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Abstract 

 

This paper follows the 25 years of development of methods and systems for knowledge-based 

neural network systems and more specifically the recent evolving connectionist systems 

(ECOS). ECOS combine the adaptive/evolving learning ability of neural networks and the 

approximate reasoning and linguistically meaningful explanation features of symbolic 

representation, such as fuzzy rules. This review paper presents the classical now hybrid expert 

systems and evolving neuro-fuzzy systems, along  with new developments in spiking neural 

networks, neurogenetic systems, and quantum inspired systems, all discussed from the point 

of few of their adaptability, model interpretability and knowledge discovery. The paper 

discusses new directions for the integration of principles from neural networks, fuzzy systems, 

bio- and neuroinformatics, and nature in general.      

 

Keywords: Knowledge-based systems; Neuro-fuzzy systems; Evolving Connectionist 

Systems; Evolving Spiking Neural Networks; Computational Neurogenetic Systems; 

Quantum inspired spiking neural networks; Spatio-temporal pattern recognition.  

 

1. Hybrid connectionist systems  

 

The human brain uniquely combines low level neuronal learning in the neurons and the 

connections between them and higher level rule abstraction leading to adaptive learning and 

abstract concept formation. This is the ultimate inspiration for the development of hybrid 

connectionist systems where specially constructed artificial neural networks (NN) are trained 

on data so that after training abstract knowledge representation can be derived that explains 

the data and can be further interpreted as a knowledge-based system. Examples of such hybrid 

connectionist systems are connectionist-based expert systems (Kasabov, 1991), neuro-fuzzy 

systems (Yamakawa, Uchino, et al, 1992), evolving connectionist systems (Kasabov, 1998), 

evolving fuzzy systems (Angelov, 2002).   

 

In the past 50 years several seminal works in the areas of neural networks (Amari, 1967; 

Amari, 1990), fuzzy systems (Zadeh, 1965) and rule-based expert systems 

(Knowledge-Based Systems Journal, 1988) opened a new field of information science - the 

creation of new types of hybrid systems that combine the learning ability of neural networks, 

at a lower level of information processing, and the reasoning and explanation ability of 

rule-based systems, at the higher level. The first hybrid connectionist expert systems 

combined NN and propositional type of rules – either production rules, implemented in 

CLIPS (Kasabov, 1991, 94-96; Kasabov and Shishkov, 1993), or first order logic rules 

implemented in PROLOG (Kasabov, 1996).  
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Combining NN and fuzzy rule based systems is illustrated on a simple example in figure 1. A 

NN module is trained to predict the value of a stock index based on the current day and the 

day before prices. At a higher level a fuzzy reasoning module combines the predicted value by 

the NN module with a macro-economic variable (Good or Bad state of the economy) and a 

variable representing the political situation in the country (stable or unstable) using the 

following types of fuzzy rules (Kasabov, 1996):  

  

    IF <the predicted by the NN module stock value is high> AND <the economic situation is 

good> AND <the political situation is Stable) THEN <buy stock>                            (1)                                                                                                   
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Figure 1: A hybrid NN-fuzzy rule-based expert system for financial decision support (from Kasabov, 1996) 

 

A traditional Multi-Layer Perceptron (MLP) NN is used to implement the NN module in fig.1 

and a fuzzy inference system is used to implement the Fuzzy rule-based decision module. In 

addition to these two module, a specifically constructed fuzzy neural network module is used 

to be trained on data and to extract fuzzy trading rules. Fuzzy neural networks and their 

further development as evolving connectionist systems are presented next in the paper.                                                                                   

 

2. Fuzzy neurons and fuzzy neural networks. Evolving connectionist systems  

 

A low-level integration of fuzzy rules into a single neuron model and larger neural network 

structures, tightly coupling learning and fuzzy reasoning rules into connectionists structures, 

was initiated by Professor Takeshi Yamakawa and other Japanese scientists and promoted at 

a series of IIZUKA conferences in Japan (Yamakawa, Uchino, et al, 1992). Since then, many 

models of fuzzy neural networks were developed based on these principles (Furuhashi, 

Hasegawa, et al, 1993; Kasabov, 1996; Kasabov, Kim, et al, 1997).  

