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Let P = [pij] be the transition matrix of an irreducible, 
discrete time Markov chain (MC) {Xn} (n ≥ 0).  
We are interested in developing accurate and efficient 
ways of finding the key properties of such MC’s: 

1. Introduction 

   

(i) the stationary probabilites {π j }, (1≤ j ≤ N) 

     and hence the stationary probability vector π T  
(ii) the mean first passage times {mij },(1≤ i, j ≤ N)

     and hence the mean first passage time matrix M = [mij ]

(iii) the fundamental matrix of ergodic MC's,  Z = [I −P + eπ T ]−1

(iv)  the group inverse of the Markovian kernel, A = I −P,

       A# = Z − eπ T = Z −Π



  
  
 
 

  
 
 

   

2. Stationary distributions of M.C.’s 

Let  πT = (π1, π2, . . . , πN ) be the stationary prob. vector 
of the Markov chain with transition matrix P = [pij] .   

    

Finite irreducible MC’s {Xn } have a unique stationary

distribution {π j },(1≤ j ≤ m), which for aperiodic (ergodic)

 M.C.s is the limiting distribution, 

i.e. lim
n→∞

P{Xn = j X0 = i} = π j , (1≤ j ≤ m).

  Further, the stationary probabilities {π j } satisfy the 

  stationary equations

                      π j = π ii=1

N∑ pij  with π ii=1

N∑ = 1,

  i.e.                           π T (I – P) =  0T  with π Te = 1.



	

 

    
 
 

  3. Mean first passage times 
        

   

Let Tij  be the first passage time RV from state i  to state j, 

i.e.Tij = min {n ≥  1 such that Xn =  j  given that X0 = i}.

Tii  is the first return to state i.

Let mij = E[Tij X0 = i ], the mean first passage time from 

state i   to state j. 
Let M = [mij ]  be the matrix of mean first passage times

It is well known that  mij = 1+ pik
k  ≠ j
∑ mkj ,with mjj = 1 π j .

M  satisfies the matrix equation  
                              (I −P)M = E −PD,

where E  = [1] = eeT , and  D = Md = [δ ijmij ] =(Πd )−1,  (Π = eπ T ).



   4. Generalized matrix inverses 
 

A generalized inverse of a matrix A is any matrix A– 

such that   
                          AA– A = A . 
 

 A–  is a “one condition” g-inverse 
 

  
  
  

   

If π Tt ≠ 0 and uTe ≠ 0  then  

              G = [I −P + tuT ]−1 + ef T + gπ T

is a g-inverse of I −P  for any vectors f , g



     5. The group inverse 

Let A be a square matrix with real elements, such that 
        rank(A) = rank(A2).   The matrix A# which satisfies 
        
        Condition 1:     AA# A = A 

 Condition 2:   A# AA#  = A#  
 Condition 5:  AA#  = A# A 

 
exists, is unique, and is called the “group inverse” of A . 
 
i.e.  A# is a 1-condition g-inverse with 2 additional conditions. 

  
  
  

   

The group inverse of I −P   has the form 

 A# =  [I −P + eπ T ]–1 − eπ T = [I −P +Π ]–1 −Π     (Meyer, 1975)



      The group inverse from any g-inverse  

  

A#  can be found from any g-inverse of I −P :

Let G is any g-inverse of I −P.

Let  K = (I −Π )G(I −Π ) 

Then  K = A#, the group inverse of I −P.
                         



The group inverse from stationary probabilities 
and the mean first passage times 

  

A#= [aij
# ]  can be found from the mij :

  aij
# =

π j (τ j −1), i = j,

π j (τ j −1−mij ) = ajj
# − π jmij , i ≠ j. 

⎧
⎨
⎪

⎩⎪

where τ j ≡ π kmkjk=1

N∑ = π kmkjk≠ j∑ +1.

                          (Ben-Ari, Neumann, 2012),(Hunter, 2013).



 6. Mean first passage times using g-inverses 

    

  If G is any g-inverse of I −P, then
  M = [GΠ −E(GΠ )d + I – G +EGd ]D.     (Hunter, 1982)

(i) If Ge = ge  then M =  [I −G +EGd ]D.

(ii) Let G be any g-inverse of I - P  
    then H = G(I −Π) is a g-inverse of I −P  with He = 0
     and  M =  [I −H +EHd ]D.

In particular, M =  [I − A# +EAd
# ]D, so that if A# = [aij

# ],

   mjj =
1
π j

   and    mij =
ajj

# − aij
#

π j

, (i ≠ j).                              



 7. Computational considerations  
  

          

   

  

"The computation of M  using A#  yields 3  sources of error: 
1. The algorithm for computing π T .
2. The computation of the inverse of I −P +Π
    (This matrix may have negative elements)
3.  The matrix evaluation of M.
    (The matrix multiplying D  may have negative elements)".
                                                   Heyman & Reeves (1989) 
“deriving means of first passage times from the group 
inverse A#  leads to a significant inaccuracy on the more 
difficult problems.”  “it does not make sense to compute the
 group inverse unless the individual elements of those 
matrices are of interest.”             Heyman & O'Leary (1995)



  

 .8. Computational techniques 
 

 1. Limits of  matrix powers for stationary 
        probabilities. 
    2. Using g-inverses for stationary probs, 
       mean first passage times and group inverse 
    3. GTH algorithm for stationary probs 
    4. Perturbation Techniques for stationary 
        probs, mean first passage times and group 
         inverse 
    5. Extend the GTH algorithm for mean first 
         passage times 
 
 

 
  

          



 
    

 
 

9. The stationary distribution using g-
inverses 
 
 

   

If G = [I −P  + tuT ]−1 where u, t  such that  uTe ≠ 0, π Tt ≠ 0,

                                   π T = uTG
uTGe

.

