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Regulatory effects of mussel (Aulacomya maoriana Iredale 1915) larval settlement 

by neuroactive compounds, amino acids and bacterial biofilms 

 

 

 
Abstract 

Larval settlement responses of the ribbed mussel, Aulacomya maoriana Iredale 

1915, were investigated after exposure to various chemicals and mono-species 

bacteria.  Identification of settlement inductive compounds assists in the elucidation of 

intermediary biochemical mechanisms involved in the neuronal control of settlement 

behaviour downstream from primary cue reception.  Neuroactive compounds and 

amino acids (potassium ions, GABA, acetylcholine, L-Phenylalanine, L-Tyrosine, 

dopamine, epinephrine, L-Tryptophan, and 5-HTP) and planktonic bacteria, biofilms 

and biofilm exudates of Macrococcus sp. AMGM1, Bacillus sp. AMGB1, and 

Pseudoalteromonas sp. AMGP1 were tested for their abilities to induce larval 

settlement.  Toxicity effects of each treatment also were simultaneously identified by 

recording larval mortalities.  Results indicate that all chemicals used induced larvae to 

settle, with acetylcholine being the most effective (~24% at 10-6 M compared to <2% 

in control assays).  Toxicities of treatment compounds were low at optimal settlement 

inducing concentrations, except for L-Tryptophan (~32%) and GABA (~59%).  Our 

data suggest that catecholamines (and their precursors) play an important role in the 

biochemical mechanisms of settlement for A. maoriana.  While serotonin precursors 

did induce low levels of larval settlement at some concentrations, high toxicity 

responses to 5-HTP at 10-5 M, combined with complete settlement inhibition indicate 
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that the mechanism of action may be more complex than can be elucidated in this 

study.  Larval settlement responses to bacterial treatments were low for planktonic and 

biofilm phases across all three strains, and settlement inhibition was observed when 

larvae were exposed to biofilm exudates of all bacterial strains.  Comparisons of A. 

maoriana responses to other endemic and worldwide distributed mussel species are 

provided as a means to highlight potential evolutionary differences in chemoreception 

mechanisms. 

Highlights 

 

1. Mussel larval settlement responses were tested with neuroactive compounds 

amino acids, and bacterial biofilms.   

2. All chemicals induced larvae to settle, with acetylcholine being the most 

effective. 

3. Catecholamines (and their precursors) play an important role in the 

biochemical mechanisms of settlement for A. maoriana.   

4. Settlement responses to serotonin precursors require further investigation 

since there were high toxicity responses.   

5. Larval settlement responses to bacterial treatments were low for planktonic 

and biofilm phases, and exposure to biofilm exudates resulted in settlement 

inhibition. 

 

 

Keywords: Larval settlement, Ribbed mussels, Aulacomya maoriana, Chemical cues, 

Bacterial biofilms. 
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Introduction 

A great majority of marine invertebrates has planktonic larvae, which after a 

period of minutes to months (Hadfield and Paul 2001) settle onto benthic substrates.  A 

wide range of environmental and biological stimuli or cues mediate this settlement 

process (Pawlik 1992; Harder et al. 2002; Steinberg et al. 2002; Wikstrom and Pavia 

2004; Hadfield 2011).  Chemoreception involves the binding of chemicals to receptors 

in the neural tissues of larvae, which activate neuronal networks (Hay 2009).  Factors 

which regulate larval settlement behavior have been investigated extensively for many 

marine taxa (reviewed by Hadfield and Paul 2001; Steinberg and De Nys 2002; 

Murthy et al. 2009), but the complex chemoreception process has yet to be elucidated.  

For example, within the Class Bivalvia, many cues have been found to induce larval 

settlement in oysters (Tamburri et al. 2008; Yu et al. 2008; Yu et al. 2010a), scallops 

(Leyton and Requelme 2008; Mesias-Gansbiller 2008), clams (García-Lavandeira 

2005; Sumin et al. 2006; Neo et al. 2009), and mussels (Dobretsov and Qian 2003; 

Alfaro et al. 2006; Bao et al. 2007; Ganesan et al. 2010; Young 2009).  Settlement 

responses to different cues appear to be genus-, species- and even intraspecies-specific 

(Rodríguez et al. 1993; Williams et al. 2008; Ritson-Williams et al. 2010).   These 

differences suggest evolutionary variations in cue-binding receptors, endogenous 

biochemical processes, and the metabolites produced during the settlement process.   

Chemical compounds that mediate larval settlement often are produced by bacteria 

or the biofilms they form on just about every surface in the marine environment (Hadfield 

and Paul 2001).  The chemical cues generated by bacteria may be surface-bound 
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(bound to bacterial cells or exopolymeric substances) or water-soluble (produced by 

free-swimming planktonic bacteria or released by their biofilms) (Hadfield 2011).  The 

surface-bound cues induce larval settlement only when larvae come into contact with 

the bacteria (Hadfield 2011).  On the other hand, water-soluble cues (e.g., low and high 

molecular weight polyshaccharides [Dobretsov and Qian 2004; Harder et al. 2004] low 

molecular weight peptides [Tamburri et al. 1992; Zimmer-Faust and Tamburri 1994], 

and even neurotransmitters [Mountfort and Pybus 1992]) may regulate larval 

settlement without the need for them to contact the substrate (Tamburri et al. 1996; 

Browne and Zimmer 2001).  For example, studies on the green-lipped mussel, Perna 

canaliculus, showed that water-soluble chemical cues produced by the biofilm of two 

bacterial strains (Macrococcus sp. [AMGM1] and Bacillus sp. [AMGB1]) induced 

larval settlement (Ganesan et al. 2010). 

While settlement cues for various taxa include those derived from marine 

biofilms, the specific molecular characteristics of these inductors remain elusive. A 

commonly applied method for gaining insight into the endogenous mechanisms of cue 

reception is to agonise or antagonise particular endogenous receptor classes with 

pharmacologically active compounds.  These chemicals are likely to act directly at 

some intermediate site downstream from primary chemoreceptors (Pechenik et al. 

1995), or as precursors in the biosynthesis of neuroactive ligands (Young 2009).  Some 

of these compounds include ions (Yu et al. 2008), amino acids (Kang et al. 2003; 

Young 2009), neurotransmitters (Faimali et al. 2003; Young 2009), choline derivatives 

(Dobretsov and Qian 2003; García-Lavandeira et al. 2005), and enzyme inhibitors 

(Mesías-Gansbiller et al. 2008).  For example, potassium is a universal regulator of ion 

gradients across cell membranes, and is involved in depolarisation of neurons, causing 

formation of action potentials.  Generally, potassium ions have been branded as the 
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universal inducer of metamorphosis and settlement for numerous taxa (Yool et al. 

1986; Rodríguez et al. 1993), while GABA is a settlement and metamorphosis inducer 

for many gastropods (reviewed by Roberts et al. 2001) and a few bivalves (Gacrcia-

Lavendeira et al. 2005; Mesías-Gansbiller et al. 2008).   

The role of cholinergic neurotransmission in modulating larval behaviors and 

important life-history events, such as settlement and metamorphosis, are poorly 

understood.  The ability of the neurotransmitter acetylcholine to induce settlement and 

metamorphosis has been shown to have highly variable results across marine 

invertebrate taxa (Coniglio 1998; Dobretsov and Qian 2003; Yu et al. 2007, 2008, 

2010b; Young 2009).  L-Phenylalanine, L-Tyrosine and dopamine are members of the 

epinephrine biosynthesis pathway (Fig. 1a).  While some of these compounds have 

been investigated for their ability to induce settlement of bivalve larvae, the role of 

dissolved amino acids as precursors for epinephrine induction has yet to be identified.   

The importance of catecholamines in bivalve life-history events is well 

recognized (Pani and Croll 2000).  For these taxa, the biochemical pathways involved 

in catecholamine synthesis and catabolism are proving to be similar to those operating 

in vertebrate nervous systems (Pani and Croll 1995, 1998), and may highlight the 

conserved and critical role they play in early evolutionary development.  In bivalves, 

these neurotransmitters and hormones are known to regulate spawning (Martínez et al. 