 

The evolving neuro-fuzzy systems developed these ideas further, where instead of training a 

fixed connectionist structure, the structure and its functionality were evolving from incoming 

data, often in an on-line, one-pass learning mode. This is the case with the evolving 

connectionist systems, ECOS (Kasabov, 1998; 2001; 2003; 2007; Kasabov, Kim, et al, 1997; 

Kasabov and Song, 2002).  
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ECOS are modular connectionist based systems that evolve their structure and functionality in 

a continuous, self-organised, on-line, adaptive, interactive way from incoming data  (Kasabov, 

1998). They can process both data and knowledge in a supervised and/or unsupervised way. 

ECOS learn local models from data through clustering of the data and associating a local 

output function for each cluster represented in a connectionist structure. They can learn 

incrementally single data records or chunks of data and also incrementally change their input 

features. ECOS further develops some connectionist information processing principles 

already introduced in classical NN models, such as: SOM, RBF, FuzyARTMap, Growing 

neural gas, neuro-fuzzy systems, RAN.  

  

ECOS perform adaptive local learning - neurons are allocated as centres of data clusters and 

the system creates local models in these clusters. The clustering used in ECOS is on-line, 

one-pass, evolving clustering, which is in contrast to the traditional fuzzy clustering methods 

that use pre-defined number of clusters and many iterations (Bezdek, ed., 1987; Yager and 

Filey, 1994).  

 

The following are the main principles of ECOS as stated in (Kasabov, 1998): 

(1)  Fast learning from large amount of data, e.g. using 'one-pass' training, starting with little 

prior knowledge; 

(2)  Adaptation in a real time and in an on-line mode where new data is accommodated as it 

comes based on local learning; 

(3) ‘Open', evolving structure, where new input variables (relevant to the task), new outputs 

(e.g. classes), new connections and neurons are added/evolved  'on the fly';  

(4) Both data learning and knowledge representation is facilitated in a comprehensive and 

flexible way, e.g. supervised learning, unsupervised learning, evolving clustering, ‘sleep’ 

learning, forgetting/pruning, fuzzy rule insertion and extraction;  

(5) Active interaction with other ECOSs and with the environment in a multi-modal fashion;  

(6) Representing both space and time in their different scales, e.g.: clusters of data, short- and 

long-term  memory, age of data, forgetting, etc.;  

(7) System’s self-evaluation in terms of behaviour, global error and success and related 

knowledge representation.   

 

In 1998 Walter Freeman, who attended the ICONIP conference then, commented on the 

proposed ECOS concepts: “...Through the ‘chemicals’ and let the system grow …”.   

 

The development of ECOS, as a trend in neural networks and computational intelligence that 

started in 1998 (Kasabov, 1998) continued as many improved or new computational methods 

that use the ECOS principles have been developed along many applications. 

    

Here the concepts of ECOS are illustrated on two implementations: Evolving Fuzzy Neural 

Network, EFuNN (Kasabov, 2001) and Dynamic Evolving Neuro-Fuzzy Inference Systems, 

DENFIS (Kasabov and Song, 2002). Examples of EFuNN and DENFIS are shown in figures 

2 and figure 3 respectively. In ECOS, clusters of data are created based on similarity between 

data samples either in the input space (this is the case in some of the ECOS models, e.g. the 

dynamic neuro-fuzzy inference system DENFIS), or in both the input and output space (this is 
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the case in the EFuNN models). Samples (examples) that have a distance to an existing 

neuronal node (cluster center, rule node) less than a certain threshold are allocated to the same 

cluster. Samples that do not fit into existing clusters form new clusters. Cluster centers are 

continuously adjusted according to new data samples, and new clusters are created 

incrementally. ECOS learn from data and automatically create or update a local fuzzy 

model/function, e.g.:   

   

      IF <data is in a fuzzy cluster Ci > THEN <the model is Fi>,                                                   (2) 

 

where Fi can be a fuzzy membership function (EFuNN, Kasabov, 2001), a linear or regression 

function (figure 4) or a NN model   (Kasabov and Song, 2002;  Kasabov, 2003; 2007).  
 