(Paige,Styan,Wachter,1975), (Kemeny,1981), (Hunter,1982)

In particular if G = [I −P  + euT ]−1 then π T = uTG



   10. Solving for stationary distribution using   
 the GTH Algorithm 

Let    PN = pij
⎡⎣ ⎤⎦ = pij

(N )⎡⎣ ⎤⎦ be the N × N transition matrix 
associated with a M.C. {Xk ,k ≥ 0} with state space 

  SN = {1,2,...,N} , and transition probabilities 

  pij
(N ) = P{Xk+1 = j Xk = i}. 

The general approach is to start with an N–state 
Markov chain and reduce the state space by one state 
at each stage. Thus in stages 

  SN = SN−1 ∪ {N}, SN−1 = SN−2 ∪ {N −1},...., S2 = {1,2}. 
 
From    S2 expand the state space one state at a time 
until we return to  SN !!



  

         
    

If M.C. is irreducible with state space SN   
Let the stationary probability vector be 

   π
T = (π1 ,π 2,...,πN−1,πN ) 

        = π (N )T = (π1
(N ),π 2

(N ),...,πN−1
(N ) ,πN

(N ) ). 

From the stationary equations for SN  
express   πN

(N ) in terms of   π1
(N ),…,   πN−1

(N )  : 

                                 

πN
(N ) =

π i
(N )piN

(N )
i=1

N−1∑
pNj

(N )
j=1

N−1∑
 

and eliminate   πN
(N ) from the stationary equations.  

!



  

         
    

Partition the stationary probability vector 

  π
(N )T = (ν (N−1)T , πN

(N ) ) where ν (N−1)T = (π1
(N−1),π 2

(N−1),...,πN−1
(N−1)) 

It is easily shown that 

  

ν (N−1)T IN−1 −PN−1( ) = 0T , where  PN−1 = QN−1
(N ) −

pN−1
(N )(c )pN−1

(N )(r )T

pN−1
(N )(r )Te(N−1) . 

Let PN−1 = pij
(N−1)⎡⎣ ⎤⎦  then pij

(N−1) = pij
(N ) +

piN
(N )pNj

(n)

S(N)
, 

                                                    1≤ i ≤ N −1, 1≤ j ≤ N −1.  

Note that calculation of the S(N) and the pij
(N−1)  do not 

involve subtractions.

 

!

  

Let   PN =
QN−1

(N ) pN−1
(N )(c )

pN−1
(N )(r )T pNN

(N )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

       



  

         
    

  

Observe

PN−1 is a stochastic matrix with state space SN−1

PN−1 is irreducible

ν (N−1)T  is a scaled stationary prob vector of this N −1 state MC

π (N−1)T = (π1
(N−1),π 2

(N−1),...,πN−1
(N−1)) ≡ 1

1− πN
(N ) ν

(N−1)T

so that the first N −1 stationary probs of the N-state MC are 
scaled versions of the N −1 state MC.



  

         
    

We can repeat this process reducing the state space from    
n  to n–1 (n= N, N-1, …, 2) with the resulting MC having a 
stationary distribution that is a scaled version of the first  
n–1 components of the stationary distribution of the MC 
with n states. 
Thus if   Pn = pij

(n)⎡⎣ ⎤⎦  with Pn−1 = pij
(n−1)⎡⎣ ⎤⎦ then 

                       
  
pij

(n−1) = pij
(n) +

pin
(n)pnj

(n)

S(n)
,1≤ i ≤ n −1,1≤ j ≤ n −1;              

where 
  
S(n) = 1− pnn

(n) = pnj
(n)

j=1

n−1∑ .
 

The   pij
(n−1)  can be interpreted as the transition probability 

from i to j of the M.C. on  Sn restricted to   Sn−1.!



  

         
    

Since the original M.C. is irreducible (i.e. every state can 
be reached from every other state) the restricted M.C. 
must also be irreducible and further since   pnn

(n) <1,   S(n) > 0. 
If we start with 

  π
(N )T = (π1

(N ),π 2
(N ),....,πN−1

(N ) ,πN
(N ) ) ≡ (π1,π 2,....,π n−1,π n )  

then the N – 1 elements of   π (N−1)T  are scaled elements of 
the first N – 1 elements of   π (N )T and hence of   π1,π 2,....,π n−1.  
Thus each   π (n)T  is a scaled version of   (π1,π 2,....,π n−1,π n ).  

The process continues to n = 2, where we have 

  

P2 =
p11

(2) p12
(2)

p21
(2) p22

(2)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 which is a stochastic matrix.  



