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Abstract: Conventional robotic wheelchairs (three or four-wheeled) which are statically stable are
poor in mobility. Though a two-wheeled robotic wheelchair has better mobility, it is not statically
stable and needs an active stability controller. In addition to mobility and stability, velocity control is
also important for the operation of a wheelchair. Conventional stability and velocity controllers rely
on the motion of the wheels and require high driving torque and power. In this paper, this problem is
tackled by adding a compact pendulum-like movable mechanism whose main function is for stability
control. Its motion and those of the wheels are controlled through a quasi-sliding mode control
approach to achieve a simultaneous velocity and stability control with much less driving torque and
power. Simulation results are presented to show the effectiveness of the proposed controller.
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1. Introduction

Compared to conventional manually operated wheelchairs, motorized wheelchairs equipped
with an automatic control system (so-called robotic wheelchairs) have many advantages. For example,
they have better navigation capabilities and can respond to different motion requirements
autonomously [1–3]. Most conventional robotic wheelchairs contain two active driving wheels and
two passive casters [4]. Though casters enhance the stability of the wheelchair, they have a negative
effect on its mobility [5–7]. To solve this problem, caster-free two-wheeled robotic wheelchair equipped
with an active stability controller was proposed [8–10].

There are several types of two-wheeled wheelchairs with special features. The iBot has four
wheels, but can be converted to a two-wheeled wheelchair by lifting up its two caster wheels [11–13].
The height of the rider seat increases as a result. A patented iBalanceTM technology, a synthesis of
computers and gyroscope, is used to keep the wheelchair stable. A two-wheeled transportation vehicle
called B2 has a self-balancing (stability) capability when it is subject to disturbances from the road. It is
suitable for use on narrow roads as it can turn on the spot in a space much smaller than that needed by
a conventional car [14,15].

Nonlinear controllers can be used for velocity and stability control of a two-wheeled wheelchair as
its dynamic model is highly nonlinear [16]. One example is computed torque control based on nonlinear
feedback and the assumption that the exact dynamic model of the system is known [17]. For the
cases where the system dynamics cannot be accurately modelled, or there are external disturbances,
H∞ which is robust against disturbances can be used [18,19]. Nonlinear H∞ control is developed
based on the Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation which is hard to solve in real-time
though [20].
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Another type of robust controller is sliding mode control (SMC) which has an elegant structure
and is effective in disturbance rejection and is robust to system parameters variation. In this controller,
the state of the closed-loop system is forced to slide along the predefined sliding surface [21–23].
However, it suffers chatterings in the closed-loop system states. This problem can be solved by
quasi-sliding mode control (QSMC) where the non-smooth sign function used in SMC is replaced with
a smooth sigmoid function to govern the switching behavior in the controller [24]. For a system whose
number of inputs is less than the number of outputs (underactuated system), hierarchical sliding mode
control (HSMC) can be used. In HSMC, the sliding surfaces are designed in layers which are called
layer sliding surface [25].

In most controllers, the motion and stability of the wheelchair all rely on the motions of the driving
wheels which need large driving torque and power [26]. Some approaches have been proposed to solve
this problem. For example, the rider’s seat is made to move to enhance the wheelchair’s stability [27].
The wheelchair is designed in a way such that its center of gravity is under the driving wheels’
axis [28]. A mass under the rider’s seat moves linearly to keep the wheelchair from overturning [29].
These approaches have the drawbacks of compromising the comfort of the rider or limited effectiveness.

In this paper, an active velocity and stability controller is developed for a two-wheeled wheelchair
added with a compact pendulum-like movable mechanism. The Euler–Lagrange equation is used to
derive the equation of motion (EOM) of the system and a quasi-sliding mode control approach is used
in the controller design. Through the proposed control scheme, the wheelchair’s velocity and stability
can be controlled with driving torque and power much less than those of conventional controllers
which only rely on the motions of the driving wheels. Simulation results prove the effectiveness of the
proposed controller.

The rest of the paper is organized as follows. In Section 2, the structure of a two-wheeled robotic
wheelchair and proposed mechanism is presented. The dynamic model of the system is introduced in
Section 3. In Section 4, the controller design is proposed. In Section 5, simulation results are shown
to compare the performances of the conventional and proposed methods. Conclusions are given in
Section 6.