1996), larval swimming behaviour (Beiras and Widdows 1995), larval settlement 

(Garcia-Lavandeira 2005), metamorphosis (Wang et al. 2006; O’Conner et al. 2009), 

feeding rates (Beiras and Widdows 1995), muscular activity (Aiello et al. 1981; Gies 

1986), respiration (Catapane 1983) and digestion (Giard et al. 1995).  Since the uptake 

of epinephrine precursors (L-Tyrosine, L-DOPA, and dopamine) into bivalve tissues 

from seawater is well documented (Shu-Ing et al. 1977; Brown et al. 1981; Manahan 
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1989), and they are endogenously converted into dopamine, norepinephrine and 

epinephrine in various mollusc taxa (Boadle-Biber and Roth 1972; Paparo and Finch 

1972; Peng Loh and Jacklet 1977; Stefano 1990; Pani and Croll 1995, 1998; Filla et al. 

2009), these compounds are good candidates to test the involvement of this pathway in 

larval settlement behavior.  

Likewise, compounds within the serotonin pathway (i.e., L-Tryptophan, and 5-

HTP; Fig. 1b) have received little attention for the role this pathway may play on larval 

settlement.  Serotonin itself is involved in the neuromodulation of various marine 

invertebrate behaviours (Pires and Wollacot 1997; Kravitz 1988; Beiras and Widdows 

1995).  For example, serotonin has been implicated in the regulation of arthoropod 

aggressiveness (Kravitz 1988), Bryozoan larval phototaxis (Pires and Wollacot 1997), 

gastropod locomotion (Panchin et al. 1996), and is known to increase velar ciliary 

activity (Beiras and Widdows 1995) and mucus release in bivalves (Lent 1973).  Most 

of the research to date on the involvement of serotonin during larval ontogeny has been 

focused on regulation of metamorphosis rather than larval settlement, with a few 

exceptions (e.g., barnacle [Yamamoto et al. 1996; 1999] and oyster [Yu et al. 2008; 

Grant 2009]).  The ability of serotonin, or its precursors, to induce mussel larval 

settlement has not been demonstrated previously.   

The ribbed mussel, Aulacomya maoriana (Iredale, 1915) is endemic to New 

Zealand (Gosling 2003), where it inhabits intertidal rocky shores (Kennedy 1976; 

Lachowicz 2005).  Currently, this species is not of commercial value, but its 

cultivation potential is being investigated and evaluated (e.g., Gibbs et al. 2006).  

Studies on this species have been limited to its distribution (Lachowicz 2005; Phillips 

et al. 2008), genetics (Phillips et al. 2008), reproductive biology (Kennedy 1977; 

Tortell 1980), and general ecology (Kennedy 1976; Lachowicz 2005).  However, little 
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is known about its settlement patterns, and there is no information about the 

biochemical mechanisms involved in larval settlement of A. maoriana.  Thus, the aim 

of this paper is to identify the effect of a range of neuroactive compounds and amino 

acids (potassium ions, GABA, acetylcholine, L-Phenylalanine, L-Tyrosine, dopamine, 

epinephrine, L-Tryptophan, and 5-HTP) and planktonic bacteria, biofilms and biofilm 

exudates of Macrococcus sp. AMGM1, Bacillus sp. AMGB1, and Pseudoalteromonas 

sp. AMGP1 on settlement of A. maoriana larvae.   

 

 

Methods and Materials 

 

Chemical Treatments 

The following neuroactive compounds and amino acids were tested 

simultaneously for their ability to induce settlement of Aulacomya maoriana larvae.  

These chemicals included potassium chloride (K+), γ-aminobutyric acid (GABA), 

acetylcholine chloride, L-Phenylalanine, L-Tyrosine, dopamine hydrochloride, 

epinephrine, L-Tryptophan, and 5-hydroxytryptophan (5-HTP).   

Stock solutions of each treatment were prepared by dissolving compounds in 

0.45 μm filtered seawater (FSW) immediately prior to settlement assays.  Solutions 

were diluted in FSW to prepare 10 concentrates of each treatment level to give the 

desired final assay concentrations (Table 1).  These concentrations were chosen based 

on previous experiments with other mussel species (e.g., Ke at al. 1998; Dobretsov and 

Qian 2003; Young 2009). 
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Bacterial Treatments 

Three marine bacterial strains previously isolated and identified as 

Macrococcus sp. (AMGM1), Bacillus sp. (AMGB1), and Pseudoalteromonas sp. 

(AMGP1) at the AUT laboratory also were tested for their ability to induce larval 

settlement.  Planktonic bacteria, bacterial biofilms, and biofilm exudates were prepared 

as described by Ganesan et al. (2010).  Briefly, bacterial colonies were drawn from log 

phase mono-specific bacterial cultures grown on Zobell marine agar media.  Planktonic 

bacteria were produced by culturing the cells in 50 ml of 0.5% peptone autoclaved 

filtered seawater (AFSW) with constant agitation at 37 °C to prevent the formation of a 

biofilm.  After 24 h, the planktonic cells were washed with AFSW and concentrated by 

centrifugation at 3500 g for 10 minutes.  This planktonic bacterial solution (106 to 

107 cells ml-1) was used in the settlement assays (see below).  Bacterial biofilms were 

produced by placing 1 ml of bacterial cell suspension (106 to 107 cells ml-1) into 

polystyrene Petri plates.  Then, 4 ml of AFSW containing 0.5% peptone were added to 

each plate.  The plates were incubated for 24 h at 37 °C on a rotary incubator at 100 

rpm to encourage biofilm growth.  After incubation, the plates were washed thrice with 

a total of 30 ml of FSW, leaving the attached cells on the Petri plates.  These plates 

were used as larval settlement substrates.  Production of biofilm exudates was achieved 

by culturing another set of biofilm plates (as described above), and scraping off the 

attached cells with a clean glass cover slip into 1 ml of AFSW. Ten of these 1 ml 

samples were pooled and centrifuged at 3500 g for 10 minutes. The pellets 

containing the bacterial cells were discarded. The supernatant was filtered through a 

0.22 µm acetate filter to obtain a cell-free extract. These pure biofilm exudates were 

used for the settlement assays. 
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Settlement Assays 

Larvae of Aulacomya maoriana in their veligers stage (25 days post-

fertilisation, and competent to settle) were obtained from Cawthron Institute, Nelson, 

New Zealand.  The larvae were transported in moist and cold containers to the 

Auckland University of Technology (AUT) laboratory, Auckland, New Zealand.  

Upon arrival at AUT, the larvae were transferred into a 2 L beaker with 1 L of FSW.  

After 30–60 min, healthy swimming larvae were decanted into another beaker, and 

filled with FSW to make a concentration of 20–30 larvae ml-1.  Settlement assays were 

conducted in sterile polystyrene Petri plates (60 mm in diameter, and 14 mm in depth), 

with nine to ten replicates per treatment at 17±1ºC under ambient light conditions.  

Chemical treatment assays consisted of 8 ml FSW, 1 ml larval solution and 1 ml 

concentrated (10) treatment solution.  For the case of planktonic bacteria and biofilm 

exudates, a 1 ml solution was added to the 8 ml AFSW and 1 ml larval solution.  Plates 

with bacterial biofilms were topped up with 9 ml AFSW and 1 ml larval solution.  

Controls consisted of 9 ml AFSW and 1 ml larval solution.  The plates were monitored 

daily to determine the time at which a significant proportion (~ 5%) of larvae had 

settled on the control plates.  This point was achieved after 120 h.  Then, larval 

settlement and mortality were recorded for all plates.  Under a dissecting microscope at 

20–45 magnification, a 200 µl displacement pipette was depressed and brought 

within close proximity (0.5–1.5 mm) to each larva, and gentle suction was applied.  