  

         
    

The stationary distribution of this MC will be a scaled 
version of   π

(2)T = (π1
(2),π 2

(2))  or of (π1 ,π 2 ). 
 
The second stationary equation is   π 2 = π1p12

(2) + π 2p22
(2) 

implying  

                                  
  
π 2 = π1

p12
(2)

S(2)
. 

Note that 
  
S(2) = 1− p22

(2) = p2 j
(2)

j=1

1∑ = p21
(2) = p1

(2)(r )Te(1). 
We now proceed with increasing the state space. 

  
π 3 =

π ipi3
(3)

i=1

2∑
p3 i

(3)
i=1

2∑
= π1

p13
(3)

S(3)
+ π 2

p23
(3)

S(3)
,

  
In general,   π n =

π ipin
(n)

i=1

n−1∑
pni

(n)
i=1

n−1∑
= π ii=1

n−1∑ pin
(n)

S(n)



   
  GTH Algorithm 

         
    

1. Start with a Markov chain with N states and transition 
matrix   PN = pij

(N )⎡⎣ ⎤⎦. 
   
2. Compute for n = N, N–1, …, ,3,

  

   
pij

(n−1) = pij
(n) +

pin
(n)pnj

(n)

S(n)
,1≤ i ≤ n −1,1≤ j ≤ n −1; where  

  
S(n) = pnj

(n)
j=1

n−1∑ . 

  3. Set r1 = 1 and compute  
  
rn =

ripin
(n)

i=1

n−1∑
S(n)

, for n = 2,...,N. 

  

4.  Compute   π i =
ri

rjj=1

N∑
,  i = 1,2,..., N. 



  11.  Solving for stationary distributions , mean 
first passage times and group inverse using 
perturbation procedures 
  

 

         
    

   

The  basic ideas are very simple: Start with a transition matrix P0,

with known stat prob vector π 0
T , mean first passage time matrix 

M0, and group inverse  A0
#  for I −P0, (or g-inverse G0).

Sequentially change  P0  by replacing the i th  row of P0  with the

 i th  row, pi
T , of  P  (i  = 1, 2, ..., N) to obtain Pi   with PN = P.

Thus, if P0  = eip(0)i
T , and

i=1

N∑  P  = 
 
 i=1

N∑ eipi
T  then Pi = Pi−1 + eibi

T

with bi
T = pi

T −  p(0)i
T  for i  = 1, 2, ..., N.

Update π i−1
T , Mi−1 and A i−1

#  (or Gi−1) to π i
T , Mi  and A i

#  (or Gi ) 

stopping with πN
T = π T ,MN = M  and AN

# = A#  (or GN = G).



 Choice of P0 

 

         
    

We require P0  to be irreducible. The simplest structure is

P0 =

1 m 1 m ... 1 m ... 1 m
1 m 1 m ... 1 m ... 1 m
. . ... . . .
1 m 1 m ... 1 m ... 1 m
. . ... . . .
1 m 1 m ... 1 m ... 1 m

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 1
m
eeT = 1

m
E

This leads to

                   M0 = mee
T     = mE

and             A0
# = I − 1

m
eeT = I − 1

m
E

 



 The perturbation algorithms 
We consider six techniques 
1.  Extend the procedure of Hunter (JAMSA, 1991) 

using a family of 1-condition generalized inverse 
updates to find successive stat prob vectors 
with extensions to the group inverses. 

2.  Consider successive direct row perturbation 
updates of the group inverse (and hence the 
mean first passage times).  

3.  Consider a blend of 1. and 2. through updating 
using matrix procedures for the stat probability 
vectors and the group inverses in tandem. 

         
    



12. The algorithms 
    Procedure based on updating specific  g-

inverses of I –  P of the form  
   have simple forms for the MFPT matrix since   
 
 
 
 
 
     
   Note that it is easy to find the group inverse from 
    the MFPT matrix since in these cases 
     

         
    

  G = [I – P + eβ T ]−1

   

4.  βT = eT

N
, with G = Ge ≡ I −P + eeT

N
⎡

⎣
⎢

⎤

⎦
⎥

−1

.

5.  βT = e1
T , with  G = Ge1 = [I −P +ee1

T ]−1

6.  βT = eT , with  G = Gee = [I −P +eeT ]−1

   Ge = ge.

   A
# = (I − eπ T )G.



   Perturbation procedures for stat distribns 
  

 

         
    

   

With P0 = eeT m, 

Pi = Pi−1 + eibi
T with bi

T = pi
T −  eT m.

With t0 = e  and u0
T = eT m  

then G0 = [I −P0 + t0u0
T ]−1 = I  and π 0

T =
u0

TG0

u0
TG0e

= eT m.

Let t i = ei  and ui
T = ui−1

T + bi
T = ui−1

T + pi
T −  eT m,

then Gi = [I −Pi + t iui ]
−1 = Gi−1[I + (ei−1 − ei )(π i−1

T π i−1
T ei )]

implying π i
T =

ui
TGi

ui
TGie

, i = 1, 2, ...,m.



 Algorithm 1 
  

 

         
    

   

(i)   Let G0 = I, u0
T = eT N .

