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Abstract

Learning is one such innate general cognitive ability which has empowered the living

animate entities and especially humans with intelligence. It is obtained by acquiring

new knowledge and skills that enable them to adapt and survive. With the advan-

cement of technology, a large amount of information gets amassed. Due to the sheer

volume of increasing information, its analysis is humanly unfeasible and impractical.

Therefore, for the analysis of massive data we need machines (such as computers)

with the ability to learn and evolve in order to discover new knowledge from the

analysed data.

The majority of the traditional machine learning algorithms function optimally on a

parametric (static) data. However, the datasets acquired in real practices are often

vast, inaccurate, inconsistent, non-parametric and highly volatile. Therefore, the

learning algorithms’ optimized performance can only be transitory, thus requiring

a learning algorithm that can constantly evolve and adapt according to the data it

processes. In light of a need for such machine learning algorithm, we look for the

inspiration in humans’ innate cognitive learning ability. Active learning is one such

biologically inspired model, designed to mimic humans’ dynamic, evolving, adaptive

and intelligent cognitive learning ability.

Active learning is a class of learning algorithms that aim to create an accurate classi-

fier by iteratively selecting essentially important unlabeled data points by the means

of adaptive querying and training the classifier on those data points which are po-

tentially useful for the targeted learning task (Tong & Koller, 2002). The traditional

active learning techniques are implemented under supervised or semi-supervised lear-

ning settings (Pang et al., 2009). Our proposed model performs the active learning

in an unsupervised setting by introducing a discriminative selective sampling crite-

rion, which reduces the computational cost by substantially decreasing the number

of irrelevant instances to be learned by the classifier.

The methods based on passive learning (which assumes the entire dataset for training

is truly informative and is presented in advance) prove to be inadequate in a real



ii

world application (Pang et al., 2009). To overcome this limitation, we have developed

Active Mode Incremental Nonparametric Discriminant Analysis (aIncNDA) which

undertakes adaptive discriminant selection of the instances for an incremental NDA

learning. NDA is a discriminant analysis method that has been incorporated in our

selective sampling technique in order to reduce the effects of the outliers (which

are anomalous observations/data points in a dataset). It works with significant

efficiency on the anomalous datasets, thereby minimizing the computational cost

(Raducanu & Vitriá, 2008). NDA is one of the methods used in the proposed active

learning model. This thesis presents the research on a discrimination-based active

learning where NDA is extended for fast discrimination analysis and data sampling.

In addition to NDA, a base classifier (such as Support Vector Machine (SVM) and

k-Nearest Neighbor (k-NN)) is applied to discover and merge the knowledge from

the newly acquired data.

The performance of our proposed method is evaluated against benchmark University

of California, Irvine (UCI) datasets, face image, and object image category datasets.

The assessment that was carried out on the UCI datasets showed that Active Mode

Incremental NDA (aIncNDA) performs at par and in many cases better than the

incremental NDA with a lower number of instances. Additionally, aIncNDA also

performs efficiently under the different levels of redundancy, but has an improved

discrimination performance more often than a passive incremental NDA. In an ap-

plication that undertakes the face image and object image recognition and retrieval

task, it can be seen that the proposed multi-example active learning system dyna-

mically and incrementally learns from the newly obtained images, thereby gradually

reducing its retrieval (classification) error rate by the means of iterative refinement.

The results of the empirical investigation show that our proposed active learning

model can be used for classification with increased efficiency. Furthermore, given

the nature of network data which is large, streaming, and constantly changing, we

believe that our method can find practical application in the field of Internet security.
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Chapter 1

Introduction

From the beginning, a majority of the tools and machines designed by man have had

their roots in the nature. Even during the stone-age period, weapons such as hunting

blades were made in the form of animals’ claw or teeth. The designs and functions

shaped by nature are highly optimized and adaptive which has been and is being

achieved after numerous generations of evolution. In this current era, which is ruled

by Information Technology and Computer Science, we still look for an inspiration in

the nature.

Learning is one such innate general cognitive ability which has empowered the living

animate entities and especially humans with intelligence. It is obtained by acquiring

new knowledge and skills which enable them to adapt and survive. With the advan-

cement of technology, a large amount of information gets amassed. Due to the sheer

volume of increasing information, its analysis is humanly unfeasible and impractical.

Therefore, for the analysis of massive data we need machines (such as computers)

with the ability to learn and evolve in order to discover new knowledge from the ana-

lysed data. In order to build such machines we look up to humans’ innate cognitive

learning ability for ideas. Active learning is one such biologically inspired model,

designed to mimic humans’ dynamic, incremental and intelligent cognitive learning

ability.

Active learning plays a crucial role in classification (a stream of data mining); it

requires fewer instances of labeled data for classification and thus solves the data

scarcity problem. Active learning is a class of learning algorithms that aim to create
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an accurate classifier by iteratively selecting essentially important unlabeled data

points by the means of adaptive querying and training the classifier on those data

points which are potentially useful for the targeted learning task. On the contrary,

passive learning is static and non-adaptive, therefore it is completely dependent on

the information that is already seen and hence it cannot adapt according to the

new incoming data. Moreover, a passive learning model selects the data instances

randomly resulting in reduced classifier accuracy and learning function (Pang et

al., 2009). Random sampling is inefficient for classification in real world datasets

since many such datasets have nonlinear distribution, resulting in the exclusion of

a significant amount of informative instances (Tong & Koller, 2002). Due to active

learning’s adaptive and interactive nature it performs better than passive learning;

especially where data is scarce and unlabeled. Furthermore, because of the selective

sampling method incorporated in active learning, it only selects informative data

instances based on a criterion. This results in the development of a better learning

function and thus resulting in a more accurate classifier. The main objective of active

learning model is to adaptively build an accurate classifier using the least number of

data instances for training. Due to this nature of active learning, it is more efficient,

precise and computationally less expensive than passive learning.

To further reduce the degree of the complexity in classification, several methods have

been studied and implemented for feature selection. Discriminant Subspace Analy-

sis is one such method that has been widely used for feature extraction and thus

achieving dimensionality reduction. There are many such discrimination based me-

thods such as Linear Discriminant Analysis (LDA) and Nonparametric Discriminant

Analysis (NDA). In this thesis, we have used NDA method incorporated in the ac-

tive learning model. These methods try to look for an optimal subspace in order to

maximize the class separability. This class separability is achieved by simultaneously

reducing the within class distance and increasing the between class distance. LDA

achieves class separability through global eigenvectors whereas NDA achieves class

separability through local eigenvectors (Pang et al., 2009). Datasets with higher di-

mensionality and fewer samples create singularity problem (Kuo & Landgrebe, 2004);

however, NDA works on these types of datasets and retain important discriminant

information after dimensionality reduction. In LDA, each class is assumed to be nor-

mally distributed with equal covariance matrix and these parametric distributions

are optimally separated. Whereas, in NDA, class similarity is measured by the mean
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distance of a certain number of neighboring samples and the separation of the classes

is optimized based on this class similarity. Nonparametric methods such as NDA do

not rely on an assumption that instances are drawn from a given probability distri-

bution; therefore, they are more robust than parametric methods and work well on

nonlinear datasets.

Active Learning vs. Passive Learning :

Active learning differs from passive learning where the former method attempts to

select the most informative examples and train only those potentially useful for a

particular learning task.

One analogy is that an active learner is a student who actively asks questions to a tea-

cher, listens to the answers and asks further questions adaptively while a traditional

passive learner is a student who listens to the teacher sitting in silence.

T
r
a
i
n
i
n
g
 
S
e
t
 S
e
l
e
c
t
i
v
e
 
S
a
m
p
l
i
n
g
 F
u
n
c
t
i
o
n
 
L
e
a
r
n
e
d

(
M
o
d
e
l
\
H
y
p
o
t
h
e
s
i
s
)


T
e
s
t
i
n
g
 
S
e
t
 C
l
a
s
s
i
f
i
e
r
 
(
D
a
t
a
 
E
v
a
l
u
a
t
i
o
n
)
 R
e
s
u
l
t


I
t
e
r
a
t
i
o
n
s


A
c
t
i
v
e
 
L
e
a
r
n
e
r


R
e
s
p
o
n
s
e


Q
u
e
r
y


.


.


.

.


Figure 1.1: Active Learning Mechanism.

A passive learning system relies entirely on the previously gathered information,

whereas an active learning algorithm has the capability of interacting with its en-

vironment in order to collect information and/or to select learning policy. Active

learning systems produce improved generalization, reduce data costs and are most

useful where data is expensive and computation is cheap (Symons et al., 2006).

There are three major recognized approaches to the implementation of active lear-

ning: goal-driven learning, reinforcement learning and querying.
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Figure 1.2: Passive Learning Mechanism.

The active learning system comprises two parts: a learning engine and a selection

engine (Nguyen & Smeulders, 2004). During the iterations, the learning engine uses

a supervised learning approach to train the classifier on labeled examples. The selec-

tion engine then selects a sample from the unlabeled dataset and requests a human

expert to label the sample before passing it to the learning engine. The major goal

is to achieve the best possible classifier within a reasonable number of iterations.

Table 1.1: Comparisons between Active and Passive Learning Methodology.

No Active Learning Passive Learning
1 Requires small training set Requires large training set
2 Selective sampling of examples Random sampling of examples
3 Few labeled examples required Labeled examples only
4 Low Concept Drift Risk High Concept Drift Risk
5 Reduces manual labeling cost Has manual labeling cost

1.1 Research Objective

The recent research and investigation in active learning methods suggest many ap-

plication areas such as cyber security (Almgren & Jonsson, 2004), bioinformatics

(Liu, 2004; Warmuth et al., 2003), image processing (Wu, Tian & Huang, 2000;
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Weber, Welling & Perona, 2000) and other domains involving pattern recognition

tasks. Active learning is a class of machine learning algorithm which performs brain-

like computational analysis and modeling. Its learning mode is similar to that of

humans, where it dynamically and adaptively learns from previous and incoming

data/information and accordingly builds an evolving model for tasks such as classifi-

cation and predictions. Active learning models inspiration comes from the cognitive

learning ability of the human brain, whereas spiking neural network models inspi-

ration comes from the spiking processes in biological neurons. Both the algorithms

have their own pros and cons. However, since active learning has been recently

explored, there is still a lot to be further investigated.

This research aims to employ machine learning and data mining techniques to au-

tomate, speed up and increase the reliability of classification tasks. As part of the

research, we have introduced criterions in the discrimination based active learning

model with an incremental learning that integrates new informative model obtained

from the incoming data and compared against other discriminant methods.

1.2 Thesis Structure

The thesis is structured as follows:

Chapter 2 contains a brief review of previous research on active learning approaches.

In the review, different selective sampling methods used in active learning fra-

mework are considered. Also, various discriminant analysis techniques are un-

derlined. Furthermore, the application of active learning in various domains is

highlighted.

Chapter 3 discusses the proposed novel framework and system used for implemen-

ting active learning. The chapter begins with an introduction to Nonparametric

Discriminant Analysis (NDA) and Incremental Nonparametric Discriminant

Analysis (IncNDA), which are two of the components of selective sampling en-

gine used in active learning. Also, two proposed selective sampling criterions

which are a part of selective sampling engine are discussed at length.
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Chapter 4 confers the experiments and analysis on the benchmark datasets used

for investigating the efficacy of the Active mode Incremental Nonparametric

Discriminant Analysis (aIncNDA), along with system specifications used for

implementation and the two selective sampling criterions that were proposed

for aIncNDA based active learning.

Chapter 5 presents the application of the novel aIncNDA based active learning

for image recognition and retrieval tasks. This chapter commences with a

brief introduction on previously used image recognition and retrieval techniques

and the problem specifications encountered followed by the active learning

(aIncNDA) framework and method used for image recognition and retrieval

tasks. The chapter concludes with the experimental results and discussion

about the advantages and limitations unearthed in the proposed aIncNDA

active learning method.

Chapter 6 concludes the presented thesis along with suggestions for future work

directions.



Chapter 2

Active Learning and Discriminant

Analysis: A Review of Previous

Works

2.1 Introduction

In the previous chapter, we introduced active learning and the difference between

active and passive learning. This chapter introduces the different approaches and

flavors of active learning along with their applications in different domains. It also

presents a brief review of previous studies on active learning approaches. In the

review, the different selective sampling methods used in active learning framework

are highlighted. Also, various discriminant analysis techniques have been discussed.

Furthermore, the applications of active learning in various domains such as internet

security and bioinformatics have also been discussed.

The concept of active learning has only been explored recently. Previously, NDA has

not been used as a selective sampling engine in active learning model. Most of the

previous works were carried out on a semi-supervised learning; whereas, our model

aim for unsupervised one-pass active learning. Some of the commonly used active

learning directions/approaches that have been widely implemented are: Pool-based,

Membership queries, Uncertainty Sampling, Information-based loss functions and

Query by committee.
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2.2 Approaches of Active Learning

There are varieties of selective sampling approaches used in active learning models.

One of the approaches is Pool-based active learning which is the most commonly used

query refinement scheme. However, it suffers from a multiple drawbacks; since most

of the pool-based active learning iteratively selects samples from the pool which is

informative or irrelevant, it becomes computationally intensive if the pool is small.

Under such conditions this technique is ineffective in reducing the error rate (Ling

& Du, 2008). Moreover, selecting the samples to be included in the pool itself is a

time consuming process.

Another selective sampling approach is Membership query which selects samples

directly from the dataset for the purpose of querying for labels. Membership query

scheme does not have the drawbacks posed by the pool-based scheme. It also reduces

the predictive error rapidly and is less computationally intensive compared to the

pool-based active learning (Ling & Du, 2008).

Feature-value acquisition at cost is another approach where the active classifier has

to obtain the values of the unlabeled data at some cost which is calculated using

probably-approximately-correct (PAC) model. The calculation is based on the cost

required to obtain additional values versus the penalty imposed on an inaccurate

classification. It is one of the direction which has been used by Greiner, Grove

and Roth (2002); Kapoor and Greiner (2005), where the cost of the feature value

acquisition cannot exceed the budget which has been previously decided.

Transductive experimental design (TED) is another novel approach which was pro-

posed by Yu, Bi and Tresp (2006) and is used to directly reduce the assessed uncer-

tainty of the predictions on given unlabeled data, and thus effectively explored the

information of unlabeled data in active learning (Zhang, He, Rey & Jones, 2007).

Greedy algorithm performs problem solving (generally by combining user-given heu-

ristic procedures) by making a local optimal choice for every example/instance in

order to find the global optimum solution (Cormen, Leiserson & Rivest, 1990). But

this technique faces the NP-hard problem as in (Yu et al., 2006; Zhang et al., 2007)

and as a solution Kai, Zhu, Xu and Gong (2008) has proposed the use of non-greedy

approach.

Clustering (Nguyen & Smeulders, 2004) and Batch mode active learning have been
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used by Hoi, Jin and Lyu (2006) and is commonly employed as the Pool-based active

learning approach. These are some of the other flavors of active learning which aims

at decreasing the redundancy amongst the selected examples therefore providing

more unique examples for the refinement of classifiers.

Lastly, Query by Committee technique used by Melville and Mooney (2004) is an

effective approach where selective sampling is based on the disagreement amongst

an ensemble of hypotheses for selecting data for labeling. Some of the commonly

used ensemble with active learning includes techniques such as Bagging and Boos-

ting (Abe, Zadrozny & Langford, 2006).