Individuals that maintained firm attachment to the substratum were considered settled, 

and those moving freely with no resistance were considered unsettled.  In many cases, 

settlement could be detected visually by the presence of thin transparent mucous-like 

threads, but settlement always was verified with suction. 
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Mortality Assays 

Mortality was recorded to determine acute toxicity effects from all chemicals 

and bacterial treatments.  Mortality was identified under a stereo microscope at 20–

45 magnification.  Larvae that showed signs of movement of the velum, foot, or gut 

were considered alive.  Since live larvae often were inanimate for periods of more than 

15 min, the neutral red vital stain was used to corroborate mortality detection (see 

Platter-Rieger and Frank 1987; Jacobson et al. 1993).  A 120 ppm solution of neutral 

red was prepared in FSW and diluted in the experimental medium to give a final stain 

concentration of 20 ppm.  After 30 min, larvae were again viewed at 20 

magnification under a stereo microscope.  Larvae that did not incorporate the stain into 

their tissues were considered dead.  

 

Statistics 

All percent larval settlement and mortality data were analyzed using the non-

parametric Kruskal–Wallis H-test and followed by Dunn’s multiple comparison tests.  

The level of significance chosen was 0.05 for all statistical tests.  Data were analyzed 

using the Minitab version 15 statistical software package.  
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Larval Settlement  

Excess potassium ions (KCl) induced larvae to settle (±SE) with a peak 

induction of 21.0±4.0% after exposure to 20 mM solution (Fig. 2). Settlement 

responses revealed a typical dose response curve with significant differences detected 

for 20 and 30 mM compared to the control (Table 2).  The neurotransmitters GABA 

and acetylcholine also displayed a typical dose response with maximum settlement 

(±SE) of 22.4±4.1% at 10-4 M and 24.2±4.3% at 10-6 M, respectively. 

Results from the two catecholamines and two of the amino acids used in this 

study indicate a significant increase in larval settlement (±SE) from lowest to highest 

concentrations peaking at 21.3±3.2% (10-5 M), 11.3±1.7% (10-5 M), and 13.8±3.8% 

(10-4 M) for L-Phenylalanine, L-Tyrosine, and dopamine, respectively (Fig. 3, Table 

2).  The peak larval settlement (±SE) for exposure to epinephrine was 12.3±2.3% at 10-

5 M, with a lower settlement of 4.9±1.0% at a concentration of 10-4 M. 

Less than 12% larval settlement was achieved with either of the serotonin 

synthesis pathway compounds used in this experiment (Fig. 4).  Compared to the 

control, treatment with L-Tryptophan resulted in a significant peak settlement (±SE) 

response of 11.8±1.7% at 10-5 M and 5-HTP had a significant maximum of 6.7±1.3% 

at 10-6 M (Fig. 4, Table 2). 

Larval settlement responses to bacterial treatments showed no significant 

difference in settlement after exposure to planktonic bacteria of all three stains (< 10% 

settlement) compared to the control (Fig. 5, Table 3).  Exposure to bacterial biofilms 

also resulted in non-significant differences between the treatments and the control.  

Significantly lower settlement responses were observed with biofilm exudates from all 

bacterial strain treatments (< 2%) compared to the control (10%). 

Results 
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Mortality 

Results from the larval mortality assays indicate a low and non-significant 

toxicity effect across KCl concentrations (<3%), and significantly high toxicity effects 

for GABA at all concentrations (up to about 80% mortality at 10-3 M) and for 

acetylcholine at concentrations between 10-5 and 10-3 M (Fig. 2, Table 2).  Exposure to 

catecholamines and their precursor compounds did not result in significantly high 

mortality, except for L-Phenylalanine at 10-6 and 10-5 M, L-Tyrosine at 10-5 M, 

dopamine at 10-5 M, and epinephrine at 10-5 M (Fig. 3, Table 2).  The two precursor 

compounds in the serotonin biosynthesis pathway resulted in significantly high toxic 

effects of 32.2±5.3% at 10-5 M for L-Tryptophan and 100% at 10-5 and 10-3 M for 5-

HTP (Fig. 4, Table 2). 

Toxicity effects to the planktonic bacteria were relatively low (8-20%), and 

significantly different for all three bacterial strains compared to the control (Fig. 5, 

Table 3).  For bacterial biofilms, only Bacillus sp. AMGB1 (15.8±2.3%), and 

Pseudoalteromonas sp. AMGP1 (42.6±6.0%) caused significantly higher mortalities 

relative to the control.  Non-significant mortality effects for biofilm exudates were 

recorded for all bacterial strains compared to the control. 

 

 

Discussion 

 

Results from the larval settlement experiments after exposure to various 

neuroactive compounds and amino acids indicate that all the chemicals used induced 
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larvae to settle at some concentration with low toxicity.  However, for some of the 

chemicals used, their ability to induce settlement was relatively low compared to the 

controls.  In addition, larval settlement responses to bacterial treatments were low for 

planktonic and biofilm phases across all three strains.  Settlement inhibition was 

observed when larvae were exposed to biofilm exudates of all bacterial strains.  While 

the overall percent settlement was low in our assays, the relative differences between 

control and treatments provide a clear trends, which are comparable to published 

results for other species.  Our findings indicate that the neuronal control of settlement 

behavior for Aulacomya maoriana differs from that of other mussel species, such as 

Mytilus galloprovincialis (Garcia-Lavandeira 2005) and Perna canaliculus (Young 

2009; Ganesan et al. 2010).  Furthermore, these differences support the notion of nerve 

system evolutionary divergence across taxa.  Although comparative neurodevelopment 

in bilaterian invertebrates appears to have a high degree of conserved molecular 

architecture from a common ancestor (Arendt et al. 2008), our results corroborate the 

growing belief that critical differences exist.   

 

Chemical Treatments 

Potassium Ions 

Larval settlement responses to potassium chloride followed a typical dose 

response, with maximum settlement at 20 mM with less than 3% mortality across 

concentrations.  Previously, potassium ions (from KCl) have been shown to induce 

larval settlement in two species of mussel, Perna viridis (Ke et al. 1998) and Perna 

canaliculus (Young 2009).  However, excess potassium ions do not induce settlement 

in the blue mussel Mytilus edulis (Eyster and Pechenik 1988; Dobretsov and Qian 
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2003), which may indicate that these species rely on different chemoreceptor types.  

Compared to another New Zealand native mussel species (P. canaliculus; Young 

2009), A. Maoriana required double the concentration of KCl to reach peak settlement.  

It is uncertain why optimal concentrations for inducing larval settlement of these two 

endemic species differ.  However, other marine invertebrate taxa stimulated to settle by 

KCl also display species-specific concentration responses (e.g., Gapasin and Polohan 

2004; Yu et al. 2010b).  Distinct differences in acute toxicity data also were observed 

between P. canaliculus and A. maoriana (Young 2009; this paper). The LC50 of KCl 

for P. canaliculus was reported to be just over 30 mM after 48hr of exposure (Young 

2009).  However, no toxic effects were observed in A. maoriana after being exposed to 

30 mM KCl for 120 hrs.  These toxicity differences suggest that A. maoriana is more 

resilient to KCl exposure, which agrees with their habitat distribution in rocky shores.  

Compared to P. canaliculus, A. maoriana has been reported to inhabit higher intertidal 

areas (Kennedy 1976; Lachowicz 2005), where increased salinity may occur following 

desiccation periods. 

 

GABA 

The larval settlement results show that GABA enhanced settlement in A. 

maoriana, with a maximum induction at 10-4 M.  These results are highly comparable 

to those seen in Mytilus galloprovincialis, suggesting similarities in chemoreception 

mechanisms between the two mussel species.  GABA is an amino acid and 

neurotransmitter, which can function as an inhibitory and excitatory neurotransmitter 

in molluscs (Yarowsky and Carpenter 1977; Bokisch and Walker 1986), and is widely 

recognized for its ability to induce settlement and metamorphosis of abalone, Haliotis 

spp. (reviewed by Roberts 2001).  While the settlement inducing effects of GABA 
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have now been extensively investigated for various marine invertebrate taxa, there are 

only three reports of its effect on mussel larvae.  GABA does not induce settlement in 

P. canaliculus (Young 2009) and M. edulis (Dobretsov and Qian 2003), but is an 

effective inducer for M. galloprovincialis (Garcia-Lavandeira et al. 2005).  It has been 

suggested that the activity of this compound for Haliotis spp. is due to its close 

structural relationship with naturally occurring inducer molecules isolated from 

crustose corraline algae (Morse and Morse 1984a, b).  This settlement induction is 

likely to be mediated by epithelia-bound chemoreceptors via an excitory depolarisation 

mechanism (Baloun and Morse 1984).  While the specific mode of action of GABA is 

yet to be elucidated for bivalves, it is likely that different mechanisms are involved.  