2. System Description

As shown in Figure 1, a two-wheeled wheelchair comprises a seat and two wheels. The seat is
connected to the axial of the wheels through a rod. A pendulum like movable mechanism is connected
to the rod through a rotating joint. There is a mass placed at the end of the pendulum. The masses of
the pendulum and the rod are ignored. To describe the state of all the modules of the wheelchair, a body
coordinate frame X-Y-Z is placed at the center of the wheels’ axle (O). Though Z axis is not shown in
the figure, it is perpendicular to X and Y axis as determined by the right-hand rule. All moments of
inertia are defined around their centre of gravity (CoG) in Z axis. The rotation angles of the wheels and
the wheelchair body are measured from Y axis, while the rotation angle of the movable mechanism is
measured from link OP. The nomenclature can be found in Table 1.
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Figure 1. Two-wheeled wheelchair and proposed mechanism.

Table 1. Nomenclature.

Symbol Description

mw Mass of each wheel
mb Mass of body
mp Mass of movable mechanism
Jw Moment of inertia of each wheel
Jb Moment of inertia of body
Jp Moment of inertia of movable mechanism
O Centre of the wheels’ axle
P Contact point of the movable mechanism and wheelchair
r Radius of each wheel
l Distance from the body’s CoG to point P
l′ Length of the rod of the pendulum (movable mechanism)
b Distance from point O to point P

θw Rotation angle of the wheel
θb Rotation angle of the body (pitch angle)
θp Rotation angle of the pendulum
τr Input torque of the right wheel
τl Input torque of the left wheel
τw Total input torque of the wheels
τp Input torque of the pendulum
Pw Input power of the wheels
Pp Input power of the pendulum
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3. Modeling of Two-Wheeled Robotic Wheelchair

3.1. Conventional Method

In a conventional method, the wheels are responsible for both the stability and velocity control
of the wheelchair. The controller is based on the EOM of the system which can be derived from the
Euler–Lagrange equation [30]:

d
dt
(

∂T
∂q̇i

)− ∂T
∂qi

+
∂U
∂qi

= Qi (1)

T and U are the kinetic and the potential energy of the system. qi and Qi are the generalized coordinates
and the corresponding input of system respectively. Slip between the ground and wheels and friction
forces in the system are neglected. Each wheel’s kinetic and potential energy can be shown as

Tw =
1
2

mwr2θ̇2
w +

1
2

Jwθ̇2
w, Uw = 0.

The body’s kinetic and potential energy are

Tb =
1
2

mbr2θ̇2
w +

1
2

mbl2θ̇2
b + mbrlθ̇wθ̇b cosθb +

1
2

Jb θ̇2
b , Ub = mbgl cosθb.

The overall kinetic and potential energy of the system is

T = 2Tw + Tb, U = 2Uw + Ub.

Through Equation (1), the EOM of the system can be derived and presented as [31]

M(q)q̈ + H(q, q̇) + G(q) = Q, (2)

where q is the vector of generalized coordinates

q =
[

θb θw

]T
,

M(q) is the symmetric inertia matrix.

M(q) =

[
mbl2 + Jb mbrl cosθb

mbrl cosθb (2mw + mb)r2 + 2Jw

]
,

H(q, q̇) is the Centrifugal and Coriolis forces matrix.

H(q, q̇) =
[

0 −mbrlθ̇2
b sinθb

]T
,

G(q) is the gravity matrix

G(q) =
[
−mbgl sinθb 0

]T
,

and Q is the corresponding input.

Q =
[

0 τw

]T
,

τw is the total torque applied to the right and left wheels,

τw = τr + τl .
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Assuming the same amount of torque applied at each wheel,

τr = τl .

Then, the input power of the wheel motors is [32]

Pw = τwθ̇w.

Equation. (2) is valid when no disturbance is applied to the wheelchair. The effect of disturbances
like parameter uncertainties of the wheelchair due to the varying mass of the body can be considered
in Equation (2) which reformulate it to

M̂(q)q̈ + Ĥ(q, q̇) + Ĝ(q) + D = Q (3)

where D denotes the effect of parameter uncertainties in dynamic model of the wheelchair. M̂(q),
Ĥ(q, q̇), Ĝ(q) denote the nominal Inertia, centrifugal, and gravity matrices, respectively which can be
presented as

M̂(q) = M(q)− ∆M(q), Ĥ(q, q̇) = H(q, q̇)− ∆H(q, q̇), Ĝ(q) = G(q)− ∆G(q)

The effect of parameter uncertainties disturbance caused by the mass of body variation can be shown as

D = ∆M(q)q̈ + ∆H(q, q̇) + ∆G(q) (4)

where

∆M(q) =

[
∆mbl2 ∆mbrl cosθb

∆mbrl cosθb ∆mbr2

]
,

∆H(q, q̇) =
[

0 −∆mbrlθ̇2
b sinθb

]T
, ∆G(q) =

[
−∆mbgl sinθb 0

]T
.

