet Transform (DWT) and Discrete Wavelet 

Packet Transform (DWPT). 

 

 

2.1.1 Biosignals: Definitions and Classifications 

 

In general, biosignals can be classified as continuous or discrete [36, 37].  Continuous signals 

are signals that are defined at any point in time which are processed by Fourier and Laplace 

transforms and other analogue signal processing methods.  They are refined by analogue 

systems such as filters, amplifiers and computers.  Discrete signals are only defined at 

discrete points in time which can be thought of as the results of continuous signals that have 

been time sampled and amplitude quantised.  This means that a certain time is picked and the 

amplitude at that time is measured.  Discrete signals are processed by methods such as the 

Discrete Fourier Transform and treated by digital systems such as digital computers [36].  

Through the use the equipment and software in this project, the process of the EMG signal 

utilised discrete signals since the nature of signals obtained are time sampled rather than 

continuous. 
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Figure 2.1  Signal classification adapted from Cohen, 1986: textbook of Biomedical signal 
Processing: Volume 1 Time and Frequency Domain Analysis, Boca Raton, FL, CRC Press, 

1986 [36]. 

 

Biosignals can also be classified as deterministic or random.  Deterministic signals can be 

expressed by explicit mathematical relationships whereas random signals cannot be exactly 

expressed.  Deterministic and random signals can be further classified as drawn in Figure 2.1 

which is adapted from Cohen, 1986 [36].  A signal is called to be stationary when the signal 

properties do not change much over time.  Biosignals such as SEMG signals are random and 

contain numerous non-stationary or transitory characteristics: drift, trends, abrupt changes, 

and beginnings and ends of events [38]. 

 

 

2.1.2 Signal Processing: Data Acquisition 

 

Generally, the processing of SEMG signals can be divided into three stages process [39].  

The first step is data acquisition that includes amplification, analogue to digital conversion 

and signal conditioning.  Secondly, a signal processing stage to extract desired features from 

the biosignal, and thirdly, a feature selection stage by retaining information that is important 
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for the later application such as classification of signals using an Artificial Neural Network 

(ANN).  The schematic diagram of the stages is shown in Figure 2.2.  In this research case, 

the signal features were selected in terms of the root mean square values (RMS) of the 

signals, mean and median frequencies from the average power spectrum for the purpose of 

training and validating ANN at the later stage. 

 

Data acquisition involves the recording of the bioelectric activity, analogue filtering and 

analogue-to-digital conversion [37].  A signal is first detected at the intended biological site 

by using surface electrodes as sensors.  The electrodes also provide interface between an 

electrical recording device and the biological system.  After being detected by the electrode, 

the signal is usually amplified, filtered and converted to a digital signal.  One important step 

is the analogue to digital conversion step or A/D step.  An A/D converter measures an input 

analogue signal, then converts and expresses it as numerical depiction of the original signal.  

A/D converters essentially convert a continuous analogue signal into discrete or digital signal 

[37]. 

 

 

 
Figure 2.2  Schematic of signal processing stages. 
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Figure 2.3  (a) A typical analogue EMG signal detected by the DE-2.1 electrode. (b) The 
digital sequence resulting from sampling the signal in (a) at 2 kHz (every 0.5 ms).  Sourced 

from De Luca, G., Fundamental Concepts in EMG Signal Acquisition, Delsys Inc, 2003, 
Figure 2, p2 [17]. 

 

In A/D conversion, a process called digital sampling is executed where an example of this is 

depicted in Figure 2.3a where a typical analogue EMG signal or a sample Motor Unit Action 

Potential (MUAP) was obtained with Delsys Inc. DE-2.1 surface electrode [17].  During A/D 

conversion, a sequence of numbers is generated to represent the amplitude of the analogue 

signal at a specific point in time.  The analogue signal is called to be sampled and the result 

of this number of sequence is called a digital signal as shown in Figure 2.3b [17]. 

 

An essential parameter involved in digital sampling is the sampling frequency which 

influences the accuracy in reconstructing the sampled signal.  Figure 2.3b used a sampling 

frequency of 2 kHz, which means signals are sampled at every 0.5 ms. 

 

Knowing the minimum acceptable sampling frequency is of critical importance in order to 

correctly reproduce the original analogue information.  The rule for this is known as Nyquist 

Theorem where sampling frequency has to be at no less than twice the frequency of the 

original sampled signal [17].  When sampling frequency is too low, the Nyquist Theorem is 

violated.  This leads to an incorrect reconstruction of the signal, typically referred to as 

aliasing.  Aliasing occurs when the original signal is undersampled as not enough points have 

been gathered to capture all the information correctly.  An example is shown in Figure 2.4 

(a) (b) 
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where its original signal is 1 Hz and sampling frequency is 1.67 Hz, reproducing a signal of 

only 0.33 Hz, a result of undersampling the original 1 Hz signal. 

 

Comparing with Figure 2.3, the sampling frequency of 2 kHz used is more than twice the 

typical usable frequency range of SEMG signals between 0 to 500 Hz [17].  The recreated 

signal in Figure 2.3(b) is sufficiently reproduced.  Figure 2.4 uses the sampling frequency of 

1.67 Hz which is less than twice its original signal of 1 Hz and hence does not reproduce a 

correct signal. 

 

Another important part in data acquisition is the amplification and signal conditioning which 

includes artifact elimination of the signals.  Amplification is needed because muscle signal is 

generally weak and only generates in the microvolt range, which is typically 10,000 times 

smaller than the voltage from a flashlight battery [39].  Since the SEMG signals are small, 

their measurement is also susceptible to interference from electrical equipment, such as lights 

or movement of cable that carry signals from the body to the measuring instrument.  Where 

signal gathering requires the subjects to perform a full range of movement exercises, 

interference from movement of lead wires and electrodes can be a problem.  To eliminate 

these artifacts or ‘the unwanted’ interfered signal, typically a differential amplifier is used as 

first stage pre-amplification at the electrode site which effectively cancels the ambient 

electrical noise while amplifying the small physiological signal. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4  (a) Sampling a 1 V, 1 Hz sinusoidal signal at 1.67 Hz. (b) Reconstructing the 
sinusoid sampled at 1.67 Hz yields a signal at 0.33 Hz (interpolated).  The original 1Hz 

signal is undersampled.  Sourced from De Luca, G., Fundamental Concepts in EMG Signal 
Acquisition, Delsys Inc, 2003, Figure 4, p5 [17]. 

(a) (b) 

Original Signal 
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In the amplification process, only the signal generated by the muscle must be amplified and 

not other electrical noise such as ambient 50/60 Hz emissions from other AC equipment [39, 

40].  In the past, it was common to remove this electrical noise by using a sharp notch filter 

[40], but there are problems with notch filtering because EMG has large signal components at 

50/60 Hz and neighbouring frequencies.  The result of notch filtering is the loss of essential 

EMG signal information making reliable SEMG measurement a challenge, so notch filtering 

should be avoided as a general rule [40].  Hence, to reduce electrical noise and gain a quality 

EMG signal, preamplifier is placed as near as possible to the electrode site at the pre-

amplification or the first stage of amplification process [40].  Additional amplification stages 

may follow to refine and condition signals. 

 

After the signal is digitised, conditioned and amplified, a digital signal processor (DSP) is 

used to extract the feature of the EMG that is proportional to overall muscle tension [39].  

This is the second step of the signal processing which is described in the following section. 

 

 

2.1.3 Signal Processing: Feature Extraction (Analysis Schemes) 

 

The second step is the actual processing, or signal manipulation and evaluation.  In this step, 

processing takes place to extract relevant information from the biosignal and present it to the 

user.  The extracted feature is basically the energy envelope of the raw EMG waveform [39]. 

The energy envelope is the average over time of the magnitude of the EMG voltage.  During 

feature extraction, the signal is modified and changed until the desired output is reached [36].   

 

The EMG signal is typically analysed using a variable related to the size or amplitude of the 

signal [7].  When the user is interested in the amplitude of the signal, the signal is frequently 

rectified and averaged in some format or variable to indicate EMG amplitude.  Rectified, 

averaged EMG, integrated EMG, and linear envelope displays can all be used to display the 

amplitude of the EMG signal.  The second category of analysis for the EMG signal is 

frequency analysis, including analysis of zero crossings, spectral analysis, numerous time-

frequency algorithms and many other techniques [7]. 
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There are a range of EMG analysis schemes available for feature extraction.  In the literature, 

a number of digital signal processing methods for analysis schemes have been applied to the 

SEMG signals but the most popular methods include Fast Fourier Transform (FFT), Discrete 

Wavelet Transform (DWT) and Discrete Wavelet Packet Transform (DWPT) [1-4, 29, 41].  

The analysis techniques in which the signal is modified or processed for feature extraction are 

the ones which become of importance in this research.  Brief theories of specific techniques 

selected for this research are presented in the sections 2.2 and 2.3 which include FFT, Short 

Time Fourier Transform (STFT), and wavelet transform analysis including DWT, DWPT and 

Continuous Wavelet Transform (CWT). 

 

 

2.1.4 Signal Processing: Feature Selection 

 

The third stage of signal processing is the feature selection.  In general, the role of this stage 

is to retain information that is important for application at the later stage and discarding that 

which is irrelevant.  Depending on what types of application, the aim of feature selection 

stage is to provide more efficiency by having certain variables or parameters for meeting the 

end purpose of signal processing.  Englehart et al [1] referred to it as the dimensionality 

reduction where they included feature selection and projection to feed into a signal classifier.  

Their work on feature selection involved methods attempting to determine the best subset of 

the original feature set, and feature projection to determine the best combination of the 

original features.  Their overall aim for dimensionality reduction is to have classifier a with 

fewer inputs and fewer adaptive parameters which should lead to a classifier with better 

generalisation properties [1]. 

 

In this research, the signal features were selected in terms of the root mean square (RMS) 

value of its electrical potential and mean and median frequencies of the power spectrum.  

These parameters will be discussed theoretically in the last section of this chapter.  The 

database of the selected features were developed and recorded with Microsoft Access 

program. 
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2.2 Fourier Transform Analysis 
 

Fourier transform is one of the most widely used signal analysis tools applicable to a variety 

of fields such as spectral analysis, digital filtering, applied mechanics, acoustics, medical 

imaging, modal analysis, numerical analysis, seismography, instrumentation and 

communications [42].  Fourier analysis is a mathematical technique for transforming a signal 

from time domain to frequency domain by breaking down a signal into constituent sinusoids 

of different frequencies.  Fourier transform is a generalisation of the Fourier series where 

function is represented by the sum of sines and cosines.  Instead, Fourier transform uses 

exponentials and complex numbers. 

 

The Fourier transform of input signal x(t) is defined as the following notation in equation 

(2.1) where ω is the angular frequency where fπω 2= with f is the input frequency, x(t) is the 

time domain signal and F(ω) is its Fourier transform represented in frequency domain. 

 dtetxF tj∫
∞

∞−

−=
 

)()( ωω  (2.1) 

which is the sum over all time of the signal x(t) multiplied by complex exponential [38]. 

 

Equation (2.1) that expresses Fourier transform calculates the frequency, amplitude and phase 

of each sine wave needed to make up any given signal.  It is a linear transform from time to 

frequency domains and can be used to analyse the spectral component of a signal. 

 

 

2.2.1 Fast Fourier Transform (FFT) 

 

The most common method for determining the frequency spectrum of the SEMG signal is the 

Fast Fourier Transform (FFT) [43].  Since a digital computer only works with discrete data, a 

technique called Discrete Fourier Transform (DFT) is used.  FFT is a practical application 

name employed for the DFT that maps discrete-time sequences into discrete-frequency 

representation given by equation (2.2) [42]. 
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where x[n] is the input sequence, F(k) is the DFT, 2πk is the angular frequency of input 

sequence frequency k and N is the number of samples in both discrete-time and the discrete-

frequency domains. 

 

Using the FFT, the EMG signal can be mapped from the time domain to the frequency 

domain.  To illustrate this point, a sample SEMG signal obtained from 50% Maximum 

Voluntary Isometric Contraction (MVIC) of vastus lateralis, an extensor knee muscle 

sampled at 2048 Hz is depicted in Figure 2.5a.  The frequency spectrum resulted from FFT is 

demonstrated in Figure 2.5b.  It can be seen that the signal is random in characteristics with 

dominant components between 50-75 Hz.  However, there is no information describing when 

each of the frequency components dominates the signal. 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2.5  (a) A SEMG signal obtained from the vastus lateralis muscle at 50% Maximum 
Voluntary Isometric Contraction (MVIC).  (b) Fourier transform of signal in (a) showing the 

frequency spectrum of signal over magnitudes in peak-to-peak voltage. 
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The Fourier transform of a pulse creates a unique representation of a periodic signal; the 

narrower the pulse, the higher the frequency, the broader its spectrum.  Any periodic 

waveform can be synthesized by summation of sinusoids with suitable phase and amplitude 

relationships and any pulse can be expressed as continuous, double-sided distribution of 

spectral components.  Each component of a complex wave is an integer multiple of the 

original wave. 

 

For many signals, Fourier analysis is extremely useful because the signal's frequency content 

is of great importance.  By using FFT, the frequency spectrum of any signals, including 

SEMG, are clarified and recognised by breaking down the signal into its corresponding 

sinusoidal of different frequencies.  However, FFT has a serious drawback.  In transforming 

to the frequency domain, signal is assumed to be stationary, hence time information is lost.  

When looking at a Fourier transform of a signal, it is impossible to tell when a particular 

frequency content of the signal took place in time [3, 4, 38].  For signal properties which do 

not change much over time such as a stationary signal, this drawback is not significant.  

However, many biomedical signals contain numerous non-stationary or transitory 

characteristics: drift, trends, abrupt changes, and beginnings and ends of events.  These 

characteristics are often the most important part of the signal, and Fourier analysis is not 

suited to detecting them.  Wavelet analysis is becoming more common in the digital signal 

processing method for analysing SEMG signals since it preserves the time domain of the 

signal [38]. 

 

An example of work by Sparto [2, 3] showed Fourier transform was successfully being used 

to measure the level of muscular fatigue in terms of analysing frequency contents but with the 

limitation of having required or assume the EMG signals to be stationary, which is not in 

nature. 

 

 

2.2.2 Short Time Fourier Transform (STFT) 

 

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier transform to 

analyse only a small section of the signal at a time using a technique called windowing the 

signal [38].  Gabor's adaptation, called the Short-Time Fourier Transform (STFT), maps a 
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signal into a two-dimensional function of time and frequency. The STFT represents a useful 

compromise between the time- and frequency-based views of a signal.  It provides some 

information relating to ‘when’ and ‘at’ what frequencies a signal event occurs [38]. 

 

However, this information is obtained with limited precision, and that precision is determined 

by the size of the window.  While the STFT compromise between time-frequency based can 

be useful, the drawback is that once a particular size for the time window is selected, that 

window is the same for all frequencies.  Many signals require a more flexible approach in 

which the window size can be varied to more accurately determine either time or frequency.  

This limitation can also be addressed by wavelet transform analysis.  Table 2.1 shows the 

quality of resolutions that depend on the window size [44].  In general, a narrow window 

gives good time resolution but poor frequency resolution and a wide window results in poor 

time resolution but good frequency resolution. 

 

Table 2.1 Time and frequency resolution by window width. 

Narrow Window Good time resolution Poor frequency resolution 

Wide Window Poor time resolution Good frequency resolution 

 

The cause of this condition is due to the time and frequency which are dependent according 

to the Heisenberg uncertainty principle [45], which states that the product of the standard 

deviation in time and frequency is limited by: 

 
2
1

≥∆∆ tω   (2.3) 

This means that decreasing the deviation in frequency or increasing the resolution must result 

in an increase in the deviation in time or decrease in resolution and vice versa.  This is the 

fundamental weakness of the STFT.  The boundary of the Heisenberg Uncertainty Principle 

is reached if a Gaussian window is used.  Another serious drawback of STFT is that it also 

assumes signal stationarity within the window size, hence not suitable for processing 

biomedical signals which normally are non-stationary in nature [2]. 
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The concept of STFT is simply by multiplying the time domain signal x(t) which is to be 

analysed, with an analysis window )( τγ −∗ t  where τ is the time delay and then compute the 

Fourier transform of the windowed signal.  This is expressed as in the equation (2.4) [46]. 

 ∫
∞

∞−

−−∗=
 

)()(),( dtettxF tj
x

ωγ τγωτ  (2.4) 

where ),( ωτγ
xF  is the STFT of time domain signal x(t), ω is the angular frequency where 

fπω 2= with f is the input frequency, ∗γ  is the window and τ is the time delay.  The STFT 

of a discrete-time signal x[n] is obtained by replacing the integration in equation (2.4) by 

summation defined in equation (2.5) [46]. 