While GABA did induce settlement in A. maoriana, the effective concentrations were 

all highly toxic to larvae.  This implies that GABA is unlikely to be a natural 

settlement cue for this species.  The observed induction of settlement by GABA may 

be a result of the endogenous release of other metabolites important to the signaling 

pathway.  Further experiments with GABA analogs and other pharmacological 

compounds would be needed to improve our understanding of the specific mechanisms 

at play for different marine invertebrate taxa. 

 

Acetylcholine 

Exposure of larvae to acetylcholine induced highest settlement (>24%) at the 

lowest concentration assayed (10-6 M), with no significant acute toxicity effects.  

Acetylcholine is an ester of acetic acid and choline, which modulates numerous 

biological processes.  While the complete structural and functional diversity of 

acetylcholine receptors (AChR’s) has not yet been fully characterised, studies have 

shown that some molluscan receptor sub-types are highly unique (van Neirop et al. 
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2005, 2006).  Acetylcholine has been identified previously as a larval settlement 

inducer of two other mussel species: P. canaliculus (Young 2009) and M. edulis 

(Dobretsov and Qian 2003).  In addition to these studies, our findings for A. maoriana 

highlight the importance of AChR’s in early molluscan development. Acetylcholine 

may act by innervating velar cilia, affecting swimming behavior.  Acetylcholine is 

known to inhibit lateral ctenidial cilia in adult M. edulis (Jones and Richards 1993), 

and it is likely that such responses to pharmacological modulations are similar between 

adult ctenidial cilia and larval velar cilia (Beiras and Widdows 1995).  Furthermore, 

acetylcholine has demonstrated an ability to reduce swimming of larvae in Crassostrea 

virginica (Grant 2009).  However, future studies will be needed to identify the direct 

mode of action of acetylcholine in A. maoriana and other mussel species. 

 

Epinephrine Pathway 

In this study, we selected two amino acids (L-Phenylalanine and L-Tyrosine) 

and two catecholamines (dopamine and epinephrine) within the epinephrine 

biosynthesis pathway (Fig. 1a) to test for larval settlement responses.  All of these 

compounds induced A. maoriana to settle at various concentrations (10-5 to 10-4 M), 

suggesting that catecholamines are directly involved in neuromodulation of settlement 

responses for this species.  L-DOPA has previously been identified as a settlement 

inducer for M. edulis (Dobretsov and Qian 2003).  While this result may suggest a 

catecholamine involvement, it is uncertain if the L-tyrosine derivatives between L-

DOPA–epinephrine have inductive activities.  On the other hand, while epinephrine 

has been shown to have an ability to induce larval settlement in M. galloprovincialis 

(Garcia-Lavandeira 2005), substantiating a catecholamine involvement in mytilids, the 

effects of all five precursor compounds (L-Phenylalanine to norepinephrine) are 
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unknown.  Our study is the first to test the inductive effects of four metabolites in the 

epinephrine biosynthesis pathway on mussel larval settlement.  In addition, this is the 

first published report of the induction of settlement of any bivalve species by L-

Phenyalanine and L-Tyrosine, and of any mussel species by dopamine.  Since all the 

compounds we tested induced larval settlement in A. maoriana, it is likely that the 

epinephrine biosynthesis pathway plays an important role in signal transduction 

mechanisms downstream from primary cue reception.  Furthermore, the amino acid 

precursors also may serve as naturally occurring xenobiotic cues for larval settlement 

in this species.  Dopamine, norepinephrine and epinephrine have been demonstrated to 

inhibit velar cilia in M. edulis (Beiras and Widdows 1995).  In the case of A. maoriana, 

it is likely that the settlement process was, at least partially, stimulated by 

cilioinhibitory action of catecholamines on velar cilia, which would have caused 

cessation of swimming. 

While mortality levels across the treatments for testing the epinephrine pathway 

were low, a slightly higher mortality was observed at high concentrations of the two 

amino acids (L-Phenylalanine and L-Tyrosine) compared to the catecholamines 

(dopamine and epinephrine).  These results may reflect conversion of the amino acids 

to high levels of toxic derivatives via non-catecholamine L-Tyrosine metabolism, such 

as tyramine, octopamine, morphine or codeine.  

 

Serotonin Pathway 

Larval settlement responses to serotonin biosynthesis precursors L-Tryptophan 

and 5-HTP were generally low (<12% and <7%, respectively), but significantly higher 

than controls.  However, exposure of larvae to both compounds at 10-5 M resulted in 
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high mortality (32% for L-tryptophan and 100% for 5-HTP).  We selected the 

serotonin precursors over serotonin itself as a treatment since bivalve tissues have a 

limited ability to uptake serotonin dissolved in seawater, whereas intracellular 

diffusion of 5-HTP is considerably greater (Aiello and Guideri 1966).  In addition, 

conversion of the precursors to serotonin in gastropod neural tissues is well 

established.  For example, M. edulis pedal ganglia bathed in 14C labelled L-Tryptophan 

leads to synthesis of 14C serotonin (Boadle-Biber and Roth 1972).  Also, gastropod 

cerebropleural and pedal ganglia and whole larvae exposed to exogenous 5-HTP 

significantly increases serotonin levels (Fickbohm et al. 2005; Filla et al. 2009).   

In our study, the inductive effects of serotonin precursors on larval settlement 

of A. maoriana, while low, were unexpected.  Serotonin is known to increase activity 

of different types of cilia in molluscs (Audesirk et al. 1979; Beiras and Widdows 1995; 

Uhler et al. 2000 Carroll and Catapane 2007).  For example Beiras and Widdows 

(1995) showed increased swimming activity of M. edulis larvae after exposure to 

serotonin, which enhanced movement of velar cilia.  During our settlement 

experiments (0-3 days), A. maoriana larvae were observed swimming more vigorously 

in 5-HTP treatments compared to controls.  The low settlement responses and high 

mortalities observed after larvae were exposed to L-Tryptophan and 5-HTP (10-5 M) 

suggest that the involvement of serotonin, if any, in A. maoriana larval settlement is 

more complex than previously thought.  Neuronal integration between serotonin and 

catecholamines is known to take place in some molluscan tissues (Stefano et al. 1976; 

Hiripi and Stefano 1980; Filla et al. 2009).  For example, increased serotonin levels 

enhance dopamine synthesis in the pond snail Lymnaea stagnalis (Filla et al. 2009).  

This upregulation may be an intermediate step in the negative feedback of serotonin, 

since M. edulis ganglia exposed to dopamine downregulates serotonin synthesis by 
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reducing tryptophan hydroxylase activity (Stefano et al. 1976; Hiripi and Stefano 

1980).  Based on our results, the role of serotonin and its precursors in the larval 

settlement of mussels warrant further investigation and may present a unique 

opportunity for identification of novel neurotransmitter functions for this class of taxa.  

 

Bacterial Treatments 

Larval settlement of A. maoriana in response to Macrococcus sp. AMGM1, 

Bacillus sp. AMGB1 and Pseudoalteromonas sp. AMGP1 in their planktonic and 

biofilm phases and their exudates revealed that all strains did not produce settlement 

inducing cues for this species of mussel.  These results differ from previous work on P. 

canaliculus, which demonstrated that bacterial biofilms and exudates from 

Macrococcus sp. AMGM1 and Bacillus sp. AMGB1produced significantly higher 

larval settlement (over 60% more settlement compared to controls; Ganesan et al. 