Our proposed model closely matches the membership query approach, since NDA

(which has been used as a selective sampling engine in the active learning model)

selects samples directly from the dataset. Incorporation of active learning with sup-

port vector machine has been commonly used especially in the field of bio-informatics

(Danziger, Zeng, Wang, Brachmann & Lathrop, 2007; Liu, 2004; Warmuth et al.,

2003), cyber security (Long, Yin, Zhu & Zhao, 2008; Almgren & Jonsson, 2004),

multimedia information retrieval (Hoi & Lyu, 2005; Kherfi, Ziou & Bernardi, 2004;

Huang et al., 2008) and text categorization (Hoi et al., 2006; Tong & Koller, 2002).

However, a majority of these have made use of the pool-based technique which suffers

from many drawbacks stated previously; therefore, it is recommended that although

an incorporation of active learning with SVM is good, other approaches such as

membership querying or batch mode active learning should be used as they negate

the drawbacks introduced by pool based learning. It has been observed by Dasgupta

and Hsu (2008) that both margin-based and cluster-adaptive sampling outperformed

random sampling.

2.3 Active Learning for Classification

Several investigations of active learning have been done for classification tasks in a

supervised or semi-supervised setting. Also, there are many methods which have

been developed using active learning for the purpose of classification, regression

(Sugiyama & Nakajima, 2009; Schein, 2005) and function optimization (Tong, 2001).

There are many active learning - based classification algorithms such as the Query



2.3. Active Learning for Classification 10

by Committee algorithm (Melville & Mooney, 2004; Seung, Opper & Sompolinsky,

1992; Freund, Seung, Shamir & Tishby, 1997), that (as explained in the previous

section) queries the samples having higher disagreement amongst the given set or

committee of classifiers. Tong (2001), states that the general form of this algorithm

along with classifiers have been applied in several domains for the task of sampling

from a probabilistic distribution. Tong (2001) also mentions that classifiers such as

Naive Bayes have also been used but their performance is not as optimal as those of

discrimination based classifiers such as Support Vector Machines (SVM), especially

in the text classification domain (Siolas & Buc, 2000; Tong & Koller, 2002).
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Figure 2.1: Some of the commonly used Machine Learning Techniques for Clas-
sification tasks.

In our model, we have used incremental nonparametric discriminant analysis (IncNDA)

along with support vector machine. In aIncNDA, both IncNDA (used as a component

of selective sampling engine) and SVM (used as a base classifier) being discriminant

techniques complement each other and perform optimally through co-operative lear-

ning as compared to using k-NN classifier. In chapter 4, it can be seen that the

IncNDA-SVM combination performs better then IncNDA-k-NN on the benchmark

datasets.
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Another strand of active learning is uncertainty sampling introduced by Lewis and

Gale (1994), where instances which the classifier is most uncertain about are selected

for learning. Tong (2001), states that Lewis and Gale (1994) successfully applied

their uncertainty sampling technique in text domain using logistic regression. Active

learning is very much similar to uncertainty sampling, where the learner uses a

criterion for determining the relevance or informativeness of a particular instance or

a chunk of instances.

To the best of our knowledge, not much study has been done on unsupervised active

learning. Most of the work done on active learning involve supervised or semi-

supervised learning (by using the relevance feedback from the user). However, in

our work we aim for an unsupervised active learning model by introducing selection

criterions that replaces the oracle/person. According to Tong (2001), such unsuper-

vised techniques will prove to be beneficial in robotics, especially in the navigational

system that is based on active learning system.

Reinforcement learning (Kaelbling, Littman & Moore, 1996; Tong, 2001) is one of

the major areas of machine learning that cannot be clearly classified as supervised

or unsupervised learning. It is used to solve a class of problems commonly known

as Markov Decision Processes (MDP). Unlike supervised learning, the correct input

and output are never provided. There is a classical exploration/exploitation trade-

off in reinforcement learning where a reward is presented on positive outcome. In

case of exploration, the reinforcement learning tries to find in space an appropriate

behavior by refining the parameters of the whole model in order to improve the

reward; whereas, in exploitation setting, as the reinforcement the learner tries to

improve; its reward is based on the existing model (Kaelbling et al., 1996).

Active learning is similar to the exploration mode of reinforcement learning where

the learner tries to find a new way to improve performance by adaptively changing

its current model by learning as much as possible about the domain. Therefore, it

can be said that in a way, active learning takes into consideration both spatial and

temporal features of the current and incoming data in order to obtain an updated

and optimized model.

Before we go ahead to the section that revises active learning and its application, a

brief introduction about classification and its types will be provided. In our daily

life, humans perform classification tasks effortlessly and naturally: recognizing our
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Figure 2.2: General Reinforcement Learning Schema: (1) Environment → State
(St)+ Reward (rt) → Decision making process (2) Decision making process →
Action (at) → Environment (3) Environment → new State (St+1)+ new Reward
(rt+1)

friends’ or relatives’ face or voice in a crowd, detecting a particular ingredient in

our food just by the sense of smell or taste, or recognizing a particular constellation

or celestial object like comet in the sky. Classification is also frequently used in

scientific endeavors for a varied range of tasks such as speech and image recogni-

tion (Kasabov, 1996), gene expression data analysis (Kasabov, Middlemiss & Lane,

2003), intrusion detection (Long et al., 2008) etc. The goal of classification is to

make a classifier automatically classify/categorize given (new/incoming) instances,

by making the classifier learn from historical data.

In general, classification techniques can be categorized into Induction and Transduc-

tion types. Until now the majority of methods in the machine learning (ML) domain

that have been implemented either use the inductive or transductive approach for

classification task. The inductive classification tasks, as the name suggests, for-

mulate tentative hypotheses (learning function) from the training data in order to

predict/classify the testing data (Pang & Kasabov, 2004) resulting in a more general

solution; whereas, in transductive classification tasks, both the training and testing

data are utilized in order to obtain a local solution i.e. for a particular (new)instance.

Pang and Kasabov (2004) state that transductive - based methods prove to be more

appropriate for medical or clinical (data) application. In the following discussion, a

more detailed explanation on these two classification tasks is presented.
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2.3.1 Induction

In statistical inference, induction or inductive inference based classification is most

standard and commonly used classification method. The inductive inference based

classification generally consists of two phases. The first phase consists of training

where the classifier is provided (historical data) instances to learn (train) from, ha-

ving identically distributed data {d1...dn} residing in space U . These data instances

also have labels {l1...ln} where the possible set of labels L is discrete. These labeled

instances are generally called training data or historical data. This training data is

given to the classifier to build a (model) learning function f : U → L which completes

the training phase (Joachims, 1999).

In the testing phase, the trained classifier f is then used to automatically classify

new (unlabeled) instances {d′
1...d

′
n}. The new unlabeled data provided for testing

is identically distributed and has the same probabilistic distribution (as in training

phase). The performance of the classifier is measured on how accurately it is able

to classify the (new/unlabeled) instances provided in the testing phase (Pang &

Kasabov, 2004).
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Figure 2.3: General Schema of Inductive Inference based Classification Task:
The inductive inference approach consists of two phases namely training and tes-
ting, where the classifier builds a general hypothesis based on training (labeled)
data.

2.3.2 Transduction

Transduction or transductive inference based reasoning is another approach for clas-

sification tasks. Compared to inductive inference approach where reasoning (func-

tion) is obtained from training data, transductive inference approaches reasoning is

observed from specific training and testing data. In transductive inference setting

the testing data {d′
1...d

′
n} is known but still unlabeled. Also, we are provided with
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identically distributed (training) data {d1...dn} residing in space U . The goal of the

classifier is to simply provide labels {l′1...l
′
n} to the unlabeled instances.
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Figure 2.4: Transductive Inference approach. Adapted from Vapnik (2000).

It can be noted that even if the transductive tasks are solved using inductive me-

thod, there are many transductive based algorithms (Joachims, 1999; Vapnik, 1998;

Pang & Kasabov, 2004) which take an advantage of the available unlabeled testing

data and show improved performance over the standard inductive inference - based

methods. In the article by Pang and Kasabov (2004), the authors have carried out

the performance evaluation of inductive and transductive inference based methods

on a medical dataset which shows that transductive inference methods (which takes

the local information into consideration) performs better than inductive inference

approach. However, the authors state that transductive approach is efficient only on

small sized datasets. Therefore, we are hoping to address this problem in an active

learning way.

In many of the supervised or semi-supervised tasks, labeling data for training set

can prove to be time consuming and costly process. Therefore, finding methods to

reduce the time and cost by selecting fewer labels will prove to be beneficial. Active

learning is one of the methods that can be used to address this problem. Most of

the supervised methods need labeled data for the training set; however, an active

learning technique can help in reducing the number of labeled instances required for
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training by choosing only those instances that will be informative for training the

classifier by the means of selective sampling.

In our novel unsupervised active learning framework, we have incorporated Incremen-

tal Nonparametric Discriminant Analysis (IncNDA) as a part of selective sampling

engine for the purpose of feature selection and incremental learning. In the follo-

wing section, a brief review on various subspace analysis methods is presented and

the decision regarding the selection of nonparametric discriminant analysis (NDA)

method over other discriminative techniques is justified.

2.4 Subspace Analysis Review

Discriminative and informative learning are two different approaches used for clas-

sification in pattern recognition (Rubinstein & Hastie, 1997). The informative lear-

ning strategy (as in Gaussian mixture models (GMMs) and Hidden Markov Models

(HMMs) ) utilizes information about the classes by concurrently taking all the classes

information (such as class density) into consideration; whereas, the discriminative

learning strategy (as in SVM) makes use of discriminative information between the

various classes or instances by simultaneously considering all the classes (Wang &

Paliwal, 2002). We will be focusing on the discriminative analysis techniques in the

following section.

2.4.1 Dimensionality reduction and Feature extraction

Feature extraction and dimensionality reduction is a common pre-processing step

in classification tasks; where both parametric and nonparametric techniques have

been implemented. The subspace analysis includes techniques such as Principal

Component Analysis (PCA) and Linear Discriminant Analysis (LDA). A detailed

review of these methods is presented below.

Principal Component Analysis (PCA)

Pearson (1901) introduced the Principal Component Analysis (PCA) and since then

it has been widely used for data analysis and dimension reduction. PCA optimally
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transforms the given data (without information loss) in order to achieve the largest

covariance variation such that each of the largest variation lies on an axis that is

known as principal axis. PCA works under the assumption that along these prin-

cipal axes where the variation is the largest it contains most information about the

classes. In the transformed PCA space, there is no redundant information since all

the principal components are orthogonal to each other (due to linear combination of

original values) (Pearson, 1901).

PCA takes into consideration global information about the dataset where the prin-

cipal axis can be calculated using the global covariance matrix formula presented

below (Wang & Paliwal, 2002):

Ŝ =
1

N

CN
∑

j=1

Cj
∑

i=1

(xji − µ̄) (xji − µ̄)T , (2.1)

where CN is number of classes, Cj represents the number of instances in class j, µ̄ is

the global mean of all instances, N =
∑CN

j=1 Cj represents the ith observation from

class j.

Therefore according to Wang and Paliwal (2002),

ŜT1 = λ̂iTi {i ∈ 1, ...,m} , (2.2)

where, λ̂i is the ith largest eigenvalue of Ŝ, m represents the leading eigenvectors of

Ŝ for principal axis T1, T2, ..., Tm. For a more detailed information on PCA refer to

Pearson (1901).

Although PCA retains the subspace having the greatest covariance, it is not suitable

for classification task since it also retains noise and works under the assumption that

the underlying probability distribution for the given datasets is linear.

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis(LDA), also known as Fisher Discriminant Analysis

(FDA), seeks optimal projection of training data by simultaneously calculating the

within and between - class covariance matrix. Pang, Ozawa and Kasabov (2005)
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states that LDA works by seeking efficient discrimination; while PCA works by

seeking efficient representation.

The within-class covariance matrix SW and between-class covariance matrix SB ac-

cording to Wang and Paliwal (2002) can be represented as:

SW =

CN
∑

j=1

Cj
∑

i=1

(xij − µj) (xij − µj)
T , (2.3)

and

SB =

CN
∑

j=1

Cj (µj − µ) (µj − µ)T , (2.4)

where, µ is the global mean, µj is mean of class j, CN is the number of classes, Cj

represents all the samples belonging to class j. The (LDA) discriminant eigenspace

model ΩLDA can be obtained through eigenvalue decomposition of the within and

between - class covariance matrix which can be represented as:

ΩLDA = tr
(

SW
−1SB

)

. (2.5)

Both the above PCA and LDA techniques consider global information and are pa-

rametric in nature. However, most of the real world dataset are nonparametric in

nature; therefore, techniques such as nonparametric discriminant analysis (NDA) are

better suited for real world dataset (Kuo & Landgrebe, 2004; Raducanu & Vitriá,

2008).

Nonparametric Discriminant Analysis works by classifying objects into mutually ex-

clusive and exhaustive groups based on a set of measurable object’s features. Pa-

rametric Discriminant Analysis has an innate problem which originates from the

parametric characteristics of the scatter matrix, in which the instances distribution

for all the class are assumed to be normal distribution. So it tends to suffer in the

case of non-normal distribution (Raducanu & Vitriá, 2008).

According to Raducanu and Vitriá (2008), nonparametric methods are distribution
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free which considers fewer assumptions than the parametric methods, allowing wider

ranges of applications, especially in those cases where less is known about the domain

of application. Moreover, since non-parametric methods such as NDA rely on fewer

assumptions, they are more robust in nature.

In the next chapter we have presented the detailed workings of a nonparametric me-

thod, which in our case is NDA and have also shown as to how we have incorporated

the incremental version (Raducanu & Vitriá, 2008) into our novel active learning

framework.

2.5 Active Learning: A review on Applications

In this section, we will be reviewing the application of active learning in various

domains such as bioinformatics and cyber security.

2.5.1 Active Learning for Cyber Security

The application of active learning in the field of internet security is not mature and

a lot remains to be explored. Currently, there have been very few applications in

fields such as active response intrusion detection and malicious computer software

detection. An intrusion detection system (IDS) detects various types of attacks. The

two general methods used for intrusion detection are signature - based and anomaly -

based. In signature - based method the IDS looks for a signature match for detecting

an intrusion/attack. The anomaly - based method looks for new types of intrusion

based on the abnormal behavior. However, the anomaly - based method experiences

issues such as false alarms due to the fact that it considers any activity other than

the regular as an intrusion.

Active learning can play a major role in efficient signature match and lowering of false

alarms in anomaly based intrusion detection. Though much research has been done

on application of machine learning in intrusion detection however active learning has

rarely been employed. Furthermore there are many issues related to active learning
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which needs to be resolved. Conversely, the problems related to active learning can

be minimized using alternative sampling methods of the unlabeled data points.

Intrusion Detection System (IDS) plays vital role of detecting various kinds of at-

tacks. The main purpose of IDS is to find out intrusions among normal audit data

and this can be considered as classification problem. The two basic methods of detec-

tion are signature based and anomaly based (Ling & Du, 2008). The signature-based

method, also known as misuse detection, looks for a specific signature to match, si-

gnaling an intrusion (Almgren & Jonsson, 2004). They can detect many or all known

attack patterns, but they are of little use for as yet unknown attack methods. Most

popular intrusion detection systems fall into this category.

Another method to intrusion detection is called anomaly detection. Anomaly detec-

tion applied to intrusion detection and computer security has been an active area

of research since it was originally proposed by Denning (1987). The advantage of

anomaly detection is that it can recognize new types of intrusions based on those

patterns or behavior that are different from normal usage. The anomaly detection

based algorithm is given normal data for training and new data for testing , where

the algorithm aims to find if the given test data has anomalous or normal beha-

vior/pattern. However, previously unseen but authentic system behaviors or pattern

on which the algorithm has not been trained are recognized as anomalies and there-

fore labeled as possible intrusions causing the anomaly detection algorithm to suffer

from high false alarm rate.