The mass of body uncertainty is shown by ∆mb = mb − m̂b. mb and m̂b denote the real and nominal
values of mass of body, respectively.

3.2. Proposed Method

In the proposed method, a pendulum-like movable mechanism is added to the wheelchair to
mainly assist stability control. Its kinetic and potential energy can be shown as

Tp =
1
2

mp[r2θ̇2
w + b2θ̇2

b + 2rbθ̇b θ̇w cosθb + l
′2(θ̇b + θ̇p)

2 − 2rl′ θ̇w(θ̇b + θ̇p) cos(θb + θp)

− 2bl′ θ̇b(θ̇b + θ̇p) cosθp] +
1
2

Jp(θ̇b + θ̇p)
2, Up = mpg(b cosθb − l′ cos(θp + θb)).

Then, the overall kinetic and potential energy of system is derived,

T = 2Tw + Tb + Tp, U = 2Uw + Ub + Up.

The EOM of the system derived through Equation (1) is similar to Equation (2) where

q =
[

θb θw θp

]T
, M(q) =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 , H(q, q̇) =
[

H1 H2 H3

]T
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G(q) =
[

G1 G2 G3

]T
, Q =

[
0 τw τp

]T
.

The details of the terms M(q), H(q, q̇) and G(q) matrices can be found in Appendix A. The input
power of the motor driving the pendulum is

Pp = τp θ̇p.

The effect of mass of body uncertainty can be shown as Equation (4), where,

∆M(q) =


∆mbl2 ∆mbrl cosθb 0

∆mbrl cosθb ∆mbr2 0

0 0 0

 ,

∆H(q, q̇) =
[

0 −∆mbrlθ̇2
b sinθb 0

]T
, ∆G(q) =

[
−∆mbgl sinθb 0 0

]T
.

4. Controller Design

4.1. Conventional Method

The control aim is to make the wheelchair move at a desired velocity and keep stable (the pitch
angle is around zero). There are two controlled variables (velocity and pitch angle), but there is only
one control input (τw). This problem can be resolved through a HSMC controller. To design the
controller, the following two sliding mode surfaces are defined,

σ1 = c1e1 + e2, σ2 = c2e3 + e4, (5)

where σ1 and σ2 are the sliding surfaces for pitch angle and wheel rotational angle respectively. c1 and
c2 are positive constants. e1, e2, e3 and e4 are the tracking errors defined according to

e1 = θb − θbd
, e2 = θ̇b − θ̇bd

, e3 = θw − θwd , e4 = θ̇w − θ̇wd ,

where θbd
, θ̇bd

, θwd and θ̇wd are the desired values of pitch angle, pitch angular velocity, wheel angle
and wheel angular velocity respectively. Differentiating Equation (5) with respect to time leads to

σ̇1 = c1e2 + θ̈b − θ̈bd
, σ̇2 = c2e4 + θ̈w − θ̈wd . (6)

From Equation (2), we have

q̈ = M−1(q)(−H(q, q̇)−G(q) + Q). (7)

Then, we have {
θ̈b = −M−1

11 (H1 + G1)−M−1
12 (H2 + G2 − τw)

θ̈w = −M−1
21 (H1 + G1)−M−1

22 (H2 + G2 − τw).
(8)

From Equations (6) and (8), we have{
σ̇1 = c1e2 −M−1

11 (H1 + G1)−M−1
12 (H2 + G2 − τw)− θ̈bd

,

σ̇2 = c2e4 −M−1
21 (H1 + G1)−M−1

22 (H2 + G2 − τw)− θ̈wd .
(9)
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Let σ̇1 = 0 and σ̇2 = 0, the equivalent control input for each sliding surface can be obtained as{
τw1 = [−c1e2 + M−1

11 (H1 + G1) + M−1
12 (H2 + G2) + θ̈bd

]/M−1
12 ,

τw2 = [−c2e4 + M−1
21 (H1 + G1) + M−1

22 (H2 + G2) + θ̈wd ]/M−1
22 .