2010).  Conversely, Pseudoalteromonas sp. AMGP1 biofilms and exudates resulted in 

non-significant P. canaliculus settlement differences with controls.  However, in the 

present study, exudates from all three bacterial strains inhibited A. maoriana 

settlement, suggesting that the inhibiting compound was not surface-bound.   

Mortality results indicate that all three bacterial strains may produce toxic 

compounds during their planktonic and biofilm phases.  If the acute toxic responses 

were caused by such secondary bacterial metabolites, the metabolites likely would be 

surface-bound to the bacterial cells, since no significant mortality was observed when 

larvae were exposed to exudates alone.  Alternatively, it is possible that respiring 

bacterial cells (in planktonic or biofilm phases) could have lowered dissolved oxygen 

concentrations in the seawater, causing significant larval mortality.  In addition, 
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bacterial biofilms of Pseudoalteromonas sp. AMGP1 were highly toxic to A. maoriana 

larvae.  These results were paralleled to those of P. canaliculus (Ganesan et al. 2010).  

However, high mortality also was observed when P. canaliculus was exposed to 

biofilm exudates of Pseudoalteromonas sp. AMGP1, suggesting different 

susceptibilities to potential toxins. 

The comparative results between these two endemic mussel species suggest that 

the mechanisms of settlement cue chemoreception is diverse, substantiating claims of 

previous studies on other marine invertebrates (reviewed by Morse 1990; Rodríguez et 

al. 1993; Hadfield and Paul 2001; Hay 2009; Hadfield 2011 ).  For these two mussel 

species, the differences in larval settlement responses to mono-specific bacterial 

biofilms indicate that bacterial community structure on marine surfaces may 

differentially influence larval substrate preferences.  This may partially explain why A. 

maoriana is found in the mid to low intertidal and P. canaliculus inhabits low 

intertidal to subtidal habitats.  However, further studies would be needed to elucidate 

this relationship. 

Evolutionary Trends and Future Directions 

The effect of neuroactive compounds and their precursors on larval settlement 

of marine invertebrates can assist in the elucidation of endogenous signalling 

pathways.  Researchers are continually finding that marine invertebrate larval 

settlement and metamorphosis can be differentially regulated by various combinations 

of these compounds across widely, and closely, related taxa.  While of great interest to 

scientists, the evolutionary implications of such highly conserved life history events 

possibly being governed by very different biochemical pathways have not yet been 

commented on in the literature.  However, recent advances in ‘-omics’ based 

approaches (e.g., transcriptomics, proteomics, metabolomics) provide us with 
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significant scope to further understand the molecular processes involved in cue 

reception, and may yield evidence to identify evolutionary trends.   

Characterisation of compounds, and their biochemical modes of action, which 

have the ability to regulate marine invertebrate fouling has significant commercial 

applications.  The development of novel technologies to promote, or inhibit, larval 

attachment would be highly valuable for various industry sectors, such as aquaculture 

(e.g., enhancement of wild larval catch and reseeding of juveniles), sea transportation 

and maintenance of underwater structures (e.g., reducing hull and structural fouling). 

The relatively new and rapidly escalating fields of comparative and 

evolutionary neurobiology will benefit from research advances in larval settlement 

induction.  Some of these future directions lead on from our results and include: a) 

experiments to test the effect of specific reuptake inhibitors for GABA, acetylcholine, 

dopamine and catecholamines on larval settlement, b) the use of specific inhibitors to 

inhibit enzymes involved in epinephrine and serotonin biosynthesis to determine 

settlement responses, c) the use of specific agonists/antagonists of receptor sub-types 

within GABA, acetylcholine, dopamine, adrenergic and serotonin receptor classes to 

identify settlement responses, d) determination of temporal metabolite flux in larvae 

induced to settle by xenobiotic and endogenous occurring chemical cues, and e) 

investigation of gene and protein expression before, during and after the larval 

settlement event under normal and induced states.  

   

        



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

We are thankful to Dan McCall from SPATnz and the Cawthron Institute, 

Nelson New Zealand, for providing mussel larvae for these experiments.  We are 

grateful to the laboratory technicians in the School of Applied Sciences, Auckland 

University of Technology (AUT), for their ongoing assistance.  We also thank the staff 

and students of the Aquaculture Biotechnology Group at AUT for assisting with the 

laboratory experiments and for the many fruitful discussions which made this work 

possible.  This research was supported by an AUT Research Grant to A.C. Alfaro. 

 
  

Acknowledgements 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

References 

 

Aiello, E., Guideri, G. (1966). Relationship between 5-hydroxytryptamine and nerve 
stimulation of ciliary activity. Journal of Pharmacology and Experimental 

Therapeutics 154(3):517-523. 

Aiello, E., Stefano, G. B., Catapane, E. J. (1981). Dual innervation of the foot and the 
control of foot movement by the central nervous system in Mytilus edulis 
(Bivalvia). Comparative Biochemistry and Physiology Part C: Comparative 

Pharmacology 69(1):25-30. 

Alfaro, A. C., Copp, B. R., Appleton, D., Kelly, S., Jeffs, A. G. (2006). Chemical cues 
promote settlement in larvae of the green-lipped mussel, Perna canaliculus. 
Aquaculture International 14(4):405-412.  

Arendt, D., Denes, A. S., Jekely, G., Tessmar-Raible, K. (2008). The evolution of 
nervous system centralization. Philosophical Transactions of the Royal 

Society B 363:1523-1528. 

Audesirk, G., McCaman, R. E., Willows, A. O. D. (1979). The role of serotonin in the 
control of pedal ciliary activity by identified neurons in Tritonia diomedea. 
Comparative Biochemistry and Physiology Part C: Comparative 

Pharmacology 62(1):87-91. 

Baloun, A. J., Morse, D. E. (1984). Ionic control of settlement and metamorphosis in 
larval Haliotis rufescens (Gastropoda). Biological Bulletin 167:124-138. 

Bao, W. Y., Satuito, C., Yang, J. L., Kitamura, H. (2007). Larval settlement and 
metamorphosis of the mussel Mytilus galloprovincialis in response to 
biofilms. Marine Biology 150(4):565-574.  

 Beiras, R., Widdows, J. (1995). Induction of metamorphosis in larvae of the oyster 
Crassostrea gigas using neuroactive compounds. Marine Biology 123:327-
334. 

Boadle-Biber, M. C., Roth, R. H. (1972). Factors modifying the synthesis of dopamine 
from tyrosine in pedal ganglia of Mercenaria mercenaria (Mollusca). 
Comparative and General Pharmacology 3(9):61-74. 

Bokisch, A. J., Walker, R. J. (1986). The ionic mechanism associated with the action 
of putative transmitters on identified neurons of the snail, Helix aspersa. 
Comparative Biochemistry and Physiology Part C: Comparative 

Pharmacology 84(2):231-241. 

Brown, M., Burrell, D. E., Stefano, G. B. (1981). Analysis of monoamine 
accumulations in the neuronal tissues of Mytilus edulis (bivalvia)- II: 
Pharmacological alteration of pedal ganglia monoamine uptake. Comparative 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Biochemistry and Physiology Part C: Comparative Pharmacology 70(2):215-
221. 

Browne, K. A., Zimmer, R. K. (2001). Controlled field release of a waterborne 
chemical signal stimulates planktonic larvae to settle. Biological Bulletin 
200:87-97. 

Carroll, M. A., Catapane, E. J. (2007). The nervous system control of lateral ciliary 
activity of the gill of the bivalve mollusc, Crassostrea virginica. Comparative 

Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 

148(2):445-450. 

Catapane, E. J. (1983). Comparative study of the control of lateral ciliary activity in 
marine bivalves. Comparative Biochemistry and Physiology Part C: 

Comparative Pharmacology 75(2):403-405. 

Coniglio, L., Morale, A., Angelini, C., Falugi, C. (1998). Cholinergic activation of 
settlement in Ciona intestinalis metamorphosing larvae. Journal of 

Experimental Zoology 280(4):314-320. 