 ∑ −−∗=
n

njj
x emNnnxemF ωωγ γ )(][),(  (2.5) 

Frequency ω is normalised to the sampling frequency where the sampling rate is higher than 

the rate used for calculating the spectrum.  The short-time spectrum is a function of the 

discrete parameter m and the continuous parameter ω where in practice the discrete 

frequencies used are 

 Mkk /2πω = ,     k=0,…,M-1 (2.6) 

thus  

 ∑ −−∗=
n

Mkjj
x emNnnxemF /2)(][),( πωγ γ  (2.7) 

The squared magnitude of the STFT, 
2

),( ωτγ
xF is called spectrogram illustrating the energy 

distribution along the frequency direction at a given time [46, 47].  An example of a signal 

processed by STFT is illustrated in Figure 2.6.  Similarly, Figure 2.6a, like in Figure 2.5a, is a 

sample SEMG signal obtained from 50% MVIC of vastus lateralis, an extensor knee muscle 

sampled at 2048 Hz.  Figure 2.6b is the spectrogram that demonstrates the results of STFT of 

the signal in Figure 2.6a.  The window length selected is 0.5 seconds with an overlapping of 

0.25 seconds and the brighter lines in the spectrogram represent the amplitude of the 

frequencies that dominate within the window length appointed.  With the windowing, it 

clearly shows the time of when the frequency occurs.  Between the duration of 0.25-0.50 

seconds from the initial contraction, the dominant frequency is 75 Hz.  Also between the 

duration of 1.0-1.25 seconds and 1.25-1.50 seconds, the dominant frequencies are between 

50-75 Hz. 
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(b) 

Figure 2.6  (a) A SEMG signal obtained from the vastus lateralis muscle at 50% MVIC.  (b) 
Results of STFT showing spectrogram of the frequency spectrum of signal with time of 

occurrence. 

 

 

2.3 Wavelet Transform Analysis 
 

The extra feature obtained from the wavelet analysis is the presence of a time frame or 

frequency-time domain of when precisely the signals are acquired.  Therefore, instantaneous 

property information of the signals is available for the analysing purposes.  Considering the 

STFT, the time-frequency resolution depends on only the size of the window.  A short 

window leads to a high resolution in time but a low-frequency resolution.  This resolution 

problem suggests that there are needs to use variable lengths in analysing windows with short 

ones for high frequencies and long ones for low frequencies [45].  Wavelet transform is the 

(a) 
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method which is able to accommodate this with the use of related time-scale analysis, thus 

providing a flexible time-frequency resolution.  The wavelet analysis does not use a time-

frequency region, but rather a time-scale region [38]. 

 

The basic idea underlying wavelet analysis is expressing any general signal as an infinite 

series or linear combination set of wavelet functions.  Each element in the wavelet set is 

constructed from one prototype of original window, called the mother wavelet [45, 48].  This 

set of function can also be called a wavelet family obtained by manipulating the mother 

wavelet in two ways.  One way is to move the mother wavelet to various locations on the 

signal called translating or shifting.  Another way is to dilate or compress the mother wavelet, 

called scaling.  Translation and scaling are used to convert the frequency of the mother 

wavelet into daughter wavelets. 

 

Dilating the mother wavelet produces a low frequency daughter wavelet that maps onto a 

lower frequency region of the signal [38, 49].  The dilated or wider wavelets represent high 

scale numbers in wavelet analysis.  On the other hand, compressing or squeezing the mother 

wavelet produces a high frequency daughter wavelet that maps onto a higher frequency 

region of the signal.  The narrow or squeezed wavelets represent lower scale numbers in 

wavelet analysis.  These daughters are also time-varying signals superimposed on each other 

in synchronisation.  Thus, wavelet analysis allows the use of long time intervals for more 

precise low-frequency information, and shorter regions for high-frequency information [38, 

49]. 

 

Figure 2.7 showed samples of Daubechies 05 (db05) mother wavelet with (a) as the original 

wavelets, (b) as the dilated or stretched wavelet at high scale number mapping onto lower 

frequency signal range and (c) as the compressed wavelets at low scale number mapping onto 

higher frequency signal range. 

 

Wavelet transform uses basis function or mother wavelet that have time width adapted to 

each frequency band [38].  The wavelet is a smooth, oscillating function showing a bandpass 

character with localisation both in time and in frequency.  Wavelets are used to transform the 

signal under investigation into time-scale representation which presents the signal 

information in a more useful form.  The idea of relative time-frequency resolution allows the 

time-scale component to be considered as related by a time translation and a time stretch.  
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(a) Mother wavelet Daubechies 05 

(b) Wavelet stretched for low frequency 
(High scale) 

(c) Wavelet compressed for high frequency 
(Low scale) 

This is unlike the STFT that adopts the fixed time-frequency resolution, a time translation 

and a frequency shift [38]. 

 

Wavelet transform can also be used to perform multiresolution signal decomposition.  This 

process is considered sub-band coding technique which offers data compression and can be 

implemented using efficient pyramidal algorithms.  Results of a particular research in 

compression and reconstruction of ECG data indicated that wavelet transform is well suited 

and capable of this task [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7  (a) Original mother wavelet of Daubechies 05 (db05).  (b) Dilated mother 
wavelet.   (c) Compressed mother wavelet. 
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Wavelet analysis has the advantages of having the ability to localise singularities more 

accurately in time domain [2-4, 38, 41, 48-50].  It produces near perfect reconstruction from 

the transform coefficients without the requirement of over sampling.  This fact means wavelet 

transform has better time resolution at varied and higher scales than STFT which has 

identical resolution throughout.  It also gives efficient implementation by pyramidal 

algorithms and that the scaling operation by dilation makes it a suitable method for the 

investigation of fractals [2-4, 38, 41, 48-50]. 

 

The mathematical expression of a wavelet family which consists of members or daughter 

wavelets, ψa,τ is obtained by scaling and time shifting of the mother wavelet ψ(t) defined in 

equation (2.8) [45]. 

 ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

t
a

ta
τψψ τ

1)(,  (2.8) 

where +ℜ∈a  represent scale parameter, ℜ∈τ  represent the translation parameter.  When a 

becomes large, the basis function ψa,τ becomes a stretched version of the prototype, which 

emphasises the low-frequency components.  A small a contracts the basis function ψa,τ and 

stresses the high-frequency components.  However, the shape of the basis function will 

always remain unchanged [45]. 

 

Since ψ(t) can be implemented as a bandpass filter whose centre frequency can change, at a 

given scale, the filter yields wider or narrower frequency-response changes depending on the 

centre’s frequency.  This time-scale expression has an equivalent time-frequency expression.  

Since wavelets are well localised around a non-zero frequency f0, at a scale a=1 (i.e. the 

mother wavelet), there is an inversely proportional relationship between scale and frequency, 

given by ffa /0= .  Note that the factor a/1  in equation (2.8) is introduced to guarantee 

energy preservation, that is to normalise the wavelet so that it has unit energy [45]. 

 

Basis wavelet chosen can be tailored to suit the application as along as it meets certain 

mathematical criteria.  Crowe et al [4] used the types of function that have been found to be 

suitable for certain applications.  Certain wavelets have the approximations to the ideal, while 

others are exact as when derived from the solutions of the dilation equation, which give the 
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perfect reconstruction without over sampling.  A commonly used wavelet is the Morlet 

wavelet, a complex modulated Gaussian written in equation (2.9) [49]. 

 2/2
4/1

2
0

1)( ttfj eet −= π

π
ψ  (2.9) 

4/1

1
π

 is the normalisation factor which ensures that the wavelet has unit energy.  tfje 02π is the 

complex sinusoidal waveform where f0 is the central frequency.  2/2te−  indicates the 

Gaussian bell curve and has a unit standard deviation and ‘confines’ the complex sinusoidal 

waveform.  The nature of )(tψ  illustrates that wavelets are oscillatory about a zero mean.  It 

is also time-limited due to the exponential component and as wavelet transforms localise 

events in time, the shifted versions of the Morlet mother wavelet are produced to reconstruct 

the original signal. 

 

There is several other different basis or mother wavelets.  Some of the common wavelets 

used in practice are Gaussian wave (first derivative of a Gaussian), Mexican hat (second 

derivative of a Gaussian), Haar and Daubechies.  Some of these wavelets such as Daubechies 

and Haar have several families of wavelets.  These families make different trade-offs between 

how compactly the basis functions are localised in space and how smooth or sharp they are.  

Within each family of wavelets, they are divided into wavelet subclasses distinguished by the 

number of coefficients and level of iteration [51]. 

 

The decomposition of the signal leads to a set of coefficients called wavelet coefficients.  

Wavelet transform decomposes a signal into multiple frequency bands which are the time and 

frequency coefficients.  From these, edges, noise and low frequency content can be identified.  

At high frequency, the wavelet transform is sharper in time.  At low frequency, it is sharper in 

frequency.  The signal can consequently be reconstructed as a linear combination of the 

wavelet functions weighted by the wavelet coefficients.  In order to obtain an accurate 

reconstruction of the signal, a sufficient number of coefficients have to be computed. 

 

Two types of wavelet transform can be defined, the continuous (CWT) and the discrete 

wavelet transform (DWT).  These are described in the following sections. 
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2.3.1 Continuous Wavelet Transform (CWT) 

 

Due to the computational condition, real-world data signals have been processed at discrete 

time to perform in discrete signals form.  Hence, unlike the DWT, the ‘continuous’ character 

in CWT is marked by its ability to operate at any scale and positions from that of the original 

signal up to some maximum scale determined by the application needed for detailed analysis 

with available computational power.  The translation of CWT is also ‘continuous’ during 

computation as the analysing wavelet is shifted smoothly over the full domain of the analysed 

function [38]. 

 

Similarly, the CWT is defined as the sum over all time of the signal multiplied by scaled, 

shifted versions of the wavelet function.  Given the input signal x(t), the CWT is defined in 

equation (2.10) [45, 52]. 

 ∫
∞

∞−

∗=
 

, )()(),( dtttxaCWT ax τψτ  (2.10) 

where a represents the scale parameter, τ represents the translation diameter of time shifting 

and the basis function ∗
τψ ,a  is obtained by scaling the mother wavelet )(tψ  at time τ and scale 

a.  The asterisk indicates that the complex conjugate of the wavelet function is used in the 

transform.  It is not needed when using Mexican hat wavelet as it is a real function. 

 

Since ∗
τψ ,a  is defined in (2.8) hence (2.10) also can be written in equation (2.11) [46]. 
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The CWT coefficient plots are precisely the time-scale view of the signal as referred to 

earlier. It is a different view of signal data from the time-frequency Fourier view, but it is not 

unrelated.  An example of signal analysed by CWT is depicted in Figure 2.8.  Figure 2.8a, 

like in Figure 2.5a, is a sample SEMG signal obtained from a similar source sampled at 2048 

Hz.  Figure 2.8b is the wavelet transform plot that demonstrates the results of CWT of the 

signal in Figure 2.8a.  The darker and brighter regions indicate larger amplitudes and stronger 

transforms for the corresponding scales and time of occurrence. 
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(b) 

Figure 2.8  (a) A SEMG signal obtained from the vastus lateralis muscle at 50% MVIC.  (b) 
Wavelet transform plot of results by CWT. 

 

Another type of displaying results of CWT is the scalogram which is the squared magnitude 

or power of the wavelet transform.  Equation 2.12 defines the calculation formula for the 

scalogram [46, 52]. 

 
2 
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Scalogram, like spectrogram, can be represented as images in which intensity is expressed by 

different shades of grey.  Figure 2.9(b) depicts scalogram for )(tx  of signal in Figure 2.9(a) 

sourced from the same subject as in Figure 2.5(a). 

(a) 
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(b) 

Figure 2.9  (a) An SEMG signal obtained from the vastus lateralis muscle at 50% MVIC.    
(b) Scalogram of results by CWT showing stronger transform at the brighter region. 

 

 

The scalogram, which is the power factor of a wavelet transform plot, gives better definitions 

on the dominant scale components and time localisation.  The scalogram contains the energy 

distribution along time and scale [45]. 

 

(a) 
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2.3.2 Discrete Wavelet Transform (DWT) 

 

Discrete Wavelet Transform (DWT) uses the multiresolution analysis (MRA) based on 

multirate filter banks.  The multiresolution theory was developed by Mallat, Daubechies and 

Meyer [38, 45, 46].  While the translation of CWT is carried out in a smooth continuous 

fashion, DWT is in discrete steps.  DWT applies to discrete sequences [ ]{ }Znnx ∈,  where 

time is also in discrete form. 

 

The wavelets used in DWT are discrete versions of the continuous wavelets used in CWT.  

Transforming wavelets to discrete signals partially depends on the chosen algorithm.  

However, it does not explicitly calculate a digitised version of mother wavelet )(tψ .  Rather, 

DWT acts as a bank of low-pass and high-pass filters that decompose a signal into multiple 

signal bands.  The decomposition process can be iterated, with successive approximations 

being decomposed in turn, so that one signal is broken down into many lower resolution 

components. This is called the wavelet decomposition tree as seen in Figure 2.10. 

 

The level of decomposition or analysis to show the frequency content of a signal by DWT is 

referred to as scale index.  Since the analysis process is iterative, in theory it can be continued 

indefinitely.  In reality, the decomposition can proceed only until the individual details 

consist of a single sample or pixel. 

 

The output from the low-pass filter G0(k) is a smoothed version of the input signal x[n] where 

the high-frequency components of the signal are removed.  The high-pass filter G1(k) 

removes the low frequency components and the result is a signal containing high-frequency 

component details of the input signal. 
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Figure 2.10  Wavelet decomposition tree or analysis filter bank using the DWT pyramid 
algorithm, where input signal is filtered recursively with pairs of low-pass G0(k) and high-

pass G1(k) filters.  The output from each filter is subjected to down-sampling by a factor of 2, 
denoted by ‘2↓’. 

 

In a digital operation, when the original signal x[n] passes through the two filters, the output 

emerges as two signals with the same number of data.  Thus the number of output data 

obtained will be twice as many as the number from the start.  In order to avoid this, down-

sampling the filtered sequences by a factor of two or on a dyadic grid 2j is performed.  An 

example to illustrate comparison of results with and without down-sampling is depicted in 

Figure 2.11. 
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Figure 2.11  (a) Analysis filter bank without down-sampling.  (b) Analysis filter bank with 
down-sampling by the factor of two. 

 

Multiresolution theory uses the ideas similar to sub-band decomposition and coding.  A 

signal is divided into a set of frequency bands, which are here introduced by sampling of 

dyadic grid.  This, however, means that the frequency domain is divided into octave 

subbands.  Such multiresolution analysis (MRA) derivation becomes clearer if a second 

function, called scaling function is put along side the wavelet functions. 

 

The mathematical derivation of scaling function for DWT is defined by having given a 

discrete signal [ ] Nnnx ,...,1; =  with its DWT up to level or scale index J.  This discrete 

signal x[n] maps the vector (x[1],…x[N]) to a set of N wavelet coefficients containing output 

sequence cJ,k and dj,k where j=1,2,..J, of the wavelet series approximation [45]. 

 

A scaling function )(tϕ  gives a set of approximation of the signal as a set of resolution levels 

j, by projecting it on a set of subspaces Vj.  The subspaces Vj are generated by dilation using 

low-pass filter G0(k) and translated versions of )(tϕ .  For a given level j, the subset Vj is 

spanned by the base of scaling functions defined in equation (2.13) [45]. 
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The approximation coefficients yield as cj,k which is the inner product of x and jkϕ  [45]. 
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Hence, by setting stretching factor equal to 2 or dyadic grid, scaling function )(tϕ  is 

corresponding to 

 ( )ktkGt
k
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where 
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The decomposition of a signal on the subspaces Vj or MRA is completely defined by the 

function )(tϕ  or equivalently by the sequence G0[n] from the low-pass filter function G0 from 

equation (2.16).  The signal is decomposed or band-filtered to the frequency subband, where 

the scale function always defines the low-frequency signal components. 

 

The complementary high-frequency band is, however, obtainable by the wavelet function.  

The wavelet function of DWT is defined by equation (2.17) [45] 
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where )(tψ  is the mother wavelet defined in equation (2.18) 

 ( )ktkGt
k

−= ∑ 2][2)( 1 ϕψ  (2.18) 

involving scale function )(tϕ  that include sequence G0[k] from the low-pass filter function 

and sequence G1[k] from the high-pass filter function.  Equivalently, sequence G1[n] is 

defined by equation (2.19).  
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The detail of output coefficients dj,k is computed as inner product of x(t) and wavelet function 

kj ,ψ  defined in equation (2.20). 
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and they correspond to the discrete wavelet transform as generated by the MRA: 
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The original signal, therefore, can be reconstructed by summing all the output detail 

coefficients dj,k and cJ,k or from the approximation of level J by the equation defined in (2.22). 