(10)

To make sure that all tracking errors converge to zero, the control input can be set as [25]

τw = τw1 + τw2 + τws , (11)

where τws is the switching control input in the reaching phase. To obtain τws , a sliding surface is
designed as

σs = ασ1 + βσ2, (12)

where α and β are constants. The τws can be obtained based on Lyapunov stability theorem. Choose a
Lyapunov function candidate as

V1 =
1
2

σ2
s . (13)

Differentiating V1 with respect to time, we have

V̇1 = σsσ̇s = σs(ασ̇1 + βσ̇2). (14)

From Equations (9) and (14), we have

V̇1 = σsα[c1e2 −M−1
11 (H1 + G1)−M−1

12 (H2 + G2 − τw)− θ̈bd
] + σsβ[c2e4 −M−1

21 (H1 + G1)

−M−1
22 (H2 + G2 − τw)− θ̈wd ] = σs[αM−1

12 (τw − τw1) + βM−1
22 (τw − τw2)]

= σs[αM−1
12 (τws + τw2) + βM−1

22 (τws + τw1)].

(15)

Select the exponential sliding mode

σ̇s = −k1sign(σs)− k2σs = αM−1
12 (τws + τw2) + βM−1

22 (τws + τw1), (16)

where k1 and k2 are positive constants. From Equation (16), τws can be obtained as

τws =
−k1sign(σs)− k2σs − αM−1

12 τw2 − βM−1
22 τw1

αM−1
12 + βM−1

22

. (17)

According to the Lyapunov theorem, the below condition should be satisfied to provide stability
of HSMC controller [33].

V̇1 < 0 for σs 6= 0.

From Equations (14) and (16), we have

V̇1 = σsσ̇s = −k1 | σs | −k2σ2
s < 0 for σs 6= 0. (18)

Equation (18) proves that the sliding surface σs is asymptotically stable. The trajectory of the
second-layer sliding surface σs will converge to the origin of coordinate system constructed by σ1

and σ2 axis when t → ∞. Therefore, each subsystem states move on the first-layer sliding surfaces
(σ1 and σ2) and we have [34]

lim
t→∞

σ1 = 0 lim
t→∞

σ2 = 0. (19)

Equation (19) proves that the first-layer sliding surfaces σ1 and σ2 are also asymptotically stable.
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4.2. Proposed Method

In the proposed method where a pendulum like movable mechanism is added to the wheelchair,
the number of control inputs (τw and τp) is equal to the number of controlled variables. A QSMC
control scheme is suitable in this case. To develop the QSMC controller for the system, the two sliding
surfaces σ1 and σ2 defined in Equation (5) are used. According to Equation (7), we have{

θ̈b = −M−1
11 (H1 + G1)−M−1

12 (H2 + G2 − τw)−M−1
13 (H3 + G3 − τp)

θ̈w = −M−1
21 (H1 + G1)−M−1

22 (H2 + G2 − τw)−M−1
23 (H3 + G3 − τp).

(20)

Combining Equations (6) and (20) yields{
σ̇1 = c1e2 −M−1

11 (H1 + G1)−M−1
12 (H2 + G2 − τw)−M−1

13 (H3 + G3 − τp)− θ̈bd
,

σ̇2 = c2e4 −M−1
21 (H1 + G1)−M−1

22 (H2 + G2 − τw)−M−1
23 (H3 + G3 − τp)− θ̈wd .

(21)

Note, to avoid the chattering phenomenon, a smooth sigmoid function is replaced with the
non-smooth function sign(σ). To obtain equivalent control inputs, σ̇1 and σ̇2 are considered as

σ̇1 = −ρ1
σ1

| σ1 | +ε1
, σ̇2 = −ρ2

σ2

| σ2 | +ε2
, (22)

where ρ1 and ρ2 are two positive controller gains and ε1 and ε2 are two small positive scalars [33].
Therefore, the control inputs can be obtained asτw = (F1 −

M−1
13

M−1
23

F2)/(M−1
12 −

M−1
22 M−1

13

M−1
23

),

τp = (F1 −M−1
12 τw)/M−1

13 ,
(23)

where
F1 = −ρ1

σ1

| σ1 | +ε1
− c1e2 + M−1

11 (H1 + G1) + M−1
12 (H2 + G2) + M−1

13 (H3 + G3) + θ̈bd
,

F2 = −ρ2
σ2

| σ2 | +ε2
− c2e4 + M−1

21 (H1 + G1) + M−1
22 (H2 + G2) + M−1

23 (H3 + G3) + θ̈wd .