Dobretsov, S. V., Qian, P. Y. (2003). Pharmacological induction of larval settlement 
and metamorphosis in the blue mussel Mytilus edulis L. Biofouling 19(1):57-
63. 

Dobretsov, S., Qian, P. Y. (2004). The role of epibotic bacteria from the surface of the 
soft coral Dendronephthya sp. in the inhibition of larval settlement. Journal of 

Experimental Marine Biology and Ecology 299(1):35-50. 

Eyster, L. S., Pechenik, J. A. (1988). Attachment of Mytilus edulis L. larvae on algal 
and byssal filaments is enhanced by water agitation. Journal of Experimental 

Marine Biology and Ecology 114(2-3):99-110. 

Faimali, M., Falugi, C., Gallus, L., Piazza, V., Tagliafierro, G. (2003). Involvement of 
acetylcholine in settlement of Balanus amphitrite. Biofouling 19(1):213-220.  

Fickbohm, D. J., Spitzer, N., Katz, P. S. (2005). Pharmacological manipulation of 
serotonin levels in the nervous system of the opisthobranch mollusc Tritonia 

diomedea. Biological Bulletin 209(1):67-74. 

Filla, A., Hiripi, L., Elekes, K. (2009). Role of aminergic (serotonin and dopamine) 
systems in the embryogenesis and different embryonic behaviors of the pond 
snail, Lymnaea stagnalis. Comparative Biochemistry and Physiology Part C: 

Toxicology & Pharmacology 149(1):73-82. 

Ganesan, A. M., Alfaro, A. C., Brooks, J. D., Higgins, C. M. (2010). The role of 
bacterial biofilms and exudates on the settlement of mussel (Perna 

canaliculus) larvae. Aquaculture 306(1-4):388-392.  

Gapasin, R. S. J., Polohan, B. B. (2004). Induction of larval settlement in the donkey-
ear abalone, Haliotis asinina Linnaeus, by chemical cues. Hydrobiologia 
519:9-17. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Garcia-Lavandeira, M., Silva, A., Abad, M., Pazos, A. J., Sanchez, J. L., Perez-Paralle, 
M. L. (2005). Effects of GABA and epinephrine on the settlement and 
metamorphosis of the larvae of four species of bivalve molluscs. Journal of 

Experimental Marine Biology and Ecology 316(2):149-156. 

Giard, W., Favrel, P., Boucaud-Camou, E. (1995). In vitro investigation of α-amylase 
release from the digestive cells of the bivalve mollusc Pecten maximus: effect 
of second messengers and biogenic amines. Journal of Comparative 

Physiology B: Biochemical, Systemic, and Environmental Physiology, 

164(7):518-523. 

Gibbs, M., Pilcher, O., Keeley, N., Heasman, K., Webb, S. (2006). Aquaculture 
stocking density guidelines for alternative bivalve species. Cawthorn Report 
No. 1192. 

Gies, A. (1986). Serotonin and dopamine as regulators of adenylate cyclase and 
relaxation in a smooth muscle of the mussel Mytilus edulis. Comparative 

Biochemistry and Physiology Part C: Comparative Pharmacology 84(1):61-
66. 

Gosling, E. (2003). Bivalve molluscs: biology, ecology and culture. Blackwell Science, 
Oxford, U.K. 443 pp. 

Grant, M. N. (2009). Chemical induction of settlement in larvae of the Eastern oyster 
Crassostrea virginica (Gmelin). Masters Thesis, University of Maryland, 
College Park, MD, United Sates. 

Hadfield, M. G. (2011). Biofilms and marine invertebrate larvae: what bacteria 
produce that larvae use to choose settlement sites. Annual Review of Marine 

Science 3(1):453-470. 

Hadfield, M. G., Paul, V. J. (2001). Natural chemical cues for settlement and 
metamorphosis of marine-invertebrate larvae. In J. B. McClintock and B. J. 
Baker, (Eds.) Marine Chemical Ecology. CRC Press, Florida, USA.  

Harder, T., Dobretsov, S., Qian, P. Y. (2004). Waterborne polar macromolecules act as 
algal antifoulants in the seaweed Ulva reticulata. Marine Ecology Progress 

Series 274:133-141. 

Harder, T., Lam, C., Qian, P. Y. (2002). Induction of larval settlement in the 
polychaete Hydroides elegans by marine biofilms: an investigation of 
monospecific diatom films as settlement cues. Marine Ecology Progress 

Series 229:105-112. 

Hay, M. E. (2009). Marine chemical ecology: chemical signals and cues structure 
marine populations, communities, and ecosystems. Annual Review of Marine 

Science 1:193-212. 

Hiripi, L., Stefano, G. B. (1980). Dopamine inhibition of tryptophan hydroxylase in 
molluscan nervous tissue homogenates: evidence for intracellular site of 
action. Life Sciences 27(13):1205-1209. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Jacobson, P. J., Farris, J. L., Neves, R. J., Cherry, D. S. (1993). Use of neutral red to 
assess survival of juvenile freshwater mussels (Bivalvia: Unionidae) in 
bioassays. Transaction of the American Microscopical Society 112(1):78-80. 

Jones, H. D., Richards, O. G. (1993). The effects of acetylcholine, dopamine and 5-
hydroxytryptamine on water pumping rate and pressure in the mussel Mytilus 

edulis L. Journal of Experimental Marine Biology and Ecology 170(2);227-
240. 

Kang, K. H., Kim, B-H., Kim, J. M., Kim, Y. H. (2003). Effects of amino acids on 
larval settlement and metamorphosis in Haliotis discus hannai. Korean 

Journal of Malacology 19(2):95-106. 

Ke, C. H., Li, S. J., Li, F. X., Zheng, Z. (1998). Ionic control of attachment and 
metamorphosis in the green mussel Perna viridis (Linnaeus) larvae. 
Oceanologua et Limnologia Sinica 29:128-134. 

Kennedy, V. S. (1976). Desiccation, higher temperatures and upper intertidal limits of 
three species of sea mussels (Mollusca: Bivalvia) in New Zealand. Marine 

Biology 35:127-137. 

Kennedy, V. S. (1977). Reproduction in Mytilus edulis aoteanus and Aulacomya 

maoriana (Mollusca: Bivalvia) from Taylors Mistake, New Zealand. New 

Zealand Journal of Marine and Freshwater Research 11(2):255-267. 

Kravitz, E. A. (1988). Hormonal control of behavior: amines and the biasing of 
behavioral output in lobsters. Science 241(4874):1775-1781. 

Lachowicz, L. S. (2005). Population biology of mussels (Aulacomya maoriana,Mytilus 

galloprovincialis and Perna canaliculus) from rocky intertidal shores in 
Wellington Harbour, New Zealand. PhD Thesis, Victoria University of 
Wellington. 

Lent, C. M. (1973). Retzius cells: neuroeffectors controlling mucus release by the 
Leech. Science 179(4074):693-696. 

Leyton, Y. E., Riquelme, C. E. (2008). Use of specific bacterial-microalgal biofilms 
for improving the larval settlement of Argopecten purpuratus (Lamarck, 
1819) on three types of artificial spat-collecting materials. Aquaculture 276(1-
4):78-82. 

Manahan, D. T. (1989). Amino acid fluxes to and from seawater in axenic veliger 
larvae of a bivalve (Crassostrea gigas). Marine Ecology Progress Series 

53:247-255. 

Martínez, G., Saleh, F., Mettifogo, L., Campos, E., Inestrosa, N. (1996). Monoamines 
and the release of gametes by the scallop Argopecten purpuratus. Journal of 

Experimental Zoology 274(6):365-372. 

Mesías-Gansbiller, C., Bendimerad, M. E. A.,  Roman, G., Pazos, A. J., Sanchez, J. L., 
  Perez-Paralle, M. L. (2008). Settlement behavior of black scallop larvae in 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

response to GABA, epinephrine and IBMX. Journal of Shellfish Research 
27(2):261-264.  

Morse, D. E. (1990). Recent progress in larval settlement and metamorphosis: closing 
the gaps between molecular biology and ecology. Bulletin of Marine Science 
46(2):465-483. 