Long et al. (2008) has used a novel approach which uses active cost-sensitive learning

method for intrusion detection. The author utilizes query by committee sampling

method with the aim to reduce the burden of labeling data for constructing the

intrusion detection classifier with the least misclassification cost. Introduction of ac-

tive learning for intrusion detection using history data showed improved performance

on the KDDCUP 99 dataset. In the traditional passive approach as stated by Lee,

Stolfo and Mok (1999), high quality history data requires heavy labor of experts or

expensive monitoring process. However, this problem as seen in the article by Long

et al. (2008) is resolved by introducing active learning method.
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2.5.2 Active Learning in Bioinformatics

Introduction of active learning in the bioinformatics domain has helped to accele-

rate several major studies such as biomolecular structure prediction, gene finding

(Danziger et al., 2007), genomics and proteomics, cancer classification (Liu, 2004)

and drug discovery (Warmuth et al., 2003).

Figure 2.5: The Drug Discovery Cycle. Adapted from Warmuth et al. (2003).

In Fig. 2.5 it can be observed how Warmuth et al. (2003) used active learning tech-

nique in the selection phase to find out if the given drug compound is active or

inactive against a biological target. Machine learning techniques are used in bioin-

formatics since they are suitable for understanding and discovering knowledge from

the complex relationship present in the clinical or medical data (Pang & Kasabov,

2004). Active learning technique has been successfully used for solving problems in

bioinformatics for tasks such as facilitating drug development, understanding tumour

behaviour etc. Utilizing machine learning in bioinformatics is an efficient and inex-

pensive way of solving problems because the actual process such as in drug discovery,

involves many iterations of biochemical testing for identifying the compounds active

against the targeted molecule or site. Machine learning reduces these iterations by

predicting which possible compounds are potentially active (or relevant) and based

on these findings the biochemist/biologist can carry out biochemical tests on those

potential compounds predicted by machine learning algorithms.

Besides bioinformatics and internet security, active learning based techniques also
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have usage in image/multimedia recognition and retrieval. The application of active

learning for image recognition and retrieval will be discussed in Chapter 5.

2.6 Summary

In this chapter, previous works on active learning have been discussed along with

the different active learning approaches, and its applications in various domains. We

have also reviewed various discriminative and classification techniques which have

been used over the years. In the following chapter we will present a detailed study of

the techniques and criterions incorporated in our method, followed by the workings

of our novel active learning framework.



Chapter 3

NDA Framework and System for

Active Learning

3.1 Introduction

This chapter presents experimental research on discrimination-based active learning

for classification tasks. In this experimental research, a quantitative research metho-

dology has been used for the creation, the analysis and the performance evaluation

of the proposed model/framework. Intrusion detection system (IDE) relates to many

issues, one of them being detecting intrusion in real time by analyzing large volume

of the streaming data. The proposed novel active learning method for intrusion

detection uses classifier such as SVM or k-NN in combination with incremental non-

parametric discriminant analysis for classification. SVM in previous research works

have proven to be more accurate and efficient in numerous real-world learning (Tong

& Chang, 2001) and nonparametric discriminant analysis (NDA and IncNDA) for se-

lective sampling since it is more robust than parametric discriminant analysis (Kuo &

Landgrebe, 2004). Use of incremental learning is essential since it’s not computatio-

nally feasible to compute from scatter matrix again. Therefore incremental learning

is beneficial since it constantly updates the eigenspace (Raducanu & Vitriá, 2008)

reducing the computational cost and time. In the following, a detailed working of

Nonparametric Discriminant Analysis (Batch NDA) and Incremental Nonparametric

Discriminant Analysis (IncNDA) has been presented.
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3.2 Nonparametric Discriminant Analysis (Batch

NDA)

Assuming that the data samples we have belong to N classes, therefore Ci represents

samples belonging to one of the class i, i = 1,2,3,...,N. Therefore, the within class

covariance matrix Sw according to Raducanu and Vitriá (2008) is expressed as:

Sw=

CN
∑

i=1

∑

j ∈ Ci

(mj−µCi) (mj−µCi)
T, (3.1)

where, µCi and mj are the mean vector and sample of class Ci respectively. The

between class covariance matrix Sb [18] is expressed as follows:

Sb=

CN
∑

i=1

CN
∑

j=1,j 6=i

ωCi
∑

q=1

Wijq

(

mi
q− µNN(mi

q, Cj)
)

(mi
q−µNN(mi

q, Cj))
T

, (3.2)

where, ωCi
is the number of samples in class Ci .mq

i is the qth sample of class i. In Sb,

µNN(mi
q, Cj) is local k-NN mean defined as:

µNN(mi
q, Cj) =

1

k

k
∑

t=1

NNt(m
i
q, Cj), (3.3)

where, NNt(m
i
q, Cj) is tth nearest neighbour from vector mi

q to class Cj. Wijqis a

weighting function used in the between class covariance matrix denoted as:

wijq=
min

{

dα(mi
q, NNt

(

mi
q, Ci

)

)(mi
q, NNt

(

mi
q, Cj

)

)
}

dα
(

mi
q, NNt

(

mi
q, Ci

))

+(mi
q, NNt

(

mi
q, Cj

)

)
, (3.4)

where, α denotes control parameter for sample weights which can be selected between

zero and infinity. The class separability according to Raducanu and Vitriá (2008)

can be expressed as:

ΩNDA = tr
(

(Sw)−1 . (Sb)
)

. (3.5)
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3.3 Incremental Nonparametric Discriminant Ana-

lysis (IncNDA)

According to Raducanu and Vitriá (2008), a situation where the new instances are

coming in, the IncNDA can be defined as:

ΩIncNDA = tr

(

(

Sw
′

)−1

.
(

Sb
′

)

)

, (3.6)

where, Sw
′

, and Sb
′

are the updated within class and between class covariance matrix.

For more detail on ΩInNDA refer to Raducanu and Vitriá (2008). Let the incoming

data y belong to one of the existing classes CL(i.e. yCL ). The updated between class

S
′

b and within class S
′

w covariance matrix are defined as follows:

S
′

b=Sb−Sin
b (CL) +Sin

b (CL
′ ) +Sout

b (yCL), (3.7)

S
′

w=

CN
∑

j=1,j6=L

Sw (Cj) +Sw(CL
′ ), (3.8)

where, the covariance matrices Sin
b (CL

′ ), Sout
b

(

yCL
)

and Sw (CL
′ ) are expressed as :

Sin
b (CL) =

CN
∑

j=1, j 6=L

nCj
∑

i=1

WijL

(

mj
i− µNN(mj

i, CL)
)

(mj
i−µNN(mj

i, CL))
T

, (3.9)

Sout
b

(

yCL
)

=

CN
∑

j=1, j6=L

(yCL−µNN(yCL , Cj))(y
CL−µNN(yCL , Cj))

T
, (3.10)

Sw (CL
′ ) = Sw (Cj) +

ωCL

ωCL
+1

(y − µCL)(y − µCL)T. (3.11)

The covariance matrix between the existing class and the class about to be updated

is denoted by Sin
b (CL). The covariance matrix between the existing class and the

updated class CL
′ is denoted by Sin

b (CL
′ ) and Sw

(

C
L
′

)

signifies the updated within
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class covariance matrix. ωCL
is the number of samples in class CL. L denotes the

new instances belonging to new class CL.

3.4 Selective Sampling Criterion for Incremental

Learning

As mentioned previously, most of the existing active learning models are implemented

in supervised or semi-supervised learning setting. In our research we aim to develop

an unsupervised active learning model. Therefore we have introduced two different

criterions which would eliminate the oracle/supervisor entity and making our model

an unsupervised active learner.

In this criterion if the classification accuracy (obtained through SVM) of the current

chunk of incoming data is less than the previous classification accuracy value, then

that data chunk is assumed to be non-informative, and is not used for incremental

learning.

3.4.1 Classification Accuracy Criterion (CAC)

Let Classification Accuracy Criterion (CAC) (λ) for each learning stage be such that

λ > θ , where θ is the threshold value (Classification accuracy) obtained from the

previous stage of incremental learning. If λ > θ, then the given data chunk is

informative, hence selected for assimilation in incremental learning.

Let Y0 be the original data and Yt represent the incoming data chunk where t = 1,

2, 3... , N.

If λt > θ then

Yt
′

= Yt +
t−1
∑

i=1

(Y i) where
t = 0

t 6= 0
. (3.12)
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Algorithm: IncNDA based Active Learning Model with CAC
Input:
Y0 – training data.
Yt - incoming data chunk where t = 1, 2, 3... , N.
θ - Threshold Value of Y0.
λ - criterion
Calculate NDA + SVM of Y0.
if λt < θ then
process next incoming data chunk Yt

else
Select incoming data chunk Yt

for i = 1 to N
Yt

′

= f (Yt) + Yi when t = 0 and t 6= 0.
Calculate ΩIncNDA and SVM of Yt.
Obtain λ from SVM of Yt.
end for
end if
Output:
Updated Criterion λt

Updated Eigen Space of IncNDA model ΩIncNDA

Tuned SVM Classifier ΩSVM

3.4.2 Boundary Class Information Criterion (BCIC)

We have submitted to “The Eighth International Conference on Information and

Management Sciences” one of our recent studies on active learning which used the

discrimination residue based criterion mentioned in Pang et al. (2009).

The idea for BCIC has been adapted from Eq. (3.4), where weighting function is used

to emphasize the boundary class information. BCIC measures the mean weighted

distance of within and between class vectors. Since each vector of class Ci points

towards the local mean distance of class Cj the scatter matrix of these vectors show

the subspace in which the class boundary is embedded. According to Raducanu and

Vitriá (2008), since sample weights value tend to 0.5 on class boundary and drops to

zero as we move away from the classification boundary. Therefore BCIC reveals if

the incoming data has important classification boundary information. BCIC criterion

(wij) is defined as:
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wij=
dα
(

mi
q, NNt

(

mi
q, Ci

))

1
n

∑n
i=1 dα

(

mi
q, NNt

(

mi
q, Cj

)) . (3.13)

If wij
′

< θ, where θ is the threshold value, then Eq. (3.12).

Discrimination Residue Ratio based Criterion

For active learning, we consider here an active learning way (aIncNDA) to empower

the IncNDA with the ability of detecting the discriminative interestingness of data;

before it is delivered for IncNDA learning. That is, the above IncNDA can be

renovated to conduct incremental learning in an active learning way as:

Ω(t + 1) =











Fc(Ω(t), y) ifL(t) > ξ

Ω(t) otherwise.

, (3.14)

where, only discriminative instances are delivered for IncNDA learning. ξ is the

threshold identifying discriminative criterion of NDA. The smaller ξ leads to the

bigger number of instances learned by IncNDA.

Recall that the nature of NDA learning lies at the discriminability difference between

the NDA transformed space and the original space. Straightforwardly, L(t) can

be represented as a type of mathematical residue that reflects the discriminability

difference between the NDA transformed space and the original space.

Given one new instance is presented at any given time, the discriminability difference

between the NDA transformed space and the original space of the IncNDA at time

t by a classification performance evaluation as:

L(t) = Ad(t) − Ao(t), (3.15)

where, Ad(.) is the classification accuracy on discriminant eigenspace, and Ao(.) is

the accuracy on original space. It could be any type of classification performance

evaluation by any classifier.

However, such performance-based residue calculation involves a serious problem.
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That is, the L(t) is highly classifier dependent. For example, suppose a k-NN method

is used for performance evaluation Ad(.) and Ao(.), then the selected instances for

incremental learning is meaningful only for k-NN classification and the category of

prototype-based methods, but not for the classification using any other methods such

as hyperplane-based support vector machines (SVM) and decision-tree based C4.5.

Discrimination Residue Ratio

The idea of discrimination residue ratio is adapted from the weighting function (i.e.

Eq. 3.4)used in NDA, where NNk(xi, Ci) and NNk(xi, Cj) emphasize local within

class distances and local between class distances. As we know, the principle of

NDA, similar to LDA, seeks simultaneously minimizing within class distances and

maximizing between class distances. The difference between NDA and LDA is that

LDA is global model, whereas NDA focus on local instances distribution.

Given M new instances Y = {y1, y2, ...yM} presented as one chunk at time t, for each

instance yi ∈ Y , we can quickly estimate the within-class residue to the class mean

vector µCi:

‖NNk(yi, Ci) − µCi‖, (3.16)

also the between-class residue to any other class mean vector µCj , j = 1, ..., CN , j 6=

i:

‖NNk(yi, Cj) − µCj‖. (3.17)

Thus, the contribution of incoming instance yi to the NDA fundamental maximum

tr(Sw.Sb) criterion can be estimated as the following discrimination residue ratio of

within-class to between-class scatter estimates:

v(yi) =
‖NNk(yi, Ci) − µCi‖

∥

∥

∥

1
CN−1

∑CN

j=1,j 6=iNNk(yi, Cj) − µCj

∥

∥

∥

. (3.18)

If v(yi) > 1, then the contribution of yi to NDA discrimination is positive, otherwise

it is negative.

However, it is noticeable that the above discrimination residue ratio varies in practice

largely depending on the individual dataset. Thus, it is hard for us to determine a

suitable threshold value for a given dataset. To overcome this difficulty, we compute



3.5. Active Learning Framework 29

the discrimination residue ratio for every instance of the Y , then the above v(yi) can

be normalized as:

vyi
=

v − v̄
√

1
M

∑M
m−1(vm − v̄)2

, (3.19)

where, v̄ = 1
M

∑M
m−1 vm is the chunk mean discrimination residue ratio. Thus, L(t)

in Eq.(3.20) can be implemented by vyi
as a chunk data filter.

Ω
′

=











Fc(Ω, y) ifv(y) > ξ

Ω otherwise.

(3.20)

In the above sections, we have covered various criterions and discriminative methods

used in our novel active learning framework. In the following section our active

learning framework has been presented.

3.5 Active Learning Framework

Figure 3.1 shows how the proposed novel active learning method works and how

the base classifier and sampling algorithm are going to be integrated into the active

learner to improve its overall efficiency. In the proposed model an incremental NDA

has been implemented as an adaptive sampling method along with SVM and k-NN

which is the base classifier. The rationale for using incremental learning is to reduce

the time and computational cost of having to evaluate new streaming data from

scratch.

As seen in Fig.3.1, the initial data will be evaluated based on the NDA’s analysis to

form the initial discrimination rule and at the same time the base classifier will be

trained on it to form an initial classification boundary. When new streaming data is

available, selective sampling of the data will be done based on a criterion. If the new

data is found to be relevant then it is added to NDA’s incremental learning memory

otherwise NDA continues looking for relevant data in the next incoming network

data. Moreover, if relevant data is found by the criterion, then NDA increments

the data which is further tested using (SVM/k-NN) classifier. Active learning model

continued the same process each time new streaming data is available.
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Figure 3.1: Active mode IncNDA learning model (aIncNDA).

3.5.1 Active mode IncNDA model (aIncNDA)

Let X0 denote the initial data. Nonparametric discriminant analysis is conducted on

X0 to build the initial discrimination rule represented by fNDA(X0). Also the classifier

is trained on X0 to build an initial classification boundary fClassifier(X0) for decision

making.

Let Y denote the newly acquired dataset from network. On the data Y, the following
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incremental NDA is carried out to perform discrimination measure:

f
′

NDA= ΩIncNDA(fNDA, Y), (3.21)

where, ΩIncNDA represents the Incremental NDA model with the newly acquired

relevant data Y. Based on Eq.(3.21), we evaluate the discrimination value of data Y

by computing the difference between f ,
NDA and fNDA .