To prove the stability of the QSMC controller, the Lyapunov function candidates can be chosen as

V2 =
1
2

σ2
1 , V3 =

1
2

σ2
2 . (24)

The below conditions should be satisfied to provide stability of QSMC controller [33].

V̇2 < 0 for σ1 6= 0 V̇3 < 0 for σ2 6= 0.

From Equations (22) and (24), we have
V̇2 = σ1σ̇1 = −ρ1

σ2
1

| σ1 | +ε1
< 0 for σ1 6= 0

V̇3 = σ2σ̇2 = −ρ2
σ2

2
| σ2 | +ε2

< 0 for σ2 6= 0.

Therefore, the stability of the QSMC controller is guaranteed.
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5. Simulation Results

In this section, the performances of the stability and velocity control of a two-wheeled robotic
wheelchair through the conventional and the proposed methods are simulated and compared.
A two-wheeled robotic wheelchair used in [8] is considered for dynamic modelling and controller
design. The physical parameters of the wheelchair and the added pendulum-like movable mechanism
can be found in Table 2.

Table 2. Physical parameters of the two-wheeled robotic wheelchair and movable mechanism for
simulation.

Property mw m̂b mp Jw Jb Jp r l l′ b

Value 16 48 15.45 0.64 0 0.19 0.26 0.3 0.2 0

Unit kg kg kg kg ·m2 kg ·m2 kg ·m2 m m m m

5.1. Case 1

In Case 1, the initial values for pitch angle, wheel’s rotational angle and the rotational angle of the
pendulum angles are respectively set as

θb0 = 0.2 rad, θ̇b0 = 0, θw0 = 0, θ̇w0 = 0, θp0 = 0, θ̇p0 = 0.

According to the control objectives, the desired pitch angle and angular velocity are set to be zero.

θbd
= 0, θ̇bd

= 0.

The desired angular velocity of the wheels (for the motion along a straight line) is set to be constant.
θ̇wd = 20 rad/s. Therefore, the angle as the function of time t can be expressed as θwd = 20 t rad.
The control parameters for the HSMC controller are chosen as

c1 = 1.5, c2 = 0.05, α = 1, β = 0.03, k1 = 1, k2 = 0.36.

The control parameters for the QSMC controller were set as

c1 = 1, c2 = 0.4, ρ1 = 0.2, ρ2 = 0.2, ε1 = 0.05, ε2 = 0.05.

The above control parameters are selected from several sets of parameters based on the
performance of the system responses include the accuracy and the speed of the angle and the velocity
tracking and the magnitude of the motor’s output torque and power within their limits. In Case 1, the
mass of body’s uncertainty is not considered. Therefore, ∆mb = 0.

Figure 2 and 3 depict the responses of the pitch angle and pitch angular velocity through
the conventional and the proposed methods in Case 1, respectively. It can be seen that using the
proposed method, the range of pitch angle and its velocity is smaller than those obtained through
the conventional method. Figure 4 represents the wheel velocity response through conventional and
proposed approach in Case 1. It shows that the wheel velocity through both control methods can reach
the desired wheel velocity in a similar pattern. Figures 5 and 6 depict the response of sliding surfaces
in Case 1 designed in the conventional and the proposed methods. As can be seen, all sliding surfaces
converge to zero.
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Figure 2. Pitch angle of the system in the conventional method (CM) and proposed method (PM) in
Case 1.

Figure 3. Pitch angular velocity of the system in the conventional method (CM) and the proposed
method (PM) in Case 1.

Figure 4. Wheel angular velocity of the system in the conventional method (CM) and the proposed
method (PM) in Case 1.
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Figure 5. Sliding mode surfaces in the conventional method in Case 1.

Figure 6. Sliding mode surfaces in the proposed method in Case 1.

Figure 7 depicts the input torque of wheels in Case 1 through the conventional and the proposed
methods, respectively. It can be seen that they are similar to each other. However, as shown in
Figure 8, the required power in the proposed method is much smaller than that required in the
conventional method. There are high-frequency components in the input torque and power trajectories
which are mainly due to the switching actions near the sliding surfaces in both the controllers.
Though the QSMC controller is designed to smooth out the high-frequency components in the system
outputs, it cannot eliminate them. On the other hand, the additional movable mechanism used in
the proposed method increases the complexity of the system dynamics which also contributes to the
high-frequency components.