 ∑ ∑ ∑≤
+=

k Jj k jkkjJkkJ tdtctx )(~)(~)( ,, ψϕ  (2.22) 

where jkψ~  are the synthesis or dual frame wavelets and Jkϕ~  are the synthesis scale function 

[45].  In the case of the family of orthogonal wavelets, the same prototype is used to perform 

decomposition analysis and synthesis or reconstruction.  Other bases of wavelet families 

which are the biorthogonal wavelet bases have the synthesis wavelets different from the 

analysis wavelet [45]. 

 

An example of signal analysed by DWT with mother wavelet Daubechies 05 (db05) is 

illustrated in Figure 2.12.  Based on the signal decomposition and reconstruction, Daubechies 

05 was found to be the most suitable mother wavelet to process this particular type of signal 

[35].  Figure 2.12a, like in Figure 2.5a, is a sample SEMG signal obtained from a similar 

source sampled at rate 2048 Hz resulting 4096 number of samples for two seconds duration.  

Figure 2.12b is the signal output results of signal in Figure 2.5a filtered by filter banks using 

MRA.  Figure 2.12c shows the wavelet decomposition tree that makes up the signal in Figure 

2.12b.  The red dotted lines pointed from the region where the signal originated from in 

Figure 2.12(b). 
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Figure 2.12  (a) A SEMG signal obtained from the vastus lateralis muscle at 50% MVIC.   
(b) Output signal results of (a) filtered by filter banks using multiresolution analysis.  (c) 
Wavelet decomposition tree that makes up the output signal in (b).  The red dotted lines 

pointed from the region where the signal originated from in (b). 
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DWT separates and retains the signal features in one or a few sub-bands as shown in Figure 

2.12. The level of decomposition shown in Figure 2.12 is to scale index 4 and shows the sub-

banding obtained from a discrete signal that has 4096 samples.  This sub-banding of the 

DWT is variable, which means the feature of band varies such that the frequency resolution is 

proportional to the centre frequency.  This subbanding has been shown to be more 

appropriate for many physical signals, but the partition is still fixed. 

 

Since the DWT signal is being down-sampled at each successive frequency scale, it becomes 

a sparse transform at lower frequency scales [2].  Somehow it is believed that ‘Continuous’ 

Wavelet Transform can overcome this problem and gives an additional method of SEMG 

frequency analysis [2]. 

 

In DWT, for many signals the low-frequency content is the most important part as it gives the 

signal its identity.  The high-frequency content, on the other hand, adds the characteristics or 

details of the signal.  Hence, in MRA, the low-pass filters are used to extract the dominant 

component of low-frequency content.  Also in DWT, the terms ‘approximations’ and ‘details’ 

are referred to as the components that can be used to reconstruct the signal.  The 

approximations are the higher scale index J which is the low-frequency components of the 

signal.  The details are the low scale which is the high-frequency components. 

 

 

2.3.2a Discrete Wavelet Packet Transform (DWPT) 

 

The DWT uses MRA that splits input spectrum into approximation and a detail or in other 

words, the lower and higher bands, respectively [38, 45].  However, only the lower bands are 

then split into a second-level approximation and detail.  The process is repeated at each stage 

leaving the higher band or detail as one of the transform outputs.  This scheme is rather 

restricted.  The Discrete Wavelet Packet Transform (DWPT) method is a generalisation of 

wavelet decomposition that offers a richer range of possibilities for signal analysis.  DWPT 

includes both output of lower and higher band to be split into several bands at a time.  Unlike 

DWT, this yields more than 22 different ways to encode the signal.  DWPT can apply 

arbitrary band splitting and hence are not bound to octave frequency resolution.  [45].  The 

wavelet packet decomposition tree is illustrated in Figure 2.13. 
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Figure 2.13  Wavelet packet decomposition tree, where input signal is filtered recursively 
with pairs of low-pass G0(k) and high-pass G1(k) filters.  The output from both filter are 
subjected to down-sampling by a factor of 2, denoted by ‘2↓’ and further band-splitting. 

 

Similarly, like DWT, DWPT can also be approximated by digital filter banks.  As illustrated 

in Figure 2.13, approximation is achieved by filtering the signal repeatedly from the high-

pass filters to gain wavelet coefficients.  Each node has a set of coefficients that can be 

selected to further split or not.  There are many different methods used to decide the best 

subset of the bases family, and that can be adapted to suit a particular application.  For 

instance, wavelet packet analysis allows the signal ][nx  to be represented as 

dddcdccdcnx +++=][  where it is not possible with ordinary wavelet analysis of DWT. 
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The general DWPT are the functions expressed in equation (2.23) [45]. 

 )2(2)( 2/
,, ktWtW j

b
j

kbj −= −−      Nb∈ ,  Zkj ∈,  (2.23) 

 

Each function is determined by a scaling parameter j, a localisation parameter k and an 

oscillation parameter b.  The function )2( ktW j
b −−  is roughly centered at kj2 , has support 

of size j2≈ , and oscillates b≈  times.  The most suitable resolutions may be chosen for a 

particular signal, giving the option of an adaptive system. 

 

An example of signal analysed by DWPT is illustrated in Figure 2.14 showing a wavelet 

decomposition tree of input signal x[n] filtered by low and high pass filters with Daubechies 

05 (db05) as mother wavelet.  The output signals shown are c and d at level 1, and cc, cd, dc 

and dd at level 2.  Input signal x[n] is an SEMG signal obtained from the vastus lateralis 

muscle at 50% MVIC similarly as in Figure 2.5a sampled at rate 2048 Hz resulting in 4096 

number of samples for two second duration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14  Wavelet packet decomposition tree showing top signal diagram as input x[n] 
and below it are the output signals of level 1 and 2 filtered by low and high filters using 

DWPT.  Input signal x[n] an SEMG signal obtained from the vastus lateralis muscle at 50% 
MVIC. 

x[n] 

c d 

cc dc cd dd 
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In summary, the DWPT is a generalised multiresolution method that represents the entire 

family of subband coded decompositions.  From this family of bases, the best basis can be 

chosen to match the non-stationarity of the signal.  DWPT offers a more flexible method to 

arbitrary and adaptive select frequency resolution depending on the EMG application. 

 

 

2.4 Quantitative Measures in Feature Selection 
 

As described in section 2.1.2, the next stage after data acquisition and analysis is the feature 

selection.  In this research, the signal features were selected in terms of the root mean square 

(RMS) value of their electrical potential, mean and median frequencies from the average 

power spectrum.  These features are selected as they are commonly used in most EMG 

research using the conventional Fourier analysis method [15, 20, 53, 54].  The mean and 

median frequencies provided some basic information about the spectrum of the signal and its 

changes versus time [45]. 

 

The power spectrum may be presented in linear, logarithmic linear, or double logarithmic 

scales [54].  The power spectrum with linear scales is measured in volts square per hertz 

(V2/Hz).  The decibel (db) unit is used if the scale for power, energy, or amplitude is 

logarithmic.   

 

The power spectrum of the total signal reveals the component of the individual motor unit 

properties [54].  The area under the power spectral curve equals the signal power.  The 

frequency power spectral shows only smaller upward shifts in the frequency spectrum as the 

force of the contraction increases.  This increase occurs at low levels of tension, but after 

about 50% of the maximum voluntary contraction, the frequency values no longer increase.  

Hanning window is used in processing the power spectrum to obtain smoothness of the 

output spectrum avoiding spectral leakages and outliers. 

 

The two reliable measures of the power spectrum are the mean frequency and the median 

frequency.  The mean frequency is the average of all frequencies from the power spectrum 

[54].  The median frequency is that frequency having 50% of the frequency distribution on 
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each side.  The median frequency appears to be less sensitive to noise than the mean 

frequency.  The mean and median frequencies also provide some basic information about the 

spectrum of the signal and its changes versus time [45].  They coincide if the spectrum is 

symmetric with respect to its centre line, while their difference reflects spectral skewness. 

 

Equation (2.24) shows the formula of median frequency (MDF) [15]. 

 ωωωω dPdP
MDF

MDF

)()(
0
∫ ∫

∞

=  (2.24) 

where MDF is the median frequency in radian per second and )(ωP  is power spectrum of the 

signal.  Equation (2.25) shows the mean frequency (MNF) formula [15, 45]. 
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The RMS value of signal x(t) over the time interval 0-T is determined by computing equation 

(2.26) [55]. 

 ∫=
T

dttx
T

RMS
0

2 )(1  (2.26) 

 

An example of power spectrum plot of signal in Figure 2.15a is illustrated in Figure 2.15b.  

The blue dotted lines show the mean frequency of 92.22 Hz and median frequency of 73.35 

Hz.  Figure 2.15a is also obtained from a similar source as in Figure 2.5a.  Its RMS value is 

computed to be 0.0514 mV. 

 

In summary, this chapter has covered the information on the different stages of processing 

biosignals.  Starting from data acquisition, feature extraction analysis and selection, details on 

theoretical principles of each analysis schemes of FFT, STFT, CWT, DWT and DWPT were 

also discussed.  Sample signal analysed by each of these schemes were illustrated 

accordingly.  Lastly, the theoretical principles of the selected parameters or features were 

presented.  The next chapter covers the practical application of the principles described in this 

chapter.  Descriptive procedures of all of the methods used will be presented. 
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Figure 2.15  (a) A SEMG signal obtained from the vastus lateralis muscle at 50% MVIC.  (b) 
Power spectrum plot of signal in (a) showing the blue dotted lines of mean frequency of 92.22 

Hz and median frequency of 73.35 Hz. 

 

(a) 

(b) 
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Chapter 3 

Data Acquisition and SEMG Signal Processing 
 

 

3.1 Introduction 
 

This chapter covers the experimental investigation of the principles described in the previous 

chapter.  Descriptive procedures of all of the methods used will be presented.  Starting from 

data acquisition, feature extraction analysis and selection, details on how theoretical 

principles were applied for each analysis schemes of FFT, STFT, CWT, DWT and DWPT are 

also discussed. 

 

This chapter covers all aspects of the data processing involved in this research to select the 

features all of the data acquired.  This includes the pre-processing stage, an essential part to 

select which analysis scheme is the most suitable for processing SEMG signals.  The 

development concept of LabVIEW virtual instruments (VIs) for the data pre-processing and 

analysis are displayed with the details of the VI designs and MATLAB code programs in 

Appendix B1 to B10.  The final or the most suitable VI design selected with further 

processing function is displayed in Appendix D.  The descriptions of the procedures of 

physical preparation and setup for data collection and acquisition are also covered in this 

chapter.  Finally, the processing results of one typical signal are presented and discussed in 

terms of the selected feature parameters, which are the root mean square (RMS) value of the 

signals, mean and median frequencies from the average power spectrums of the signal using 

CWT analysis. 

 

By the end this chapter, the first objective stated in chapter 1.4 was achieved, which was to 

build a database by collecting SEMG signals from healthy subjects and extract features of the 

signals using the wavelet analysis technique.  These extracted features were processed in order 

to train and validate Artificial Neural Network (ANN) for classifying and recognising 

patterns for normal muscle signals, which is to fulfil the second objective covered in chapter 

4. 
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This is done by carrying out research into computer-aided diagnosis of SEMG signals analysis 

by building a program to digitally process the signals using the wavelet analysis technique.  To 

develop this program, pilot signals are required for this pre-processing stage.  Other general 

sampling rate settings and modes are also to be selected. 

 

To fulfil the first aim and objectives stated in chapters 1.4 and 1.4.1, the stages were laid out as 

follows. 

 

1. Software Development stage 

System programs known as ‘virtual instruments’ (VIs) were developed using 

LabVIEW.  These programs were tested and validated using a sample set of pilot 

signals and compared with results by MATLAB program, which was built separately.  

Five programs were designed to analyse EMG signal using the following techniques: 

 

• Fast Fourier Transform (FFT) which showed the frequency spectrum and power 

spectrum of the EMG signals. 

 

• Short Time Fourier Transform (STFT) which showed the windowed frequency 

spectrum in terms of time.  This is presented in a spectrogram. 

 

• Continuous Wavelet Transform (CWT) using the Morlet mother wavelet.  The 

output was presented in a scalogram showing the scales of the wavelet in time 

domain.  From this, suitable scales which gave valuable information for 

determining RMS values of the signals, mean and median frequencies from the 

average power spectrum were selected. 

 

• Discrete Wavelet Transform (DWT) using the most suitable mother wavelet 

Daubechies (db05) [35].  This program showed the multiresolution analysis of the 

wavelet transform at a particular scale.  Prior to the execution of discrete wavelet 

transform analysis, the most suitable wavelet was selected by statistical analysis of 

a decomposed and reconstructed EMG sample signal. 
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• Discrete Wavelet Packet Transform (DWPT) using the mother wavelet 

Daubechies (db05).  This program showed the signal decomposed down to level 6 

on the low-pass filter tree within the time domain. 

 

2. Data collection and acquisition 

Raw SEMG signals from 45 real subjects with healthy or normal extensor knee 

muscles, the vastus lateralis and the vastus medialis, were collected.  The participants 

underwent Maximum Voluntary Isometric Contraction (MVIC) tests.  The ethical 

approval, equipment, setup and protocol involved are described in a later section of this 

chapter. 

 

3. Pre-processing stage 

A sample signal was processed using the five LabVIEW programs built in stage 1.  The 

program with the analysis scheme that gave the most satisfactory results for signal 

classification in ANN in stage 5 was selected. 

 

4. Feature extraction and selection 

Signals from the vastus lateralis were processed and analysed by extracting their 

features using the program with the most suitable technique selected in stage 3, which 

in this case was the CWT.  The feature parameters selected were the RMS values of the 

signals, the mean and median frequencies from the average power spectrum.  For the 

purpose of being concise in this study, only the signals from the vastus lateralis were 

processed and trained in the ANN in the next stage.  Signals from the vastus medialis 

are saved and archived for further study. 

 

The schematic diagram of stages 1, 2, 3 and 4 are highlighted in yellow, blue, orange and 

green regions respectively in Figure 3.1, an extension of Figure 2.2 depicted previously in 

chapter 2.  Stage 5, depicted in the pink region is the next stage of objectives needed to be 

fulfilled for the second objective of this research, training and validating ANN for 

classification of normal muscle signals. 
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3.2 Software Development 
 

This stage 1 process involved the design and development of programs using LabVIEW 

where results were validated by programs built with MATLAB for similar purposes.  It was 

felt required to carry out this validation in order to confirm that the software used is 

acceptable for the purpose of this research.  All the programs built using LabVIEW and 

MATLAB for FFT, STFT, CWT, DWT and DWPT are depicted in Appendix B1 to B10.  

The main objective of this part is to select the most suitable method for analysing SEMG 

signals. 

 

Another essential aspect when comparing the various methods is that all parameters have to 

be similar.  Since the wavelet transform methods of CWT, DWT and DWPT were 

represented by time-scales and not apparent in the form of time-frequency spectrum, there is 

a need of conversion of these scales to frequencies. 

 

It is also important to understand that the nature of scales and the fact that wavelet analysis 

does not produce a time-frequency view of a signal is not a weakness, but a strength of the 

technique [38].  Not only is time-scale a different way to view data, it is a very natural way to 

view data deriving from a great number of natural phenomena.  However, in this case there is 

an essential need to convert or connect scales to frequencies where information can be of 

relevance.  The relationship between scale and frequency can only be given in a broad sense.  

This frequency is called the pseudo-frequency corresponding to a scale.  To convert from 

scales to frequencies is to compute the centre frequency Fc of the wavelet and to use the 

following relationship expressed in equation (3.1). 

 
a
FF c

a
.∆

=  (3.1) 

where a is the scale number, ∆ is the sampling number which is the number of samples taken 

per second, Fc is the centre frequency of a wavelet in Hz, and Fa is the pseudo-frequency in 

Hz corresponding to the scale a. 

 

The centre frequency Fc is originated from the frequency maximising the FFT of the wavelet 

modulus [38].  By processing the mother wavelet using FFT, the centre frequency Fc is 

obtained from the dominant frequency appearing in the frequency spectrum. 
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A sinusoidal wave is generated at this centre frequency which maps onto the mother wavelet 

oscillations [38].  Figure 3.2 shows a generated sinusoidal at centre frequency in red mapping 

and translating along the mother wavelet function in blue.  The mother wavelet detects the 

dominant frequency of the sinusoidal signal by a wavelet decomposition followed by 

conversion of scale to frequency as in equation (3.1).  Thus the centre frequency is a 

convenient and simple characterisation of the leading dominant frequency of the wavelet at a 

given scale [38]. 

 

In this research, Daubechies (db05) mother wavelet was used in DWT and DWPT analysis, 

and Morlet mother wavelet in CWT analysis.  The centre frequency resulted from db05 

mother wavelet was 0.6667 Hz and from Morlet mother wavelet was 0.8125 Hz. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  (a) Generated centre frequency-based sinusoidal at 0.6667 Hz mapped and 
translated along mother wavelet Daubechies 05.  (b) Generated centre frequency-based 

sinusoidal at 0.8125 Hz mapped and translated along mother wavelet Morlet. 