If

‖f ′NDA− fNDA‖ < θ, (3.22)

where, θ is the threshold value determined after model generation, then Y is not

relevant data and NDA continues looking for relevant data by analyzing the next

chunk from the network.

On the other hand, if

‖f ,
NDA− fNDA‖> θ, (3.23)

then the data Y is relevant and thus is used to Increment NDA as Eq.(3.21). Fur-

thermore, classifiers (such as SVM/k-NN) are used to perform the classification on

data Y.

Algorithm: aIncNDA learning algorithm
Input:
Y0 – training data.
Yt - incoming data chunk where t = 1, 2, 3... , N.
λ - criterion
Calculate NDA of Y0.
if λ condition satisfied then
select incoming data chunk Yt

else
process to next incoming data chunk Yt

for i = 1 to N
Calculate ΩIncNDA of Yt.
Obtain updated λ from Yt.
end for
end if
Output:
Updated Criterion λt

Updated Eigen Space of IncNDA model ΩIncNDA

Tuned Classifier ΩClassifier
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The above active learning steps continue until all the data samples have been tested.

As a result, the base classifier (such as SVM or k-NN) is tuned to an optimum level,

giving a continuously improved SVM or k-NN on classification.

3.6 Summary

In this chapter, we have discussed the discriminative techniques used in our frame

work, introduced two criterions that are used for selective sampling of informa-

tive/relevant instances. We have described our novel active learning model and

its mechanism. In the next chapter, the system configuration used for implementing

our methods is presented along with the experiments and analysis on the benchmark

UCI datasets.



Chapter 4

Discrimination Experiments on the

Benchmark Datasets

A theory is something nobody believes, except the person who made

it. An experiment is something everybody believes, except the person

who made it.

- Albert Einstein

4.1 Introduction

In this chapter, we begin by specifying software and hardware configuration used

for implementing the novel framework and method for active learning, followed by

a demonstration of incremental learnings significance and characteristics, such as its

ability to preserve the information obtained from previous data chunks, therefore eli-

minating the need for storing previous data and recalculation of scatter matrix. We

have then presented the quantitative comparison of IncNDA with Active Learning

model. The active learning models where tested using different criterions.
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4.2 System Configuration

4.2.1 Software Configuration

• Operating System

Microsoft Windows XP, Version 2002 operating system has been used for im-

plementing this project. It is the standard operating system available in Know-

ledge Engineering and Discovery Research Institute (KEDRI) facility. It is the

first consumer-oriented operating system produced by Microsoft to be built on

the Windows NT kernel and architecture.

• Programming Language

MATLAB Version 7.5.0.342 (R2007b) has been used for implementing the novel

framework and method for active learning. The novel framework and method

for Active Learning have been entirely programmed in MATLAB. MATLAB

is a fourth generation programming language which provides a numerical com-

puting environment. MATLAB was chosen as a programming platform as it

allows easy matrix manipulation, plotting of functions and data, implementa-

tion of algorithms, creation of user interfaces, and interfacing with programs

in other languages.

4.2.2 Hardware Configuration

An Intel Core 2 CPU, 1.86 GHz, with 1.99 GB of RAM was used. This is a standard

hardware configuration provided by KEDRI.

To demonstrate the workings and efficiency of (NDA’s) incremental learning, a small

experiment on the benchmark dataset from UCI archives has been conducted, and

its results can be seen in table 4.1 and figure 4.1.

It can be observed that on most of the dataset; IncNDA’s classification performance

is on par with other discriminative methods such as LDA and SVM.
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Table 4.1: A comparison between SVM, LDA and IncNDA in terms of classifi-
cation accuracy and confidence interval.

Dataset (Batch) SVM (Batch) LDA IncNDA
Iris 94.00% +/- 10.63 95.33% +/- 5.49 96.00% +/- 4.66
Wisconsin 95.25% +/- 2.63 95.15% +/- 3.97 95.06% +/- 4.82
Heart 58.97% +/- 4.80 60.25% +/- 9.35 60.60% +/- 6.18
Glass 60.67% +/- 13.97 35.61% +/-12.48 58.83% +/-9.82
Ionosphere 88.29% +/- 4.56 90.29% +/- 5.08 92.43% +/-6.48
LiverDisorder 68.71% +/- 8.16 69.82% +/-8.70 69.53% +/-7.89

Iris Wisconsin Heart Glass Ionosphere LiverDisorder
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Figure 4.1: Performance evaluation of Classifiers.

Incremental Chunk Learning process:

The table 4.2 shows the stages of learning process after each update of the initial

NDA eigenspace. The graph falls some time because the percentage of total data

been calculated is relative to the number of classes obtained at that given stage.

The updated data is provided in a total of 10 stages. At each stage 10 percent of the

total data is present (randomly) such that, the samples are not recurring. Therefore,

each update has unique non-overlapped training samples.
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Table 4.2: Incremental learning performed by NDA at different stages for Iris
dataset. At every learning stage, 10% of the total data is provided. The percentage
accuracy was calculated using leave-one-out cross validation.

Iris Dataset
Learning Stage Classification Accuracy
Stage 1 80.00 +/- 34.96%
Stage 2 85.00 +/- 24.15%
Stage 3 80.00 +/- 23.31%
Stage 4 91.00 +/- 11.74%
Stage 5 91.67 +/- 11.79%
Stage 6 95.00 +/- 8.74%
Stage 7 94.44 +/- 7.86%
Stage 8 95.27 +/- 4.99%
Stage 9 96.67 +/- 5.83%
Stage 10 96.26 +/- 3.94%

Incremental Eigen Space Model

In this method the eigenspace is updated incrementally with a new single training

sample at a time. At each stage as new updates are introduced all the previous

stage updates are added to the initial training set making it a one - pass incremental

learning method.

This approach creates a problem since it requires all the updates to be added to the

training set; thereby, requiring increasing memory space after each update, but due

to the availability of previous updates an accurate eigenspace is obtained.

In the following, we have presented experiment and analysis of aIncNDA method

using two criterions on benchmark datasets.
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4.3 Experiment 1: CAC Criterion

4.3.1 Experimental Setup

Data Chunks (Learning Stages): As a general framework for our experimenta-

tion, we have randomized and split the dataset into 10 data chunks (Yt ), therefore

each data chunk represents 10 percent of the whole dataset. The initial data chunk

Y0 is used for training and the rest of the data chunks are used for active incremental

learning.

For Discrimination based Active Learning the incoming data chunk Yt{t 6= 0} is

projected into eigenspace for pattern classification. Selective sampling is performed

using k -Nearest Neighbor classifier, where the samples k closest neighbors are selec-

ted.

Missing Values: In datasets having missing values, the missing values have been

replaced by the mean value of that attribute’s column. Also, the datasets have been

applied with a filtering algorithm which removes redundant instances if any.

Parameter Settings: Throughout our experiment, SVM and LDA from NeuCom

Student v0.917 was used. For SVM, we have implemented a 10-fold cross validation

technique without normalization and feature selection. A polynomial SVM kernel

with inductive training method was used. SVMs degree constraint was selected as 1.

For NDA the weighting function was set to 0.5 with nearest neighbor as 2, 5 and 7

UCI Database

The performance evaluation was carried out on benchmark datasets obtained from

UCI machine learning repository. A total of 13 datasets are used for performance

evaluation of aIncNDA versus NDA, where each dataset differs in terms of number

of classes, features, class distribution etc. The description of the UCI datasets used

in this performance evaluation is given in Table 4.3.
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Table 4.3: Summary of evaluated UCI datasets.

Dataset Index Dataset Name Classes Attributes Instances
D1 Wisconsin 2 11 699
D2 Ionosphere 2 34 351
D3 Liver Disorder 2 6 345
D4 German Credit Data 2 20 1000
D5 Pima Indians Diabetes 2 8 768
D6 Hepatitis 2 19 155
D7 Iris 3 4 150
D8 Wine 3 13 178
D9 Heart 5 14 297
D10 Glass 7 10 214
D11 Ecoli 8 8 336
D12 Vowels 11 10 528
D13 Face 169 100 845

4.3.2 Results

Table 4.4: Comparison between aIncNDA (Active) and IncNDA learning in terms
of classification accuracy. Keys: DI = Dataset Index, SS = Samples selected by
aIncNDA for learning, NN = Nearest Neighbour.

2 NN 5 NN 7 NN
DI IncNDA aIncNDA IncNDA aIncNDA IncNDA aIncNDA

SS Active SS Active SS Active

D1 91.14% 33% 90.92% 91.57% 50% 92.00% 91.57% 63% 95.24%
D2 80.00% 33% 74.28% 73.42% 47% 84.00% 84.00% 66% 83.71%
D3 62.17% 45% 62.17% 68.32% 38% 72.14% 70.96% 65% 71.26%
D4 68.80% 57% 69.90% 67.80% 53% 68.70% 71.60% 61% 69.80%
D5 69.55% 25% 70.01% 75.03% 38% 73.82% 74.27% 42% 75.79%
D6 81.93% 36% 79.35% 81.93% 61% 83.22% 80.00% 59% 85.80%
D7 95.30% 65% 95.97% 95.97% 66% 96.64% 95.97% 60% 95.97%
D8 85.95% 84% 93.82% 91.01% 83% 92.69% 56.17% 69% 92.13%
D9 52.86% 43% 54.54% 53.19% 36% 54.54% 52.18% 65% 54.88%
D10 56.33% 66% 54.46% 59.62% 58% 58.68% 61.91% 51% 61.97%
D11 77.84% 68% 78.14% 81.43% 28% 81.43% 85.32% 50% 84.43%
D12 96.53% 83% 95.67% 83.98% 69% 84.19% 77.05% 61% 83.54%
D13 85.90% 39% 86.37% 75.47% 66% 76.18% 69.78% 83% 70.85%
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4.3.3 Discussion

Table 4.4 shows the final percentage accuracy for three different nearest neighbour

setting. The accuracy is different for each nearest neighbour setting due to the

different number of instances, classes and their data distribution. The updated

data is provided in a total of 10 stages. In each stage 10 percent of the total data is

present (randomly) such that the samples are not recurring therefore each update has

unique non-overlapped training samples therefore making it a one - pass incremental

learning method. Comparing the performance of active learning with criterion is

close to and in some datasets better than IncNDA. Furthermore, the classification

accuracy achieved is justifiable since the number of samples selected through selective

sampling is less than the total number of samples. This shows that the selective

sampling criterion performs well on most of the datasets. However, there is a need

for a more robust criteria therefore in future works experimentation with different

criterion. Also, a correlative or self organizing map (SOM) based method will be

explored as an alternative to the current euclidean based nearest neighbour selection

for within and between-class in NDA learning.

4.4 Experiment 2: BCIC Criterion

We have submitted for publication one of our recent studies on active learning which

used the discrimination residue based criterion mentioned in Pang et al. (2009).

In this section, we have examined the efficiency and accuracy of the proposed aIncNDA

method, and compared to IncNDA. Particularly, we investigate the relationship bet-

ween 1) the discriminability and number of instances, 2) the redundancy and number

of instances. To experiment on data with different discriminative characterization,

we used datasets from two database resources. One resource is from UCI Machine

Learning Repository (Hettich & Bay, 1999), where we selected 8 datasets that have

different application backgrounds and the features 100% of continuous/integer values

and no missing value. The other resource is the MPEG-7 face database (Kim, Kim

& Lee, 2003), which consists of pose and light two subsets, total 1355 face images of

271 persons, 5 different face images per person and each face image has the size of

56 x 46.
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4.4.1 Experimental Setup

To implement the proposed aIncNDA for incremental learning using this criterion,

we randomly select 10% of data from each dataset, for initial batch NDA training,

and divide the remaining data into 10 random chunks for incremental learning test.

We collect every instance learned by aIncNDA, and evaluate the performance of

aIncNDA and IncNDA on discrimination contribution at every learning stage. For

performance evaluation, we compared the eigenspace from the proposed aIncNDA

with the eigenspace from IncNDA by a leave-one-out k-NN (k=1) classification over

all data presented by current learning stage. Note that we use the term learning

stage instead of the usual time scale since the events of data arriving in the above

incremental learning may not happen in a regular time interval. Here, the number

of learning stages is equivalent to the number of instances that have been learned by

incremental models.

4.4.2 Results

In the experiment, parameter ξ is relevant to the number of curiosity instances and

the discriminability of the resulting NDA. For each experiments, we fixed ξ by the

rule that the instances are significantly selected with, at most, minor sacrifices in

discriminability.

Synthetic Data

We first experimented the proposed aIncNDA with a synthetic data set that has 3

classes 475 instances. The data distribution is a mixture of several 2D ([X1 X2])

Gaussian distributions as shown in Fig. 4.2. Fig. 4.3 gives the distribution of the

257 informative instances learned by aIncNDA. As compared to the data distribu-

tion of the entire 475 instances, the discriminative representativeness of the selected

instances by aIncNDA is clear because those 257 instances includes all critical ins-

tances for class distinction, such as instances involving class-mixture, and major

representative instances of the independent class.
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Figure 4.2: The comparison of data distribution between the synthetic dataset
and selected curiosity instances by proposed aIncNDA learning method. (a) The
data distribution of the entire dataset; and (b) The data distribution of selected
instance by aIncNDA.

Fig. 4.3 illustrates the whole procedure of incremental learning with a compari-

son to IncNDA, where the horizontal and vertical axis represent the incremental

stage and the classification accuracy from k-NN (k=1). As seen from the figure, the

proposed aIncNDA and IncNDA is compared on the classification error at every in-
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Figure 4.3: The comparison of aIncNDA and IncNDA on the performance of
incremental learning.

cremental learning step. The classification accuracy difference between two methods

is +0.842105, which indicates that the proposed aIncNDA achieves better learning

effectiveness of the original IncNDA, although aIncNDA learns only 54.10% of total

475 instances.

UCI Datasets Table 4.5 gives an comparison of aIncNDA versus IncNDA on the

incremental learning of 8 UCI datasets. In the table, ξ is fixed for each dataset by

the rule described above, the number of instances and the percentage to the number

of all instances is denoted as ‘No.Instances (rate%)’, the classification accuracy as

‘Acc’, and the discriminability difference (denoted as ‘Diff.’) is calculated as the

proposed aIncNDA minus IncNDA in terms of the k-NN leave one out classification

performance at the final learning stage.
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Figure 4.4: Comparison of aIncNDA and IncNDA on FR and FMA, (a) the
performance of aIncNDA versus IncNDA on incremental learning; (b) the number
of learned instances by aIncNDA at every learning stage.(using Discriminant Ratio
based criterion)

As seen in table 4.5, the proposed aIncNDA method, ignores 4.70% - 88.90% instances

of the whole dataset, constructs discriminant eigenspaces on the remaining 11.10% -
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Table 4.5: Comparison of aIncNDA versus IncNDA on Incremental Learning
over 8 UCI benchmark datasets.

aIncNDA IncNDA
Dataset ξ No.Instances(rate%) Acc.% No.Instances Acc.% Diff.%

Iris 0.75% 56 (37.3)% 94.5% 150 92.0% +2.5%
Liver-disorder 0.8% 51(22.2)% 63.3% 345 62.4% +0.9%
Vehicle 3.0e-3% 251 (29.7)% 77.6% 846 75.4% +2.2%
Glass 0.98% 50 (23.4)% 60.1% 214 52.5% +7.6%
Wine 0.95% 162 (92.7)% 77.6% 846 75.4% +2.2%
Wisconsin 0.95% 443 (95.7)% 84.3% 463 89.7% +1.1%
Ionoshpere 0.7% 291 (83.1)% 76.2% 350 76.1% +0.1%
Heart 0.65% 33 (11.1)% 53.2% 297 52.3% +0.9%

95.30% selected instances. However, the discriminability of the obtained eigenspace

from composed instance subset, compared to the eigenspace from all instances (using

IncNDA), has no decrease; reversely, in most cases it has a slight increase. This

suggests that the proposed active IncNDA learning is valid, and the selected instances

by aIncNDA have the expected discriminative representativeness.