(ii)  For  i = 1, 2, ...,N, let pi
T = ei

TP,

       ui
T = ui−1

T + pi
T −  eT N ,

       Gi = Gi−1 +Gi−1(ei−1 − ei )(ui−1
T Gi−1 ui−1

T Gi−1ei ).

(iii)  At  i = N, let G = GN  and 

        π T = πN
T =

uN
TGN

uN
TGNe

.

(iv)  Compute H = G(I − eπ T ).

(v)   Compute A# = (I − eπ T )H.

(vi)  Compute M =  [I −H +EHd ]D  where D = ((eπ T )d )−1.



Perturbations of the Group Inverse 
 
 
 

         
    

    

Let P = P + Ε where the perturbing matrix Ε has the property

Εe = 0. Let Π = eπ T where π Tis the stat prob vector of the MC 
associated with P. 

Let A#and A
#
 be  the group inverses of A = I −P  and A = I −P.

(i)              I − ΕA#  is non-singular, 
(ii)   the stat prob vector of the perturbed MC is 

                          π
T
= πT (I − ΕA# )−1

(iii)  the group inverse of A = I −P  is

       A
#
= A#(I − ΕA# )−1 −Π(I − ΕA# )−1A#(I − ΕA# )−1. 



Row perturbations of the Group Inverse 
 
 
 

         
    

    

Let Ε = eib
T ,i.e. a perturbation to the i-th row with bTe ≠ 0,

π T = π T I + 1
1− bT A#ei

eib
T A#

⎡

⎣
⎢

⎤

⎦
⎥  and 

A# = A# + 1
1− bT A#ei

A#eib
T A# − eyT ,

       where    yT =
π i

1− bT A#ei

⎛

⎝⎜
⎞

⎠⎟
bT A# +

bT (A# )2ei

1− bT A#ei

I
⎛

⎝⎜
⎞

⎠⎟
A#.

(Note that yTe = 0.) See (Kirkland and Neumann, 2013).

Carry out row by row perturbations, with bi
T  the change at

the i-th row, and A i
#  the group inverse after the i-th change.

Ai
# = Ri + ey i

T  ⇒ Ri = Ri−1 +
1

1− bi
TRi−1ei

Ri−1eibi
TRi−1 with y i

Te = 0.



Algorithm 2 

 

         
    

     

(i)   Let P0 = eeT N ⇒ A0
# = I − eeT N . Take R0 = I − eeT N .

(ii)  For  i = 1, 2, ...,N, let pi
T = ei

TP,

       bi
T = pi

T −  eT N ,

       Ri = Ri−1 +
1

1− bi
TRi−1ei

Ri−1eibi
TRi−1.

(iii)  At  i = N, let R = RN  so that   A# = R + eyN
T .

         (I −P)A# = I − eπ T   yields the stat prob vector:

       ⇒π T = e1
T − e1

T (I −P)R.

 (iv)    π T A# = 0T yields the group inverse:

        ⇒ yN
T = −π TR ⇒ A# = (I − eπ T )R.

(v)  Compute M =  [I − A# +EAd
# ]D  where D = ((eπ T )d )−1.



 Updating by matrix operations 

         
    

     

Let P = P + Ε where Ε has the property Εe = 0. 

Let Π = eπ T  and Π = eπ
T
where π Tand π

T
 

are the stat prob vectors associated with P  and P.

   π
T
= πT (I − ΕA# )−1 ⇒Π = Π(I − ΕA# )−1.

Under the perturbation Ε = eib
T to the i-th row with bTe ≠ 0,

(I − ΕA# )−1 = I + 1
1− bT A#ei

eib
T A#  so that

Π = Π I + 1
1− bT A#ei

eib
T A#

⎡

⎣
⎢

⎤

⎦
⎥   and 

A
#
= (I −Π)A#(I − ΕA# )−1 = (I −Π)A# I + 1

1− bT A#ei

eib
T A#

⎛

⎝⎜
⎞

⎠⎟
.



Algorithm 3 

 

         
    

    

(i)   Let P0 = eeT N ⇒Π0 = eeT N , A0
# = I − eeT N . 

(ii)  For  i = 1, 2, ...,N, let pi
T = ei

TP, bi
T = pi

T −  eT N ,

        Si = I + 1
1− bi

T Ai−1
# ei

eibi
T Ai−1

# ,

        Πi = Πi−1Si , 

        A i
# = (I −  Πi )A

#
i−1Si .

(iii)  At  i = N, let S = SN  then

         Π = ΠN−1S,

         A# = (I −  Π )A#
N−1S.      

(iv)  Compute M =  [I − A# +EAd
# ]D, where D = (Πd )−1.



Updating by g-inverses of I – P 

         
    

    

From the Sherman-Morrison formula, with P0  =
eeT

N
 

 K0 = [I −P0 + eβT ]−1 = [I + ehT ]−1 =I − ehT

1+ hTe
.

If Pi = Pi−1 + eibi
T , Ki = [I −Pi + eβT ]−1 = Ki−1 +

1
1− b i

Tei

Ki−1eib i
TKi−1.

4.  βT = eT

N
,Ge = KN, K0 = I ⇒π T = 1

N
eTKN.

5.  βT = e1
T ,Ge1 = KN, K0 = I + e eT

N
− e1

T⎛

⎝⎜
⎞

⎠⎟
⇒ π T = e1

TKN.

