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In simultaneous localisation and mapping (SLAM) the correspondence problem, specifi-
cally detecting cycles, is one of the most difficult challenges for an autonomous mobile
robot. In this paper we show how significant cycles in a topological map can be identified
with a companion absolute global metric map. A tight coupling of the basic unit of repre-
sentation in the two maps is the key to the method. Each local space visited is represented,
with its own frame of reference, as a node in the topological map. In the global abso-
lute metric map these local space representations from the topological map are described
within a single global frame of reference. The method exploits the overlap which occurs
when duplicate representations are computed from different vantage points for the same
local space. The representations need not be exactly aligned and can thus tolerate a limited
amount of accumulated error. We show how false positive overlaps which are the result of
a misaligned map, can be discounted.
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1. Introduction1

In this paper we describe one of the approaches2
we are using to solve the corresponding prob-3
lem in simultaneous mapping and localisation4
(SLAM). This is regarded as one of the hard5
problems in SLAM. It is often termed cycle or6
loop closing because the problem presents itself7
when the robot traverses a cycle in its environ-8
ment. The challenge is how to recognise that the9
cycle has been closed – that parts of the environ-10
ment observed from different vantage points cor-11
respond to the same physical space.12

∗ Author for correspodence.

The problem is encountered in both topologi- 1
cal and absolute metric maps. For absolute metric 2
maps current localisation methods provide consis- 3
tent enough local maps but residual error accumu- 4
lates over large distances. By the time a large cycle 5
is encountered the map will contain significant 6
inconsistencies (see Fig. 1(c)). Current approaches 7
use some form of probability evaluation to esti- 8
mate the most likely pose (x, y, θ ) of the robot 9
given its current observations and the current state 10
of its map (Gutmann and Konolige, 1999; Hähnel 11
et al., 2003a, b; Thrun et al., 2003) (x and y are 12
the robot’s location in 2D coordinates and θ is the 13
robot’s orientation). Detecting the cycle allows the 14
map to be aligned correctly but means the error 15
has to be corrected backwards through the map. 16
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694 Jefferies et al.

Fig. 1. The topological and metric maps. Note that ASRs 12 and 14 correspond to the same physical space and will be detected as
such if they overlap sufficiently (a) a corner of the robot’s environment, a large semi-open laboratory and its surrounding corridor.
(b) The topological map. (c) The global metric map. The ASRs are numbered in the order they are encountered.

Most topological approaches to robot spatial1
mapping partition the environment in some way2
and link these partitions as they are experienced3
to form a topological map (Yeap and Jefferies,4
1999; Kuipers, 2000; Tomatis et al., 2001; Bosse5
et al., 2003). The advantage of this approach is6
that global consistency is not an issue because7
the error cannot grow unbounded as in absolute8
metric maps. Consistency is not a problem within9
the partitions as they are usually around the size10
of a local environment. State of the art localisa-11
tion methods are good enough for local environ-12
ments. In closing cycles in a topological map the13
problem is to match two nodes in the topologi-14
cal map if they represent the same physical space15
(the correspondence problem) and to distinguish16
two nodes that look the same if they represent17
different parts of the environment (the perceptual18
aliasing problem).19

Recently hybrid topological/metric approaches20
have emerged (Thrun, 1998; Tomatis et al., 2002;21
Bosse et al., 2003; Thrun et al., 2003) and in Bosse22
et al. (2003) the advantages of both the topologi-23
cal and metric mapping paradigms are exploited24
in closing large cycles. Hybrid approaches are25
popular in the cognitive mapping community26
(Kuipers and Byun, 1988; Yeap, 1988; Chown27
et al., 1995; Yeap and Jefferies, 1999) however,28
the metric and topological maps do not have29

equal status. The topological map is the dom- 1
inant representation in their models. Cognitive 2
maps are often regarded as being like a “map 3
in the head” that an agent (human, animal or 4
robot) has for its experience of its spatial envi- 5
ronment. In absolute metric maps the need to 6
match the local map associated with a particular 7
pose and the need to propagate error corrections 8
backwards through the map has seen the intro- 9
duction of topologically linked local metric maps 10
for sequences of poses (Hähnel et al., 2003a, b; 11
Thrun et al., 2003). However, these are a means 12
to an end which is more consistent absolute met- 13
ric maps. 14