Morse, A. N. C., Morse, D. E. (1984a). GABA-mimetic molecules from Porphyra 
(Rhodophyta) induce metamorphosis of Haliotis (Gastropods) larvae. 
Hydrobiologia 116-117(1):155-158. 

Morse, A. N. C., Morse, D. E. (1984b). Recruitment and metamorphosis of Haliotis 
larvae induced by molecules uniquely available at the surfaces of crustose red 
algae. Journal of Experimental Marine Biology and Ecology 75(3):191-215. 

Mountfort, D. O., Pybus, V. (1992). Effect of pH, temperature and salinity on the 
production of gamma aminobutyric acid (GABA) from amines by marine 
bacteria. FEMS Microbiology Letters 101(4):237-244.  

Murthy, P. S., Venugopalan, V. P., Nair, K. V. K., Subramoniam, T. (2009). Larval 
settlement and surfaces: implications in development of antifouling strategies. 
In Flemming, H-C., P. S. Murthy, R. Venkatesan, K. E. Cooksey (Eds.) 
Marine and Industrial Biofouling (pp. 233-263). New York: Springer-Verlag 
New York, USA. 

Neo, M., Todd, P., Teo, S., Chou, L. (2009). Can artificial substrates enriched with 
crustose coralline algae enhance larval settlement and recruitment in the fluted 
giant clam (Tridacna squamosa)? Hydrobiologia 625(1):83-90.  

O'Connor, S., Moltschaniwskyj, N., O'Connor, W. (2009). Use of neuroactive 
catecholamines to chemically induce metamorphosis of hatchery-reared flat 
oyster, Ostrea angasi, larvae. Aquaculture Research 40(14):1567-1577.  

Panchin, Y. V., Arshavsky, Y. I., Deliagina, T. G., Orlovsky, G. N., Popova, L. B., 
Selverston, A. I. (1996). Control of locomotion in the marine mollusc Clione 

limacina XI. Effects of serotonin. Experimental Brain Research 109(2):361-
365. 

Pani, A. K., Croll, R. P. (1995). Distribution of catecholamines, indoleamines, and 
their precursors and metabolites in the scallop Placopecten magellanicus: 
(Bivalvia, Pectinidae). Cellular and Molecular Neurobiology 15(3):371-386.  

Pani, A. K., Croll, R. P. (1998). Pharmacological analysis of monoamine synthesis and 
catabolism in the scallop, Placopecten magellanicus. General Pharmacology 

31(1):67-73. 

Pani, A. K., Croll, R. P. (2000). Catechol concentrations in the hemolymph of the 
scallop, Placopecten magellanicus. General and Comparative Endocrinology 

118(1):48-56. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Paparo, A., Finch, C. E. (1972). Catecholamine localization, content, and metabolism 
in the gill of two lamellibranch molluscs. Comparative and General 

Pharmacology 3(11):303-309. 

Pawlik, J. R. (1992). Chemical ecology of the settlement of benthic marine 

invertebrates (Vol. 30). Boca Raton, FL, ETATS-UNIS: CRC Press. 

Pechenik, J. A., Hadfield, M. G.,  Eyster, L. S. (1995). Assessing whether larvae of the 
opisthobranch gastropod Phestilla sibogae Bergh become responsive to three 
chemical cues at the same age. Journal of Experimental Marine Biology and 

Ecology 191(1):1-17. 

Peng Loh, Y., Jacklet, J.W. (1977). Catecholamine and protein synthesis in the eyes of 
Aplysia californica. Comparative Biochemistry and Physiology Part C: 

Comparative Pharmacology 57(2):159-163. 

 Phillips, N. E., Wood, A. R., Hamilton, J. S. 2008. Molecular species identification of 
morphologically similar mussel larvae reveals unexpected discrepancy 
between relative abundance of adults and settlers. Journal of Experimental 

Marine Biology and Ecology 362:90-94. 

Pires, A., Woollacott, R. M. (1997). Serotonin and dopamine have opposite effects on 
phototaxis in larvae of the bryozoan Bugula neritina. Biological Bulletin 
192(3):399-409. 

Platter-Rieger, M. F.,  Frank, S. B. (1987). An assessment of tributyltin (TBT) effects 
on mussel larvae (Mytilus edulis) using a vital stain technique (abstract). 
Society of Environmental Toxicology and Chemistry, 8th Annual Meeting; 9-
12th; Pensacola, Florida. USA.  

Ritson-Williams, R., Paul, V. J., Arnold, S. N., Steneck, R. S. (2010). Larval 
settlement preferences and post-settlement survival of the threatened 
Caribbean corals Acropora palmata and A. cervicornis. Coral Reefs 29(1):71-
81. 

Roberts, R. (2001). A review of settlement cues for larval abalone (Haliotis spp.). 
Journal of Shellfish Research 20(2):571-586. 

Rodríguez, S. R., Ojedal, F. P., Inestrosa, N. C. (1993). Settlement of benthic marine 
invertebrates. Marine Ecology Progress Series 97:193-207. 

Shu-Ing, Y., Malanga, C. J., Azzaro, A. J. (1977). The disposition of tritiated dopamine 
by gills of Mytilus edulis and Modiolus demissus. Comparative Biochemistry 

and Physiology Part C: Comparative Pharmacology 58(1):49-55. 

Stefano, G. B. (1990). Norepinephrine: presence and interaction with endogenous 
biogenic amines. In Stefano, G. B. (Ed.), Neurobiology of Mytilus edulis (pp. 
93-101). Manchester, UK: Manchester University Press. 

Stefano, G. B.,Catapane, E., Aiello, E. (1976). Dopaminergic agents: influence on 
serotonin in the molluscan nervous system. Science 194(4264):539-541.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Steinberg, P. D., De Nys, R. (2002). Chemical mediation of colonization of seaweed 
surfaces. Journal of Phycology 38(4):621-629. 

Steinberg, P. D., de Nys, R., Kjelleberg, S. (2002). Chemical cues for surface 
colonization. Journal of Chemical Ecology 28(10):1935-1951.  

Sumin, L., Zhenmin, B., Hui, L., Jianguang, F. (2006). Effect of epinephrine on the 
settlement and metamorphosis of Manila clam larvae. Journal of Ocean 

University of China (English Edition) 5(2):141-145. 

Tamburri, M. N., Zimmer-Faust, R. K., Tamplin, M. L. (1992). Natural sources and 
properties of chemical inducers mediating settlement of oyster larvae: a re-
examination. Biological Bulletin 183(2):327-338. 

Tamburri, M. N., Finelli, C. M., Wehtey, D. S., Zimmer-Faust, R. K. (1996). Chemical 
induction of larval settlement behavior in flow. Biological Bulletin 191:367-
373. 

Tamburri, M. N., Luckenbach, M. W., Breitburg, D. L., Bonniwell, S. M. (2008). 
Settlement of Crassostrea ariakensis larvae: effects of substrate, biofilms, 
sediment and adult chemical cues. Journal of Shellfish Research 27(3):601-
608. 

Tortell, P. (1980). Preliminary experimental rearing of mussel (Mytilus edulis 

aoteanus,Aulacomya maoriana and Perna canaliculus) larvae in the 
laboratory. Mauri Ora 8:21-33. 

Uhler, G. C., Huminski, P. T., Les, F. T., Fong, P. P. (2000). Cilia-driven rotational 
behavior in gastropod (Physa elliptica) embryos induced by serotonin and 
putative serotonin reuptake inhibitors (SSRIs). Journal of Experimental 

Zoology 286(4):414-421. 

van Nierop, P., Bertrand, S., Munno, D. W., Gouwenberg, Y., van Minnen, J., 
Spafford, J. D., et al. (2006). Identification and functional expression of a 
family of nicotinic acetylcholine receptor subunits in the central nervous 
system of the mollusc Lymnaea stagnalis. Journal of Biological Chemistry 

281(3):1680-1691. 

van Nierop, P., Keramidas, A., Bertrand, S., van Minnen, J., Gouwenberg, Y., 
Bertrand, D., et al. (2005). Identification of molluscan nicotinic acetylcholine 
receptor (nAChR) subunits involved in formation of cation- and anion-
selective nAChRs. The Journal of Neuroscience 25(46):10617-10626.  