6. βT = eT ,Gee = KN, K0 = I − N −1
N

⎛
⎝⎜

⎞
⎠⎟

eeT ⇒π T = eTKN.



 Algorithm 4 
  

 

         
    

   

(i)   Let K0 = I. 

(ii)  For  i = 1, 2, ...,N, let pi
T = ei

TP,bi
T = pi

T − eT N .

       Ki = Ki−1(I +Ci ) where k i = 1− eiKi−1ei  and Ci =
1
ki

eibi
TKi−1

(iii)  At  i = N, let K = KN  then  π T = 1
N

eTK.

(v)   Compute A# = (I − eπ T )K.

(vi)  Compute M =  [I −K +EKd ]D  where D = ((eπ T )d )−1.



 Algorithm 5 
  

 

         
    

   

(i)   Let K0 = I + e eT

N
− e1

T⎛

⎝⎜
⎞

⎠⎟
  

(ii)  For  i = 1, 2, ...,N, let pi
T = ei

TP,bi
T = pi

T − eT N .

       Ki = Ki−1(I +Ci ) where k i = 1− eiKi−1ei  and Ci =
1
ki

eibi
TKi−1

(iii)  At  i = N, let K = KN  then  π T = e1
TK.

(v)   Compute A# = (I − eπ T )K.

(vi)  Compute M =  [I −K +EKd ]D  where D = ((eπ T )d )−1.



 Algorithm 6 
  

 

         
    

   

(i)   Let K0 = I − N −1
N

⎛
⎝⎜

⎞
⎠⎟

eeT . 

(ii)  For  i = 1, 2, ...,N, let pi
T = ei

TP,bi
T = pi

T − eT N .

       Ki = Ki−1(I +Ci ) where k i = 1− eiKi−1ei  and Ci =
1
ki

eibi
TKi−1

(iii)  At  i = N, let K = KN  then  π T = eTK.

(v)   Compute A# = (I − eπ T )K.

(vi)  Compute M =  [I −K +EKd ]D  where D = ((eπ T )d )−1.



12.  Standard procedures – MFPT’s  

    

The "standard algorithm"  is  M =  [I − Z +EZd ]D   where

Z= [I −P + eπ T ]−1 , Kemeny and Snell's "fundamental matrix"      

                   



Simple procedure for MFPTs  

      

Hunter (2007) presented a "simple algorithm" which 
is the simplest method to  simultaneoulsy compute 
the stationary distribution and the MFPTs.

If  Geb = [I −P + eeb
T ]−1 = gij

⎡⎣ ⎤⎦,

then π j = gbj ,   j = 1, 2, ...,  N,    

and   mij =
1/ gbj , i = j,

(gjj − gij ) gbj , i ≠ j.

⎧
⎨
⎪

⎩⎪
      



  

         
    

13. Mean First Passage Times via Extended GTH 
 
We seek a computational procedure, utilising the 
GTH/State reduction procedure. 
 
For a M.C. {Xn}  with N-states and transition matrix P, its 
mean first passage time matrix (MFPT) M satisfies  

  (I −P)M = E −PMd  
where   E = 1⎡⎣ ⎤⎦ = e

(N )e(N )T
 and 

  Md = δ ijmjj
⎡⎣ ⎤⎦ = diag(π1,π 2,...,πN ).  

 
For a M.R.P. {Xn,Tn} the  MFPT matrix satisfies  

  (I −P)M = µ (N )e(N )T −P(M)d . 



  

         
    

  Fij (t) is the distribution function of the “holding time” 

  Tn+1 −Tn in state Xn  until transition into state   Xn+1 given that 
the M.R.P. makes a transition from  Xn  to  Xn+1.  

Let 
  
µij = t dQij0

∞

∫ (t) so that   µij = pijE[Tn+1 −Tn Xn = i, Xn+1 = j ]. 

Let   P
(1) = µij

⎡⎣ ⎤⎦ then  

  (I −P)M = P (1)E −PMd . 

Let   µ = P (1)e then   µ
T = (µ1,µ2,...,µN ) where 

  
µi = µijj=1

N∑ . 

µi  =   E[Tn+1 −Tn Xn = i ] is the “mean holding time in state i “. 
Thus   P

(1)E = P (1)eeT = µeT  

Note that for a M.C.   µ
(N )T = e(N )T = (1,1,...,1) and   P (1)E = E . 



  

         
    

Let us partition  M = MN  as 

  

MN =
MN−1 mN−1

(N )(c )

mN−1
(N )(r )T mNN

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
   

where 

  MN−1 = mij
⎡⎣ ⎤⎦, (1≤ i ≤ N −1, 1≤ j ≤ N −1), 

  mN−1
(N )(r )T = (mN1,mN2,....,mN,N−1) and 

  mN−1
(N )(c )T = (m1N,m2N,....,mN−1,N ). 

 
Let us also partition   µ

(N )T = (µ1
(N ),...,µN−1

(N ) ,µN
(N ) )   = (µN−1

(N )T ,µN
(N ) )  

  where µN−1
(N )T = (µ1

(N ),...,µN−1
(N ) )  

 
!