Our mapping system is based on our previ- 15
ous work where a computational theory of cog- 16
nitive mapping has been derived from empirical 17
evidence of how humans and animals solve sim- 18
ilar problems (Jefferies and Yeap, 1988; Yeap and 19
Jefferies, 1999). An agent could be human ani- 20
mal or robot. Cognitive mapping researchers have 21
been interested in the correspondence problem 22
for some time but it was not clear from their 23
computer simulations that their algorithms would 24
handle all the uncertainties that a robot faces in 25
the real world (Kuipers and Byun, 1988; Yeap, 26
1988; Yeap and Jefferies, 1999). Recently cogni- 27
tive mapping researchers have begun to adapt 28
their theories and algorithms for the real world 29
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Using absolute metric maps 695

problem robots encounter (Beeson et al., 2003;1
Jefferies et al., 2003; Kuipers et al., 2004; Modayil2
et al., 2004).3

Our approach to mapping the robot’s envi-4
ronment extends the hybrid model of Yeap and5
Jefferies (1999) and adheres to the dominant cog-6
nitive mapping tenet, that the prime representa-7
tion is the topological map (see Yeap and Jefferies,8
1999; Kuipers, 2000 for a discussion on why9
this is so). Yeap and Jefferies (1999) topologi-10
cal map of metric local space descriptions (see11
Fig. 1(b)) has been implemented on a Pioneer12
2DX mobile robot with minor adaptations to13
handle input from a forward facing laser range14
sensor with a 180◦ “viewing” angle. Yeap and15
Jefferies (1999) proposed a limited (in size) abso-16
lute metric map to close small cycles in the topo-17
logical map. The restricted size of their absolute18
metric map accounts for the limitations in the19
human or animal path integration system with20
accumulating error (Gallistel and Cramer, 1996).21
The idea is that parts of the map that are dis-22
tant enough from the agent’s current pose will23
be significantly misaligned with rest of the map24
due to accumulating error. These would simply25
drop out of the map. In practice, however, with-26
out some error correction the global metric map27
could only detect very small cycles. In the imple-28
mentation we describe here, using a locally con-29
sistent global metric map, we are able to detect30
significant cycles. Using this method, we use the31
global metric map to detect and close cycles in32
the topological map. False positive matches are33
possible but using the method in conjunction34
with topological verification we are able to elim-35
inate most false positive matches (Jefferies et al.,36
2003).37

2. The basic mapping approach38

The topological map comprises a representation39
for each local space visited with connections to40
others which have been experienced as neigh-41
bours. The local space is defined as the space42
which “appears” to enclose the robot. The local43
space representation is referred to as an abso-44
lute space representation (ASR) a term which45
emphasises the separateness and independence of46
each individual local space. Each ASR in the47

topological map has its own local coordinate 1
frame. Note that these are local absolute spaces 2
in contrast to the global absolute metric represen- 3
tations referred to in Section 1. Thus the nodes 4
in the topological map are metric representations 5
of ASRs. The edges are the transitions which 6
take the robot from one local space to another. 7
The global metric map is computed alongside the 8
topological map. 9

The basic algorithm described in Yeap and 10
Jefferies (1999) was modified to handle input 11
from a laser range sensor and accumulating odo- 12
metric and sensor errors. However, the fundamen- 13
tals of the algorithm remain. Yeap and Jefferies 14
(1999) argued that the exits should be constructed 15
first because they are the gaps in the boundary 16
which tell the robot how it can leave the current 17
space. An exit will occur where there is an occlu- 18
sion and is formed by creating the shortest edge 19
which covers the occlusion. 20