 

One set of the sample signals was obtained for testing and running the programs of LabVIEW 

and validating them with programs built with MATLAB.  The sample signal was 2 seconds 

duration of vastus lateralis muscle at 50% MVIC.  The results in terms of parameters 

obtained and comparative aspects for each analysis techniques are drawn up in Table 3.1.  

From the Table 3.1, the results from both programs are comparatively close to each other.  

Hence, LabVIEW programs are valid to be used in the later stages of signal processing. 

 

(a) (b) 
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Table 3.1  Comparative table of results and aspects from five analysis methods using 
LabVIEW and MATLAB.  A set of sample signals processed were obtained from 2 seconds 

duration of vastus lateralis muscle at 50% MVIC. 

Parameters 
/Aspects FFT STFT CWT DWT DWPT 

Program used 
L=LabVIEW 
M=MATLAB 

L M L M L M L M L M 

Mother 
wavelet N/A N/A N/A N/A Morlet Morlet db05 db05 db05 db05 

Window size N/A N/A 

0.5 
second 
with 
50% 

overlap 

0.5 
second 
with 
50% 

overlap 

N/A N/A N/A N/A N/A N/A 

Scale Index 
for analysis N/A N/A N/A N/A 1-256 1-256 4 4 

1-6 Low 
Frequency 

Path 

1-6 Low 
Frequency 

Path 

Display Form 
Power 

Spectrum of 
filtered signal 

Spectogram of 
frequency-

amplitude-time 
of filtered signal 

Scalogram of 
scale-

amplitude- time 
of filtered 

signal 

Amplitude-
time 

representation 
of filtered 

signal 

Amplitude-time 
representation of 

filtered signal 

Median 
frequency 

57.86 
Hz  

57.31 
Hz N/A N/A 

53.33 
Hz at 
scale 
32 

53.29 
Hz at 
scale 
32 

N/A N/A 57.35 Hz 
at scale 32 

57.28 Hz 
at scale 32 

Mean 
frequency 

64.43 
Hz 

64.21 
Hz N/A N/A 

52.86 
Hz at 
scale 
32 

52.53 
Hz at 
scale 
32 

N/A N/A 55.59 Hz 
at scale 32 

55.2 Hz at 
scale 32 

RMS value 0.0417 0.0417 N/A N/A 

0.1774 
at 

scale 
32 

0.1774 
at 

scale 
32 

N/A N/A 0.1131 at 
scale 32 

0.1133 at 
scale 32 

 

 

3.2.1 Software Development Concept 

 

The concepts of the software design and development are illustrated in the flowcharts of 

Figures 3.3 to 3.7.  The actual designs of VIs and MATLAB code for every analysis scheme 

are displayed in the Appendix B1 to B10 along with their results.  The red words in Figures 

3.3 to 3.7 are sub-programs within the VIs themselves or called sub-VIs. 
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Figure 3.3  LabVIEW development flowchart for analysing and displaying the results of a 
SEMG signal using Fast Fourier Transform (FFT). 

Start analysis

Read stored ‘Data File’ into LabVIEW

Select muscle to be analysed.

Channel 0: Vastus Medialis (Oblique) 
Channel 1: Vastus Lateralis 

Select Display settings for time domain.

Seconds or Sample Number 

Select setting for filtering the SEMG signal using a 
bandpass Butterworth filter using subVI ‘Filter’. 

Low Frequency cut-off 
High Frequency cut-off 

Sampling Rate 
Filter Order Number 

Display the following graphs.

Force Trace 
SEMG signal (demean and filtered)

Cursor settings for analysis of SEMG.

Fixed at 2 seconds or variable 

Display the graph showing selected part of SEMG signal for analysis. 

Select setting for FFT analysis.

Type of plot: frequency or power spectrum
Window type i.e. Hanning 

Analyse SEMG signal by using subVI ‘PSpec’.

Display the following.

FFT spectrum plot 
Median Frequency Value 
Mean Frequency Value 

RMS Value 

Finish analysis

Demean the raw SEMG signal by using subVI ‘demean’.
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Figure 3.4  LabVIEW development flowchart for analysis and displaying the results of a 
SEMG signal using Short Time Fourier Transform (STFT). 

 

Start analysis

Read stored ‘Data File’ into LabVIEW

Select muscle to be analysed.

Channel 0: Vastus Medialis (Oblique) 
Channel 1: Vastus Lateralis 

Select Display settings for time domain.

Seconds or Sample Number 

Select setting for filtering the SEMG signal using a 
bandpass Butterworth filter using subVI ‘Filter’. 

Low Frequency cut-off 
High Frequency cut-off 

Sampling Rate 
Filter Order Number 

Display the following graphs.

Force Trace 
SEMG signal (demean and filtered)

Cursor settings for analysis of SEMG.

Fixed at 2 seconds or variable 

Display the graph showing selected part of SEMG signal for analysis. 

Display the following.

Spectogram 

Finish analysis

Demean the raw SEMG signal by using subVI ‘demean’.

Analyse SEMG signal by using  subVI ‘STFT Spectrogram’
from LabVIEW. 

Select setting for STFT analysis.

Window Length 
Window Overlap 

Window type i.e. Hanning 
Frequency Range 
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Figure 3.5  LabVIEW development flowchart for analysis and displaying the results of SEMG 
signal using Continuous Wavelet Transform (CWT). 

 

 

 

Start analysis

Read stored ‘Data File’ into LabVIEW

Select muscle to be analysed.

Channel 0: Vastus Medialis (Oblique) 
Channel 1: Vastus Lateralis 

Select Display settings for time domain.

Seconds or Sample Number 

Select setting for filtering the SEMG signal using a 
bandpass Butterworth filter using subVI ‘Filter’. 

Low Frequency cut-off 
High Frequency cut-off 

Sampling Rate 
Filter Order Number 

Display the following graphs.

Force Trace 
SEMG signal (demean and filtered)

Cursor settings for analysis of SEMG.

Fixed at 2 seconds or variable 

Display the graph showing selected part of SEMG signal for analysis. 

Finish analysis

Demean the raw SEMG signal by using subVI ‘demean’.

Analyse SEMG signal by using  subVI ‘CWT’
from LabVIEW Signal Processing Toolset. 

Select setting for CWT analysis.

Mother Wavelet 
Number of Scales 

Display the following.

Scalogram plot 
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Figure 3.6  LabVIEW development flowchart for analysis and displaying the results of a 
SEMG signal using Discrete Wavelet Transform (DWT). 

 

Start analysis

Read stored ‘Data File’ into LabVIEW

Select muscle to be analysed.

Channel 0: Vastus Medialis (Oblique) 
Channel 1: Vastus Lateralis 

Select Display settings for time domain.

Seconds or Sample Number 

Select setting for filtering the SEMG signal using a 
bandpass Butterworth filter using subVI ‘Filter’. 

Low Frequency cut-off 
High Frequency cut-off 

Sampling Rate 
Filter Order Number 

Display the following graphs.

Force Trace 
SEMG signal (demean and filtered)

Cursor settings for analysis of SEMG.

Fixed at 2 seconds or variable 

Display the graph showing selected part of SEMG signal for analysis. 

Display the following.

DWT analysis graph 

Finish analysis

Demean the raw SEMG signal by using subVI ‘demean’.

Analyse SEMG signal by using  subVI ‘DWT’
from LabVIEW Signal Processing Toolset. 

Select setting for DWT analysis.

Mother Wavelet 
Scale Index 
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Figure 3.7  LabVIEW development flowchart for analysis and displaying the results of a 
SEMG signal using Discrete Wavelet Packet Transform (DWPT). 

Start analysis

Read stored ‘Data File’ into LabVIEW

Select muscle to be analysed.

Channel 0: Vastus Medialis (Oblique) 
Channel 1: Vastus Lateralis 

Select Display settings for time domain.

Seconds or Sample Number 

Select setting for filtering the SEMG signal using a 
bandpass Butterworth filter using subVI ‘Filter’. 

Low Frequency cut-off 
High Frequency cut-off 

Sampling Rate 
Filter Order Number 

Display the following graphs.

Force Trace 
SEMG signal (demean and filtered)

Cursor settings for analysis of SEMG.

Fixed at 2 seconds or variable 

Display the graph showing selected part of SEMG signal for analysis. 

Finish analysis

Demean the raw SEMG signal by using subVI ‘demean’.

Analyse SEMG signal by using  subVI ‘DWPT’
from LabVIEW Signal Processing Toolset. 

Select setting for DWT analysis.

Mother Wavelet 
Low Filter or High Filter 

Select setting for FFT analysis.

Type of plot: frequency or power spectrum
Window type i.e. Hanning 

Analyse SEMG signal by using subVI ‘PSpec’.

Display the following.

FFT spectrum plot 
Median Frequency Value 
Mean Frequency Value 

RMS Value 
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The common subVIs that were used for all analysis are demean and Filter.  SubVI demean 

was to remove the DC offset or bias components that may exist in the acquired signals [45].  

SubVI Filter was designed for filtering signal between the usable operating frequency of 5 to 

500 Hz [17] using a Butterworth bandpass filter.  The detailed designs of these subVIs are 

presented in Appendix B11.  Another subVI, PSpec was a part of VIs for FFT and DWPT 

analysis for producing power spectrum. 

 

Other subVIs such as STFT Spectogram was a part of VIs for STFT analysis for producing 

spectogram, CWT for CWT analysis, DWT for DWT analysis and DWPT for DWPT analysis.  

They are already existed as built-in programs within the LabVIEW signal processing toolset 

which process and analyse signals according to the analysis schemes appointed of STFT, 

CWT, DWT and DWPT. 

 

 

3.3 Data Collection and Signal Acquisition 
 

This section is the stage 2 of the research as illustrated in Figure 3.1 and covers the 

procedures taken in collecting the data.  The details include description of equipment, setups 

and protocol which is the movement or exercise procedure to obtain Maximum Voluntary 

Isometric Contraction (MVIC) using maximal strength test and sustained isometric 

contraction. 

 

Ethics approval was required in the experimental part of this research as it involved human 

subjects executing the exercise to obtain MVIC on their extensor knee muscle.  Application 

for ethics approval was submitted and approved by the Auckland University of Technology 

(AUT) Ethics Committee. 

 

Forty five subjects with no previous history of knee or severe musculoskeletal injury 

participated in this study.  Subjects were students recruited from the Akoranga campus of 

AUT.  Request notices were posted on notice boards throughout the AUT.  Subjects were 

males between the ages of 18 and 35 with no history of knee injury within the twelve months. 
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Individuals were excluded if they had a knee injury within the last year, had any previous 

knee surgery, and had any current cardiovascular, neurological, cognitive or musculoskeletal 

ailments.  People with injury to their knee or leg muscles or any form of medication may 

seem to give an unsatisfactory result related to this research. 

 

Potential participants were screened for inclusion and exclusion criteria to determine if they 

were appropriate to participate in the study.  They received verbal explanations of what was 

involved.  Prior to assessment, procedures were explained to the participant and time was 

given for the participant to have any remaining questions answered before written consent 

was obtained. 

 

The schematic setup of the equipment is illustrated in Figure 3.8.  The apparatus used to carry 

out MVIC were listed in Table 3.2 along with their purpose.  Figure 3.9 to Figure 3.12 show 

the equipment involved in this investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8  Schematic diagram of equipment setup for signal acquisition. 
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Screen feedback 
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Direction 
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Table 3.2  List of equipment used for data collection of signal of vastus lateralis and vastus 
medialis muscles. 

Equipment Type Source Purpose 
Data acquisition 
card 

NI PCI-6024E 
multifunction data 
acquisition board 

National 
Instruments 

Analogue to digital interface 
which is to convert signal 
from the surface electrodes 
to the digital form connected 
and stored in the computer. 

Cable connectors BNC-210 shielded 
connector blocks and 
SH6868 shielded cable 

National 
Instruments 

To connect the 
amplifier/conditioner to the 
data acquisition card. 

Amplifier 
/Conditioner 

Grass model P511 amplifier Grass Instruments 
Co. MA, USA 

To condition, filter out high 
frequency components and 
amplify the raw signal. 

Upright chair 
equipped with the 
attached 
resistance load 
suspension for 
knee-leg 
movement and 
monitor. 

Biodex Courtesy from the 
Faculty of Health 
and Science, 
Akoranga Campus 
of AUT  

Special chair for participant 
to execute MVIC and 
monitor screen to display 
force data for feedback to 
the participant 

Bipolar surface 
electrodes EMG 

Norotrode 20TM Bipolar 
Silver/Silver Chloride EMG 
Electrodes   

Myotronics-
Noromed, Inc. 

Sensors to detect bioelectric 
signal from muscle 
contractions at the vastus 
lateralis and vastus medialis 

Surface 
electrodes EMG 

3M Red DotTM silver/silver 
chloride monitoring 
electrodes with foam tape 
and solid gel 

3M  Health Care Sensors for the reference 
point or ground, attached on 
the shin below the knee 

PC installed with: 
1. LabVIEW 
2. MATLAB 
3. Microsoft XP 

Office 
Professional 

1. LabVIEW v6.1 and 
Signal Processing Toolset 
v7.0 featuring wavelet 
analysis 

2. MATLAB v7.0 
3. Microsoft Excel 
4. Microsoft Access 
5. Microsoft Word 

1. National 
Instruments 

2. Mathworks; 
3-5.Microsoft Corp.

1. To connect to the data 
acquisition card and to 
process and analyse 
signal. 

2.To analyse signal 
3. To store and manage data. 
4. To store data. 
5. To write report and thesis 

Disposable 
shavers 

BIC BIC To shave hair around the 
area of the detected muscle 

Alcoholic swabs Medi-SwabTM 
70% v/v isopropyl alcohol 

Smith+Nephew To cleanse and prepare skin 
after shaving 

Preparation 
cleanser 

Green Prep Skin Prep  Mavidon TM To lightly abrade skin and 
maintain good electrodes 
contact 

Exercycle Monark Ergomdic 828E Courtesy from the 
Faculty of Health 
and Science, 
Akoranga Campus 
of AUT 

For participants to warm up 
before executing MVIC 
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Figure 3.9  Biodex upright chair for participant to sit on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10  The load cell lever arm part (in black dotted box) of the Biodex upright chair. 



 66

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11  The amplifier Grass Model P511. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12  The force data for each level of 25%, 50%, 75% and MVIC were displayed on 
the screen for feedback guide to the participant for their force exerted on the load lever arm. 
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To prepare participants for data collection, the subject’s left and right legs were shaved at 

around the area of the intended muscles.  This is to ensure good skin-electrode contact.  It 

was gently abraded with skin preparation cleanser, Green Prep, then cleansed with 70% 

alcoholic swab and let to dry before attaching the adhesive silver/silver chloride bipolar 

electrodes.  The surface electrodes are the main sensory contacts attached to the subject for 

muscle activity.  They are disposable or one-off use as surfaces are self-adhesive and preferred 

for time efficiency and hygiene. 

 

Figure 3.13 (a) and (b) shows the location of the bipolar electrode placements for the vastus 

lateralis and vastus medialis site on the quadriceps of the leg.  Placement of the electrodes was 

done according to the set of recommendations published by Surface Electromyography for 

Noninvasive Assessment of Muscle (SENIAM) [56], European project for the clinical use of 

SEMG in the main striated muscles of the trunk and limbs.  Surface electrodes were also 

attached at the reference points on each leg as a common or ground to subtract noise in a 

differential amplifier used in the system [57].  The reference point was the area with the least or 

no muscle at below the knee as shown in Figure 3.14.  

 

Participants then underwent several stages of test movement or the protocol to obtain MVIC.  

These tests are the maximal strength test and sustained isometric knee extension test.  The 

participants performed these tests on first the right knee then the left. 

 

Figure 3.14 to Figure 3.17 show a subject executing exercise to obtain MVIC. 

 

 

 

 

 

 

 

 

 

Figure 3.13 (a)  Electrode placement for the vastus lateralis site marked in a yellow cross 
between the two reference points marked in blue dots.  Further detailed information on 

electrode placement technique is enclosed in Appendix C1 [58]. 

Quadriceps 
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Figure 3.13 (b)  Electrode placement for the vastus medialis site marked in a yellow cross 
between the two reference points marked in blue dots.  Further detailed information on 

electrode placement technique is enclosed in Appendix C2 [59]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14  Location of surface electrodes EMG, front view. 
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Figure 3.15  Location of surface electrodes EMG, top view.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 (a)  A subject executing MVIC. 
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Figure 3.16  (b) A closer look at the knee and leg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17  Closer look at the location of surface electrodes EMG on vastus lateralis. 
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3.3.1 Maximal Strength Test 

 

The participant performed a five-minute generalised warm up that included riding on an 

exercycle at a self-selected pace and performing a range of motion exercises for the lower 

limbs.  After the general warm-up was completed, the participant was seated on the Biodex 

upright chair set at 110 degrees with one of their knees bent to 90 degrees.  The load cell 

lever arm was attached to the chair that measured voluntary isometric force of the quadriceps.  