Wang, G., Liu, B., Tang, B., Zhang, T., Xiang, J. (2006). Pharmacological and 
immunocytochemical investigation of the role of catecholamines on larval 
metamorphosis by [beta]-adrenergic-like receptor in the bivalve Meretrix 

meretrix. Aquaculture 258(1-4):611-618. 

Wikstrom, S. A., Pavia, H. (2004). Chemical settlement inhibition versus post-
settlement mortality as an explanation for differential fouling of two 
congeneric seaweeds. Oecologia 138:223-230. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Williams, E. A., Craigie, A., Yeates, A., Degnan, S. M. (2008). Articulated coralline 
algae of the genus Amphiroa are highly effective natural inducers of 
settlement in the tropical abalone Haliotis asinina. Biological Bulletin 215:98-
107. 

Yamamoto, H., Shimizu, K., Tachibana, A., Fusetani, N. (1999). Roles of dopamine 
and serotonin in larval attachment of the barnacle, Balanus amphitrite. 
Journal of Experimental Zoology 284(7):746-758. 

Yamamoto, H.,Tachibana, A., Kawaii, S., Matsumura, K., Fusetani, N. (1996). 
Serotonin involvement in larval settlement of the barnacle, Balanus 

amphitrite. Journal of Experimental Zoology 275(5):339-345.  

Yarowsky, J., Carpenter, D.O. (1977). GABA mediated excitatory responses on 
neurons. Life Sciences 20(8):1441-1447. 

 Yool, A. J., Grau, S. M., Hadfield, M. G., Jensen, R. A., Markell, D. A., Morse, D. E. 
(1986). Excess potassium induces larval metamorphosis in four marine 
invertebrate species. Biological Bulletin 170(2):255-266. 

Young, T. Y. (2009). Pharmacological induction of larval settlement in the New 
Zealand mussel, Perna canaliculus. Masters Thesis, Auckland University of 
Technology, Auckland, New Zealand. 

Yu, X., Yan, Y., Ji-Dong, G. (2007). Attachment of the biofouling bryozoan Bugula 

neritina larvae affected by inorganic and organic chemical cues. International 

Biodeterioration and Biodegradation 60(2):81-89. 

Yu, X., Yan, Y., Li, H. (2010b). The effect of chemical cues on larval settlement of the 
abalone, Haliotis diversicolor supertexta. Journal of the World Aquaculture 

Society 41(4):626-632. 

Yu, X., He, W., Gu, J. D., He, M.,Yan, Y. (2008). The effect of chemical cues on 
settlement of pearl oyster Pinctada fucata martensii (Dunker) larvae. 
Aquaculture 277(1-2):83-91. 

Yu, X., He, W., Li, H., Yan, Y., Lin, C. (2010a). Larval settlement and metamorphosis 
of the pearl oyster Pinctada fucata in response to biofilms. Aquaculture 

306(1-4):334-337. 

Zimmer-Faust, R. K., Tamburri, M. N. (1994). Chemical identity and ecological 
implications of a waterborne, larval settlement cue. Limnology and 

Oceanography 39:1075-1087. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure Captions 

1. Chemical structure of treatment compounds used in settlement assays: A) 

Epinephrine biosynthesis pathway; B) Serotonin biosynthesis pathway.   

 

2. Percent (±SE) settlement (graphs on left) and mortality (graphs of right) of 

mussel larvae exposed to different concentrations of chemical treatments.  

Notation includes C for control, 5 to 30 mM for potassium chloride, and 10-6 to 

10-3 M for GABA and acetylcholine.  Asterisks (*) denote significant 

differences against controls resulting from Dunn’s multiple comparisons.  

 
 

3. Percent (±SE) settlement (graphs on left) and mortality (graphs of right) of 

mussel larvae exposed to different concentrations of chemical treatments.  

Notation includes C for control, 10-7 to 10-5 M for L-Phenylalanine and L-

Tyrosine, and 10-6 to 10-4 M for Dopamine and Epinephrine.  Asterisks (*) 

denote significant differences against controls resulting from Dunn’s multiple 

comparisons.  

 

4. Percent (±SE) settlement (graphs on left) and mortality (graphs of right) of 

mussel larvae exposed to different concentrations of chemical treatments.  

Notation includes C for control, 10-7 to 10-5 M for L-Tryptophan, and 10-6 to 

10-4 M for 5-Hydroxytryptophan.  Asterisks (*) denote significant differences 

against controls resulting from Dunn’s multiple comparisons. 
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5. Percent (±SE) settlement (graphs on left) and mortality (graphs of right) of 

mussel larvae exposed to planktonic bacteria, bacterial biofilms and biofilm 

exudates of three bacterial strains (M = Macrococcus sp. [AGMM1], B = 

Bacillus sp. [AGMB1], and P = Pseudoalteromonas sp. [AGMP1]), and 

controls (C).  Asterisks (*) denote significant differences against controls 

resulting from Dunn’s multiple comparisons. 
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1: Final treatment concentrations used in settlement 
experiments. 

 
Treatment  Stock concentration Exposure concentrations  
KCl  300 mM 5,  10,  15,  20, 30 mM  
GABA  10-2 M 10-6, 10-5,  10-4,  10-3 M  
Acetylcholine  10-2 M 10-6, 10-5,  10-4,  10-3 M   
L-Phenylalanine 10-3 M 10-7, 10-6,  10-5 M 
L-Tyrosine 10-3 M 10-7, 10-6,  10-5 M 
Dopamine 10-3 M 10-6, 10-5,  10-4 M 
Epinephrine 10-3 M 10-6, 10-5,  10-4 M 
L-Tryptophan 10-3 M 10-7, 10-6,  10-5 M 
5-HTP 10-3 M 10-5,  10-4, 10-3 M 
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Table 2: Kruskal-Wallis tests of larval settlement and mortality after exposure to different concentrations of chemical treatments (potassium 
chloride, GABA, acetylcholine, L-Phenylalanine, L-Tyrosine, dopamine, epinephrine, L-Tryptophan, and 5-HTP).  Bold p-values indicate 
significant differences across all treatments and control. 

 

  
 

        Settlement         
KCl GABA Acetylcholine L-Phenylalanine L-Tyrosine Dopamine Epinephrine L-Tryptophan 5-HTP 

H 33.38 30.70 24.11 24.32 16.76 12.57 18.24 12.17 18.67 

df 5 4 4 3 3 3 3 3 3 

p-value 0.001 0.001 0.001 0.001 0.001 0.006 0.001 0.007 0.001 

 
 

        Mortality         
KCl GABA Acetylcholine L-Phenylalanine L-Tyrosine Dopamine Epinephrine L-Tryptophan 5-HTP 

H 7.95 44.42 25.53 28.43 42.08 16.59 12.20 27.68 39.18 

df 5 4 4 3 3 3 3 3 3 

p-value 0.159 0.001 0.001 0.001 0.001 0.001 0.007 0.001 0.001 
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Table 3: Kruskal-Wallis tests of larval settlement and mortality within different bacterial 
treatments (planktonic bacteria, bacterial biofilms and biofilm exudates) using three bacterial 
strains (Macrococcus sp. [AGMM1], Bacillus sp. [AGMB1], and Pseudoalteromonas sp. 
[AGMP1]).  Bold p-values indicate significant differences across all treatments and control. 

 

 

 
 
 
  
  

 
 

Settlement 

 

Mortality 

Planktonic 
bacteria 

Bacterial 
biofilms 

Biofilm 
exudates  

Planktonic 
bacteria 

Bacterial 
biofilms 

Biofilm 
exudates 

H 0.41 5.68 12.98  25.53 24.26 7.00 

df 3 3 3  3 3 3 

p-value 0.938 0.128 0.005 
 

0.001 0.001 0.072 