The raw laser range data from a 180◦ scan is 21
converted into lines representing surfaces which 22
block the robot’s line of sight using a straight- 23
forward regression algorithm. The coordinate sys- 24
tem for the first ASR is centred on the robot’s 25
initial pose (x, y, θ ), where x, y, and θ are all set 26
to 0. Initially an occlusion map is constructed 27
(see Fig. 2(b)) which comprises these lines and 28
their occlusions and it is from this map that 29
the exits are constructed. Figure 2(b) shows the 30
exits overlaid on the occlusion map. Exits occur 31
where there is a gap that is large enough for 32
the robot to pass through. In the environment 33
depicted in Fig. 2(a), gaps that will not allow the 34
robot passage under a table or desk often occur 35
between chair legs. Once the exits are formed 36
it is a straightforward process to connect the 37
surfaces which lie between them to form the 38
boundary of the ASR. At the same time sur- 39
faces which are viewed through the exits, and are 40
thus outside the ASR, are eliminated. Parts of 41
the ASR which require further investigation are 42
marked as unknown. Figure 2(d) shows the ASR 43
which results. Figure 2(e) shows how the ASR is 44
extended when the unknown regions are investi- 45
gated. The ASR in Fig. 2(d) indicates the regions 46
which need exploring. The robot moves towards 47
each of these in turn. The new laser range data 48
is incorporated into the occlusion map (Fig. 2(c)) 49
and the ASR recomputed. Note that once the 50
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Fig. 2. (a) A section of the robot’s environment from which the ASR in (d) and (e) was constructed. (b) The occlusion map
extracted from raw laser range data overlaid with the exits E1 and E2. The regions behind the robots line of “sight” are marked
as unknown. (c) The updated occlusion map when the robot investigates the unknown regions. (d) The temporary ASR constructed
from the occlusion map in (b). (e) The final ASR constructed from the occlusion map in (c).

unknown regions are incorporated the ASR could1
be structured differently. This can be seen in2
the resulting ASR in Fig. 2(e). In particular,3
exploring the peripheries of the robot’s view often4
results in ASRs with are structurally different5
from an initial ASR. The initial ASR merely pro-6
vides a reasonable guide as to the overall shape7
of the local space and indicates where the robot8
should explore to obtain a complete enclosure.9
Further exploration refines the ASR to a better10
fitting representation of the robot’s local space.11

With its first ASR complete, the robot chooses12
an exit by which to explore the rest of its envi-13
ronment. In our exploration strategy, the robot14
investigates in a depth first manner, choosing the15
next largest exit to explore at each step. For the16
ASR in Fig. 2(e) this is exit, E2. When this17
exit has been crossed, the robot is in a new18
local space, and a new local space ASR2 is con-19
structed. The process proceeds as for ASR1 (see20

Fig. 3(b) and (c)), the coordinate system being 1
centred on the robot’s initial pose in the new 2
local space. ASR2 is then connected to ASR1, in 3
the topological map (Fig. 3(d)). The edge con- 4
necting the two ASRs indicates that while in 5
ASR1, the transition to ASR2 is via ASR1’s exit, 6
E2. From ASR2 the transition to ASR1 is via 7
ASR2’s exit, E3. The global map (Fig. 3(e)) com- 8
prises both ASR1 and ASR2 in a single frame 9
from of reference centred on the coordinate sys- 10
tem of the current ASR, ASR2. See Yeap and 11
Jefferies (1999) for an indepth description of the 12
basic algorithm and (Jefferies et al., 2002, 2003) 13
for the details of how it is implemented on 14
an autonomous mobile robot using laser range 15
sensing. 16

Rofer’s (2002) histogram correlation localisa- 17
tion method is used to provide consistency within 18
ASRs. New ASRs are computed whenever the 19
robot crosses an exit into an unexplored region 20
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Fig. 3. (a) The first ASR. (b) The initial enclosure for ASR2, computed when the robot crossed E2 in ASR1. (c) The final enclo-
sure for ASR2. (d) ASR1 and ASR2 are connected via the traversed exits to form a topological map. (e) The global metric map.

and ASRs are linked, as they are experienced, via1
the exits which connect them to their neighbours2
in the topological map. Figure 1 shows the topo-3
logical and global maps constructed in our large4
L-shaped open plan laboratory and its surround-5
ing corridor. ASRs 1–8 and ASR 13 comprise the6
laboratory and the remaining the corridor. Door-7
ways, tables and desks provide occlusions where8
exits are computed. In large open spaces there9
are fewer occlusions and thus fewer opportuni-10
ties to partition the space, for example ASR 7 in11
Fig. 1.12