  

Expressing (I −P)M = µ (N )e(N )T −P(M)d  in block form

and carrying out block multiplication we obtain  the
following results (details omitted).



  

         
    

Using the expression for PN−1, as derived for the GTH 
algorithm, it is easily seen that 
 

  

(IN−1 −PN−1)MN−1 = µ (N−1)e(N−1)T −PN−1(MN−1)d ,

where       µ (N−1)   = µN−1
(N ) +

µN
(N )pN−1

(N )(c )

pN−1
(N )(r )Te(N−1) .  

  

Further,   mN−1
(N )(r )T =

pN−1
(N )(r )T MN−1 − (MN−1)d( ) + µN

(N )e(N−1)T{ }
pN−1

(N )(r )Te(N−1)
  

 
 
  

  

implying  mNj =
pNk

(N )mkj + µN
(N )

k=1,k≠ j

N−1∑{ }
S(N)

 for 1≤ j ≤ N −1,

leading to expressions for mNj  in terms of m1j ,..,mkj ,..,mN−1, j  

(k ≠ j), i.e. expressions for mNj  in terms of the remaining 

elements of the j − th column of M.



  

         
    

More difficult to find mN−1
(N )(c),    i.e. the miN  for     1≤ i ≤ N −1. 

                                     (In−1 −Qn−1
(n) )mn−1

(n)(c ) = µn−1
(n)

                                    

  QN−1
(N ) = pij

(N )⎡⎣ ⎤⎦  for 1≤ i ≤ N −1, 1≤ j ≤ N −1, an (n–1)×(n–1)  
matrix derived from PN , requires further step by step  
reduction procedure by eliminating   mN−1,N  from   mN−1

(N )(c )T  replacing 
it in the expressions for the elements   m1N,m2N,....,mN−2,N.   

Need to express   (N −1)× (N −1) matrix QN−1
(N )  in block form.  

  
mN−1,N =

pN−2
(N−1)(N )(r )TmN−2

(N )(c ) + µN−1
(N ){ }

1− pN−1,N−1
(N−1) =

qN−1,k
(N−1)

k=1

N−2∑ mkN + µN−1
(N ){ }

R(N)
,      

 where 
  
R(N) = 1− pN−1,N−1

(N−1) = pN−1, j
(N )

j=1, j≠N−1

N∑  (i.e. obtained fromPN ). 



  

         
    

Thus for a general reduction from n states to n-1 states 
 

  If (In −Pn)Mn = µ (n)e(n)T −Pn(Mn)d where  µ (n)T = (µn−1
(n) ,µn

(n) ),  

  then (In−1 −Pn−1)Mn−1 = µ (n−1)e(n−1)T −Pn−1(Mn−1)d  

where 
  
µ (n−1)T = µn−1

(n)T +
µn

(n)pn−1
(n)(c )T

pn−1
(n)(r )Te(n−1) .                                        

  µ
(n)T = (µn−1

(n)T ,µn
(n) )  is a 1× n vector,   µn−1

(n)T = (µ1
(n),...,µn−1

(n) ) and  

  µ
(n−1)T = (µ1

(n−1),...,µn−1
(n−1)) is a1× (n –1) vector, with 

                              
  
µi

(n−1) = µi
(n) +

µn
(n)pi,n

(n)

S(n)
, (1≤ i ≤ n −1).               

  
where S(n) = pn−1

(n)(r )Te(n−1) = pnj
(n)

j=1

n−1∑ = 1− pnn
(n). 



  

         
    

We can reduce the state space by 1 at successive steps 
retaining the same mean first passage times for the reduced 
state space i.e.   Mn−1 = mij

⎡⎣ ⎤⎦, for  1≤ i ≤ n −1, 1≤ j ≤ n −1, 
although the calculation is modified with mean holding times  
in the states being modified. i.e. in effect we are using a  
MRP variant to preserve the mean first passage times for  
the reduced state space. 

If we are given   Mn−1 = mij
⎡⎣ ⎤⎦, (1≤ i ≤ n −1, 1≤ j ≤ n −1),  

we wish  to find   mn−1
(n)(c ),mn−1

(n)(r )T  and mnn.   
 
First    mnn = 1 π n

(N )  so  we can use the GTH algorithm from the 
calculation of the stationary probabilities. 

  
For mn−1

(n)(c ),  mnj =
pnk

(n)mkj + µn
(n)

k=1,k≠ j

n−1∑{ }
S(n)

 for 1≤ j ≤ n −1.



  

         
    

For n = 2 :                (I2 −P2)M2 = µ (2)e(2)T −P2(M2)d  

  

1− p11
(2) −p12

(2)

−p21
(2) 1− p22

(2)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

m11 m12

m21 m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                            =
µ1

(2) µ1
(2)

µ2
(2) µ2

(2)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
−

p11
(2)m11 p12

(2)m22

p21
(2)m11 p22

(2)m22

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

leading to 

  

M2 =
m11 m12

m21 m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

p21
(2)µ1

(2) + p12
(2)µ2

(2)

p21
(2)

µ1
(2)

p12
(2)

µ2
(2)

p21
(2)

p21
(2)µ1

(2) + p12
(2)µ2

(2)

p12
(2)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥



  

         
    

General procedure for finding all the elements of M. 
 