The upper body and upper thigh of the subject were securely strapped to the chair as shown 

in Figure 3.16 (a) and the ankle was strapped to the load cell at the distal half of the tibia or 

below the calf muscle of the leg shown in Figure 3.16 (b). 

 

The subject then performed a specific warm-up and familiarisation.  This was carried out in a 

series of four sets of short five seconds sub-maximal isometric knee extensions by pushing 

the load cell lever in the force direction shown in Figure 3.8.  The intensity of the 

contractions was gradually increased against the resistance of the load cell and within the 

subject’s own limits.  A one-minute rest followed each set of this warm-up contraction.  At 

the end of the warm-up section, the subject was then rested for 3 minutes before the actual 

maximal strength test to obtain MVIC of the quadriceps. 

 

The MVIC or 100% maximal force was executed by having the subject to push again the load 

cell lever, as in the force direction shown in Figure 3.8, for as long as possible and sustaining 

it up to 10 seconds.  Three MVICs were measured and recorded for a 10 second period.  

There were a two-minute rest period between each MVIC test and the highest MVIC was 

selected for analysis.  Standardised verbal encouragement was given throughout the test from 

the force-to-failure point. 

 

 

3.3.2 Sustained Isometric Knee Extension Test 

 

Following the maximal strength test, participants performed the sustained force production 

test.  This test was executed by having the subject push the load cell lever for 25%, 50%, and 

75% of their maximum or MVIC force.  The subject was given verbal instruction and 

encouragement on when to start.  The subject was required to perform and sustain isometric 
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contraction of the knee for a given force level for a period of 10 seconds.  A two-minute rest 

period was given between each of the four force levels. 

 

While executing this test, the force data for each level of 25%, 50%, 75% and MVIC (100%) 

from the previous maximal strength test were displayed on the screen for feedback to the 

subject.  The screen was also to guide the subject to exert the right amount of force level on 

the load cell lever arm. 

 

Force data from the maximal strength test were then transferred to a computer software 

programme that calculated individual force values for 25%, 50%, and 75% of the MVIC. 

 

 

3.3.3 Signal Acquisition Settings 

 

Muscle activities were recorded from the surface electrode EMG connected to a Grass Model 

P511 amplifier for signal amplification and de-noising, then onto the data acquisition card 

installed with its running software, LabVIEW, in the computer.  The equipment was 

electrically isolated and all cables are specifically shielded and grounded for human use.  

There was no risk of electric shock to the researcher or subject.  Routine maintenance ensured 

the safety and accuracy of the amplifier.  This maintenance included regular calibration with 

an oscilloscope to check output signals and regular cable integrity checks made by a 

registered electronics technician. 

 

The EMG signals from the surface electrodes were amplified 100 times, bandwidth filtered 

between 1 Hz and 3 kHz.  Raw analogue signals were converted to digital data and recorded 

via the LabVIEW data acquisition VI program at a sampling frequency of 2048 Hz.  The data 

acquisition program is a common program which had been previously used and available 

from the Physical and Rehabilitation Research Centre at the Akoranga Campus of AUT.  The 

data was then transferred or fed into other LabVIEW VI programs that had been developed 

previously using the FFT, STFT, CWT, DWT and STFT analysis for the pre-processing 

stage. 
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3.4 Signal Pre-processing 
 

At this stage one sample signal of 2 seconds duration of vastus lateralis muscle at 50% MVIC 

was used in five LabVIEW programs built with five different analysis schemes of FFT, 

STFT, CWT, DWT and DWPT. 

 

From five programs built in stage 1, the one that gave the most satisfactory results for signal 

classification in the ANN was Continuous Wavelet Transform or CWT.  CWT was the most 

satisfactory analysis tool for this research purpose as it produced a better display of the 

wavelet transform.  It gave the most detailed information in terms of range of frequencies for 

each scale used.  DWT and DWPT, although could be used to focus on characters at 

particular index level, did not give the overall outlook of the transform which was essential 

for the initial attempt to view what scales and when the dominant transform occurred. 

 

For the purpose of completing the feature extraction and selection process using CWT 

analysis, several other functions needed to be built into the analyser program.  For example; 

calculating the RMS values, mean and median frequencies of the average power spectrum.  

Based on the CWT analyser shown in the Appendix B5, the development flowchart for the VI 

concept of the extended version of the CWT analyser is shown in Figure 3.18.  SubVI PSpec 

Aver is a sub program to form the average power spectrum.  Appendix D shows the full 

LabVIEW design of this extended version of the CWT analyser and the subVI PSpec Aver.  

More details on calculating the RMS value, mean and median frequencies are described in 

the section 3.5. 
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Figure 3.18  LabVIEW development flowchart for final analysis and displaying the results of 
SEMG signal using Continuous Wavelet Transform (CWT). 

Start analysis

Read stored ‘Data File’ into LabVIEW

Select muscle to be analysed.

Channel 0: Vastus Medialis (Oblique) 
Channel 1: Vastus Lateralis 

Select Display settings for time domain.

Seconds or Sample Number 

Select setting for filtering the SEMG signal using a 
bandpass Butterworth filter using subVI ‘Filter’. 

Low Frequency cut-off 
High Frequency cut-off 

Sampling Rate 
Filter Order Number 

Display the following graphs.

Force Trace 
SEMG signal (demean and filtered)

Cursor settings for analysis of SEMG.

Fixed at 2 seconds or variable 

Display the graph showing selected part of SEMG signal for analysis. 

Finish analysis

Demean the raw SEMG signal by using subVI ‘demean’.

Analyse SEMG signal by using  subVI ‘CWT’
from LabVIEW Signal Processing Toolset. 

Select setting for CWT analysis.

Mother Wavelet 
Number of Scales 

Display the following for scales 
8, 16, 32, 64 and 128. 

Analysis graph 
Averaged Power Spectrum 
Median Frequency Value 
Mean Frequency Value 

RMS Value 

Select setting for FFT analysis.

Type of plot: frequency or power spectrum
Window type i.e. Hanning 

Analyse SEMG signal by using subVI ‘PSpec Aver’.
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3.5 Feature Extraction and Selection 
 

This section covers the stage 4 of this research as illustrated in the Figure 3.1.  This was one 

of the main parts of this study, which were the core of processing and analysing of the data.  

The signal features were extracted using the most suitable analysis scheme determined in 

section 3.4, the CWT. 

 

The feature selection was aimed to determine the RMS values of the signals, mean and 

median frequencies from the average power spectrum for each signal at 25%, 50% and 75% 

of the MVIC of the right leg’s vastus lateralis for the Artificial Neural Network (ANN).  

Although recorded, data from the maximum strength 100% or the MVIC value was not 

included in the analysis and ANN classification as they were mainly used to guide the subject 

to exert the right amount of force for the 25%, 50% and 75% of the MVIC.  Data from the 

left legs and vastus medialis were also recorded for future research purposes. 

 

The output of CWT analysis using Morlet mother wavelet was used to produce a scalogram 

which includes scale indexes.  The acquired data was transferred into the LabVIEW’s VI 

design of the CWT enclosed in the Appendix D.  This VI design is built based on the design 

of the CWT analyser in the Appendix B5 but had been functionally extended to improve 

presentation of the results display panel.  The detailed specification of settings used to 

process using CWT VI is listed in Table 3.3. 

 

Table 3.3  List of specifications required to process data signal using CWT. 

Sampling frequency 2048 Hz 

Scales 8, 16, 32, 64, 128, 256 

Time 2 seconds 

Mother wavelet Morlet 

Wavelet Centre Frequency, 
Fc 

0.8125 Hz 
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The SEMG signal data files employed for feature extraction and analysis process using CWT 

analysis technique built in the Appendix D.  The results were in the form of RMS values of 

the signal, and mean and median frequencies from the average power spectrum where they 

were trained and validated in the ANN in chapter 4. 

 

For the feature extraction process, a part of the raw SEMG signals was selected.  The selected 

region is a four second interval after the first peak signal activation.  The first two seconds 

were not processed and analysed to allow changes in the muscle tension at the beginning of 

the muscle contraction.  The next two seconds was the region to be processed and analysed 

[55, 60].  This region was where there was no muscle fatigue present and assumed to be 

quasi-stationary, that is stationary during short time intervals.  Under this assumption spectral 

analysis for feature extraction can be applied [55, 60].  Figure 3.19 illustrates the regions of 

signals to be processed. 

 

Within this 2-second region, the initial scalogram was produced.  As explained in chapter 2, 

the scalogram shows lower scale numbers as for the narrow version of the wavelet window 

which represent high frequencies, and the higher scale numbers for the wider windows 

represent as low frequencies.  The conversion of scale index numbers to frequencies or 

pseudo frequencies were then carried out using the centre frequency of the mother wavelet, 

which in this case was the Morlet.  A frequency-time based spectrum was plotted as a result 

of this conversion.  A range of dominant frequencies could also be viewed from the 

frequency-time spectrum. 

 

The information detected from the scalogram gave an overview of which scale indexes would 

provide better features for the signal classification using ANN.  These scale indexes were 

selected from the scalogram and the 2-second region of the SEMG signal was reproduced at 

each of these selected scales using the designed CWT virtual instrument as shown in 

Appendix D. 

 

These reproduced signals were set with the sampling frequency at 2048 Hz.  Hence within the 

quasi-stationary region of two seconds, there were 4096 data.  Within this 2-second region, 

the average power spectrum was produced by applying the Fast Fourier Transform.  Different 

from the ‘regular’ power spectrum, the average power spectrum is the average of a number of 

combined power spectrums. 
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Force Trace 

SEMG Raw Signal corresponding with Force Trace 

2-second region to be analysed First 2-second region 
to be ignored. 

First peak 

2-second region to be analysed First 2-second region 
to be ignored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19  Graph of force trace and raw signal showing the region for processing and 
analysing 

 

Power spectrum was produced from every 1024 samples or 0.5 seconds interval with an 

overlap of 50%.  With an overlap of 50%, it created a total of seven 0.5 second intervals.  The 

average of the power spectrum was formed from these 0.5 second intervals by averaging all 

of the spectra lying within the region.  This method was used to reduce the variance in the 

spectrum estimates and create the characteristic values of the power distribution [60].  From 

this, the average of the spectrum, the mean and median frequencies were calculated.  The 

spectral bandwidth was restricted to 5 to 500 Hz.  This process was executed for each of the 

selected scales to determine the RMS values of the signal, mean and median frequencies from 

the average power spectrum.  The concept of the averaging method in spectral analysis is 

illustrated in Figure 3.20. 
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Seven 0.5 seconds 
overlapping samples 

 

 

 
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20  Schematic diagram of EMG processing procedure in the frequency domain by 
analysing the EMG spectrum 
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Hence, in summary the feature extraction analysis process was as follows: 

1. Selection of 2-second quasi-stationary region from the acquired raw signals, 

2. Formation of the scalogram using the CWT, 

3. Conversion of the scale numbers to frequencies or the formation of the frequency-

time based spectrum plot.  General dominant frequencies were viewed, 

4. Selection of scale index numbers, 

5. Signal reproduction using each of the scale index number, 

6. Formation of average power spectrum from each of reproduced signal of each scale, 

7. Determination of the RMS values, mean and median frequencies of each scale. 

 

The stage 3 of this research finished with the actual values determined for the RMS, mean 

and median frequencies for 25%, 50% and 75% of the MVIC muscle contraction at each 

scale level from each participant.  These data are to be put through an ANN in chapter 4 of 

this thesis.  The next section presents the actual results from this experimental investigation 

showing graphs and values from one typical sample. 

 



 80

 

3.6 Results of One Typical Output Signals 
 

This section covers the results of the experimental investigation, showing one of the typical 

data obtained from forty five subjects.  This includes the presentation of force trace along 

with the raw signals, the scalogram by the CWT and its inversion to frequency plot, scales 

selection, signal reconstruction using the selected scales, the formation of average power 

spectrum and the determined values of the RMS, the mean and median frequencies for each 

of the selected scales. 

 

From the initial scalogram, the scales selected were 8, 16, 32, 64 and 128.  For every one of 

these scales, data from 25%, 50% and 75% of the MVIC on the right legs were processed to 

determine the RMS value, the mean and the median frequencies. 

 

The following diagrams are one of the typical results of a male subject who exerted 75% of 

the MVIC from his right leg’s vastus lateralis.  Figure 3.21 shows the force trace and the 

SEMG raw data.  The 2-seconds quasi-stationary region to be analysed was indicated 

between Cursor 1 in green and Cursor 2 in red.  Figure 3.22 illustrates the magnified version 

of the quasi-stationary region analysed (blue plot) with the power spectrum plot at its right 

hand side (red plot).  It also shows the scalogram which was produced by using the CWT 

analysis.  It was converted to frequencies shown by the following frequency-time based 

spectrum plot, which shows the dominant frequencies in white streaks which were mainly 

below 200 Hz. 

 

The quasi-stationary signals were reproduced using the selected scales of 8, 16, 32, 64 and 

128 and for each reproduced signals, the average power spectrum were formed.  These are 

illustrated in Figure 3.23.  The RMS value, mean and median frequencies of each scale are 

shown on the right hand side of the average power spectrum and also on the Table 3.4. 
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Table 3.4  Extracted features from the right leg’s vastus lateralis of a male subject at 75% of 
MVIC (Subject No.4). 

Scales Mean frequencies 
(Hz) 

Median 
frequencies (Hz) RMS (mV) 

8 168.83 167.12 0.0839 

16 95.47 94.21 0.3886 

32 51.70 50.59 0.6281 

64 26.77 26.25 0.4095 

128 14.93 13.89 0.3265 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21  Force trace and the SEMG raw data of 75% of MVIC from right leg’s vastus 
lateralis of a male subject (Subject No.4). 
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Figure 3.14  The quasi-stationary region analysed with the power spectrum plot at the right 
hand side, and below them is the final scalogram of 75% of MVIC data from right leg’s 

vastus lateralis of a male subject (Subject No.4). 

 

 

 

 

 

 

 

 

 

 

Figure 3.22  The quasi-stationary region analysed (blue plot) with the power spectrum plot at 
its right hand side (red plot), and below them is the scalogram which were converted to 

frequencies shown by the following frequency-time based spectrum plot.  Data are of 75% of 
MVIC from right leg’s vastus lateralis of a male subject (Subject No.4). 
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Figure 3.23  The reproduced quasi-stationary signals with the scales of 8, 16, 32, 64 and 128 
in blue plots.  The average power spectrum corresponding to each scale is in the red plots.  
The RMS values, mean and median frequencies of each scale are shown on the right side of 

the average power spectrums. 
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Chapter 4 

SEMG Signal Classification Using Artificial Neural Network 
 

 

4.1 Introduction 
 

This chapter covers the brief fundamentals of Artificial Neural Network (ANN) and the use 

of it within this research.  As part of an ongoing research, the aim of this exercise is to form a 

reliable methodology for developing an intelligent SEMG signals classifier.  Other than 

investigating the possibility of using wavelet analysis to extract features from muscle 

contractions, the use of ANN was also explored.  This research also aims to investigate the 

possibility and the use of ANN in training and validation as a base methodology for 

classifying and recognising patterns for normal muscle signals. 

 

Traditionally, practical methodologies for pattern classification are the statistical and the 

syntactic approaches [45, 61-63].  Much early research on EMG signals classification found 

many difficulties associated with the statistical method of instrumenting many channels of the 

signal.  The learning or neural approach in ANN is the most recent established type of 

pattern classifier which is a matured form of adaptive linear elements in learning algorithms 

[45, 64-66].  The first ANN began to appear in the mid 1980s where it could be a powerful 

method for classifying EMG signals.  It is the feature set or data itself that is crucial to the 

overall performance of the classifier [45], which comes down to the selecting of the signal 

features that produce the best performance in terms of accuracy and efficiency [1]. Hence, a 

substantial set of database with sufficient quantity and effective selected features, may 

improve the classification of the EMG signals.  As the latest classification method, ANN’s 

potential ability as a powerful tool is yet required to be investigated for the classification 

purposes in this research.  Research by Englehart et al [1] showed an effective representation 

for classification using ANN. 

 

The objective of this chapter is to execute the last stage of this research which was to train an 

ANN with 35 sets of the selected features from signals extracted in Chapter 3.  The ANN was 

then validated with ten sets of untrained features-extracted previously.  The ultimate purpose 
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of this exercise is to develop an ANN classifier that will differentiate the abnormal from the 

normal muscles.  To build a normative database from normal muscle signals is essential for 

differential diagnosis of neurological and musculoskeletal disorders.  By validating ANN 

using the ten sets of untrained data, it was to test and prove that the ANN developed was able 

to classify the untrained data as normal muscle signal.  This should be a base methodology 

for further research in training and validating data for different muscle conditions and 

ultimately, for diagnosing whether an individual may have a specific neurological and or 

musculoskeletal disorder.  Existing research evidence clearly indicates that when any type of 

neurological or muscle injury occurs the recruitment and electrophysiology of the muscle is 

altered [30-32]. 