Figure 2 shows an example of EFuNN model that consists of 5 layers: input neurons accept 

real- value inputs; fuzzy input layer produces fuzzy membership values between 0 and 1 

according to the membership degree of a corresponding input value to one of several (in this 

case just two) fuzzy membership functions  (e.g. Small and Large values); evolving rule (case) 

neuronal nodes that represent evolving clusters of data with their connection weights 

representing the coordinates of these clusters; fuzzy output neurons, calculating the 

membership degrees of the output value that corresponds to the input vector, to output 

membership functions (in this case only 3 are shown); output neuron that represents the real 

output value that correspond to the input vector.       

Adaptive (evolving) learning in EFuNN is performed through supervised clustering of the 

input data vectors so that input vectors that are similar and have similar putput values are 

clustered in one cluster represented by the same rule node.  

 

      
Figure 2: An example of EFuNN model that consists of 5 layers (see the text for explanation)  

 

Figure 3 shows an example of DENFIS for a real problem application (Kasabov, 2007). Five 

input variables are used that represent data and a real value output is associated with each 

example (sample, vector). The DENFIS learning consist of unsupervised clustering (clusters 

are created based only on the similarity of the input vectors) and the estimation of local output 

functions that approximate the data from each cluster.  
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Figure 3: An example of DENFIS model (from Kasabov, 2007) with 6 input variables for a practical 

application of estimating the GFR parameter of the renal function of a patient. 

 

The clusters shown in Fig.3 are defined as fuzzy clusters and the output functions are logistic 

regressions. As an example, a fuzzy rule is shown that approximates the data in cluster 12 

(defined as a fuzzy cluster where Age is about 21.3 etc.) and a logistic regression function is 

evolved to calculate the GFR of any new patient whose input data vector will fall into cluster 

12: 

 

Fuzzy Rule 12: IF (Age is About 21.3 AND Sex is Female AND …) 

                         THEN (GFR= 0.372 .  2 
0.0656

     SCreat 
-0.438

…)   (see fig.3)                 (3)  

 

When tested on Australia and New Zealand GFR data the GFR-ECOS from Fig.3 was 

15-20% more accurate than the traditional global regression function used as a golden rule in 

clinical practice - the MDRD formula (Kasabov, 2007). But the most important feature of the 

ECOS-based system was its local knowledge discovery (the local fuzzy rules) that makes it 

possible to explain differences between different groups of patients based on the used input 

variables.    

 

A special direction of ECOS was transductive reasoning and personalised modelling. Instead 

of building a set of local models (e.g. prototypes) to cover the whole problem space and then 

use these models to classify/predict any new input vector, in transductive modelling for every 

new input vector a new model is created based on selected nearest neighbour vectors from the 

available data. Such ECOS models are Neuro-Fuzzy Inference model, NFI, and Transductive, 

weighted neuro-fuzzy inference model, TWNFI (Song and Kasabov, 2006). In TWNFI for 

every new input vector the neighbourhood of closets data vectors is optimised using both the 
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distance between the new vector and the neighbouring ones and the weighted importance of 

the input variables, so that the error of the model is minimised. As one application, in 

(Kasabov and Hu, 2010) a method for personalised modelling is proposed so that the features, 

the neighbourhood and the model type are all optimised together with the use of an 

evolutionary computation algorithm. The method consists of the following steps as also 

illustrated in fig.4.   

 

- Define a global data set of personalized records (module 1) related to the record of a new 

input vector x (module 2) for which a personalized model Mx is developed for classification 

or prediction purposes;  

- Select (module 3) the most important variables Vx for the person represented by the data 

vector x; 

- Select a neighbourhood  Dx (module 4) of the Kx closest samples to x; 

- Rank the importance of the features in Vx (module 5);   

- Create a personalised model Mx (module 6) for this person to predict an outcome, calculate 

the output for the person for the problem and evaluate the accuracy of the suggested 

outcome, which step includes an iterative application of the previous steps.     