Figure 7. Input torque of wheels in the conventional method (CM) and the proposed method (PM) in
Case 1.
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Figure 8. Input power of wheels in the conventional method (CM) and the proposed method (PM) in
Case 1.

As shown in Figures 9 and 10, the input torque and power required for the motion of the pendulum
is almost negligible. As shown in Figure 11, the range of the angular displacement of the pendulum is
very small. This shows that it can be made compact and be operated in a small space to achieve the
control objectives without causing large disturbances to the system including the rider.

Figure 9. Input torque of movable mechanism in the proposed method (PM) in Case 1.

Figure 10. Input power of movable mechanism in the proposed method (PM) in Case 1.
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Figure 11. Movable mechanism angle in the proposed method (PM) in Case 1.

5.2. Case 2

In Case 2, the initial values of system are chosen as

θb0 = 0.1 rad, θ̇b0 = 0, θw0 = 0, θ̇w0 = 0, θp0 = 0, θ̇p0 = 0.

The control objectives are set as

θbd
= 0, θ̇bd

= 0, θ̇wd = 10 rad/s.

The control parameters for the HSMC and QSMC controllers are chosen same as the values
selected in Case 1. As the mass of rider varies for each person, the uncertainty of the body’s mass
should be considered to prove the robustness of the controllers. In this case, the uncertainty of body’s
mass is chosen as ∆mb = 20 kg.

Figures 12–21 depict the performance of system in Case 2 through the conventional and proposed
methods. It can be seen that the results are similar to those obtained in Case 1. Considering the
disturbances caused by parameter uncertainty, the system can overcome it and prove the controller
robustness designed for both the methods.

Figure 12. Pitch angle of system in the conventional method (CM) and the proposed method (PM) in
Case 2.
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Figure 13. Pitch angular velocity of the system in the conventional method (CM) and the proposed
method (PM) in Case 2.

Figure 14. Wheel angular velocity of the system in the conventional method (CM) and the proposed
method (PM) in Case 2.

Figure 15. Sliding mode surfaces in the conventional method in Case 2.
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Figure 16. Sliding mode surfaces in the proposed method in Case 2.

Figure 17. Input torque of the wheels in the conventional method (CM) and the proposed method (PM)
in Case 2.

Figure 18. Input power of the wheels in the conventional method (CM) and the proposed method (PM)
in Case 2.
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Figure 19. Input torque of the movable mechanism in the proposed method (PM) in Case 2.

Figure 20. Input power of the movable mechanism in the proposed method (PM) in Case 2.

Figure 21. Movable mechanism angle in the proposed method (PM) in Case 2.

6. Conclusions

This paper presents a novel method for stability and velocity control of a two-wheeled robotic
wheelchair. In this method, a movable pendulum-like movable mechanism is added to the wheelchair
mainly for stability control. The Euler-Lagrange equation is used to establish the equation of motion of
the system and a quasi-sliding mode control scheme is used in the controller design. The simulation
results show that the proposed method achieves better stability and velocity control with less input
power than the conventional methods only relying on the motions of the wheels. It is also robust
against external disturbances. The future work is to implement the proposed method on a two-wheeled
robotic wheelchair system under development in our lab.
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Appendix A. Dynamic Model Components of Proposed Method

The M(q), H(q, q̇) and G(q) elements in proposed method are as below:

M11 = mbl2 + mpb2 + mpl
′2 − 2mpbl′ cosθp + Jb + Jp, M12 = mbrl cosθb + mprb cosθb −mprl′ cos(θb + θp),

M13 = mpl
′2 −mpbl′ cosθp + Jp, M22 = (mb + mp + 2mw)r2 + 2Jw,

M23 = −mprl′ cos(θb + θp), M33 = mpl
′2 + Jp, H1 = mpbl′(θ̇2

p + 2θ̇b θ̇p) sinθp,

H2 = −(mbl + mpb)rθ̇2
b sinθb + mprl′(θ̇b + θ̇p)2 sin(θb + θp), H3 = −mpbl′ θ̇2

b sinθp,

G1 = −mbgl sinθb −mpgb sinθb + mpgl′ sin(θb + θp), G2 = 0, G3 = mpgl′ sin(θb + θp).
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