4.4.3 Discussion

To test the performance of the proposed method under different level of discrimina-

tive redundancy, we carried out face recognition (FR) and face membership authen-

tication (FMA) experiments using the same face database described above. FMA is

to distinguish the membership class (cls.1) from the non-membership class (cls. 2)

in a total group through a binary class classification. FMA involves more discrimi-

native redundancy than face recognition problem, because the size of membership in

FMA is often smaller than that of nonmembership, which indicates that not every

instance is discriminatively important for FMA. Over the 271 persons 1355 faces

data, we conducted FR and FMA, respectively. For the FMA experiment, we set

the membership size as 71 (cls. 1/cls. 2 is 71/200) without loss of generality. Thus,

we compared the proposed aIncNDA with the IncNDA on incremental learning of

271 classes (i.e. FR) and 2 classes (i.e. FMA) data, respectively. Fig. 4.4(a) shows

the comparison of NDA discriminability between the proposed aIncNDA and the

IncLDA for both FR and FMA experiments, and Fig. 4.4(b) reports corresponding
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the number of instances learned by aIncNDA. As seen in Fig. 4.4(a), the proposed

aIncNDA learns NDA for FR on 1331 of total 1355 instances, only 24 instances are

found redundant. Whereas for FMA, aIncNDA learns 1093 of 1355 which means

only about 20.0% of all 1355 instances are reduced. However, the performance of

the proposed aIncNDA for both FR and FMA as given in Fig. 4.4(a) outperforms

the performance of the IncNDA in most cases, on all 1355 instances. This indi-

cates that the proposed aIncNDA is able to adapt itself automatically to data with

discriminative redundancy, and select a suitable number of instance to build an cor-

rect NDA model. This characteristic/property can also be observed in Fig. 4.4(b),

where aIncNDA actively selects a particular number of discriminative instances for

incremental learning.

Over the datasets from different resources, the proposed aIncNDA learning method

is evaluated on: (1) aIncNDA versus IncNDA, and (2) performance under different

level redundancy, where face recognition and face membership authentication are stu-

died, respectively. The experimental results demonstrate that the proposed aIncNDA

learning helps more efficient NDA learning with fewer instances, without any perfor-

mance reduction. One limitation of the proposed method is that, the data processing

in aIncNDA is not one-pass as the original IncNDA retains raw data at every step

of incremental learning.

A method based on passive learning proves to be inadequate in real world application.

To overcome this limitation, we have developed active mode incremental NDA which

performs adaptive discriminant selection of instances for incremental NDA learning.

Performance evaluation carried out on benchmark UCI datasets shows that Active

Mode Incremental NDA performs on par and in many cases better than incremen-

tal NDA with fewer instances. Given the nature of network data which is large,

streaming, and constantly changing, we believe that our method can find practical

application in the field of internet security.

Future Works As future work, the presented methods application in intrusion

detection system will be explored along with added enhancements to the selective

sampling criterion. Also, the use of incremental classifier will be researched to serve

as an extension to our present model which will eliminate the need for retraining,

further enhancing the processing speed while been computationally efficient.



4.5. Summary 46

4.5 Summary

In this chapter we have presented experiments and discussion using the two men-

tioned criterions in our active learning framework. The experiments in this chapter

have been performed on benchmark datasets from UCI archives which are available

online. The experiments performed using the discriminative ratio criteria have been

submitted to ‘The Eighth International Conference on Information and Management

Sciences’ (Pang et al., 2009), which has also been referred to as aIncNDA in this

chapter. The next chapter will present the application of our novel active learning

technique for image recognition and retrieval task.

In this chapter we have underlined the system configuration used for implementing

and materializing our research. The next chapter presents the experiments and ana-

lysis which have been performed on benchmark dataset using two different criterions

independently.



Chapter 5

Multi-example Image Retrieval

Applications

This chapter presents a novel application of multi-example image retrieval based on

active mode incremental nonparametric discriminant analysis learning (MeIR).

Traditional methods conduct query using only one image as the template for simi-

larity comparison while retrieving. Alternatively in our method, the template is

replaced by a sort of discriminative differences amongst multiple of example images.

The discriminative differences extracted out by NDA from the given set of example

images is used along with correlation based similarity metrics. The extracted image

samples are incrementally and iteratively learned in order to obtain next correlated

images from the image dataset.

Though there have been advancements and some success in retrieval of textual in-

formation, very little has been achieved in the image retrieval domain (Datta, Joshi,

Li & Wang, 2008). Majority of the techniques developed for image retrieval permit

only single example as a query. In a situation where the user needs to query multiple

images, this causes an inconvenience, since the user can only input one image as a

query at a given time.

Therefore, in this chapter, we have applied the aIncNDA for image retrieval that

allows multiple examples of images for querying. The advantage of our proposed

method is three folds, firstly, MeIR retrieves the images by exploiting the discri-

minative features present in the multi-example query. Secondly, it addresses the
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usability issues present in single image query based retrieval system. Thirdly, the

adaptive and incremental learning nature of the proposed method allows us to effi-

ciently recognize, acquire/retrieve a more refined image search result, with the least

number of images for training.

5.1 Introduction

The explosive growth and accessibility to technologies such as digital cameras and the

World Wide Web, has allowed the public access to large amounts of data. Retrieval of

the required information - textual or visual has become a very tricky task. According

to Datta et al. (2008), although there have been advancements and success in textual

information retrieval, very little has been achieved in the image retrieval domain.

The image based query engines are still immature and rare and need to be further

developed.

Currently, most of the research in image retrieval is merely single image query ba-

sed methods. Content based image retrieval (CBIR) techniques uses a query model

specified by the user through an image example or feature. Nonetheless, since the in-

formation required by the user usually cannot be represented through a single image,

CBIRs’ capability is limited as they do not provide any scheme for formulating in-

formation that represents multiple examples. However, there are CBIR approaches

such as relevance feedback which utilizes multiple examples as a query, but they may

require several user feedbacks in order to obtain a refined query, which is inconve-

nient. Consider a scenario in law enforcement agency, where the investigator needs

to search for multiple fingerprints in a dataset. It becomes a highly inconvenient

and time - consuming process when the investigator has to look for the fingerprints

match one at a time, since only one image (i.e. fingerprint) can be queried at a given

time.

On comparison with similar work done by (Basak, Bhattacharya & Chaudhury,

2006), which focuses on retrieval of those images whose features represent the com-

bination of multiple example query content, our method exploits the discriminative

different in the multi-example query for retrieval of images.

Active learning technique plays an important role in classification as it actively selects
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distinctive information. The advantage of active over passive learning is that it

performs selective sampling ensuring the learning process is robust against noise

and data scarcity problems (Ling & Du, 2008). Due to active learning’s adaptive

and evolving characteristics it is potentially useful for targeted learning tasks and

works well particularly on large and nonlinear datasets. Currently, active learning

has been successfully implemented in fields such as internet security (Long et al.,

2008; Almgren & Jonsson, 2004), bioinformatics (Danziger et al., 2007) and text

classification (Tong & Koller, 2002).

In the field of image retrieval and recognition, the concept of active learning has only

been explored recently. Most of the existing image recognition and retrieval systems

utilize single-image querying approach. Moreover, a majority of these classical ap-

proaches make use of statistical classifiers for classifying the images. The benefit of

these classifiers is that they can be highly accurate when trained on a large data-

base. However, they are computationally expensive and cannot adapt to new data

encountered in testing. Also, due to the large number of variables that represent the

features of the images, there is no guarantee that the significant features necessary

for image recognition have been taken into account.

Taking these issues into consideration, we have proposed an active learning approach

based multi-example image retrieval (MeIR) that retrieves the images by exploiting

the discriminative features present in the multi-example query. MeIR is adaptive,

learns incrementally, has better usability, selects important discriminative features

through selective sampling (which consists of Nonparametric Discriminant Analysis

(NDA), Incremental Nonparametric Discriminant Analysis (IncNDA), and correla-

tion based criterion).

5.1.1 Related Researches and Motivation

Amongst the many image retrieval techniques, keywords - based approaches are most

commonly used, where the user inputs query in the form of word or sentence (Kherfi

et al., 2004). Search engines such as Google and Yahoo are based on these approaches.

Even though popular, this technique has its limitations since keywords based image

retrieval can be highly subjective depending on the labels annotated to them. The

next is Image or Graphics based query where the user provides a query image or a
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computer generated picture/graphics for retrieval of similar or same image. Content

based Image Retrieval (CBIR) makes use of ranking system where it ranks images

based on their feature similarity (Huang et al., 2008).

And finally, there is the relevance feedback based - image retrieval where the user is

asked for a feedback multiple times in order to refine the query concept. Once the

image features are extracted, it becomes a challenging task to index and match the

images from the image query to the dataset. Various approaches have been used

to solve this problem. As stated by Datta et al. (2008), some of the common ap-

proaches are feature-based matching , object-silhouette-based matching, structural

(hierarchically) feature matching , salient feature matching, and learning-based ap-

proaches for similarity matching (Wu et al., 2000),(Weber et al., 2000). Recently,

image retrieval using relevance feedback (RF) (i.e. from the user) has been used

where the query concept is adaptively redefined iteratively for acquiring the image

sought by the user (Huang et al., 2008; Rui, Huang, Ortega & Mehrotra, 1998; Fang,

Geman & Boujemaa, 2005; Jaimes, Omura, Nagamine & Hirata, 2004).

The image retrieval system, as the name suggests, corresponds to the method or

criterion by which the system retrieves the images. The two most commonly used

image retrieval methods utilize the k-nearest neighbour approach, which retrieves

the k nearest images based on distance. Other methods use a threshold, say ǫ, where

the distance of the images to be retrieved should be less than the given value of

ǫ. The drawback of the first technique is the selection of k, and moreover the k-

retrieved images may not be close to the query. As for the second technique which

uses threshold ǫ, it may return large number of irrelevant images or no images at all.

Image retrieval has a wide range of application in many domains. Due to the abun-

dance of available images it has now become a necessity to have image retrieval

system that can efficiently retrieve the expected image. Some of the applications of

image retrieval are listed below.

These applications include identifying intellectual property (Foo, Zobel, Sinha &

Tahaghoghi, 2007; James, Chang, Wang, Li & Wiederhold, 1998), filtering mature

content (Forsyth et al., 1996; Fleck, Forsyth & Bregler, 1996), fingerprint recognition

(Ratha, Karu, Chen & Jain, 1996), face recognition (K. Martinez, Cupitt, Saunders

& Pillay, 2002), DNA matching and shoe sole impressions (Geradts, 2002) etc.



5.2. Single example as an Image Query 51

5.2 Single example as an Image Query

In a conventional image retrieval system that uses single image as a query, the images

are retrieved using one of the methods mentioned in the above section. For example,

let Oj be the number of images to be retrieved where j = 1,2,3,... ,n. Yt be the image

features obtained from the image dataset where t =1,2,3,... ,k. Ω the eigen matrix

of Yt and let Q be the single selected query image by the user. Therefore, the Oj

retrieved images for a single query image Q from Yt can be represented as:

Oj=
n
∑

j=1

(

min

(

∑

t

|Ω(Q) − Ω(Yt)|

)

1/2

)

. (5.1)

As seen in the above Eq.5.1, Oj is obtained based on the k-nearest neighbor (using

Euclidean distance as a distance metric) from the single query image.

The problem with this classical single query image retrieval system is that the k-

retrieved images may not be close to the query (see table A.1, in Appendix A).

Algorithm 1: Image Retrieval using Single sample as an Image Query
Input:
n – number of images to be retrieved.
Q – Single sample selected by User for querying.
Yt - image features where t = 1, 2, 3... , k.
Step 1: Get Ω NDA of Yt.
Step 2: Apply Ω on Q.
Step 3: Obtain Oj by getting n Nearest Neighbor of Q from Yt.

Output:
Ojimages retrieved for Q

We have addressed this problem with the proposed method explained in the next

section.

5.3 Multiple example as an Image Query

Feature extraction and dimensionality reduction (subspace) techniques such as Prin-

cipal Component Analysis (PCA) and discriminative analysis are commonly used for
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face recognition and retrieval. These techniques are used for extracting informative

feature vectors that span a subspace of the images.

Moreover, image datasets having affine distortion/transformation (as in dataset 3

having wide baseline stereo object images), the conventional method (which uses

Euclidean distance as in Eq.5.1) for obtaining similar images is suboptimal, since it

is difficult to establish correspondence between stereo images by comparing regions of

a fixed (Euclidean) shape, as their shape is not preserved under affine transformation.

Therefore, we have used Pearson’s product-moment correlation coefficient (PMCC)

as a similarity metric (see table A.1 in Appendix A).

For obtaining Pearson’s product-moment correlation coefficient (PMCC), we divide

the sample covariance between two vectors/variables by the product of their sample

standard deviation (Rodgers & Nicewander, 1988; Stigler, 1989), and can be calcu-

lated as:

ρ(x,y) =

∑

m

∑

n (xmn − x̄) (ymn − ȳ)
√

(
∑

m

∑

n(xmn − x̄)2) (∑

m

∑

n(ymn − ȳ)2)
, (5.2)

where x̄, and ȳ denote the mean or average of the x,y elements respectively. The

query images Ω (Qi) are updated with newly obtained discriminant information from

image dataset features Ω(Yt). The updated query Ω′ (Qi) can be represented as:

Ω′ (Qi) = Ω (Qi) +
∑

i

∑

t

(ρmax (Ω(Qi), Ω(Yt))), (5.3)

where ρmax denotes the maximally correlating n discriminant vectors found in Ω(Yt)

for query Ω (Qi). After obtaining Ω′ (Qi), an iterative refinement is carried out for

N times. The value of N depends on the image dataset, thus, the retrieved images

after iterative refinement can be denoted as:

Oj =
∑

N

Ω′ (Qi). (5.4)

The following is the summary of the algorithm used in our proposed method.
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Algorithm 2: Multi-example Image Retrieval on Active Mode Incremental NDA
Learning
Input:
n – number of images to be retrieved.
Qi – Multiple Image Query selected by User where i = 1,2,3,...,N.
Yt - image features where t = 1, 2, 3... , N.
Step 1: Get Ω NDA of Qi.
Step 2: Apply Ω on Yt.
Step 3: Get n maximum correlating images of Qi from Yt.
Step 4: Incrementally update eigenspace Ω′ from selected n.
Step 5: Apply the updated eigenspace Ω′ on Qi.
Step 6: Iterative refinement from Step 2 for updated Ω′(Qi).
Step 7: Iterate i times from Step 3 to obtain retrieved images Oj for Qi.

Output:
Ojimages retrieved for Qi

5.4 Experiments and Discussion

5.4.1 Experimental Setup

Image representation and feature selection is an important step in our data pre-

processing. We have resized and converted all the face images into a 60x60 pixels

greyscale images. The obtained pixel values (2 dimensional matrix of 60 x 60) of

each image were vectorized into a 1 dimensional row matrix (1 x 3600).