- Create and evaluate a personal profile (module 7) of the person in regard to possible 

outcomes. If necessary design personal improvement scenarios, consisting of suggested 

changes in the values of the persons’ variables as a concert taking into account their ranking 

to improve the outcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. A block-diagram of a personalised modelling system (from Kasabov and Hu, 2010) 

 

The personalised profile created in module 7 can be a fuzzy rule that is derived from the 

personalised model Mx and a personalised ranking of the importance of the variables for the 

person (x) under consideration. That would allow for a better understanding of person x 

conditions, a better prediction of a possible outcome and for a personalised treatment design.  
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Examples of using this methodology are many, among them: cancer diagnosis based on gene 

expression data; diabetes prognosis; criminal behaviour prognosis; predicting establishment of 

harmful species based on climate data; stock index prediction; etc. (Kasabov, 2007)    

Several ECOS models, including EFuNN, its simplified version ECF, DENFIS, TWNFI and 

others are implemented in a publicly available simulator NeuCom (www.theneucom.com; 

www.kedri.aut.ac.nz).  

 

While the classical ECOS use a simple McCulloch and Pitts model of a neuron, where data is 

represented as scalars, the further developed evolving spiking neural network (eSNN) 

architectures (see next section) use a spiking neuron model, while applying the same or similar 

ECOS principles. eSNN use data represented as temporal sequences of spikes in a similar 

mode as information is represented and processed in the brain. An example was a personalised 

modelling system using the same functionality as in fig.4, but an evolving spiking neural 

network model Mx. One application of this method was to predict a personalised risk of 

stroke occurrence just few days ahead of a possible stroke event with an accuracy of 95% 

which is much higher when compared with the accuracy of prediction when using traditional 

NN and neuro-fuzzy models (Kasabov et al, 2014). The main reason is that the data used is a 

temporal climate data and it is well established now that temporal and spatio-temporal data 

are more efficiently processed in eSNN (http://ncs.ethz.ch/projects/EvoSpike/. The next 

section discusses the main principles and the contemporary trends in eSNN and how they 

process temporal and spatio-temporal data. 

 

3. Current Trends in ECOS: Evolving Spiking Neural Networks (eSNN)  

 

A single biological neuron and the associated synapses is a complex information processing 

machine that involves short term information processing, long term information storage, and 

evolutionary information stored as genes in the nucleus of the neuron. A spiking neuron model 

assumes input information represented as trains of spikes over time. When sufficient input 

information is accumulated in the membrane of the neuron and the neuron’s post synaptic 

potential exceeds a threshold, the neuron emits a spike at its axon (figure 5). Some of 

the-state-of-the-art models of a spiking neuron include: early models by Hodgkin and Huxley 

(Hodgkin and Huxley, 1952); more recent models by Maas, Gerstner, Kistler, Izhikevich and 

others, e.g.: Spike Response Models (SRM); Integrate-and-Fire Model (IFM) (figure 5); 

Izhikevich models (Izhikevich, 2004); adaptive IFM; probabilistic neurogenetic model 

(Kasabov, 2010). 

                
  
                                 Figure 5. The schema of a LIFM 
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Based on the ECOS principles, an evolving spiking neural network architecture (eSNN) was 

proposed (Kasabov, 2007; Wysoski et al, 2010). It was initially designed as a visual pattern 

recognition system. The first eSNNs were based on the Thorpe’s neural model (Thorpe,S., 

Delorme, A., et al., 2001), in which the importance of early spikes (after the onset of a certain 

stimulus) is boosted, called rank-order coding and learning. Synaptic plasticity is employed by 

a fast supervised one-pass learning algorithm.  