3. Closing cycles with a global absolute metric13
map14

The main advantage of global absolute metric15
mapping should be that because the robot’s loca-16
tion is measured in absolute terms, returning to a17
previously visited place is clearly apparent by vir-18
tue of robot’s location within the absolute map.19
In reality, however, this is not the case – signifi-20
cant misalignment of the map occurs as resid-21
ual errors accumulate (see Fig. 1(c)). However,22
we noted that even when there is significant mis-23
alignment in the map, the corresponding ASRs24

may continue to have substantial overlap. For 1
example, in Fig. 1(c) due to the misalignment 2
along the corridor comprising ASRs 11 and 12 3
one cannot detect immediately from the robot’s 4
pose that the robot has re-entered ASR12 from 5
ASR13. However, it can be seen that ASR12 6
overlaps with the ensuing duplicate ASR14. Note 7
that ASR14 is smaller than ASR12 as the robot 8
has yet to fully explore it. If we maintain the 9
global metric map as a collection of ASRs in a 10
single global coordinate system, we can exploit 11
this overlap to detect that the robot is re-entering 12
a known part of its environment. 13

The global metric map is discretised into the 14
local space descriptions which correspond to the 15
nodes in the topological map. Whenever the robot 16
crosses an untraversed exit the robot computes 17
a new ASR for its current local environment. 18
It then checks its known ASRs in the global 19
metric map for overlap, matching ASR centres. 20
The robot’s position is firstly projected to the 21
centre of the current ASR and this location is 22
checked for inclusion in the ASRs in the global 23
map. For example, in Fig. 1(c) the robot’s posi- 24
tion is projected to the centre of ASR14. This 25
position is checked for inclusion in ASRs 1–12. 26
This is true for ASR12. To minimise the effect 27
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of the spurious overlaps which are the result of1
the misalignment we perform a crosscheck of the2
matching ASRs’ centers. In Fig. 1(c) we take the3
centre of ASR12 and check it for inclusion in4
ASR14. This eliminates many of the false posi-5
tive matches at very little cost. The trade-off is6
that some positive matches will be missed. The7
method tolerates a significant but limited amount8
of accumulated error – each of the centers of9
the potentially duplicate ASRs must lie inside10
the other. Figure 5(b) shows an example of an11
overlap which would fail the centres crosscheck.12
While the above check discounts many false pos-13
itive matches, if the accumulated error is signifi-14
cantly large then some false matches may pass15
this test.16

The next step in the process is to “close the17
loop” in the topological map. In the example of18
Fig. 1(c), this means that ASR12 is linked to19
ASR13. In this example the exits can be aligned20
and the link made via the corresponding exits21
(see Fig. 4). We do not attempt to combine22
ASR12 and ASR14 into a single integrated rep-23
resentation. The problem is that even accounting24
for the fact ASR14 has not been fully explored,25
there are significant differences in the boundary26
of ASR12 and ASR14. Some of this is due to27
sensing and odometry errors but it can also be28
attributed to the fact that the ASRs are viewed29
from different vantage points, The same physical30
space does not look the same when viewed from31
different locations. Combining the ASRs would32

Fig. 4. The topological map with its cycle closed, i.e.
ASR12A is linked to ASR13.

provide a neater map. However, from whichever 1
viewpoint the robot encountered the ASR, the 2
map would be a compromise. This is problem- 3
atic in dynamic environments where discrepancies 4
in the representation of the current view as com- 5
pared with a previous representation need to be 6
attributed to either map errors or real changes in 7
the environment. If multiple representations are 8
recorded real changes can be tracked over time; 9
the most appropriate ASR can be selected and 10
out of date representations can disappear once it 11
is certain they are no longer relevant. 12