Descriptive features extracted from PCA outperform NDA in some classification

tasks and according to Vo, Vo, Challa and Moran (2009), it is less sensitive to

different training data sets. Therefore, by combining descriptive features of PCA and

discriminant features of NDA, a better performance for dimensionality reduction and

feature extraction is achieved. Hence, PCA was applied beforehand, and then the

data was normalized. Nonparametric Discriminant Analysis (NDA) was performed,

only on queried data in order to obtain the initial NDA eigenspace representation of

the face images. For all the experiments, the value of k in NDA and IncNDA has

been set to 3.

In this experiment, as a performance metrics we used error rate (calculated based on

the number of irrelevant images retrieved, relative to the total number of relevant
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images present in the dataset) and recall / percentage accuracy (calculated based

on the number of relevant images retrieved, relative to the total number of relevant

images present in the dataset) calculated as:

ErrorRate =
Number of irrelevant images retrieved

Total number of relevant images in the database
, (5.5)

Recall/Accuracy =
Number of relevant images retrieved

Total number of relevant images in the database
. (5.6)

In our experiment we have carried out performance evaluation on three datasets. The

images of the individual included in both face datasets (i.e. 1 and 2) have different

features/characteristics such as gender, race, age, glasses, beards. While dataset 3 is

an object category dataset, consisting of stereo object images.

In face image recognition and retrieval, performance is dependent on several varying

factors such as facial illumination, expression, pose etc (Young & Rhee, 2008). We

selected datasets 1 and 2, since they consist of facial feature variations due to the

change of facial expressions. Dataset 2, apart from facial feature variations, also

contains illumination problem, which according to Adini, Moses and Ullman (1997);

Roy-Chowdhury and Xu (2007), remains a persistent problem in face recognition.

We selected dataset 3 since it consists of wide-baseline stereo problem (where the

problem lies in establishing correspondences between a pair of images taken from

different viewpoints) (Matas, Chum, Urban & Pajdla, 2004). In the following expe-

riments, we used PMCC for both the Single-example and Multi-example methods,

for an unbiased comparison.

Dataset 1: Face Image Dataset This face image dataset consists of 20 face

images for each of the 100 individuals making a total of 2000 images. These images

were taken from http : //www.essex.ac.uk and Knowledge Engineering + Discovery

Research Institute (KEDRI) http : //www.kedri.info. Fig.5.1 shows the sample face

images belonging to dataset 1. It can be seen that the level of difficulty for recognizing

the images is moderate, since the available images for each individuals where taken

under the same lighting conditions, however they have noticeable variations in facial

expressions and pose.
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Figure 5.1: Sample images from dataset 1: this dataset has face images with
different facial expressions but have uniform illumination

Dataset 2: Light AR Face Recognition Dataset The AR face recognition da-

taset has been taken from http : //rvl1.ecn.purdue.edu/v1/ARdatabase/ (A. Mar-

tinez & Benavente, 1998). This dataset consists of a total 845 images. There are

5 images for each of 169 individuals making it relatively sparse, given the number

of images present for each individual. Fig. 5.2 shows the sample face images be-

longing to the dataset 2. It can be seen that the level of difficulty for recognizing

the images when compared to dataset 1 is hard, since each of the image available

for every individual have different facial expressions and lighting conditions (varying

illumination).

Figure 5.2: Sample images from dataset 2: this dataset has face images with
different facial expressions and lighting conditions

Dataset 3: Amsterdam Library of Object Images (ALOI) Dataset The

AOLI dataset has been taken from http : //staff.science.uva.nl/ aloi/ (Geusebroek

et al., 2005). The dataset consists of 750 wide baseline stereo object images. Ho-

wever, we have restricted ourselves to 21 randomly selected object categories, for
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computational reasons. Wide baseline stereo images are images of a scene or object

taken from two arbitrary viewpoints. Given two images of a scene or object taken

from arbitrary viewpoints, establishing a dependable association amongst them is a

fundamental problem in many computer vision tasks (Matas et al., 2004).

Figure 5.3: Sample AOLI wide baseline stereo object image. The combination of
left-center and center-right images yields two pairs of 15 degree baseline stereo, and
the left-right pair combination yields a 30 degree baseline stereo pair.(Geusebroek
et al., 2005)

We have used this dataset to show the robustness of our proposed method against af-

fine distortion/transformation. Unlike traditional approaches; used for stereo image

matching, we do not consider any prior knowledge about the relative camera posi-

tions, orientations, rotational or affine invariant features for computation.

Figure 5.4: Sample images from dataset 3: AOLI wide baseline stereo object
images dataset
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5.4.2 Case Study 1: Face Image Retrieval

Effects of varying number of query images

In this subsection, the retrieval performance of MeIR is examined for different number

of multiple examples representing different features. The performance is demostrated

in Fig. 5.5(a)-(b). In Fig. 5.5(a), we have provided query images of two individuals

each having unique features such as glasses or beard. We also note that the images

belonging to another individuals have being retrieved since they share similar dis-

criminative features with the multi-example query, most visually noticeable feature

being the beard. Similarly, as demonstrated in Fig. 5.5(b), one more query example

of individual having both beard and glasses is added for MeIR learning showing

that images have more distinctive/discriminant features result in higher retrieval

accuracy.

(a)

(b)

Figure 5.5: Dataset 2: Comparison on varying number of query images. (a)
shows the retrieved images from two query images with one individual having
glasses and the other having beard. In the retrieved images, we find images of
same individuals along with other individuals having similar discriminative fea-
tures such as beard or glasses. In (b), we add one more query with individual
having both beard and sunglasses.
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Table 5.1: Performance evaluation using different number of query examples
in multi-example method for (face image) dataset 1 and 2. Since the number of
individuals in dataset 1 is 100, N/A denotes no data(individual image) available.

Classification Accuracy %
No. of Query Examples Dataset 1 Dataset 2

10 99.89% ± 0.21 46.00% ± 8.24
20 99.00% ± 1.04 44.40% ± 5.55
30 95.84% ± 0.80 42.79% ± 4.25
40 95.68% ± 0.96 44.80% ± 4.97
50 95.61% ± 1.15 46.00% ± 5.13
60 95.56% ± 1.15 45.79% ± 5.58
70 95.46% ± 0.94 45.14% ± 5.51
80 95.84% ± 0.81 44.75% ± 5.44
90 95.58% ± 0.77 44.66% ± 5.56
100 96.70% ± 0.66 45.40% ± 5.54
110 N/A 45.71% ± 5.23
120 N/A 45.89% ± 5.29
130 N/A 45.57% ± 5.05
140 N/A 45.31% ± 4.83
150 N/A 46.02% ± 4.65
160 N/A 46.41% ± 4.50
169 N/A 46.86% ± 4.74

Table 5.1 shows the percentage accuracy along with confidence interval for face da-

taset 1 and 2. In case of dataset 1, where 20 images are present for each individual,

the percentage accuracy was calculated using 20 - fold cross validation. Similarly, for

dataset 2 that contains five images per individual, 5 fold cross validation was used.

It can be observed that multi-example method performs gracefully under different

number of query examples, without significant impact on performance.

Single-example method versus Multi-example method

Fig.5.6 illustrates the incorrectly retrieved images encapsulated in frames, where six

images of individuals from dataset 2 were chosen randomly for testing the percentage

of error rate in image retrieval for each individual. For the single-example method,
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Figure 5.6: Images retrieved by single-example method and multi-example method
from dataset 2. The images encapsulated in frames are incorrectly retrieved face
images.

the six images were provided one at a time, whereas for the proposed multi-example

methods all the six images where queried in one pass. The overall error rate for

the single-example was 16.4%, surprisingly for the proposed multi-example method

it was 6.42%, which is 9.98% less than the single-example method. This experiment

demonstrates the ability of our proposed method to process all the examples at once

in one pass based on the discriminative information among the queried multi-example

face images.

Iterative refinement is the term we have used to describe the number of iterations

that are required in order to obtain the optimal solution. Fig.5.7 shows that initially

when the number of iterations is 5, the error rate is 15%. Progressively, as the number

of iterations increases, the error rate gradually starts dropping since the incremental

NDA learns and updates the eigen model from the newly obtained relevant images

with each iteration. After 20 iterations it can be seen that error rate stabilizes

at 6.4%. The number of iterations required for a particular dataset depends on the

number of instances per class. For datasets 2 and 3, the number of instances available

per class (or number of images per person/object) is five and three respectively. The

number of iterative refinement required for both dataset 2 and dataset 3 is 7.
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Figure 5.7: Performance evaluation (in terms of error rate versus number of
iterations) of the proposed multi-image query based image retrieval on dataset 1.
It can be seen that after 20 iterations the error rate stabilizes at 6.4%

Table 5.2 shows the overall performance evaluation of single-example method based

face image retrieval against the proposed multi-example method. It can be seen that

aIncNDA performs optimally on dataset 1. Whereas, for dataset two (due to the

illumination problem), the multi-example method’s performance is similar to that of

single-example method.

Table 5.2: Overall percentage accuracy of single-example and multi-example me-
thod for face datasets.

Classification Accuracy %
Method Dataset 1 Dataset 2

Multi-example 96.70 ± 0.66 46.86 ± 4.74
Single-example 56.91 ± 23.34 46.43 ± 5.26

From Fig.5.9 and Table 5.2, it can be observed that for dataset 1, the (multi-example)

proposed method performs very well with an accuracy of 96.70% ± 0.66, whereas

the single-example method, which uses passive nonparametric discriminant analysis

(NDA), has a retrieval accuracy of 56.91% ± 23.34. However, for dataset 2 the

single-example method and multi-example method perform almost equally.
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5.4.3 Case Study 2: Object Image Retrieval

As seen in table 5.3, for dataset 3 our proposed method has an accuracy of 73.53%±

3.66, which is significantly better than Single-example methods, which has an accu-

racy of 48.67% ± 22.26.

Table 5.3: Overall percentage accuracy of single-example method and multi-
example method for dataset 3.

Dataset 3: ALOI
Method Classification Accuracy (%)

Multi-example 73.53 ± 3.66
Single-example 48.67 ± 22.26

Fig. 5.9 graphically illustrates the overall performance evaluation (in terms of percen-

tage accuracy) of the proposed multi-example method based image retrieval (MeIR)

versus single-example method, for all three image datasets. Through this wide base-

line stereo object image dataset, we have thus demonstrated the robustness of MeIR

against affine distortion/transformation.

Figure 5.8: Images retrieved by single-example method and multi-example method
from dataset 3. The images encapsulated in frames are incorrectly retrieved object
images.

Unlike conventional approaches (used for stereo image matching), we do not consider
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any prior knowledge about the relative camera positions, orientations, rotational or

affine invariant features for computation. It is difficult to establish correspondence

between stereo images by comparing regions of a fixed (Euclidean) shape, since their

shape is not preserved under affine transformation, even then MeIR’s performance

is near optimal due to its adaptive and incremental learning nature.
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Figure 5.9: Overall performance evaluation of the proposed multi-example method
based image retrieval.

5.4.4 Discussion

In general, the illumination problem is quite difficult and has received consistent

attention in the image processing domain. From Fig.5.11, it can be observed how

the projection vectors undergo change due to illumination. Given the sparsity of

instances for each class in dataset 2, and each image being different in terms of

luminosity. The proposed multi-example method’s performance was similar to the

single-example method.

This may be due to the fact that for face recognition we have used only discriminative

features; therefore multi-example method works optimally where sufficient number

of clear discriminative features are present in the image dataset (as in Dataset 1). It

would be interesting to carry out an experiment where both geometric and photome-

tric features are considered (for active and discriminative incremental learning) with
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(a) (b)

Figure 5.10: Dataset 2: Illumination Problem. (a) Image under uniform ligh-
ting/luminosity. (b) Image under lighting/luminosity focus from left side.
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Figure 5.11: Dataset 2: Three-dimensional surface plot of images from Fig.5.10.
The above figure shows how projection vectors are changed due to illumina-
tion/lighting conditions.

reasonable number of face images per individual. Also, pre-processing the images

for illumination restoration or light intensity (luminosity) equalization would prove

to be beneficial for obtaining better recognition and retrieval.

For experimentation, we have selected three different datasets, each having different

problems such as facial expression, illumination, pose, affine distortion and rotation,

and works significantly well on all problems; apart from the image dataset having

illumination problem (as in dataset 2). From the above results it can be observed

that the multi-example active learning system dynamically and incrementally learns

from the newly obtained images thereby gradually reducing its error rate by means

of iterative refinement. Furthermore, maximum of only one image is taken from

selected classes (obtained from query) for training (building of initial eigenspace).

This shows that our proposed method requires the least number of images per class

when compared to traditional methods.
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However, for efficient and successful image retrieval, the selection of features that

represents the image similarity and dissimilarity is very important since the success

of relevant image retrieval is highly dependent on these factors.
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Figure 5.12: Example of image recognition using Affine Scale-Invariant Feature
Transform (ASIFT) features. Amongst the key points found in both images using
Harris-Affine method, 80 matches were found. The matching affine invariant key
points between the two images are shown in the above figure.

Therefore, in future work new selective sampling techniques based on Affine Scale-

Invariant Feature Transform (ASIFT) features will be exploited. ASIFT features

(Morel & Yu, 2009; Vedaldi, 2007) are fully invariant to parameters such as zoom,

rotation, translation, and the angles defining the camera axis orientation as shown in

Fig.5.12. Moreover, the method permits to reliably identify features that have under-

gone very large affine distortions or transition tilt using Harris-Affine and Hessian-

Affine techniques. However, on experimentation, it was found that ASIFT features

only allows recognition of same images under different rotation and affine distortions,

but not similar images making it unsuitable for datasets such as Caltech - 101 which

has a large amount of inter-class variability.

As future work, our proposed method will be incorporated with ASIFT features

(vectors) and bag-of-features representation models (Li & Perona, 2005), and test it

on objects based image dataset such as Caltech-101/256.
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5.5 Summary

In this chapter we applied our active learning methods (aIncNDA) for image recog-

nition and retrieval and have further discussed the advantages and limitations which

are inherent in it. With the next chapter, we will be concluding this thesis stating

the limitations and future works.



Chapter 6

Conclusion and Future Works

When you have eliminated the impossible,

whatever remains,

however improbable, must be the truth.

- Sherlock Holmes,

The Sign of Four.

6.1 Conclusion

A method based on passive learning proves to be inadequate in real world appli-

cation. Active learning could potentially empower other techniques/methods with

flexibility and efficiency. This thesis introduces a novel active mode incremental

nonparametric discriminant analysis (aIncNDA) learning method, in which the pas-

sive incremental NDA is extended with data selective sampling, and performs active

online discrimination analysis.

Given an incoming instance, the aIncNDA computes a discrimination residue ratio

between within-class and between-class, in which the residue is calculated using

the kth regional nearest neighbor to class mean vector. The proposed aIncNDA

is capable of estimating the discriminant contribution for every newly presented

instance, because the discrimination residue rate imitates the fundamental NDA

criterion for a maximum separation between classes and minimum separation within

classes. In our experiments, we described how the discriminative instances can be
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significantly selected based on discrimination residue with, at most, minor sacrifices

in learning rate and classification accuracy.

The experimental results show that the proposed aIncNDA performs gracefully under

different level of redundancy, and the aIncNDA learning system is capable of learning

with fewer instances, but has more often an improved discrimination performance,

than a passive incremental NDA.

6.1.1 Contributions

The proposed active mode incremental nonparametric discriminant analysis(aIncNDA)

methods contributions can be summarized as:

It is an unsupervised, active and incremental learning method that automatically

selects only those instances that are beneficial for the targeted learning task.

This unsupervised selective sampling reduces the computational cost of training

the classifier on all historical data by selecting fewer (discriminative) instances.

The incremental learning nature of the proposed methods reduces the risk of concept

drift. Moreover, incremental learning reduces the computational cost by up-

dating the eigen model without having to compute from historical data again.

aIncNDA also works well on large, streaming, and constantly changing data

due to its adaptive and incremental learning nature.