 

A commercially available database on normal muscle signals is not available at this stage.  An 

established database will become very useful for further use and research in designing an EMG 

signal analyser to compare and diagnose normal or abnormal muscles.  Hence, signals were 

necessary to be collected manually in this research. 

 

 

4.2 Neural Network Fundamentals 
 

An ANN is a computer program that can recognise patterns in a given collection of data and 

produce a model for that data.  It performs similarly to artificial intelligence and 

approximation algorithms for smart approximation.  It resembles the brain in two respects, 

knowledge is acquired by the network through a learning process of trial and error as well as 

its interneuron connection strengths known as synaptic weights which are used to store the 

knowledge.  It is a tool that is capable of learning from its environment and finding non-

evident dependencies between data [67]. 

 

The ANN algorithms are modelled after the brain and how it processes the information.  The 

brain is a multi layer structure with 1011 neurons interconnected to each other.  It grows new 

neural links between neurons when learning from the ‘feedback’ it receives from the world as 

input maps to the output.  In this research the data obtained from the muscle signal were 

being trained or put through neural network as inputs.  These inputs create an environment 

which has its own typical features or patterns in the layer called the hidden layer of the 
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network.  Every time a new input is being trained, the hidden layer readjusts the previous 

features to be the more updated version of it, which becomes the output layer of the network.  

This process is iterative until all the data is trained and the output target is reached [67]. 

 

This type of iterative process or learning rule is referred to as backpropagation, which is a 

generalisation of the Widrow-Hoff learning rule to multiple-layer networks and non-linear 

differentiable transfer functions [67].  Input vectors and the corresponding target vectors are 

used to train a network until it can approximate a function, associate input vectors with 

specific output vectors or classify input vectors in an appropriate way as defined by users.  

Networks with biases, a sigmoid layer and a linear output layer, are capable of approximating 

any function with a finite number of discontinuities.  Hence, backpropagation is a gradient 

descent algorithm used for processing non-linear multilayer networks to compute negative 

gradients of the performance function. 

 

Properly trained backpropagation networks tend to give reasonable answers when testing 

with new similar sourced inputs that they have never seen [67].  This is a way of validating 

whether the new inputs belong to a certain group or are classified as the target of the output.  

In other words, a new input leads to an output similar to the correct output for inputs used in 

training that are similar to the new input being presented.  This generalisation property in 

ANN makes it possible to train a network on a set of input or target pairs and get sufficient 

representative results without training the network on all possible input or output pairs [67]. 

 

Basically there are four general steps in the training process [67]: 

1. Assemble the training data – which have been already gathered in Chapter 3. 

2. Create the network object – design and initialise the neural network. 

3. Train the network – also called as batch training. 

4. Simulate the network response to new inputs – this is also to compare results of the 

computed output of the network with training data and validation data. 

 

A single layer neuron by itself is not a very useful pattern recognition tool.  The real power of 

ANN comes when neurons are combined into the multilayer structures called the neural 

networks.  The structure of a neural network is based on a single layer neuron model 

interconnected to each other to form multilayer network [67].  A single layer neuron model 

with R inputs is shown in Figure 4.1.  Each input is weighted with an appropriate w.  The sum 
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where R = number of elements in input vector 

of the weighted inputs and the bias forms the input to transfer function f.  Neurons may use 

differentiable transfer function f to generate their input. 

 

There are three transfer functions commonly used for backpropagation for multilayer 

networks [67].  Multilayer network often use the log-sigmoid transfer function as in Figure 

4.2.  The function log-sigmoid generates outputs between 0 and 1 as the neuron’s net input 

goes from negative to positive infinity.  In MATLAB neural network toolbox used in this 

thesis, the notation program is written as 

 )(nsigloga =  (4.1) 

which is equivalent to the mathematical expression 

 ne
a −+
=

1
1  (4.2) 

where n is the input to the transfer function and a is the output data. 

 

Alternatively, multilayer networks may use the tan-sigmoid transfer function as in Figure 4.3.  

The linear transfer function as in Figure 4.4 is also occasionally used in backpropagation 

networks.  Both MATLAB program notations and mathematical expressions for Figure 4.3 

and 4.4 are shown in the diagram boxes [67]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Single-layer neuron model. 
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MATLAB notation a=logsig(n) 

Mathematical expression ne
a −+
=

1
1  

Figure 4.2  Log-sigmoid transfer function. 

 

 

 

 

 

 

 

MATLAB notation a=tansig(n) 

Mathematical expression n
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Figure 4.3  Tan-sigmoid transfer function. 

 

 

 

 

 

 

 

MATLAB notation a=purelin(n) 

Mathematical expression nnfa == )(  

Figure 4.4  Linear transfer function. 
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(b)  

If the last layer of a multilayer network has sigmoid neurons, then the outputs of the network 

are limited to a small range.  If linear output neurons are used, the network outputs can take 

on any value.  The structure of multilayer neurons is illustrated in Figure 4.5. 

 

In backpropagation, it is important to be able to calculate the derivatives of any transfer 

functions used.  Each of the transfer functions has a corresponding derivative function.  

However, these differentiable transfer functions are not commonly used and can be created 

and used with backpropagation if desired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 4.5  Multilayer neuron model.  (a) Three layers multilayer version.  (b) Abbreviated 
notation of (a). 
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layer  layer       layer 
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Feedforward networks, or forward pass where information is flowing forward through the 

network, often have one or more hidden layers of sigmoid neurons followed by an ouput 

layer of linear neurons.  Multiple layers of neurons with nonlinear transfer functions allow 

the network to learn nonlinear and linear relationships between input and output vectors.  The 

linear output layer lets the network produce values outside the range of -1 to +1 [67]. 

 

The next section covers the four steps of the training process involved in this research.  

Section 4.3 includes the assembling of the data discussing the array, feature and target 

management.  Section 4.4 describes and illustrates the design of the ANN and section 4.4 

covers the validation result. 

 

 

4.3  Data Assembling and Array Management 
 

The data were required to be organised according to the nature or architectural structure of 

the neural network program.  The ANN requires the structure of the target to be assigned or 

set in the form of output vector based on the Boolean notation.  Depending on the data 

gathered and how they can be classified, the output vectors should be set accordingly to the 

research needs and efficiency of the operation. 

 

The data assembled for the training of the neural network were from thirty five subjects 

exerting 25%, 50% and 75% of MVIC from right vastus lateralis leg muscles.  The extracted 

features from 25%, 50% and 75% of MVIC become the target vector or the main output 

vector formed as 
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010
001

a  (4.3) 

where the first column is the target for 25%, the second for 50% and the third 75% of MVIC 

data.  Each target column consisted of 15 features from each subject which included the mean 

and median frequencies from the average power spectrum and the RMS values of the wavelet 

coefficients at different scales of 8, 16, 32, 64 and 128.  The structure of the array is drawn up 

in Figure 4.6.  With the total of 35 subjects, there will be one target vector representing 35 

data in each column. 
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Output vector a 
representing data 
from 1 subject 

Output vector a 
representing data 
from 35 subjects 

 
No Features Subject 1 Subject 2 … Subject 35 

 Median frequency at 
scale: 

25% 
MVIC 

50% 
MVIC 

75% 
MVIC 

25%   
MVIC 

50% 
MVIC 

75% 
MVIC    25% 

MVIC 
50% 
MVIC 

75% 
MVIC 

1 8           
2 16           
3 32           
4 64           
5 128           
 Mean frequency at scale:           

6 8           
7 16           
8 32           
9 64           

10 128           
 RMS at scale:           

11 8           
12 16           
13 32           
14 64           
15 128           

            
            
            
            
  1 0 0     1 0 0 

  0 1 0     0 1 0 

  0 0 1     0 0 1 

 

 

 

Figure 4.6  Array management of input data to the output vector. 

 

 

4.4 Designing and Training of the Neural Network 
 

The network architecture for this research consisted of an input layer, one hidden layer and an 

output layer or target as depicted in Figure 4.7.  As previously explained in section 4.3, 15 

features which included the RMS values, mean and median frequencies from the average 

power spectrum at wavelet scales of 8, 16, 32, 64 and 128 from the 35 subjects were in the 

input layer.  These 15 input features from the 35 subjects were the data to be trained in the 

ANN. 

………… 

Goes 
through 
iterative 
training 
for 35 
subjects 

Output vector 
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Figure 4.7  Network architecture built for this research. 

 

A hidden layer in an ANN consists of a number of neurons.  The number of neurons in the 

hidden layer needs to be selected based on the overall performance in reaching the target 

upon validation.  Apart from the number of neurons, two transfer functions of log-sigmoid 

and tan-sigmoid were also used.  Linear transfer function was not selected as it did not 

represent the nature of the SEMG data which are non-linear.  Several trainings and 

validations are executed using different number of neurons and the two types of transfer 

functions.  Validations were executed with ten sets of untrained data, each containing 15 

features which similarly included the RMS values, mean and median frequencies from the 

average power spectrum at scales 8, 16, 32, 64 and 128 from the 10 subjects.  The ANN with 

the number of neurons and the type of transfer function which met the performance goal with 

least errors was the selected one for a base classifier in further research and development of 

SEMG signal classifier. 

 

The network architecture built for this research is illustrated in the Figure 4.7 where 15 

features from 35 subjects in the input layer were trained for 3 targets of 25%, 50% and 75% 

MVIC in the output layer as described in section 4.3.  In the hidden layer, the neuron 

numbers tested are from 3 to 10 to start with.  The lower the number of neurons selected, the 

more efficient the training process is.  This means with less iterations the faster the 

15 input 
features 
at input 
layer 1 hidden layer 

3 outputs 
at output 
layer 
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processing is.  The ANN program notations by MATLAB that represent the architecture are 

enclosed in the Appendix E. 

 

With both transfer functions, tan-sigmoid and log-sigmoid, parameters were set as follows: 

1. Training algorithm: Levenberg-Marquardt [67] 

2. No. of epochs or iterations:  1000 

3. Performance goal:  0.001 or 0.1% error 

4. Maximum performance gradient: 1 × 10-10 

 

Using the two transfer functions, tan-sigmoid and log-sigmoid, and the neuron numbers in the 

hidden layer set between 3 and 10, hence there were 16 different ANNs to be trained.  After 

the training, the 16 ANNs went through the validation process using the untrained data from 

ten subjects.  The performance goal or the error results between the 16 ANNs were then 

compared. 

 

 

4.5 Validation, Results and Analysis 
 

After training and validation, the transfer function which met the network target vector was 

the tan-sigmoid transfer function with neuron numbers 4, 5, 6 or 7 in the hidden layer.  None 

of the log-sigmoid transfer function networks met the target after validation.  The tan-sigmoid 

ANNs with the mentioned neuron numbers produced more comparable results in terms of 

meeting the performance goal.  ANNs with neuron numbers 3, 8, 9 and 10 did not meet the 

target with some number of epochs or iterations being too great compared to the ANNs with 

neuron numbers 4, 5, 6 and 7. 

 

The network with neuron number 4 in the hidden layer is named as ‘net1’, the one with 

neuron number 5 is ‘net2’ and so on.  Ten sets of untrained data from ten subjects were 

validated, 15 input features were tested for three targets from each subject.  With ten subjects, 

10 validations with Boolean notation results were produced for each of the three output 

targets, which are 25%, 50% and 75% MVIC, totalling 30 validation results.  Details of 

Boolean results from ten validating data for three outputs are shown in Figure 4.8 to 4.11.  

Figure 4.12 shows the comparison between training curves of the different neuron numbers in 



 94

 

Parameters 

Inputs  15 

Hidden (neuron number) 4 

Outputs 3 

Function tansig 

 

net1 Architecture 

 

 

net1 Training Curve 

the hidden layer showing efficiency in reaching the performance goal.  The summary of 

results of the ANNs which met the target were listed in Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8  ANN net1 parameter setting, architecture and training curve. 
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net1 Validation Data Results 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 (Continued) ANN net1 validation data results. 

 

The orange shaded areas in the validation data results in Figure 4.8 indicate the output 

column vector that did not meet the output target 
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a .  These occur with data No.2 

at the third column, data No.3 at the second and third column, data No.7 at the third column, 

data No.9 at the third column and data No.10 at the first column.  The total unmet targets are 

six columns data out of 30 columns.  Therefore the error of net1 is 6 out of 30 or 20%. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9  ANN net2 parameter setting and architecture. 
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net2 Training Curve 

net2 Validation Data Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 (Continued)  ANN net2 training curve and validation data results. 

 

The orange shaded areas in the validation data results in Figure 4.9 indicate the output 

column vector that did not meet the output target 
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a .  These occur with data No.1 

at the second column and data No.8 at the first column.  The total unmet targets are two 

columns data out of 30 columns.  Therefore the error of net2 is 2 out of 30 or 6.67%. 
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Figure 4.10  ANN net3 parameter setting, architecture and training curve. 
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net3 Validation Data Results 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.10  (Continued)  ANN net3 validation data results. 

 

The orange shaded areas in the validation data results in Figure 4.10 indicate the output 

column vector that did not meet the output target 
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a .  This occurs with data No.1 

at the second column.  The total unmet target is one column data out of 30 columns.  

Therefore the error of net3 is 1 out of 30 or 3.33%. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11  ANN net4 parameter setting and architecture. 
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net4 Training Curve 

net4 Validation Data Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11  (Continued)  ANN net4 training curve and validation data results. 

 

The orange shaded areas in the validation data results in Figure 4.11 indicate the output 

column vector that did not meet the output target 
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at the third column, data No.2 at the third column, data No.3 at the third column, data No.5 at 

the third column, data No.6 at the third column, data No.8 at the second column and data 
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No.10 at the third column.  The total unmet targets are seven columns data out of 30 columns.  

Therefore the error of net4 is 7 out of 30 or 23.33%. 

 

Comparison of efficiency in reaching the performance goal between different neuron 

numbers in the hidden layer is shown in the Figure 4.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12  Training curves of net1, net2, net3 and net 4 showing efficiency in reaching 
performance goal. 

 

Table 4.1  Summary of results of training and validating neural networks using tan-sigmoid 
transfer function. 

Network name Neuron number at 
Hidden layer Error Error Percentages 

net1 4 6/30 20 

net2 5 2/30 6.67 

net3 6 1/30 3.33 

net4 7 7/30 23.33 
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The third column of Table 4.1 lists the summary of errors resulting from the validation 

process out of 30 data and the fourth column shows in terms of percentages.  The error 

indicated the number of times out of 30 that did not meet or reach the target vector a.  From 

Table 4.1, the network which produced the least error number from the ten validating data is 

net3 which has 6 neurons in its hidden layer. 

 

The efficiency performance can be determined from the training curves of net1, net2, net3 

and net4 which are illustrated in Figure 4.12.  The black line is the performance goal of 0.1% 

error.  The network which reached the goal with the least number of epochs is also net3, at 39 

iterations when reaching the performance goal.  The next best network is net2, which reached 

the performance goal at 54 epochs and 6.67% error as listed in Table 4.1.  net2 is network 

with neuron number 5.  net4 with neuron number 7 produced the greatest error of 23.33% 

with 71 epochs and net1 produced 20 % error with 89 epochs. 

 

Therefore, from this comparison, ANN net3 with the tan-sigmoid transfer function and 6 

neurons in the hidden layer is the most suitable network that can be used for training and 

validating the data of this research. 

 

The outcome of this research stage showed that the methodology of using ANN was able to 

predict the untrained data classified as normal muscle which underwent 25%, 50% and 75% 

of MVIC with minimal error.  Hence, this technique is concluded to be a strong base method 

for further study in this research of developing muscle signal classifier. 
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Chapter 5 

Discussion and Conclusions 
 

 

5.1 Introduction 
 

This chapter covers the discussions on all of the stages undertaken in this research.  

Comparative analysis is presented particularly on the software development and the pre-

processing stage which used different analysis schemes for feature extractions.  Other 

findings on the practical aspects of data collection and acquisition are commented in this 

chapter.  Outcomes or results from the final selected feature extraction process and signal 

classification using Artificial Neural Network (ANN) are further analysed and discussed.  

The pros and cons of each stage are described with some potential work extension which can 

be implemented for further research. 

 

This research undertook many aspects, ranging from software development, data acquisition, 

pre-processing, feature extraction to the ANN.  Every stage contributes strengths and flaws in 

its own specific parameters which may be carried through to the next stage.  It was 

challenging to control every aspect that was involved, and this research has made every effort 

to minimise any biases or flaws which could greatly affect the results. 