 

An eSNN evolves its structure and functionality in an on-line manner, from incoming 

information. For every new input data vector, a new output neuron is dynamically allocated 

and connected to the input neurons (feature neurons). The neuron’s connections are 

established using the RO rule for the output neuron to recognise this vector (frame, static 

pattern) or a similar one as a positive example. The weight vectors of the output neurons 

represent centres of clusters in the problem space and can be represented as fuzzy rules (Soltic 

and Kasabov, 2010).  

     In some implementations neurons with similar weight vectors are merged based on 

Euclidean distance between them. That makes it possible to achieve a very fast learning (only 

one pass may be sufficient), both in a supervised and in an unsupervised mode (Kasabov, 

2007). When in an unsupervised mode, the evolved neurons represent a learned pattern (or a 

prototype of patterns). The neurons can be labelled and grouped according to their belonging 

to the same class if the model performs a classification task in a supervised mode of learning – 

an example is shown in fig.6.   

                                 
Fig.6. Example of an eSNN for classification using population RO coding of inputs (Soltic and Kasabov, 

2010). Each input is connected to several feature neurons representing overlapping Gaussian receptive fields 

and producing spikes according to how much the current input variable value belongs to the receptive field: the 

higher the membership degree – the earlier a spike is generated and forwarded to the output neurons for 

learning or recall. A pool of output neurons representing different input vectors or prototypes is evolved for 

each class. This model was used for odour recognition. In unsupervised learning, the output neurons are not 

labelled and not organised as class pools.              

 

During a learning phase, for each M-dimensional training input pattern (sample, example, 

vector) Pi  a new output neuron i is created and its connection weights wj,i (j=1,2,...,M) to the 

input (feature) neurons are calculated based on the order of the incoming spikes on the 

corresponding synapses using the RO learning rule :  
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                wj,i  = α. mod 
order (j,i) 

                                                                                                (4)                                                                                                              

             

where: α is a learning parameter (in a partial case it is equal to 1); mod is a modulation factor, 

that defines how important the order of the first spike is; wj,i is the synaptic weight between  a 

pre-synaptic neuron j and the postsynaptic neuron i; order(j,i) represents the order (the rank) 

of the first spike at synapse j,i ranked among all spikes arriving from all synapses to the 

neuron i; order(j,i) has a value 0 for the first spike to neuron i and increases according to the 

input spike order at other synapses.  

     While the input training pattern (example) is presented (all input spikes on different 

synapses, encoding the input vector are presented within a time window of T time units), the 

spiking threshold Thi of the neuron i is defined to make this neuron spike when this or a similar 

pattern (example) is presented again in the recall mode. The threshold is calculated as a 

fraction (C) of the total PSPi (denoted as PSPimax) accumulated during the presentation of the 

input pattern: 

 

      PSPimax=   ∑ mod 
order(j,i)                                                                                                                                           

(5)
 

                                      
 (j)    

     
                                                                                                

          Thi =C. PSPimax                                                                                                                                                             (6)                                                                                                                 

 

 If the weight vector of the evolved and trained new neuron is similar to the one of an already 

trained neuron (in a supervised learning mode for classification this is a neuron from the same 

class pool), i.e. their similarity is above a certain threshold Sim, the new neuron will be merged 

with the most similar one, averaging the connection weights and the threshold of the two 

neurons (Kasabov, 2007; Wysoski et al, 2010). Otherwise, the new neuron will be added to 

the set of output neurons (or the corresponding class pool of neurons when a supervised 

learning for classification is performed). The similarity between the newly created neuron and 

a training neuron is computed as the inverse of the Euclidean distance between weight 

matrices of the two neurons. The merged neuron has weighted average weights and 

thresholds of the merging neurons.  

     While an individual output neuron represents a single input pattern, merged neurons 

represent clusters of patterns or prototypes in a transformed spatial – RO space. These 

clusters can be represented as fuzzy rules (Soltic and Kasabov, 2010) that can be used to 

discover new knowledge about the problem under consideration.  

     The eSNN learning is adaptive, incremental, theoretically – ‘lifelong’, so that the system 

can learn new patterns through creating new output neurons, connecting them to the input 

neurons,  and possibly merging the most similar ones. The eSNN implement the 7 ECOS 

principles from section 1.      