6.1.2 Limitations

The data processing in aIncNDA is not one-pass, and although aIncNDA facilitates

online (adaptive) learning, it is unable to carry out the task in real - time. In

order to facilitate real time adaptive learning, a more efficient criterion needs

to be introduced.

The classifier used in the aIncNDA needs to be retrained each time new data is

introduced, and the parameters of the classifier are not optimized. To solve

this problem, an incremental learning classifier needs to be introduced; along

with decremental learning for optimal performance.
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For incremental and batch NDA, how many nearest neighbor should be selected for

a particular dataset or new incoming instances for optimal performance.

The used SVM and k-NN classification methods, integrated with aIncNDA are

limited in their capacity to incrementally learn and accurately classify new

data.

6.2 Future Directions

Neural networks based methods have recently gained attention in many domains in

the context of pattern recognition problems. They have been used for classifica-

tion, prediction, image processing, anomaly detection etc. Previously, these type of

problems where generally solved by (classical) statistical approaches. However, as

discussed in the literature review, the parametric statistical approaches suffer from

assumptions that the underlying probability distribution for the given data(sets) is

linear. And Free and Schumann (1997) states that nonparametric statistical methods

are unsuitable for sparse datasets.

There are several instances where neural network based methods have performed

better than pure statistical approaches. For example, Free and Schumann (1997)

has compared neural networks with several statistical classification methods such

as Linear Discriminant Analysis , Quadratic Discriminant Analysis, Discriminant

Analysis with nonparametric density estimators and k-NN classification algorithms

on well log data. In the experiment, the neural network approach was found to

be slightly more advantageous than the statistical approach for classification task.

The author states that since both the methods (neural networks and statistical ap-

proaches) aim to reach the Bayes error based on unknown probability distribution of

the data, the parametric statistical methods can benefit if there is reasonable assump-

tion about the probability distribution. Otherwise, neural networks approach will be

useful since they directly seek for discriminating surfaces without prior knowledge of

the datasets probability model.

Sheel, Vrooman, Renner and Dawsey (2001) in their study have compared neural

networks approach with Fishers Linear Discriminant Analysis (FLDA). The results

show that neural networks outperform classical discriminant analysis in prediction



6.2. Future Directions 69

task. However, in the study conducted by Wilson and Hardgrave (1995), the dis-

criminant analysis approach performed better. The justification provided by the

authors is that discriminant analysis approach is favourable where the groups to be

discriminated are linearly separable.

Similarly, Cooper (1999), Ripley (1994) and Legitimus and Schwab (1991) have also

compared neural network with several multivariate statistical techniques. A com-

parison of the results with those obtained from multivariate statistical procedures

applied to the same data set suggests that neural networks are worthy of considera-

tion as a potentially valuable complementary tool along with statistical techniques

in the machine learning domain.

In further works, the current active learning model will be extended by incorporating

techniques such as incremental classifiers (probabilistic spiking neural networks) and

feature selection. Also more efficient criterion will be explored and exploited for

selective sampling technique.

Automated optimization, using methods involving spiking neural networks, for clas-

sifier’s parameters and determining the number of nearest neighbor to be selected

for a particular dataset; or new incoming instances will be a major focus for future

works.

Inspired by Kasabov (2009a), active learning using evolving probabilistic spiking

neural networks utilizing quantum inspired evolutionary algorithm shall be explored.

Active learning models inspiration comes from the cognitive learning ability of the

human brain, whereas spiking neural network models inspiration comes from the

spiking processes in biological neurons. Thus, integrating these two models toge-

ther would enable a more realistic mimicry of the human’s innate learning ability.

Therefore, based on this idea, I would like to study for a PhD degree the following:

• pSNN as incrementally evolving classifiers for active learning (instead of SVM

and kNN)

• Quantum superposition as feature representation and feature selection for image

classification and image associative memories.
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6.2.1 Incremental evolving probabilistic spiking neural net-

works (pSNN) for active learning.

Compared to traditional Neural Networks, SNN requires less number of neurons and

works well with spatio-temporal data (Maass & Bishop, 1999; Gerstner & Kistler,

2002). I will develop an active learning model based on probabilistic spiking neu-

ral networks (pSNN). Amongst the neural network models, spiking neural networks

(SNN) mechanism are more realistic in terms of spiking processes to the biological

neurons (Maass & Bishop, 1999). According to Kasabov (2009b), since “the spi-

king processes in biological neurons are stochastic by nature it would be appropriate

to look for new inspirations to enhance the current SNN models with probabilistic

parameters”. Therefore, motivated by Kasabov (2009b, 2009a), developing an ac-

tive learning model based on evolving probabilistic spiking neural networks (pSNN)

should result in efficient learning and classification of new data.

6.2.2 Quantum superposition as feature representation and

feature selection for image classification and image as-

sociative memories.

Feature representation and feature selection are common preprocessing steps in the

machine learning domain. It is a necessity since; it allows us to efficiently counter the

‘curse of dimensionality’ for dataset have high dimensions. It is a challenging task

to extract appropriate features, especially when the amount of data that needs to

be processes is massive. In these cases, the conventional feature representation and

feature selection methods (such as PCA, LDA and NDA) do not perform optimally.

Traditional methods like“look up tables” or “hash-tables”’ are not optimal compared

to neural networks because access to the patterns is slow if the look up table contains

too many patterns. The fault tolerance cannot be easily implemented in hash-tables.

And for n2 stored patterns, n2 times the number of steps are required for comparing

two patterns.

Further, Knoblauch (2005, 2004) in their study have shown that SNN improves fault

tolerance against noise and allows fast separation of superpositioned patterns by
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making use of precise spike timing. Also, Izhikevich (2006) states that using SNN

increases the associative memories capacity.

For need of an optimal feature representation and feature selection, inspired by

Kasabov (2009a), Schliebs, Defoin-Platel and Kasabov (2009) for my PhD studies,

I would like to explore quantum superposition as feature representation and feature

selection for image classification and image associative memories.

Associative memories are related to the human ability to retrieve information from

applied associated stimuli. Modeling and incorporating this ability using quantum

superposition principles would be a crucial addition to the active learning model

based on evolving probabilistic spiking neural networks, as it would allow an adeptly

evolving incremental learning within a limited memory space. A recent manifestation

of quantum inspired evolutionary algorithms (QiEA), by Kasabov (2009a); Schliebs

et al. (2009), have made use of the quantum principle of superposition. The authors

state that a bit (which is the smallest information unit in digital computers), exists

in either ‘1’ or ‘0’ states at any given time. Similarly, in quantum physic, a quantum

bit (qbit) can exists in ‘1’ or ‘0’ states, but also in a superposition of both states,

and can be represented as:

|Ψ〉 = α |0〉 + β |1〉 , (6.1)

where α and β are complex number that are used to define a qbits probable state

|Ψ〉.
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Appendix A

Performance evaluation figures

aIncNDA versus IncNDA performance evaluation figures for benchmark

dataset: Some of the dataset graphs from table 4.4 are illustrated below. The graph

shows the stages of learning process at every chunk after each update of the initial

NDA eigenspace. The graph falls some times, because the percentage of total data

being calculated is relative to the number of classes obtained at that particular given

stage.

The updated data is provided in a total of 10 stages/chunks. In each stage/chunk

10 percent of the total data is present (randomly) such that the samples are not

recurring, therefore each update has unique non-overlapped training samples.

Figure Naming Convention:

<DatasetIndex>(<DatasetName>)<NearestNeighborSelected>
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Figure A.1: D1 (Wisconsin) 2NN

Figure A.2: D1 (Wisconsin) 5NN

Figure A.3: D1 (Wisconsin) 7NN
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Figure A.4: D2 (Ionosphere) 2NN

Figure A.5: D2 (Ionosphere) 5NN

Figure A.6: D2 (Ionosphere) 7NN
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Figure A.7: D3 (Liver Disorder) 2NN

Figure A.8: D3 (Liver Disorder) 5NN

Figure A.9: D3 (Liver Disorder) 7NN
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Figure A.10: D6 (Iris) 2NN

Figure A.11: D6 (Iris) 5NN

Figure A.12: D6 (Iris) 7NN
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Figure A.13: D7 (Wine) 2NN

Figure A.14: D7 (Wine) 5NN

Figure A.15: D7 (Wine) 7NN
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Figure A.16: D8 (Heart) 2NN

Figure A.17: D8 (Heart) 5NN

Figure A.18: D8 (Heart) 7NN
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Figure A.19: D9 (Glass) 2NN

Figure A.20: D9 (Glass) 5NN

Figure A.21: D9 (Glass) 7NN
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Figure A.22: D12 (Face) 2NN

Figure A.23: D12 (Face) 5NN

Figure A.24: D12 (Face) 7NN

Euclidean distance versus Pearson’s product-moment correlation coeffi-

cient (PMCC):
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For image datasets having affine distortion/transformation (as in ALOI dataset ha-

ving wide baseline stereo object images), the conventional method (which uses Eu-

clidean distance) for obtaining similar images is suboptimal, since, it is difficult

to establish correspondence between stereo images by comparing regions of a fixed

(Euclidean) shape, since their shape is not preserved under affine transformation.

Therefore, we have used Pearsons product-moment correlation coefficient (PMCC)

as a similarity metric. The comparison results of these two methods is shown in

table A.1

Table A.1: Overall percentage accuracy comparison between Euclidean distance
(Euc.Dist.) and Pearson’s product-moment correlation coefficient (PMCC) (simi-
larity metrics) method, using Single-example and Multi-example method for ALOI
datasets.

Classification Accuracy %
Method PMCC Euc.Dist.

Multi-example 73.53 ± 3.66 58.20 ± 5.57
Single-example 48.67 ± 22.26 44.97 ± 19.99

However, for face datasets (i.e. dataset 1 and dataset 2) the performance accuracy

(%) was surprisingly the same for both PMCC and Euclidean distance method.
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Active Mode Incremental Nonparametric

Discriminant Analysis Learning

Shaoning Pang, Kshitij Dhoble, Gary Chen, Nik Kasabov,

Tao Ban and Youki Kadobayashi

Abstract

This paper presents a novel active mode incremental nonparametric discriminant analysis (aIncNDA)

learning method, in which previous passive incremental NDA is extended with data selective sampling,

and performs active online discrimination analysis. Given an incoming instance y, the proposed aIncNDA

computes a discrimination residue ratio between within-class and between-class ν, in which the residue

is calculated using the kth regional nearest neighbor to class mean vector ‖NNk(x,C) − µC‖. The

proposed aIncNDA is capable of estimating the discriminant contribution for every newly presented

instance, because ν imitates the fundamental NDA tr(S−1

b Sw) criterion for a maximum separation

between classes and minimum separation within classes. In the experiment, we described how the

discriminative instances can be significantly selected based on discrimination residue with, at most,

minor sacrifices in learning rate and classification accuracy. The experimental results show that the

proposed aIncNDA performs gracefully under different level of redundancy, and the proposed aIncNDA

learning system is capable of learning with less number of instances, but has more often an improved

discrimination performance, than an passive incremental NDA.

Index Terms

Nonparametric Discriminant Analysis, Incremental NDA, Active Learning, Active Mode Incremen-

tal NDA Learning.
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I. INTRODUCTION

Active learning technique is crucial for classification as it iteratively selects distinctive information

for training the classifier. Active rather than passive learning is preferred as it performs selective

sampling, which enables the learning, immune to noise and data scarcity problems. Owing to its adaptive,

evolving and dynamic characteristics it is potentially useful for targeted learning tasks and works well

particularly for nonlinear dataset/data stream. By now, active learning has been successfully used in the

field of internet security, bioinformatics [25] and text classification [14].

Active learning fundamentally consists of two main components namely the selective sampling

engine and the base classifier. Selective sampling is carried out based on a certain criterion, which

selects informative instances from the given chunk of data to better the learning function. Thus active

learning technique is principally more accurate and computationally efficient than passive learning.

In supervised machine learning for class discrimination, the nonparametric discriminant analysis

(NDA) is similar to Linear Discriminant Analysis (LDA) [21], which seeks a transformation towards a

maximum separation between classes and minimum separation within classes. Classic NDA is a passive

batch learning approach, assumes the entire dataset for training is truly informative and is presented in

advance. However in real world applications, data is often being presented at different times in a stream

of random chunks, and the quality of data is often not guaranteed due to noise affection. Incremental

NDA (IncNDA) [19] somehow has solved the difficulty of NDA and empowered the NDA with an

flexibility of incremental learning that accommodate a data stream sequentially. But in spite of that,

IncNDA still conducts a rigid learning because IncNDA does not make any instance choices before

actual learning, just passively learns whatever instances that are confronted/provided.

In order to overcome NDAs passive learning limitation, we have proposed an active mode incre-

mental NDA learning approach, which incorporates incremental NDA (IncNDA) and selective sampling

technique together to form an online active learning. The proposed aIncNDA allows constant informative

update of NDA eigenspace obtained from the incoming data.

The rest of paper is structured as follows: Section 2 describes related researches and motivations.

Section 3 introduce previous passive NDA learning approaches. Section 4 presents the proposed method-

ology been used in this experimentation. Section 5 contains comparative experimental results of IncNDA

and aIncNDA. Finally in Section 6 conclusion is given along with future work directions.

II. RELATED RESEARCHES AND MOTIVATIONS

The concept of Active learning has only been explored recently. The key to active learning lies

in its adaptive selective sampling technique, which selects the most informative instances or data, and

eventually boosts the performance of the classifier. The selected data will be assimilated into the training

set to retrain the classifier in order to achieve improved level of performance. This procedure can be
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iterative, since the objective is to achieve a targeted level of performance with least amount of data and

high number of informative instances. In our method, incremental NDA is addressed for active learning

implementation.

A. Approaches of Active Learning

There are varieties of selective sampling approaches used in active learning models. Amongst

them, one of the most commonly used technique is Pool-based active learning. However it suffers from

multiple drawbacks. Most of the pool-based active learning iteratively selects random samples from the

pool which may be informative or irrelevant [2]. Moreover, selecting the samples to be included in

the pool itself is a time consuming process. Another selective sampling approach is membership query

which selects samples directly from the dataset. Membership query scheme does not have the drawbacks

posed by the pool-based scheme. It also reduces the predictive error rapidly and is less computationally

intensive.

Clustering [6] and Batch mode active learning [7] are some of the other common flavors of active

learning which aims at decreasing the redundancy amongst the selected instances, consequently providing

more unique instances for the refinement of classifiers. Lastly, Query by Committee technique [8] is

an effective approach, where selective sampling is based on the disagreement amongst ensemble of

hypotheses. Some of the frequently used ensemble in this type of active learning includes techniques

such as Bagging and Boosting.

For application, incorporation of active learning with support vector machine has been commonly

used especially in the field of bioinformatics and text categorization [14]. However majority of them

have made use of pool-based technique, which suffers from multiple drawbacks stated above, therefore it

is recommended that though incorporation of active learning with SVM is good, other approaches such

as membership querying or batch mode active learning should be used as they negate the drawbacks

introduced by pool based learning.

B. Incremental Discriminant Analysis Approaches

It is well known that Linear Discriminant Analysis (LDA) [21] seeks a transformation towards

a global maximum separation between classes and minimum separation within classes. In contrast,

another known discriminant analysis approach, Nonparametric Discriminant Analysis (NDA) relies on

local eigenvectors for obtaining discriminant knowledge from the entire dataset. The advantage of NDA

over LDA is that, NDA does not rely on assumptions that instances are drawn from a given probability

distribution, therefore are more robust than parametric methods such as LDA, and suits particularly

on those nonlinear datasets. Similar to LDA, NDA requires the entire dataset for training presented in

advance, thus is often called batch NDA in the literature. For incremental learning of NDA, Raducanu et.