Thus we maintain duplicate representations for 13
the same physical space which correspond to the 14
different vantage points from which they were 15
initially computed. The links in the topological 16
map which correspond to duplicate ASRs are 17
currently unidirectional. For example, in Fig. 4 18
when traversing ASR11 to ASR13, ASR12 is 19
used. When traversing ASR3 to ASR11, ASR14 20
is used. 21

Figures 5 and 6 show the mapping of the cycle 22
around the group of tables in our large labo- 23
ratory. This cycle raises some interesting issues 24
which we are currently investigating. In Fig. 5(a) 25
and (b), the topological and global maps, respec- 26
tively, the robot is currently in ASR5. Note that 27
the corner of ASR5 overlaps ASR1 in the global 28
map but appropriately this does not signify a 29
match. In Fig. 5 (c) and (d) the robot has moved 30
into ASR6. It can be seen in Fig. 5 (d) that 31
ASR6 is almost entirely contained within a cor- 32
ner of ASR1. However, this match will fail the 33
centre cross match check, i.e. the centre of ASR6 34
is within ASR1, but not vice versa. This demon- 35
strates the circumspect nature of our approach. 36
In this case a match is appropriate, however, 37
matches such as these are often the result of 38
spurious overlaps due to misalignment errors. 39
Currently we err on the side of caution and 40
reject all such matches. However, inadvertently 41
rejecting a true positive such as in Fig. 5 (d) 42
often means that detecting the cycle is delayed 43
rather than being missed altogether. In Fig. 6 44
(a) and (b) the robot has entered ASR7. It 45
can be seen clearly in Fig. 6 that ASR7 cov- 46
ers the greater part of ASR1. Cross matching 47
the centres of these two ASRs does indicate that 48
they are representations for the same physical 49
space. Armed with the knowledge we have of this 50

Journal: JIMS MS.: NO00004372 PIPS: NO00004372 � TYPESET DISK LE � CP Disp.: 14/9/2005 Pages: 10



U
nc

or
re

ct
ed

 P
ro

of

Using absolute metric maps 699

Fig. 5. (a) and (b) The topological and global metric maps, respectively. The robot is currently in ASR5. (c) and (d) The topolog-
ical and metric maps, respectively. The robot is in ASR6. ASR6 overlaps ASR1 in (d) but fails the centre crosscheck.

match it should be possible to backtrack to the1
previously rejected match, accepting it in hind-2
sight. We have not implemented this yet. Once3
a match is indicated it can be verified using our4
topological verification approach (Jefferies et al.,5
2003).6

The main purpose of our approach is to close7
cycles in the topological map. However, with the8
cycle closed there is the opportunity to realign9
the global map, to correct the error backwards10
through the map and develop a model of the11

residual error to assist future cycle detection. 1
We are currently investigating this aspect of our 2
approach and are comparing it with Yeap and 3
Jefferies (1999) limited in size global metric map 4
where the misaligned parts of the map would 5
simply drop off. 6

We also employ landmark matching to identify 7
and close cycles in the topological map (Jefferies 8
et al., 2003, 2004). Cycles detected in the topolog- 9
ical map provide supporting evidence for cycles 10
detected in the global metric map and vice versa. 11
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Fig. 6. (a) and (b) The topological and global maps, respectively. The robot is in ASR7. ASR7 clearly covers most of ASR1 in (b).
It passes the centre crosscheck and a match is thus indicated.

4. Related Work1

We are not aware of any approaches which com-2
bine topological and metric mapping in the way3
that we do. Two approaches which combine topo-4
logical and global metric mapping and which5
have some similarity to our work are those of6
Bosse et al. (2003) and Modayil et al. (2004).7
In Bosse et al., ATLAS the global metric map8
seems incidental as a by product of topological9
mapping. The topological map comprises inter-10
connected local maps, each of the same fixed size,11
and each with its own local coordinate frame.12
Restricting the local maps to a certain size has13
the advantage that their complexity is limited and14
known. However, partitioning the environment15
in this arbitrary way rather than exploiting the16
natural structure inherent in the environment to17
identify each local space adds complexity to the18
transitions from one local map to another. In our19
system, exits determine the boundary of the local20
space, and are then the transition points between21
adjacent local maps. These exits carry an expec-22
tation that crossing a particular exit will take the23