      During the recall phase, when a new input vector is presented and encoded as input 

spikes, the spiking pattern is submitted to all created neurons during the learning phase. An 

output spike is generated by neuron i at a time l if the PSPi,(l) becomes higher than its 

threshold Thi. After the first neuron spikes, the PSP of all neurons are set to initial value (e.g. 

0) to prepare the system for the next pattern for recall or learning. 

     The postsynaptic potential PSPi (l) of a neuron i at time l is calculated as: 

   

         PSPi (l) = ∑          ∑ ej (t). mod 
order(j,i)        

                                                         (7) 
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                                t=0,1,2,...,l       (j)    

 

where: ej(t)=1 if there is a first spike at time t on synapse j; order (j,i) is the rank order of the 

first spike at synapse j among all spikes to neuron i for this recall pattern.   

    The parameter C, used to calculate the threshold of a neuron i, makes it possible for the 

neuron i to emit an output spike before the presentation of the whole  learned pattern (lasting 

T time units) as the neuron was initially trained to respond. As a partial case C=1.  This is an 

important property of eSNN that can be utilized to train an eSNN on whole temporal input 

patterns and to recall the eSNN on a partial input pattern, e.g. only initial input data, so that 

the eSNN can predict an outcome earlier.  

    The recall procedure can be performed using different recall algorithms implying different 

methods of comparing input patterns for recall with already learned patterns in the output 

neurons: 

(a)  The first one is described above. Spikes of the new input pattern are propagated as they 

arrive to all trained output neurons and the first one that spikes (its PSP is greater that its 

threshold) defines the output. The assumption is that the neuron that best matches the 

input pattern will spike earlier based purely on the PSP (membrane potential). This type 

of eSNN is denoted as eSNNm.  

(b) The second one implies a creation of a new output neuron for each recall pattern, in the 

same way as the output neurons were created during the learning phase, and then – 

comparing the connection weight vector of the new one to the already existing neurons 

using Euclidean distance. The closest output neuron in terms of synaptic connection 

weights is the ‘winner’. This method uses the principle of transductive reasoning and 

nearest neighbour classification in the connection weight space. It compares spatially 

distributed synaptic weight vectors of a new neuron that captures a new input pattern and 

existing ones. We will denote this model as eSNNs. 

 

The main advantage of the eSNN when compared with other supervised or unsupervised 

SNN models is that it is computationally inexpensive and boosts the importance of the order 

in which input spikes arrive, thus making the eSNN suitable for on-line learning with a range 

of applications. For a comprehensive study of eSNN see (Wysoski et al, 2010) and for a 

comprehensive review - (Schliebs and Kasabov, 2013).    

 

Different eSNN models were further developed, including:  

- Reservoir-based eSNN for spatio- and spectro-temporal pattern recognition shown in 

figure 7 (Schliebs and Kasabov, 2013) (for principles of reservoir computing – see 

Verstraeten, Schrauwen, et al, 2007);  

-  Dynamic eSNN (deSNN) -  an architecture that uses both rank-order and time-based 

learning methods (Song, Miller, et al, 2000) to account for spatio-temporal learning 

(Kasabov et al, 2013); 

-  Specialised architectures for EEG modelling and moving object recognition systems 

(Kasabov et al, 2013; );  
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         Figure 7: A reservoir-based eSNN. It consists of: input transformation module, 

transforming real data sequences into spike sequences using receptive fields; reservoir 

module, usually 3-dimensional, for learning whole spatio-temporal patterns  from input data; 

output classification module, where output spiking neurons are evolved for every learned 

input pattern along with their assigned class when classification tasks are considered (the 

neurons from the same class may be merged based on their similarity).      