 

 

5.2 Software Development 
 

The software development stage involved two major software programs, LabVIEW and 

MATLAB, which contributed a crucial part of this research as processing and analysing 

tools.  All efforts have been made in learning the rigorous LabVIEW and MATLAB 

programming codes in order to build the signal processing tools for analysing and extracting 

features of the Surface Electromyography (SEMG) signals using different analysis schemes, 

which were the Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT), 

Continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT) and the 

Discrete Wavelet Packet Transform (DWPT). 
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The software development stage required a sample or pilot signal in order to test the 

programs as they were being written.  In reality, some data needed to be collected at the same 

time as the building of the software programs.  Hence, data collection and acquisition were 

carried out alongside the completion of the programs. 

 

LabVIEW programs provide a user-friendly interface to the user in terms of output display as 

well as data management and the core design of the programming code.  It uses the system of 

block diagrams and flowcharts in designing the required processing tools or so called the 

virtual instruments (VIs).  It resembles the ‘G’ programming language where the blocks are 

for processing operation and the lines for data flow.  It was found that the LabVIEW 

programming code is more versatile and easier to learn, especially for anyone with the least 

familiarity of the popular programming codes or language such as ‘C’ or ‘Visual Basic’. 

 

Another advantage of LabVIEW is that it enables users to change, manipulate or select any 

features on the interface or front display panel without entering back to the core programming 

codes to make the change.  These were such as entering a new input on the interface VI panel 

to produce a different value or visual output, or selecting parts of the output graph for 

determining various values related to the graph.  Programming errors were minimised as 

users did not need to return to the core design to make input changes.  These manipulation 

capabilities within the LabVIEW programming give more control, flexibility and versatility 

to the users, minimising errors in programming. 

 

On the other hand, the MATLAB programming system is consisted of commands and codes 

similar to a conventional programming language such as ‘C’ which needed to be written in a 

logical manner.  Most of the commands and other calculation codes are often the common 

signs and codes which are familiar to the mathematicians, scientists and engineers.  This 

makes MATLAB also a powerful and versatile tool in this field.  The MATLAB 

programming system could be more suitable for users who are familiar with computer 

programming codes, whereas LabVIEW provides the visual aid in programming as it uses 

block diagrams and flowcharts. 

 

Many signal processing programs were built using different analysis schemes, which were 

FFT, STFT, CWT, DWT and DWPT, with both LabVIEW and MATLAB programs.  The 
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development of these numerous programs was for comparison purposes.  It was thought to be 

a necessary part of the research process in this field undertaken by the university, which is 

still at a very early stage.  This process provided comparisons to validate which programs to 

use and to evaluate which format would be the most efficient and useful. 

 

Both results by LabVIEW and MATLAB programs shown in Table 3.1 were close to each 

other.  MATLAB is no less superior to LabVIEW in terms of signal processing accuracy and 

efficiency.  Both programs are valid to be used for the purpose of this research. 

 

In summary, programming by LabVIEW is found to be more flexible and efficient for signal 

processing, analysis and feature extraction of the SEMG signals.  The reason for this claim is 

the versatility of being able to control more from the front display panel without going into 

the core programming chart, hence minimising programming error.  Depending on the users’ 

background and programming style or preference, whether they are visually or logically 

driven, or which programs they are initially familiar with, or whether they are willing to learn 

new programming system, LabVIEW and MATLAB can both be used for this purpose. 

 

 

5.3 Data Collection and Signal Acquisition 
 

The collection of the data was a massive operation to undertake.  Ethical approval was 

required before the data collection as it involved live human subjects as the participants.  The 

other major aspect was to find the proper protocols or procedures during data collection.  As 

it involved physiological information and research, proper consultation and management with 

the related professionals from the Physical and Rehabilitation Research Centre at Akoranga 

Campus of AUT were extremely crucial.  This process was to ensure that the protocols, data 

collectors and participants were all as consistent and uniform as each other, minimising any 

manual bias or human error that could easily occur during data collection. 

 

The equipment and the process used in signal acquisition also played an important role in 

obtaining the data signals.  All practicable or common steps were accounted for the aspects of 

signal acquisition, amplification and conditioning to eliminate any signal biases and artifacts.  

Prior to the data collection, the equipment was checked by carrying out trial runs to view the 
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signals obtained.  Some offset or bias component from the main supply that showed on the 

signals were rectified accordingly.  The types of amplification and signal conditioning 

procedures were chosen based on the common practice of SEMG signal acquisition taken 

from some literature sources [17, 20, 68].  When there were several settings or methods to 

choose from, selections were made based on the suitability of the practice or nature of this 

research.  Therefore, there is always room to investigate more on different settings, 

equipment or setups for viewing how they influence the overall results.  These are sampling 

rate, filter settings, amplification and so on. 

 

Collecting SEMG data from forty five subjects were repetitive and laborious tasks performed 

often by the same person as the data collector.  The location of the surface electrodes placed 

on the muscle could not be exactly accurate for every single subject who participated in the 

data collection.  A different data collector may carry out the protocols slightly different from 

another data collector.  These are the human errors which can contribute to the signal 

characterisation results which could be minimised as much as possible by carrying strict 

uniformed instructions for the participants to follow. 

 

 

5.4 Signal Pre-processing 
 

As the five programs were built using FFT, STFT, CWT, DWT and DWPT analysis schemes 

with LabVIEW programming code, this stage of pre-processing used a set of sample signals 

to analyse and extract features to produce outputs for each of the program.  A comparison 

was made of which analysis scheme provided the most suitable features or parameters which 

can be useful for the development of ANN at the later stage. 

 

From five of these programs built in stage 1, the one that produced the most satisfactory 

results for signal classification in the ANN was the Continuous Wavelet Transform or CWT.  

CWT was the most satisfactory analysis tool for this research purpose as it produced a better 

display of the wavelet transform.  It produced the most detailed information in the range of 

frequencies for each scale used.  The transformation of scales to frequencies was one of the 

useful procedures that could be used throughout the research in this field.  CWT provided 

clearer visual output on where in time the dominant scales were located.  Thus the 
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transformation of the dominant scales into frequencies could be calculated along with the 

further processing on feature extraction and selection, determining the mean and median 

frequencies of the power spectrum and the RMS value of the signal. 

 

DWT and DWPT provided more detailed signal information for every breakdown of the time 

period resulting from the multiresolution analysis using a particular dominant scale index 

number.  Investigating more outcomes from DWT and DWPT analysis can be a form of 

future work in this field.  DWT and DWPT analysis can be used to investigate further into 

each level of scale index to gain detailed characterisation of the signal. 

 

By using DWT and DWPT, although they could be used to focus on characters at particular 

scale index level, they did not give the overall outlook of the transform to start with, which 

was essential for the initial attempt to view what scales and when the dominant transform 

occurred.  Hence, analysis using CWT is an appropriate step for the initial outlook of the 

dominant scales before selecting the scale number for the multiresolution analysis if any 

further research is carried out using the DWT and DWPT analysis. 

 

Obviously time localisation of the dominant frequency was not available by using FFT 

analysis alone.  The FFT analysis was used at the later stage in the software design, after 

signal processing using CWT analysis, to calculate and determine the mean and median of 

the average power spectrum and RMS values of the signals.  STFT is also limited by the size 

of the window which has to be uniform throughout the duration of the signal.  Many signals 

require a more flexible approach in window sizing which have been catered for by the 

wavelet transform analysis.  The flexibility of window sizing or the compression and dilation 

of the mother wavelet provides accuracy in determining the time-frequency component of the 

signals. 

 

This research, hence, adopted the CWT analysis in the signal processing for feature 

extraction and developed it further to a final program using FFT as an extension to calculate 

and determine the feature selected for this research, the mean and median frequencies of the 

average power spectrum and the RMS values of the signals. 
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5.5 Feature Extraction and Selection 
 

The feature extraction stage implemented a selection of techniques which were chosen based 

not only on common practices but also on a sound judgement for assumptions that were 

considered relevant to the case in this research.  This was reflected by one of the procedures 

in selecting the relevant part of the 10-second signals for feature extraction using CWT 

analysis.  The 2-second region described in chapter 3.5 and Figure 3.19 was considered and 

selected as a prime location for feature extraction due to the stability of the muscle signal 

from the contraction, stabilising after the initial period when the muscle started to contract.  

This practice was quoted by Merletti et al [55, 60] and Luttmann et al [55, 60] for extracting 

features on SEMG signals. 

 

Extracting feature from the whole 10-second signal would be an ideal as it may show more 

variants of the signal characteristics.  Processing the whole duration at one time would 

require a vast amount of power from the computer and disk-space to run.  Such facilities are 

not available at this stage.  Breaking the signals into short time durations would be more 

achievable for feature extraction, but a laborious task.  At this stage, processing the 2-second 

region is sufficient to represent the signal characterisation [55, 60].  This 2-second region is 

assumed to be quasi-stationary.  Although it is sufficient and had been previously used by 

Luttmann et al [60],  performing a further test of stationarity could be carried out in order to 

determine the longest stationary period where signal length region can be selected for more 

accuracy in stationarity.  Researching into extracting the features from the whole signal 

duration could also be expanded for the future work in this research. 

 

After applying the CWT analysis to this 2-second quasi-stationary region, a scalogram was 

formed presenting the scale and time-based plot.  This plot showed which scale at particular 

time was dominant indicated by the amplitude.  The technique of scales to frequencies 

conversion is relatively new, and found to be a powerful way of portraying scales, which are 

less familiar parameters, to frequencies which are more common and meaningful parameters.  

This technique is indeed one of the major procedures in this research, as it leads to the 

selection of the scale index number from the corresponding dominant frequencies, which 

would largely impact the whole signal characterisation. 
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Selecting the scale index numbers was carried out by visually viewing the scalogram and the 

frequency-time based spectrum plot.  The dominant regions were noted with the 

corresponding scale numbers which were chosen.  This technique required sound judgement 

and accuracy as it was done manually.  Hence, the results can still be subjected by human 

error.  Although, whichever index scale number is chosen, as long as the same ones are being 

used throughout the rest of the research process, the end results should give the same 

consistency.  This is due to the nature of the values from any parameter being relative rather 

than absolute.  Future work to develop an extension programming code for selecting 

dominant scale index numbers can be done to eliminate or minimise error. 

 

 

5.6 SEMG Signal Classification Using Artificial Neural Network 
 

The outcome of this research stage managed to show that the methodology of using Artificial 

Neural Network (ANN) was able to predict the untrained data classified as normal muscle 

which underwent 25%, 50% and 75% of Maximum Voluntary Isometric Contraction.  This 

was shown in the results with the minimum error of 3.33% from data of the most suitable 

ANN, net3, with tan-sigmoid transfer function and neural number 6 in the hidden layer. 

 

There was no specific rule in setting the target vector.  Hence, it required a sound judgement 

to set and form one based on the nature of the data and how the data was managed.  Array 

management for the data is therefore an essential part of achieving strong performance of the 

ANN. 

 

The error in the ANN validation process was caused by an overlap in the target vector.  In 

Figure 4.10, showing net3 validation results, some of the data in the second column from data 

No.1 was classified as 50% and 75% MVIC instead of just 50% MVIC.  This may due to the 

fact that there may be a close range of values between features, particularly the mean and 

median frequencies of the average power spectrum.  Having both in the same unit of Hz and 

close statistical position, thus give them more possibilities of being in the close range of 

values.  Hence, due to the overlapping effect, using a combination of features in a similar unit 

such as the mean and median frequencies of the power spectrum may add more complexity in 

setting the target vector.  A combination of features with different units such as the RMS 
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value of the signal and either the mean or median frequencies, and some other parameters 

which differ in units, may improve the performance of the ANN, producing less error and add 

more certainties.  This way of investigation may be carried out for the future research in 

refining the use of ANN for improving efficiency, accuracy and overall performance. 

 

As mentioned before, literature review claimed that the overall performance of the ANN 

depends on the quality and quantity of the selected feature set or data itself rather than just 

having a powerful classifier [45].  Therefore, collecting more data is also another way to 

improve the ANN performance.  The drawback of this is that it is a laborious task but it is one 

of the major contributions for developing a powerful classifier. 

 

Collecting data from abnormal muscles can be carried out where they can be used to test and 

validate the existing classifier which was built to classify for normal muscle.  This technique 

can be executed for validating various classifiers that can be built for different muscles.  It is 

the amount of database of muscle signal data which is again a laborious task that is required 

to be built for this purpose. 

 

So far, the ANN stage has produced satisfactory results with minimal error in terms of 

classifying the untrained normal muscle data as ‘normal’.  This showed that the basic 

procedure developed using ANN can be further utilised and refined for future work by 

collecting more data and investigating into setting features in different units.  This technique 

is concluded to be a strong base method for further study in this research of developing 

muscle signal classifier. 

 

 

5.7 Conclusions 
 

In summary, this research has investigated aspects involved in the digital signal processing 

using wavelet and Fourier analysis for extracting features of SEMG signals, the signal 

collection from forty five males with normal leg muscles, and the use of ANN for developing 

a signal classifier.  As a beginning research area in the faculty, various aspects were 

developed more in an outlined manner rather than a strong focus in one area, using 
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techniques used in the literature review.  More focused works on a particular area can be 

done in future work of this research. 

 

The area which had been covered in this research included: 

• Software development which used the principles of digital signal processing using 

different analysis schemes of FFT, STFT, CWT, DWT and DWPT to extract features 

of the SEMG signals. 

• Understanding the SEMG signals and the procedures or protocols in collecting them. 

• Designing an Artificial Neural Network which trained data and validated the network 

that it is capable of classifying the data for a certain category. 

 

This research has produced results which were satisfactory, and hence the methodology 

developed is potentially promising and can be used as a basis of practice for future work in 

developing a SEMG signal classifier. 

 

 

5.8 Recommendations 
 

• Data Acquisition, apparatus and setups – more investigation can be carried out 

focusing on different settings, equipment or setups to view how they influence the 

overall results. 

 

• Feature extraction and analysis schemes  

– Performing a further test of stationarity to determine the longest stationary 

period where signal length region can be selected for more accuracy in 

stationarity.  Researching into extracting the features from the whole signal 

duration could also be expanded for the future work in this research. 

– Continuous Wavelet Transform can remain to be the first or overall basic 

analysis scheme for feature extraction.  For future work, the Discrete Wavelet 

Transform and Discrete Wavelet Packet Transform analysis can be utilised to 

analyse focusing more into each level of scale index in order to gain detailed 

characterisation of the signals. 
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– Developing an extension programming code for selecting dominant scale 

index numbers from the scalogram to minimise or eliminate error when it is 

done manually. 

 

• Feature selection – different sets of features can be further investigated other than the 

ones that were determined in this research.  RMS value of the signals was an efficient 

feature that can be used in combination with other features like the mean frequency of 

the average power spectrum and some other features which are not the same in unit or 

close range in values. 

 

• Artificial Neural Network – more data can be obtained and employed for training 

ANN to establish a more powerful and accurate classifier.  Data from abnormal 

muscles can be collected and used to test and validate the existing classifier for 

accuracy. 

 

• Future Classifiers – By building a substantial database of SEMG muscle signals of 

different conditions, which are normal and abnormal with various ailments, classifiers 

can be further developed into recognising these conditions. 
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Appendix A 
 

Factors of SEMG Signal Measurement Complexity 
 

The factors that gives rise to the complexity of SEMG signal measurement were discussed 

and classified in depth by De Luca [20] and identified in the following categories  

• Causative 

• Intermediate 

• Deterministic 

The interrelationships of the factors and effects on the EMG signal and subsequent 

interpretation of the signal characteristics are displayed in the following. 

 

The causative factors have a basic effect on the signal, split into two groups: 

• Extrinsic factors: those associated with electrode structures and its 

placement/orientation on the surface of the skin above the muscle. 

• Intrinsic factors: the physiological, anatomical and biochemical characteristics of the 

muscle.  Unlike the extrinsic factors associated with the electrodes, these factors 

cannot be easily controlled because they involves: 

- the number of active motor units at any particular time of the contraction 

- fibre composition of the muscle which determine change in the pH during 

contraction 

- Blood flow in the muscle which determine the rate of metabolism during 

contraction 

- Fibre diameter 

- Depth and location of the active fibres 

- The amount of tissue between the surface of the muscle and the electrode 

which affects the spatial filtering of the signal. 

 

The intermediate factors represent physical and physiological phenomena that are influenced 

by one or more of the causative factors and in turn influence the deterministic factors, which 

include: 

• Band-pass filtering aspects of the electrode, an inherent characteristic of a 

differential electrode configuration. 
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• Detection volume of the electrode which determine the number and weight of a 

motor unit action potential (MUAP) that composes the signal. 

• Superposition of action potentials in the detected EMG signal which influence the 

characteristics of the amplitude and frequency of the signal. 

• Crosstalk from nearby muscle, which contaminates the signal and may mislead 

interpretation of the signal information. 

• Conduction velocity of the action potentials that propagate along the muscle fibre 

membrane; the conduction velocity affects amplitude and frequency characteristics 

of the signal. 

• The spatial filtering effect due to relative position of the electrode and the active 

muscle fibres. 