robot into a particular neighbouring ASR. ATLAS 1
constructs a signature for its local maps which 2
comprise non-repetitive features from within the 3
local frame. Cycles are detected by matching the 4
local map signatures. The idea of using a subset of 5
distinctive features within the local map to recog- 6
nise places that the robot is revisiting is similar to 7
the topological matching approach that we employ 8
in Jefferies et al. (2003, 2004). ATLAS does not 9
use global map matching; it uses local map match- 10
ing and from the consistent local maps builds the 11
global metric map. ATLAS constructs a signature 12
for its local maps, as we do in Jefferies et al. 13
(2003, 2004), but in Bosse’s local map these com- 14
prise non-repetitive features from within the local 15
frame. Our signatures are constructed from the 16
features in the ASR which distinguish it from other 17
ASRs. ATLAS’s non-repetitive features could eas- 18
ily be those features that are common to other 19
local maps, giving a higher likelihood of false 20
positive matches. The map-matching process is a 21
search for a coordinate transformation, based on 22
the signatures, that brings overlapping frames into 23
alignment. 24
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Kuipers (2000) has long argued for a layered1
approach to mapping with the topological map2
preceding the global metric map in the hierarchy.3
Thus like ATLAS, Kuipers combines local met-4
ric maps in a topological map to construct the5
global metric map (Modayil et al., 2004). A set of6
likely topological maps is maintained rather than7
a single map hypothesis as in Bosse et al. (2003)8
and Jefferies et al. (2003). Closing a cycle in the9
global metric map involves selecting the correct10
topological map. However, this assumes that the11
cycle has been found in the topological map. This12
approach is appealing as it avoids the problem13
of having to propagate an error correction fac-14
tor back through the global metric map when a15
cycle is found. The nodes in Kuipers and Beeson’s16
(2002) topological map, are distinctive states. The17
edges connecting them are a description of the18
actions required to travel between adjacent dis-19
tinctive states. A k-means clustering algorithm20
is used to place different images of the same21
distinctive state in the same cluster thus reduc-22
ing image variability due to noise. However, this23
means that similar images belonging to different24
states will also be placed in the same cluster (the25
perceptual aliasing problem). If the image vari-26
ability problem is addressed, one would assume27
that sufficient images have been captured at each28
distinctive state.29

Most of the occupancy grid based mapping30
approaches use global metric maps but rarely do31
they exploit advantages that a topological map32
can offer. One of the main problems with most33
grid based approaches is that because they main-34
tain a single map hypothesis, choosing the win-35
ning hypothesis at each step, there is no way back36
should that hypothesis eventually fail. Hähnel et al.37
(2003b) use a “lazy data association” approach38
which can “repair” poor choices once it is discov-39
ered that they are wrong. The mapping method40
is global metric but pivotal to the approach41
is the linking of the occupancy grid sub map42
for each pose in a topological map, explicitly43
representing the path information. A tree of alter-44
native path hypotheses is maintained. When the45
current hypothesis no longer provides the best46
explanation of the data, the tree is searched47
for an alternative best hypothesis. Thus find-48
ing the correct correspondences when a cycle49
is encountered in a global metric map involves50

discovering that the current hypothesis is incor- 1
rect, and choosing a better alternative path. This 2
could be some time after the cycle was encoun- 3
tered. If the map has diverged significantly from 4
the correct path it may not be possible to find a 5
suitable alternative hypothesis. 6

5. Conclusion 7

We have shown that significant cycles in a topo- 8
logical map can be detected from the correspond- 9
ing cycles in a global metric map. The key to 10
the approach is to ensure that the global met- 11
ric map is made up of the ASRs in the topo- 12
logical map. The approach is conservative but 13
combined with landmark cycle detection (Jefferies 14
et al., 2003) we are able to close many cycles in 15
large-scale environments. We sacrifice some true 16
positive matches so that we can reject most false 17
positive matches. Missing the opportunity to close 18
a cycle in a topological map is not catastrophic 19
as in absolute metric mapping. The outcome is 20
that the robot will take a longer route than it 21
needs to. 22
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