 

Extracting fuzzy rules from an eSNN would make the eSNN not only efficient learning 

models, but also knowledge-based models. A method was proposed (Soltic and Kasabov, 

2010) and illustrated in figures 8a and 8b. Based on the connection weights (W) between the 

receptive field layer (L1) and the class output neuron layer (L2), the following fuzzy rules are 

extracted:           
    
      IF(input variable v is SMALL)THEN class Ci ;                                                             (8) 
     IF(v is LARGE)THEN class Cj                                             

(a)                                                                     (b) 
Figure 8:  (a): A simple structure of an eSNN for 2-class classification based on one input variable using 6 

receptive fields to convert the input values into spike trains; (b): The connection weights of the connections to 

class Ci and Cj output neurons respectively are interpreted as fuzzy rules.      

 

 

 

v 

L2i L2j 

Ci Cj 
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4. A Current Trend and a Future Direction: Evovlving Computational 

Neuro-Genetic Models (eCNGM)  

 

A neurogenetic model of a neuron is proposed and studied in (Benuskova and Kasabov, 2007; 

Kasabov, 2010).  It utilises information about how some proteins and genes affect the spiking 

activities of a neuron such as fast excitation, fast inhibition, slow excitation, and slow 

inhibition. An important part of the model is a dynamic gene/protein regulatory network 

(GRN) model of the dynamic interactions between genes/proteins over time that affect the 

spiking activity of the neuron – figure 9.  

      
 
Figure 9: A schematic diagram of an eCNGM, consisting of a GRN as part of a eSNN  (Benuskova and 

Kasabov, 2007).    

        

New types of neuro-genetic fuzzy rules can be extracted from such CNGM in the form of: 

        

      IF < GRN is represented by a function F> AND < input is Small>                          (9) 

      THEN <Class C>  

  

eCNGM can be used in modelling and prediction the progression of brain degenerative 

diseases, such as memory loss and Alzheimer’s Disease (AD) (Kasabov and Capecci, 2014). 

eCNGM need to be further developed in terms of both theory and applications.    

 

5. A Current Trend and a Future Direction: Quantum Inspired eSNN (QeSNN)  

 

QeSNNs use the principle of superposition of states to represent and optimize features (input 

variables) and gene parameters of an eSNN model (Kasabov, 2007). They are optimized 

through quantum inspired genetic algorithm (Defoin-Platel, Schliebs, et al, 2009) or QiPSO. 

Features or genes are represented as qu-bits in a superposition of 1 (selected), with a 

probability α, and 0 (not selected) with a probability β. When the model has to be calculated, 

the quantum bits ‘collapse’ in a state of either 1 or 0. Fuzzy rules in QeSNN look like: 

 

IF < GRN is represented by a function F with a quantum probability p >                       (10) 

 AND < input is Small with a quantum probability q>  

AND <the model parameters are S with quantum probability s>  

THEN <Class C, with probability r>        
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A block diagram of a QeSNN is shown in Fig.10. 

 

 

 
Fig.10. A block diagram of a QeSNN (from S.Schliebs, M.Defoin-Platel and N.Kasabov, 2009).  

 

QeSNN need to be further developed in terms of both theory and applications.    

                                                                

6. A Current Trend and a Future Direction: The NeuCube eSNN Spatio-Temporal 

Data Machine 

 

The latest development in the direction of eSNN and neurogenetic systems was proposed as a 

new architecture of a virtual spatio-temporal data machine called NeuCube (Kasabov, 2014). 

It was initially proposed for spatio-temporal brain data modelling, but then it was used for 

climate data modelling, stroke occurrence prediction and other applications.    

    The NeuCube framework is depicted in Fig.11. It consists of the following modules:  

- Input information encoding module;  

- 3D SNN module (the Cube);  

- Output module;  

- Gene regulatory network (GRN) module (Optional). 

- Parameter optimisation module.  

 

The input module transforms input data into trains of spikes. Spatio-temporal data (such as 

EEG, fMRI, climate) is entered into the main module – the 3D SNN cube  (SNNc). Different 

types of data can used.  This data is entered into pre-designated spatially located areas of the 

SNNc that correspond to the spatial location in the origin where data was collected (if there is 

such).   