Step 1: .Start with PN  and concentrate on finding  
only the expressions for mi1 for i = 1, 2, …, N.  

  i.e. if PN = pij
(N )⎡⎣ ⎤⎦  carry out the extended GTH algorithm

  

  

For n = N, N -1, ...,3, 

let pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
,   1≤ i ≤ n −1, 1≤ j ≤ n −1 

  

and µi
(n−1) = µi

(n) +
µn

(n)pi,n
(n)

S(n)
, (1≤ i ≤ n -1),with S(n) = pnj

(n)
j=1

n−1∑  .

with (µ1
(N ),µ2

(N )....,µN
(N ) ) = (1,1,...,1).

 



  

         
      

Let  m11 = µ1
(2) +

p12
(2)µ2

(2)

p21
(2) , 

       m21 =
µ2

(2)

S(2)
, 

       m31 =  
p32

(3)m21 + µ3
(3)

S(3)
, 

       mn1 =  
pnk

(n)mk1 + µn
(n)

k=2,

n−1∑
S(n)

, n = 3,...,N.

This provides the entries of the first column of  

  M = mij
⎡⎣ ⎤⎦, i.e. mN

(1)(N ), where 
 

  M =  (mN
(1)(N ),mN

(2)(N )....,mN
(N )(N ) ) with mN

(1)(N )T = (m11,m21,....,mN1)  



  

         
    



  

         
    

Step 2: Now reorder the rows of   P (N )  by moving the  
first column after the Nth column, followed by moving  
the first row to the last row. 

  

PN ≡ PN
(1) =

p11 p12 .... p1,N−1 p1,N

p21 p22 p2,N−1 p2N

pN−1.1 pN−1,2 pN−1,N−1 pN−1,N

pN1 pN2 pN,N−1 pNN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

→

p22 p2,N−1 p2N p21

pN−1,2 pN−1,N−1 pN−1,N pN−1,1

pN2 pN,N−1 pNN pN.1

p12 p1,N−1 p1,N p11

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

≡ PN
(2)



  

         
    

  

Step 3: Carry out the algorithm, as in Step 1, with PN = PN
(2)

to obtain the vector of MFPTs which we label as mN
(2)(N )

where  mN
(2)(N )T

= (m22,m32,....,mN2,m12).

  

Step 4: Reorder P2
(N )  as in step 2 to obtain P3

(N )and repeat Step 3

to obtain m
(3)(N )

 where m
(3)(N )T

= (m33,m43,...,mN3,m13,m23)

  

Step k: Repeat as above with Pk
(N )  to obtain m

(k )(N )
 where 

m
(k )(N )T

= (mkk ,mk+1,k ,...,mN,k ,m1,k ,...,mk−1,k ) finishing with 

PN
(N )  and m

(N )(N )
where m

(N )(N )T
= (mNN,m1,N,m2,N,...,mN−1,N )

  

Step N +1: Let M =  (mN
(1)(N ),mN

(2)(N )
....,mN

(N )(N )
)

Finally reorder M  to obtain M = (mN
(1)(N ),mN

(2)(N )....,mN
(N )(N ) )



   14. Test Problems 
    Introduced by Harrod & Plemmons (1984) and 

considered by others in different contexts. 
 

 TP1: The original transition matrix was not                     
irreducible and was replaced ( Heyman (1987), 
Heyman & Reeves (1989)) by 

 
  

         
    

 

.1 .6 0 .3 0 0
.5 .5 0 0 0 0
.5 .2 0 0 .3 0
0 .7 0 .2 0 .1
.1 0 .8 0 0 .1
.4 0 .4 0 0 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥



  
TP2 (Also Benzi (2004)) 

  

         
    

 

.85 0 .149 .0009 0 .00005 0 .00005
.1 .65 .249 0 .00009 .00005 0 .00005
.1 .8 .09996 .0003 0 0 .0001 0
0 .0004 0 .7 .2995 0 .0001 0

.0005 0 .0004 .399 .6 .0001 0 0
0 .00005 0 0 .00005 .6 .2499 .15

.00003 0 .00003 .00004 0 .1 .8 .0999
0 .00005 0 0 .00005 .1999 .25 .55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.



  
   TP3 

         
      

0.999999 1.0 E − 07 2.0 E − 07 3.0 E − 07 4.0 E − 07
0.4 0.3 0 0 0.3

5.0 E − 07 0 0.999999 0 5.0 E − 07
5.0 E − 07 0 0 0.999999 5.0 E − 07
2.0 E − 07 3.0 E − 07 1.0 E − 07 4.0 E − 07 0.999999

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.



TP4 variants: 

         
    

 

.1− ε .3 .1 .2 .3 ε 0 0 0 0
.2 .1 .1 .2 .4 0 0 0 0 0
.1 .2 .2 .4 .1 0 0 0 0 0
.4 .2 .1 .2 .1 0 0 0 0 0
.6 .3 0 0 .1 0 0 0 0 0
ε 0 0 0 0 .1− ε .2 .2 .4 .1
0 0 0 0 0 .2 .2 .1 .3 .2
0 0 0 0 0 .1 .5 0 .2 .2
0 0 0 0 0 .5 .2 .1 0 .2
0 0 0 0 0 .1 .2 .2 .3 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  
TP41≡ ε  = 1.0E-01,TP42 ≡ ε  = 1.0E-03,
TP43 ≡ ε  = 1.0E-05,TP44 ≡ ε  = 1.0E-07.