 

The deterministic factors have a direct bearing on the information in the EMG signal and the 

recorded force, these includes: 

• The number of active motor units 

• Motor unit force-twitch 

• Mechanical interaction between muscle fibres 

• Motor unit firing rate 

• The number of detected motor units 

• Amplitude, duration and shape of the MUAPs 

• Recruitment stability of motor units 



Appendix B1 
 

Signal Processing Program using Fast Fourier Transform (FFT) Analysis by 

LabVIEW 
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Appendix B2 
 

Signal Processing Program Using Fast Fourier Transform (FFT) 

Analysis by MATLAB 
 

1 % This program produces the FFT (Frequency and Power Spectrum) of a 2 second period 

of an SEMG Signal 

2 %(Written by Jeff Kilby) 

3 

4 % Data File (Raw Data) 

5 load data50r; 

6 

7 % Force Trace 

8 force=data50r(:,1); 

9 

10 %SEMG Signal 

11 emg=data50r(:,2); 

12 

13 % SEMG Signal (demean and filtered using a Butterworth Filter Order=4, LF=5Hz and 

HF=500Hz) 

14 mn=mean(emg); 

15 emgmn=emg-mn; 

16 n=4; 

17 Wn=[5 500]/1024; 

18 [b,a]=butter(n, Wn); 

19 emgmnfl=filtfilt(b,a,emgmn); 

20 

21 % Plot of 

22 % Force 

23 % SEMG Signal 

24 % 2 seconds of data 

25 %FFT Spectrum Plots 

26 
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27 subplot(4,1,1); 

28 plot(force) 

29 ylabel('Force (Nm)') 

30 xlabel('Sample No') 

31 title('Force Trace') 

32 

33 subplot(4,1,2); 

34 plot(emgmnfl) 

35 ylabel('Amplitude (mV)') 

36 xlabel('Sample No') 

37 title('SEMG Signal (demeaned and filtered)') 

38 

39 subplot(4,1,3); 

40 plot(emgmnfl(10223:14319)) 

41 ylabel('Amplitude (mV)') 

42 xlabel('Sample No') 

43 title('2 sec SEMG Signal (Sample No 10223 to 14319)') 

44 

45 % FFT Frequency and Power Spectum Plots 

46 Y=fft(emgmnfl(10223:14319),2048); 

47 Pyy=Y.*conj(Y)/2048; 

48 f=2048*(0:1024)/2048; 

49 

50 subplot(4,2,7); 

51 plot(f,abs(Y(1:1025))) 

52 ylabel('Magnitude') 

53 xlabel('Frequency') 

54 title('Frequency Spectrum Plot of 2 sec SEMG Signal') 

55 

56 subplot(4,2,8); 

57 plot(f,Pyy(1:1025)) 

58 ylabel('Magnitude') 

59 xlabel('Frequency') 

60 title('Power Spectrum Plot of 2 sec SEMG Signal') 
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Appendix B3 
 

Signal Processing Program using Short Time Fourier Transform (STFT) 

Analysis by LabVIEW 
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Appendix B4 
 

Signal Processing Program Using Short Time Fourier Transform 

(STFT) Analysis by MATLAB 
 

1 % This program produces a Spectrogram of a 2 second period of an SEMG Signal 

2 % (Written by Jeff Kilby) 

3 

4 % Data File (Raw Data) 

5 load data50r; 

6 

7 % Force Trace 

8 force=data50r(:,1); 

9 

10 % SEMG Signal 

11 emg=data50r(:,2); 

12 

13 % SEMG Signal (demean and filtered using a Butterworth Filter Order=4, LF=5Hz and 

HF=500Hz) 

14 mn=mean(emg); 

15 emgmn=emg-mn; 

16 n=4; 

17 Wn=[5 500]/1024; 

18 [b,a]=butter(n, Wn); 

19 emgmnfl=filtfilt(b,a,emgmn); 

20 

21 % Plot of 

22 % Force 

23 % SEMG Signal 

24 % 2 seconds of data 

25 % STFT Spectogram 

26 

27 subplot(4,1,1); 
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28 plot(force) 

29 ylabel('Force (Nm)') 

30 xlabel('Sample No') 

31 title('Force Trace') 

32 

33 subplot(4,1,2); 

34 plot(emgmnfl) 

35 ylabel('Amplitude (mV)') 

36 xlabel('Sample No') 

37 title('SEMG Signal (demeaned and filtered)') 

38 

39 subplot(4,1,3); 

40 plot(emgmnfl(10223:14319)) 

41 ylabel('Amplitude (mV)') 

42 xlabel('Sample No') 

43 title('2 sec SEMG Signal (Sample No 10223 to 14319)') 

44 

45 % STFT Analysis (Window 0.5sec with 0.25sec overlap) 

46 

47 subplot(4,1,4); 

48 specgram(emgmnfl(10223:14319),1024,2048,HANN(1024),512) 

49 title('Spectogram');colorbar 
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Appendix B5 
 

Signal Processing Program using Continuous Wavelet Transform (CWT) 

Analysis by LabVIEW 
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Appendix B6 
 

Signal Processing Program Using Continuous Wavelet Transform 

(CWT) Analysis by MATLAB 
 

1 %This program produces a Continuous Wavelet Transform (CWT) Scalogram of a 2 

second 

period of an SEMG Signal 

2 %(Written by Jeff Kilby) 

3 

4 %Data File (Raw Data) 

5 load data50r; 

6 

7 %Force Trace 

8 force=data50r(:,1); 

9 

10 %SEMG Signal 

11 emg=data50r(:,2); 

12 

13 %SEMG Signal (demean and filtered using a Butterworth Filter Order=4, LF=5Hz and 

HF=500Hz) 

14 mn=mean(emg); 

15 emgmn=emg-mn; 

16 n=4; 

17 Wn=[5 500]/1024; 

18 [b,a]=butter(n, Wn); 

19 emgmnfl=filtfilt(b,a,emgmn); 

20 

21 %Plot of 

22 %Force 

23 %SEMG Signal 

24 %2 seconds of data 

25 %CWT Spectogram 
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26 

27 subplot(4,1,1); 

28 plot(force) 

29 ylabel('Force (Nm)') 

30 xlabel('Sample No') 

31 title('Force Trace') 

32 

33 subplot(4,1,2); 

34 plot(emgmnfl) 

35 ylabel('Amplitude (mV)') 

36 xlabel('Sample No') 

37 title('SEMG Signal (demeaned and filtered)') 

38 

39 subplot(4,1,3); 

40 plot(emgmnfl(10223:14319)) 

41 ylabel('Amplitude (mV)') 

42 xlabel('Sample No') 

43 title('2 sec SEMG Signal (Sample No 10223 to 14319)') 

44 

45 %CWT Scalogram (Mother Wavelet - Morlet, No of Scales - 256) 

46 

47 subplot(4,1,4); 

48 cwt(emgmnfl(10223:14319),1:257,'morl' ,'plot');colorbar 

49 ylabel('Scale No') 

50 xlabel('Sample No') 

51 title('Scalogram') 

 



 128



Appendix B7 
 

Signal Processing Program using Discrete Wavelet Transform (DWT) 

Analysis by LabVIEW 
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Appendix B8 
 

Signal Processing Program Using Discrete Wavelet Transform 

(DWT) Analysis by MATLAB 
 

1 % This program produces the Discrete Wavelet Transform (DWT) of a 2 second period of 

and SEMG Signal 

2 % (Written by Jeff Kilby) 

3 

4 % Data File (Raw Data) 

5 load data50r; 

6 

7 % Force Trace 

8 force=data50r(:,1); 

9 

10 % SEMG Signal 

11 emg=data50r(:,2); 

12 

13 % SEMG Signal (demean and filtered using a Butterworth Filter Order=4, LF=5Hz and 

HF=500Hz) 

14 mn=mean(emg); 

15 emgmn=emg-mn; 

16 n=4; 

17 Wn=[5 500]/1024; 

18 [b,a]=butter(n, Wn); 

19 emgmnfl=filtfilt(b,a,emgmn); 

20 

21 %Plot of 

22 % Force 

23 % SEMG Signal 

24 % 2 seconds of data 

25 % DWT 

26 
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27 subplot(4,1,1); 

28 plot(force) 

29 ylabel('Force (Nm)') 

30 xlabel('Sample No') 

31 title('Force Trace') 

32 

33 subplot(4,1,2); 

34 plot(emgmnfl) 

35 ylabel('Amplitude (mV)') 

36 xlabel('Sample No') 

37 title('SEMG Signal (demeaned and filtered') 

38 

39 subplot(4,1,3); 

40 plot(emgmnfl(10223:14319)) 

41 ylabel('Amplitude (mV)') 

42 xlabel('Sample No') 

43 title('2 sec SEMG Signal (Sample No 10223 to 14319)') 

44 

45 % DWT Analysis (Mother Wavelet - db05, Scale Index - 256) 

46 

47 dwt=emgmnfl(10223:14319); 

48 subplot(4,1,4); 

49 plot(wavedec(dwt,4,'db05')); 

50 ylabel('Amplitude (mV)') 

51 xlabel('Sample No') 

52 title('DWT') 
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Appendix B9 
 

Signal Processing Program using Discrete Wavelet Packet Transform 

(DWPT) Analysis by LabVIEW 
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Appendix B10 
 

Signal Processing Program Using Discrete Wavelet Packet 

Transform (DWPT) Analysis by MATLAB 
 

1 %This program produces the Discrete Wavelet Packet Transform to Level 6 (Low Filter 

Path) of a 2 second period of an SEMG Signal 

2 %(Written by Jeff Kilby) 

3 

4 %Data File (Raw Data) 

5 load data50r; 

6 

7 %Force Trace 

8 force=data50r(:,1); 

9 

10 %SEMG Signal 

11 emg=data50r(:,2); 

12 

13 %SEMG Signal (demean and filtered using a Butterworth Filter Order=4, LF=5Hz and 

HF=500Hz) 

14 mn=mean(emg); 

15 emgmn=emg-mn; 

16 n=4; 

17 Wn=[5 500]/1024; 

18 [b,a]=butter(n, Wn); 

19 emgmnfl=filtfilt(b,a,emgmn); 

20 

21 %Plot of 

22 %Force 

23 %SEMG Signal 

24 %2 seconds of data 

25 %DWPT Scales 1-6 Low Filter Path 

26 
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27 subplot(9,1,1); 

28 plot(force) 

29 ylabel('Force (Nm)') 

30 xlabel('Sample No') 

31 title('Force Trace') 

32 

33 subplot(9,1,2); 

34 plot(emgmnfl) 

35 ylabel('Amplitude (mV)') 

36 xlabel('Sample No') 

37 title('SEMG Signal (demeaned and filtered)') 

38 

39 subplot(9,1,3); 

40 plot(emgmnfl(10223:14319)) 

41 ylabel('Amplitude (mV)') 

42 xlabel('Sample No') 

43 title('2 sec SEMG Signal (Sample No 10223 to 14319)') 

44 

45 %DWPT Analysis 

46 %Mother Wavelet - db05 

47 

48 dwt=emgmnfl(10223:14319); 

49 [C,L]=wavedec(dwt,6, 'db05'); 

50 

51 waveL1=appcoef(C,L, 'db05',1); 

52 waveL2=appcoef(C,L, 'db05',2); 

53 waveL3=appcoef(C,L, 'db05',3); 

54 waveL4=appcoef(C,L, 'db05',4); 

55 waveL5=appcoef(C,L, 'db05',5); 

56 waveL6=appcoef(C,L, 'db05',6); 

57 

58 subplot(9,1,4); 

59 plot(waveL1) 

60 title('Scale 1 (L)') 
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61 ylabel('Amplitude (mV)') 

62 xlabel('Sample No') 

63 

64 subplot(9,1,5); 

65 plot(waveL2) 

66 title('Scale 2 (LL)') 

67 ylabel('Amplitude (mV)') 

68 xlabel('Sample No') 

69 

70 subplot(9,1,6); 

71 plot(waveL3) 

72 title('Scale 3 (LLL)') 

73 ylabel('Amplitude (mV)') 

74 xlabel('Sample No') 

75 

76 subplot(9,1,7); 

77 plot(waveL4) 

78 title('Scale 4 (LLLL)') 

79 ylabel('Amplitude (mV)') 

80 xlabel('Sample No') 

81 

82 subplot(9,1,8); 

83 plot(waveL5) 

84 title('Scale 5 (LLLLL)') 

85 ylabel('Amplitude (mV)') 

86 xlabel('Sample No') 

87 

88 subplot(9,1,9); 

89 plot(waveL6) 

90 title('Scale 1 (LLLLLL)') 

91 ylabel('Amplitude (mV)') 

92 xlabel('Sample No') 
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Appendix B11 
 

Sub-VIs Designs of ‘demean’, ‘Filter, and ‘PSpec’ by LabVIEW 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

subVI – demean 

subVI - Filter 
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subVI – PSpec 
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Appendix C1 
 

Recommendation for Sensor Locations in Hip or Upper Leg 

Muscles – Vastus Lateralis 
 

 

Muscle 

Name Quadriceps Femoris 

Subdivision vastus lateralis 

 

Muscle Anatomy 

Origin  Proximal parts of intertrochanteric line, anterior and inferior 

orders of greater trochanter, lateral lip of gluteal tuberosity, 

proximal half of lateral lip of linea aspera, and lateral 

intermuscular septum 

Insertion  Proximal border of the patella and through patellar ligament 

Function  Extension of the knee joint 

 

Recommended sensor placement procedure 

Starting posture  Sitting on a table with the knees in slight flexion and the upper 

body slightly bend backward. 

Electrode size  Maximum size in the direction of the muscle fibres: 10 mm 

Electrode distance  20 mm 

 

Electrode placement 

- location  Electrodes need to be placed at 2/3 on the line from the anterior 

spina iliaca superior to the lateral side of the patella 

- orientation  In the direction of the muscle fibres 

- fixation on the skin (Double sided) tape / rings or elastic band 

- reference electrode On / around the ankle or the proc. spin of C7 
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Clinical test  Extend the knee without rotating the thigh while applying 

pressure against the leg above the ankle in the direction of 

flexion. 

Remarks The SENIAM guidelines include also a separate sensor 

placement procedure for the vastus medialis and the rectus 

femoris muscle. 

  

Muscle Anatomy 



 144

Appendix C2 
 

Recommendation for Sensor Locations in Hip or Upper Leg 

Muscles – Vastus Medialis 
 

Muscle 

Name Quadriceps Femoris 

Subdivision vastus medialis 

 

Muscle Anatomy 

Origin  Distal half of the intertrochanteric line, medial lip of line aspera, 

proximal part of medial supracondylar line, tendons of adductor 

longus and adductor magnus and medial intermuscular septum 

Insertion Proximal border of the patella and through patellar ligament 

Function Extension of the knee joint 

 

Recommended sensor placement procedure 

Starting posture Sitting on a table with the knees in slight flexion and the upper 

body slightly bend backward. 

Electrode size Maximum size in the direction of the muscle fibres: 10 mm. 

Electrode distance 20 mm. 

 

Electrode placement 

- location Electrodes need to be placed at 80% on the line between the 

anterior spina iliaca superior and the joint space in front of the 

anterior border of the medial ligament. 

- orientation Almost perpendicular to the line between the anterior spina 

iliaca superior and the joint space in front of the anterior border 

of the medial ligament. 

- fixation on the skin (Double sided) tape / rings or elastic band. 

- reference electrode On / around the ankle or the proc. spin. of C7. 
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Clinical test  Extend the knee without rotating the thigh while applying 

pressure against the leg above the ankle in the direction of 

flexion. 

Remarks The SENIAM guidelines include a separate sensor placement 

procedure for the vastus lateralis and the rectus femoris muscle. 

 



Appendix D 
 

Final Version of Signal Processing Program using Continuous Wavelet 

Transform (CWT) Analysis by LabVIEW 
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Block Diagram of the SubVI PSpec Program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

subVI – PSpec Aver 
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Front Panel Showing the Results of One Set of Typical Signals 
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Appendix E 
 

Program Notation for Training Using Artificial Neural Network 

(ANN) by MATLAB 

 

 

1 % This program produces an Artificial Neural Network (ANN) for Classification of SEMG 

Signals by Force 

2 % (Written by Jeff Kilby) 

3 

4 

5 % This part of the program reads the data into Matlab 

6 p=xlsread('data_train'); 

7 

8 

9 % This part of the program sets up targets for training the ANN 

10 n=35; 

11 t25=[1;0;0]; 

12 t50=[0;1;0]; 

13 t75=[0;0;1]; 

14 a=[t25 t50 t75]; 

15 t=repmat(a,1,n); 

16 

17 

18 % This part of the program trains and creates the ANN 

19 net1=newff(minmax(p),[4,3],g,'trainlm'); 

20 net1.trainParam.show=50; 

21 net1.trainParam.epochs=1000; 

22 net1.trainParam.goal=0.001; 

23 [net1,tr1]=train(net1,p,t) 
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