 

Learning in the SNN is performed in two stages: 

- Unsupervised training, where spatio-temporal data is entered into relevant areas of the 

SNNc over time. Unsupervised learning is performed to modify the initially set connection 

weights. The SNNr will learn to activate same groups of spiking neurons when similar input 

stimuli are presented, also known as a polychronization effect (Izhikevich, 2004).  
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- Supervised training of the spiking neurons in the output module, where the same data that 

was used for unsupervised training is now propagated again through the trained SNN and the 

output neurons are trained to classify the spatio-temporal spiking pattern of the SNNc into 

pre-defined classes (or output spike sequences). As a special case, all neurons from the SNN 

are connected to every output neuron. Feedback connections from output neurons to neurons 

in the SNN can be created for reinforcement learning. Different SNN methods can be used to 

learn and classify spiking patterns from the SNNc, including the deSNN (Kasabov, Dhoble, et 

al, 2013) and SPAN models (Kasabov, 2014). The latter is suitable for generating motor 

control spike trains in response to certain patterns of activity of the Cube.   

 
Fig. 11. A block diagram of the NeuCube architecture of a virtual spatio-temporal data machine (STDM), 

initially proposed for spatio-temporal brain data (from Kasabov, 2014). 

   

Memory in the NeuroCube architecture is represented as a combination of the three types of 

memory described below, which are mutually interacting:  

- Short-term memory, represented as changes of the PSP and temporary changes of synaptic 

efficacy;  

- Long-term memory, represented as a stable establishment of synaptic efficacy – LTP and 

LTD; 

- Genetic memory, represented as a genetic code.       

     In NeuCube similar activation patterns (called ‘polychronous waves’) can be generated in 

the SNNc with recurrent connections to represent short term memory. When using STDP 

learning, connection weights change to form LTP or LTD, which constitute long-term 

memory. Results of the use of the NeuCube suggest that the NeuCube architecture can be 

explored for learning long spatio-temporal patterns and to be used as associative memory. 

Once data is learned, the SNNc retains the connections as a long-term memory. Since the 

SNNc learns functional pathways of spiking activities represented as structural pathways of 

connections, when only a small initial part of input data is entered the SNNc will ‘synfire’ and 

‘chain-fire’ learned connection pathways to reproduce learned functional pathways. Thus a 

NeuCube can be used as an associative memory and as a predictive system for event 

prediction when only some initial new input data is presented.  
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There are some challenging questions that need to be further explored, for example:  

- What is the capacity of a NeuCube in terms of both spatial and temporal characteristics 

of the data?  

- How much noise can be tolerated?  

- How do we model transitions between spatio-temporal states triggered by external 

stimuli?  

- Can we make the SNN learn and model mental states represented as brain data and their 

transitions?  

- How do we model for example the transition between a SNNc  state that represents a 

brain state of ‘mild depression’ to a state that represents ‘happiness’;  from a state of 

‘stroke’ to a state of ‘full cognitive recovery’, from a state of ‘clinical depression’ to a 

state of ‘suicidal mode’;  from a state of ‘anger’ to a state of ‘attack’?  

 

These are some of the questions that need to be addressed as a future work.  

 

7. Conclusion   

 

This paper presents an overview of trends and directions of evolving connectionist systems 

(ECOS). The main goal of ECOS is to facilitate the creation of computational models and 

systems for adaptive learning and knowledge discovery from complex data. ECOS principles 

are derived from the integration of principles from neural networks, fuzzy systems, 

evolutionary computation, quantum computing and brain information processing. ECOS 

applications are manifold, but perhaps most welcome in the medical, environmental and health 

sciences, where the diagnostic phenomena are chaotic in nature and the data sets are massive 

and often incomplete. Massive (so called ‘big’) data sets with the characteristics just described 

need to be analyzed, virtually in real time, for prognoses to be made and solutions to the issues 

sought at a level of urgency. In this sense, evolving connectionist systems for adaptive 

learning and knowledge discovery can make a great contribution to the methodologies 

employed by the emerging trans-disciplinary, integrative, systemic and problem-solving 

science.   
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