   15. Computational Comparisons  
 
    We present comparisons for the test problems, 
     using GTH,  Standard, Simple, Perturbation and 

Extended GTH procedures , under double 
precision, for the the stationary distribution and the 
MFPT matrix M 

    Comparisons are based upon computation of the 
the MAX RESIDUAL ERRORS: 
  
  

 
    
   

         
    

  

MAX RES ERROR STAT DISTRN =max
1≤ j≤m,

π̂ j − π̂ ipiji∑
MAX RES ERROR MFPT = max

1≤i≤m,1≤ j≤m
m̂ij − pikm̂kjk≠ j∑ −1



Algorithm*1* Algorithm*2* Algorithm*3* Algorithm*4* Algorithm*5* Algorithm*6* GTH* Simple*
TP1* 2.2204E;16* 2.2204E;16* 5.5511E;17* 4.5103E;17* 1.1102E;16* 4.2154E;16* 5.5511E;17* 1.1102E;16*

TP2* 2.3037E;14* 7.1762E;14* 1.5543E;15* 1.2129E;14* 9.7145E;16* 7.8923E;14* 1.3878E;17* 2.7756E;17*

TP3* 2.7756E;17* 1.7533E;12* 5.6688E;13* 5.5511E;17* 6.9389E;17* 5.5511E;17* 1.3878E;17* 0.0000E+00*

TP41* 6.9389E;17* 3.0531E;16* 5.5511E;17* 8.3267E;17* 4.1633E;17* 1.0270E;15* 2.7756E;17* 8.3267E;17*

TP42* 1.0908E;14* 3.2682E;14* 5.5511E;17* 1.2781E;14* 4.1633E;17* 1.5918E;13* 2.7756E;17* 4.1633E;17*

TP43* 1.9494E;12* 5.0023E;12* 5.5511E;17* 7.5034E;13* 4.1633E;17* 1.0186E;11* 2.7756E;17* 2.7756E;17*

TP44* 8.2389E;11* 7.1013E;10* 7.6328E;17* 1.2806E;10* 5.5511E;17* 9.3132E;10* 2.7756E;17* 2.7756E;17*

1.0000E;17*
1.0000E;16*
1.0000E;15*
1.0000E;14*
1.0000E;13*
1.0000E;12*
1.0000E;11*
1.0000E;10*
1.0000E;09*
1.0000E;08*
1.0000E;07*
1.0000E;06*
1.0000E;05*
1.0000E;04*
1.0000E;03*
1.0000E;02*
1.0000E;01*
1.0000E+00*

Maximum'Residual'Errors'for'Sta3onary'Distribu3on''



Algorithm*1* Algorithm*2* Algorithm*3* Algorithm*4* Algorithm*5* Algorithm*6* Simple* Standard*with*
simple*pi*

Standard*with*
GTH* Extended*GTH*

TP1* 2.2737EA13* 1.1369EA13* 1.1369EA13* 1.1369EA13* 1.1369EA13* 1.1369EA13* 5.6843EA14* 5.6843EA14* 5.6843EA14* 1.1369EA13*

TP2* 4.5384EA12* 2.1828EA11* 5.2267EA12* 3.6380EA12* 2.0219EA12* 5.4570EA12* 1.8190EA12* 1.8190EA12* 3.6380EA12* 3.6380EA12*

TP3* 2.2311EA09* 2.3103EA05* 3.9179EA05* 1.0296EA09* 1.8627EA09* 1.0296EA09* 1.7594E+00* 1.7027E+00* 1.8626EA09* 1.6188E+00*

TP41* 6.3505EA14* 2.2204EA14* 2.8422EA14* 1.4211EA14* 1.4211EA14* 2.1316EA14* 2.1316EA14* 1.4211EA14* 2.1316EA14* 1.4211EA14*

TP42* 7.2760EA12* 1.8190EA12* 4.8246EA12* 9.0949EA13* 1.8190EA12* 2.1290EA12* 1.8190EA12* 1.0374EA12* 1.8190EA12* 1.8190EA12*

TP43* 3.4925EA10* 1.5098EA10* 1.3679EA07* 1.7462EA10* 1.1642EA10* 2.6146EA10* 1.7462EA10* 1.1642EA10* 1.1642EA10* 1.1642EA10*

TP44* 4.4703EA08* 2.2352EA08* 1.3000EA03* 1.4901EA08* 1.4901EA08* 1.4901EA08* 1.4901EA08* 1.4901EA08* 1.4901EA08* 7.4506EA09*

1.0000EA14*

1.0000EA13*

1.0000EA12*

1.0000EA11*

1.0000EA10*

1.0000EA09*

1.0000EA08*

1.0000EA07*

1.0000EA06*

1.0000EA05*

1.0000EA04*

1.0000EA03*

1.0000EA02*

1.0000EA01*

1.0000E+00*

1.0000E+01*

Maximum'Residual'Errors'for'Mean'First'Passage'Times''