95

4

al [19] proposed an incremental version of NDA, which allows us to maintain a constantly updated NDA

eigenspace. However, both batch NDA and incremental NDA are merely a passive learning approach,

learning passively whatever data is being given/confronted.

C. Motivation of Active Mode Incremental NDA Learning

To enable active learning of NDA, we incorporated incremental NDA and selective sampling

technique together to form a new active learning technique, which delivers constant informative updating

of NDA eigenspace, therefore minimizing concept drift and computational cost.

III. PASSIVE NDA LEARNING APPROACHES

Classic NDA [1] assumes that the entire training dataset is provided in advance, the learning is

passively done in one batch. Incremental NDA (IncNDA) is capable of learning incoming instance

continuously, but IncNDA also learns inactively whatever instances are confronted. The computation of

Batch NDA and IncNDA are briefed as follows.

A. Nonparametric Discriminant analysis (Batch NDA)

Assuming that the data samples we have belong to N classes. Let Ci represents samples belonging

to one of the class i, i = 1, 2, 3, ..., N . Then, a NDA discrimination eigenspace according to [19] can

be computed to express the class separability of data,

Ω = tr(S−1

w .Sb) (1)

In above Ω, Sw is the within class covariance matrix defined as:

Sw =

CN
∑

i=1

∑

j∈Ci

(xj − µCi)(xj − µCi)
T ; (2)

Sb is the between class covariance matrix defined as,

Sb =

CN
∑

i=1

CN
∑

j=1,j 6=i

nCi
∑

q=1

Wijq(x
i
q − µNN(xi

q, Cj))(x
i
q − µNN(xi

q, Cj))
T . (3)

where µCi is the mean vector of class Ci, and wCi
is the number of samples in class Ci.

In Sb, µNN(xi
q, Cj) is defined as a local K-NN mean,

µNN(xi
q, Cj) =

1

k

k
∑

t=1

NNt(x
i
q, Cj)‘ (4)

where NNt(m
i
q, Cj) represents the tth nearest neighbor from vector mqi to class Cj . Wijqis defined

as a weighting function,

wijq =
dα(xi

q, NNt(x
i
q, Ci))(x

i
q, NNt(x

i
q, Cj))

dα(xi
q, NNt(xi

q, Ci)) + (xi
q, NNt(xi

q, Cj)))
. (5)

where α denotes control parameter for sample weights which can be selected between zero and infinity.
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B. Incremental Nonparametric Discriminant Analysis (IncNDA)

Consider new instances are presented in the future. Incremental NDA [19] incorporates the dis-

criminant knowledge presented in the new coming sample as: given new instance y is coming in, then

the current NDA model Ω is required to be updated as,

Ω′ = f(Ω, y) = tr(S′−1

w · S′b) (6)

This means that Sw and Sb are required to be updated respectively.

According to , the updated between class S
′

b and within class S
′

w covariance matrix can be calculated

as follows:

S
′

b = Sb − Sin
b (CL) + Sin

b (CL
′ ) + Sout

b (yCL) (7)

S
′

w =

CN
∑

j=1,j 6=L

Sw(Cj) + Sw(C
′

L) (8)

where Sin
b (CL) represents the covariance matrix between the existing class and the class newly pre-

sented, Sout
b (yCL) gives the covariance matrix between the existing class and the updated class CL

′ ,

and Sw(C
′

L) signifies the updated within class covariance matrix. For further computation approaches

on Sin
b (CL), Sout

b (yCL), and Sw(C
′

L), please refer to [19].

The above IncNDA can be used to construct an agent capable of updating the current discriminant

knowledge Ω(t) by Ω(t+1) = F(Ω(t),y) whenever a new instance y is confronted by the agent in the

future. However, the IncNLDA is counted as a passive learning approach, because the IncNDA learns

passively every instance confronted, even if the instance is confirmed redundant or noise data.

IV. THE PROPOSED ACTIVE INCNDA (AINCNDA)

For active learning, we consider here an active learning way (aIncNDA) to empower the IncNDA

with the ability of detecting the discriminative interestingness of data before it is delivered for IncNDA

learning. That is, the above IncNDA can be renovated to conduct incremental learning in an active

learning way,

Ω(t + 1) =







Fc(Ω(t),y) ifL(t) > ξ

Ω(t) otherwise.
(9)

where only discriminative instances are delivered for IncNDA learning. ξ is the threshold identifying

discriminative criterion of NDA. The smaller ξ leads to the bigger number of instances learned by

IncNDA.

Recall that the nature of NDA learning lies at the discriminability difference between the NDA

transformed space and the original space. Straightforwardly, L(t) can be represented as a type of

mathematical residue that reflects the discriminability difference between the NDA transformed space

and the original space.
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Given one new instance presented at one time, similar to [20], the discriminability difference

between the NDA transformed space and the original space of the IncNDA at time t by a classification

performance evaluation as,

L(t) = Ad(t)−Ao(t), (10)

where Ad(·) is the classification accuracy on discriminant eigenspace, and Ao(·) is the accuracy on

original space. It could be any type of classification performance evaluation by any classifier.

However, such performance-based residue calculation involves a serious problem. That is, the L(t) is

highly classifier dependent. For example, suppose a K-NN method is used for performance evaluation

Ad(·) and Ao(·), then the selected instances for incremental learning is meaningful only for K-NN

classification and the category of prototype-based methods, but may not for the classification using any

other methods such as hyperplane-based support vector machines (SVM) and decision-tree based C4.5.

A. Discrimination Residue Ratio

The idea of discrimination residue ratio is adapted from the weighting function (i.e. Eq. (5))used in

NDA, where NNk(xi, Ci) and NNk(xi, Cj) emphasize local within class distances and local between

class distances. As we know, the principle of NDA, similar to LDA, seeks simultaneously minimizing

within class distances and maximizing between class distances. The difference between NDA and LDA

is, LDA is global model, whereas NDA focus on local instances distribution.

Given M new instances Y = {y1, y2, ...yM} presented as one chunk at time t, for each instance

yi ∈ Y , we can quickly estimate the within-class residue to the class mean vector µCi:

‖NNk(yi, Ci)− µCi‖, (11)

also the between-class residue to any other the class mean vector µCj , j = 1, ..., CN , j 6= i:

‖NNk(yi, Cj)− µCj‖. (12)

Thus, the contribution of incoming instance yi to the NDA fundamental maximum tr(S−1

w .Sb) criterion

can be estimated as the following discrimination residue ratio of with-class to between-class scatter

estimates

ν(yi) =
‖NNk(yi, Ci)− µCi‖

‖ 1

CN−1

∑CN

j=1,j 6=i NNk(yi, Cj)− µCj‖
(13)

if ν(yi) > 1, then the contribution of yi to NDA discrimination is positive, otherwise is negative.

However, it is noticeable that the above discrimination residue ratio varies in practice largly de-

pending on individual dataset. Thus, it is hard for us to determine a suitable threshold value for a given

dataset. To overcome this difficulty, we compute the discrimination residue ratio for every instance of

the Y , then the above ν(yi) can be normalized as,

νyi
=

ν − ν̄
√

1

M

∑M

m=1
(νm − ν̄)2

(14)
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where ν̄ = 1

M

∑M

m=1
νm is the chunk mean discrimination residue ratio. Thus, L(t) in Eq. (15)can be

implemented by νyi
as a chunk data filter.

Ω′ =







Fc(Ω,y) ifν(y) > ξ

Ω otherwise.
(15)

V. EXPERIMENTS AND DISCUSSIONS

In this section, we have examined the efficiency and accuracy of the proposed aIncNDA method,

and compared to IncNDA. Particularly, we investigate the relationship between 1) the discriminability

and number of instances, 2) the redundancy and number of instances. To experiment on data with

different discriminative characterization, we used datasets from two database resources. One resource

is from UCI Machine Learning Repository [23], where we selected 8 datasets that have different

application backgrounds and the features 100% of continuous/integer values and no missing value.

The other resource is the MPEG-7 face database [24], which consists of pose and ⁀light two subsets,

total 1355 face images of 271 persons, 5 different face images per person and each face image has the

size of 56 × 46.

A. Experimental Setup

To implement the proposed aIncNDA for incremental learning, we select randomly, for each dataset,

10% for initial batch NDA training, and divide the remaining data into 10 random chunks for incremental

learning test. We collect every instance learned by aIncNDA, and evaluate the performance of aIncNDA

and IncNDA on discrimination contribution at every learning stage. For performance evaluation, we

compared the eigenspace from the proposed aIncNDA with the eigenspace from IncNDA by a leave-

one-out kNN (k=1) classification over all data presented by current learning stage. Note that we use

the term learning stage instead of the usual time scale since the events of data arriving in the above

incremental learning may not happen in a regular time interval. Here, the number of learning stages is

equivalent to the number of instances that have been learned by incremental models.

In the experiment, parameter ξ is relevant to the number of curiosity instances and the discrim-

inability of the resulting NDA. For each experiments, we fixed ξ by the rule that the instances are

significantly selected with, at most, minor sacrifices in discriminability.

B. Synthetic Dataset

We first experimented the proposed aIncNDA with a synthetic data set that has 3 classes 475

instances. The data distribution is a mixture of several 2D ([X1 X2]) Gaussian distributions as shown

in Fig. 1.

Fig. 2 gives the distribution of the 257 informative instances learned by aIncNDA. As compared

to the data distribution of the entire 475 instances, the discriminative representativeness of the selected
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Fig. 1. The comparison of data distribution between the synthetic dataset and selected curiosity instances by proposed aIncNDA

learning method. (a) the data distribution of the entire dataset; and (b) the data distribution of selected instance by aIncNDA.

instances by aIncNDA is clear because those 257 instances includes all critical instances for class dis-

tinction, such as instances involving class-mixture, and major representative instances of the independent

class.

Fig. 2 illustrates the whole procedure of incremental learning with a comparison to IncNDA, where

the horizontal and vertical axis represent the incremental stage and the classification accuracy from k-NN

(k=1). As seen from the figure, the proposed aIncNDA and IncNDA is compared on the classification

error at every incremental learning step. The classification accuracy difference between two methods

is +0.842105, which indicates that the proposed aIncNDA achieves better learning effectiveness of the

original IncNDA, although aIncNDA learns only 54.10% of total 475 instances.

C. UCI Datasets

Table I gives an comparison of aIncNDA versus IncNDA on the incremental learning of 8 UCI

datasets. In the table, ξ is fixed for each dataset by the rule described above, the number of instances and

the percentage to the number of all instances is denoted as ‘No. Instances(rate)’, and the classification

accuracies is denoted as ‘Acc.’. The discriminability difference (denoted as ‘Diff.’) is calculated as the
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Fig. 2. The comparison of aIncNDA and IncNDA on the performance of incremental learning.

TABLE I

COMPARISON OF AINCNDA VERSUS INCNDA ON INCREMENTAL LEARNING OF INSTANCES OVER 8 UCI DATASETS.

aIncNDA IncNDA

Datasets ξ No. Instances(rate[%]) Acc.[%] No. Instances Acc.[%] Diff.[%]

Iris 0.75 56 (37.3) 94.5 150 92.0 +2.5

Liver-disorder 0.8 51 (22.2) 63.3 345 62.4 +0.9

Vehicle 3.0e-3 251 (29.7) 77.6 846 75.4 +2.2

Glass 0.98 50 (23.4) 60.1 214 52.5 +7.6

Wine 0.95 162 (92.7) 83.7 178 78.5 +5.2

Wisconsin 0.95 443 (95.7) 84.3 463 89.7 +1.1

Ionosphere 0.7 291 (83.1) 76.2 350 76.1 +0.1

Heart 0.65 33 (11.1) 53.2 297 52.3 +0.9

proposed aIncNDA minus IncLDA in terms of the K-NN LOO classification performance at the final

learning stage.

As seen in the table, the proposed aIncLDA method, ignores 4.7%-88.9% instances of the whole

dataset, constructs discriminant eigenspaces on the remaining 11.1%-95.3% selected instances. How-

ever, the discriminability of the obtained eigenspace from composed instance subset, compared to the

eigenspace from all instances (using IncLDA), has no decrease, reversely, most of case has a slight

increase. This suggests that the proposed active IncNDA learning is valid, and the selected instances by

aIncNDA have the expected discriminative representativeness.
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D. Performance under different discriminative redundancy

To test the performance of the proposed method under different level of discriminative redundancy,

we carried out face recognition (FR) and face membership authentication (FMA) experiments [26], [27],

[28] using the same face database described above. FMA is to distinguish the membership class (cls.

1) from the non-membership class (cls. 2) in a total group through a binary class classification. FMA

involves more discriminative redundancy than face recognition problem, because the size of membership

in FMA is often smaller than that of nonmembership, which indicates that not every instance are

discriminatively important for FMA.

Over the 271 persons 1355 faces data, we conducted FR and FMA, respectively. For the FMA

experiment, we set the membership size as 71 (cls. 1/cls. 2 is 71/200) without loss of generality. Thus,

we compared the proposed aIncNDA with the IncNDA on incremental learning of 271 classes (i.e. FR)

and 2 classes (i.e. FMA) data, respectively.

Fig. 3(a) shows the comparison of NDA discriminability between the proposed aIncNDA and the

IncLDA for both FR and FMA experiments, and Fig. 3(b) reports corresponding the number of instances

learned by aIncNDA.

As seen in Fig. 3(a), the proposed aIncNDA learns NDA for FR on 1331 of total 1355 instances,

only 24 instances are found redundant. Whereas for FMA, aIncNDA learns 1093 of 1355 which is only

about 20.0% of total 1355 instances are reduced. However, the performance of the proposed aIncNDA

for both FR and FMA as given in Fig. 3(a) outperforms in most cases, the performance of the IncNDA

on all 1355 instances. This indicates that the proposed aIncNDA is able to suit itself automatically to

data with discriminative redundancy, and select a suitable number of instance to build an correct NDA

model. This also can be reflect from Fig. 3(b), where aIncNDA is shown actively selecting different

number of instance for incremental learning.

VI. CONCLUSION AND FUTURE WORKS

Method based on passive learning prove to be inadequate in real world application. To overcome

this limitation, we have developed active mode incremental NDA which performs adaptive discriminant

selection of instances for incremental NDA learning. Performance evaluation carried out on benchmark

UCI datasets show that Active Mode Incremental NDA performs on par and in many cases better then

incremental NDA with less number of instances. Given the nature of network data which is large,

streaming, and constantly changing, we believe that our method can find practical application in the

field of internet security.

Over the datasets from different resources, the proposed aIncNDA learning method is evaluated

on: (1) aIncNDA versus IncNDA, and (2) performance under different level redundancy, where face

recognition and face membership authentication are studied, respectively. The experimental results
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Fig. 3. Comparison of aIncNDA and IncNDA on FR and FMA, (a) the performance of aIncLDA versus IncNDA on incremental

learning; (b) the number of learned instances by aIncNDA at every learning stage.

demonstrate that the proposed aIncNDA learning helps more efficient NDA learning with fewer instances,

but with no performance deduction. One limitation of the proposed method concerns, as the original

IncNDA retains raw data at every step of incremental learning, the data processing in aIncNDA is not

one-pass.

As future work, the presented methods application in intrusion detection system will be exploited

along with added enhancements to the selective sampling criterion. Also, the use of incremental classifier

will be researched to serve as an extension to our present model which will eliminate the need for

retraining further enhancing the processing speed while been computationally efficient.
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